WO2024057635A1 - Data processing device, physical quantity measurement device, data processing system, and data processing method - Google Patents

Data processing device, physical quantity measurement device, data processing system, and data processing method Download PDF

Info

Publication number
WO2024057635A1
WO2024057635A1 PCT/JP2023/021022 JP2023021022W WO2024057635A1 WO 2024057635 A1 WO2024057635 A1 WO 2024057635A1 JP 2023021022 W JP2023021022 W JP 2023021022W WO 2024057635 A1 WO2024057635 A1 WO 2024057635A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
physical quantity
frequency
analysis
unit
Prior art date
Application number
PCT/JP2023/021022
Other languages
French (fr)
Japanese (ja)
Inventor
裕太 坂巻
泰雅 山田
孝志 関口
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Publication of WO2024057635A1 publication Critical patent/WO2024057635A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H17/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Definitions

  • the present invention relates to a data processing device, a physical quantity measuring device, a data processing system, and a data processing method.
  • frequency spectra frequency The state (abnormality, failure, etc.) of a device to be monitored is determined using a sensor unit including an arithmetic processing unit that generates a data string (for example, see Patent Document 1).
  • changes that appear in the results of frequency analysis differ depending on the status to be determined. For example, for a specific state, a change may appear in a high frequency band, and for another state, a change may appear in a low frequency band. Furthermore, the frequency resolution required to capture these changes also differs.
  • the present invention provides a data processing device that makes it possible to suppress increases in memory capacity and processing time required for frequency analysis when performing frequency analyzes with different frequency bands and frequency resolutions, respectively;
  • the purpose of the present invention is to provide a physical quantity measuring device, a data processing system, and a data processing method.
  • a data processing device includes a data acquisition unit that acquires a physical quantity data string obtained by measuring a physical quantity to be measured as physical quantity data at a predetermined sampling frequency and a predetermined number of sampling points. , by extracting the physical quantity data of the first number of analysis points that are consecutively measured by the first number of analysis points smaller than the number of sampling points from the physical quantity data string acquired by the data acquisition unit. a first data generation unit that generates a time data sequence; and converting the first time data sequence generated by the first data generation unit into a first frequency data sequence by performing frequency analysis on the first time data sequence.
  • a first frequency analysis unit that thins out the physical quantity data string acquired by the data acquisition unit into physical quantity data having a second number of analysis points smaller than the number of sampling points according to an analysis frequency smaller than the sampling frequency.
  • a second data generation unit that generates a second time data sequence; and a second frequency by performing frequency analysis on the second time data sequence generated by the second data generation unit. and a second frequency analysis section that converts the data into a data string.
  • the first data generation section from a physical quantity data string based on a predetermined sampling frequency and a predetermined number of sampling points, the first data generation section generates a first analysis point based on a first analysis point smaller than the sampling frequency and the number of sampling points.
  • a time data sequence is generated, a first frequency analysis section performs frequency analysis, and a second data generation section performs frequency analysis based on an analysis frequency smaller than the sampling frequency and a second analysis point number smaller than the number of sampling points.
  • a second time data string is generated, and frequency analysis is performed by a second frequency analysis section. Therefore, a common physical quantity data string is used when frequency analyzes with different frequency bands and frequency resolutions are performed. Thereby, it is not necessary to acquire the physical quantity data string twice, so it is possible to suppress an increase in memory capacity and processing time required for frequency analysis.
  • FIG. 1 is an overall configuration diagram showing an example of a data processing system.
  • FIG. 1 is a block diagram showing an example of a physical quantity measuring device.
  • FIG. 2 is a functional explanatory diagram showing an example of a physical quantity measuring device.
  • FIG. 2 is a hardware configuration diagram showing an example of a computer configuring each device. It is a flowchart which shows an example of operation of a physical quantity measuring device (data processing device).
  • FIG. 1 is an overall configuration diagram showing an example of a data processing system 1. As shown in FIG. The data processing system 1 functions as a system for processing physical quantity data when a physical quantity to be measured is measured by the pump apparatus 2 and for managing the pump apparatus 2 .
  • the data processing system 1 includes, as its main components, a pump device 2 to be monitored, a physical quantity measuring device 3 that can be attached to the pump device 2, a data collecting device 4 configured to be able to communicate with the physical quantity measuring device 3, It includes a data management device 5 configured to be able to communicate with the data collection device 4, and a terminal device 6 configured to be able to communicate with the data management device 5.
  • Each of the devices 2 to 6 is composed of, for example, a general-purpose or dedicated computer (see FIG. 4, which will be described later), and is configured to be able to mutually transmit and receive various data via a network 7. Note that the number of each device 2 to 6 is not limited to the example shown in FIG. 1, and may be one or more.
  • the pump device 2 is a device that transfers any fluid, and is installed and used, for example, in infrastructure equipment (water supply, sewerage, etc.) or plant equipment (oil refining, power generation, manufacturing, chemical process, etc.).
  • the pump device 2 includes a pump section 20, a motor 21 that serves as a drive source for the pump device 2, a joint section 22 that transmits the driving force generated by the motor 21 to the pump section 20, and a pump that controls the operation of the pump device 2.
  • a control panel 23 is provided.
  • the pump section 20 is composed of, for example, an impeller, a rotating shaft, a bearing, a mechanical seal, a gland packing, a casing, and piping.
  • the motor 21 is constituted by an arbitrary type of motor such as an inverter motor, for example.
  • the joint portion 22 is composed of, for example, a coupling, a joint, a joint, a bearing, or the like.
  • the pump control panel 23 is composed of, for example, a built-in computer. The pump control panel 23 stores operating conditions set by a user (such as an installer or administrator of the pump device 2), and sensors (not shown) installed in each part of the pump unit 20 and motor 21. The rotational operation of the motor 21 is controlled based on the detected value.
  • the pump device 2 may be configured to be able to communicate with each of the devices 3 to 6.
  • the physical quantity measuring device 3 is a device that measures a physical quantity caused by the pump device 2, and is attached to an arbitrary position of the pump section 20, the motor 21, or the joint section 22, for example.
  • the physical quantity measuring device 3 includes a physical quantity sensor 30 that measures a physical quantity to be measured, a data processing device 31 that processes physical quantity data when the physical quantity is measured by the physical quantity sensor 30, and the physical quantity sensor 30 and the data processing device 31. , and a housing 300 that can be attached to the pump device 2.
  • the physical quantities to be measured by the physical quantity sensor 30 include, for example, acceleration (vibration), velocity, displacement, and environmental sound.
  • the physical quantity sensor 30 includes, for example, an acceleration sensor that can measure acceleration, a speed sensor that can measure speed, a displacement sensor that can measure displacement, a microphone that can measure environmental sound, and the like.
  • the physical quantity to be measured may be the subject of frequency analysis (details will be described later), and is not limited to the above example.
  • it may be a physical quantity such as pressure, load, temperature, current value, voltage value, etc.
  • a physical quantity sensor 30 such as a pressure sensor, a load sensor, a temperature sensor, a current sensor, or a voltage sensor is used.
  • the physical quantity sensor 30 may include a plurality of sensors for respectively measuring a plurality of physical quantities.
  • the mounting position of the physical quantity measuring device 3 is determined according to the physical quantity to be measured. Note that one physical quantity measuring device 3 may be attached to the pump device 2, or as shown in FIG. 1, a plurality of physical quantity measuring devices 3 may be attached. When a plurality of physical quantity measuring devices 3 are attached, they may be devices that measure a common physical quantity or may be devices that measure different physical quantities.
  • the data processing device 31 is a device for processing physical quantity data obtained by converting an analog signal indicating a physical quantity measured by the physical quantity sensor 30 into a digital signal. Note that the data processing device 31 may include an A/D conversion circuit that converts an analog signal into a digital signal, or may acquire physical quantity data converted into a digital signal from the physical quantity sensor 30.
  • the data collection device 4 is used by a user (an administrator, an inspection/repair worker, etc. of the pump device 2) located at the installation location of the pump device 2, and is used by the physical quantity measuring device 3 (specifically, the data processing device 31). ) is a device for collecting data from The data collection device 4 is composed of, for example, a portable computer such as a smartphone or a tablet. For example, when the user of the data collection device 4 approaches within a predetermined distance from the physical quantity measuring device 3, communication is established with the physical quantity measuring device 3, thereby collecting data from the physical quantity measuring device 3. .
  • the data collection device 4 has programs such as applications and browsers installed thereon and accepts various input operations, and also displays the data collected from the physical quantity measurement device 3 on a display screen and transfers the data to the data management device 5. or send it to.
  • the data management device 5 includes a database 50 for managing data collected by the data collection device 4, and is configured with a server-type computer or a cloud-type computer, for example.
  • the data management device 5 stores the data received from the data collection device 4 in the database 50. Further, the data management device 5 transmits notification information to the terminal device 6 when the data received from the data collection device 4 satisfies a predetermined notification condition. Further, when the data management device 5 receives a request to refer to data stored in the database 50 from the terminal device 6, it transmits the reference information of the database 50 to the terminal device 6.
  • the terminal device 6 is a device used by a user located in a remote location away from the installation location of the pump device 2 (an administrator of the pump device 2, an inspection/repair worker, etc.), and is, for example, a stationary computer or a mobile device. It consists of a type computer.
  • the terminal device 6 has programs such as applications and browsers installed, accepts various input operations, and displays various information (notification information and reference information of the database 50) on a display screen. Note that the terminal device 6 may be a device that also serves as the data collection device 4.
  • the network 7 is configured by wired communication, wireless communication, or a combination of wired communication and wireless communication according to any communication standard.
  • a standardized communication network such as the Internet
  • a communication network managed within a building such as a local network, or a combination of these communication networks
  • international standards are typically used as communication standards for wireless communication.
  • methods such as Bluetooth (registered trademark), Bluetooth Low Energy, Wi-Fi, ZigBee (registered trademark), Sub-GHz, EnOcean (registered trademark), and LTE can also be used.
  • FIG. 2 is a block diagram showing an example of the physical quantity measuring device 3.
  • FIG. 3 is a functional explanatory diagram showing an example of the physical quantity measuring device 3.
  • the physical quantity measuring device 3 includes, as its main components, a control section 32, a communication section 33, a storage section 34, and a power supply 35, which constitute a data processing device 31, in addition to the physical quantity sensor 30 described above.
  • control unit 32 executes the data processing program 340 stored in the storage unit 34 to control the data acquisition unit 320, first data generation unit 321, first frequency analysis unit 322, and first transmission processing. 323 , a filter processing section 324 , a second data generation section 325 , a second frequency analysis section 326 , and a second transmission processing section 327 .
  • the communication unit 33 functions as a communication interface that transmits and receives various data to and from the data collection device 4 via the network 7, for example.
  • the storage unit 34 stores various programs (data processing program 340, etc.) and data (setting information 341, etc.) used in the operation of the physical quantity measuring device 3.
  • the setting information 341 stores, for example, setting parameters (sampling frequency fs, number of sampling points Ns, etc.) that are referred to by the control unit 32 when the physical quantity measuring device 3 operates, and also stores, for example, setting parameters that are referenced by the control unit 32 when the physical quantity measuring device 3 operates. It is configured to be configurable.
  • the power source 35 is composed of, for example, a primary battery, a secondary battery, a solar cell, a fuel cell, etc., and supplies power to each part of the physical quantity measuring device 3. Note that the power source 35 may receive power supply from the pump device 2.
  • the first data generation unit 321 generates a first analysis that is continuously measured by a first analysis point number Ns1 ( ⁇ Ns) smaller than the sampling point number Ns from the physical quantity data string Dc acquired by the data acquisition unit 320.
  • a first time data string Dct1 is generated by extracting the physical quantity data D of the number Ns1.
  • the first number of analysis points Ns1 may be set as a ratio (for example, 1/2, etc.) to the number of sampling points Ns instead of a number of points.
  • the first data generation unit 321 extracts the physical quantity data D of the first number of analysis points Ns1 with consecutive measurement timings from the physical quantity data string Dc as the first time data string Dct1, any arbitrary data in the physical quantity data string Dc is extracted as the first time data string Dct1. What is necessary is to extract the first time data string Dct1 measured during the measurement period.
  • the setting information 341 among the physical quantity data D of "2048 points", as shown in FIG. , D2, ..., D1024 ⁇
  • intermediate physical quantity data D from the 513th point to the 1536th point may be extracted as the first time data string Dct1.
  • the physical quantity data D in the second half from the 1025th point to the 2048th point may be extracted as the first time data string Dct1.
  • the first frequency analysis unit 322 performs frequency analysis on the first time data sequence Dct1 generated by the first data generation unit 321, thereby converting it into a first frequency data sequence Dcf1.
  • the first frequency analysis unit 322 performs a Fourier transform called a discrete Fourier transform (DFT) or a fast Fourier transform (FFT) as a frequency analysis, thereby generating a first time data string Dct1 configured on a time axis. is converted into a first frequency data string Dcf1 configured on a frequency axis.
  • the first frequency analysis section 322 may store the first frequency data string Dcf1, which is the calculation result of the Fourier transform, in the storage section 34.
  • the first transmission processing unit 323 transmits the first frequency data string Dcf1 converted by the first frequency analysis unit 322. At this time, if the first frequency data string Dcf1 is stored in the storage section 34 by the first frequency analysis section 322, the first transmission processing section 323 The first frequency data string Dcf1 may be deleted from the storage unit 34, or the first frequency data string Dcf1 may be deleted according to other deletion conditions.
  • the filter processing unit 324 applies an anti-aliasing filter to the physical quantity data string Dc acquired by the data acquisition unit 320.
  • the anti-aliasing filter is a filter for preventing aliasing (aliasing noise) when the physical quantity data string Dc is thinned out by the second data generation unit 325, and is a filter that removes components having a predetermined cutoff frequency or higher. Consists of a digital low-pass filter.
  • the cutoff frequency of the low-pass filter is appropriately determined, for example, according to the setting values of setting parameters including the sampling frequency fs and the like.
  • the second data generation unit 325 converts the physical quantity data sequence Dc to which the anti-aliasing filter has been applied by the filter processing unit 324 into a physical quantity data sequence Dc that is smaller than the number of sampling points Ns according to an analysis frequency fs2 ( ⁇ fs) that is smaller than the sampling frequency fs.
  • a second time data string Dct2 is generated by thinning out (downsampling) the physical quantity data D with the number of analysis points Ns2 ( ⁇ Ns) of 2.
  • the analysis frequency fs2 may be set as a ratio (e.g., 0.5, etc.) to the sampling frequency fs instead of a frequency, and the second number of analysis points Ns2 may be set as a ratio (e.g., 1/2, 1/3, 1/4, etc.) to the number of sampling points Ns instead of a number of points.
  • the analysis frequency fs2 or the second number of analysis points Ns2 may be set in the setting information 341.
  • the second frequency analysis unit 326 performs frequency analysis on the second time data sequence Dct2 generated by the second data generation unit 325, thereby converting it into a second frequency data sequence Dcf2. Similarly to the first frequency analysis unit 322, the second frequency analysis unit 326 performs frequency analysis on the time axis by performing a Fourier transform called a discrete Fourier transform (DFT) or a fast Fourier transform (FFT), for example.
  • DFT discrete Fourier transform
  • FFT fast Fourier transform
  • the second time data string Dct2 made up of is converted into a second frequency data string Dcf2 made up of a frequency axis.
  • the second frequency analysis section 326 may store the second frequency data string Dcf2, which is the calculation result of the Fourier transform, in the storage section 34.
  • the second time data string Dct2 is composed of "1024 points" of physical quantity data D measured at the analysis frequency fs2 of "2560 Hz";
  • the frequency resolution of the Fourier transform by the frequency analysis unit 322 of No. 1 is higher than that of the Fourier transform.
  • the second transmission processing unit 327 transmits the second frequency data string Dcf2 converted by the second frequency analysis unit 326. At that time, when the second frequency data string Dcf2 is stored in the storage section 34 by the second frequency analysis section 326, the second transmission processing section 327 The second frequency data string Dcf2 may be deleted from the storage unit 34, or the second frequency data string Dcf2 may be deleted according to other deletion conditions.
  • first frequency data string Dcf1 transmitted by the first transmission processing section 323 and the second frequency data string Dcf2 transmitted by the second transmission processing section 327 are received by the data collection device 4, , is further transmitted from the data collection device 4 to the data management device 5 and stored in the database 50. Further, the first frequency data string Dcf1 and the second frequency data string Dcf2 may be displayed on the display screen of the data collection device 4. It should be noted that the first frequency data string Dcf1 and the second frequency data string Dcf2 contain data for identifying at least one of the pump device 2 and the physical quantity measuring device 3, for example, by the data processing device 31 or the data collection device 4. Identification information (device ID of the pump device 2, device ID of the physical quantity measuring device 3, etc.) may be provided. In this case, the first frequency data string Dcf1 and the second frequency data string Dcf2 may be stored in the database 50 in a state where they are associated with the identification information.
  • the second data generation unit 325 generates the second time data sequence Dct2 from the physical quantity data sequence Dc after the anti-aliasing filter has been applied by the filter processing unit 324.
  • the second data generation unit 325 generates a second time data sequence Dct2 from the physical quantity data sequence Dc acquired by the data acquisition unit 320 without applying an anti-aliasing filter according to the setting value of the configuration parameter. may be generated.
  • the physical quantity measuring device 3 (data processing device 31) may not include the filter processing section 324.
  • FIG. 4 is a hardware configuration diagram showing an example of a computer 900 that constitutes each device.
  • Each of the pump device 2 (mainly the pump control panel 23), the physical quantity measuring device 3 (mainly the data processing device 31), the data management device 5, and the terminal device 6 is configured by a general-purpose or dedicated computer 900.
  • the computer 900 includes a bus 910, a processor 912, a memory 914, an input device 916, an output device 917, a display device 918, a storage device 920, and a communication I/F (interface) as its main components. 922 , an external device I/F section 924 , an I/O (input/output) device I/F section 926 , and a media input/output section 928 . Note that the above-mentioned components may be omitted as appropriate depending on the purpose for which the computer 900 is used.
  • the processor 912 includes one or more arithmetic processing units (CPU (Central Processing Unit), MPU (Micro-Processing Unit), DSP (Digital Signal Processor), GPU (Graphics Processing Unit), NPU (Neural Processing Unit), etc.) It operates as a control unit that controls the entire computer 900.
  • the memory 914 stores various data and programs 930, and includes, for example, a volatile memory (DRAM, SRAM, etc.) that functions as a main memory, a nonvolatile memory (ROM), a flash memory, etc.
  • the input device 916 includes, for example, a keyboard, a mouse, a numeric keypad, an electronic pen, etc., and functions as an input unit.
  • the output device 917 is configured with, for example, a sound (voice) output device, a vibration device, etc., and functions as an output section.
  • the display device 918 is configured with, for example, a liquid crystal display, an organic EL display, electronic paper, a projector, etc., and functions as an output unit.
  • Input device 916 and display device 918 may be configured integrally, such as a touch panel display.
  • the storage device 920 is configured with, for example, an HDD, an SSD, etc., and functions as a storage unit. The storage device 920 stores various data necessary for executing the operating system and programs 930.
  • the communication I/F section 922 is connected to a network 940 such as the Internet or an intranet (which may be the same as the network 7 in FIG. 1) by wire or wirelessly, and exchanges data with other computers according to a predetermined communication standard. It functions as a communication unit that sends and receives information.
  • the external device I/F section 924 is connected to an external device 950 such as a camera, printer, scanner, reader/writer, etc. by wire or wirelessly, and serves as a communication section that sends and receives data to and from the external device 950 according to a predetermined communication standard. Function.
  • the I/O device I/F unit 926 is connected to an I/O device 960 such as various sensors and actuators, and transmits, for example, a detection signal from a sensor, a control signal to an actuator, etc. with the I/O device 960. It functions as a communication unit that sends and receives various signals and data.
  • the media input/output unit 928 includes, for example, a drive device such as a DVD drive or a CD drive, a memory card slot, and a USB connector, and a media (non-temporary storage medium) 970 such as a DVD, CD, memory card, or USB memory. Read and write data to.
  • the processor 912 calls the program 930 stored in the storage device 920 to the memory 914 and executes it, and controls each part of the computer 900 via the bus 910.
  • the program 930 may be stored in the memory 914 instead of the storage device 920.
  • the program 930 may be recorded on the medium 970 in an installable file format or an executable file format, and provided to the computer 900 via the media input/output unit 928.
  • the program 930 may be provided to the computer 900 by being downloaded via the network 940 via the communication I/F unit 922.
  • the computer 900 implements various functions realized by the processor 912 executing the program 930, for example, using FPGA (Field-Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc. Even if it is realized by hardware good.
  • the computer 900 is, for example, a stationary computer or a portable computer, and is any type of electronic device.
  • the computer 900 may be a client-type computer, a server-type computer, a cloud-type computer, or, for example, an embedded computer called a control panel, controller (including a microcomputer, programmable logic controller, and sequencer), or the like.
  • FIG. 5 is a flowchart showing an example of the operation of the physical quantity measuring device 3 (data processing device 31).
  • the series of processes (data processing method) shown in FIG. 5 may be repeatedly executed at a predetermined execution cycle, or may be executed based on an execution command from the data collection device 4, for example.
  • communication is established between the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4 via the network 7, and the setting parameters of the setting information 341 are the same as in FIG. The explanation will be based on the assumption that it has been set.
  • step S100 the data acquisition unit 320 of the physical quantity measuring device 3 (data processing device 31) acquires physical quantity data measured by the physical quantity sensor 30 as physical quantity data D at a predetermined sampling frequency fs and a predetermined number of sampling points Ns.
  • step S110 the first data generation unit 321 continuously measures a first analysis point number Ns1 ( ⁇ Ns) from the physical quantity data string Dc acquired by the data acquisition unit 320 in step S100.
  • a first time data string Dct1 is generated by extracting the physical quantity data D of the first number of analysis points Ns1.
  • frequency analysis Frier transform
  • step S130 the first transmission processing unit 323 transmits the first frequency data string Dcf1 converted in step S120 to the data collection device 4.
  • the first frequency data string Dcf1 is displayed on the display screen of the data collection device 4, for example, and is stored in the database 50 via the data collection device 4.
  • step S140 the filter processing unit 324 applies an anti-aliasing filter to the physical quantity data string Dc acquired by the data acquisition unit 320 in step S100.
  • step S150 the second data generation unit 325 converts the physical quantity data string Dc to which the anti-aliasing filter has been applied in step S140 to the second analysis point number Ns2 ( ⁇ fs) according to the analysis frequency fs2 ( ⁇ fs).
  • a second time data string Dct2 is generated by thinning out the physical quantity data D of Ns).
  • frequency analysis Frier transform
  • step S170 the second transmission processing unit 327 transmits the second frequency data string Dcf2 converted in step S160 to the data collection device 4, and ends the series of processing.
  • the second frequency data string Dcf2 is displayed on the display screen of the data collection device 4, for example, and is stored in the database 50 via the data collection device 4.
  • step S100 is a data acquisition step
  • step S110 is a first data generation step
  • step S120 is a first frequency analysis step
  • step S130 is a first transmission processing step
  • step S140 is a filter processing step
  • step S150 is a first data generation step.
  • step S160 corresponds to the second frequency analysis step
  • step S170 corresponds to the second transmission processing step.
  • the sampling frequency is A first time data sequence Dct1 is generated based on fs and the first number of analysis points Ns1 ( ⁇ Ns), and frequency analysis is performed by the first frequency analysis unit 322, and analysis is performed by the second data generation unit 325.
  • a second time data string Dct2 is generated based on the frequency fs2 ( ⁇ fs) and the second number of analysis points Ns2 ( ⁇ Ns), and the second frequency analysis unit 326 performs frequency analysis.
  • the common physical quantity data string Dc is used, so there is no need to acquire the physical quantity data string Dc twice, which is required for those frequency analyses. Increases in memory capacity and processing time can be suppressed.
  • the data processing device 31 is implemented by the physical quantity measuring device 3, which is a separate device from the pump device 2.
  • some or all of the functions of the data processing device 31 may be implemented in the pump device 2 by being incorporated into the pump control panel 23 of the pump device 2.
  • the physical quantity sensor 30 and the pump control panel 23 may be connected by wire or wirelessly to transmit and receive various data.
  • the pump device 2 may include a physical quantity sensor 30.
  • the first frequency data string Dcf1 and the second frequency data string Dcf2 transmitted by the physical quantity measuring device 3 are received by the data management device 5 via the data collection device 4, and are used as a storage device.
  • the case where the information is stored in the database 50 has been described. Instead, the destination device and storage device of the first frequency data string Dcf1 and the second frequency data string Dcf2 may be changed as appropriate.
  • the first frequency data string Dcf1 and the second frequency data string Dcf2 may be transmitted to the data management device 5 or the terminal device 6, or may be stored in a storage device included in the data collection device 4 or the terminal device 6. You can.
  • the physical quantity measuring device 3 (data processing device 31) operates according to the flowchart shown in FIG. 5, but the execution order of each step may be changed as appropriate, or some steps may be May be omitted.
  • step S130 may be executed between step S160 and step S170, or step S140 may be omitted.
  • the physical quantity measuring device 3 is attached to the pump device 2.
  • the physical quantity measuring device 3 may be attached to various devices such as a refrigerator, a gas machine, a machine tool, a press device, a conveying device, a diagnostic device, etc. You can.
  • the physical quantity sensor 30 may measure physical quantities caused by various devices.
  • second data generation section 326 ...Second frequency analysis section, 327...Second transmission processing section, 340...Data processing program, 341...Setting information, D...Physical quantity data, Dc...Physical quantity data string, Dcf1...First frequency data string, Dcf2... Second frequency data string, Dct1...first time data string, Dct2...second time data string, Ns...number of sampling points, Ns1...number of first analysis points, Ns2...number of second analysis points, fs...sampling frequency , fs2...analysis frequency

Abstract

This data processing device comprises: a data acquisition unit which acquires a sequence of physical quantity data individually measured at a prescribed sampling frequency and the number of sampling points; a first data generation unit which generates a first time data sequence by extracting physical quantity data of a first analysis point number continuously measured at the first analysis point of a number smaller than the number of sampling points; a first frequency analysis unit which converts the first time data sequence into a first frequency data sequence through a frequency analysis; a second data generation unit which generates a second time data sequence by thinning the physical quantity sequence into physical quantity data of a second analysis point number smaller than the number of sampling points; and a second frequency analysis unit which converts the second time data sequence into a second frequency data sequence through the frequency analysis.

Description

データ処理装置、物理量計測装置、データ処理システム、及び、データ処理方法Data processing device, physical quantity measuring device, data processing system, and data processing method
 本発明は、データ処理装置、物理量計測装置、データ処理システム、及び、データ処理方法に関する。
 本願は、2022年9月14日に日本に出願された特願2022-146314号について優先権を主張し、その内容をここに援用する。
The present invention relates to a data processing device, a physical quantity measuring device, a data processing system, and a data processing method.
This application claims priority to Japanese Patent Application No. 2022-146314 filed in Japan on September 14, 2022, the contents of which are incorporated herein.
 従来、監視対象の装置に取り付けられて加速度等を検出する検出部と、所定のサンプリング周波数にて検出部により検出されたデジタル信号の時間データ列に対して周波数解析を行うことにより周波数スペクトル(周波数データ列)を生成する演算処理部とを備えるセンサユニットを用いて、監視対象の装置の状態(異常や故障等)を判定することが行われている(例えば、特許文献1参照)。 Conventionally, frequency spectra (frequency The state (abnormality, failure, etc.) of a device to be monitored is determined using a sensor unit including an arithmetic processing unit that generates a data string (for example, see Patent Document 1).
日本国特開2020-056686号公報Japanese Patent Application Publication No. 2020-056686
 監視対象の装置の状態(異常や故障等)を判定する際に、その判定する状態に応じて、周波数解析の結果に現れる変化が異なる。例えば、特定の状態については、高周波帯域にその変化が現れたり、別の状態については、低周波帯域にその変化が現れたりするような場合がある。また、その変化を捉えるために必要となる周波数分解能も異なる。 When determining the status of a device to be monitored (abnormality, failure, etc.), changes that appear in the results of frequency analysis differ depending on the status to be determined. For example, for a specific state, a change may appear in a high frequency band, and for another state, a change may appear in a low frequency band. Furthermore, the frequency resolution required to capture these changes also differs.
 上記のような場合、特許文献1に開示されたセンサユニットでは、例えば、所定の周波数分解能を確保しようとすると、時間データ列を構成するためのサンプリング点数が多くなるため、それに応じて必要なメモリ容量も大きくなってしまうという問題点がある。また、サンプリング周波数を変更することで、例えば、所定の高周波帯域では周波数分解能を低く、所定の低周波帯域では周波数分解能を高くすることで、サンプリング点数を少なくすることは可能である。しかしながら、時間データ列の取得と周波数解析とを2回に分けて行うことになるため、処理時間が長くなってしまうという問題点がある。 In the above case, in the sensor unit disclosed in Patent Document 1, for example, when trying to secure a predetermined frequency resolution, the number of sampling points for configuring a time data string increases, so the memory required is increased accordingly. There is a problem that the capacity also increases. Furthermore, by changing the sampling frequency, for example, by lowering the frequency resolution in a predetermined high frequency band and increasing the frequency resolution in a predetermined low frequency band, it is possible to reduce the number of sampling points. However, since the acquisition of the time data string and the frequency analysis are performed twice, there is a problem that the processing time becomes longer.
 本発明は、上述した課題に鑑み、周波数帯域及び周波数分解能が異なる周波数解析をそれぞれ行う際に、それらの周波数解析に要するメモリ容量及び処理時間の増加を抑制することを可能とするデータ処理装置、物理量計測装置、データ処理システム、及び、データ処理方法を提供することを目的とする。 In view of the above-mentioned problems, the present invention provides a data processing device that makes it possible to suppress increases in memory capacity and processing time required for frequency analysis when performing frequency analyzes with different frequency bands and frequency resolutions, respectively; The purpose of the present invention is to provide a physical quantity measuring device, a data processing system, and a data processing method.
 上記目的を達成するために、本発明の一態様に係るデータ処理装置は、計測対象の物理量を物理量データとして所定のサンプリング周波数及びサンプリング点数にてそれぞれ計測した物理量データ列を取得するデータ取得部と、前記データ取得部により取得された前記物理量データ列から、前記サンプリング点数よりも少ない第1の解析点数だけ連続して計測された前記第1の解析点数の前記物理量データを抽出することにより第1の時間データ列を生成する第1のデータ生成部と、前記第1のデータ生成部により生成された前記第1の時間データ列に対して周波数解析を行うことにより第1の周波数データ列に変換する第1の周波数解析部と、前記データ取得部により取得された前記物理量データ列を、前記サンプリング周波数よりも小さい解析周波数に従って前記サンプリング点数よりも少ない第2の解析点数の前記物理量データに間引きすることにより第2の時間データ列を生成する第2のデータ生成部と、前記第2のデータ生成部により生成された前記第2の時間データ列に対して周波数解析を行うことにより第2の周波数データ列に変換する第2の周波数解析部と、を備える。 In order to achieve the above object, a data processing device according to one aspect of the present invention includes a data acquisition unit that acquires a physical quantity data string obtained by measuring a physical quantity to be measured as physical quantity data at a predetermined sampling frequency and a predetermined number of sampling points. , by extracting the physical quantity data of the first number of analysis points that are consecutively measured by the first number of analysis points smaller than the number of sampling points from the physical quantity data string acquired by the data acquisition unit. a first data generation unit that generates a time data sequence; and converting the first time data sequence generated by the first data generation unit into a first frequency data sequence by performing frequency analysis on the first time data sequence. and a first frequency analysis unit that thins out the physical quantity data string acquired by the data acquisition unit into physical quantity data having a second number of analysis points smaller than the number of sampling points according to an analysis frequency smaller than the sampling frequency. a second data generation unit that generates a second time data sequence; and a second frequency by performing frequency analysis on the second time data sequence generated by the second data generation unit. and a second frequency analysis section that converts the data into a data string.
 本発明に係るデータ処理装置によれば、所定のサンプリング周波数及びサンプリング点数に基づく物理量データ列から、第1のデータ生成部によりサンプリング周波数及びサンプリング点数よりも少ない第1の解析点数に基づく第1の時間データ列が生成されて、第1の周波数解析部により周波数解析が行われるとともに、第2のデータ生成部によりサンプリング周波数よりも小さい解析周波数及びサンプリング点数よりも少ない第2の解析点数に基づく第2の時間データ列が生成されて、第2の周波数解析部により周波数解析が行われる。そのため、周波数帯域及び周波数分解能が異なる周波数解析をそれぞれ行う際に、共通の物理量データ列が用いられる。これにより、物理量データ列の取得を2回分行う必要がないので、それらの周波数解析に要するメモリ容量及び処理時間の増加を抑制することができる。 According to the data processing device according to the present invention, from a physical quantity data string based on a predetermined sampling frequency and a predetermined number of sampling points, the first data generation section generates a first analysis point based on a first analysis point smaller than the sampling frequency and the number of sampling points. A time data sequence is generated, a first frequency analysis section performs frequency analysis, and a second data generation section performs frequency analysis based on an analysis frequency smaller than the sampling frequency and a second analysis point number smaller than the number of sampling points. A second time data string is generated, and frequency analysis is performed by a second frequency analysis section. Therefore, a common physical quantity data string is used when frequency analyzes with different frequency bands and frequency resolutions are performed. Thereby, it is not necessary to acquire the physical quantity data string twice, so it is possible to suppress an increase in memory capacity and processing time required for frequency analysis.
 上記以外の課題、構成及び効果は、後述する発明を実施するための形態にて明らかにされる。 Problems, configurations, and effects other than those described above will be made clear in the detailed description of the invention described below.
データ処理システムの一例を示す全体構成図である。1 is an overall configuration diagram showing an example of a data processing system. 物理量計測装置の一例を示すブロック図である。FIG. 1 is a block diagram showing an example of a physical quantity measuring device. 物理量計測装置の一例を示す機能説明図である。FIG. 2 is a functional explanatory diagram showing an example of a physical quantity measuring device. 各装置を構成するコンピュータの一例を示すハードウエア構成図である。FIG. 2 is a hardware configuration diagram showing an example of a computer configuring each device. 物理量計測装置(データ処理装置)の動作の一例を示すフローチャートである。It is a flowchart which shows an example of operation of a physical quantity measuring device (data processing device).
 以下、図面を参照して本発明を実施するための実施形態について説明する。以下では、本発明の目的を達成するための説明に必要な範囲を模式的に示し、本発明の該当部分の説明に必要な範囲を主に説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Below, the range necessary for explanation to achieve the purpose of the present invention will be schematically shown, and the range necessary for explanation of the relevant part of the present invention will be mainly explained.
 図1は、データ処理システム1の一例を示す全体構成図である。データ処理システム1は、ポンプ装置2にて計測対象の物理量を計測したときの物理量データを処理し、ポンプ装置2を管理するためのシステムとして機能する。 FIG. 1 is an overall configuration diagram showing an example of a data processing system 1. As shown in FIG. The data processing system 1 functions as a system for processing physical quantity data when a physical quantity to be measured is measured by the pump apparatus 2 and for managing the pump apparatus 2 .
 データ処理システム1は、その主要な構成として、監視対象のポンプ装置2と、ポンプ装置2に取付可能な物理量計測装置3と、物理量計測装置3と通信可能に構成されたデータ収集装置4と、データ収集装置4と通信可能に構成されたデータ管理装置5と、データ管理装置5と通信可能に構成された端末装置6とを備える。各装置2~6は、例えば、汎用又は専用のコンピュータ(後述の図4参照)で構成されるとともに、ネットワーク7を介して各種のデータを相互に送受信可能に構成される。なお、各装置2~6の数は、図1の例に限られず、1つでもよいし、複数でもよい。 The data processing system 1 includes, as its main components, a pump device 2 to be monitored, a physical quantity measuring device 3 that can be attached to the pump device 2, a data collecting device 4 configured to be able to communicate with the physical quantity measuring device 3, It includes a data management device 5 configured to be able to communicate with the data collection device 4, and a terminal device 6 configured to be able to communicate with the data management device 5. Each of the devices 2 to 6 is composed of, for example, a general-purpose or dedicated computer (see FIG. 4, which will be described later), and is configured to be able to mutually transmit and receive various data via a network 7. Note that the number of each device 2 to 6 is not limited to the example shown in FIG. 1, and may be one or more.
 ポンプ装置2は、任意の流体を移送する装置であり、例えば、インフラ設備(上水道、下水道等)やプラント設備(石油精製、発電、製造、化学プロセス等)に設置されて使用される。ポンプ装置2は、ポンプ部20と、ポンプ装置2の駆動源となるモータ21と、モータ21が発生した駆動力をポンプ部20に伝達する継手部22と、ポンプ装置2の動作を制御するポンプ制御盤23とを備える。 The pump device 2 is a device that transfers any fluid, and is installed and used, for example, in infrastructure equipment (water supply, sewerage, etc.) or plant equipment (oil refining, power generation, manufacturing, chemical process, etc.). The pump device 2 includes a pump section 20, a motor 21 that serves as a drive source for the pump device 2, a joint section 22 that transmits the driving force generated by the motor 21 to the pump section 20, and a pump that controls the operation of the pump device 2. A control panel 23 is provided.
 ポンプ部20は、例えば、羽根車、回転軸、軸受、メカニカルシール、グランドパッキン、ケーシング、配管等で構成される。モータ21は、例えば、インバータモータ等の任意の形式のモータで構成される。継手部22は、例えば、カップリング、継手、ジョイント、軸受等で構成される。ポンプ制御盤23は、例えば、組込型コンピュータで構成される。ポンプ制御盤23は、ユーザ(ポンプ装置2の設置作業者や管理者等)により運転条件が設定された設定値と、ポンプ部20及びモータ21の各部に設けられたセンサ類(不図示)の検出値とに基づいて、モータ21の回転動作を制御する。なお、ポンプ装置2は、各装置3~6と通信可能に構成されていてもよい。 The pump section 20 is composed of, for example, an impeller, a rotating shaft, a bearing, a mechanical seal, a gland packing, a casing, and piping. The motor 21 is constituted by an arbitrary type of motor such as an inverter motor, for example. The joint portion 22 is composed of, for example, a coupling, a joint, a joint, a bearing, or the like. The pump control panel 23 is composed of, for example, a built-in computer. The pump control panel 23 stores operating conditions set by a user (such as an installer or administrator of the pump device 2), and sensors (not shown) installed in each part of the pump unit 20 and motor 21. The rotational operation of the motor 21 is controlled based on the detected value. Note that the pump device 2 may be configured to be able to communicate with each of the devices 3 to 6.
 物理量計測装置3は、ポンプ装置2に起因する物理量を計測する装置であり、例えば、ポンプ部20、モータ21又は継手部22の任意の位置に取り付けられる。物理量計測装置3は、計測対象の物理量を計測する物理量センサ30と、物理量センサ30により物理量を計測したときの物理量データを処理するデータ処理装置31と、物理量センサ30及びデータ処理装置31を内蔵し、ポンプ装置2に取付可能な筐体300とを備える。 The physical quantity measuring device 3 is a device that measures a physical quantity caused by the pump device 2, and is attached to an arbitrary position of the pump section 20, the motor 21, or the joint section 22, for example. The physical quantity measuring device 3 includes a physical quantity sensor 30 that measures a physical quantity to be measured, a data processing device 31 that processes physical quantity data when the physical quantity is measured by the physical quantity sensor 30, and the physical quantity sensor 30 and the data processing device 31. , and a housing 300 that can be attached to the pump device 2.
 物理量センサ30による計測対象の物理量は、例えば、加速度(振動)、速度、変位、環境音等である。物理量センサ30は、例えば、加速度を計測可能な加速度センサ、速度を計測可能な速度センサ、変位を計測可能な変位センサ、環境音を計測可能なマイクロホン等で構成される。なお、計測対象の物理量は、周波数解析(詳細は後述)の対象となればよく、上記の例に限られない。例えば、圧力、荷重、温度、電流値、電圧値等の物理量でもよく、その場合には、圧力センサ、荷重センサ、温度センサ、電流センサ、電圧センサ等の物理量センサ30が用いられる。また、物理量センサ30は、複数の物理量をそれぞれ計測するための複数のセンサを含んでいてもよい。 The physical quantities to be measured by the physical quantity sensor 30 include, for example, acceleration (vibration), velocity, displacement, and environmental sound. The physical quantity sensor 30 includes, for example, an acceleration sensor that can measure acceleration, a speed sensor that can measure speed, a displacement sensor that can measure displacement, a microphone that can measure environmental sound, and the like. Note that the physical quantity to be measured may be the subject of frequency analysis (details will be described later), and is not limited to the above example. For example, it may be a physical quantity such as pressure, load, temperature, current value, voltage value, etc. In that case, a physical quantity sensor 30 such as a pressure sensor, a load sensor, a temperature sensor, a current sensor, or a voltage sensor is used. Further, the physical quantity sensor 30 may include a plurality of sensors for respectively measuring a plurality of physical quantities.
 物理量計測装置3の取付位置は、計測対象の物理量に応じて決められる。なお、ポンプ装置2には、1つの物理量計測装置3が取り付けられてもよいし、図1に示すように、複数の物理量計測装置3が取り付けられてもよい。複数の物理量計測装置3が取り付けられる場合には、共通の物理量を計測する装置でもよいし、異なる物理量を計測する装置でもよい。 The mounting position of the physical quantity measuring device 3 is determined according to the physical quantity to be measured. Note that one physical quantity measuring device 3 may be attached to the pump device 2, or as shown in FIG. 1, a plurality of physical quantity measuring devices 3 may be attached. When a plurality of physical quantity measuring devices 3 are attached, they may be devices that measure a common physical quantity or may be devices that measure different physical quantities.
 データ処理装置31は、物理量センサ30により計測された物理量を示すアナログ信号がデジタル信号に変換された物理量データを処理するための装置である。なお、データ処理装置31は、アナログ信号をデジタル信号に変換するA/D変換回路を備えていてもよいし、物理量センサ30からデジタル信号に変換後の物理量データを取得してもよい。 The data processing device 31 is a device for processing physical quantity data obtained by converting an analog signal indicating a physical quantity measured by the physical quantity sensor 30 into a digital signal. Note that the data processing device 31 may include an A/D conversion circuit that converts an analog signal into a digital signal, or may acquire physical quantity data converted into a digital signal from the physical quantity sensor 30.
 データ収集装置4は、ポンプ装置2の設置場所に所在するユーザ(ポンプ装置2の管理者や点検・修理作業者等)により使用されて、物理量計測装置3(具体的には、データ処理装置31)からデータを収集するための装置である。データ収集装置4は、例えば、スマートフォンやタブレット等の携帯型コンピュータで構成される。データ収集装置4のユーザが、例えば、物理量計測装置3から所定の距離内に接近したときに、物理量計測装置3との間で通信が確立されることで、物理量計測装置3からデータを収集する。また、データ収集装置4は、アプリケーションやブラウザ等のプログラムがインストールされて、各種の入力操作を受け付けるとともに、物理量計測装置3から収集したデータを表示画面に表示したり、そのデータをデータ管理装置5に送信したりする。 The data collection device 4 is used by a user (an administrator, an inspection/repair worker, etc. of the pump device 2) located at the installation location of the pump device 2, and is used by the physical quantity measuring device 3 (specifically, the data processing device 31). ) is a device for collecting data from The data collection device 4 is composed of, for example, a portable computer such as a smartphone or a tablet. For example, when the user of the data collection device 4 approaches within a predetermined distance from the physical quantity measuring device 3, communication is established with the physical quantity measuring device 3, thereby collecting data from the physical quantity measuring device 3. . In addition, the data collection device 4 has programs such as applications and browsers installed thereon and accepts various input operations, and also displays the data collected from the physical quantity measurement device 3 on a display screen and transfers the data to the data management device 5. or send it to.
 データ管理装置5は、データ収集装置4により収集されたデータを管理するためのデータベース50を備え、例えば、サーバ型コンピュータやクラウド型コンピュータで構成される。データ管理装置5は、データ収集装置4から受信したデータをデータベース50に格納する。また、データ管理装置5は、データ収集装置4から受信したデータが所定の通知条件を満たすときに、通知情報を端末装置6に送信する。また、データ管理装置5は、データベース50に格納したデータの参照要求を端末装置6から受け付けたときに、データベース50の参照情報を端末装置6に送信する。 The data management device 5 includes a database 50 for managing data collected by the data collection device 4, and is configured with a server-type computer or a cloud-type computer, for example. The data management device 5 stores the data received from the data collection device 4 in the database 50. Further, the data management device 5 transmits notification information to the terminal device 6 when the data received from the data collection device 4 satisfies a predetermined notification condition. Further, when the data management device 5 receives a request to refer to data stored in the database 50 from the terminal device 6, it transmits the reference information of the database 50 to the terminal device 6.
 端末装置6は、ポンプ装置2の設置場所から離れた遠隔地に所在するユーザ(ポンプ装置2の管理者や点検・修理作業者等)により使用される装置であり、例えば、据置型コンピュータや携帯型コンピュータで構成される。端末装置6は、アプリケーションやブラウザ等のプログラムがインストールされて、各種の入力操作を受け付けるとともに、各種の情報(通知情報やデータベース50の参照情報)を表示画面に表示する。なお、端末装置6は、データ収集装置4を兼用する装置でもよい。 The terminal device 6 is a device used by a user located in a remote location away from the installation location of the pump device 2 (an administrator of the pump device 2, an inspection/repair worker, etc.), and is, for example, a stationary computer or a mobile device. It consists of a type computer. The terminal device 6 has programs such as applications and browsers installed, accepts various input operations, and displays various information (notification information and reference information of the database 50) on a display screen. Note that the terminal device 6 may be a device that also serves as the data collection device 4.
 ネットワーク7は、任意の通信規格に従って有線通信又は無線通信、あるいは、有線通信と無線通信の組合せにより構成される。具体的には、例えば、インターネット等の標準化された通信網、又はローカルネットワーク等の建物内で管理される通信網、あるいは、これらの通信網の組合せを利用することができる。また、無線通信の通信規格としては、典型的には国際規格が用いられる。国際規格の通信手段として、IEEE802.15.4、IEEE802.15.1、IEEE802.15.11a、11b、11g、11n、11ac、11ad、ISO/IEC14513-3-10、IEEE802.15.4g等の方式がある。また、Bluetooth(登録商標)、BluetoothLowEnergy、Wi-Fi、ZigBee(登録商標)、Sub-GHz、EnOcean(登録商標)、LTE等の方式を用いることもできる。 The network 7 is configured by wired communication, wireless communication, or a combination of wired communication and wireless communication according to any communication standard. Specifically, for example, a standardized communication network such as the Internet, a communication network managed within a building such as a local network, or a combination of these communication networks can be used. Furthermore, international standards are typically used as communication standards for wireless communication. As communication means of international standards, IEEE802.15.4, IEEE802.15.1, IEEE802.15.11a, 11b, 11g, 11n, 11ac, 11ad, ISO/IEC14513-3-10, IEEE802.15.4g, etc. There is a method. Furthermore, methods such as Bluetooth (registered trademark), Bluetooth Low Energy, Wi-Fi, ZigBee (registered trademark), Sub-GHz, EnOcean (registered trademark), and LTE can also be used.
 図2は、物理量計測装置3の一例を示すブロック図である。図3は、物理量計測装置3の一例を示す機能説明図である。物理量計測装置3は、その主要な構成要素として、上記の物理量センサ30の他に、データ処理装置31を構成する制御部32、通信部33、記憶部34及び電源35を備える。 FIG. 2 is a block diagram showing an example of the physical quantity measuring device 3. FIG. 3 is a functional explanatory diagram showing an example of the physical quantity measuring device 3. As shown in FIG. The physical quantity measuring device 3 includes, as its main components, a control section 32, a communication section 33, a storage section 34, and a power supply 35, which constitute a data processing device 31, in addition to the physical quantity sensor 30 described above.
 制御部32は、例えば、記憶部34に記憶されたデータ処理プログラム340を実行することにより、データ取得部320、第1のデータ生成部321、第1の周波数解析部322、第1の送信処理部323、フィルタ処理部324、第2のデータ生成部325、第2の周波数解析部326、及び、第2の送信処理部327として機能する。通信部33は、ネットワーク7を介して、例えば、データ収集装置4との間で各種のデータを送受信する通信インターフェースとして機能する。記憶部34は、物理量計測装置3の動作で使用される各種のプログラム(データ処理プログラム340等)やデータ(設定情報341等)を記憶する。設定情報341には、例えば、物理量計測装置3が動作する際に制御部32により参照される設定パラメータ(サンプリング周波数fs、サンプリング点数Ns等)が記憶されるとともに、例えば、データ収集装置4を介して設定可能に構成される。電源35は、例えば、一次電池、二次電池、太陽電池、燃料電池等で構成され、物理量計測装置3の各部に電力を供給する。なお、電源35は、ポンプ装置2から電力供給を受けてもよい。 For example, the control unit 32 executes the data processing program 340 stored in the storage unit 34 to control the data acquisition unit 320, first data generation unit 321, first frequency analysis unit 322, and first transmission processing. 323 , a filter processing section 324 , a second data generation section 325 , a second frequency analysis section 326 , and a second transmission processing section 327 . The communication unit 33 functions as a communication interface that transmits and receives various data to and from the data collection device 4 via the network 7, for example. The storage unit 34 stores various programs (data processing program 340, etc.) and data (setting information 341, etc.) used in the operation of the physical quantity measuring device 3. The setting information 341 stores, for example, setting parameters (sampling frequency fs, number of sampling points Ns, etc.) that are referred to by the control unit 32 when the physical quantity measuring device 3 operates, and also stores, for example, setting parameters that are referenced by the control unit 32 when the physical quantity measuring device 3 operates. It is configured to be configurable. The power source 35 is composed of, for example, a primary battery, a secondary battery, a solar cell, a fuel cell, etc., and supplies power to each part of the physical quantity measuring device 3. Note that the power source 35 may receive power supply from the pump device 2.
 データ取得部320は、物理量センサ30により計測された物理量に基づいて、物理量データ列Dcを取得する。具体的には、データ取得部320は、物理量センサ30により物理量を物理量データDとして所定のサンプリング周波数fs及びサンプリング点数Nsにてそれぞれ計測した物理量データ列Dcを取得する。設定情報341に、例えば、図3に示すように、サンプリング周波数fsが「5120Hz」、サンプリング点数Nsが「2048点」と設定されている場合には、物理量データ列Dcは、「5120Hz」のサンプリング周波数fsにて計測された「2048点」(=サンプリング点数Ns)の物理量データD(図3では、{D1,D2,…,D2048}で示す)で構成される。 The data acquisition unit 320 acquires a physical quantity data string Dc based on the physical quantity measured by the physical quantity sensor 30. Specifically, the data acquisition unit 320 acquires a physical quantity data string Dc obtained by measuring a physical quantity as physical quantity data D by the physical quantity sensor 30 at a predetermined sampling frequency fs and a predetermined number of sampling points Ns. For example, if the sampling frequency fs is set to "5120 Hz" and the sampling point number Ns is set to "2048 points" as shown in FIG. It is composed of physical quantity data D (indicated by {D1, D2, . . . , D2048} in FIG. 3) of "2048 points" (=number of sampling points Ns) measured at the frequency fs.
 第1のデータ生成部321は、データ取得部320により取得された物理量データ列Dcから、サンプリング点数Nsよりも少ない第1の解析点数Ns1(<Ns)だけ連続して計測された第1の解析点数Ns1の物理量データDを抽出することにより第1の時間データ列Dct1を生成する。 The first data generation unit 321 generates a first analysis that is continuously measured by a first analysis point number Ns1 (<Ns) smaller than the sampling point number Ns from the physical quantity data string Dc acquired by the data acquisition unit 320. A first time data string Dct1 is generated by extracting the physical quantity data D of the number Ns1.
 設定情報341に、例えば、図3に示すように、第1の解析点数Ns1が「1024点」と設定されている場合には、第1の時間データ列Dct1は、「5120Hz」のサンプリング周波数fsにて計測された「1024点」(=第1の解析点数Ns1)の物理量データDで構成される。第1の解析点数Ns1は、点数に代えて、サンプリング点数Nsに対する比率(例えば、1/2等)で設定されるようにしてもよい。 For example, if the first number of analysis points Ns1 is set to "1024 points" in the setting information 341 as shown in FIG. 3, the first time data string Dct1 has a sampling frequency fs of "5120 Hz". It is composed of physical quantity data D of "1024 points" (=first number of analysis points Ns1) measured at . The first number of analysis points Ns1 may be set as a ratio (for example, 1/2, etc.) to the number of sampling points Ns instead of a number of points.
 なお、第1のデータ生成部321が、物理量データ列Dcから計測タイミングが連続する第1の解析点数Ns1の物理量データDを第1の時間データ列Dct1として抽出する際、物理量データ列Dcにおける任意の計測期間にて計測された第1の時間データ列Dct1を抽出すればよい。例えば、上記の設定情報341の例では、「2048点」の物理量データDのうち、図3に示すように、1点目から1024点目までの前半の物理量データD(図3では、{D1,D2,…,D1024}で示す)を第1の時間データ列Dct1として抽出してもよいし、513点目から1536点目までの中間の物理量データDを第1の時間データ列Dct1として抽出してもよいし、1025点目から2048点目までの後半の物理量データDを第1の時間データ列Dct1として抽出してもよい。 Note that when the first data generation unit 321 extracts the physical quantity data D of the first number of analysis points Ns1 with consecutive measurement timings from the physical quantity data string Dc as the first time data string Dct1, any arbitrary data in the physical quantity data string Dc is extracted as the first time data string Dct1. What is necessary is to extract the first time data string Dct1 measured during the measurement period. For example, in the above example of the setting information 341, among the physical quantity data D of "2048 points", as shown in FIG. , D2, ..., D1024}) may be extracted as the first time data string Dct1, or intermediate physical quantity data D from the 513th point to the 1536th point may be extracted as the first time data string Dct1. Alternatively, the physical quantity data D in the second half from the 1025th point to the 2048th point may be extracted as the first time data string Dct1.
 第1の周波数解析部322は、第1のデータ生成部321により生成された第1の時間データ列Dct1に対して周波数解析を行うことにより第1の周波数データ列Dcf1に変換する。第1の周波数解析部322は、周波数解析として、例えば、離散フーリエ変換(DFT)や高速フーリエ変換(FFT)と呼ばれるフーリエ変換を行うことにより、時間軸で構成される第1の時間データ列Dct1を、周波数軸で構成される第1の周波数データ列Dcf1に変換する。なお、第1の周波数解析部322は、フーリエ変換の演算結果である第1の周波数データ列Dcf1を記憶部34に記憶するようにしてもよい。 The first frequency analysis unit 322 performs frequency analysis on the first time data sequence Dct1 generated by the first data generation unit 321, thereby converting it into a first frequency data sequence Dcf1. The first frequency analysis unit 322 performs a Fourier transform called a discrete Fourier transform (DFT) or a fast Fourier transform (FFT) as a frequency analysis, thereby generating a first time data string Dct1 configured on a time axis. is converted into a first frequency data string Dcf1 configured on a frequency axis. Note that the first frequency analysis section 322 may store the first frequency data string Dcf1, which is the calculation result of the Fourier transform, in the storage section 34.
 図3に示す設定情報341の例では、第1の時間データ列Dct1は、「5120Hz」のサンプリング周波数fsにて計測された「1024点」の物理量データDで構成されるため、第1の周波数解析部322によるフーリエ変換の演算結果において、周波数帯域は、2000Hz(=fs/2.56)であり、周波数分解能は、5Hz(=fs/Ns1)である。 In the example of the setting information 341 shown in FIG. 3, the first time data string Dct1 is composed of physical quantity data D of "1024 points" measured at the sampling frequency fs of "5120 Hz", so the first frequency In the Fourier transform calculation result by the analysis unit 322, the frequency band is 2000 Hz (=fs/2.56), and the frequency resolution is 5 Hz (=fs/Ns1).
 第1の送信処理部323は、第1の周波数解析部322により変換された第1の周波数データ列Dcf1を送信する。その際、第1の周波数解析部322により第1の周波数データ列Dcf1が記憶部34に記憶されている場合には、第1の送信処理部323は、第1の周波数データ列Dcf1の送信後に記憶部34から第1の周波数データ列Dcf1を削除してもよいし、他の削除条件に従って第1の周波数データ列Dcf1を削除してもよい。 The first transmission processing unit 323 transmits the first frequency data string Dcf1 converted by the first frequency analysis unit 322. At this time, if the first frequency data string Dcf1 is stored in the storage section 34 by the first frequency analysis section 322, the first transmission processing section 323 The first frequency data string Dcf1 may be deleted from the storage unit 34, or the first frequency data string Dcf1 may be deleted according to other deletion conditions.
 フィルタ処理部324は、データ取得部320により取得された物理量データ列Dcに対してアンチエイリアシングフィルタを適用する。アンチエイリアシングフィルタは、第2のデータ生成部325により物理量データ列Dcが間引きされたときのエイリアシング(折り返し雑音)を防止するためのフィルタであり、所定の遮断周波数以上の成分を除去するように、デジタル式のローパスフィルタで構成される。ローパスフィルタの遮断周波数は、例えば、サンプリング周波数fs等を含む設定パラメータの設定値に応じて適宜決められる。 The filter processing unit 324 applies an anti-aliasing filter to the physical quantity data string Dc acquired by the data acquisition unit 320. The anti-aliasing filter is a filter for preventing aliasing (aliasing noise) when the physical quantity data string Dc is thinned out by the second data generation unit 325, and is a filter that removes components having a predetermined cutoff frequency or higher. Consists of a digital low-pass filter. The cutoff frequency of the low-pass filter is appropriately determined, for example, according to the setting values of setting parameters including the sampling frequency fs and the like.
 第2のデータ生成部325は、フィルタ処理部324によりアンチエイリアシングフィルタが適用された後の物理量データ列Dcを、サンプリング周波数fsよりも小さい解析周波数fs2(<fs)に従ってサンプリング点数Nsよりも少ない第2の解析点数Ns2(<Ns)の物理量データDに間引き(ダウンサンプリング)することにより第2の時間データ列Dct2を生成する。 The second data generation unit 325 converts the physical quantity data sequence Dc to which the anti-aliasing filter has been applied by the filter processing unit 324 into a physical quantity data sequence Dc that is smaller than the number of sampling points Ns according to an analysis frequency fs2 (<fs) that is smaller than the sampling frequency fs. A second time data string Dct2 is generated by thinning out (downsampling) the physical quantity data D with the number of analysis points Ns2 (<Ns) of 2.
 設定情報341に、図3に示すように、例えば、解析周波数fs2が「2560Hz」、第2の解析点数Ns2が「1024点」と設定されている場合には、第2の時間データ列Dct2は、「2560Hz」の解析周波数fs2にて計測された「1024点」(=第2の解析点数Ns2)の物理量データD(図3では、{D1,D3,…,D2047}で示す)で構成される。解析周波数fs2は、周波数に代えて、サンプリング周波数fsに対する比率(例えば、0.5等)で設定されるようにしてもよいし、第2の解析点数Ns2は、点数に代えて、サンプリング点数Nsに対する比率(例えば、1/2、1/3、1/4等)で設定されるようにしてもよい。また、設定情報341には、解析周波数fs2及び第2の解析点数Ns2のいずれかが設定されていてもよい。 In the setting information 341, as shown in FIG. 3, for example, when the analysis frequency fs2 is set to "2560 Hz" and the second number of analysis points Ns2 is set to "1024 points", the second time data string Dct2 is composed of physical quantity data D (indicated as {D1, D3, ..., D2047} in FIG. 3) of "1024 points" (= the second number of analysis points Ns2) measured at the analysis frequency fs2 of "2560 Hz". The analysis frequency fs2 may be set as a ratio (e.g., 0.5, etc.) to the sampling frequency fs instead of a frequency, and the second number of analysis points Ns2 may be set as a ratio (e.g., 1/2, 1/3, 1/4, etc.) to the number of sampling points Ns instead of a number of points. In addition, either the analysis frequency fs2 or the second number of analysis points Ns2 may be set in the setting information 341.
 第2の周波数解析部326は、第2のデータ生成部325により生成された第2の時間データ列Dct2に対して周波数解析を行うことにより第2の周波数データ列Dcf2に変換する。第2の周波数解析部326は、第1の周波数解析部322と同様に、周波数解析として、例えば、離散フーリエ変換(DFT)や高速フーリエ変換(FFT)と呼ばれるフーリエ変換を行うことにより、時間軸で構成される第2の時間データ列Dct2を、周波数軸で構成される第2の周波数データ列Dcf2に変換する。なお、第2の周波数解析部326は、フーリエ変換の演算結果である第2の周波数データ列Dcf2を記憶部34に記憶するようにしてもよい。 The second frequency analysis unit 326 performs frequency analysis on the second time data sequence Dct2 generated by the second data generation unit 325, thereby converting it into a second frequency data sequence Dcf2. Similarly to the first frequency analysis unit 322, the second frequency analysis unit 326 performs frequency analysis on the time axis by performing a Fourier transform called a discrete Fourier transform (DFT) or a fast Fourier transform (FFT), for example. The second time data string Dct2 made up of is converted into a second frequency data string Dcf2 made up of a frequency axis. Note that the second frequency analysis section 326 may store the second frequency data string Dcf2, which is the calculation result of the Fourier transform, in the storage section 34.
 図3に示す設定情報341の例では、第2の時間データ列Dct2は、「2560Hz」の解析周波数fs2にて計測された「1024点」の物理量データDで構成されるため、第2の周波数解析部326によるフーリエ変換の演算結果において、周波数帯域は、1000Hz(=fs2/2.56)であり、周波数分解能は、2.5Hz(=fs2/Ns2)である。すなわち、第2の周波数解析部326によるフーリエ変換の周波数帯域は、第1の周波数解析部322によるフーリエ変換の周波数帯域よりも低く、第2の周波数解析部326によるフーリエ変換の周波数分解能は、第1の周波数解析部322によるフーリエ変換の周波数分解能よりも高い。 In the example of the setting information 341 shown in FIG. 3, the second time data string Dct2 is composed of "1024 points" of physical quantity data D measured at the analysis frequency fs2 of "2560 Hz"; In the Fourier transform calculation result by the analysis unit 326, the frequency band is 1000 Hz (=fs2/2.56), and the frequency resolution is 2.5 Hz (=fs2/Ns2). That is, the frequency band of the Fourier transform by the second frequency analyzer 326 is lower than the frequency band of the Fourier transform by the first frequency analyzer 322, and the frequency resolution of the Fourier transform by the second frequency analyzer 326 is lower than the frequency band of the Fourier transform by the first frequency analyzer 322. The frequency resolution of the Fourier transform by the frequency analysis unit 322 of No. 1 is higher than that of the Fourier transform.
 第2の送信処理部327は、第2の周波数解析部326により変換された第2の周波数データ列Dcf2を送信する。その際、第2の周波数解析部326により第2の周波数データ列Dcf2が記憶部34に記憶されている場合には、第2の送信処理部327は、第2の周波数データ列Dcf2の送信後に記憶部34から第2の周波数データ列Dcf2を削除してもよいし、他の削除条件に従って第2の周波数データ列Dcf2を削除してもよい。 The second transmission processing unit 327 transmits the second frequency data string Dcf2 converted by the second frequency analysis unit 326. At that time, when the second frequency data string Dcf2 is stored in the storage section 34 by the second frequency analysis section 326, the second transmission processing section 327 The second frequency data string Dcf2 may be deleted from the storage unit 34, or the second frequency data string Dcf2 may be deleted according to other deletion conditions.
 第1の送信処理部323により送信された第1の周波数データ列Dcf1、及び、第2の送信処理部327により送信された第2の周波数データ列Dcf2は、データ収集装置4により受信されると、データ収集装置4によりデータ管理装置5にさらに送信されることで、データベース50に格納される。また、第1の周波数データ列Dcf1、及び、第2の周波数データ列Dcf2は、データ収集装置4の表示画面に表示されてもよい。なお、第1の周波数データ列Dcf1、及び、第2の周波数データ列Dcf2には、データ処理装置31又はデータ収集装置4により、例えば、ポンプ装置2及び物理量計測装置3の少なくとも一方を識別するための識別情報(ポンプ装置2の装置ID、物理量計測装置3の装置ID等)が付与されてもよい。この場合には、第1の周波数データ列Dcf1及び第2の周波数データ列Dcf2と、識別情報とが関連付けられた状態でデータベース50に格納されるようにしてよい。 When the first frequency data string Dcf1 transmitted by the first transmission processing section 323 and the second frequency data string Dcf2 transmitted by the second transmission processing section 327 are received by the data collection device 4, , is further transmitted from the data collection device 4 to the data management device 5 and stored in the database 50. Further, the first frequency data string Dcf1 and the second frequency data string Dcf2 may be displayed on the display screen of the data collection device 4. It should be noted that the first frequency data string Dcf1 and the second frequency data string Dcf2 contain data for identifying at least one of the pump device 2 and the physical quantity measuring device 3, for example, by the data processing device 31 or the data collection device 4. identification information (device ID of the pump device 2, device ID of the physical quantity measuring device 3, etc.) may be provided. In this case, the first frequency data string Dcf1 and the second frequency data string Dcf2 may be stored in the database 50 in a state where they are associated with the identification information.
 なお、本実施形態では、第2のデータ生成部325が、フィルタ処理部324によりアンチエイリアシングフィルタが適用された後の物理量データ列Dcから第2の時間データ列Dct2を生成する場合について説明したが、設定パラメータの設定値に応じて、アンチエイリアシングフィルタを適用することなく、第2のデータ生成部325が、データ取得部320により取得されたままの物理量データ列Dcから第2の時間データ列Dct2を生成するようにしてもよい。また、物理量計測装置3(データ処理装置31)が、フィルタ処理部324を備えないようにしてもよい。 In the present embodiment, a case has been described in which the second data generation unit 325 generates the second time data sequence Dct2 from the physical quantity data sequence Dc after the anti-aliasing filter has been applied by the filter processing unit 324. , the second data generation unit 325 generates a second time data sequence Dct2 from the physical quantity data sequence Dc acquired by the data acquisition unit 320 without applying an anti-aliasing filter according to the setting value of the configuration parameter. may be generated. Further, the physical quantity measuring device 3 (data processing device 31) may not include the filter processing section 324.
 図4は、各装置を構成するコンピュータ900の一例を示すハードウエア構成図である。ポンプ装置2(主にポンプ制御盤23)、物理量計測装置3(主にデータ処理装置31)、データ管理装置5、及び、端末装置6の各々は、汎用又は専用のコンピュータ900により構成される。 FIG. 4 is a hardware configuration diagram showing an example of a computer 900 that constitutes each device. Each of the pump device 2 (mainly the pump control panel 23), the physical quantity measuring device 3 (mainly the data processing device 31), the data management device 5, and the terminal device 6 is configured by a general-purpose or dedicated computer 900.
 コンピュータ900は、図4に示すように、その主要な構成要素として、バス910、プロセッサ912、メモリ914、入力デバイス916、出力デバイス917、表示デバイス918、ストレージ装置920、通信I/F(インターフェース)部922、外部機器I/F部924、I/O(入出力)デバイスI/F部926、及び、メディア入出力部928を備える。なお、上記の構成要素は、コンピュータ900が使用される用途に応じて適宜省略されてもよい。 As shown in FIG. 4, the computer 900 includes a bus 910, a processor 912, a memory 914, an input device 916, an output device 917, a display device 918, a storage device 920, and a communication I/F (interface) as its main components. 922 , an external device I/F section 924 , an I/O (input/output) device I/F section 926 , and a media input/output section 928 . Note that the above-mentioned components may be omitted as appropriate depending on the purpose for which the computer 900 is used.
 プロセッサ912は、1つ又は複数の演算処理装置(CPU(Central Processing Unit)、MPU(Micro-Processing Unit)、DSP(Digital Signal Processor)、GPU(Graphics Processing Unit)、NPU(Neural Processing Unit)等)で構成され、コンピュータ900全体を統括する制御部として動作する。メモリ914は、各種のデータ及びプログラム930を記憶し、例えば、メインメモリとして機能する揮発性メモリ(DRAM、SRAM等)と、不揮発性メモリ(ROM)、フラッシュメモリ等とで構成される。 The processor 912 includes one or more arithmetic processing units (CPU (Central Processing Unit), MPU (Micro-Processing Unit), DSP (Digital Signal Processor), GPU (Graphics Processing Unit), NPU (Neural Processing Unit), etc.) It operates as a control unit that controls the entire computer 900. The memory 914 stores various data and programs 930, and includes, for example, a volatile memory (DRAM, SRAM, etc.) that functions as a main memory, a nonvolatile memory (ROM), a flash memory, etc.
 入力デバイス916は、例えば、キーボード、マウス、テンキー、電子ペン等で構成され、入力部として機能する。出力デバイス917は、例えば、音(音声)出力装置、バイブレーション装置等で構成され、出力部として機能する。表示デバイス918は、例えば、液晶ディスプレイ、有機ELディスプレイ、電子ペーパー、プロジェクタ等で構成され、出力部として機能する。入力デバイス916及び表示デバイス918は、タッチパネルディスプレイのように、一体的に構成されていてもよい。ストレージ装置920は、例えば、HDD、SSD等で構成され、記憶部として機能する。ストレージ装置920は、オペレーティングシステムやプログラム930の実行に必要な各種のデータを記憶する。 The input device 916 includes, for example, a keyboard, a mouse, a numeric keypad, an electronic pen, etc., and functions as an input unit. The output device 917 is configured with, for example, a sound (voice) output device, a vibration device, etc., and functions as an output section. The display device 918 is configured with, for example, a liquid crystal display, an organic EL display, electronic paper, a projector, etc., and functions as an output unit. Input device 916 and display device 918 may be configured integrally, such as a touch panel display. The storage device 920 is configured with, for example, an HDD, an SSD, etc., and functions as a storage unit. The storage device 920 stores various data necessary for executing the operating system and programs 930.
 通信I/F部922は、インターネットやイントラネット等のネットワーク940(図1のネットワーク7と同じであってもよい)に有線又は無線により接続され、所定の通信規格に従って他のコンピュータとの間でデータの送受信を行う通信部として機能する。外部機器I/F部924は、カメラ、プリンタ、スキャナ、リーダライタ等の外部機器950に有線又は無線により接続され、所定の通信規格に従って外部機器950との間でデータの送受信を行う通信部として機能する。I/OデバイスI/F部926は、各種のセンサ、アクチュエータ等のI/Oデバイス960に接続され、I/Oデバイス960との間で、例えば、センサによる検出信号やアクチュエータへの制御信号等の各種の信号やデータの送受信を行う通信部として機能する。メディア入出力部928は、例えば、DVDドライブ、CDドライブ等のドライブ装置、メモリカードスロット、USBコネクタで構成され、DVD、CD、メモリカード、USBメモリ等のメディア(非一時的な記憶媒体)970に対してデータの読み書きを行う。 The communication I/F section 922 is connected to a network 940 such as the Internet or an intranet (which may be the same as the network 7 in FIG. 1) by wire or wirelessly, and exchanges data with other computers according to a predetermined communication standard. It functions as a communication unit that sends and receives information. The external device I/F section 924 is connected to an external device 950 such as a camera, printer, scanner, reader/writer, etc. by wire or wirelessly, and serves as a communication section that sends and receives data to and from the external device 950 according to a predetermined communication standard. Function. The I/O device I/F unit 926 is connected to an I/O device 960 such as various sensors and actuators, and transmits, for example, a detection signal from a sensor, a control signal to an actuator, etc. with the I/O device 960. It functions as a communication unit that sends and receives various signals and data. The media input/output unit 928 includes, for example, a drive device such as a DVD drive or a CD drive, a memory card slot, and a USB connector, and a media (non-temporary storage medium) 970 such as a DVD, CD, memory card, or USB memory. Read and write data to.
 上記構成を有するコンピュータ900において、プロセッサ912は、ストレージ装置920に記憶されたプログラム930をメモリ914に呼び出して実行し、バス910を介してコンピュータ900の各部を制御する。なお、プログラム930は、ストレージ装置920に代えて、メモリ914に記憶されていてもよい。プログラム930は、インストール可能なファイル形式又は実行可能なファイル形式でメディア970に記録され、メディア入出力部928を介してコンピュータ900に提供されてもよい。プログラム930は、通信I/F部922を介してネットワーク940経由でダウンロードすることによりコンピュータ900に提供されてもよい。また、コンピュータ900は、プロセッサ912がプログラム930を実行することで実現する各種の機能を、例えば、FPGA(Field-Programmable Gate Array)、ASIC(Application Specific Integrated Circuit)等のハードウエアで実現するものでもよい。 In the computer 900 having the above configuration, the processor 912 calls the program 930 stored in the storage device 920 to the memory 914 and executes it, and controls each part of the computer 900 via the bus 910. Note that the program 930 may be stored in the memory 914 instead of the storage device 920. The program 930 may be recorded on the medium 970 in an installable file format or an executable file format, and provided to the computer 900 via the media input/output unit 928. The program 930 may be provided to the computer 900 by being downloaded via the network 940 via the communication I/F unit 922. Further, the computer 900 implements various functions realized by the processor 912 executing the program 930, for example, using FPGA (Field-Programmable Gate Array), ASIC (Application Specific Integrated Circuit), etc. Even if it is realized by hardware good.
 コンピュータ900は、例えば、据置型コンピュータや携帯型コンピュータで構成され、任意の形態の電子機器である。コンピュータ900は、クライアント型コンピュータでもよいし、サーバ型コンピュータやクラウド型コンピュータでもよいし、例えば、制御盤、コントローラ(マイコン、プログラマブルロジックコントローラ、シーケンサを含む)等と呼ばれる組込型コンピュータでもよい。 The computer 900 is, for example, a stationary computer or a portable computer, and is any type of electronic device. The computer 900 may be a client-type computer, a server-type computer, a cloud-type computer, or, for example, an embedded computer called a control panel, controller (including a microcomputer, programmable logic controller, and sequencer), or the like.
(データ処理方法)
 図5は、物理量計測装置3(データ処理装置31)の動作の一例を示すフローチャートである。図5に示す一連の処理(データ処理方法)は、例えば、所定の実行周期で繰り返し実行されてもよいし、データ収集装置4からの実行指令に基づいて実行されてもよい。以下では、物理量計測装置3(データ処理装置31)と、データ収集装置4との間でネットワーク7を介して通信が確立された状態であり、設定情報341の設定パラメータが、図3と同様に設定されているとして説明する。
(Data processing method)
FIG. 5 is a flowchart showing an example of the operation of the physical quantity measuring device 3 (data processing device 31). The series of processes (data processing method) shown in FIG. 5 may be repeatedly executed at a predetermined execution cycle, or may be executed based on an execution command from the data collection device 4, for example. In the following, communication is established between the physical quantity measuring device 3 (data processing device 31) and the data collecting device 4 via the network 7, and the setting parameters of the setting information 341 are the same as in FIG. The explanation will be based on the assumption that it has been set.
 まず、ステップS100にて、物理量計測装置3(データ処理装置31)のデータ取得部320は、物理量センサ30により物理量を物理量データDとして所定のサンプリング周波数fs及びサンプリング点数Nsにてそれぞれ計測した物理量データ列Dcを取得する。物理量データ列Dcは、「5120Hz」のサンプリング周波数fsにて計測された「2048点」(=サンプリング点数Ns)で計測された物理量データDで構成される。 First, in step S100, the data acquisition unit 320 of the physical quantity measuring device 3 (data processing device 31) acquires physical quantity data measured by the physical quantity sensor 30 as physical quantity data D at a predetermined sampling frequency fs and a predetermined number of sampling points Ns. Get column Dc. The physical quantity data string Dc is composed of physical quantity data D measured at "2048 points" (=sampling point number Ns) measured at a sampling frequency fs of "5120 Hz".
 次に、ステップS110にて、第1のデータ生成部321は、ステップS100でデータ取得部320により取得された物理量データ列Dcから第1の解析点数Ns1(<Ns)だけ連続して計測された第1の解析点数Ns1の物理量データDを抽出することにより第1の時間データ列Dct1を生成する。第1の時間データ列Dct1は、「5120Hz」のサンプリング周波数fsにて計測された「1024点」(=第1の解析点数Ns1)の物理量データDで構成される。 Next, in step S110, the first data generation unit 321 continuously measures a first analysis point number Ns1 (<Ns) from the physical quantity data string Dc acquired by the data acquisition unit 320 in step S100. A first time data string Dct1 is generated by extracting the physical quantity data D of the first number of analysis points Ns1. The first time data string Dct1 is composed of physical quantity data D of "1024 points" (=first number of analysis points Ns1) measured at a sampling frequency fs of "5120 Hz".
 次に、ステップS120にて、第1の周波数解析部322は、ステップS110で生成された第1の時間データ列Dct1に対して周波数解析(フーリエ変換)を行うことにより第1の周波数データ列Dcf1に変換する。第1の周波数解析部322によるフーリエ変換の演算結果としては、周波数帯域は、2000Hz(=fs/2.56)であり、周波数分解能は、5Hz(=fs/Ns1)である。 Next, in step S120, the first frequency analysis unit 322 performs frequency analysis (Fourier transform) on the first time data string Dct1 generated in step S110, thereby obtaining a first frequency data string Dcf1. Convert to As a result of the Fourier transform performed by the first frequency analysis unit 322, the frequency band is 2000 Hz (=fs/2.56), and the frequency resolution is 5 Hz (=fs/Ns1).
 次に、ステップS130にて、第1の送信処理部323は、ステップS120で変換された第1の周波数データ列Dcf1をデータ収集装置4に送信する。第1の周波数データ列Dcf1は、例えば、データ収集装置4の表示画面に表示されるとともに、データ収集装置4を介してデータベース50に格納される。 Next, in step S130, the first transmission processing unit 323 transmits the first frequency data string Dcf1 converted in step S120 to the data collection device 4. The first frequency data string Dcf1 is displayed on the display screen of the data collection device 4, for example, and is stored in the database 50 via the data collection device 4.
 次に、ステップS140にて、フィルタ処理部324は、ステップS100でデータ取得部320により取得された物理量データ列Dcに対してアンチエイリアシングフィルタを適用する。 Next, in step S140, the filter processing unit 324 applies an anti-aliasing filter to the physical quantity data string Dc acquired by the data acquisition unit 320 in step S100.
 次に、ステップS150にて、第2のデータ生成部325は、ステップS140でアンチエイリアシングフィルタが適用された後の物理量データ列Dcを解析周波数fs2(<fs)に従って第2の解析点数Ns2(<Ns)の物理量データDに間引きすることにより第2の時間データ列Dct2を生成する。第2の時間データ列Dct2は、「2560Hz」の解析周波数fs2にて計測された「1024点」(=第2の解析点数Ns2)の物理量データDで構成される。 Next, in step S150, the second data generation unit 325 converts the physical quantity data string Dc to which the anti-aliasing filter has been applied in step S140 to the second analysis point number Ns2 (<fs) according to the analysis frequency fs2 (<fs). A second time data string Dct2 is generated by thinning out the physical quantity data D of Ns). The second time data string Dct2 is composed of physical quantity data D of "1024 points" (=second number of analysis points Ns2) measured at an analysis frequency fs2 of "2560 Hz".
 次に、ステップS160にて、第2の周波数解析部326は、ステップS150で生成された第2の時間データ列Dct2に対して周波数解析(フーリエ変換)を行うことにより第2の周波数データ列Dcf2に変換する。第2の周波数解析部326によるフーリエ変換の演算結果としては、周波数帯域は、1000Hz(=fs2/2.56)であり、周波数分解能は、2.5Hz(=fs2/Ns2)である。 Next, in step S160, the second frequency analysis unit 326 performs frequency analysis (Fourier transform) on the second time data string Dct2 generated in step S150, thereby obtaining a second frequency data string Dcf2. Convert to As a result of the Fourier transform performed by the second frequency analysis unit 326, the frequency band is 1000 Hz (=fs2/2.56), and the frequency resolution is 2.5 Hz (=fs2/Ns2).
 そして、ステップS170にて、第2の送信処理部327は、ステップS160で変換された第2の周波数データ列Dcf2をデータ収集装置4に送信し、一連の処理を終了する。第2の周波数データ列Dcf2は、例えば、データ収集装置4の表示画面に表示されるとともに、データ収集装置4を介してデータベース50に格納される。なお、ステップS100がデータ取得工程、ステップS110が第1のデータ生成工程、ステップS120が第1の周波数解析工程、ステップS130が第1の送信処理工程、ステップS140がフィルタ処理工程、ステップS150が第2のデータ生成工程、ステップS160が第2の周波数解析工程、ステップS170が第2の送信処理工程にそれぞれ相当する。 Then, in step S170, the second transmission processing unit 327 transmits the second frequency data string Dcf2 converted in step S160 to the data collection device 4, and ends the series of processing. The second frequency data string Dcf2 is displayed on the display screen of the data collection device 4, for example, and is stored in the database 50 via the data collection device 4. Note that step S100 is a data acquisition step, step S110 is a first data generation step, step S120 is a first frequency analysis step, step S130 is a first transmission processing step, step S140 is a filter processing step, and step S150 is a first data generation step. 2, step S160 corresponds to the second frequency analysis step, and step S170 corresponds to the second transmission processing step.
 以上のように、本発明に係る物理量計測装置3(データ処理装置31)によれば、所定のサンプリング周波数fs及びサンプリング点数Nsに基づく物理量データ列Dcから、第1のデータ生成部321によりサンプリング周波数fs及び第1の解析点数Ns1(<Ns)に基づく第1の時間データ列Dct1が生成されて、第1の周波数解析部322により周波数解析が行われるとともに、第2のデータ生成部325により解析周波数fs2(<fs)及び第2の解析点数Ns2(<Ns)に基づく第2の時間データ列Dct2が生成されて、第2の周波数解析部326により周波数解析が行われる。そのため、周波数帯域及び周波数分解能が異なる周波数解析をそれぞれ行う際に、共通の物理量データ列Dcが用いられることで、物理量データ列Dcの取得を2回分行う必要がないので、それらの周波数解析に要するメモリ容量及び処理時間の増加を抑制することができる。 As described above, according to the physical quantity measuring device 3 (data processing device 31) according to the present invention, from the physical quantity data string Dc based on the predetermined sampling frequency fs and the number of sampling points Ns, the sampling frequency is A first time data sequence Dct1 is generated based on fs and the first number of analysis points Ns1 (<Ns), and frequency analysis is performed by the first frequency analysis unit 322, and analysis is performed by the second data generation unit 325. A second time data string Dct2 is generated based on the frequency fs2 (<fs) and the second number of analysis points Ns2 (<Ns), and the second frequency analysis unit 326 performs frequency analysis. Therefore, when performing frequency analyzes with different frequency bands and frequency resolutions, the common physical quantity data string Dc is used, so there is no need to acquire the physical quantity data string Dc twice, which is required for those frequency analyses. Increases in memory capacity and processing time can be suppressed.
(他の実施形態)
 本発明は上述した実施形態に制約されず、本発明の主旨を逸脱しない範囲内で種々変更して実施することが可能である。そして、それらはすべて、本発明の技術思想に含まれる。
(Other embodiments)
The present invention is not limited to the embodiments described above, and can be implemented with various changes without departing from the spirit of the present invention. All of them are included in the technical idea of the present invention.
 上記実施形態では、データ処理装置31が、ポンプ装置2とは別体の装置である物理量計測装置3で実現される場合について説明した。これに代えて、データ処理装置31の機能の一部又は全部(特に制御部32の機能)が、ポンプ装置2のポンプ制御盤23に組み込まれることによりポンプ装置2で実現されていてもよい。その場合には、物理量センサ30と、ポンプ制御盤23とを有線又は無線により接続し、各種のデータを送受信するようにすればよい。また、ポンプ装置2が、物理量センサ30を備えるようにしてもよい。 In the above embodiment, a case has been described in which the data processing device 31 is implemented by the physical quantity measuring device 3, which is a separate device from the pump device 2. Alternatively, some or all of the functions of the data processing device 31 (particularly the functions of the control unit 32) may be implemented in the pump device 2 by being incorporated into the pump control panel 23 of the pump device 2. In that case, the physical quantity sensor 30 and the pump control panel 23 may be connected by wire or wirelessly to transmit and receive various data. Further, the pump device 2 may include a physical quantity sensor 30.
 上記実施形態では、物理量計測装置3により送信された第1の周波数データ列Dcf1及び第2の周波数データ列Dcf2は、データ収集装置4を中継してデータ管理装置5に受信されて、記憶装置としてのデータベース50に格納される場合について説明した。これに代えて、第1の周波数データ列Dcf1及び第2の周波数データ列Dcf2の送信先の装置や格納先の記憶装置は適宜変更されてもよい。例えば、第1の周波数データ列Dcf1及び第2の周波数データ列Dcf2は、データ管理装置5又は端末装置6に送信されてもよいし、データ収集装置4又は端末装置6が備える記憶装置に格納されてもよい。 In the above embodiment, the first frequency data string Dcf1 and the second frequency data string Dcf2 transmitted by the physical quantity measuring device 3 are received by the data management device 5 via the data collection device 4, and are used as a storage device. The case where the information is stored in the database 50 has been described. Instead, the destination device and storage device of the first frequency data string Dcf1 and the second frequency data string Dcf2 may be changed as appropriate. For example, the first frequency data string Dcf1 and the second frequency data string Dcf2 may be transmitted to the data management device 5 or the terminal device 6, or may be stored in a storage device included in the data collection device 4 or the terminal device 6. You can.
 上記実施形態では、物理量計測装置3(データ処理装置31)が、図5に示すフローチャートに従って動作する場合について説明したが、各ステップの実行順序を適宜変更してもよいし、一部のステップを省略してもよい。例えば、ステップS130は、ステップS160とステップS170の間に実行されてもよいし、ステップS140は省略されてもよい。 In the above embodiment, the physical quantity measuring device 3 (data processing device 31) operates according to the flowchart shown in FIG. 5, but the execution order of each step may be changed as appropriate, or some steps may be May be omitted. For example, step S130 may be executed between step S160 and step S170, or step S140 may be omitted.
 上記実施形態では、物理量計測装置3は、ポンプ装置2に取り付けられる場合について説明したが、例えば、冷凍機、気体機械、工作機械、プレス機器、搬送機器、診断機器等の各種の装置に取り付けられてもよい。その場合には、物理量センサ30は、各種の装置に起因する物理量を計測するようにすればよい。 In the above embodiment, the physical quantity measuring device 3 is attached to the pump device 2. However, for example, the physical quantity measuring device 3 may be attached to various devices such as a refrigerator, a gas machine, a machine tool, a press device, a conveying device, a diagnostic device, etc. You can. In that case, the physical quantity sensor 30 may measure physical quantities caused by various devices.
1…データ処理システム、2…ポンプ装置、3…物理量計測装置、4…データ収集装置、5…データ管理装置、6…端末装置、7…ネットワーク、20…ポンプ部、21…モータ、22…継手部、23…ポンプ制御盤、30…物理量センサ、31…データ処理装置、32…制御部、33…通信部、34…記憶部、35…電源、50…データベース(記憶装置)、300…筐体、320…データ取得部、321…第1のデータ生成部、322…第1の周波数解析部、323…第1の送信処理部、324…フィルタ処理部、325…第2のデータ生成部、326…第2の周波数解析部、327…第2の送信処理部、340…データ処理プログラム、341…設定情報、D…物理量データ、Dc…物理量データ列、Dcf1…第1の周波数データ列、Dcf2…第2の周波数データ列、Dct1…第1の時間データ列、Dct2…第2の時間データ列、Ns…サンプリング点数、Ns1…第1の解析点数、Ns2…第2の解析点数、fs…サンプリング周波数、fs2…解析周波数 DESCRIPTION OF SYMBOLS 1... Data processing system, 2... Pump device, 3... Physical quantity measuring device, 4... Data collection device, 5... Data management device, 6... Terminal device, 7... Network, 20... Pump part, 21... Motor, 22... Joint Part, 23... Pump control panel, 30... Physical quantity sensor, 31... Data processing device, 32... Control unit, 33... Communication unit, 34... Storage unit, 35... Power supply, 50... Database (storage device), 300... Housing , 320... data acquisition section, 321... first data generation section, 322... first frequency analysis section, 323... first transmission processing section, 324... filter processing section, 325... second data generation section, 326 ...Second frequency analysis section, 327...Second transmission processing section, 340...Data processing program, 341...Setting information, D...Physical quantity data, Dc...Physical quantity data string, Dcf1...First frequency data string, Dcf2... Second frequency data string, Dct1...first time data string, Dct2...second time data string, Ns...number of sampling points, Ns1...number of first analysis points, Ns2...number of second analysis points, fs...sampling frequency , fs2...analysis frequency

Claims (7)

  1.  計測対象の物理量を物理量データとして所定のサンプリング周波数及びサンプリング点数にてそれぞれ計測した物理量データ列を取得するデータ取得部と、
     前記データ取得部により取得された前記物理量データ列から、前記サンプリング点数よりも少ない第1の解析点数だけ連続して計測された前記第1の解析点数の前記物理量データを抽出することにより第1の時間データ列を生成する第1のデータ生成部と、
     前記第1のデータ生成部により生成された前記第1の時間データ列に対して周波数解析を行うことにより第1の周波数データ列に変換する第1の周波数解析部と、
     前記データ取得部により取得された前記物理量データ列を、前記サンプリング周波数よりも小さい解析周波数に従って前記サンプリング点数よりも少ない第2の解析点数の前記物理量データに間引きすることにより第2の時間データ列を生成する第2のデータ生成部と、
     前記第2のデータ生成部により生成された前記第2の時間データ列に対して周波数解析を行うことにより第2の周波数データ列に変換する第2の周波数解析部と、を備える、
     データ処理装置。
    a data acquisition unit that acquires physical quantity data strings each measured at a predetermined sampling frequency and number of sampling points as physical quantity data of a physical quantity to be measured;
    From the physical quantity data string acquired by the data acquisition unit, the physical quantity data of the first number of analysis points that are consecutively measured by the first number of analysis points smaller than the number of sampling points are extracted. a first data generation unit that generates a time data string;
    a first frequency analysis unit that performs frequency analysis on the first time data sequence generated by the first data generation unit to convert it into a first frequency data sequence;
    A second temporal data sequence is obtained by thinning the physical quantity data sequence acquired by the data acquisition unit into physical quantity data having a second number of analysis points smaller than the number of sampling points according to an analysis frequency smaller than the sampling frequency. a second data generation unit that generates;
    a second frequency analysis unit that performs frequency analysis on the second time data sequence generated by the second data generation unit to convert it into a second frequency data sequence;
    Data processing equipment.
  2.  前記データ取得部により取得された前記物理量データ列に対してアンチエイリアシングフィルタを適用するフィルタ処理部をさらに備え、
     前記第2のデータ生成部は、
      前記フィルタ処理部により前記アンチエイリアシングフィルタが適用された後の前記物理量データ列から前記第2の時間データ列を生成する、
     請求項1に記載のデータ処理装置。
    further comprising a filter processing unit that applies an anti-aliasing filter to the physical quantity data string acquired by the data acquisition unit,
    The second data generation unit includes:
    generating the second time data string from the physical quantity data string to which the anti-aliasing filter has been applied by the filter processing unit;
    The data processing device according to claim 1.
  3.  前記第1の周波数解析部及び前記第2の周波数解析部は、
      前記周波数解析として、フーリエ変換を行い、
     前記第2の周波数解析部による前記フーリエ変換の周波数帯域は、
      前記第1の周波数解析部による前記フーリエ変換の周波数帯域よりも低く、
     前記第2の周波数解析部による前記フーリエ変換の周波数分解能は、
      前記第1の周波数解析部による前記フーリエ変換の周波数分解能よりも高い、
     請求項1に記載のデータ処理装置。
    The first frequency analysis section and the second frequency analysis section are
    As the frequency analysis, Fourier transform is performed,
    The frequency band of the Fourier transform by the second frequency analysis section is:
    lower than the frequency band of the Fourier transform by the first frequency analysis unit,
    The frequency resolution of the Fourier transform by the second frequency analysis section is:
    higher than the frequency resolution of the Fourier transform by the first frequency analysis unit;
    The data processing device according to claim 1.
  4.  請求項1から請求項3のいずれか一項に記載のデータ処理装置と、
     計測対象の物理量を計測する物理量センサと、を備える物理量計測装置であって、
     前記データ取得部は、
      前記物理量センサにより計測された前記物理量に基づいて、前記物理量データ列を取得する、
     物理量計測装置。
    A data processing device according to any one of claims 1 to 3,
    A physical quantity measuring device comprising a physical quantity sensor that measures a physical quantity to be measured,
    The data acquisition unit includes:
    acquiring the physical quantity data string based on the physical quantity measured by the physical quantity sensor;
    Physical quantity measuring device.
  5.  前記物理量計測装置は、
     前記データ処理装置及び前記物理量センサを内蔵し、ポンプ装置に取付可能な筐体をさらに備え、
     前記物理量センサは、
      前記物理量計測装置が取り付けられた前記ポンプ装置に起因する前記物理量を計測する、
     請求項4に記載の物理量計測装置。
    The physical quantity measuring device includes:
    Further comprising a housing that houses the data processing device and the physical quantity sensor and is attachable to the pump device,
    The physical quantity sensor is
    measuring the physical quantity caused by the pump device to which the physical quantity measuring device is attached;
    The physical quantity measuring device according to claim 4.
  6.  請求項4に記載の1又は複数の前記物理量計測装置と、
     前記物理量計測装置と通信可能に構成された1又は複数のデータ収集装置と、を備えるデータ処理システムであって、
     前記物理量計測装置は、
      前記第1の周波数解析部により変換された前記第1の周波数データ列を送信する第1の送信処理部と、
      前記第2の周波数解析部により変換された前記第2の周波数データ列を送信する第2の送信処理部と、をさらに備え、
     前記データ収集装置は、
      前記第1の送信処理部により送信された前記第1の周波数データ列と、前記第2の送信処理部により送信された前記第2の周波数データ列とを受信し、記憶装置に格納する、
     データ処理システム。
    One or more of the physical quantity measuring devices according to claim 4;
    A data processing system comprising one or more data collection devices configured to be able to communicate with the physical quantity measuring device,
    The physical quantity measuring device includes:
    a first transmission processing unit that transmits the first frequency data string converted by the first frequency analysis unit;
    further comprising a second transmission processing unit that transmits the second frequency data string converted by the second frequency analysis unit,
    The data collection device includes:
    receiving the first frequency data string transmitted by the first transmission processing section and the second frequency data string transmitted by the second transmission processing section, and storing them in a storage device;
    Data processing system.
  7.  コンピュータを用いてデータを処理するデータ処理方法であって、
     計測対象の物理量を物理量データとして所定のサンプリング周波数及びサンプリング点数にてそれぞれ計測した物理量データ列を取得するデータ取得工程と、
     前記データ取得工程により取得された前記物理量データ列から、前記サンプリング点数よりも少ない第1の解析点数だけ連続して計測された前記第1の解析点数の前記物理量データを抽出することにより第1の時間データ列を生成する第1のデータ生成工程と、
     前記第1のデータ生成工程により生成された前記第1の時間データ列に対して周波数解析を行うことにより第1の周波数データ列に変換する第1の周波数解析工程と、
     前記データ取得工程により取得された前記物理量データ列を、前記サンプリング周波数よりも小さい解析周波数に従って前記サンプリング点数よりも少ない第2の解析点数の前記物理量データに間引きすることにより第2の時間データ列を生成する第2のデータ生成工程と、
     前記第2のデータ生成工程により生成された前記第2の時間データ列に対して周波数解析を行うことにより第2の周波数データ列に変換する第2の周波数解析工程と、を備える、
     データ処理方法。
    A data processing method for processing data using a computer,
    a data acquisition step of acquiring physical quantity data strings each measured at a predetermined sampling frequency and number of sampling points, using the physical quantity to be measured as physical quantity data;
    From the physical quantity data string acquired in the data acquisition step, the physical quantity data of the first number of analysis points that are consecutively measured by the first number of analysis points smaller than the number of sampling points are extracted. a first data generation step of generating a time data string;
    a first frequency analysis step of converting the first time data string generated by the first data generation step into a first frequency data string by performing frequency analysis;
    A second time data sequence is obtained by thinning the physical quantity data sequence acquired in the data acquisition step into physical quantity data having a second number of analysis points smaller than the number of sampling points according to an analysis frequency smaller than the sampling frequency. a second data generation step to generate;
    a second frequency analysis step of performing frequency analysis on the second time data string generated by the second data generation step to convert it into a second frequency data string;
    Data processing method.
PCT/JP2023/021022 2022-09-14 2023-06-06 Data processing device, physical quantity measurement device, data processing system, and data processing method WO2024057635A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022146314A JP2024041477A (en) 2022-09-14 2022-09-14 Data processing device, physical quantity measuring device, data processing system, and data processing method
JP2022-146314 2022-09-14

Publications (1)

Publication Number Publication Date
WO2024057635A1 true WO2024057635A1 (en) 2024-03-21

Family

ID=90274461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021022 WO2024057635A1 (en) 2022-09-14 2023-06-06 Data processing device, physical quantity measurement device, data processing system, and data processing method

Country Status (2)

Country Link
JP (1) JP2024041477A (en)
WO (1) WO2024057635A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627163A (en) * 1992-07-06 1994-02-04 Yokogawa Electric Corp Fft analyzer
WO2008062875A1 (en) * 2006-11-24 2008-05-29 Tektronix, International Sales Gmbh Signal analyzer and its data generation method
JP2008232934A (en) * 2007-03-22 2008-10-02 Jfe Advantech Co Ltd Facility diagnosis system
JP2021173712A (en) * 2020-04-28 2021-11-01 株式会社Kelk Detector and diagnosis system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627163A (en) * 1992-07-06 1994-02-04 Yokogawa Electric Corp Fft analyzer
WO2008062875A1 (en) * 2006-11-24 2008-05-29 Tektronix, International Sales Gmbh Signal analyzer and its data generation method
JP2008232934A (en) * 2007-03-22 2008-10-02 Jfe Advantech Co Ltd Facility diagnosis system
JP2021173712A (en) * 2020-04-28 2021-11-01 株式会社Kelk Detector and diagnosis system

Also Published As

Publication number Publication date
JP2024041477A (en) 2024-03-27

Similar Documents

Publication Publication Date Title
US20220398495A1 (en) Computer System and Method for Detecting Anomalies in Multivariate Data
AU2017321799A1 (en) Detection of anomalies in multivariate data
JP2018173970A (en) Fault diagnosis device, fault diagnosis method, and fault diagnosis program
CN105209995A (en) Monitoring system and diagnostic device and monitoring terminal thereof
JPWO2016117021A1 (en) Machine diagnostic device and machine diagnostic method
JP2023106444A (en) Information processing system, information processing method, and information processing device
WO2016009883A1 (en) System for inspecting portable terminal use and server thereof
JP2019021048A (en) Apparatus information providing device, apparatus information providing method, apparatus information providing program and recording medium
WO2024057635A1 (en) Data processing device, physical quantity measurement device, data processing system, and data processing method
JP2018190029A (en) Facility monitoring device
US20140032079A1 (en) Diagnostic and control system and method
US20220356796A1 (en) Systems and methods of providing operational surveillance, diagnostics and optimization of oilfield artificial lift systems
KR102202126B1 (en) Method and apparatus for determining abnormal of equipment by using current sensor and vibration sensor pattern information
JP2015064766A (en) Portable terminal and device diagnostic method
WO2024075444A1 (en) Data processing system, data collection device, physical quantity measurement device, data processing method, data collection method, data presentation method, and data structure
WO2024070099A1 (en) Data processing system, physical quantity measuring device, data collection device, data processing method, data provision method, and data collection method
WO2024079949A1 (en) Data processing system, data collection device, data management device, data processing method, data collection method, and data management method
JP2018156373A (en) Facility maintenance information management system and method of managing facility maintenance information
WO2024062690A1 (en) Data processing device, physical quantity measuring device, data processing system, and data processing method
US9229438B2 (en) System responsive to machine vibrations and method of use
US20090107212A1 (en) Process field instrument with integrated sensor unit and related system and method
JP2022080341A (en) Pump setting support device, pump setting presentation device, pump setting registration device, pump setting support system, pump setting support program, pump setting presentation program, pump setting registration program, and pump setting support method
WO2023243193A1 (en) Pump operation assistance method and pump operation assistance device
WO2024090159A1 (en) Data processing system, data collection device, data management device, data processing method, data collection method, and data management method
JP2019149081A (en) Information collection device, information collection method, information collection program, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864999

Country of ref document: EP

Kind code of ref document: A1