WO2024068253A1 - Procédé de découpe au laser de pièces en forme de plaque, et produit programme informatique associé - Google Patents
Procédé de découpe au laser de pièces en forme de plaque, et produit programme informatique associé Download PDFInfo
- Publication number
- WO2024068253A1 WO2024068253A1 PCT/EP2023/074922 EP2023074922W WO2024068253A1 WO 2024068253 A1 WO2024068253 A1 WO 2024068253A1 EP 2023074922 W EP2023074922 W EP 2023074922W WO 2024068253 A1 WO2024068253 A1 WO 2024068253A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- workpiece
- cutting
- nanojoint
- laser beam
- laser
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000003698 laser cutting Methods 0.000 title claims abstract description 21
- 238000004590 computer program Methods 0.000 title claims description 4
- 238000005520 cutting process Methods 0.000 claims abstract description 80
- 230000015572 biosynthetic process Effects 0.000 claims description 12
- 239000007789 gas Substances 0.000 description 15
- 239000000463 material Substances 0.000 description 3
- 239000002893 slag Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/083—Devices involving movement of the workpiece in at least one axial direction
- B23K26/0853—Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
- B23K26/0869—Devices involving movement of the laser head in at least one axial direction
- B23K26/0876—Devices involving movement of the laser head in at least one axial direction in at least two axial directions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/14—Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/18—Sheet panels
Definitions
- the invention relates to a method for laser cutting a workpiece, in particular a plate-shaped workpiece, along a trajectory by means of a laser beam, wherein at least one nanojoint with a lower height than the workpiece thickness is formed on a portion of the trajectory corresponding to the length of the nanojoint.
- Such a laser cutting process has become known, for example, from DE 10 2017 213 394 Al.
- the workpiece support in laser cutting machines for plate-shaped workpieces usually consists of several support strips which are inserted into a frame.
- the support strips have a jagged shape, so that there is only point contact with the workpiece.
- the effect of the cutting gas pressure can cause the workpiece part to tilt when the workpiece part is cut free.
- the workpiece part becomes wedged between the support strips and stands up, which can lead to a collision of the laser processing head or the cutting gas nozzle with the workpiece part.
- microjoints i.e. using connecting webs that remain in the cutting gap between the workpiece part and the surrounding remaining workpiece, so that tilting is prevented.
- the use of microjoints does, however, have some disadvantages: Microjoints usually extend over the entire thickness of the workpiece, so that for workpieces with a thickness of more than 5 mm, it is very difficult or even impossible to remove the workpiece parts from the remaining workpiece by hand. After the workpiece parts have been removed, residues of the microjoints remain on the cutting edge and must be removed by complex rework.
- microjoints are typically placed at the end of the cut. However, if more than one microjoint is required in a workpiece contour, this can only be created by additional piercing and approaching the contour. This reduces the productivity of the cutting process.
- a method for laser cutting a workpiece, in particular a plate-shaped workpiece, along a trajectory using a laser beam is known, wherein in order to produce a microjoint not located at the end of the trajectory with a lower height than the workpiece thickness during laser cutting of the workpiece, the laser power of the laser beam is reduced on a section of the trajectory corresponding to the length of the microjoint from a higher laser power sufficient to cut through the workpiece to a lower laser power insufficient to cut through the workpiece completely and is then increased again to the higher laser power.
- microjoints that have a lower height than the workpiece thickness are called nanojoints.
- the object of the present invention is to provide a simplified and reliable method for forming nanojoints.
- This object is achieved according to the invention by a method for laser cutting a particularly plate-shaped workpiece along a trajectory using a laser beam, at least one nanojoint having a height smaller than the workpiece thickness being formed on a section of the trajectory corresponding to the length of the nanojoint.
- a relative movement that is stopped does not mean a relative movement of the laser processing head and workpiece perpendicular to a workpiece support or in the beam direction of the laser beam, but rather a relative movement of the laser beam or laser processing head and workpiece along the path curve or parallel to a plane, which contains the path curve, i.e. in particular a relative movement parallel to a workpiece support.
- the stopped relative movement is also referred to as an axis stop.
- the parameter change provided for in alternative a) can take place after the axis stop or at the same time.
- parameter values can be set specifically after the axis stop to prevent the workpiece from being cut through completely.
- the axis stop can ensure that the nanojoint has a small thickness even at the beginning and that the nanojoint has a constant thickness, particularly over its length. This makes it easier to separate the workpiece part (good part).
- Gas pressure and/or focus position By changing the gas pressure and/or the focus position, it is possible to ensure that less energy is directed into the workpiece, preventing complete cutting, particularly without changing the laser power. Gas pressure and/or focus position can also be changed when an axis stop is performed.
- the laser beam Before the formation of the nanojoint begins, the laser beam can be switched off. This can be done at the same time as the axis is stopped. To create the nanojoint, the laser beam can be switched on again with the same power as was used to cut through the workpiece, especially if other cutting parameters are changed, or with a lower power.
- the cutting speed can be increased compared to the cutting speed for cutting through the workpiece, in particular by at least 10%. If the cutting speed, i.e. the relative movement of the laser beam and the workpiece parallel to the workpiece support, is increased, less energy is introduced into the workpiece, so that a complete cutting through of the workpiece can be prevented.
- the gas pressure in particular of the cutting gas
- the gas pressure can be reduced compared to the gas pressure for cutting through the workpiece, in particular reduced by at least 20%.
- the gas pressure can be reduced to values in the range 2-6 bar.
- the focus position can be adjusted away from the processing head towards the workpiece compared to the focus position for cutting through the workpiece. This can reduce the power density in the workpiece. In particular, the focus can be shifted from the surface of the workpiece into the workpiece.
- the cutting parameter or parameters are changed via a gradient from parameter values that are suitable for cutting through the workpiece to parameter values that are not suitable for cutting through the workpiece.
- the laser power, the nozzle-workpiece distance and the focus position can be adjusted via a ramp, in particular linearly.
- the formation of the nanojoint only begins when a predetermined event has occurred after the relative movement has stopped (axis stop). For example, it can be monitored whether one or more cutting parameters have reached parameter values that are not suitable for complete cutting, or a predetermined time can be waited. The specified event would then be the achievement of one or more specified parameter values or the expiration of the specified time.
- the method can be accelerated if at least one cutting parameter is changed abruptly from a first to a second parameter value.
- the laser beam can be switched off and/or after the formation of a nanojoint not at the end of the trajectory, the parameter values of the cutting parameters can be reset to the values that existed before the formation of the nanojoint. Parameter values can be changed. This can be done abruptly or via a gradient. It can also be done with or without an axis stop.
- the invention also relates to a computer program product which has code means adapted to carry out all steps of the method according to the invention when the program runs on a controller of a laser processing machine.
- Fig. 1 shows a laser cutting machine suitable for carrying out the laser cutting method according to the invention
- Figs. 2a, 2b show a workpiece part laser-cut from a workpiece, which is held in the remaining workpiece by nanojoints, in a plan view (Fig. 2a) and in a sectional view (Fig. 2b) corresponding to Ilb-IIb in Fig. 2a;
- the laser cutting machine 1 shown in perspective in FIG. 1 has, for example, a CO2 laser, diode laser or solid-state laser as a laser beam generator 2, a movable (laser) processing head 3 and a workpiece support 4.
- a laser beam 5 is generated in the laser beam generator 2 and is guided from the laser beam generator 2 to the processing head 3 by means of a light guide cable (not shown) or deflecting mirrors (not shown).
- a plate-shaped workpiece 6 is arranged on the workpiece support 4.
- the laser beam 5 is directed onto the workpiece 6 by means of focusing optics arranged in the processing head 3.
- the Laser cutting machine 1 is also supplied with cutting gases 7, for example oxygen and nitrogen.
- the use of the respective cutting gas 7 depends on the workpiece material and the quality requirements for the cutting edges.
- a suction device 8 which is connected to a suction channel 9 which is located under the workpiece support 4.
- the cutting gas 7 is fed to a cutting gas nozzle 10 of the processing head 3, from which it emerges together with
- the workpiece 6 is cut along a desired trajectory K by means of a laser beam 5 with cutting parameter values suitable for cutting through the workpiece 6, in which case the laser beam 5, alternatively or additionally also the workpiece 6, is moved.
- the workpiece 6 must first be pierced at a point S on or next to the path K to be cut, as shown in FIG. 2a.
- the nanojoint 14a, 14b does not extend over the entire workpiece thickness D, but only in the lower third of the workpiece thickness, thus having a lower height d than the workpiece thickness D.
- the nanojoint 14a is located at the end of the cut, i.e. is created shortly before the beginning of the self-contained trajectory K is reached again.
- the nanojoint 14b is not located at the end of the cut, but at any section of the trajectory K.
- the method according to the invention is described below using the example of varying the focus position.
- the nanojoints 14a, 14b are generated solely by targeted adjustment of the focus position during the cutting process, which is specified by a control 15 of the laser cutting machine 1 shown in Fig. 1 depending on the workpiece material.
- the control 15 also controls the movement of the processing head 3 compared to the workpiece 6.
- the cutting process no longer has the power density required for a complete cut, so that the workpiece material is not melted over the entire workpiece thickness D and a nanojoint 14a, 14b remains in the lower area of the cutting gap 11 or the cutting edge between the laser-cut workpiece part 6 and the remaining workpiece 13.
- other cutting parameters of the laser cutting can be changed to create the nanojoint 14a, 14b, for example the laser power, the distance of the cutting gas nozzle 10 from the workpiece surface, the cutting gas pressure and/or the cutting speed.
- an axis stop can take place, i.e. the cutting speed can be reduced to 0 m/s.
- Cutting parameters can be set to parameter values for producing the nanojoint 14a, 14b during the axis stop.
- the nanojoint 14b has been created, cutting continues with the standard parameters.
- an axis stop can again be carried out and the standard parameters can be set.
- the laser beam 5 is switched off. An axis stop can also be carried out.
- the focus position of the laser beam 5 on a section of the trajectory K corresponding to the length L of the nanojoint 14b is changed from the focus position suitable for cutting through the workpiece 6 to a focus position which is not suitable for completely cutting through the workpiece 6 and is then set back to the original focus position.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
L'invention concerne un procédé de découpe au laser d'une pièce (6), en particulier de type plaque, le long d'une trajectoire (K) au moyen d'un faisceau laser (5), au moins un nano-joint (14a, 14b) ayant une hauteur (d) inférieure à l'épaisseur de pièce (D) et étant formé sur une partie de la trajectoire (K) qui est égale à la longueur (L) du nano-joint (14a, 14b), caractérisé en ce que pour former le nano-joint (14a, 14b), a) un mouvement relatif de la pièce (6) et d'un faisceau laser (5) est arrêté et au moins un paramètre de coupe est modifié d'une première valeur de paramètre appropriée pour couper à travers la pièce (6) à une seconde valeur de paramètre qui n'est pas suffisante pour couper à travers la pièce (6), ou b) la pression de gaz et/ou la position de focalisation sont modifiées d'une première valeur de paramètre appropriée pour couper à travers la pièce (6) à une seconde valeur de paramètre qui n'est pas suffisante pour couper à travers la pièce (6).
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022125138.1 | 2022-09-29 | ||
DE102022125138.1A DE102022125138A1 (de) | 2022-09-29 | 2022-09-29 | Verfahren zum Laserschneiden plattenförmiger Werkstücke und zugehöriges Computerprogrammprodukt |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024068253A1 true WO2024068253A1 (fr) | 2024-04-04 |
Family
ID=88093800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/074922 WO2024068253A1 (fr) | 2022-09-29 | 2023-09-11 | Procédé de découpe au laser de pièces en forme de plaque, et produit programme informatique associé |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE102022125138A1 (fr) |
WO (1) | WO2024068253A1 (fr) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06190576A (ja) * | 1992-12-24 | 1994-07-12 | Toshiba Corp | レーザ加工方法及びレーザ加工装置 |
JP2001334379A (ja) * | 2000-05-23 | 2001-12-04 | Amada Co Ltd | ワーク切断方法及びその方法の実施に直接使用するワーク切断装置 |
DE102017213394A1 (de) | 2017-08-02 | 2019-02-07 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Verfahren zum Laserschneiden plattenförmiger Werkstücke und zugehöriges Computerprogrammprodukt |
JP7049539B1 (ja) * | 2021-10-25 | 2022-04-06 | 三菱電機株式会社 | レーザ加工装置およびレーザ加工方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4161178B2 (ja) | 2002-09-13 | 2008-10-08 | 澁谷工業株式会社 | 切断加工方法 |
-
2022
- 2022-09-29 DE DE102022125138.1A patent/DE102022125138A1/de active Pending
-
2023
- 2023-09-11 WO PCT/EP2023/074922 patent/WO2024068253A1/fr unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06190576A (ja) * | 1992-12-24 | 1994-07-12 | Toshiba Corp | レーザ加工方法及びレーザ加工装置 |
JP2001334379A (ja) * | 2000-05-23 | 2001-12-04 | Amada Co Ltd | ワーク切断方法及びその方法の実施に直接使用するワーク切断装置 |
DE102017213394A1 (de) | 2017-08-02 | 2019-02-07 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Verfahren zum Laserschneiden plattenförmiger Werkstücke und zugehöriges Computerprogrammprodukt |
JP7049539B1 (ja) * | 2021-10-25 | 2022-04-06 | 三菱電機株式会社 | レーザ加工装置およびレーザ加工方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102022125138A1 (de) | 2024-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3661692B1 (fr) | Procédé de découpe au laser de pièces plates | |
EP3914418B1 (fr) | Procédé d'usinage par faisceau d'une pièce à usiner en forme de plaque ou de tube | |
EP4200101A1 (fr) | Procédé de production d'au moins une partie de pièce à usiner et d'une pièce à usiner résiduelle à partir d'une pièce à usiner | |
EP3528995B1 (fr) | Méthode de découpe au laser | |
DE102012217766B4 (de) | Verfahren und Vorrichtung zum Dampfdruck-Abtragschneiden eines metallischen Werkstücks | |
DE102019203946A1 (de) | Verfahren zum Laserschneiden sowie zugehörige Laserbearbeitungsmaschine und Computerprogrammprodukt | |
EP3983168A1 (fr) | Procédé d'usinage par faisceau d'une pièce de fabrication tabulaire ou tubulaire | |
EP3186031B1 (fr) | Procédé de saignage dans des pièces métalliques au moyen d'un faisceau laser ainsi que machine d'usinage à laser et produit de programme informatique associés | |
EP1711303B1 (fr) | Procede pour modifier par rayon laser la topographie de toles revetues et tole revetue a modification topographique | |
DE102014206358A1 (de) | Verfahren und Laserschneidmaschine zum Laserschneiden kleiner Öffnungen | |
WO2023222409A1 (fr) | Technique de production de bords arrondis | |
WO2024068253A1 (fr) | Procédé de découpe au laser de pièces en forme de plaque, et produit programme informatique associé | |
WO2022063647A1 (fr) | Procédé de découpe au laser | |
EP3863794B1 (fr) | Procédé et machine de traitement pour la découpe de pièces ouvrées ainsi que produit de programme informatique associé | |
DE102016213540A1 (de) | Verfahren zum Erzeugen von schrägen Vorsprüngen oder Aussparungen an einer Schnittflanke eines plattenförmigen Werkstücks und zugehöriges Computerprogrammprodukt | |
DE102022125140A1 (de) | Verfahren zur Ausbildung eines Nanojoints, zugehöriges Computerprogrammprodukt und Werkstück mit Nanojoint | |
EP0515808A2 (fr) | Méthode d'usinage utilisant le rayonnement pour bandes doubles | |
EP4422819A1 (fr) | Procédé de fabrication de parties de pièces présentant des arêtes de coupe chanfreinées | |
WO2023036898A1 (fr) | Procédé de découpe au laser pour produire des nanojoints | |
WO2023072567A1 (fr) | Procédé d'usinage d'une pièce par faisceau laser à énergie par unité de longueur constante du faisceau laser | |
WO2013000495A1 (fr) | Système de coupe de feuille, en particulier pour des unités électroniques à membrane de piles à combustible |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23772429 Country of ref document: EP Kind code of ref document: A1 |