WO2024067901A1 - Verfahren zur inbetriebnahme einer pumpe mit pumpenmotor, angeordnet in einem hydrauliksystem - Google Patents

Verfahren zur inbetriebnahme einer pumpe mit pumpenmotor, angeordnet in einem hydrauliksystem Download PDF

Info

Publication number
WO2024067901A1
WO2024067901A1 PCT/DE2023/100593 DE2023100593W WO2024067901A1 WO 2024067901 A1 WO2024067901 A1 WO 2024067901A1 DE 2023100593 W DE2023100593 W DE 2023100593W WO 2024067901 A1 WO2024067901 A1 WO 2024067901A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
rotation
switchable valve
pressure
actuated
Prior art date
Application number
PCT/DE2023/100593
Other languages
English (en)
French (fr)
Inventor
Erhard Hodrus
Alexander Rösch
Christian Eberle
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Publication of WO2024067901A1 publication Critical patent/WO2024067901A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/08Regulating by delivery pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/20Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by changing the driving speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0094Indicators of rotational movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2201/00Pump parameters
    • F04B2201/12Parameters of driving or driven means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • F04D29/2261Rotors specially for centrifugal pumps with special measures
    • F04D29/2283Rotors specially for centrifugal pumps with special measures for reverse pumping action
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/301Pressure
    • F05D2270/3013Outlet pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20538Type of pump constant capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6309Electronic controllers using input signals representing a pressure the pressure being a pressure source supply pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/633Electronic controllers using input signals representing a state of the prime mover, e.g. torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0227Source of pressure producing the clutch engagement or disengagement action within a circuit; Means for initiating command action in power assisted devices
    • F16D2048/0233Source of pressure producing the clutch engagement or disengagement action within a circuit; Means for initiating command action in power assisted devices by rotary pump actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • F16D2048/0257Hydraulic circuit layouts, i.e. details of hydraulic circuit elements or the arrangement thereof
    • F16D2048/0266Actively controlled valves between pressure source and actuation cylinder

Definitions

  • the invention relates to a method having the features according to the preamble of claim 1.
  • hydraulics are currently planned in the system in addition to the electric drive motors.
  • the hydraulics are used to cool the electric drive motors, to operate the clutches in a so-called decoupling unit and, if necessary, a parking lock, as described, for example, in the as yet unpublished German patent application DE 10 2022 113 487.3.
  • a pump motor drives a pump.
  • the hydraulic oil delivered by the pump is made available to a high-pressure system that is used to operate the actuators.
  • a pressure sensor and a valve that can be used to control the discharge are installed in the high-pressure path behind the pump.
  • the pump is rotated and, in accordance with the state of the art, a check is made, for example using a rotor position sensor on the motor, to see whether the correct direction of rotation can be controlled.
  • Hydraulic systems with an electrically driven so-called reversing pump are known from the prior art.
  • One direction of rotation of the reversing pump can be assigned a volume flow function, such as a cooling function, and the other direction of rotation of the reversing pump can be assigned an actuation function, such as the actuation of a clutch and/or a parking lock.
  • Such hydraulic systems and methods for their operation are known, for example, from the publications DE 10 2018 112 663 A1, DE 10 2018 112 665 A1, DE 10
  • a rotor position sensor or a resolver is explicitly required.
  • the invention is based on the object that the pump in such a hydraulic system should be controlled without a sensor for cost reasons. This means that the rotor position sensor is omitted. In this case, checking the direction of rotation via the resolver is no longer possible.
  • the correct direction of rotation is present when the pressure determined at the pressure sensor in the first direction of rotation is higher than in the second direction of rotation.
  • the hydraulic system of the actuator has a second switchable valve, which is also actuated by means of current and the control unit also controls the second switchable valve and wherein the pressure line is also hydraulically connected to the second switchable valve.
  • the first switchable valve is a 2/2-way valve.
  • the second switchable valve is a 4/2-way valve.
  • the first switchable valve is hydraulically connected to a cooling line for cooling a drive motor of the motor vehicle.
  • the second switchable valve is hydraulically connected to a clutch actuator for actuating a clutch.
  • the first switchable valve when the pump is actuated in the first and second directions of rotation, the first switchable valve is closed.
  • the second switchable valve when the pump is actuated in the first and second direction of rotation, the second switchable valve is switched in such a direction that a clutch piston in the clutch actuator moves in the direction of the nearest stop in the clutch cylinder.
  • the pump when the pump is actuated in the first and second directions of rotation, the pump is actuated in such a way that a clutch piston in the clutch actuator is not moved.
  • the advantage of the method according to the invention is that there is no need to reconnect the phase connections, since the commissioning routine according to the invention stores in a non-volatile memory of the control device which current supply leads to a desired forward rotation of the pump. In addition, there is no need to color-code the phase connection cables or to maintain the correct order of the phase connections (polarity), since the commissioning routine can determine the correct current supply for the life of the control unit.
  • Figure 1 is a hydraulic plan of a hydraulic system
  • Figure 2 flow chart of the method according to the invention for starting up a hydraulic pump in the hydraulic system of Figure 1.
  • the system pressure control valve 300 a 2/2-way valve - hereinafter also referred to as the first switchable valve 300 - in the high-pressure part of the hydraulics must be controlled for the considerations in the commissioning routine according to the invention in such a way that an increased pressure can be established. This can be done by closing the system pressure control valve 300 in method step 1100.
  • the clutch actuator 400 can be moved to one of the two stops in the cylinder of the clutch actuator 400 by means of the second switchable valve 200 - a 4/2-way valve - so that from Once this state is reached, pressure build-up can no longer be prevented or reduced by mechanically increasing the hydraulic volume.
  • the piston position within the cylinder is generally always known, by means of corresponding Before actuating the second switchable valve 200, it is moved to the closer stop, since when starting up it is not necessary to take into account whether the clutch is thereby opened or closed.
  • the pump 100 can be actuated less abruptly and with limited force, so that due to friction and a detent within the clutch actuator 400, there is no significant movement of the clutch piston 450 within the clutch actuator 400, so that the clutch piston 450 does not hit either of the two stops in the clutch cylinder. This still results in a sufficiently meaningful pressure build-up at the pressure sensor 600.
  • the pressure in the pressure line 700 of the high-pressure part must increase significantly, since the system pressure control valve 300 is controlled to a correspondingly high level.
  • a pressure in the order of about 8 bar is expected.
  • the measured pressure of the pressure sensor 600 can be easily evaluated for this purpose.
  • the commissioning routine must store a suitable value in the non-volatile memory of the control unit for later use. When used later, the stored corrected value must be used; the motor will then always rotate in the correct direction.
  • the test sequence is shown in Figure 2.
  • the current supply in method step 1200 is then reversed in method step 1300 and it is checked whether the pressure sensor 600 indicates a sufficient drop in pressure in this direction of rotation.
  • the commissioning procedure can easily be repeated later, for example in a workshop.
  • a repetition is also conceivable when the vehicle is in operation, for example if a loss of non-volatile memory is indicated.
  • the system can be brought into a drivable state so that a limp home is possible.
  • the system can inform the driver of unusual waiting times via the message display.
  • uniform marking with a color also clarifies possible incorrect assignments during pinning, especially when working with suppliers.
  • Variants are also conceivable, such as a one-sided test for high pressure in method step 1200 without then carrying out method step 1300 in order to be able to shorten the process. Or a plausibility check with a rotor position sensor, if it is present in the system.
  • Second switchable valve (clutch) 00 First switchable valve (cooling) 00 Clutch actuator 50 Clutch piston 00 Cooling line 00 Pressure sensor

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Verfahren zur Erkennung der korrekten Drehrichtung einer Pumpe (100) eines Hydrauliksystems eines Aktors in einem Kraftfahrzeug mit einem ersten schaltbaren Ventil (300), das mittels Bestromung aktuiert wird und der Pumpe (100), die einen Pumpenmotor (1000) aufweist und die mittels Bestromung betätigt wird und einem Steuergerät, das das erste schaltbare Ventil (300) und die Pumpe (100) steuert, wobei die Pumpe (100) in einer ersten Drehrichtung Fluid in eine Druckleitung (700) fördert und in einer zweiten Drehrichtung Fluid in ein Reservoir (900) fördert, wobei die Druckleitung (700) einen Drucksensor (600) aufweist und mit dem erste schaltbaren Ventil (300) hydraulisch verbunden ist, dadurch gekennzeichnet, dass zur Ermittlung der Drehrichtung der Pumpe (100), der Pumpenmotor (1000) nacheinander in die beiden unterschiedlichen Drehrichtungen bestromt wird und jeweils der Druck am Drucksensor (600) ermittelt wird, und daraus auf die Drehrichtung der Pumpe (100) geschlossen wird.

Description

Verfahren zur Inbetriebnahme einer Pumpe mit Pumpenmotor, anqeordnet in einem Hydrauliksystem
Die Erfindung betrifft ein Verfahren mit den Merkmalen gemäß dem Oberbegriff des Anspruchs 1 .
Der Einsatzbereich der Erfindung:
In zahlreichen Projekten ist aktuell neben den elektrischen Antriebsmotoren eine Hydraulik im System vorgesehen. Die Hydraulik wird verwendet, um die elektrischen Antriebsmotoren zu kühlen, die Kupplungen in einer sogenannten Abkoppeleinheit und gegebenenfalls noch eine Parksperre zu betätigen wie beispielsweise in der noch unveröffentlichten deutschen Patentanmeldung DE 10 2022 113 487.3 dargelegt.
Ein Pumpenmotor treibt dabei eine Pumpe an. Das von der Pumpe geförderte Hydrauliköl wird so einem Hochdrucksystem zur Verfügung gestellt, das benutzt wird, um die Aktoren zu betätigen. Im Hochdruckpfad ist hinter der Pumpe ein Drucksensor verbaut und ein Ventil, mit dem der Abfluss gesteuert werden kann. Bei einer Inbetriebnahmeroutine wird die Pumpe gedreht, und gemäß Stand der Technik z.B. über einen Rotorlagesensor des Motors geprüft, ob die richtige Drehrichtung angesteuert werden kann.
Aus dem Stand der Technik sind Hydrauliksysteme mit einer elektrisch angetriebenen sogenannten Reversierpumpe bekannt. Dabei kann der einen Drehrichtung der Reversierpumpe eine Volumenstromfunktion, wie beispielsweise eine Kühlfunktion, und der anderen Drehrichtung der Reversierpumpe eine Betätigungsfunktion wie beispielsweise die Betätigung einer Kupplung und/oder einer Parksperre zugeordnet sein. Derartige Hydrauliksysteme und Verfahren zu deren Betrieb sind beispielsweise aus den Druckschriften DE 10 2018 112 663 A1 , DE 10 2018 112 665 A1 , der DE 10
2018 113 316 A1 und DE 10 2018 114 789 A1 bekannt. Andere Hydrauliksysteme sind unter anderem aus den Druckschriften DE 10 2016 213 318 A1 und WO 2012/
113 368 A1 bekannt.
Demnach ist zur Sicherstellung der korrekten Drehrichtung der Pumpe jedoch explizit ein Rotorlagesensor bzw. ein Resolver erforderlich.
Der Erfindung liegt die Aufgabe zugrunde, dass die Pumpe in so einem Hydrauliksystem aus Kostengründen sensorlos angesteuert werden soll. Dies bedeutet, dass der Rotorlagesensor entfällt. Ein Prüfen der Drehrichtung über den Resolver ist in diesem Falle nicht mehr möglich.
Die Aufgabe wird durch ein Verfahren mit den Merkmalen gemäß Anspruch 1 gelöst.
Das erfindungsgemäße Verfahren zur Erkennung der korrekten Drehrichtung einer Pumpe eines Hydrauliksystems eines Aktors in einem Kraftfahrzeug mit einem ersten schaltbaren Ventil, das mittels Bestromung aktuiert wird und der Pumpe, die einen Pumpenmotor aufweist und die mittels Bestromung betätigt wird und einem Steuergerät, das das erste schaltbare Ventil und die Pumpe steuert, wobei die Pumpe in einer ersten Drehrichtung Fluid in eine Druckleitung fördert und in einer zweiten Drehrichtung Fluid in ein Reservoir fördert, wobei die Druckleitung einen Drucksensor aufweist und mit dem erste schaltbaren Ventil hydraulisch verbunden ist, sieht vor, dass zur Ermittlung der Drehrichtung der Pumpe, der Pumpenmotor nacheinander in die beiden unterschiedlichen Drehrichtungen bestromt wird und jeweils der Druck am Drucksensor ermittelt wird, und daraus auf die Drehrichtung der Pumpe geschlossen wird.
In einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass die korrekte Drehrichtung vorliegt, wenn der ermittelte Druck am Drucksensor in der ersten Drehrichtung höher ist als in der zweiten Drehrichtung.
In einer weiteren besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass das Hydrauliksystem des Aktors ein zweites schaltbares Ventil aufweist, welches ebenfalls mittels Bestromung aktuiert wird und das Steuergerät auch das zweite schaltbare Ventil steuert und wobei die Druckleitung auch mit dem zweiten schalbaren Ventil hydraulisch verbunden ist.
In einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass das erste schaltbaren Ventil ein 2/2-Wegeventil ist.
In einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass das zweite schalbare Ventil ein 4/2-Wegeventil ist.
In einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass das erste schaltbaren Ventil mit einer Kühlleitung zur Kühlung eines Antriebsmotors des Kraftfahrzeugs hydraulisch verbunden ist.
In einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass das zweite schalbare Ventil mit einer Kupplungsaktorik zur Betätigung einer Kupplung hydraulisch verbunden ist.
In einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass bei Betätigung der Pumpe in der ersten und zweiten Drehrichtung das erste schaltbare Ventil geschlossen wird.
In einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass bei Betätigung der Pumpe in der ersten und zweiten Drehrichtung das zweite schaltbare Ventil in der Richtung geschaltet wird, dass ein Kupplungskolben in der Kupplungsaktorik in Richtung des nächstgelegenen Anschlags im Kupplungszylinder verfährt.
In einer besonders bevorzugten Ausführungsform der Erfindung ist vorgesehen, dass bei Betätigung der Pumpe in der ersten und zweiten Drehrichtung die Betätigung der Pumpe derart erfolgt, dass ein Kupplungskolben in der Kupplungsaktorik nicht verfahren wird. Vorteil des erfindungsgemäßen Verfahrens ist also, dass auf ein Umstecken der Phasenanschlüsse verzichtet werden kann, da durch die erfindungsgemäße Inbetriebnahmeroutine in einem nichtflüchtigen Speicher des Steuergeräts abgespeichert wird, welche Bestromung zu einer erwünschten Vorwärtsdrehung der Pumpe führt. Darüber hinaus kann auf eine farbliche Markierung der Phasenanschlußkabel und auch auf die Einhaltung einer korrekten Reihenfolge der Phasenanschlüsse (Polung) verzichtet werden, da durch die Inbetriebnahmeroutine die korrekte Bestromung für die Lebenszeit des Steuergeräts festgelegt werden kann.
Weiter Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der nachfolgenden Figuren sowie deren Beschreibung.
Es zeigen im Einzelnen:
Figur 1 ein Hydraulikplan eines Hydrauliksystems
Figur 2 Flussdiagramm des erfindungsgemäßen Verfahrens zur Inbetriebnahme einer Hydraulikpumpe im Hydrauliksystem der Figur 1.
Bei der erfindungsgemäßen Inbetriebnahme soll statt dem nicht mehr existenten Rotorlagesensor nun der durch den Drucksensor 600 gemessene Druck in der Druckleitung 700 des Hochdruckteils der Hydraulik betrachtet werden.
Das Systemdruckregelventil 300, einem 2/2-Wegeventil - im Folgenden auch als das erste schaltbare Ventil 300 bezeichnet - im Hochdruckteil der Hydraulik muss für die Betrachtungen bei der erfindungsgemäßen Inbetriebnahmeroutine so angesteuert werden, dass sich ein erhöhter Druck einstellen kann. Dies kann erfolgen, indem im Verfahrensschritt 1100 das Systemdruckregelventil 300 geschlossen wird.
Zusätzlich kann vor oder zu Beginn der Betätigung der Pumpe 100 die Kupplungsak- torik 400, genauer gesagt der Kupplungskolben 450 mittels des zweiten schalbaren Ventils 200 - einem 4/2 Wegeventil - an einen der beiden Anschläge im Zylinder der Kupplungsaktorik 400 verfahren werden, sodass ab Erreichen dieses Zustands keine Verhinderung oder Verminderung eines Druckaufbaus durch mechanische Vergrößerung des Hydraulikvolumens mehr erfolgen kann. Erfindungsgemäß wird, da in der Regel die Kolbenposition innerhalb des Zylinders stets bekannt ist, mittels entspre- ehender Betätigung des zweiten schaltbaren Ventils 200, an den nähergelegenen Anschlag gefahren, da bei einer Inbetriebnahme nicht darauf Rücksicht genommen werden muss, ob die Kupplung dadurch geöffnet oder geschlossen wird.
Alternativ kann die Betätigung der Pumpe 100 nur mit eingeschränkter Stärke weniger abrupt erfolgen, sodass es aufgrund von Reibung und einer Rastierung innerhalb der Kupplungsaktorik 400 zu keiner nennenswerten Bewegung des Kupplungskolbens 450 innerhalb der Kupplungsaktorik 400 kommt, sodass der Kupplungskolben 450 keinen der beiden Anschläge im Kupplungszylinder anfährt. Dadurch kommt es dennoch zu einem hinreichend aussagekräftigem Druckaufbau am Drucksensor 600.
Dreht der Elektromotor 1000 der Pumpe 100 im Verfahrensschritt 1200 in die gewünschte Vorwärtsrichtung, dann muss der Druck sich in der Druckleitung 700 des Hochdruckteils sehr stark erhöhen, da das Systemdruckregelventil 300 entsprechend hoch angesteuert wird. Hier wird beispielsweise ein Druck in der Größenordnung von etwa 8 bar erwartet. Der gemessene Druck des Drucksensors 600 kann dazu leicht ausgewertet werden.
Dreht der Elektromotor 1000 in die falsche Richtung, so wird der Druckanstieg ausbleiben, der Druck in der Druckleitung 700, der eigentlichen Hochdruckseite wird sogar verringert, da die Hochdruckseite bei falscher Drehrichtung zur Saugseite wird.
In diesem Fall muss die Inbetriebnahmeroutine einen geeigneten Wert im nichtflüchtigen Speicher des Steuergerätes für die spätere Verwendung ablegen. Bei der späteren Verwendung muss mit dem gespeicherten korrigierten Wert gearbeitet werden, der Motor wird dann immer in die richtige Richtung drehen. Der Ablauf der Prüfung ist in Figur 2 dargestellt.
Zur Plausibilisierung wird insbesondere nachdem die vorgesehene Bestromung im Verfahrensschritt 1200 zu einer gewünschten Vorwärtsdrehung geführt hat anschließend im Verfahrensschritt 1300 die Bestromung umgekehrt und überprüft ob der Drucksensor 600 bei dieser Drehrichtung ein hinreichendes Abfallen des Drucks anzeigt. Das Inbetriebnahmeverfahren kann später z.B. auch in einer Werkstatt leicht wiederholt werden.
Eine Wiederholung ist auch im Betrieb des Fahrzeuges denkbar, wenn z.B. ein Verlust des nichtflüchtigen Speichers angezeigt wird. Mit der Durchführung der Routine kann so das System in einen fahrfähigen Zustand gebracht werden, sodass ein Limp-Home ermöglicht wird. Ungewohnte Wartezeiten kann das System über das Nachrichtendisplay dem Fahrer mitteilen.
Für die Produktion ergeben sich weitere Vorteile. Da die Reihenfolge der Phasenanschlüsse durch die verpflichtende Prüfung bei der Inbetriebnahme keine Rolle mehr spielt, kann auf eine farbliche Kennzeichnung der Phasenanschlusskabel verzichtet werden. Ausschuss aufgrund verdrehter Farben ist somit unmöglich.
Gegebenenfalls klärt die Einheitskennzeichnung mit einer Farbe auch mögliche Fehlzuordnungen beim Pinning besonders in der Zusammenarbeit mit Zulieferern. Zudem dürften sich Kostenvorteile durch die höheren Bestellmengen in einer Farbe abzeichnen.
Es sind auch Varianten denkbar, wie z.B. eine einseitige Prüfung auf hohen Druck im Verfahrensschritt 1200, ohne dann den Verfahrensschritt 1300 auszuführen, um den Vorgang abkürzen zu können. Oder eine Plausibilisierung mit einem Rotorlagesensor, falls dieser doch im System vorhanden ist.
Bezuqszeichenliste 0 Filter
100 Pumpe 00 zweites schaltbares Ventil (Kupplung) 00 erstes schaltbares Ventil (Kühlung) 00 Kupplungsaktorik 50 Kupplungskolben 00 Kühlleitung 00 Drucksensor
700 Druckleitung
800 Ansaugleitung
900 Reservoir
1000 Pumpenmotor
1100 Verfahrensschritt
1200 Verfahrensschritt
1300 Verfahrensschritt
1400 Verfahrensschritt
1500 Verfahrensschritt

Claims

Patentansprüche Verfahren zur Erkennung der korrekten Drehrichtung einer Pumpe (100) eines Hydrauliksystems eines Aktors in einem Kraftfahrzeug mit einem ersten schaltbaren Ventil (300), das mittels Bestromung aktuiert wird und der Pumpe (100), die einen Pumpenmotor (1000) aufweist und die mittels Bestromung betätigt wird und einem Steuergerät, das das erste schaltbare Ventil (300) und die Pumpe (100) steuert, wobei die Pumpe (100) in einer ersten Drehrichtung Fluid in eine Druckleitung (700) fördert und in einer zweiten Drehrichtung Fluid in ein Reservoir (900) fördert, wobei die Druckleitung (700) einen Drucksensor (600) aufweist und mit dem erste schaltbaren Ventil (300) hydraulisch verbunden ist, dadurch gekennzeichnet, dass zur Ermittlung der Drehrichtung der Pumpe (100), der Pumpenmotor (1000) nacheinander in die beiden unterschiedlichen Drehrichtungen bestromt wird und jeweils der Druck am Drucksensor (600) ermittelt wird, und daraus auf die Drehrichtung der Pumpe (100) geschlossen wird. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die korrekte Drehrichtung vorliegt, wenn der ermittelte Druck am Drucksensor (600) in der ersten Drehrichtung höher ist als in der zweiten Drehrichtung. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Hydrauliksystem des Aktors ein zweites schaltbares Ventil (200) aufweist, welches ebenfalls mittels Bestromung aktuiert wird und das Steuergerät auch das zweite schaltbare Ventil (200) steuert und wobei die Druckleitung (700) auch mit dem zweiten schalbaren Ventil (200) hydraulisch verbunden ist. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das erste schaltbaren Ventil (300) ein 2/2-Wegeventil ist. Verfahren nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass das zweite schalbare Ventil (200) ein 4/2-Wegeventil ist. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das erste schaltbaren Ventil (300) mit einer Kühlleitung (500) zur Kühlung eines Antriebsmotors des Kraftfahrzeugs hydraulisch verbunden ist. Verfahren nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass das zweite schalbare Ventil (200) mit einer Kupplungsaktorik (400) zur Betätigung einer Kupplung hydraulisch verbunden ist. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei Betätigung der Pumpe (100) in der ersten und zweiten Drehrichtung das erste schaltbare Ventil (300) geschlossen wird. Verfahren nach einem der vorhergehenden Ansprüche 7 bis 8, dadurch gekennzeichnet, dass bei Betätigung der Pumpe (100) in der ersten und zweiten Drehrichtung das zweite schaltbare Ventil (200) in der Richtung geschaltet wird, dass ein Kupplungskolben (450) in der Kupplungsaktorik (400) in Richtung des nächstgelegenen Anschlags im Kupplungszylinder verfährt. Verfahren nach einem der vorhergehenden Ansprüche 7 bis 9, dadurch gekennzeichnet, dass bei Betätigung der Pumpe (100) in der ersten und zweiten Drehrichtung die Betätigung der Pumpe (100) derart erfolgt, dass ein Kupplungskolben (450) in der Kupplungsaktorik (400) nicht verfahren wird.
PCT/DE2023/100593 2022-09-30 2023-08-14 Verfahren zur inbetriebnahme einer pumpe mit pumpenmotor, angeordnet in einem hydrauliksystem WO2024067901A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022125281.7A DE102022125281A1 (de) 2022-09-30 2022-09-30 Verfahren zur Inbetriebnahme einer Pumpe mit Pumpenmotor, angeordnet in einem Hydrauliksystem
DE102022125281.7 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067901A1 true WO2024067901A1 (de) 2024-04-04

Family

ID=88016331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2023/100593 WO2024067901A1 (de) 2022-09-30 2023-08-14 Verfahren zur inbetriebnahme einer pumpe mit pumpenmotor, angeordnet in einem hydrauliksystem

Country Status (2)

Country Link
DE (1) DE102022125281A1 (de)
WO (1) WO2024067901A1 (de)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101687A2 (de) * 2007-02-21 2008-08-28 Grundfos Management A/S Pumpenaggregat
WO2011003368A1 (en) 2009-07-10 2011-01-13 Huawei Technologies Co.,Ltd. Method for estimating strength of crosstalk channel
DE102012202162A1 (de) * 2011-02-23 2012-08-23 Schaeffler Technologies AG & Co. KG Hydraulische Einrichtung zur Betätigung einer Kupplung
DE102016213318A1 (de) 2016-07-21 2018-01-25 Schaeffler Technologies AG & Co. KG Verfahren zur Aufrechterhaltung eines Druckniveaus einer Hydraulikflüssigkeit in einer hydraulischen Aktoranordnung
DE102018112663A1 (de) 2018-05-28 2019-11-28 Schaeffler Technologies AG & Co. KG Hydraulikeinrichtung mit zwei unterschiedlichen Fluidquellen zur Versorgung entweder eines ersten Verbrauchers oder eines zweiten Verbrauchers
DE102018112665A1 (de) 2018-05-28 2019-11-28 Schaeffler Technologies AG & Co. KG Hydraulikeinrichtung mit über ein Schaltventil gezielt verbindbarem hydraulischen Parksperrenbetätiger und Cut-off-Ventil
DE102018114789A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs sowie damit ausgestattete Antriebsanordnung
DE102022100265A1 (de) * 2021-01-18 2022-07-21 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung eines volumetrischen Wirkungsgrads, hydraulisches System eines Kraftfahrzeugantriebsstrangs, Hybridmodul, Steuereinheit und Computerprogrammprodukt
DE102022113487A1 (de) 2022-05-30 2023-12-14 Schaeffler Technologies AG & Co. KG Verfahren zur Erkennung eines sicheren Zustands eines Ventils eines Hydrauliksystems

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014105160A1 (de) 2014-04-11 2015-10-15 Getrag Getriebe- Und Zahnradfabrik Hermann Hagenmeyer Gmbh & Cie Kg Kupplungsanordnung und Verfahren zu deren Betätigung
DE102018112670A1 (de) 2018-05-28 2019-11-28 Schaeffler Technologies AG & Co. KG Hydraulische Aktorik eines seriellen Hybridgetriebes mit Parksperrenfunktion
DE102021118067A1 (de) 2020-10-12 2022-04-14 Schaeffler Technologies AG & Co. KG Verfahren zur Ansteuerung eines elektromagnetischen Aktuators und hydraulisches System mit Druckregelventilen zur Ansteuerung von hydraulischen Aktuatoren

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008101687A2 (de) * 2007-02-21 2008-08-28 Grundfos Management A/S Pumpenaggregat
WO2011003368A1 (en) 2009-07-10 2011-01-13 Huawei Technologies Co.,Ltd. Method for estimating strength of crosstalk channel
DE102012202162A1 (de) * 2011-02-23 2012-08-23 Schaeffler Technologies AG & Co. KG Hydraulische Einrichtung zur Betätigung einer Kupplung
DE102016213318A1 (de) 2016-07-21 2018-01-25 Schaeffler Technologies AG & Co. KG Verfahren zur Aufrechterhaltung eines Druckniveaus einer Hydraulikflüssigkeit in einer hydraulischen Aktoranordnung
DE102018112663A1 (de) 2018-05-28 2019-11-28 Schaeffler Technologies AG & Co. KG Hydraulikeinrichtung mit zwei unterschiedlichen Fluidquellen zur Versorgung entweder eines ersten Verbrauchers oder eines zweiten Verbrauchers
DE102018112665A1 (de) 2018-05-28 2019-11-28 Schaeffler Technologies AG & Co. KG Hydraulikeinrichtung mit über ein Schaltventil gezielt verbindbarem hydraulischen Parksperrenbetätiger und Cut-off-Ventil
DE102018114789A1 (de) 2018-06-20 2019-12-24 Schaeffler Technologies AG & Co. KG Antriebseinheit für einen Antriebsstrang eines elektrisch antreibbaren Kraftfahrzeugs sowie damit ausgestattete Antriebsanordnung
DE102022100265A1 (de) * 2021-01-18 2022-07-21 Schaeffler Technologies AG & Co. KG Verfahren zur Bestimmung eines volumetrischen Wirkungsgrads, hydraulisches System eines Kraftfahrzeugantriebsstrangs, Hybridmodul, Steuereinheit und Computerprogrammprodukt
DE102022113487A1 (de) 2022-05-30 2023-12-14 Schaeffler Technologies AG & Co. KG Verfahren zur Erkennung eines sicheren Zustands eines Ventils eines Hydrauliksystems

Also Published As

Publication number Publication date
DE102022125281A1 (de) 2024-04-04

Similar Documents

Publication Publication Date Title
EP1141592B1 (de) Steuereinrichtung für ein automatisches kraftfahrzeug-getriebe
DE112010001147B4 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinrichtung zum Verstellen einer automatisierten Kupplung
EP2705282B1 (de) Vorrichtung zum betreiben einer parksperre eines kraftfahrzeugs sowie entsprechendes verfahren
EP3221619B1 (de) Verfahren zum betreiben einer automatikgetriebeeinrichtung sowie entsprechende automatikgetriebeeinrichtung
DE102009016440A1 (de) Getriebeschaltvorrichtung
DE102022123558A1 (de) Verfahren zur Betätigung einer Parksperre eines Kraftfahrzeugs
WO2017206980A1 (de) Verfahren zur bestimmung einer leckage in einem hydraulischen kupplungssystem eines fahrzeuges
DE102011087684A1 (de) Hydraulisches Kupplungssystem
DE102014223479B3 (de) Verfahren zur Einstellung einer Anschlagposition eines hydrostatischen Kupplungsaktors
WO2024067901A1 (de) Verfahren zur inbetriebnahme einer pumpe mit pumpenmotor, angeordnet in einem hydrauliksystem
WO2012136182A2 (de) Verfahren zur steuerung eines elektronisch kommutierten elektromotors
DE102018208211A1 (de) Verfahren zur Steuerung einer elektronisch schlupfregelbaren Fremdkraftbremsanlage
WO2023232177A1 (de) Verfahren zur erkennung eines sicheren zustands eines ventils eines hydrauliksystems
DE102020201074A1 (de) Verfahren zur Ansteuerung eines Aktuators zum Betätigen einer Parksperre in einem Kraftfahrzeug-Getriebe
DE102019102249A1 (de) Verfahren zur Feststellung einer Leckage in einem eine Kupplung ansteuernden hydraulischen System eines Fahrzeuges
DE102012218252A1 (de) Verfahren zur Inbetriebnahme eines Fahrzeuggetriebes und/oder einer Fahrzeugkupplung
EP3959486B1 (de) Verfahren zum einstellen einer position eines aktors nach unterbrechung einer spannungsversorgung
EP2499401B1 (de) Kalibrierverfahren und hydraulischer fahrantrieb
WO2018184849A1 (de) Verfahren zur überwachung eines kupplungsgesteuerten luftkompressors eines fahrzeugs
DE102012021221A1 (de) Mechanisches System
WO2021004571A1 (de) Verfahren zur erkennung einer notentriegelung einer parksperre
DE102019114911A1 (de) Verfahren zum Referenzieren eines hydraulischen Kupplungsaktors eines Kupplungssystem, insbesondere für ein Kraftfahrzeug
DE102013101244A1 (de) Kupplungsbetätigungsvorrichtung für ein Kraftfahrzeug, Verfahren zur Kupplungsbetätigung für ein Kraftfahrzeug sowie Kraftfahrzeug
DE102011085129A1 (de) Vorrichtung zur Inbetriebnahme eines Fahrzeuggetriebes und/oder einer Fahrzeugkupplung
DE102018213330A1 (de) Verfahren und Steuergerät zum Betreiben eines hydraulischen Bremssystems, Bremssystem und Kraftfahrzeug

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23768131

Country of ref document: EP

Kind code of ref document: A1