WO2024069763A1 - 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム - Google Patents

基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム Download PDF

Info

Publication number
WO2024069763A1
WO2024069763A1 PCT/JP2022/035986 JP2022035986W WO2024069763A1 WO 2024069763 A1 WO2024069763 A1 WO 2024069763A1 JP 2022035986 W JP2022035986 W JP 2022035986W WO 2024069763 A1 WO2024069763 A1 WO 2024069763A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
film
exhaust line
substrate
processing chamber
Prior art date
Application number
PCT/JP2022/035986
Other languages
English (en)
French (fr)
Inventor
祐樹 平
明 堀井
公彦 中谷
Original Assignee
株式会社Kokusai Electric
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kokusai Electric filed Critical 株式会社Kokusai Electric
Priority to PCT/JP2022/035986 priority Critical patent/WO2024069763A1/ja
Publication of WO2024069763A1 publication Critical patent/WO2024069763A1/ja

Links

Definitions

  • This disclosure relates to a substrate processing method, a semiconductor device manufacturing method, a substrate processing apparatus, and a program.
  • One method is to form a film on a substrate using active species, as described in Patent Document 1. This can improve the film density and impurities in the film, but it has the disadvantage that the active species do not spread across the entire substrate, resulting in poor in-plane uniformity of the film thickness.
  • This disclosure provides technology that can improve the in-plane uniformity of the film thickness of a substrate.
  • a technology that includes a film formation process in which a film is formed on a substrate in a processing chamber, and a modification process in which the film is modified in the processing chamber, and that makes the amount of gas exhausted from the processing chamber in the modification process greater than the amount of gas exhausted from the processing chamber in the film formation process.
  • This disclosure makes it possible to improve the in-plane uniformity of the film thickness of the substrate.
  • FIG. 1 is a schematic configuration diagram illustrating a substrate processing apparatus according to an embodiment of the present disclosure.
  • 2 is a cross-sectional view of the substrate processing apparatus according to the embodiment of the present disclosure taken along line AA in FIG. 1.
  • FIG. 2 is a block diagram for explaining a controller provided in the substrate processing apparatus according to an embodiment of the present disclosure.
  • 4 is a diagram showing a film formation sequence of a manufacturing method of a semiconductor device according to an embodiment of the present disclosure. 4 is a diagram showing operation timings of each part in a film formation sequence of the semiconductor device manufacturing method according to the embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a configuration of an exhaust system according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram showing a configuration of an exhaust system according to an embodiment of the present disclosure.
  • the substrate processing apparatus 100 has a processing furnace 202, and a heater 207 serving as a heating means (heating mechanism) is disposed in the processing furnace 202.
  • the heater 207 has a cylindrical shape, and is installed vertically by being supported by a heater base (not shown) serving as a holding plate.
  • a reaction tube 203 is disposed concentrically with the heater 207 inside the heater 207.
  • the reaction tube 203 is made of a heat-resistant material such as quartz (SiO2) or silicon carbide (SiC) and is formed in a cylindrical shape with a closed upper end and an open lower end.
  • a manifold (inlet flange) 209 is disposed concentrically with the reaction tube 203 below the reaction tube 203.
  • the manifold 209 is made of a metal such as stainless steel (SUS) and is formed in a cylindrical shape with open upper and lower ends. The upper end of the manifold 209 engages with the lower end of the reaction tube 203 and is configured to support the reaction tube 203.
  • An O-ring 220a is provided between the manifold 209 and the reaction tube 203 as a sealing member.
  • the manifold 209 is supported by a heater base, so that the reaction tube 203 is installed vertically.
  • a processing chamber 201 is formed in the cylindrical hollow portion of the reaction tube 203.
  • the processing chamber 201 is configured to be capable of accommodating multiple substrates, i.e., wafers 200, arranged vertically in multiple stages in a horizontal position using a boat 217, which will be described later.
  • Nozzles 249a (first nozzle) and 249b (second nozzle) extending in the vertical direction are provided in the processing chamber 201 so as to penetrate the side wall of the manifold 209.
  • Gas supply pipes 232a and 232b are connected to the nozzles 249a and 249b, respectively. This makes it possible to supply multiple types of gas, two types in this case, into the processing chamber 201.
  • Gas supply pipes 232a, 232b are provided with mass flow controllers (MFCs) 241a, 241b, which are flow rate controllers (flow rate control parts), and valves 243a, 243b, which are on-off valves, in order from the upstream direction.
  • MFCs mass flow controllers
  • Gas supply pipes 232c, 232d which supply inert gas, are connected to gas supply pipes 232a, 232b downstream of valves 243a, 243b.
  • Gas supply pipes 232c, 232d are provided with MFCs 241c, 241d, which are flow rate controllers (flow rate control parts), and valves 243c, 243d, which are on-off valves, in order from the upstream direction.
  • a reservoir (tank) 280 for storing raw material gas and a valve 265 are provided downstream of the connection part to which gas supply pipe 232c is connected in gas supply pipe 232a. Further, downstream of valve 265 in gas supply pipe 232a, gas supply pipe 232e branching off from gas supply pipe 232c is connected. Further, in gas supply pipe 232e, MFC 241e, which is a flow rate controller (flow rate control part), and valve 243e, which is an opening/closing valve, are provided in this order from the upstream side.
  • Nozzle 249a is connected to the tip of gas supply pipe 232a. As shown in FIG. 2, nozzle 249a is provided in the annular space between the inner wall of reaction tube 203 and wafers 200, along the inner wall of reaction tube 203 from the bottom to the top, rising upward in the loading direction (vertical direction) of wafers 200. In other words, nozzle 249a is provided to the side of the wafer arrangement area where wafers 200 are arranged.
  • the nozzle 249a is configured as an L-shaped long nozzle, with its horizontal portion penetrating the side wall of the manifold 209 and its vertical portion rising from at least one end of the wafer arrangement area toward the other end.
  • Gas supply holes 250a for supplying gas are provided on the side of the nozzle 249a.
  • the gas supply holes 250a open toward the center of the reaction tube 203, making it possible to supply gas toward the wafers 200.
  • a plurality of gas supply holes 250a are provided from the bottom to the top of the reaction tube 203, each having the same opening area and arranged at the same opening pitch.
  • the shape of the nozzle 249a is not particularly limited, and for example, the horizontal and vertical portions may be separate.
  • Nozzle 249b is connected to the tip of gas supply pipe 232b.
  • Nozzle 249b is provided in buffer chamber 237, which is a gas dispersion space.
  • buffer chamber 237 is provided in the annular space between the inner wall of reaction tube 203 and wafers 200, and in a portion extending from the lower part to the upper part of processing chamber 201 along the loading direction of wafers 200.
  • buffer chamber 237 is provided in an area to the side of the wafer arrangement area, horizontally surrounding the wafer arrangement area.
  • Gas supply holes 250c for supplying gas are provided at the end of the wall of the buffer chamber 237 adjacent to the wafer 200.
  • the gas supply holes 250c are open toward the center of the reaction tube 203, making it possible to supply gas toward the wafer 200.
  • a plurality of gas supply holes 250c are provided from the bottom to the top of the reaction tube 203, each having the same opening area, and further provided at the same opening pitch.
  • the nozzle 249b is provided at the end opposite to the end where the gas supply hole 250c of the buffer chamber 237 is provided, along the inner wall of the reaction tube 203 from the bottom to the top, rising upward in the stacking (arrangement) direction of the wafers 200. That is, the nozzle 249b is provided on the side of the wafer arrangement area where the wafers 200 are arranged.
  • the nozzle 249b is configured as an L-shaped long nozzle, and its horizontal part is provided to penetrate the side wall of the manifold 209, and its vertical part is provided to rise at least from one end side to the other end side of the wafer arrangement area.
  • the side of the nozzle 249b is provided with a gas supply hole 250b for supplying gas.
  • the gas supply hole 250b opens to face the center of the buffer chamber 237. Similar to the gas supply hole 250c, a plurality of gas supply holes 250b are provided from the bottom to the top of the reaction tube 203. Like nozzle 249a, the shape of nozzle 249b is not limited; for example, the horizontal and vertical parts may be separate.
  • each of the gas supply holes 250b By adjusting the opening area and opening pitch of each of the gas supply holes 250b from the upstream side to the downstream side as described above, it is possible to eject gas from each of the gas supply holes 250b at approximately the same flow rate, although there is a difference in flow rate. Then, by temporarily introducing the gas ejected from each of the multiple gas supply holes 250b into the buffer chamber 237, it is possible to equalize the difference in gas flow rate within the buffer chamber 237.
  • gas is transported via nozzles 249a, 249b and buffer chamber 237 arranged within a circular, vertically elongated space defined by the inner wall of reaction tube 203 and the ends of the multiple wafers 200 loaded thereon, i.e., within a cylindrical space.
  • gas is first ejected into the processing chamber 201 near the wafer 200 from the gas supply holes 250a-250c that are respectively opened in the nozzles 249a, 249b and the buffer chamber 237.
  • the main flow of gas in the processing chamber 201 is parallel to the surface of the wafer 200, that is, horizontal. With this configuration, gas is uniformly supplied to each wafer 200, and it is possible to improve the uniformity of the thickness of the film formed on each wafer 200.
  • the gas that has flowed over the surface of the wafer 200, that is, the residual gas after the reaction flows toward the exhaust port, that is, the second exhaust line 231 described later.
  • the direction of the flow of this residual gas is appropriately specified depending on the position of the exhaust port, and is not limited to the vertical direction.
  • the raw material gas is supplied from the gas supply pipe 232a to the processing chamber 201 via the MFC 241a, the valve 243a, the gas supply pipe 232a, the storage section 280, the valve 265, and the nozzle 249a, as shown in FIG. 1.
  • raw material gas refers to a raw material in a gaseous state, such as a gas obtained by vaporizing a raw material that is in a liquid state at room temperature and pressure, or a raw material that is in a gaseous state at room temperature and pressure.
  • raw material can mean “liquid raw material in a liquid state”, “raw material gas in a gaseous state”, or both.
  • Reactive gas is supplied from gas supply pipe 232b to the processing chamber 201 via MFC 241b, valve 243b, gas supply pipe 232b, nozzle 249b, and buffer chamber 237.
  • nitrogen (N 2 ) gas is supplied as an inert gas from the gas supply pipe 232c to the processing chamber 201 via the MFC 241c, the valve 243c, the reservoir 280, the valve 265, and the gas supply pipe 232a.
  • nitrogen (N 2 ) gas is supplied as an inert gas from the gas supply pipe 232e to the processing chamber 201 via the MFC 241e, the valve 243e, and the gas supply pipe 232a.
  • nitrogen (N 2 ) gas is supplied as an inert gas from the gas supply pipe 232 d through the MFC 241 d , the valve 243 d , the gas supply pipe 232 b , and the buffer chamber 237 to the processing chamber 201 .
  • a raw material gas supply system (raw material gas line) that supplies raw materials containing a specified element is mainly composed of the gas supply pipe 232a, the MFC 241a, the valve 243a, the storage section 280, and the valve 265.
  • the gas supply pipe 232b, the MFC 241b, and the valve 243b mainly constitute a reaction gas supply system (reaction gas line) that supplies reaction gas.
  • the inert gas supply system is mainly composed of gas supply pipes 232c, 232d, and 232e, MFCs 241c, 241d, and 241e, and valves 243c, 243d, and 243e.
  • two rod-shaped electrodes 269, 270 made of a conductor and having an elongated structure are arranged from the bottom to the top of the reaction tube 203 along the stacking direction of the wafers 200.
  • Each of the rod-shaped electrodes 269, 270 is provided parallel to the nozzle 249b.
  • Each of the rod-shaped electrodes 269, 270 is protected by being covered from the top to the bottom by an electrode protection tube 275.
  • One of the rod-shaped electrodes 269, 270 is connected to a high-frequency power source 273 via a matcher 272, and the other is connected to earth, which is a reference potential.
  • the rod-shaped electrodes 269, 270 and the electrode protection tube 275 mainly constitute a plasma source as a plasma generator (plasma generation unit).
  • the plasma source functions as an activator (exciter) that activates (excites) the gas into a plasma state, as described below.
  • a first exhaust line 230 as a bypass exhaust line and a second exhaust line 231 as a main exhaust line are provided as exhaust pipes for exhausting the atmosphere of the processing chamber 201.
  • the second exhaust line 231 as an exhaust pipe for exhausting the atmosphere of the processing chamber 201 is connected to the reaction tube 203.
  • One end of the second exhaust line 231 is connected to an exhaust port at the lower end of the processing chamber 201.
  • a vacuum pump 246 as an exhaust device is connected to the second exhaust line 231 via a pressure sensor 245 as a pressure detector (pressure detection unit) that detects the pressure in the processing chamber 201 and an APC (Auto Pressure Controller) valve 242 as an opening and closing valve (pressure adjustment unit).
  • the APC valve 242 is a valve that can evacuate and stop evacuation of the processing chamber 201 by opening and closing the valve while the vacuum pump 246 is operating, and is further configured to adjust the pressure in the processing chamber 201 by adjusting the valve opening based on pressure information detected by the pressure sensor 245 while the vacuum pump 246 is operating.
  • the second exhaust line 231 is provided with a first exhaust line 230 that branches off upstream of the APC valve 242 and joins downstream of the APC valve 242.
  • the flow path cross-sectional area of the first exhaust line 230 is configured to be smaller than the flow path cross-sectional area of the second exhaust line 231.
  • the exhaust volume of the second exhaust line 231 is configured to be larger than the exhaust volume of the first exhaust line 230.
  • the exhaust volume (exhaust capacity) of the second exhaust line 231 is configured to be larger than the exhaust volume (exhaust capacity) of the first exhaust line 230. Therefore, the exhaust volume (exhaust capacity) of each exhaust line can be adjusted by making the performance of the vacuum pump 246 different.
  • the first exhaust line 230 is provided with an APC (Auto Pressure Controller) valve 244 as an opening and closing valve (pressure adjustment unit).
  • the exhaust system is mainly composed of the first exhaust line 230, the second exhaust line 231, the APC valves 242 and 244, and the pressure sensor 245.
  • the vacuum pump 246 may also be included in the exhaust system.
  • a seal cap 219 is provided below the manifold 209 as a furnace port cover that can airtightly close the lower end opening of the manifold 209.
  • the seal cap 219 is configured to abut against the lower end of the manifold 209 from below in the vertical direction.
  • the seal cap 219 is made of a metal such as SUS and is formed in a disk shape.
  • An O-ring 220b is provided on the upper surface of the seal cap 219 as a sealing member that abuts against the lower end of the manifold 209.
  • a rotation mechanism 267 that rotates the boat 217 (described later) is installed on the opposite side of the seal cap 219 from the processing chamber 201.
  • the rotation shaft 255 of the rotation mechanism 267 is connected to the boat 217 through the seal cap 219.
  • the rotation mechanism 267 is configured to rotate the wafers 200 by rotating the boat 217.
  • the seal cap 219 is configured to be raised and lowered vertically by a boat elevator 115 as a lifting mechanism that is installed vertically outside the reaction tube 203.
  • the boat elevator 115 is configured to move the boat 217 in and out of the processing chamber 201 by raising and lowering the seal cap 219.
  • the boat elevator 115 is configured as a transport device (transport mechanism) that transports the boat 217 and the wafers 200 supported by the boat 217 in and out of the processing chamber 201.
  • the boat 217 as a substrate support is configured to support multiple wafers 200, for example 25 to 200, in a horizontal position and aligned vertically with their centers aligned in multiple stages; in other words, the boat 217 is configured to arrange the wafers 200 at intervals.
  • the boat 217 is made of a heat-resistant material such as quartz or SiC.
  • a heat insulating member 218 made of a heat-resistant material such as quartz or SiC is provided at the bottom of the boat 217.
  • the processing chamber 201 is provided with a temperature sensor 263 as a temperature detector.
  • the temperature of the processing chamber 201 is configured to have a desired temperature distribution by adjusting the power supply to the heater 207 based on the temperature information detected by the temperature sensor 263.
  • the temperature sensor 263 is configured in an L-shape like the nozzles 249a and 249b, and is provided along the inner wall of the reaction tube 203.
  • the controller 121 which is a control unit (control means), is configured as a computer equipped with a CPU (Central Processing Unit) 121a, a RAM (Random Access Memory) 121b, a storage device 121c, and an I/O port 121d.
  • the RAM 121b, the storage device 121c, and the I/O port 121d are configured to be able to exchange data with the CPU 121a via an internal bus 121e.
  • An input/output device 122 configured as, for example, a touch panel, etc. is connected to the controller 121.
  • the storage device 121c is composed of, for example, a flash memory, a HDD (Hard Disk Drive), etc.
  • a control program for controlling the operation of the substrate processing apparatus, and a process recipe describing the procedures and conditions for substrate processing such as film formation, which will be described later, are readably stored in the storage device 121c.
  • the process recipe is a combination of procedures in substrate processing steps such as the film formation step, which will be described later, that are executed by the controller 121 to obtain a predetermined result, and functions as a program.
  • the process recipe, control program, etc. will be collectively referred to simply as the program.
  • the I/O port 121d is connected to the aforementioned MFCs 241a to 241e, valves 243a to 243e, 265, pressure sensor 245, APC valves 242, 244, vacuum pump 246, temperature sensor 263, heater 207, rotation mechanism 267, boat elevator 115, matching box 272, high frequency power supply 273, etc.
  • the CPU 121a is configured to read and execute a control program from the storage device 121c, and to read a process recipe from the storage device 121c in response to input of an operation command from the input/output device 122, etc.
  • the CPU 121a is configured to control the flow rate adjustment of various gases by the MFCs 24a to 241e, the opening and closing of the valves 243a to 243e, 265, the opening and closing of the APC valves 242, 244 and the pressure adjustment by the APC valves 242, 244 based on the pressure sensor 245, the start and stop of the vacuum pump 246, the temperature adjustment of the heater 207 based on the temperature sensor 263, the rotation and rotation speed adjustment of the boat 217 by the rotation mechanism 267, the raising and lowering of the boat 217 by the boat elevator 115, the impedance adjustment by the matching device 272, the power supply of the high frequency power source 273, etc.
  • the controller 121 may be configured as a general-purpose computer, not limited to a dedicated computer.
  • the controller 121 of this embodiment can be configured by preparing an external storage device (e.g., a magnetic tape, a magnetic disk such as a flexible disk or a hard disk, an optical disk such as a CD or a DVD, an optical magnetic disk such as an MO, or a semiconductor memory such as a USB memory or a memory card) 123 storing the above-mentioned program, and installing the program in a general-purpose computer using the external storage device 123.
  • the means for supplying the program to the computer is not limited to supplying the program via the external storage device 123.
  • the program may be supplied without going through the external storage device 123, using a communication means such as the Internet or a dedicated line.
  • the storage device 121c and the external storage device 123 are configured as computer-readable recording media.
  • recording media When the term recording media is used in this specification, it may include only the storage device 121c alone, only the external storage device 123 alone, or both.
  • the term “wafer” can mean “the wafer itself” or “a laminate (assembly) of a wafer and a specific layer or film formed on its surface,” i.e., the wafer can include the specific layer or film formed on the surface.
  • the term “surface of a wafer” can mean “the surface (exposed surface) of the wafer itself” or “the surface of a specific layer or film formed on a wafer, i.e., the outermost surface of the wafer as a laminate.”
  • a specified gas is supplied to the wafer
  • it may mean “a specified gas is supplied directly to the surface (exposed surface) of the wafer itself,” or "a specified gas is supplied to a layer or film formed on the wafer, i.e., to the outermost surface of the wafer as a laminate.”
  • a specified layer (or film) is formed on the wafer
  • it may mean “a specified layer (or film) is formed directly on the surface (exposed surface) of the wafer itself,” or "a specified layer (or film) is formed on the layer or film formed on the wafer, i.e., on the outermost surface of the wafer as a laminate.”
  • the vacuum pump 246 exhausts gas from the processing chamber 201 so that the pressure in the processing chamber 201, i.e., the pressure in the space in which the wafer 200 exists, becomes a desired pressure (vacuum level). At this time, the pressure in the processing chamber 201 is measured by a pressure sensor 245, and the APC valves 242, 244 are feedback-controlled (pressure adjustment) based on the measured pressure information.
  • the vacuum pump 246 is kept in a constantly operating state at least until the processing of the wafer 200 is completed.
  • the heater 207 heats the processing chamber 201 so that the wafers 200 in the processing chamber 201 reach a desired temperature. At this time, the amount of electricity supplied to the heater 207 is feedback-controlled (temperature adjustment) based on temperature information detected by the temperature sensor 263 so that the processing chamber 201 has a desired temperature distribution. Heating of the processing chamber 201 by the heater 207 continues at least until processing of the wafers 200 is completed. However, when processing of the wafers 200 is performed at room temperature, heating of the processing chamber 201 by the heater 207 does not have to be performed.
  • the rotation mechanism 267 rotates the boat 217 and the wafers 200.
  • the rotation mechanism 267 continues to rotate the boat 217 and the wafers 200 at least until the processing of the wafers 200 is completed.
  • the film forming process includes at least a film forming step and a modification step.
  • the film forming step includes at least a source gas supply step.
  • the film forming step may include a source gas supply step and a reactive gas supply step.
  • the film forming step may include a source gas supply step, a source gas purge step (a step of removing unreacted source gas and by-products in the process chamber 201 by evacuating the process chamber 201 or supplying N2 gas to the process chamber 201), a reactive gas supply step, and a purge step as appropriate, as in the case of including a reactive gas purge step.
  • the modification step the film formed in the film forming step is modified.
  • the film forming step and the modification step are regarded as one cycle, and each step may be repeated, or the modification step may be performed after the film forming step is performed multiple times.
  • the above-mentioned purge step may be included between the film forming step and the modification step.
  • N2 gas is supplied to the processing chamber 201 at a first inert gas flow rate from a nozzle 249a extending in the vertical direction while the exhaust of the processing chamber 201 containing the wafer 200 is substantially stopped. Furthermore, in the process of supplying N2 gas to the process chamber 201 while supplying the raw material gas to the process chamber 201, the raw material gas stored in the storage section 280 is supplied from the nozzle 249a to the process chamber 201 while the exhaust of the process chamber 201 is substantially stopped, and N2 gas is supplied from the nozzle 249a to the process chamber 201 at a second inert gas flow rate greater than the first inert gas flow rate.
  • N2 gas is supplied from the nozzle 249a to the process chamber 201 at the first inert gas flow rate while the process chamber 201 is being exhausted from below.
  • the first exhaust line 230 is used for details of exhaust in the process of supplying the raw material gas to the process chamber 201.
  • N2 gas is supplied at a first inert gas flow rate from the nozzle 249a extending in the vertical direction to the processing chamber 201. This process is performed for, for example, one second (1 s) under the control A of the sequence shown in FIG.
  • valve 243a shown in FIG. 1 is opened, the valve 243b is closed, the valve 243c is closed, the valve 243d is opened, the valve 234e is opened, and the valve 265 is closed. Furthermore, the APC valves 242 and 244 are closed. In this manner, the valve 243a is opened and the valve 265 is closed, so that the source gas is stored in the storage section 280. Furthermore, the valve 243e is opened, so that the N 2 gas is supplied from the nozzle 249a to the processing chamber 201 at a first inert gas flow rate (for example, a predetermined value within a range of 0.5 to 3.0 [slm]).
  • a first inert gas flow rate for example, a predetermined value within a range of 0.5 to 3.0 [slm]
  • valve 243d is opened, so that the N 2 gas as a backflow prevention gas is supplied from the nozzle 249b to the processing chamber 201 at a predetermined value within a range of, for example, a flow rate of 0.5 to 5.0 [slm].
  • the APC valves 242 and 244 are closed to substantially stop exhausting the processing chamber 201.
  • the temperature of the heater 207 is set so that the temperature of the wafer 200 is set to a value within a range of, for example, 300 to 600° C.
  • the expression of a numerical range such as "300 to 600°C” means that the lower limit and the upper limit are included in the range.
  • “300 to 600°C” means "300°C or higher and 600°C or lower.” The same applies to other numerical ranges.
  • the state in which exhaust of the processing chamber 201 is substantially stopped refers to a state in which the APC valves 242, 244 as opening and closing valves are substantially closed, and exhaust of the processing chamber 201 is substantially stopped.
  • “Substantially” includes the following states. That is, it includes a state in which the APC valves 242, 244 are fully closed, and exhaust of the processing chamber 201 is stopped.
  • “substantially” includes a state in which the APC valves 242, 244 are slightly open, and the processing chamber 201 is slightly exhausted.
  • the state where the APC valves 242, 244 are slightly opened and the processing chamber 201 is slightly exhausted it is preferable to make the exhaust amount (exhaust rate) V [sccm] of the processing chamber 201 per unit time much smaller than the supply amount (supply rate) FB [sccm] of N2 gas per unit time, that is, FB>>V.
  • the state where the APC valves 242, 244 are slightly opened and the processing chamber 201 is slightly exhausted includes a state where the supply amount FB of N2 gas per unit time is within ⁇ 10% of the exhaust amount V of the processing chamber 201 per unit time.
  • gas is supplied with the APC valves 242 and 244 fully closed and exhaust from the processing chamber 201 stopped.
  • the source gas stored in the storage section 280 is supplied from the nozzle 249a to the processing chamber 201, while N2 gas is supplied from the nozzle 249a to the processing chamber 201 at a second inert gas flow rate that is higher than the first inert gas flow rate. This process is performed for, for example, 3 seconds under the control B of the sequence shown in FIG.
  • the valve 243a is closed, the valve 243b is closed, the valve 243c is closed, the valve 243d is opened, the valve 243e is opened, and the valve 265 is opened. Furthermore, the APC valves 242 and 244 are closed. In this manner, the valve 243a is closed and the valve 265 is opened, whereby the source gas (for example, a predetermined amount within a range of 100-250 cc) stored in the storage section 280 is supplied from the nozzle 249a to the processing chamber 201 (so-called flush supply, or flush flow). At this time, a large amount of the source gas is instantaneously supplied to the processing chamber 201, and a gradually decreasing amount is supplied to the processing chamber 201.
  • the source gas for example, a predetermined amount within a range of 100-250 cc
  • valve 243e is opened, and the MFC 241e is controlled to supply N 2 gas from the nozzle 249a to the processing chamber 201 at a second inert gas flow rate (for example, a predetermined value within a range of 1.5-4.5 [slm]) that is greater than the first inert gas flow rate.
  • a second inert gas flow rate for example, a predetermined value within a range of 1.5-4.5 [slm]
  • the source gas stored in the storage portion 280 is pushed out by the N2 gas and supplied from the nozzle 249a to the processing chamber 201.
  • N2 gas as a backflow prevention gas is supplied from the nozzle 249b to the processing chamber 201 at a predetermined value within a flow rate range of, for example, 1.0-5.0 [slm].
  • the APC valve 244 also begins to open, and exhaust from the first exhaust line 230 begins. For example, in FIG. 5, the APC valve 244 begins to open around 4 [s].
  • valve 243a is opened, the valve 243b is closed, the valve 243c is closed, the valve 243d is opened, the valve 243e is opened, and the valve 265 is closed.
  • the APC valve 244 is opened to adjust the pressure in the processing chamber 201 to a predetermined value within a range of, for example, 700 to 1200 [Pa]. In this manner, the valve 243a is opened, and the valve 265 is opened, so that the source gas starts to be stored again in the storage section 280.
  • valve 243e is opened, and the MFC 241e is controlled to supply N2 gas from the nozzle 249a to the processing chamber 201 at a first inert gas flow rate (for example, a predetermined value within a range of 1.3 to 1.7 [slm]). Also, by opening the valve 243d, N2 gas as a backflow prevention gas is supplied from the nozzle 249b to the processing chamber 201 at a predetermined value within the range of, for example, 1.3 to 1.7 [slm].
  • a first inert gas flow rate for example, a predetermined value within a range of 1.3 to 1.7 [slm]
  • the process is performed by waiting for the reaction of the raw material gas supplied to the processing chamber 201 after the process of supplying the raw material gas to the processing chamber 201 with the valve 243a closed, but the process may be performed by opening the valve 243a and flowing the raw material gas that has passed through the storage section 280.
  • the flow rate of the raw material gas flowing in the process of supplying the raw material gas to the processing chamber with the valve 243a closed may be referred to as the first raw material gas flow rate
  • the flow rate of the raw material gas in the process of opening the valve 243a and flowing the raw material gas that has passed through the storage section 280 may be referred to as the second raw material gas flow rate (for example, a predetermined value within the range of 0.5 to 2.0 [slm]).
  • the raw material-containing layer may be a layer, an adsorption layer of the raw material gas, or it may include both.
  • valve 243a is closed, the valve 243b is closed, the valve 243c is opened, the valve 243d is opened, the valve 243e is opened, and the valve 265 is opened. Furthermore, the APC valve 244 is opened. As a result, the valves 243c, 243e, and 267 are opened, and N2 gas is supplied from the nozzle 249a to the processing chamber 201. Furthermore, the valve 243d is opened, and N2 gas is supplied from the nozzle 249b to the processing chamber 201.
  • the APC valve 244 is opened, the gas in the processing chamber 201 is exhausted by the vacuum pump 246, and the raw material gas remaining in the processing chamber 201 that has not reacted or that has contributed to the formation of the raw material-containing layer is removed from the processing chamber 201 (removal of residual gas).
  • the APC valve 244 does not need to be fully opened.
  • the valves 243c and 243d are opened, and the supply of N2 gas to the processing chamber 201 is maintained.
  • the N2 gas acts as a purge gas, and this enhances the effect of removing the raw material gas remaining in the processing chamber 201 that has not reacted or that has contributed to the formation of the raw material-containing layer from the processing chamber 201.
  • the gas remaining in the processing chamber 201 does not have to be completely removed, and the processing chamber 201 does not have to be completely purged. If the amount of gas remaining in the processing chamber 201 is small, no adverse effects will occur in the subsequent processes. At this time, the flow rate of N2 gas supplied to the processing chamber 201 does not need to be large, and for example, by supplying an amount approximately equal to the volume of the processing chamber 201, purging is performed to an extent that no adverse effects will occur in the subsequent processes. In this way, by not completely purging the processing chamber 201, the purge time is shortened and the throughput is improved. In addition, it is possible to minimize the consumption of N2 gas.
  • valve 243a is opened, valve 243b is opened, valve 243c is closed, valve 243d is closed, valve 243e is opened, and valve 265 is closed. Furthermore, APC valve 244 is opened. Also, a voltage is applied between rod-shaped electrodes 269 and 270. That is, plasma-excited gas is supplied to processing chamber 201.
  • the source gas is stored in the reservoir 280 by opening the valve 243a and closing the valve 265.
  • the valve 243e is opened to supply N2 gas as a backflow prevention gas from the nozzle 249a to the processing chamber 201.
  • the valve 243b is opened to supply a reaction gas from the nozzle 249b to the processing chamber 201 at a predetermined flow rate within a range of, for example, 0.5 to 10 [slm].
  • the APC valve 244 is opened to exhaust gas from the processing chamber 201 by the vacuum pump 246. At this time, the temperature of the heater 207 is set to be the same value as when the source gas is supplied.
  • the reactive gas undergoes a surface reaction (chemical adsorption) with the raw material-containing layer formed on the surface of the wafer 200, forming the desired film on the wafer 200.
  • reaction gas purging process film formation process
  • the reaction gas remaining in the process chamber 201 is removed, and the process chamber 201 is purged. This process is performed under control F of the sequence shown in Fig. 5.
  • the reaction gas purge process is an example of a first purge process or a second purge process.
  • valve 243a is opened, valve 243b is closed, valve 243c is closed, valve 243d is opened, valve 243e is opened, and valve 265 is closed. Furthermore, APC valve 244 is opened. Also, the voltage applied between rod electrodes 269 and 270 is stopped.
  • valve 243a is opened and the valve 265 is closed, whereby the source gas is stored in the reservoir 280. Furthermore, the valve 243e is opened, whereby N2 gas is supplied from the nozzle 249a to the processing chamber 201. Furthermore, the valve 243d is opened, whereby N2 gas is supplied from the nozzle 249b to the processing chamber 201.
  • Each of the above-mentioned steps constitutes one cycle, and by performing this cycle one or more times (a predetermined number of times), a film of a predetermined composition and a predetermined thickness is formed on the wafer 200. It is preferable to make the thickness of the layer formed per cycle smaller than the desired thickness, and to repeat the above-mentioned cycle multiple times until the desired thickness is reached.
  • the process of storing the source gas in storage section 280 continues until a predetermined amount is stored. For example, this process may continue until the step of supplying reactive gas to processing chamber 201 from nozzle 249b and the step of removing reactive gas remaining in processing chamber 201.
  • the exhaust line (exhaust system) is switched.
  • the gas piping (first exhaust line 230) of the exhaust system used when supplying the raw material gas and the reaction gas (film formation process) is switched to the gas piping (second exhaust line 231) of the exhaust system used in the process in which the formed film is modified.
  • the flow path cross-sectional area of this second exhaust line 231 is configured to be larger than the flow path cross-sectional area of the first exhaust line 230.
  • the flow path cross-sectional area of the second exhaust line 231 is configured to be more than twice the flow path cross-sectional area of the first exhaust line 230.
  • the APC valve 244 of the first exhaust line 230 shown in FIG. 6 is fully closed, and the APC valve 242 of the second exhaust line 231 is opened.
  • valve 243a is opened
  • valve 243b is closed
  • valve 243c is closed
  • valve 243d is opened
  • valve 243e is opened
  • valve 265 is closed.
  • the APC valve 242 of the second exhaust line is opened, and a process of removing the reaction gas is performed. In short, it is sufficient to make the second exhaust line capable of exhausting before the reforming process.
  • valve 243a is opened, valve 243b is closed, valve 243c is closed, valve 243d is opened, valve 243e is opened, and valve 265 is closed. Furthermore, the APC valve 242 of the second exhaust line 231 is fully opened. Also, a voltage is applied between the rod-shaped electrodes 269 and 270 shown in FIG. 2. That is, plasma-excited inert gas is supplied to the processing chamber 201.
  • the APC valve 242 in the second exhaust line 231 When the APC valve 242 in the second exhaust line 231 is opened, the plasma-excited gas (active species) in the processing chamber 201 is exhausted by the vacuum pump 246 via the second exhaust line 231.
  • exhaust is performed via the APC valve 244 of the first exhaust line 230, and in the modification process in which the film is modified, exhaust is performed via the APC valve 242 of the second exhaust line 231.
  • a film is formed on the wafer 200 while exhausting through the first exhaust line 230, and the wafer 200 is modified while exhausting through the second exhaust line 231, which has a larger flow path cross-sectional area than the first exhaust line 230.
  • the amount of gas exhausted in the modification process in which the film is modified is greater than the amount of gas exhausted in the film formation process in which a film is formed on the wafer 200.
  • the modifier can be supplied to the surface of the wafer 200 while still activated, and in particular, the modifier can be spread to the center of the wafer 200 while still activated. Therefore, in this embodiment, the active species (activated modifier) spreads over the entire wafer 200, improving the in-plane uniformity of the film thickness.
  • the exhaust conductance can be reduced, so that a low pressure is maintained while increasing the amount of modifier or active species.
  • a low pressure increases the transport efficiency of the modifier or active species. Therefore, as described above, the active species (activated modifier) spreads throughout the entire wafer 200, improving the in-plane uniformity of the film thickness.
  • the upper limit of the low pressure is determined by whether or not the in-plane uniformity is reduced because active species cannot be supplied to the center of the wafer 200. Furthermore, the lower limit of the low pressure is determined by whether or not the mean free path becomes too large (they do not collide with the wafer 200) and active species are not generated, or, even if active species are generated, collisions at the wafer periphery are reduced, reducing the amount of active species generated and reducing the in-plane uniformity.
  • the supply of modifier is achieved under conditions that fall within the range of the upper and lower limits of the low pressure described above.
  • the temperature of the heater 207 at this time may be set to the same value as when the raw material gas is supplied.
  • the valves 243c, 243d, and 243e are opened, and N2 gas as an inert gas is supplied to the processing chamber 201 from each of the gas supply pipes 232c, 232d, and 232e, and exhausted from the second exhaust line 231.
  • the N2 gas acts as a purge gas, and the processing chamber 201 is purged with the inert gas, and the gas and reaction by-products remaining in the processing chamber 201 are removed from the processing chamber 201 (purge).
  • the atmosphere in the processing chamber 201 is replaced with the inert gas (inert gas replacement), and the pressure in the processing chamber 201 is returned to normal pressure (return to atmospheric pressure).
  • the first exhaust line 230 may be used to exhaust the processing chamber 201 in the process of reducing the pressure from near atmospheric pressure to the first pressure
  • the second exhaust line 231 may be used in the process of reducing the pressure from the first pressure to the second pressure
  • the first exhaust line 230 may be used in the process of reducing the pressure from the second pressure to the processing pressure. This makes it possible to shorten the time required to reduce the pressure from atmospheric pressure to the processing pressure.
  • a purge gas may be supplied in any of the processes.
  • Modification 1 Next, a description will be given of Modification 1. As described above, in the modification process, it is only necessary to increase the amount of exhaust in the film formation process, so in Modification 1, as shown in FIG. 6, a gate valve 238 is provided in the second exhaust line 231 instead of the APC valve.
  • the exhaust conductance can be reduced, so that a low pressure can be maintained while increasing the amount of modifier or active species.
  • a low pressure increases the transport efficiency of the modifier or active species. Therefore, as described above, the active species (activated modifier) spreads throughout the entire wafer 200, improving the in-plane uniformity of the film thickness.
  • Modified example 2 is an improved version of modified example 1.
  • a gate valve 238 is provided in the second exhaust line 231 instead of the APC valve, and further, a vacuum pump 236 is provided as an exhaust device in the second exhaust line 231 downstream of the gate valve 238 and upstream of the junction with the first exhaust line 230.
  • the vacuum pumps 236 and 246 are configured to operate.
  • the vacuum pump 236 is operated, so that a lower pressure than Modification 1 can be expected. This allows the exhaust conductance to be lowered, so that a low pressure is maintained while increasing the amount of modifier or active species. Such a low pressure increases the transport efficiency of the modifier or active species. As described above, the active species (activated modifier) spreads throughout the entire wafer 200, improving the in-plane uniformity of the film thickness. However, in this case, there is a concern that the exhaust capacity of the vacuum pump 236 may be increased and the pressure may be set too low. This would result in a phenomenon in which the mean free path becomes too large and active species are not generated (without colliding with the wafer 200).
  • a vacuum pump is provided as an exhaust device in each of the first exhaust line 230 and the second exhaust line 231.
  • the second exhaust line 231 is provided with a gate valve 238.
  • the first exhaust line 231 branches off from the second exhaust line 231 upstream of the gate valve 238, and does not merge with the second exhaust line 231.
  • the first exhaust line 230 is provided with an APC valve 244 and a vacuum pump 248 disposed downstream of the APC valve 244.
  • the exhaust performance of this vacuum pump 248 is weaker than the exhaust performance of the vacuum pump 246. In other words, the exhaust performance of the vacuum pump 246 is stronger than the exhaust performance of the vacuum pump 248.
  • the APC valve 244 of the first exhaust line 230 is opened, and the gate valve 238 of the second exhaust line 231 is closed.
  • the vacuum pump 248 is operated.
  • exhaust is performed via the APC valve 244 of the first exhaust line 230.
  • the APC valve 244 of the first exhaust line 230 is fully opened, and the gate valve 238 of the second exhaust line 231 is opened. Furthermore, the vacuum pumps 246 and 248 are operated. As a result, in the reforming process, exhaust is performed through the APC valve 244 of the first exhaust line 230, and further, exhaust is performed through the gate valve 238 of the second exhaust line 231. Alternatively, in the reforming process, the APC valve 244 of the first exhaust line 230 is closed, and the gate valve 238 of the second exhaust line 231 is opened. Furthermore, the vacuum pump 246 is operated. As a result, in the reforming process, exhaust is performed through the gate valve 238 of the second exhaust line 231.
  • the vacuum pump 246 has a higher exhaust capacity than the vacuum pump 248 provided in the first exhaust line and the vacuum pump 246 provided in the second exhaust line.
  • the exhaust conductance can be reduced, and low pressure can be maintained while increasing the amount of modifier or active species.
  • Such low pressure increases the transport efficiency of the modifier or active species. Therefore, as described above, the active species (activated modifier) spreads throughout the entire wafer 200, improving the in-plane uniformity of the film thickness.
  • the present disclosure provides one or more of the following advantages:
  • the amount of gas exhausted in the modification process is set to be greater than the amount of gas exhausted in the film formation process.
  • the active species in the modification process are thermally activated.
  • This allows the use of an activated inert gas (modifier) to improve film density and impurities in the film, making it possible to form a film of good quality at a low temperature.
  • an activated inert gas modifier
  • a low pressure can be achieved without reducing the amount of thermally activated active species, and such a low pressure can increase the transport efficiency of the thermally activated active species. Therefore, the active species (activated modifier) spreads over the entire wafer 200, improving the in-plane uniformity of the film thickness.
  • the active species in the modification process are plasma excited. This allows the film density and impurities in the film to be improved by using an activated inert gas (modifier), making it possible to form a film with good film quality at a low temperature. Furthermore, by increasing the amount of gas exhausted in the modification process, a low pressure can be achieved without reducing the amount of plasma-excited active species, and such a low pressure can increase the transport efficiency of the plasma-excited active species. Therefore, the active species (activated modifier) spreads over the entire wafer 200, improving the in-plane uniformity of the film thickness.
  • an activated inert gas modifier
  • a film having a predetermined thickness can be formed by performing a cycle of the film formation process and the modification process a predetermined number of times or more.
  • low pressure can be achieved without reducing the amount of modifier in the modification process, and it is expected that both the supply amount of modifier and the life of the active species can be achieved.
  • the use of active species can improve the film density and impurities in the film, making it possible to form a film with good film quality at a low temperature.
  • a film having a predetermined film thickness can be formed.
  • low pressure can be achieved without reducing the amount of modifier in the modification process, and it is expected that both the amount of modifier supplied and the life of the active species can be achieved.
  • the use of active species can improve the film density and impurities in the film, making it possible to form a film with good film quality at a low temperature.
  • the system also includes a first exhaust line 230 configured to exhaust gas from the processing chamber 201 that processes the wafer 200, and a second exhaust line 231 that branches off from the first exhaust line 230 and has a larger flow cross-sectional area than the first exhaust line 230.
  • the system is configured to be able to form a film on the wafer 200 while exhausting through the first exhaust line 230, and is configured to be able to modify the film while switching from the first exhaust line 230 to the second exhaust line 231 and exhausting with a larger exhaust volume than the first exhaust line.
  • the flow path cross-sectional area of the second exhaust line 231 is configured to be at least twice the flow path cross-sectional area of the first exhaust line 231. This allows the amount of gas exhausted in the film modifying process to be greater than the amount of gas exhausted in the process of forming a film on the wafer 200, so that a low pressure can be maintained even if the amount of modifier supplied is increased, and further, the processing pressure can be reduced. Such low pressure can increase the transport efficiency of the activated modifier. Therefore, the active species (activated modifier) spreads throughout the entire wafer 200, improving the in-plane uniformity of the film thickness.
  • the exhaust conductance can be lowered, so that it is possible to maintain a low pressure while increasing the amount of modifier or active species.
  • the active species activated modifier
  • the first exhaust line 230 can be switched to the second exhaust line 231 while the processing chamber 201 is being purged.
  • the conductance can be reduced, and therefore a low pressure can be maintained while increasing the amount of modifier or active species.
  • the transport efficiency of the activated modifier or active species can be increased. Therefore, the active species (activated modifier) spreads throughout the entire wafer 200, improving the in-plane uniformity of the film thickness.
  • the second exhaust line 231 is provided with a vacuum pump 236 (see FIG. 7) as an exhaust device for exhausting the atmosphere of the processing chamber 201.
  • the controller 121 is configured to be able to operate the vacuum pump 236 when modifying the film.
  • the controller 121 is configured to be able to exhaust gas through both the first exhaust line 230 and the second exhaust line 231 when modifying a film.
  • the controller 121 is configured to be able to exhaust gas through both the first exhaust line 230 and the second exhaust line 231 when modifying a film.
  • the apparatus has an activation section that activates a reactive gas, and is configured to be able to form a film on the wafer 200 by supplying the reactive gas activated by the activation section.
  • the apparatus has rod-shaped electrodes 269, 270 and electrode protection tube 275 as an activation section that activates an inert gas, and is configured to be able to modify the film formed on the wafer 200 by supplying the activated inert gas by the rod-shaped electrodes 269, 270 and electrode protection tube 275 as an activation section.
  • an activated inert gas modifier
  • can improve the film density and impurities in the film so that a film with good film quality can be formed at a low temperature.
  • the amount of gas exhausted in the film modifying process can be greater than the amount of gas exhausted in the process of forming a film on the wafer 200, so that a low pressure can be maintained even if the amount of activated modifier supplied is increased, and further, the processing pressure can be reduced.
  • Such low pressure can increase the transport efficiency of the activated modifier. Therefore, the active species (activated modifier) spreads throughout the entire wafer 200, improving the in-plane uniformity of the film thickness.
  • the generation of by-products is minor. This makes it possible to suppress adhesion of by-products to the vacuum pump 246, thereby reducing maintenance costs. In addition, this can be applied even to exhaust devices that are difficult to apply in normal processes due to the adhesion of by-products.
  • the supply of the raw material gas was described using a flash flow supply, but it goes without saying that this is not limited to a flash flow supply and other supply methods may also be used.
  • the raw material gas may be a silicon-based raw material, a titanium-based raw material (e.g., titanium tetrachloride), a tantalum-based raw material (e.g., tantalum pentachloride), a hafnium-based raw material (e.g., tetrakisethylmethylaminohafnium), a zirconium-based raw material (e.g., tetrakisethylmethylaminozirconium), an aluminum-based raw material (trimethylaluminum), or the like.
  • a titanium-based raw material e.g., titanium tetrachloride
  • a tantalum-based raw material e.g., tantalum pentachloride
  • a hafnium-based raw material e.g., tetrakisethylmethylaminohafnium
  • zirconium-based raw material e.g., tetrakis
  • N2 gas is used as the inert gas
  • other gases such as Ar gas, He gas, Ne gas, and Xe gas may be used.
  • the present disclosure may be used not only in semiconductor manufacturing equipment but also in equipment that processes glass substrates, such as LCD devices.
  • the film formation process of the present disclosure may be used, for example, in processes such as CVD, PVD, processes for forming oxide films, nitride films, or both, processes for forming films containing metals, and may also be used in processes such as annealing processes, oxidation processes, nitriding processes, and diffusion processes.
  • Processing chamber 230 First exhaust line (bypass exhaust line) 231 Second exhaust line (main exhaust line)

Abstract

処理室で基板に膜を形成する膜形成工程と、前記処理室で前記膜を改質する改質工程と、を有し、改質工程における処理室からのガスの排気量を、膜形成工程における処理室からのガスの排気量よりも大きくする。

Description

基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム
 本開示は、基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラムに関する。
 近年のLSI製造工程における微細化や材料変更に伴い、低温で質の良い膜を形成する技術が必要とされている。手段の一つとして、特許文献1に記載のように、活性種を用いて基板上に膜を形成することが挙げられる。これにより、膜密度や膜中の不純物を改善出来るが、一方、活性種が基板全体に行き渡らず、膜厚の面内均一性が悪くなるという欠点がある。
特開2019-067820号公報
 本開示は、基板の膜厚の面内均一性を向上させることが可能な技術を提供する。
 本開示の一態様によれば、処理室で基板に膜を形成する膜形成工程と、前記処理室で前記膜を改質する改質工程と、を有し、改質工程における処理室からのガスの排気量を、膜形成工程における処理室からのガスの排気量よりも大きくする技術が提供される。
 本開示によれば、基板の膜厚の面内均一性を向上させることができる。
本開示の実施形態に係る基板処理装置を示した概略構成図である。 本開示の実施形態に係る基板処理装置を示し、図1のA-A線断面図である。 本開示の実施形態に係る基板処理装置に備えられたコントローラを説明するためのブロック図である。 本開示の実施形態に係る半導体装置の製造方法の成膜シーケンスを示した図面である。 本開示の実施形態に係る半導体装置の製造方法の成膜シーケンスにおける各部の稼動タイミングを示した図面である。 本開示の実施形態に係る排気系の構成を示す図である。 本開示の実施形態に係る排気系の構成を示す図である。
 以下、本実施形態の一例を、図面を参照しつつ説明する。なお、各図面において同一又は等価な構成要素及び部分には、同一の参照符号を付与している。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。また、図面の上方向を上方又は上部、下方向を下方又は下部として説明する。さらに、本実施形態において記載する圧力は、すべて気圧を意味する。なお、図中示す矢印UPは、装置上方を示す。
 <基板処理装置の全体構成>
 基板処理装置100は、図1に示されるように、処理炉202を有し、処理炉202には、加熱手段(加熱機構)としてのヒータ207が配設されている。ヒータ207は円筒形状であり、保持板としてのヒータベース(図示せず)に支持されることにより垂直に据え付けられている。
 ヒータ207の内側には、ヒータ207と同心円状に反応管203が配設されている。反応管203は、例えば、石英(SiO2)又は炭化シリコン(SiC)等の耐熱性材料からなり、上端が閉塞し下端が開口した円筒形状に形成されている。反応管203の下方には、反応管203と同心円状に、マニホールド(インレットフランジ)209が配設されている。マニホールド209は、例えば、ステンレス(SUS)等の金属からなり、上端及び下端が開口した円筒形状に形成されている。マニホールド209の上端部は、反応管203の下端部に係合しており、反応管203を支持するように構成されている。
 マニホールド209と反応管203との間には、シール部材としてのOリング220aが設けられている。マニホールド209がヒータベースに支持されることにより、反応管203は垂直に据え付けられた状態となる。反応管203の筒中空部には、処理室201が形成されている。処理室201は、複数枚の基板としてのウエハ200を、後述するボート217によって水平姿勢で垂直方向に多段に配列した状態で収容可能に構成されている。
 処理室201内には、上下方向に延びたノズル249a(第1のノズル),249b(第2のノズル)が、マニホールド209の側壁を貫通するように設けられている。ノズル249a,249bには、ガス供給管232a,232bが、それぞれ接続されている。これにより、処理室201内へ複数種類、ここでは2種類のガスを供給することができるように構成されている。
 ガス供給管232a,232bには、上流方向から順に、流量制御器(流量制御部)であるマスフローコントローラ(MFC)241a,241b、及び開閉弁であるバルブ243a,243bがそれぞれ設けられている。ガス供給管232a,232bのバルブ243a,243bよりも下流側には、不活性ガスを供給するガス供給管232c,232dがそれぞれ接続されている。ガス供給管232c,232dには、上流方向から順に、流量制御器(流量制御部)であるMFC241c,241d、及び開閉弁であるバルブ243c,243dがそれぞれ設けられている。
 さらに、ガス供給管232aにおいてガス供給管232cが接続された接続部よりも下流側には、原料ガスが溜められる貯留部(タンク)280、及びバルブ265が上流側からこの順番で設けられている。また、ガス供給管232aにおいてバルブ265よりも下流側には、ガス供給管232cから分岐したガス供給管232eが接続されている。さらに、ガス供給管232eには、流量制御器(流量制御部)であるMFC241e、及び開閉弁であるバルブ243eが上流側からこの順番で設けられている。
 ガス供給管232aの先端部には、ノズル249aが接続されている。ノズル249aは、図2に示されるように、反応管203の内壁とウエハ200との間における円環状の空間に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載方向(上下方向)上方に向かって立ち上がるように設けられている。すなわち、ノズル249aは、ウエハ200が配列されるウエハ配列領域の側方に設けられている。
 ノズル249aは、L字型のロングノズルとして構成されており、その水平部はマニホールド209の側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。ノズル249aの側面には、ガスを供給するガス供給孔250aが設けられている。ガス供給孔250aは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250aは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。なお、ノズル249aの形態は特に限定されておらず、例えば、水平部と垂直部は別体としてもよい。
 ガス供給管232bの先端部には、ノズル249bが接続されている。ノズル249bは、ガス分散空間であるバッファ室237内に設けられている。バッファ室237は、図2に示されるように、反応管203の内壁とウエハ200との間における円環状の空間に、また、処理室201内の下部より上部にわたる部分に、ウエハ200の積載方向に沿って設けられている。すなわち、バッファ室237は、ウエハ配列領域の側方の、ウエハ配列領域を水平に取り囲む領域に設けられている。
 バッファ室237においてウエハ200と隣接する壁の端部には、ガスを供給するガス供給孔250cが設けられている。ガス供給孔250cは、反応管203の中心を向くように開口しており、ウエハ200に向けてガスを供給することが可能となっている。ガス供給孔250cは、反応管203の下部から上部にわたって複数設けられ、それぞれが同一の開口面積を有し、更に同じ開口ピッチで設けられている。
 ノズル249bは、バッファ室237のガス供給孔250cが設けられた端部と反対側の端部に、反応管203の内壁の下部より上部に沿って、ウエハ200の積載(配列)方向上方に向かって立ち上がるように設けられている。すなわち、ノズル249bは、ウエハ200が配列されるウエハ配列領域の側方に設けられている。ノズル249bは、L字型のロングノズルとして構成されており、その水平部はマニホールド209の側壁を貫通するように設けられており、その垂直部は少なくともウエハ配列領域の一端側から他端側に向かって立ち上がるように設けられている。ノズル249bの側面には、ガスを供給するガス供給孔250bが設けられている。ガス供給孔250bは、バッファ室237の中心を向くように開口している。ガス供給孔250bは、ガス供給孔250cと同様に、反応管203の下部から上部にわたって複数設けられている。ノズル249bもノズル249aと同様に形態は限定されておらず、例えば、水平部と垂直部が別体であっても構わない。
 ガス供給孔250bのそれぞれの開口面積や開口ピッチを、上流側から下流側にかけて前述のように調節することで、ガス供給孔250bのそれぞれから、流速の差はあるものの、流量がほぼ同量であるガスを噴出させることが可能となる。そして、これら複数のガス供給孔250bのそれぞれから噴出するガスを、一旦、バッファ室237内に導入することで、バッファ室237内においてガスの流速差の均一化を行うことが可能となる。
 このように、本実施形態では、反応管203の内壁と、積載された複数のウエハ200の端部と、で定義される円環状の縦長の空間内、つまり、円筒状の空間内に配置したノズル249a,249bおよびバッファ室237を経由してガスが搬送される。
 そして、ノズル249a,249bおよびバッファ室237にそれぞれ開口されたガス供給孔250a~250cから、ウエハ200の近傍で初めて処理室201内にガスが噴出されている。また、処理室201内におけるガスの主たる流れは、ウエハ200の表面と平行な方向、すなわち、水平方向とされている。このような構成とすることで、各ウエハ200に均一にガスが供給され、各ウエハ200に形成される膜の膜厚の均一性を向上させることが可能となる。ウエハ200の表面上を流れたガス、すなわち、反応後の残ガスは、排気口、すなわち、後述する第2排気ライン231の方向に向かって流れる。但し、この残ガスの流れの方向は、排気口の位置によって適宜特定され、垂直方向に限ったものではない。
 ガス供給管232aからは、原料ガスが、図1に示されるように、MFC241a、バルブ243a、ガス供給管232a、貯留部280、バルブ265、ノズル249aを介して処理室201へ供給される。
 原料ガスとは、気体状態の原料、例えば、常温常圧下で液体状態である原料を気化することで得られるガスや、常温常圧下で気体状態である原料等のことである。本明細書において「原料」という言葉を用いた場合は、「液体状態である液体原料」を意味する場合、「気体状態である原料ガス」を意味する場合、又はその両方を意味する場合がある。
 ガス供給管232bからは、反応ガスが、MFC241b、バルブ243b、ガス供給管232b、ノズル249b、バッファ室237を介して処理室201へ供給される。
 ガス供給管232cからは、不活性ガスとして、本実施形態では、窒素(N)ガスが、MFC241c、バルブ243c、貯留部280、バルブ265、ガス供給管232aを介して処理室201へ供給される。
 ガス供給管232eからは、不活性ガスとして、本実施形態では、窒素(N)ガスが、MFC241e、バルブ243e、ガス供給管232aを介して処理室201へ供給される。
 ガス供給管232dからは、不活性ガスとして、本実施形態では、窒素(N)ガスが、MFC241d、バルブ243d、ガス供給管232b、バッファ室237を介して処理室201へ供給される。
 各ガス供給管から前述のようなガスをそれぞれ流す場合、主に、ガス供給管232a、MFC241a、バルブ243a、貯留部280、バルブ265により、所定元素を含む原料を供給する原料ガス供給系(原料ガスライン)が構成される。
 また、主に、ガス供給管232b、MFC241b、バルブ243bにより、反応ガスを供給する反応ガス供給系(反応ガスライン)が構成される。
 また、主に、ガス供給管232c,232d,232e、MFC241c,241d,241e、バルブ243c,243d,243eにより、不活性ガス供給系が構成される。
 バッファ室237内には、図2に示されるように、導電体からなり、細長い構造を有する2本の棒状電極269,270が、反応管203の下部より上部にわたりウエハ200の積層方向に沿って配設されている。棒状電極269,270のそれぞれは、ノズル249bと平行に設けられている。棒状電極269,270のそれぞれは、上部より下部にわたって電極保護管275により覆われることで保護されている。棒状電極269,270のいずれか一方は、整合器272を介して高周波電源273に接続され、他方は、基準電位であるアースに接続されている。整合器272を介して高周波電源273から棒状電極269,270間に高周波(RF)電力を印加することで、棒状電極269,270間のプラズマ生成領域224にプラズマが生成される。主に、棒状電極269,270、電極保護管275によりプラズマ発生器(プラズマ発生部)としてのプラズマ源が構成される。プラズマ源は、後述するようにガスをプラズマ状態に活性化(励起)させる活性化部(励起部)として機能する。
 図1に示されるように、処理室201の雰囲気を排気する排気管であって、バイパス排気ラインとしての第1排気ライン230と、メイン排気ラインとしての第2排気ライン231とが設けられている。具体的には、処理室201の雰囲気を排気する排気管としての第2排気ライン231が反応管203に接続されている。この第2排気ライン231の一端は、処理室201の下端部の排気口に接続されている。また、第2排気ライン231には、処理室201内の圧力を検出する圧力検出器(圧力検出部)としての圧カセンサ245および開閉バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ242を介して、排気装置としての真空ポンプ246が接続されている。APCバルブ242は、真空ポンプ246を作動させた状態で弁を開閉することで、処理室201の排気および排気停止を行うことができ、更に、真空ポンプ246を作動させた状態で、圧カセンサ245により検出された圧力情報に基づいて弁開度を調節することで、処理室201の圧力を調整することができるように構成されているバルブである。
 また、第2排気ライン231において、APCバルブ242の上流で分岐し、APCバルブ242の下流で合流する第1排気ライン230が設けられている。この第1排気ライン230の流路断面積は、第2排気ライン231の流路断面積より小さく構成される。換言すれば、この第2排気ライン231の排気量は、第1排気ライン230の排気量より大きく構成される。この場合、真空ポンプ246が共通しているため、この第2排気ライン231の排気量(排気能力)は、第1排気ライン230の排気量(排気能力)より大きく構成される。従い、真空ポンプ246の性能を異ならせることでも各排気ラインの排気量(排気能力)は調整することができる。ここで、第1排気ライン230には、開閉バルブ(圧力調整部)としてのAPC(Auto Pressure Controller)バルブ244が設けられている。主に、第1排気ライン230、第2排気ライン231、APCバルブ242、244、圧カセンサ245により、排気系が構成される。尚、真空ポンプ246を排気系に含めて考えてもよい。
 マニホールド209の下方には、図1に示されるように、マニホールド209の下端開口を気密に閉塞可能な炉口蓋体としてのシールキャップ219が設けられている。シールキャップ219はマニホールド209の下端に垂直方向下側から当接されるように構成されている。シールキャップ219は、例えばSUS等の金属からなり、円盤状に形成されている。シールキャップ219の上面にはマニホールド209の下端と当接するシール部材としてのOリング220bが設けられている。シールキャップ219の処理室201と反対側には、後述するボート217を回転させる回転機構267が設置されている。回転機構267の回転軸255は、シールキャップ219を貫通してボート217に接続されている。回転機構267は、ボート217を回転させることでウエハ200を回転させるように構成されている。シールキャップ219は、反応管203の外部に垂直に設置された昇降機構としてのボートエレベータ115によって垂直方向に昇降されるように構成されている。ボートエレベータ115は、シールキャップ219を昇降させることで、ボート217を処理室201内外に搬入および搬出するように構成されている。ボートエレベータ115は、ボート217およびボート217に支持されるウエハ200を、処理室201内外に搬送する搬送装置(搬送機構)として構成されている。
 基板支持具としてのボート217は、複数、例えば25~200枚のウエハ200を、水平姿勢で、かつ、互いに中心を揃えた状態で垂直方向に整列させて多段に支持するように、つまり、ボート217は、間隔を空けてウエハ200を配列させるように構成されている。ボート217は、例えば、石英やSiC等の耐熱性材料からなる。ボート217の下部には、例えば、石英やSiC等の耐熱性材料からなる断熱部材218が設けられている。
 処理室201には、温度検出器としての温度センサ263が設けられている。温度センサ263により検出された温度情報に基づきヒータ207への通電具合を調整することで、処理室201の温度が、所望の温度分布となるように構成されている。温度センサ263は、ノズル249a,249bと同様にL字型に構成されており、反応管203の内壁に沿って設けられている。
 図3に示されるように、制御部(制御手段)であるコントローラ121は、CPU(Central Processing Unit)121a、RAM(Random Access Memory)121b、記憶装置121c、I/Oポート121dを備えたコンピュータとして構成されている。RAM121b、記憶装置121c、I/Oポート121dは、内部バス121eを介して、CPU121aとデータ交換可能なように構成されている。コントローラ121には、例えば、タッチパネル等として構成された入出力装置122が接続されている。
 記憶装置121cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置121c内には、基板処理装置の動作を制御する制御プログラムや、後述する膜形成等の基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。プロセスレシピは、後述する謨形成工程等の基板処理工程における各手順をコントローラ121に実行させ、所定の結果を得ることが出来るように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単に、プログラムともいう。
 I/Oポート121dは、前述のMFC241a~241e、バルブ243a~243e,265、圧カセンサ245、APCバルブ242、244、真空ポンプ246、温度センサ263、ヒータ207、回転機構267、ボートエレベータ115、整合器272、高周波電源273等に接続されている。
 CPU121aは、記憶装置121cから制御プログラムを読み出して実行すると共に、入出力装置122からの操作コマンドの入力等に応じて記憶装置121cからプロセスレシピを読み出すように構成されている。CPU121aは、読み出したプロセスレシピの内容に沿うように、MFC24a~241eによる各種ガスの流量調整動作、バルブ243a~243e,265の開閉動作、APCバルブ242、244の開閉動作及び圧カセンサ245に基づくAPCバルブ242、244による圧力調整動作、真空ポンプ246の起動および停止、温度センサ263に基づくヒータ207の温度調整動作、回転機構267によるボート217の回転および回転速度調節動作、ボートエレベータ115によるボート217の昇降動作、整合器272によるインピーダンス調整動作、高周波電源273の電力供給等を制御するように構成されている。
 コントローラ121は、専用のコンピュータとして構成されている場合に限らず、汎用のコンピュータとして構成されていてもよい。例えば、前述のプログラムを格納した外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリやメモリカード等の半導体メモリ)123を用意し、この外部記憶装置123を用いて汎用のコンピュータにプログラムをインストールすること等により、本実施形態のコントローラ121を構成することができる。但し、コンピュータにプログラムを供給するための手段は、外部記憶装置123を介して供給する場合に限らない。例えば、インターネットや専用回線等の通信手段を用い、外部記憶装置123を介さずにプログラムを供給するようにしてもよい。記憶装置121cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成される。
 以下、これらを総称して、単に、記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置121c単体のみを含む場合、外部記憶装置123単体のみを含む場合、又はその両方を含む場合がある。
 (成膜処理)
 次に、前述の基板処理装置100を用いて、半導体装置(半導体デバイス)の製造工程(製造方法)の一工程として、ウエハ200上に膜を形成(成膜)する成膜シーケンスを、図1~図5を適宜用いて具体的に説明する。以下の説明において、基板処理装置100を構成する各部の動作はコントローラ121により制御される。
 〔ウエハチャージ及びボートロード〕
 複数のウエハ200がボート217に装填(ウエハチャージ)されると、図1に示されるように、複数のウエハ200を支持したボート217は、ボートエレベータ115によって持ち上げられて処理室201に搬入(ボートロード)される。この状態で、シールキャップ219は、○リング220bを介してマニホールド209の下端をシールした状態となる。
 なお、本明細書において「ウエハ」という言葉を用いた場合は、「ウエハそのもの」を意味する場合や、「ウエハとその表面に形成された所定の層や膜等との積層体(集合体)」を意味する場合、すなわち、表面に形成された所定の層や膜等を含めてウエハと称する場合がある。また、本明細書において「ウエハの表面」という言葉を用いた場合は、「ウエハそのものの表面(露出面)」を意味する場合や、「ウエハ上に形成された所定の層や膜等の表面、すなわち、積層体としてのウエハの最表面」を意味する場合がある。
 従って、本明細書において「ウエハに対して所定のガスを供給する」と記載した場合は、「ウエハそのものの表面(露出面)に対して所定のガスを直接供給する」ことを意味する場合や、「ウエハ上に形成されている層や膜等に対して、すなわち、積層体としてのウエハの最表面に対して所定のガスを供給する」ことを意味する場合がある。また、本明細書において「ウエハ上に所定の層(又は膜)を形成する」と記載した場合は、「ウエハそのものの表面(露出面)上に所定の層(又は膜)を直接形成する」ことを意味する場合や、「ウエハ上に形成されている層や膜等の上、すなわち、積層体としてのウエハの最表面の上に所定の層(又は膜)を形成する」ことを意味する場合がある。
 〔圧力調整、及び温度調整〕
 処理室201の圧力、すなわち、ウエハ200が存在する空間の圧力が所望の圧力(真空度)となるように真空ポンプ246は、処理室201の気体を排気する。この際、処理室201の圧力は圧カセンサ245で測定され、この測定された圧力情報に基づきAPCバルブ242、244がフィードバック制御される(圧力調整)。真空ポンプ246は、少なくともウエハ200に対する処理が終了するまでの間は常時作動させた状態を維持する。
 また、処理室201のウエハ200が所望の温度となるようにヒータ207によって、処理室201が加熱される。この際、処理室201内が所望の温度分布となるように、温度センサ263が検出した温度情報に基づきヒータ207への通電具合がフィードバック制御される(温度調整)。ヒータ207による処理室201の加熱は、少なくともウエハ200に対する処理が終了するまでの間は継続して行われる。但し、室温でウエハ200に対する処理を行う場合は、ヒータ207による処理室201の加熱は行わなくてもよい。
 続いて、回転機構267が、ボート217及びウエハ200を回転させる。回転機構267によるボート217及びウエハ200の回転は、少なくとも、ウエハ200に対する処理が終了するまでの間は継続して行われる。
 そして、図4に示すシーケンスが実行される。具体的には、成膜処理は、膜形成工程と、改質工程とを少なくとも有する。膜形成工程は、原料ガスの供給工程を少なくとも含む。また、膜形成工程は、原料ガスの供給工程と反応ガスの供給工程を含むようにしてもよい。更に、膜形成工程は、原料ガスの供給工程、原料ガスパージ工程(処理室201を排気したり、処理室201にNガスを供給したりして、処理室201の未反応の原料ガスや副生成物等を除去する工程)、反応ガスの供給工程、及び反応ガスパージ工程を含む場合のようにパージ工程を適宜含むようにしてもよい。改質工程では、膜形成工程で形成された膜を改質する。この場合、膜形成工程と改質工程を1サイクルとして、各工程が繰り返し行われても良く、複数回膜形成工程を実行した後、改質工程が行われてもよい。また、膜形成工程と改質工程の間に上述のパージ工程を含むようにしてもよい。
 〔原料ガスの供給工程(膜形成工程)〕
 先ず、処理室201に原料ガスを供給する工程について説明する。ここでは、一例として原料ガスを貯留部280に溜めてから供給する方式について説明する。図4に示す原料ガスの供給工程では、Nガスを処理室201に供給する工程、原料ガスを処理室201に供給しつつ、Nガスを処理室201に供給する工程、Nガスを処理室201に供給する工程、を順に行う。具体的には、最初のNガスを処理室201に供給する工程では、ウエハ200を収容した処理室201の排気を実質的に止めた状態で、上下方向に延びたノズル249aから第1の不活性ガス流量でNガスを処理室201に供給する。さらに、原料ガスを処理室201に供給しつつ、Nガスを処理室201に供給する工程では、処理室201の排気を実質的に止めた状態で、ノズル249aから貯留部280に溜めた原料ガスを処理室201に供給しつつ、ノズル249aから第1の不活性ガス流量より多い第2の不活性ガス流量でNガスを処理室201に供給する。次のNガスを処理室201に供給する工程では、処理室201を下方から排気している状態で、ノズル249aから第1の不活性ガス流量でNガスを処理室201に供給する。ここで、この処理室201に原料ガスを供給する工程の排気の詳細については、第1排気ライン230が使用される。
 ウエハ200を収容した処理室201の排気を実質的に止めた状態で、上下方向に延びたノズル249aから第1の不活性ガス流量でNガスが処理室201に供給される。この工程は、図5に示すシーケンスの制御Aで例えば1秒(1s)間行われる。
 この工程では、図1に示すバルブ243aが開かれ、バルブ243bが閉じられ、バルブ243cが閉じられ、バルブ243dが開かれ、バルブ234eが開かれ、バルブ265が閉じられる。さらに、APCバルブ242、244が閉じられる。このように、バルブ243aが開らかれ、バルブ265が閉じられることで、貯留部280に原料ガスが溜められる。さらに、バルブ243eが開らかれることで、第1の不活性ガス流量(例えば、0.5~3.0〔slm〕の範囲内の所定の値)で、Nガスがノズル249aから処理室201へ供給される。また、バルブ243dが開らかれることで、例えば、流量0.5~5.0〔slm〕の範囲内の所定の値で、逆流防止用ガスとしてのNガスがノズル249bから処理室201に供給される。さらに、APCバルブ242、244が閉じられることで、処理室201の排気が実質的に止められた状態とする。このときヒータ207の温度は、ウエハ200の温度が、例えば300~600℃の範囲内の値となるように設定される。
 なお、本明細書における「300~600℃」のような数値範囲の表記は、下限値および上限値がその範囲に含まれることを意味する。よって、例えば、「300~600℃」とは「300℃以上600℃以下」を意味する。他の数値範囲についても同様である。
 ここで、処理室201の排気が実質的に止められた状態とは、開閉バルブとしてのAPCバルブ242、244が実質的に閉じられた状態とし、処理室201の排気が実質的に止められた状態とする。「実質的に」とは、以下の状態を含む。すなわち、APCバルブ242、244が全閉(フルクローズ)とされ、処理室201の排気が止められた状態を含む。また、「実質的に」とは、APCバルブ242、244が僅かに開き、処理室201を僅かに排気している状態を含む。
 ここで、APCバルブ242、244が僅かに開かれ処理室201が僅かに排気されている状態には、Nガスの単位時間当たりの供給量(供給レート)FB〔sccm〕に対し、処理室201の単位時間当たりの排気量(排気レート)V〔sccm〕が遥かに小さくされた状態、つまり、FB>>Vとなるようにすることが好ましい。具体的には、APCバルブ242、244が僅かに開かれ処理室201が僅かに排気されている状態には、Nガスの単位時間当たりの供給量FBが、処理室201の単位時間当たりの排気量Vの±10%以内である状態を含む。
 なお、本工程においては、APCバルブ242、244が全閉とされ、処理室201の排気が停止された状態でガスの供給を行うものとする。
 処理室201の排気が実質的に止められた状態で、ノズル249aから貯留部280に溜めた原料ガスを処理室201に供給しつつ、ノズル249aから第1の不活性ガス流量より多い第2の不活性ガス流量でNガスを処理室201に供給する。この工程は、図5に示すシーケンスの制御Bで例えば3秒間行われる。
 この工程では、バルブ243aが閉じられ、バルブ243bが閉じられ、バルブ243cが閉じられ、バルブ243dが開かれ、バルブ243eが開かれ、バルブ265が開かれる。さらに、APCバルブ242、244が閉じられる。このように、バルブ243aが閉じられ、バルブ265が開かれることで、貯留部280に溜められた原料ガス(例えば、100-250ccの範囲内の所定の量)が、ノズル249aから処理室201に供給される(所謂フラッシュ供給、又はフラッシュフロー)。このとき、原料ガスは、瞬間的に多い量が処理室201に供給され、徐々に少ない量が処理室201に供給されることとなる。また、バルブ243eが開かれ、MFC241eを制御することで、第1の不活性ガス流量より多い第2の不活性ガス流量(例えば、1.5-4.5〔slm〕の範囲内の所定の値)で、Nガスがノズル249aから処理室201に供給される。これにより、貯留部280に溜められた原料ガスが、Nガスによって押し出してノズル249aから処理室201に供給される。また、バルブ243dが開かれることで、例えば、流量1.0-5.0〔slm〕の範囲内の所定の値で、逆流防止用ガスとしてのNガスがノズル249bから処理室201に供給される。
 この原料ガスを供給する工程では、また、APCバルブ244が開け始められ、第1排気ライン230から排気を始める。例えば、図5では4〔s〕付近からAPCバルブ244が開け始められる。
 〔原料ガスパージ工程(膜形成工程)〕
 図4に示す原料ガスのパージ工程では、処理室201が排気されている状態で、ノズル249aから第1の不活性ガス流量でNガスが、処理室201に供給される。この工程は、図5に示すシーケンスの制御Cで3秒間行われる。
 このパージ工程では、バルブ243aが開かれ、バルブ243bが閉じられ、バルブ243cが閉じられ、バルブ243dが開かれ、バルブ243eが開かれ、バルブ265が閉じられる。さらに、APCバルブ244が開かれて処理室201の圧力が例えば700~1200〔Pa〕の範囲内の所定の値となるよう調圧される。このように、バルブ243aが開かれ、バルブ265が開かれることで、貯留部280に原料ガスが再び溜め始められる。また、バルブ243eが開かれ、MFC241eを制御することで、第1の不活性ガス流量(例えば、1.3~1.7〔slm〕の範囲内の所定の値)で、Nガスがノズル249aから処理室201に供給される。また、バルブ243dが開かれることで、例えば、流量1.3~1.7〔slm〕の範囲内の所定の値で、逆流防止用ガスとしてのNガスがノズル249bから処理室201に供給される。なお、上述では、バルブ243aが閉じられた状態で原料ガスを処理室201に供給する工程を行った後に処理室201に供給された原料ガスの反応を待つことにより本工程が行われたが、バルブ243aが開かれて貯留部280を通過した原料ガスを流すことにより本工程が行われてもよい。その場合、バルブ243aが閉じられた状態で原料ガスを処理室に供給する工程で流す原料ガスの流量を第1の原料ガス流量とし、バルブ243aが開かれて貯留部280を通過した原料ガスを流して行う本工程の原料ガスの流量を第2の原料ガス流量(例えば、0.5~2.0〔slm〕の範囲内の所定の値)と称してもよい。
 このように、処理室201に原料ガスを供給することにより、ウエハ200(表面の下地膜)上に、第1の層として、原料含有層の形成が開始される。なお、原料含有層は層であってもよいし、原料ガスの吸着層であってもよいし、その両方を含んでいてもよい。
 また、図4に示す原料ガスのパージ工程では、処理室201に残留する原料ガスが除去され、処理室201がパージされる。換言すれば、この工程は、図5に示すシーケンスの制御Dで行われる。
 この工程では、バルブ243aが閉じられ、バルブ243bが閉じられ、バルブ243cが開かれ、バルブ243dが開かれ、バルブ243eが開かれ、バルブ265が開かれる。さらに、APCバルブ244が開かれる。これにより、バルブ243c,243e,267が開かれることで、Nガスが、ノズル249aから処理室201に供給される。また、バルブ243dが開かれることで、Nガスが、ノズル249bから処理室201に供給される。
 このように、処理室201に残留する原料ガスを除去する原料ガスパージ工程では、APCバルブ244が開かれ、真空ポンプ246により処理室201のガスが排気され、処理室201に残留する未反応もしくは原料含有層の形成に寄与した後の原料ガスが、処理室201から排除される(残留ガス除去)。但し、十分な排気量が得られるのであれば、APCバルブ244は全開としなくともよい。このとき、バルブ243c,243dは開き、Nガスの処理室201への供給が維持される。Nガスはパージガスとして作用し、これにより、処理室201に残留する未反応もしくは原料含有層の形成に寄与した後の原料ガスを処理室201から排除する効果が高められる。
 このとき、処理室201に残留するガスが完全に排除されなくてもよく、処理室201が完全にパージされなくてもよい。処理室201に残留するガスが微量であれば、その後に行われる工程において悪影響が生じることはない。このとき処理室201へ供給するNガスの流量も大流量とする必要はなく、例えば、処理室201の容積と同程度の量を供給することで、後の工程において悪影響が生じない程度のパージが行われる。このように、処理室201を完全にパージしないことで、パージ時間が短縮され、スループットが向上する。また、Nガスの消費も必要最小限に抑えることが可能となる。
 〔反応ガスの供給工程(膜形成工程)〕
 図4に示す反応ガスの供給工程では、処理室201にノズル249bから反応ガスが供給される。この工程は、図5に示すシーケンスの制御Eで行われる。
 この工程では、バルブ243aが開かれ、バルブ243bが開かれ、バルブ243cが閉じられ、バルブ243dが閉じられ、バルブ243eが開かれ、バルブ265が閉じられる。さらに、APCバルブ244が開かれる。また、棒状電極269,270間に電圧が印加される。すなわち、プラズマ励起したガスが処理室201に供給される。
 このように、バルブ243aが開かれ、バルブ265が閉じられることで、貯留部280に原料ガスが溜められる。また、バルブ243eが開かれることで、逆流防止用ガスとしてのNガスがノズル249aから処理室201に供給される。さらに、バルブ243bが開かれることで、例えば、流量0.5~10〔slm〕の範囲内の所定の値で、反応ガスがノズル249bから処理室201に供給される。また、APCバルブ244が開かれることで、真空ポンプ246により処理室201のガスが排気される。このときヒータ207の温度は、原料ガスの供給時と同様の値となるように設定する。
 これにより、反応ガスが、ウエハ200の表面に形成された原料含有層と、表面反応(化学吸着)して、ウエハ200上に所望の膜が成膜される。
 〔反応ガスパージ工程(膜形成工程)〕
 図4に示す反応ガスパージ工程では、処理室201に残留する反応ガスが除去され、処理室201がパージされる。この工程は、図5に示すシーケンスの制御Fで行われる。反応ガスパージ工程は、第1パージ工程、又は第2パージ工程の一例である。
 この工程では、バルブ243aが開かれ、バルブ243bが閉じられ、バルブ243cが閉じられ、バルブ243dが開かれ、バルブ243eが開かれ、バルブ265が閉じられる。さらに、APCバルブ244が開かれる。また、棒状電極269,270間に印加した電圧が停止される。
 このように、バルブ243aが開かれ、バルブ265が閉じられることで、貯留部280に原料ガスが溜められる。また、バルブ243eが開かれることで、Nガスがノズル249aから処理室201に供給される。さらに、バルブ243dが開かれることで、Nガスがノズル249bから処理室201に供給される。
 前述した各工程を1サイクルとして、このサイクルを1回以上(所定回数)行うことにより、ウエハ200上に、所定組成及び所定膜厚の膜が形成される。なお、1サイクルあたりに形成する層の厚さを所望の膜厚よりも小さくして、前述のサイクルを所望の膜厚になるまで複数回繰り返すのが好ましい。
 なお、バルブ243aが開かれ、バルブ265が閉じられることで、貯留部280に原料ガスを溜める処理は、所定の量が溜まるまで継続される。例えば、この処理は、処理室201にノズル249bから反応ガスを供給する工程、処理室201に残留する反応ガスを除去する工程まで、継続されてもよい。
 そして、次に改質工程へ移行する直前の処理室201に残留する反応ガスを除去する反応ガスパージ工程(図5に示す制御F)では、排気ライン(排気系)の切替が行われる。具体的には、原料ガス及び反応ガスを供給する際(膜形成工程)に使用される排気系のガス配管(第1排気ライン230)から、形成された膜が改質される工程で使用される排気系のガス配管(第2排気ライン231)への切替が行われる。前述したように、この第2排気ライン231の流路断面積は、第1排気ライン230の流路断面積より大きく構成される。例えば、第2排気ライン231の流路断面積は、第1排気ライン230の流路断面積の2倍以上に構成される。
 図6に示す第1排気ライン230のAPCバルブ244が全閉され、第2排気ライン231のAPCバルブ242が開かれる。例えば、この改質工程へ移行する直前のパージ工程では、バルブ243aが開かれ、バルブ243bが閉じられ、バルブ243cが閉じられ、バルブ243dが開かれ、バルブ243eが開かれ、バルブ265が閉じられる。さらに、第2排気ラインのAPCバルブ242が開かれ、反応ガスを除去する工程が行われる。要するに、改質工程の前に、第2排気ラインによる排気が可能な状態にしておけばよい。
 〔改質工程〕
 次に、図4に示す改質工程について説明する。この改質工程では、ウエハ200上に形成された所定組成及び所定膜厚の膜が改質される。
 この工程では、バルブ243aが開かれ、バルブ243bが閉じられ、バルブ243cが閉じられ、バルブ243dが開かれ、バルブ243eが開かれ、バルブ265が閉じられる。さらに、第2排気ライン231のAPCバルブ242が全開にされている。また、図2に示す棒状電極269,270間に電圧が印加される。すなわち、プラズマ励起した不活性ガスが処理室201に供給される。
 第2排気ライン231のAPCバルブ242が開かれることで、第2排気ライン231を介して真空ポンプ246により処理室201のプラズマ励起したガス(活性種)が排気される。
 このように、ウエハ200上に所定の膜が形成される膜形成工程では、第1排気ライン230のAPCバルブ244を介して排気が行われ、膜が改質される改質工程では、第2排気ライン231のAPCバルブ242を介して排気が行われる。
 以上本実施形態においては、第1排気ライン230を介して排気しつつ、ウエハ200に膜が形成され、第1排気ライン230より流路断面積の大きい第2排気ライン231を介して排気されつつ、ウエハ200が改質される。つまり、ウエハ200に膜を形成する膜形成工程におけるガスの排気量よりも、膜が改質される改質工程におけるガスの排気量が大きく構成される。これにより改質剤の供給量を大きくしても低圧が維持され、さらに、処理圧力が下げられる。このような低圧により、例えば、活性化された改質剤の平均自由工程を向上させることができるため、活性化された改質剤の輸送効率が大きくなる。
 また、低圧化により、ウエハ200の表面に活性化されたままの改質剤を供給することができ、特に、ウエハ200の中心部に活性化されたままの改質剤を行き渡らせることができる。従い、本実施形態においては、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、ガスの排気量が増大されることで、ガス流量を低下させることなく低圧化が実現でき、改質剤の供給量とプラズマ励起ガス(活性種)の寿命の両立が期待できる。
 また、第1排気ライン230から第2排気ライン231へ切り替えられることにより、排気コンダクタンスを下げることができるので、改質剤または活性種を増やしつつ低圧が維持される。このような低圧により、改質剤または活性種の輸送効率が大きくなる。従い、上述のように、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 ここで、低圧の上限は、ウエハ200の中心に活性種を供給することができずに、面内均一性が低下するかどうかで決定される。さらに、低圧の下限は、平均自由工程が大きくなりすぎる(ウエハ200に衝突しない)ので活性種が生成されない、または、活性種ができたとしてもウエハ周縁部での衝突が低減してしまい、生成される活性種の量が少なくなり、面内均一性が低下するかどうかで決定される。
 本実施形態においては、第2排気ライン231へ切り替えて、ガスの排気量を大きくすることにより、上記低圧の上限と下限の範囲内に収まる条件における改質剤の供給が実現される。
 なお、このときヒータ207の温度は、原料ガスの供給時と同様の値となるように設定してもよい。
 〔パージ及び大気圧復帰〕
 所定組成及び所定膜厚の膜を形成する成膜処理がなされたら、バルブ243c,243d,243eが開かれ、ガス供給管232c,232d,232eのそれぞれから不活性ガスとしてのNガスが処理室201へ供給され、第2排気ライン231から排気される。Nガスはパージガスとして作用し、これにより、処理室201が不活性ガスでパージされ、処理室201に残留するガスや反応副生成物が処理室201から除去される(パージ)。その後、処理室201の雰囲気が不活性ガスに置換され(不活性ガス置換)、処理室201の圧力が常圧に復帰される(大気圧復帰)。
 〔ボートアンロード及びウエハディスチャージ〕
 その後、ボートエレベータ115によりシールキャップ219が下降されて、マニホールド209の下端が開口されるとともに、処理済のウエハ200が、ボート217に支持された状態でマニホールド209の下端から反応管203の外部に搬出(ボートアンロード)される。その後、処理済のウエハ200はボート217より取り出される(ウエハディスチャージ)。
 なお、上述の圧力を調整する工程において、大気圧付近の圧力から第1圧力になるまで減圧する工程では、第1排気ライン230を用いて処理室201を排気し、第1圧力から第2圧力になるまで減圧する工程では、第2排気ライン231を用い、第2圧力から処理圧力にする工程では、第1排気ライン230を用いて処理室201を排気するようにしてもよい。これにより、大気圧から処理圧力までに減圧する時間が短縮可能となる。また、上述のいずれかの工程で真空排気を行っているが、該いずれかの工程でパージガスが供給されるようにしてもよい。
 〔変形例1〕
 次に、変形例1について説明する。上述のように改質工程において、膜形成工程における排気量を大きくすることができればよいので、変形例1では、図6に示されるように、第2排気ライン231に、APCバルブに替えてゲートバルブ238が設けられている。
 このような構成においても、第1排気ライン230から第2排気ライン231へ切り替えられることにより、排気コンダクタンスを下げることができるので、改質剤または活性種を増やしつつ低圧が維持される。このような低圧により、改質剤または活性種の輸送効率が大きくなる。従い、上述のように、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 〔変形例2〕
 次に、変形例2について説明する。変形例2は、変形例1の改良版である。図6に示されるように、第2排気ライン231には、APCバルブに替えてゲートバルブ238が設けられ、さらに、第2排気ライン231において、ゲートバルブ238に対して下流で、かつ、第1排気ライン230との合流部に対して上流には、排気装置としての真空ポンプ236が設けられている。この構成において、ゲートバルブ238を介して排気が行われる場合には、真空ポンプ236、246が稼働するように構成されている。
 この構成において、変形例1の構成に加え、真空ポンプ236が稼働することにより、変形例1よりも低圧化が期待できる。これにより、排気コンダクタンスを下げることができるので、改質剤または活性種を増やしつつ低圧が維持される。このような低圧により、改質剤または活性種の輸送効率が大きくなる。上述のように、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。但し、この場合、真空ポンプ236の排気能力を高くして、低圧にしすぎる懸念がある。そうすると、平均自由工程が大きくなりすぎて(ウエハ200に衝突しないで)活性種が生成されない現象が生じてしまう。
 <他の実施形態>
 次に、他の実施形態について説明する。他の実施形態では、図7に示すように、第1排気ライン230と第2排気ライン231との夫々に排気装置としての真空ポンプが設けられている。
 具体的には、第2排気ライン231には、ゲートバルブ238が設けられている。また、第1排気ライン231は、第2排気ライン231においてゲートバルブ238の上流から分岐しており、第2排気ライン231には合流していない。
 第1排気ライン230には、APCバルブ244と、APCバルブ244の下流に配置される真空ポンプ248とが設けられている。この真空ポンプ248の排気性能については、真空ポンプ246の排気性能と比して弱くされている。換言すれば、真空ポンプ246の排気性能については、真空ポンプ248の排気性能と比して強くされている。
 この構成において、膜形成工程では、第1排気ライン230のAPCバルブ244が開かれ、第2排気ライン231のゲートバルブ238が閉じられる。さらに、真空ポンプ248を稼動させる。これにより、膜形成工程では、第1排気ライン230のAPCバルブ244を介して排気が行われる。
 また、改質工程では、第1排気ライン230のAPCバルブ244を全開し、第2排気ライン231のゲートバルブ238が開かれる。さらに、真空ポンプ246、248を稼動させる。これにより、改質工程では、第1排気ライン230のAPCバルブ244を介して排気が行われ、さらに、第2排気ライン231のゲートバルブ238を介して排気が行われる。または、改質工程では、第1排気ライン230のAPCバルブ244が閉じられ、第2排気ライン231のゲートバルブ238が開かれる。さらに、真空ポンプ246を稼動させる。これにより、改質工程では、第2排気ライン231のゲートバルブ238を介して排気が行われる。
 このような構成においても、第1排気ラインに設けられる真空ポンプ248と第2排気ラインに設けられる真空ポンプ246を比較して、真空ポンプ246の排気能力が高いため、第1排気ライン230から第2排気ライン231へ切り替えられることにより、排気コンダクタンスを下げることができるので、改質剤または活性種を増やしつつ低圧が維持される。このような低圧により、改質剤または活性種の輸送効率が大きくなる。従い、上述のように、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 上述したように、本開示によれば、以下に示す1つ又は複数の効果が得られる。
 本開示の一態様によれば、改質工程におけるガスの排気量が膜形成工程におけるガスの排気量よりも大きくされている。このように改質工程における排気量を増大させることにより、改質剤の供給量を大きくしても低圧を維持することができ、更に、処理圧力を下げることができる。このような低圧により、活性化された改質剤の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、本開示の一態様によれば、改質工程における活性種は、熱で活性化されている。これにより、活性化された不活性ガス(改質剤)を用いることで膜密度や膜中の不純物を改善できるため、低温で膜質の良い膜を形成することができる。更に、改質工程におけるガスの排気量を増大させることにより、熱で活性化された活性種の量を低下させることなく低圧化が実現でき、このような低圧により、熱で活性化された活性種の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、本開示の一態様によれば、改質工程における活性種はプラズマ励起されている。これにより、活性化された不活性ガス(改質剤)を用いることで膜密度や膜中の不純物を改善できるため、低温で膜質の良い膜を形成することができる。更に、改質工程におけるガスの排気量を増大させることにより、プラズマ励起された活性種の量を低下させることなく低圧化が実現でき、このような低圧により、プラズマ励起された活性種の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、本開示の一態様によれば、膜形成工程と改質工程を1サイクルとして、所定回数以上実行することにより所定の膜厚を有する膜を形成できる。これにより、所定の膜厚を有する膜であっても、改質工程における改質剤の量を低下させることなく低圧化が実現でき、改質剤の供給量と活性種の寿命の両立が期待できる。更に、活性種を用いることで膜密度や膜中の不純物を改善できるため、低温で膜質の良い膜を形成することができる。
 また、膜形成工程を複数回実行した後に、改質工程を実行することにより所定の膜厚を有する膜を形成できる。これにより、所定の膜厚を有する膜であっても、改質工程における改質剤の量を低下させることなく低圧化が実現でき、改質剤の供給量と活性種の寿命の両立が期待できる。更に、活性種を用いることで膜密度や膜中の不純物を改善できるため、低温で膜質の良い膜を形成することができる。
 また、ウエハ200を処理する処理室201からのガスを排気するように構成されている第1排気ライン230と、第1排気ライン230が途中から分岐し、第1排気ライン230の流路断面積よりも流路断面積が大きく構成される第2排気ライン231とを有し、第1排気ライン230を介して排気しつつ、ウエハ200に膜を形成することが可能に構成され、第1排気ライン230から第2排気ライン231に切替、前記第1排気ラインより排気量を大きくして排気しつつ、膜を改質することが可能に構成される。これにより、活性種を含む改質剤の供給量を大きくしても低圧を維持することができ、更に、処理圧力を下げることができる。このような低圧により、活性化された改質剤の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、本開示の一態様によれば、第2排気ライン231の流路断面積は、第1排気ライン231の流路断面積が2倍以上となるように構成されている。これにより、ウエハ200に膜を形成する工程におけるガスの排気量よりも、膜を改質する工程におけるガスの排気量を大きくすることができるため、改質剤の供給量を大きくしても低圧を維持することができ、更に、処理圧力を下げることができる。このような低圧により、活性化された改質剤の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、本開示の一態様によれば、ウエハ200に膜を形成した後、かつ、ウエハを改質する前に、第1排気ライン230から第2排気ライン231に切り替えることが可能に構成されている。このように、第1排気ライン230から第2排気ライン231へ切り替えることにより、排気コンダクタンスを下げることができるので、改質剤または活性種を増やしつつ低圧を維持することができる。このように低圧に維持することにより、改質剤または活性種の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、本開示の一態様によれば、ウエハ200に膜を形成した後、膜を改質する前において、処理室201をパージしている間に、第1排気ライン230から第2排気ライン231に切り替えることが可能なように構成されている。これにより、第1排気ライン230から第2排気ライン231へ切り替えることで、コンダクタンスを下げることができるため、改質剤または活性種を増やしつつ低圧を維持することができる。このように低圧に維持することにより、活性化された改質剤または活性種の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、本開示の一態様によれば、第2排気ライン231には、処理室201の雰囲気を排気する排気装置としての真空ポンプ236(図7参照)が設けられている。そして、コントローラ121は、膜を改質する時、真空ポンプ236を稼働させることが可能なように構成されている。このように真空ポンプ236により第2排気ライン231を介して処理室201を排気することにより、改質工程におけるガスの排気量が大きくなり、改質剤または活性種の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、本開示の一態様によれば、コントローラ121は、膜を改質する時、第1排気ライン230と第2排気ライン231の両方で排気させることが可能なように構成されている。これにより、第1排気ライン230と第2排気ライン231の両方を介して処理室201を排気することにより、改質工程におけるガスの排気量が大きくなり、改質剤または活性種の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
 また、本開示の一態様によれば、反応ガスを活性化させる活性化部を有し、活性化部により活性化された反応ガスを供給することにより、ウエハ200に膜を形成させることが可能に構成されている。具体的には、不活性ガスを活性化させる活性化部としての棒状電極269,270及び電極保護管275を有し、活性化部としての棒状電極269,270及び電極保護管275により活性化された不活性ガスを供給することにより、ウエハ200に形成された膜を改質させることが可能に構成されている。このように、活性化された不活性ガス(改質剤)を用いることで膜密度や膜中の不純物を改善できるため、低温で膜質の良い膜を形成することができる。
 また、このような構成において、ウエハ200に膜を形成する工程におけるガスの排気量よりも、膜を改質する工程におけるガスの排気量を大きくすることができるので、活性化された改質剤の供給量を大きくしても低圧を維持することができ、更に、処理圧力を下げることができる。このような低圧により、活性化された改質剤の輸送効率を大きくすることができる。従い、活性種(活性化された改質剤)がウエハ200全体に行き渡るため、膜厚の面内均一性が向上させることができる。
更に、本開示の一態様によれば、改質工程においては、原料ガスや反応ガスを供給しないことから、副生成物の生成が軽微である。このことから、真空ポンプ246への副生成物の付着を抑制することが可能となり、メンテナンスコストの低減が可能となる。また、通常のプロセスでは副生成物付着の観点から適用が難しい種類のポンプとしての排気装置であったとしても、適用が可能となる。
 なお、本開示を特定の実施形態について詳細に説明したが、本開示は係る実施形態に限定されるものではなく、本開示の範囲内にて他の種々の実施形態をとることが可能であることは当業者にとって明らかである。また、上述の本開示の態様や変形例は、適宜組み合わせて用いることができる。
 また、上記実施形態では、原料ガスの供給については、フラッシュフロー供給を用いて説明したが、フラッシュフロー供給に限定されることなく、他の供給方法であってもよいのは言うまでもない。
 また、上記実施形態では、特に説明しなかったが、原料ガスとしては、シリコン系原料、チタン系原料(例えば四塩化チタン)、タンタル系原料(例えば五塩化タンタル)、ハフニウム系原料(例えばテトラキスエチルメチルアミノハフニウム)、ジルコニウム系原料(例えばテトラキスエチルメチルアミノジルコニウム)、アルミニウム系原料(トリメチルアルミニウム)等を用いてもよい。
 また、上記実施形態では、特に説明しなかったが、不活性ガスとしてNガスを用いたが、Arガス、Heガス、Neガス、Xeガス等の他のガスを用いてもよい。
 また、上記実施形態では、特に説明しなかったが、本開示については、半導体製造装置だけでなくLCD装置のようなガラス基板を処理する装置に用いてもよい。
 また、上記実施形態では、特に説明しなかったが、本開示の成膜処理については、例えば、CVD、PVD、酸化膜、窒化膜、またはその両方を形成する処理、金属を含む膜を形成する処理等に用いてもよく、さらに、アニール処理、酸化処理、窒化処理、拡散処理等の処理に用いてもよい。
 また、上記実施形態では、特に説明しなかったが、明細書中に特段の断りが無い限り、各要素は一つに限定されず、複数存在してもよい。
(符号の説明)
201   処理室
230   第1排気ライン(バイパス排気ライン)
231   第2排気ライン(メイン排気ライン)

Claims (20)

  1.  処理室で基板に膜を形成する膜形成工程と、前記処理室で前記膜を改質する改質工程と、を有し、
     前記改質工程における前記処理室からのガスの排気量を、前記膜形成工程における前記処理室からのガスの排気量よりも大きくする基板処理方法。
  2.  前記膜形成工程は、更に、基板に原料ガスを供給する原料ガスの供給工程と、基板に反応ガスを供給する反応ガスの供給工程とを有する請求項1記載の基板処理方法。
  3.  前記原料ガスの供給工程と前記反応ガスの供給工程とはこの順番で繰り返され、
     前記原料ガスの供給工程から前記反応ガスの供給工程へ移行する間、または、前記反応ガスの供給工程から前記原料ガスの供給工程へ移行する間には、前記処理室内をパージするパージ工程を有し、
     前記改質工程における前記処理室からのガスの排気量を、前記パージ工程における前記処理室からのガスの排気量より大きくする請求項2記載の基板処理方法。
  4.  更に、前記反応ガスの供給工程と前記改質工程の間に前記処理室内をパージする第1パージ工程を有し、
     前記第1パージ工程では、前記反応ガスの供給工程における前記処理室からのガスの排気量から前記改質工程の前記処理室からのガスの排気量まで、前記排気量を大きくするように構成されている請求項2記載の基板処理方法。
  5.  前記改質工程における活性種は熱で活性化されている請求項1記載の基板処理方法。
  6.  前記改質工程における活性種はプラズマ励起されている請求項1記載の基板処理方法。
  7.  前記膜形成工程と前記改質工程とを1サイクルとして、所定回数以上実行する請求項1記載の基板処理方法。
  8.  前記膜形成工程を複数回実行した後に、前記改質工程を実行する請求項1記載の基板処理方法。
  9.  更に、前記膜形成工程と前記改質工程との間に前記処理室内をパージする第2パージ工程を有し、
     前記第2パージ工程では、前記膜形成工程における前記処理室からのガスの排気量から前記改質工程における前記処理室からのガスの排気量まで、前記排気量を大きくするように構成されている請求項1記載の基板処理方法。
  10.  処理室で基板に膜を形成する膜形成工程と、前記膜を改質する改質工程と、を有し、
     前記改質工程における前記処理室からのガスの排気量を、前記膜形成工程における前記処理室からのガスの排気量よりも大きくする半導体装置の製造方法。
  11.  基板を処理する処理室からのガスを排気するように構成されている第1排気ラインと、
     前記第1排気ラインが途中から分岐し、前記第1排気ラインの流路断面積よりも流路断面積が大きく構成される第2排気ラインと、
     前記第1排気ラインを介して前記処理室からガスを排気しつつ、前記基板に膜を形成することが可能に構成され、前記第1排気ラインから前記第2排気ラインに切り替え、前記基板に膜を形成するときよりも排気量を大きくして前記処理室からガスを排気しつつ、前記膜を改質することが可能に構成される制御部と、
    を有する基板処理装置。
  12.  前記第2排気ラインの流路断面積は、前記第1排気ラインの流路断面積の2倍以上となるように構成されている請求項11記載の基板処理装置。
  13.  前記制御部は、前記基板に膜を形成した後、前記膜を改質する前に、前記第1排気ラインから前記第2排気ラインに切り替えることが可能に構成されている請求項11記載の基板処理装置。
  14.  前記制御部は、前記基板に膜を形成した後、前記膜を改質する前において、前記処理室をパージしている間に、前記第1排気ラインから前記第2排気ラインに切り替えることが可能なように構成されている請求項11記載の基板処理装置。
  15.  更に、前記第2排気ラインには、前記処理室の雰囲気を真空引きする排気装置が設けられ、
     前記制御部は、前記膜を改質する時、前記排気装置を稼働させることが可能に構成されている請求項11記載の基板処理装置。
  16.  前記制御部は、前記膜を改質する時、前記第1排気ラインと前記第2排気ラインとの両方で排気させることが可能に構成されている請求項11記載の基板処理装置。
  17.  更に、原料ガスを前記基板に供給する原料ガスラインと、反応ガスを前記基板に供給する反応ガスラインと、を有し、
     前記制御部は、前記原料ガスを単独、または、前記原料ガスと前記反応ガスの両方を前記基板に供給することにより、前記基板に膜を形成することが可能に構成されている請求項11記載の基板処理装置。
  18.  更に、前記反応ガスを活性化させる活性化部を有し、
     前記活性化部により活性化された前記反応ガスを供給することにより、前記基板に膜を形成させることが可能に構成されている請求項17記載の基板処理装置。
  19.  更に、不活性ガスを活性化させる活性化部を有し、
     前記活性化部により活性化された前記不活性ガスを供給することにより、前記基板に形成された膜を改質させることが可能に構成されている請求項11記載の基板処理装置。
  20.  基板を処理する処理室からのガスを排気するように構成されている第1排気ラインと、
     前記第1排気ラインが途中から分岐し、前記第1排気ラインの流路断面よりも流路断面が大きく構成される第2排気ラインと、を有する基板処理装置で実行されるプログラムであって、
     前記第1排気ラインを介して排気しつつ、前記基板に膜を形成する手順と、
     前記第1排気ラインから前記第2排気ラインに切り替え、前記膜を形成する手順のときよりも排気量を大きくして排気しつつ、前記膜を改質する手順と、
     を前記基板処理装置に実行させるプログラム。
PCT/JP2022/035986 2022-09-27 2022-09-27 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム WO2024069763A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035986 WO2024069763A1 (ja) 2022-09-27 2022-09-27 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/035986 WO2024069763A1 (ja) 2022-09-27 2022-09-27 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム

Publications (1)

Publication Number Publication Date
WO2024069763A1 true WO2024069763A1 (ja) 2024-04-04

Family

ID=90476620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035986 WO2024069763A1 (ja) 2022-09-27 2022-09-27 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム

Country Status (1)

Country Link
WO (1) WO2024069763A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192871A1 (ja) * 2013-05-31 2014-12-04 株式会社日立国際電気 基板処理装置、半導体製造装置の製造方法及び炉口蓋体
WO2022138599A1 (ja) * 2020-12-24 2022-06-30 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
WO2022157986A1 (ja) * 2021-01-25 2022-07-28 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、圧力制御装置及び基板処理プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192871A1 (ja) * 2013-05-31 2014-12-04 株式会社日立国際電気 基板処理装置、半導体製造装置の製造方法及び炉口蓋体
WO2022138599A1 (ja) * 2020-12-24 2022-06-30 株式会社Kokusai Electric 基板処理方法、半導体装置の製造方法、基板処理装置、およびプログラム
WO2022157986A1 (ja) * 2021-01-25 2022-07-28 株式会社Kokusai Electric 基板処理装置、半導体装置の製造方法、圧力制御装置及び基板処理プログラム

Similar Documents

Publication Publication Date Title
US9396930B2 (en) Substrate processing apparatus
KR101611202B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
JP6255335B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
KR101669752B1 (ko) 기판 처리 장치, 반도체 장치의 제조 방법 및 기록 매체
KR102149580B1 (ko) 반도체 장치의 제조 방법, 기판 처리 장치, 기록매체
JP6647260B2 (ja) 半導体装置の製造方法、基板処理装置及びプログラム
US20240055259A1 (en) Method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
US20230230845A1 (en) Substrate processing method, method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
WO2024069763A1 (ja) 基板処理方法、半導体装置の製造方法、基板処理装置、及びプログラム
JP7377892B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
US20210388487A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US20210202232A1 (en) Method of manufacturing semiconductor device, substrate processing apparatus and non-transitory computer-readable recording medium
WO2020054299A1 (ja) 半導体装置の製造方法、基板処理装置及び記録媒体
JP7408772B2 (ja) 基板処理装置、排気装置、半導体装置の製造方法、基板処理方法及びプログラム
EP4350030A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and program
WO2023042386A1 (ja) 半導体装置の製造方法、基板処理装置、プログラム及びコーティング方法
JPWO2019039127A1 (ja) 半導体装置の製造方法、基板処理装置およびプログラム
JP7179962B2 (ja) 半導体装置の製造方法、基板処理方法、基板処理装置およびプログラム
WO2023175740A1 (ja) 基板処理装置、基板処理方法、半導体装置の製造方法、プログラム及びガス供給ユニット
US20230268181A1 (en) Substrate processing method, method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
US20230223265A1 (en) Substrate processing method, method of manufacturing semiconductor device, non-transitory computer-readable recording medium and substrate processing apparatus
KR20240043104A (ko) 기판 처리 방법, 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램
JP2023087385A (ja) 基板処理装置、半導体装置の製造方法、およびプログラム