WO2024068253A1 - Procédé de découpe au laser de pièces en forme de plaque, et produit programme informatique associé - Google Patents

Procédé de découpe au laser de pièces en forme de plaque, et produit programme informatique associé Download PDF

Info

Publication number
WO2024068253A1
WO2024068253A1 PCT/EP2023/074922 EP2023074922W WO2024068253A1 WO 2024068253 A1 WO2024068253 A1 WO 2024068253A1 EP 2023074922 W EP2023074922 W EP 2023074922W WO 2024068253 A1 WO2024068253 A1 WO 2024068253A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
cutting
nanojoint
laser beam
laser
Prior art date
Application number
PCT/EP2023/074922
Other languages
German (de)
English (en)
Inventor
Yannic Burde
Patrick Mach
Daniel Mock
Original Assignee
TRUMPF Werkzeugmaschinen SE + Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMPF Werkzeugmaschinen SE + Co. KG filed Critical TRUMPF Werkzeugmaschinen SE + Co. KG
Publication of WO2024068253A1 publication Critical patent/WO2024068253A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels

Definitions

  • the invention relates to a method for laser cutting a workpiece, in particular a plate-shaped workpiece, along a trajectory by means of a laser beam, wherein at least one nanojoint with a lower height than the workpiece thickness is formed on a portion of the trajectory corresponding to the length of the nanojoint.
  • Such a laser cutting process has become known, for example, from DE 10 2017 213 394 Al.
  • the workpiece support in laser cutting machines for plate-shaped workpieces usually consists of several support strips which are inserted into a frame.
  • the support strips have a jagged shape, so that there is only point contact with the workpiece.
  • the effect of the cutting gas pressure can cause the workpiece part to tilt when the workpiece part is cut free.
  • the workpiece part becomes wedged between the support strips and stands up, which can lead to a collision of the laser processing head or the cutting gas nozzle with the workpiece part.
  • microjoints i.e. using connecting webs that remain in the cutting gap between the workpiece part and the surrounding remaining workpiece, so that tilting is prevented.
  • the use of microjoints does, however, have some disadvantages: Microjoints usually extend over the entire thickness of the workpiece, so that for workpieces with a thickness of more than 5 mm, it is very difficult or even impossible to remove the workpiece parts from the remaining workpiece by hand. After the workpiece parts have been removed, residues of the microjoints remain on the cutting edge and must be removed by complex rework.
  • microjoints are typically placed at the end of the cut. However, if more than one microjoint is required in a workpiece contour, this can only be created by additional piercing and approaching the contour. This reduces the productivity of the cutting process.
  • a method for laser cutting a workpiece, in particular a plate-shaped workpiece, along a trajectory using a laser beam is known, wherein in order to produce a microjoint not located at the end of the trajectory with a lower height than the workpiece thickness during laser cutting of the workpiece, the laser power of the laser beam is reduced on a section of the trajectory corresponding to the length of the microjoint from a higher laser power sufficient to cut through the workpiece to a lower laser power insufficient to cut through the workpiece completely and is then increased again to the higher laser power.
  • microjoints that have a lower height than the workpiece thickness are called nanojoints.
  • the object of the present invention is to provide a simplified and reliable method for forming nanojoints.
  • This object is achieved according to the invention by a method for laser cutting a particularly plate-shaped workpiece along a trajectory using a laser beam, at least one nanojoint having a height smaller than the workpiece thickness being formed on a section of the trajectory corresponding to the length of the nanojoint.
  • a relative movement that is stopped does not mean a relative movement of the laser processing head and workpiece perpendicular to a workpiece support or in the beam direction of the laser beam, but rather a relative movement of the laser beam or laser processing head and workpiece along the path curve or parallel to a plane, which contains the path curve, i.e. in particular a relative movement parallel to a workpiece support.
  • the stopped relative movement is also referred to as an axis stop.
  • the parameter change provided for in alternative a) can take place after the axis stop or at the same time.
  • parameter values can be set specifically after the axis stop to prevent the workpiece from being cut through completely.
  • the axis stop can ensure that the nanojoint has a small thickness even at the beginning and that the nanojoint has a constant thickness, particularly over its length. This makes it easier to separate the workpiece part (good part).
  • Gas pressure and/or focus position By changing the gas pressure and/or the focus position, it is possible to ensure that less energy is directed into the workpiece, preventing complete cutting, particularly without changing the laser power. Gas pressure and/or focus position can also be changed when an axis stop is performed.
  • the laser beam Before the formation of the nanojoint begins, the laser beam can be switched off. This can be done at the same time as the axis is stopped. To create the nanojoint, the laser beam can be switched on again with the same power as was used to cut through the workpiece, especially if other cutting parameters are changed, or with a lower power.
  • the cutting speed can be increased compared to the cutting speed for cutting through the workpiece, in particular by at least 10%. If the cutting speed, i.e. the relative movement of the laser beam and the workpiece parallel to the workpiece support, is increased, less energy is introduced into the workpiece, so that a complete cutting through of the workpiece can be prevented.
  • the gas pressure in particular of the cutting gas
  • the gas pressure can be reduced compared to the gas pressure for cutting through the workpiece, in particular reduced by at least 20%.
  • the gas pressure can be reduced to values in the range 2-6 bar.
  • the focus position can be adjusted away from the processing head towards the workpiece compared to the focus position for cutting through the workpiece. This can reduce the power density in the workpiece. In particular, the focus can be shifted from the surface of the workpiece into the workpiece.
  • the cutting parameter or parameters are changed via a gradient from parameter values that are suitable for cutting through the workpiece to parameter values that are not suitable for cutting through the workpiece.
  • the laser power, the nozzle-workpiece distance and the focus position can be adjusted via a ramp, in particular linearly.
  • the formation of the nanojoint only begins when a predetermined event has occurred after the relative movement has stopped (axis stop). For example, it can be monitored whether one or more cutting parameters have reached parameter values that are not suitable for complete cutting, or a predetermined time can be waited. The specified event would then be the achievement of one or more specified parameter values or the expiration of the specified time.
  • the method can be accelerated if at least one cutting parameter is changed abruptly from a first to a second parameter value.
  • the laser beam can be switched off and/or after the formation of a nanojoint not at the end of the trajectory, the parameter values of the cutting parameters can be reset to the values that existed before the formation of the nanojoint. Parameter values can be changed. This can be done abruptly or via a gradient. It can also be done with or without an axis stop.
  • the invention also relates to a computer program product which has code means adapted to carry out all steps of the method according to the invention when the program runs on a controller of a laser processing machine.
  • Fig. 1 shows a laser cutting machine suitable for carrying out the laser cutting method according to the invention
  • Figs. 2a, 2b show a workpiece part laser-cut from a workpiece, which is held in the remaining workpiece by nanojoints, in a plan view (Fig. 2a) and in a sectional view (Fig. 2b) corresponding to Ilb-IIb in Fig. 2a;
  • the laser cutting machine 1 shown in perspective in FIG. 1 has, for example, a CO2 laser, diode laser or solid-state laser as a laser beam generator 2, a movable (laser) processing head 3 and a workpiece support 4.
  • a laser beam 5 is generated in the laser beam generator 2 and is guided from the laser beam generator 2 to the processing head 3 by means of a light guide cable (not shown) or deflecting mirrors (not shown).
  • a plate-shaped workpiece 6 is arranged on the workpiece support 4.
  • the laser beam 5 is directed onto the workpiece 6 by means of focusing optics arranged in the processing head 3.
  • the Laser cutting machine 1 is also supplied with cutting gases 7, for example oxygen and nitrogen.
  • the use of the respective cutting gas 7 depends on the workpiece material and the quality requirements for the cutting edges.
  • a suction device 8 which is connected to a suction channel 9 which is located under the workpiece support 4.
  • the cutting gas 7 is fed to a cutting gas nozzle 10 of the processing head 3, from which it emerges together with
  • the workpiece 6 is cut along a desired trajectory K by means of a laser beam 5 with cutting parameter values suitable for cutting through the workpiece 6, in which case the laser beam 5, alternatively or additionally also the workpiece 6, is moved.
  • the workpiece 6 must first be pierced at a point S on or next to the path K to be cut, as shown in FIG. 2a.
  • the nanojoint 14a, 14b does not extend over the entire workpiece thickness D, but only in the lower third of the workpiece thickness, thus having a lower height d than the workpiece thickness D.
  • the nanojoint 14a is located at the end of the cut, i.e. is created shortly before the beginning of the self-contained trajectory K is reached again.
  • the nanojoint 14b is not located at the end of the cut, but at any section of the trajectory K.
  • the method according to the invention is described below using the example of varying the focus position.
  • the nanojoints 14a, 14b are generated solely by targeted adjustment of the focus position during the cutting process, which is specified by a control 15 of the laser cutting machine 1 shown in Fig. 1 depending on the workpiece material.
  • the control 15 also controls the movement of the processing head 3 compared to the workpiece 6.
  • the cutting process no longer has the power density required for a complete cut, so that the workpiece material is not melted over the entire workpiece thickness D and a nanojoint 14a, 14b remains in the lower area of the cutting gap 11 or the cutting edge between the laser-cut workpiece part 6 and the remaining workpiece 13.
  • other cutting parameters of the laser cutting can be changed to create the nanojoint 14a, 14b, for example the laser power, the distance of the cutting gas nozzle 10 from the workpiece surface, the cutting gas pressure and/or the cutting speed.
  • an axis stop can take place, i.e. the cutting speed can be reduced to 0 m/s.
  • Cutting parameters can be set to parameter values for producing the nanojoint 14a, 14b during the axis stop.
  • the nanojoint 14b has been created, cutting continues with the standard parameters.
  • an axis stop can again be carried out and the standard parameters can be set.
  • the laser beam 5 is switched off. An axis stop can also be carried out.
  • the focus position of the laser beam 5 on a section of the trajectory K corresponding to the length L of the nanojoint 14b is changed from the focus position suitable for cutting through the workpiece 6 to a focus position which is not suitable for completely cutting through the workpiece 6 and is then set back to the original focus position.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un procédé de découpe au laser d'une pièce (6), en particulier de type plaque, le long d'une trajectoire (K) au moyen d'un faisceau laser (5), au moins un nano-joint (14a, 14b) ayant une hauteur (d) inférieure à l'épaisseur de pièce (D) et étant formé sur une partie de la trajectoire (K) qui est égale à la longueur (L) du nano-joint (14a, 14b), caractérisé en ce que pour former le nano-joint (14a, 14b), a) un mouvement relatif de la pièce (6) et d'un faisceau laser (5) est arrêté et au moins un paramètre de coupe est modifié d'une première valeur de paramètre appropriée pour couper à travers la pièce (6) à une seconde valeur de paramètre qui n'est pas suffisante pour couper à travers la pièce (6), ou b) la pression de gaz et/ou la position de focalisation sont modifiées d'une première valeur de paramètre appropriée pour couper à travers la pièce (6) à une seconde valeur de paramètre qui n'est pas suffisante pour couper à travers la pièce (6).
PCT/EP2023/074922 2022-09-29 2023-09-11 Procédé de découpe au laser de pièces en forme de plaque, et produit programme informatique associé WO2024068253A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022125138.1 2022-09-29
DE102022125138.1A DE102022125138A1 (de) 2022-09-29 2022-09-29 Verfahren zum Laserschneiden plattenförmiger Werkstücke und zugehöriges Computerprogrammprodukt

Publications (1)

Publication Number Publication Date
WO2024068253A1 true WO2024068253A1 (fr) 2024-04-04

Family

ID=88093800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/074922 WO2024068253A1 (fr) 2022-09-29 2023-09-11 Procédé de découpe au laser de pièces en forme de plaque, et produit programme informatique associé

Country Status (2)

Country Link
DE (1) DE102022125138A1 (fr)
WO (1) WO2024068253A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190576A (ja) * 1992-12-24 1994-07-12 Toshiba Corp レーザ加工方法及びレーザ加工装置
JP2001334379A (ja) * 2000-05-23 2001-12-04 Amada Co Ltd ワーク切断方法及びその方法の実施に直接使用するワーク切断装置
DE102017213394A1 (de) 2017-08-02 2019-02-07 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Laserschneiden plattenförmiger Werkstücke und zugehöriges Computerprogrammprodukt
JP7049539B1 (ja) * 2021-10-25 2022-04-06 三菱電機株式会社 レーザ加工装置およびレーザ加工方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161178B2 (ja) 2002-09-13 2008-10-08 澁谷工業株式会社 切断加工方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06190576A (ja) * 1992-12-24 1994-07-12 Toshiba Corp レーザ加工方法及びレーザ加工装置
JP2001334379A (ja) * 2000-05-23 2001-12-04 Amada Co Ltd ワーク切断方法及びその方法の実施に直接使用するワーク切断装置
DE102017213394A1 (de) 2017-08-02 2019-02-07 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Laserschneiden plattenförmiger Werkstücke und zugehöriges Computerprogrammprodukt
JP7049539B1 (ja) * 2021-10-25 2022-04-06 三菱電機株式会社 レーザ加工装置およびレーザ加工方法

Also Published As

Publication number Publication date
DE102022125138A1 (de) 2024-04-04

Similar Documents

Publication Publication Date Title
EP3661692B1 (fr) Procédé de découpe au laser de pièces plates
EP3914418B1 (fr) Procédé d'usinage par faisceau d'une pièce à usiner en forme de plaque ou de tube
EP4200101A1 (fr) Procédé de production d'au moins une partie de pièce à usiner et d'une pièce à usiner résiduelle à partir d'une pièce à usiner
EP3528995B1 (fr) Méthode de découpe au laser
DE102012217766B4 (de) Verfahren und Vorrichtung zum Dampfdruck-Abtragschneiden eines metallischen Werkstücks
DE102019203946A1 (de) Verfahren zum Laserschneiden sowie zugehörige Laserbearbeitungsmaschine und Computerprogrammprodukt
EP3983168A1 (fr) Procédé d'usinage par faisceau d'une pièce de fabrication tabulaire ou tubulaire
EP3186031B1 (fr) Procédé de saignage dans des pièces métalliques au moyen d'un faisceau laser ainsi que machine d'usinage à laser et produit de programme informatique associés
EP1711303B1 (fr) Procede pour modifier par rayon laser la topographie de toles revetues et tole revetue a modification topographique
DE102014206358A1 (de) Verfahren und Laserschneidmaschine zum Laserschneiden kleiner Öffnungen
WO2023222409A1 (fr) Technique de production de bords arrondis
WO2024068253A1 (fr) Procédé de découpe au laser de pièces en forme de plaque, et produit programme informatique associé
WO2022063647A1 (fr) Procédé de découpe au laser
EP3863794B1 (fr) Procédé et machine de traitement pour la découpe de pièces ouvrées ainsi que produit de programme informatique associé
DE102016213540A1 (de) Verfahren zum Erzeugen von schrägen Vorsprüngen oder Aussparungen an einer Schnittflanke eines plattenförmigen Werkstücks und zugehöriges Computerprogrammprodukt
DE102022125140A1 (de) Verfahren zur Ausbildung eines Nanojoints, zugehöriges Computerprogrammprodukt und Werkstück mit Nanojoint
EP0515808A2 (fr) Méthode d'usinage utilisant le rayonnement pour bandes doubles
EP4422819A1 (fr) Procédé de fabrication de parties de pièces présentant des arêtes de coupe chanfreinées
WO2023036898A1 (fr) Procédé de découpe au laser pour produire des nanojoints
WO2023072567A1 (fr) Procédé d'usinage d'une pièce par faisceau laser à énergie par unité de longueur constante du faisceau laser
WO2013000495A1 (fr) Système de coupe de feuille, en particulier pour des unités électroniques à membrane de piles à combustible

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23772429

Country of ref document: EP

Kind code of ref document: A1