WO2024067856A1 - 资源指示方法、终端及网络侧设备 - Google Patents

资源指示方法、终端及网络侧设备 Download PDF

Info

Publication number
WO2024067856A1
WO2024067856A1 PCT/CN2023/122867 CN2023122867W WO2024067856A1 WO 2024067856 A1 WO2024067856 A1 WO 2024067856A1 CN 2023122867 W CN2023122867 W CN 2023122867W WO 2024067856 A1 WO2024067856 A1 WO 2024067856A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
resource group
terminal
subchannel
control information
Prior art date
Application number
PCT/CN2023/122867
Other languages
English (en)
French (fr)
Inventor
杨聿铭
纪子超
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2024067856A1 publication Critical patent/WO2024067856A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application belongs to the field of communication technology, and specifically relates to a resource indication method, a terminal and a network side device.
  • LTE Long Term Evolution
  • UE User Equipment
  • LTE Sidelink is based on broadcast communication. Although it can be used to support basic safety communications of vehicle to everything (V2X), it is not suitable for other more advanced V2X services.
  • the 5G NR (New Radio) system will support more advanced Sidelink transmission designs, such as unicast, multicast or groupcast, so as to support a more comprehensive range of business types.
  • the embodiments of the present application provide a resource indication method, a terminal, and a network-side device, which can solve the problem that there is still a lack of effective resource indication methods in unlicensed frequency bands.
  • a resource indication method comprising:
  • the first terminal sends sidelink control information according to a numbering rule of a subchannel and/or a resource group, wherein the numbering rule of the subchannel and/or the resource group includes a mapping rule between subchannels and interleaved resources, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate resources occupied and/or reserved by the first terminal.
  • a resource indication method comprising:
  • the network side device sends downlink control information to the first terminal according to the numbering rule of the subchannel and/or resource group, wherein the numbering rule of the subchannel and/or resource group includes a mapping rule between subchannels and interleaved resources, and the downlink control information includes resource indication information, and the resource indication information is used to indicate the first terminal to use for sending occupied and/or reserved resources;
  • the first terminal carries the resource indication information in the side link control information and sends it to the second terminal.
  • a resource indication method comprising:
  • Detecting and/or receiving sidelink control information sent by the first terminal and/or downlink control information sent by a network side device wherein the sidelink control information and the downlink control information are generated according to the numbering rule of the subchannel and/or resource group, the numbering rule of the subchannel and/or resource group includes a mapping rule between a subchannel and an interleaved resource, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate resources occupied and/or reserved by the first terminal;
  • a device for indicating resources comprising:
  • the first sending module is used for the first terminal to send side link control information according to the numbering rule of the sub-channel and/or resource group, wherein the numbering rule of the sub-channel and/or resource group includes a mapping rule between the sub-channel and the interleaved resource, and the side link control information includes resource indication information, and the resource indication information is used to indicate the resources occupied and/or reserved by the first terminal.
  • a device for indicating resources comprising:
  • a second sending module configured for a network side device to send downlink control information to the first terminal according to a numbering rule of a subchannel and/or a resource group, wherein the numbering rule of the subchannel and/or the resource group includes a mapping rule between a subchannel and an interleaved resource, and the downlink control information includes resource indication information, and the resource indication information is used to indicate the first terminal to use for sending occupied and/or reserved resources;
  • the third sending module is used for the first terminal to carry the resource indication information in the side link control information and send it to the second terminal.
  • a device for indicating a resource comprising:
  • a receiving module configured to detect and/or receive sidelink control information sent by the first terminal, and/or downlink control information sent by a network side device, wherein the sidelink control information and the downlink control information are generated according to the numbering rule of the subchannel and/or the resource group, the numbering rule of the subchannel and/or the resource group includes a mapping rule between a subchannel and an interleaved resource, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate resources occupied and/or reserved by the first terminal;
  • a determination module is used to determine the resources occupied and/or reserved by the first terminal according to the resource indication information.
  • a terminal comprising a processor and a memory, wherein the memory stores a program or instruction that can be run on the processor, and when the program or instruction is executed by the processor, the steps of the method described in the first aspect or the third aspect are implemented.
  • a communication device comprising a processor and a memory, wherein the memory stores programs or instructions that can be run on the processor, and when the program or instructions are executed by the processor, the steps of the method described in the second aspect are implemented; wherein the communication device is a network side device or a terminal device.
  • a resource indication system comprising: a first terminal and a communication device, wherein the first terminal can be used to execute the steps of the resource indication method described in the first and third aspects above, and the communication device can be used to To execute the steps of the resource indication method as described in the second aspect above.
  • a readable storage medium on which a program or instruction is stored.
  • the program or instruction is executed by a processor, the steps of the method described in the first aspect are implemented, or the steps of the method described in the second aspect are implemented, or the steps of the method described in the third aspect are implemented.
  • a chip comprising a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run a program or instruction to implement the method described in the first aspect, or to implement the method described in the second aspect.
  • a computer program/program product is provided, wherein the computer program/program product is stored in a storage medium and is executed by at least one processor to implement the steps of the method described in the first aspect or the second aspect.
  • a transmission device/equipment which includes the device/equipment (configured to) be used to execute steps to implement the method described in the first aspect or the second aspect.
  • the first terminal sends sidelink control information according to the numbering rules of the subchannel and/or resource group, wherein the numbering rules of the subchannel and/or resource group may include mapping rules between subchannels and interlaced resources, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate the resources occupied and/or reserved by the first terminal.
  • the embodiment of the present application pre-configures the mapping rules between subchannels and interlaced resources, and then uses the mapping rules between subchannels and interlaced resources for resource indication on the unlicensed frequency band, so that the first terminal can indicate its occupied or reserved resources according to the mapping rules between subchannels and interlaced resources, which can meet the rules such as OCB on the unlicensed frequency band, and can not change the existing framework of Sidelink, thereby ensuring the utilization of resources, and ensuring the communication between the sending and receiving ends in different scenarios, as well as the problem of how to indicate resources and allocate resources, which can adapt to the potential diversified application scenarios and various needs in the future.
  • FIG1 is a block diagram of a wireless communication system to which an embodiment of the present application can be applied;
  • FIG2 is a flow chart of a resource indication method in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a relationship between a subchannel and an interlace in an embodiment of the present application.
  • FIG4 is a second schematic diagram of a relationship between a subchannel and an interlace in an embodiment of the present application.
  • FIG5 is a schematic diagram of resource indication for a capability-constrained terminal
  • FIG6 is a schematic diagram of a resource indication of a capability-limited terminal in an embodiment of the present application.
  • FIG7 is a flow chart of another resource indication method in an embodiment of the present application.
  • FIG8 is a flow chart of another resource indication method in an embodiment of the present application.
  • 9A-9E are schematic diagrams of a resource indication in an embodiment of the present application.
  • FIG10 is a structural block diagram of a resource indication device in an embodiment of the present application.
  • FIG11 is a structural block diagram of another resource indication device in an embodiment of the present application.
  • FIG12 is a structural block diagram of another resource indication device in an embodiment of the present application.
  • FIG13 is a structural block diagram of a communication device in an embodiment of the present application.
  • FIG14 is a block diagram of a terminal device in an embodiment of the present application.
  • FIG15 is a structural block diagram of a network side device in an embodiment of the present application.
  • FIG16 is a structural block diagram of another network-side device in an embodiment of the present application.
  • first, second, etc. in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It should be understood that the terms used in this way are interchangeable under appropriate circumstances, so that the embodiments of the present application can be implemented in an order other than those illustrated or described here, and the objects distinguished by “first” and “second” are generally of the same type, and the number of objects is not limited.
  • the first object can be one or more.
  • “and/or” in the specification and claims represents at least one of the connected objects, and the character “/" generally represents that the objects associated with each other are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency Division Multiple Access
  • NR new radio
  • FIG1 shows a block diagram of a wireless communication system applicable to an embodiment of the present application.
  • the wireless communication system includes a terminal 11 and a network side device 12.
  • the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, an ultra-mobile personal computer (ultra-mobile personal computer, UMPC), a mobile Internet device (Mobile Internet Device, MID), an augmented reality (augmented reality, AR)/virtual reality (virtual reality, VR) device, a robot, a wearable device (Wearable Device), a vehicle-mounted device (VUE), a pedestrian terminal (PUE), a smart home (home appliances with wireless communication functions, such as refrigerators, televisions, washing machines or furniture, etc.), a game console, a personal computer (personal computer, PC), a teller machine or a self-service machine and other terminal side devices, and
  • the network side device 12 may include an access network device or a core network device, wherein the access network device 12 may also be referred to as a radio access network device, a radio access network (RAN), a radio access network function or a radio access network unit.
  • the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
  • the base station may be referred to as a node B, an evolved node B (eNB), an access point, a base transceiver station (BTS), a radio base station, a radio transceiver, a basic service set (BSS), an extended service set (ESS), a home B node, a home evolved B node, a transmitting and receiving point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to a specific technical vocabulary, it should be noted that in the embodiments of the present application, only the base station in the NR system is used as an example for introduction, and the specific type of the base station is not limited.
  • FIG. 2 is a flowchart of an implementation of a resource indication method provided in an embodiment of the present application, the method may include the following steps:
  • Step 201 The first terminal sends sidelink control information according to a numbering rule of a subchannel and/or a resource group, wherein the numbering rule of the subchannel and/or the resource group includes a mapping rule between a subchannel and an interleaved resource, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate resources occupied and/or reserved by the first terminal.
  • the unlicensed band in order to be consistent with NR deployment and maximize the unlicensed band access based on NR, the unlicensed band can operate in the 5GHz, 37GHz and 60GHz bands.
  • the large bandwidth of the unlicensed band (80MHz or 100MHz) can reduce the implementation complexity of base stations and UEs.
  • the unlicensed band is shared by multiple radio access technologies (RATs), such as WiFi, radar, long term evolution-licensed-assisted access (long term evolution-licensed-assisted access, LTE-LAA), etc., in some countries or regions, the unlicensed band must comply with regulations when used to ensure that all devices can use the resources of the unlicensed band fairly, such as LBT (listen before talk), MCOT (maximum channel occupancy time) and other rules.
  • RATs radio access technologies
  • LBT listen before talk
  • MCOT maximum channel occupancy time
  • a transmission node When a transmission node needs to send information, it needs to do LBT first, and then perform power detection (energy detection, ED) on the surrounding nodes. When the detected power is lower than a threshold, the channel is considered to be idle, and the transmission node can send. Otherwise, the channel is considered to be busy, and the transmission node cannot send.
  • the transmission node can be a base station, UE, WiFi AP, etc. After the transmission node starts transmitting, the occupied channel time COT (Channel Occupancy Time) cannot exceed MCOT.
  • COT Channel Occupancy Time
  • the transmission node must occupy at least 70% (60GHz) or 80% (5GHz) of the bandwidth of the entire frequency band during each transmission.
  • Type 1 LBT is a channel listening mechanism based on back-off. When the transmission node detects that the channel is busy, it will back off and continue to listen until the channel is empty.
  • Type 2C is that the sending node does not perform LBT, that is, no LBT Or immediate transmission.
  • Type2A and Type2B LBT are one-shot LBT, that is, the node performs LBT once before transmission, and transmits if the channel is empty, and does not transmit if the channel is busy. The difference is that Type2A performs LBT within 25us, which is applicable when the gap (time interval) between two transmissions is greater than or equal to 25us when the COT is shared.
  • Type2B performs LBT within 16us, which is applicable when the gap between two transmissions is equal to 16us when the COT is shared.
  • Type2LBT which is applicable to LAA/eLAA/FeLAA.
  • the gap between the two transmissions is greater than or equal to 25us, and the eNB and UE can use Type 2LBT.
  • the types of LBT are Type1, Type2 and Type3.
  • Type1 is a channel listening mechanism based on fallback
  • Type2 is a one-shot LBT, which performs 5us LBT within 8us
  • Type3 does not perform LBT.
  • the first terminal will only send an SCI (Sidelink Control information) on the resource where the transmission is located, and the resource indication field carried by the SCI will indicate the resource of this transmission in units of subchannel, where a subchannel can include one interlace or multiple interlaces.
  • SCI Servicelink Control information
  • the unit of channel access such as PSSCH (Physical Sidelink Shared Channel) is RB set when transmitting on the unlicensed frequency band, and it is necessary to meet the OCB requirements
  • interlace interleaved resources
  • the interlace structure is used when allocating resources.
  • An interlace consists of an integer number of resource blocks (RBs) evenly distributed on the system bandwidth.
  • the interlace is used as the basic unit when indicating resources, and the resources allocated to each terminal are at least one interlace.
  • the unit of LBT is RB set (resource group). Specifically, 1 LBT usually occupies 20MHz of bandwidth.
  • the carrier bandwidth of the entire unlicensed band of Sidelink is divided into multiple RB sets based on LBT. For example, the bandwidth of the BWP (Bandwidth Part) configured by the terminal is 40MHz, 60MHz, 80MHz, etc.
  • each RB set consists of multiple interlaces.
  • the embodiment of the present application studies the relationship between the interlace of subchannel and RB set.
  • the relationship between subchannel and interlace can be implemented through the numbering rules of subchannel and/or RB set, wherein the numbering rules of subchannel and/or RB set may include mapping rules between subchannel and interlace.
  • the first terminal communicates with other terminals, such as a second terminal, the first terminal indicates the resources that need to be occupied or reserved in units of subchannel, and then sends SCI to the second terminal according to the numbering rules of subchannel and/or RB set, wherein SCI includes resource indication information (FRIV, Frequency reservation indicator value), and the resource indication information is used to indicate the resources occupied and/or reserved by the first terminal.
  • FRIV Resource indication information
  • the second terminal After the second terminal receives the resource indication information, it can confirm the resources occupied or reserved by the first terminal according to the resource indication information.
  • the resources occupied by the first terminal refer to the resources used to transmit the first object on the slot (time slot) for sending SCI, and can also be described as resources used for transmission or sending.
  • the resource indication information is used to indicate the resources occupied by the first object of the first terminal in the unlicensed frequency band.
  • the source may include frequency domain resources and time domain resources, wherein the first object includes at least one of the following:
  • PSCCH Physical Sidelink Control Channel, physical sidelink control channel
  • PSSCH Physical Sidelink Shared Channel, physical sidelink shared channel
  • PSFCH Physical Sidelink Feedback Channel, physical sidelink feedback channel
  • SSB Synchronization Signal, synchronization broadcast block
  • the first terminal sends sidelink control information according to the numbering rule of the subchannel and/or resource group, wherein the numbering rule of the subchannel and/or resource group includes a mapping rule between the subchannel and the interleaved resource, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate the resources occupied and/or reserved by the first terminal.
  • the embodiment of the present application pre-configures the mapping rule between the subchannel and the interleaved resource, and then uses the mapping rule between the subchannel and the interleaved resource for resource indication on the unlicensed frequency band, so that the first terminal can indicate its occupied or reserved resources according to the mapping rule between the subchannel and the interleaved resource, which can meet the rules such as OCB on the unlicensed frequency band, and can not change the existing framework of the Sidelink, thereby ensuring the utilization of resources, and ensuring the communication between the transmitting and receiving ends in different scenarios, as well as the problem of how to perform resource indication and resource allocation, which can adapt to the potential diversified application scenarios and various needs in the future.
  • the resource group can be a set of RB sets, channels, PRBs, etc.
  • the numbering rule of the sub-channel and/or the resource group satisfies at least one of the following:
  • the subchannel includes 1 interleaved resource
  • the subchannel includes K interleaved resources, the resource group includes M interleaved resources, K and M are integers, optionally, K is a divisor of M, or K is not a divisor of M.
  • the size of the subchannel can be fixed to 1 interlace, or it can be configurable, for example, the subchannel is configured to be equal to K interlaces. In this case, the size of the subchannel changes with the configured value of K, making the configuration more flexible.
  • K may be a divisor of M (or M is a multiple of K), or K may not be a divisor of M.
  • m is an integer, wherein the numbering rule of the subchannel and/or the resource group satisfies at least one of the following:
  • the subchannels in the resource group are numbered starting from the m+1th interleaved resource
  • the subchannels in the resource group are numbered starting from the first interleaved resource.
  • the numbering rules of subchannel and/or RB set satisfy at least one of the following:
  • A-1 The starting subchannel is numbered from the m+1th interlace
  • Item A-2 The starting subchannel is numbered from the first interlace
  • extra m interlaces can be processed as follows:
  • Item A-3 The extra m interlaces are not used for transmission;
  • Item A-4 The extra m interlaces form a subchannel
  • A-5 The extra m interlaces are configured as guard bands.
  • Item A-6 The redundant m interlaces are configured in the adjacent frequency domain of the guard band.
  • the unlicensed frequency band includes a corresponding second object
  • the second object may include at least one of the following: carrier; partial bandwidth (bandwidth part, BWP); resource pool (resource pool); virtual resource pool; virtual partial bandwidth; indicative resource range.
  • the starting subchannel may be numbered from interlace 0 (the first interlace), that is, the m interlaces with the highest frequency domain positions are left empty, and these interlaces will not be used for transmission and/or reception.
  • the starting subchannel may be numbered from interlace m (the m+1th interlace), and the m interlaces with the lowest positions may also be left empty.
  • these interlaces are configured as guard bands, or configured at frequency domain adjacent positions of the guard band, to play a better role in isolating the bandwidth.
  • the additional m interlaces can also be compiled as a special subchannel, so that the terminal can still use these interlaces for transmission.
  • the numbering rule of the sub-channel and/or the resource group includes at least one of the following:
  • Item B-1 On the second object, the subchannel index of the subchannel starts from 0 and increases in the order from low to high or from high to low in the frequency domain;
  • the subchannel index of the subchannel starts from the first starting sequence number and increases in order from low to high or from high to low in the frequency domain; wherein the first starting sequence number is configured or pre-configured by the network side device, or determined by the terminal; for example, the terminal will number the subchannel in the resource pool according to the first starting sequence number indicated to itself, and at this time, the starting subchannel of the resource pool is no longer 0, but the first starting sequence number.
  • the subchannel index of the subchannel starts from 0 and increases in order from low to high or from high to low in the frequency domain; for example, the index of the subchannel on each resource group starts from 0, or starts from 0 from the second resource group.
  • the subchannel index of the subchannel starts from the first starting sequence number and increases in the order from low to high or from high to low in the frequency domain;
  • the subchannel index of the subchannel starts from the index of the interleaved resource with the lowest or highest frequency domain position on the resource group, and increases in order from low to high or from high to low in the frequency domain;
  • the resource group index of the resource group starts from 0 and increases in the order from low to high or from high to low in the frequency domain;
  • the resource group index of the resource group starts from the second starting sequence number and increases in order from low to high or from high to low in the frequency domain; wherein the second starting sequence number is configured or pre-configured by the network side device, or the terminal
  • the terminal may confirm the index of the RB set in the resource pool according to the second starting sequence number indicated to itself, so as to understand the received resource indication, or make a resource indication itself.
  • the interlace corresponding to the subchannel may be the interlace with the same subchannel index, or the interlace with an offset value added to the index, or the interlace with the same order in the frequency domain, etc.
  • the mapping rule between subchannels and interlaces refer to the mapping rule between subchannels and interlaces.
  • the subchannel index (subchannel index) of the subchannel at the starting point of the second object and the interlace resource index (interlace index) of the interlace may be different, or the starting point of the subchannel index and the interlace index of the interlace may be the same at the starting point of the second object.
  • the subchannel index is numbered in the second object, or it can be numbered on some resource groups, where the subchannel index can start from the first starting sequence number or from 0, and increase in the order from low to high or from high to low in the frequency domain.
  • the interlace index is numbered in the second object, where the interlace index can start from the second starting sequence number or from 0, and increase in the order from low to high or from high to low in the frequency domain.
  • the first indication information includes a first RB set indication, and the first RB set indication is used to indicate the RB set identifier (index or position/gap relative to the current RB set) where the last P-1 resources of the FRIV are located.
  • subchannel index interlace index (in this case, subchannels are numbered independently in each RB set).
  • subchannel index RB set index * interlace number + interlace index (the subchannel is numbered in the resource pool, assuming it starts from 0).
  • FIG3 it is one of the schematic diagrams of the relationship between a subchannel and an interlace provided by an embodiment of the present invention, including two RB sets, RB set 0 and RB set 1, wherein each RB set includes 10 interlaces.
  • the subchannel index can be the same as the interlace index of RB set 0.
  • subchannel index 0 corresponds to interlace index 0 in RB set 0
  • subchannel index 9 corresponds to interlace index 9 in RB set 0.
  • the subchannel index in the second RB set (i.e., RB set 1) will be based on the interlace index plus the interlace number (the number of interleaved resources, here 10) of RB set 0.
  • subchannel index 10 corresponds to interlace index 2 in RB set 1
  • ... subchannel index 19 corresponds to interlace index 1 in RB set 0.
  • subchannel index interlace(K*index+1) ⁇ interlace(K*(index+1)).
  • mapping rule between the sub-channel and the interleaved resource includes at least one of the following: item:
  • the subchannel index number of the subchannel is the same as the interlace resource index of the interlace resource in each of the corresponding resource groups; that is, the subchannel includes the interlace resource with the same subchannel index, or the resource with the same subchannel index in the resource group.
  • subchannel 0 will be mapped to the interlace resource with index 0, or the interlace with index 0 will be mapped to subchannel 0.
  • the resource indicated by the terminal is subchannel 0, the actual physical resource location of this resource is on interlace 0.
  • Item C-2 The subchannel index number of the subchannel increases accordingly with the increase of the corresponding resource group identifier of each of the resource groups and the interlace resource index of the interlace resource of the resource group; for example, in RB set 0, the resource with subchannel index 1 will be mapped to interlace 1, but as the frequency domain increases, the subchannel index will also increase. At this time, assuming that each RB set contains 5 subchannels, then in RB set 1, the resource of interlace 1 will be mapped to subchannel 5, or correspond to subchannel 5.
  • the subchannel includes interleaved resources in the resource group that have the same index order as the subchannel; for example, the resources of the first subchannel in the resource group will be mapped to the resources of the first interlace because the starting interlace index of the resource group may be different from the starting subchannel index.
  • the subchannel includes interleaved resources in a resource group that differ from the subchannel index by N, where N is the total number of subchannels included in a resource group with a higher frequency domain or a lower frequency domain than the resource group;
  • the subchannel index of the subchannel is the same as the interleaved resource index of the interleaved resource of the corresponding first resource group;
  • the subchannel index of the subchannel is numbered in sequence starting from 0.
  • the sequence may be a frequency domain sequence, such as a sequence from low to high in the frequency domain, or a sequence from high to low in the frequency domain.
  • the numbering of the subchannel and/or the RB set can be predefined by a protocol or determined according to the configuration and/or preconfiguration of the second object, and the resource group identifier of the RB set can be predefined by a protocol, preconfigured by a network side device, configured and/or determined by the first terminal, and the embodiments of the present application do not need to be limited to this.
  • FIG. 4 there is a schematic diagram of the relationship between a subchannel and an interlace provided in an embodiment of the present invention, wherein the diagram includes two RB sets, RB set 0 and RB set 1, wherein each RB set includes 10 interlaces.
  • subchannel in RB set 0, includes interlace resources with the same subchannel index in RB set 0, for example, subchannel index 0 corresponds to interlace index 0 in RB set 0,... subchannel index 9 corresponds to interlace index 9 in RB set 0.
  • subchannel includes an interlace within the resource group that differs from the subchannel index by an offset value, where the offset value is an integer, for example, the offset value can be 2.
  • subchannel includes interlaces in RB set 1 that have the same order as the subchannel index, for example, subchannel index 0 corresponds to interlace index 2 in RB set 1,... subchannel index 9 corresponds to interlace index 1 in RB set 1.
  • subchannel includes the same interlace as the subchannel index in the RB set, for example, both include index 0, index 1, and so on.
  • the subchannel index of the subchannel is the same as the interlace index of the corresponding first RB set, for example, the index is both 1, both 2, and so on.
  • the subchannel index of the subchannel starts from 0 and is numbered sequentially, for example, 0, 1, 2...9.
  • a mapping rule between subchannels and interleaved resources in a first resource group is the same as a mapping rule between subchannels and interleaved resources in a lowest or highest resource group, and the first resource group is a resource group other than the lowest or highest resource group.
  • mapping rules between the sub-channels and the interleaved resources include:
  • the mapping rules between the sub-channels and the interleaved resources in the first resource group on the resource pool or other second object are the same and are equal to the mapping rules between the sub-channels of the lowest RB set and the interleaved resources.
  • the first resource group is all RB sets except the lowest RB set on the second object.
  • the sub-channel index on the lowest RB set starts from 0, and at this time, the lowest PRB on the RB set belongs to interlace 0, then the PRBs belonging to interlace 0 on this RB set all belong to or are mapped to sub-channel 0, and the PRBs belonging to interlace 1 all belong to or are mapped to sub-channel 1, and so on.
  • the PRBs belonging to interlace 0 also belong to or are mapped to sub-channel 0 in RB set 1, and the PRBs belonging to interlace 1 all belong to or are mapped to sub-channel 1 in RB set 1, and so on.
  • the sub-channel index on the lowest RB set starts from 0, and the PRBs belonging to interlace 2 and interlace 3 on this RB set belong to or are mapped to sub-channel 0, while the PRBs belonging to interlace 4 and interlace 5 belong to or are mapped to sub-channel 1.
  • the PRBs belonging to interlace 0 and interlace 1 belong to or are mapped to sub-channel 5, and so on.
  • the PRBs belonging to interlace 2 and interlace 3 in RB set 1 belong to or are mapped to sub-channel 0 in RB set 1
  • the PRBs belonging to interlace 4 and interlace 5 belong to or are mapped to sub-channel 1 in RB set 1
  • the PRBs belonging to interlace 0 and interlace 1 belong to or are mapped to sub-channel 5, and so on, in a cycle.
  • this can also be described as the same mapping rules between subchannels and interlaces in all resource groups.
  • subchannel 0 in each resource group corresponds to interlace 0 and interlace 1 in this resource group.
  • the sidelink control information includes at least one of the following:
  • Item D-1 the starting position of the subchannel in the resource indication information in the sidelink control information is determined according to the configuration and/or pre-configuration of the second object;
  • the resource indication information in the sidelink control information is determined according to the total number of subchannels, wherein the total number of subchannels is determined according to the configuration and/or pre-configuration of the second object;
  • the resource indication information in the sidelink control information is determined according to the starting position of the resource group, wherein the starting position of the resource group is determined according to the configuration and/or pre-configuration of the second object;
  • the resource indication information in the side-link control information is determined based on the total number of resource groups, where the total number of resource groups is predefined by the protocol, or configured or preconfigured by the second object.
  • the configuration and/or pre-configuration of the second object may include at least one of a first starting sequence number, a second starting sequence number, a starting position of the sub-channel, a total number of the sub-channels, a starting position of the resource group, and a total number of the resource groups.
  • the second object pre-configuration/configuration includes at least one of the following contents:
  • a first starting sequence number (e.g., 2, etc.), a second starting sequence number (e.g., 3, etc.); for example, the starting sequence number of the first subchannel on the resource pool may be the first starting sequence number.
  • the starting sequence number of the first RB set on the resource pool may be the second starting sequence number.
  • the starting position of the frequency band such as a physical PRB, start subchannel (the starting position of a subchannel), start RB set (the starting position of a resource group) and/or RB set index (resource group identifier) and/or interlace index, etc., that is, the terminal is configured with a start subchannel, which is a global position.
  • the terminal can be based on the start subchannel when indicating resources, which is convenient for other terminals to understand;
  • starting PRB indicates the starting position of the resource pool (relative position relative to the starting position of BWP);
  • Subchannel start index is the starting position of the first subchannel in the resource pool
  • RB start index is the starting position of the first RB set in the resource pool
  • RB set index+interlace index indicates the starting position of the resource pool
  • the first object i.e., the size of the carrier/BWP/resource pool/indicatable frequency domain resource range/virtual resource pool/virtual BWP, for example, subchannel number (total number of subchannels), RB set number (total number of subchannels), etc. (to facilitate the terminal to perform FRIV encoding according to this parameter);
  • the first object i.e., carrier/BWP/resource pool/indicatable frequency domain resource range/virtual resource pool/virtual BWP, refers to the actual configured size, such as the size of the resource pool indicated by the RRC (Radio Resource Control) parameter in R16;
  • RRC Radio Resource Control
  • the first object i.e., the size of the carrier/BWP/resource pool/indicatable frequency domain resource range/virtual resource pool/virtual BWP refers to an auxiliary parameter configured/pre-configured by the network to the terminal. This parameter indicates that when the terminal uses SCI to indicate frequency domain resources, it needs to calculate the FRIV based on the frequency domain range size indicated by this parameter, rather than the frequency domain range supported by the terminal itself.
  • the terminal may be a capability-limited terminal.
  • the capability-limited terminal refers to a terminal whose hardware or software capabilities only support a specific bandwidth upper limit or have other capabilities such as a demodulation capability upper limit.
  • the terminal may only support terminals with a bandwidth of 20MHz.
  • the capability-limited terminal is configured with a frequency band or resource pool with a larger bandwidth (for example, 80MHz)
  • the terminal can only detect and demodulate 20MHz, and cannot detect or mediate other than the 20MHz in the 80MHz.
  • the scenario that needs to be considered is in a frequency band or resource pool with a larger bandwidth.
  • the capability-limited terminal is to be supported to communicate with other terminals, it is necessary to ensure that the understanding of the capability-limited terminal is consistent with that of other terminals in terms of resource indication and resource reservation, otherwise it will cause communication-related problems between the capability-limited terminal and other terminals.
  • terminal A when terminal A indicates that it occupies or reserves resources, if the subchannel number is numbered according to the bandwidth supported by terminal A, such as the upper 5 , terminal A itself considers the resource blocks of RB set 1 in FIG5 . However, for other terminals, if other terminals support all bandwidths in FIG5 , that is, support the bandwidths of both RB sets 0 and RB set 1, then when other terminals detect the resource indication of terminal A, the reserved resources will be understood as the resource blocks of RB set 0, resulting in communication problems between terminal A and other terminals.
  • the subchannel start point and/or the interlace start point are unified when numbering, so that the subchannel and interlace have the same start point in the eyes of all terminals configured on the second object (such as carrier/BWP/resource pool, etc.).
  • the second object such as carrier/BWP/resource pool, etc.
  • the subchannel index and RB set are both based on the Virtual resource pool numbering, where the subchannel number indicates the configuration of the entire frequency domain range, and the Operation bandwidth indicates the bandwidth supported by the terminal in the entire frequency domain range, where the start subchannel index is the subchannel index of the first subchannel of the bandwidth supported by the terminal.
  • the network-side device will indicate a start subchannel index and subchannel number to it, so that the terminal knows the position of the second object where it is located in the entire subchannel and interlace numbering frequency domain range, as well as the number of subchannels and interlaces, which is convenient for the terminal to indicate resources.
  • terminal A will be configured/indicated that the start subchannel is 10, and the entire frequency domain range is 20.
  • terminal A indicates the resource block of the reserved RB set 1
  • the indicated subchannel will be subchannel 10 to subchannel 1 5, rather than subchannel 0 to subchannel 5.
  • each subchannel and interlace is independently numbered on the RB set.
  • the terminal needs to carry the RB set identifier when indicating resources.
  • the index (resource group identifier) of the RB set is unique, so terminal A and other terminals will not have different understandings of resource locations.
  • the first terminal sends the side link control information, including at least one of the following:
  • Item E-1 The first terminal sends side link control information on the resource group, wherein the side link control information includes resource indication information and/or associated information;
  • the first terminal sends side-link control information on a resource group set, wherein the resource group set is a part of the resource groups of the first object, or a designated resource group, or a primary resource group; the side-link control information includes resource indication information and/or associated information; the specific resource group and/or the primary resource group is predefined by the protocol, or pre-configured by the network, or configured by the network, or determined by the terminal.
  • the association information includes at least one of the following:
  • Item F-1 resource group identifier of the resource group where the resources occupied by the first terminal are located;
  • Item F-2 resource group identifier of the part of the resource group where the resources occupied by the first terminal are located;
  • Item F-3 a resource group identifier of a resource group in a resource group where resources occupied by the first terminal are located, the resource group having the same starting position relative to the resource group as the resources in the resource group where the sidelink control information is located;
  • Item F-4 a resource group identifier of a resource group in the resource group where the resources occupied by the first terminal are located and a resource group in which the resources in the resource group where the sidelink control information is located have a different starting position relative to the resource group.
  • the resource indication information includes at least one of the following:
  • the resource indication information includes resource indication information corresponding to the current resource group; wherein the current resource group is the resource group where the side link control information is located; for example, FRIV only indicates the resources within the resource group where it is located.
  • the resource indication information includes resource indication information of the resources occupied and/or reserved by the first terminal; for example, one FRIV indicates all resources occupied and/or reserved by the terminal, or multiple FRIVs together indicate all resources occupied and/or reserved by the terminal.
  • the resource indication information includes resource indication information corresponding to a resource group at least partially occupied and/or reserved by the first terminal;
  • the resource indication information includes resource indication information corresponding to the current resource group and at least part of the other resource groups.
  • the first terminal may send side-link control information on a resource group, or may send side-link control information on a resource group set, wherein the resource group set is a portion of the resource groups in the resource group of the first object, or a designated resource group, or a primary resource group (primary RB set).
  • the first terminal sends side link control information on each RB set, taking the first object as PSSCH and the second object as resource pool as an example, wherein the side link control information includes resource indication information FRIV and/or associated information, satisfying at least one of the following contents:
  • the resource indication information indicates the resources on the current RB set, or the resources on all RB sets occupied by the first object:
  • the first terminal when the subchannel is numbered based on each RB set, the first terminal independently sends FRIV on each RB set where the PSSCH is located, and this FRIV only indicates the frequency domain resource allocation of the current RB set.
  • the terminal when the subchannel is numbered based on the resource pool, the terminal can also send FRIV on each RB set where the PSSCH is located to indicate the frequency domain resource allocation of the current RB set.
  • the receiving end needs to detect each RB set to determine all the frequency domain resources of the transmitting end.
  • the first terminal sends FRIV on each RB set where the PSSCH is located.
  • This FRIV indicates all frequency domain resource allocations for the current PSSCH transmission.
  • the allocation of all frequency domain resources on all RB sets must be the same, so that one FRIV indication can be used, otherwise multiple FRIVs need to be sent on each RB set to indicate the resource allocation on all PSSCHs.
  • the subchannel size (number of subchannels) of the frequency domain resource allocation on all PSSCHs is the same, so only the starting subchannel of multiple FRIVs needs to be additionally indicated.
  • the receiving end when the FRIV on an RB set is blindly detected, other RB sets occupied by PSSCH can be skipped to reduce the detection complexity.
  • the blind detection order of the receiving end may be random, or from low to high in the frequency domain, or from high to low in the frequency domain. Or start from a specific RB set or Primary RB set.
  • the resource indication method of R16/R17 can be reused, that is, only one FRIV is used to indicate the frequency domain resources on all RB sets. At this time, the receiving end needs to blindly detect the SCI in the RB set until this FRIV is detected.
  • the associated information is the identifier of N RB sets, where N is an integer. (Indicating the other N RB sets occupied by the currently transmitted TB/TBs, which may be part of the remaining occupied RB sets or all of them).
  • the N RB sets are RB sets with the same/different relative positions of frequency domain allocation resources as the RB sets for sending the indication information and the associated information (after detecting the associated information, the receiving end may skip the blind detection action on the RB set corresponding to the associated information to reduce the detection complexity)
  • the starting subchannel of the frequency domain allocation resources is the same, the starting subchannel of other RB sets may not be sent, or may be sent and set to a specific value/invalid value.
  • these N RB sets are pre-configured/configured by the network/determined by the terminal (after detecting this information, the receiving end can only perform detection on these RB sets to reduce detection complexity).
  • the associated information may be not only the identifier of N RB sets, but also a bitmap.
  • each bit in the bitmap corresponds to an RB set in sequence according to a preset order.
  • the identifier of the RB set can be bit 1 or bit 0 at the corresponding position in the bitmap, or the RB set index, etc.
  • the indication information indicates the starting subchannel and subchannel size excluding the guard band (assuming that the guard band is included in the subchannel at this time).
  • the first terminal sends indication information on the RB set set (the terminal sends resource indication information on all/part of the RB sets on a limited RB set. For example, when FRIV on all RB sets is sent on only one RB set, if the positions of the starting subchannels on the various RB sets are different, it is necessary to indicate the starting subchannels of the FRIV on other RB sets on this RB set, so that the frequency domain resource indication information of other RB sets can be calculated based on this indication):
  • the resource indication information includes the frequency domain resource indication information on the current RB set and/or the resource indication information on all/part of other RB sets
  • the resource indication information includes the starting subchannel and/or the starting interlace, and/or the number of subchannels and/or interlaces.
  • the RB set set is all RB sets occupied by the currently transmitted TB/TBs, or part of the RB sets, or a specific RB set, and/or the primary RB set (when the resource indication information is only indicated on part of the RB sets, the receiving end may need to blindly detect the SCI, which has a higher complexity in the case of broadband. Therefore, if the transmission is only on a specific RB set, such as the primary RB set, the SCI detection complexity can be reduced because both the sender and the receiver know the position of the primary RB set).
  • the terminal sends resource indication information within the RB set.
  • the terminal sends resource indication information in the RB set set, does not send it in other RB sets, and sends PSSCH-related resource indication information in each RB set in the RB set set.
  • the RB sets in the RB set set will send multiple FRIVs and/or associated information to indicate these frequency domain resources. For the receiving end, it is not necessary to detect the RB sets outside the RB set set, thereby reducing the detection complexity.
  • the specific RB set or primary RB set is pre-defined by the protocol/network pre-configuration/network configuration/terminal determination.
  • unicast UEs can negotiate/configure one or more primary RB sets.
  • these N RB sets are RB sets with the same relative positions of frequency domain allocated resources as those on the RB sets for sending resource indication information and associated information (after detecting the associated information, the receiving end skips the blind detection action on these RB sets and directly decodes the SCI at the corresponding subchannel position, thereby reducing the detection complexity).
  • these N RB sets are pre-configured/configured by the network/determined by the terminal (after detecting this information, the receiving end only performs detection on these RB sets to reduce detection complexity).
  • the occupied and/or reserved subchannel is located in one of the resource groups
  • the occupied and/or reserved sub-channel is located in a plurality of the resource groups.
  • the subchannel indicated by the terminal can be the part of the interlace located on a certain RB set (equivalent to allowing the terminal to transmit only on the resources of the RB set part);
  • the subchannel indicated by the terminal is the entire interlace on a certain RB set (equivalent to either using all resources for transmission or not transmitting on the RB sets involved in the terminal interlace).
  • utilization of the guard band satisfies at least one of the following:
  • the resources used in the guard band are determined by the resources indicated by the first terminal;
  • Resources in the guard band that belong to the same interleaved resources as the resources occupied and/or reserved by the first terminal may be used for transmission;
  • the guard bands between consecutive resource groups can also be considered to be used for PSCCH/PSSCH transmission, that is, whether the guard band is used for PSCCH/PSSCH is implicitly indicated by the indication information, and the receiving terminal needs to determine whether the guard band is used for transmission through the indication information of the resource. Since the guard band contains PRBs belonging to multiple interlaces, one situation is that the guard band is all used for transmission, and this situation will not be repeated. Another situation is that part of the guard band is used for transmission.
  • the resources on the guard band that belong to the same interleaved resources in these resources can be used for transmission.
  • the terminal indicates that sub-channel 0 in RB set 0 and RB set 1 is used for transmission, and sub-channel 0 corresponds to interlace 0 and interlace 1. That is to say, the resources used by the terminal are all located on interlace 0 and interlace 1.
  • the PRB resources in the guard band between RB set 0 and RB set 1 that also belong to interlace 0 and interlace 1 can be used for transmission, while other PRB resources are not used for transmission.
  • the guard band between two consecutive resource groups can be considered as The band is also implicitly mapped to the corresponding sub-channel according to the corresponding relationship between the sub-channel and the interlace in the resource group.
  • the terminal considers that the resources belonging to the protection band on this sub-channel are also used for transmission.
  • the side link control information of the resource indication information includes resource indication information corresponding to the current resource group
  • the side link control information includes a first section SCI and a second section SCI
  • the mapping of the second section SCI satisfies at least one of the following:
  • the second section SCI is mapped into the corresponding resource group where the first section SCI is located;
  • the second section SCI is mapped on the resources occupied by the first terminal according to the rule of frequency domain first and then time domain.
  • PSSCH is used to transmit data.
  • the control information associated with PSSCH is carried in the SCI of PSCCH and PSSCH respectively.
  • SCI is divided into two levels, 1st stage SCI (first section SCI) in PSCCH, and 2nd stage SCI (second section SCI) in PSSCH.
  • the 2nd SCI mapping satisfies at least one of the following conditions:
  • the 2nd SCI is mapped to the RB set where the corresponding 1st SCI is located (the advantage is that the terminal can decode each RB set independently), or mapped to all RB sets occupied by PSSCH (equivalent to reusing the R16/R17 rules, with less overhead, but all RB sets need to be received for demodulation, and at this time it is necessary to rely on the 1st SCI to carry ID and other information to verify on which RB sets the terminal sent PSCCH and PSSCH).
  • the 2nd SCI is mapped according to the rule of frequency domain first and time domain second, regardless of whether the resources cross RB sets, or it is mapped according to the rule of frequency domain first and time domain second within the RB set where the corresponding 1st SCI is located.
  • the first terminal sends side link control information, wherein:
  • the second section SCI is mapped on the guard band
  • the second section SCI is not mapped on the guard band.
  • the 2nd SCI when the guard band is used for transmission of PSSCH, the 2nd SCI can be mapped on the guard band, or the 2nd SCI cannot be mapped on the guard band.
  • the number of RBs in the guard band is equal to the number of interlaces in the resource pool/RB set, and in some cases, the size of the subchannel is guaranteed to remain consistent even with the guard band.
  • the determination order of the reserved resources in the resource indication information includes at least one of the following:
  • the resources in the resource group corresponding to the resource indication information are preferentially indicated.
  • the order of determining the reserved resources may also be determined in other ways, and the embodiments of the present application do not need to be limited to this.
  • the method may include the following steps:
  • Step 701 The network side device sends downlink control information to the first terminal according to a numbering rule of a subchannel and/or a resource group, wherein the numbering rule of the subchannel and/or the resource group includes a mapping rule between a subchannel and an interleaved resource, and the downlink control information includes resource indication information, and the resource indication information is used to indicate the first terminal to use for sending occupied and/or reserved resources;
  • Step 702 The first terminal carries the resource indication information in the sidelink control information and sends the sidelink control information to the second terminal.
  • the resource indication information may be sent by the first terminal or by the network side device.
  • the network side device may send downlink control information (DCI, Downlink Control Information) to the first terminal according to the numbering rules of the subchannel and/or resource group, wherein the downlink control information includes resource indication information, and based on the resource indication information, the first terminal may be indicated to occupy or reserve resources in the first object of the unlicensed frequency band.
  • DCI downlink control information
  • SCI sidelink control information
  • the network side device can send downlink control information to the first terminal and the second terminal simultaneously according to the numbering rules of the sub-channels and/or resource groups, so that the first terminal and the second terminal can determine the resources occupied or reserved by the first terminal in the first object of the unlicensed frequency band.
  • the embodiment of the present application pre-configures the numbering rules of sub-channels and/or resource groups, and then uses the numbering rules of sub-channels and/or resource groups for resource indication in the unlicensed frequency band, wherein the resource indication information can be sent by the network side device to the terminal, for example, it can be sent to the first terminal and then sent to the second terminal by the first terminal, or the network side device sends it to the first terminal and the second terminal at the same time, so that the network side device can indicate the resources occupied or reserved by the first terminal according to the numbering rules of the sub-channels and/or resource groups, which can meet the rules such as OCB in the unlicensed frequency band, and can remain unchanged.
  • the existing framework of Sidelink ensures resource utilization, as well as communication between the sending and receiving ends in different scenarios, and how to perform resource indication and resource allocation. It can adapt to potential diversified application scenarios and various needs in the future.
  • FIG. 8 is a flowchart of another resource indication method provided in an embodiment of the present application.
  • the method may include the following steps:
  • Step 801 Detect and/or receive sidelink control information sent by the first terminal, and/or downlink control information sent by a network side device, wherein the sidelink control information and the downlink control information are generated according to the numbering rule of the subchannel and/or resource group, the numbering rule of the subchannel and/or resource group includes a mapping rule between a subchannel and an interleaved resource, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate resources occupied and/or reserved by the first terminal;
  • Step 802 Determine resources occupied and/or reserved by the first terminal according to the resource indication information.
  • the second terminal can detect and/or receive the side chain sent by the first terminal.
  • the second terminal may obtain the resource indication information from the sidelink control information and/or the downlink control information sent by the network side device, and then the resource indication information may be extracted from the sidelink control information or the resource indication information may be extracted from the downlink control information, wherein the resource indication information is generated by the first terminal or the network side device according to the numbering rules of the subchannel and/or the resource group.
  • the second terminal After the second terminal obtains the resource indication information, it may determine the resources occupied or reserved by the first terminal in the first object of the unlicensed frequency band, wherein the second terminal may determine the resources occupied or reserved by the first terminal in the first object of the unlicensed frequency band according to the numbering rules of the subchannel and/or the resource group, specifically the resources occupied or reserved by the first terminal in the first object in the unlicensed frequency band in units of subchannels.
  • the embodiment of the present application pre-configures the numbering rules of sub-channels and/or resource groups, and then uses the numbering rules of sub-channels and/or resource groups for resource indication in the unlicensed frequency band.
  • the resources occupied or reserved by the first terminal can be determined according to the resource indication information and the numbering rules of the sub-channels and/or resource groups, which can meet the rules such as OCB in the unlicensed frequency band, and the existing framework of Sidelink can be unchanged, thereby ensuring resource utilization, as well as ensuring communication between the sending and receiving ends in different scenarios, and how to perform resource indication and resource allocation, which can adapt to potential diversified application scenarios and various needs in the future.
  • the detecting and/or receiving the sidelink control information sent by the first terminal includes at least one of the following:
  • Item H-1 detecting and/or receiving sidelink control information on a resource group to obtain the resource indication information, wherein the resource indication information includes resource indication information and/or associated information on at least part of the resource group;
  • Item H-2 detecting and/or receiving sidelink control information on a resource group to obtain the resource indication information, wherein the resource indication information includes resource indication information and/or associated information on a current resource group;
  • Item H-3 performing detection and/or receiving sidelink control information on a resource group set to obtain the resource indication information, wherein the resource indication information includes resource indication information and/or associated information on at least part of the resource group set;
  • Item H-4 Detect and/or receive side-link control information on a resource group set to obtain the resource indication information, wherein the resource indication information includes at least part of the resource indication information and/or associated information on the current resource group set.
  • the resource group identifier is predefined by the protocol, preconfigured by the network side device, configured and/or determined by the first terminal, or the resource group identifier is a resource group identifier corresponding to the resources occupied and/or reserved by the first terminal in at least part of the resource groups occupied and/or reserved by the first object except the current resource group for sending the side link control information.
  • the second terminal can detect and/or receive side-link control information on each resource group of the first object to obtain resource indication information, and can also detect and/or receive side-link control information on the resource group set of the first object to obtain resource indication information.
  • part of the resource groups may refer to one or more resource groups in the first object, or all resource groups
  • part of the resource group set may refer to one or more resource group sets in the first object, or all resource group sets.
  • the second terminal can determine the resources of X1 RB sets occupied and/or reserved by the first terminal based on the FRIV of X1 RB sets, and when the second terminal blindly detects the FRIV of X1 RB sets on one RB set, it skips the detection of other RB sets of the first object, thereby reducing the detection complexity.
  • the second terminal can determine the resources of the current RB set occupied and/or reserved by the first terminal based on the FRIV of the current RB set. At this time, the second terminal can continue to detect the resource group corresponding to the resource group identifier of the N RB sets or skip the resource group corresponding to the resource group identifier of the N RB sets, thereby skipping the detection of certain RB sets of the first object, thereby reducing the detection complexity.
  • the second terminal can determine the resources of X2 RB sets occupied and/or reserved by the first terminal based on the FRIV of the X2 RB sets, and when the second terminal blindly detects the FRIV of X2 RB sets on one RB set, it skips the detection of other RB sets of the first object, thereby reducing the detection complexity.
  • the second terminal can determine the resources of the current RB set set occupied and/or reserved by the first terminal based on the FRIV of the current RB set. At this time, the second terminal can continue to detect the resource group set corresponding to the resource group identifier of the N RB sets or skip the resource group set corresponding to the resource group identifier of the N RB sets, thereby skipping the detection of certain RB set sets of the first object, thereby reducing the detection complexity.
  • the detection and/or reception of the side-link control information sent by the first terminal and/or the network side device includes at least one of the following: detecting and/or receiving the side-link control information on the resource group corresponding to the resource group identifier in the associated information, or skipping the detection and/or reception of the side-link control information on the resource group corresponding to the resource group identifier in the associated information.
  • the second terminal may detect the sidelink control information on each resource group to obtain resource indication information, so as to determine the resources occupied or and/or reserved by the first terminal according to the resource indication information.
  • the associated information may include a resource group identifier.
  • the second terminal may detect and/or receive the side-link control information on the resource group corresponding to the resource group identifier of the associated information based on the resource group identifier of the associated information, or skip detecting and/or receiving the side-link control information on the resource group corresponding to the resource group identifier of the associated information.
  • the second terminal may stop detecting other SCIs upon detecting the SCI on any RB set or RB set collection where the transmission is located, thereby reducing the complexity of blind detection.
  • the side link control information includes a first section SCI and a second section SCI.
  • the second section SCI is detected and/or decoded on resources occupied or reserved by the first terminal.
  • the second terminal detects and/or decodes the corresponding second section SCI only in the resource group where the first section SCI is located, or the second terminal detects and/or decodes the second section SCI on the resources indicated by the transmitter.
  • the second section SCI is detected and/or decoded in a non-protected band.
  • the second terminal may detect and/or decode the second section SCI on the guard band, or may not detect and/or decode the second section SCI on the guard band (non-guard band).
  • the first method is to reuse the frequency domain resource indication idea of R16/R17, that is, the terminal sends FRIV on PSCCH to indicate the starting subchannel and the number of subchannels of the reserved resources, as shown in Figure 9A below.
  • This method has a small overhead, but requires that the reserved resources must be continuous in the frequency domain even when they cross RB sets, and also requires that all terminals are not capability-restricted terminals, that is, they have the ability to detect SCI on all RB sets.
  • a relatively improved method is that the terminal sends SCI on each RB set where the PSSCH is located, that is, sends frequency domain resource indication information, as shown in Figure 9B below.
  • the frequency domain resources indicated by each SCI are still all the frequency domain resources occupied by the PSSCH.
  • the terminal when the terminal sends PSSCH/PSCCH on multiple RB sets, if subchannel and interlace are defined in the RB set, the terminal cannot use one FRIV to indicate the resource allocation on multiple RB sets, because the subchannel number on each RB set is independent. If it is still necessary to indicate all the frequency domain resources occupied by PSSCH, it is necessary to send multiple FRIVs in SCI, and each FRIV corresponds to the frequency domain resource allocation in one RB set, as shown in Figure 9C. In addition, if the position of the starting subchannel on each RB set is different, it is necessary to indicate the starting subchannel of the FRIV on other RB sets on this RB set, so that the frequency domain resource indication information of other RB sets can be calculated based on this indication.
  • the terminal only indicates the resource allocation on each RB set, as shown in Figure 9D, or indicates the resource allocation on all RB sets on some RB sets, as shown in Figure 9E.
  • the indication of resource allocation is relatively simple.
  • the second section SCI will only be mapped on an independent RB set. Since in R16/R17, the second section SCI is mapped in the frequency domain first and then in the time domain, which is independent of the RB set, it may be necessary to modify the mapping rules of the 2nd SCI under SLU (unlicensed frequency band of Sidelink).
  • SLU licensed frequency band of Sidelink
  • the first case may be similar to the first case above.
  • the terminal indicates the resource allocation on each RB set, but indicates the resource allocation on all RB sets or the resource allocation on other L RB sets, as shown in Figure 9C.
  • the receiving end can When SCI is detected on any RB set where the input is located, the detection of other SCIs can be stopped, thereby reducing the complexity of blind detection.
  • the second possibility is that the terminal only sends resource indication information on some RB sets, for example, only on one RB set, such as the lowest/highest/specific/primary RB set, as shown in Figure 9E, or sends it on some RB sets, and carries association information on some RB sets at the same time, and the first association indication is used to indicate the other N RB sets.
  • These N RB sets are RB sets with the same relative position of frequency domain allocation resources as the RB set that sends resource indication information and association information.
  • the same relative position means that the start subchannel of the frequency domain resources in each RB set is the same.
  • the receiving end can skip the blind detection action on these RB sets to reduce the detection complexity, or, these N RB sets are pre-configured/configured by the network/determined by the terminal, and after detecting this information, the receiving end only detects on these RB sets and skips other RB sets to reduce the detection complexity.
  • the embodiment of the present application defines how to indicate resources in different RB sets when the terminal sends only one SCI in the SLU scenario, or when the terminal sends SCI in each RB set. It also defines the relationship between subchannel and interlace in the SLU scenario.
  • the resource indication method provided in the embodiment of the present application can be executed by a resource indication device.
  • the resource indication device provided in the embodiment of the present application is described by taking the resource indication method executed by the resource indication device as an example.
  • an embodiment of the present application provides a resource indication device, which can be applied to a first terminal.
  • the resource indication device 100 includes:
  • the first sending module 1001 is used for the first terminal to send side link control information according to the numbering rule of the subchannel and/or resource group, wherein the numbering rule of the subchannel and/or resource group includes a mapping rule between the subchannel and the interleaved resource, and the side link control information includes resource indication information, and the resource indication information is used to indicate the resources occupied and/or reserved by the first terminal.
  • the first terminal sends sidelink control information according to the numbering rules of the subchannel and/or resource group, wherein the numbering rules of the subchannel and/or resource group may include mapping rules between subchannels and interlaced resources, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate the resources occupied and/or reserved by the first terminal.
  • the embodiment of the present application pre-configures the mapping rules between subchannels and interlaced resources, and then uses the mapping rules between subchannels and interlaced resources for resource indication on the unlicensed frequency band, so that the first terminal can indicate its occupied or reserved resources according to the mapping rules between subchannels and interlaced resources, which can meet the rules such as OCB on the unlicensed frequency band, and can not change the existing framework of Sidelink, thereby ensuring the utilization of resources, and ensuring the communication between the transmitting and receiving ends in different scenarios, as well as the problem of how to indicate resources and allocate resources, which can adapt to the potential diversified application scenarios and various needs in the future.
  • the numbering rule of the sub-channel and/or the resource group satisfies at least one of the following:
  • the subchannel includes 1 interleaved resource
  • the subchannel includes K interleaved resources, the resource group includes M interleaved resources, the K and the M is an integer, wherein K is a divisor of M, or K is not a divisor of M.
  • m is an integer, wherein the numbering rule of the subchannel and/or the resource group satisfies at least one of the following:
  • the subchannels in the resource group are numbered starting from the m+1th interleaved resource
  • the subchannels in the resource group are numbered starting from the first interleaved resource.
  • the numbering rule between the sub-channels and/or the resource groups includes at least one of the following:
  • the subchannel index of the subchannel starts from 0 and increases in the order from low to high or from high to low in the frequency domain;
  • the subchannel index of the subchannel starts from the first starting sequence number and increases in order from low to high or from high to low in the frequency domain; wherein the first starting sequence number is configured or pre-configured by the network side device, or determined by the terminal;
  • the subchannel index of the subchannel starts from 0 and increases in the order from low to high or from high to low in the frequency domain;
  • the subchannel index of the subchannel starts from the first starting sequence number and increases in the order from low to high or from high to low in the frequency domain;
  • the subchannel index of the subchannel starts from the index of the interleaved resource with the lowest or highest frequency domain position on the resource group and increases in the order from low to high or from high to low in the frequency domain;
  • the resource group index of the resource group starts from 0 and increases in the order from low to high or from high to low in the frequency domain;
  • the resource group index of the resource group starts from a second starting sequence number and increases in order from low to high or from high to low in the frequency domain; wherein the second starting sequence number is configured or pre-configured by the network side device, or determined by the terminal.
  • mapping rule between the sub-channel and the interleaved resource includes at least one of the following:
  • the subchannel index number of the subchannel is the same as the interleaved resource index of the interleaved resource in each of the corresponding resource groups;
  • the subchannel index number of the subchannel increases accordingly with the increase of the resource group identifier of each corresponding resource group and the interleaved resource index of the interleaved resource of the resource group;
  • the subchannel includes interleaved resources in a resource group having the same index order as the subchannel;
  • the subchannel includes interleaved resources in a resource group that differ from the subchannel index by N, where N is the total number of subchannels included in a resource group with a higher frequency domain or a lower frequency domain than the resource group;
  • the subchannel index of the subchannel is the same as the interleaved resource index of the interleaved resource of the corresponding first resource group;
  • the subchannel indexes of the subchannels start from 0 and are numbered in sequence.
  • the numbers of the sub-channels and/or the resource groups are predefined by a protocol or determined according to configuration and/or preconfiguration of the second object.
  • the configuration and/or pre-configuration of the second object includes a first starting sequence number, a second starting sequence number, and the at least one of a starting position of a subchannel, a total number of the subchannels, a starting position of the resource group, and a total number of the resource groups, wherein the second object includes at least one of the following:
  • Carrier fractional bandwidth; resource pool; virtual resource pool; virtual fractional bandwidth; indicative resource range.
  • the sidelink control information includes at least one of the following:
  • the starting position of the subchannel in the resource indication information in the side link control information is determined according to the configuration and/or pre-configuration of the second object
  • the resource indication information in the side link control information is determined according to the total number of sub-channels, wherein the total number of sub-channels is determined according to the configuration and/or pre-configuration of the second object;
  • the resource indication information in the sidelink control information is determined according to the starting position of the resource group, wherein the starting position of the resource group is determined according to the configuration and/or pre-configuration of the second object;
  • the resource indication information in the side link control information is determined according to the total number of resource groups, wherein the total number of resource groups is predefined by a protocol, or configured or preconfigured by a second object.
  • the first terminal sends the sidelink control information, including at least one of the following:
  • the first terminal sends side link control information on the resource group, wherein the side link control information includes resource indication information and/or associated information;
  • the first terminal sends side-link control information on a resource group set, wherein the resource group set is a part of the resource groups of the first object, or a designated resource group, or a primary resource group; the side-link control information includes resource indication information and/or associated information; the specific resource group and/or the primary resource group is predefined by a protocol, or preconfigured by a network, or configured by a network, or determined by a terminal.
  • the occupied and/or reserved subchannel is located in one of the resource groups
  • the occupied and/or reserved sub-channel is located in a plurality of the resource groups.
  • the association information includes at least one of the following:
  • a resource group identifier of a resource group in a resource group where resources occupied by the first terminal are located and a resource group in which resources in a resource group where the sidelink control information is located have the same starting position relative to the resource group;
  • a resource group identifier of a resource group in the resource group where the resources occupied by the first terminal are located and a resource group in which the resources in the resource group where the sidelink control information is located have a different starting position relative to the resource group.
  • the resource indication information includes at least one of the following:
  • the resource indication information includes resource indication information corresponding to the current resource group; wherein the current resource group is the resource group where the sidelink control information is located;
  • the resource indication information includes resource indication information of resources occupied and/or reserved by the first terminal;
  • the resource indication information includes resource indication information corresponding to a resource group at least partially occupied and/or reserved by the first terminal;
  • the resource indication information includes resource indication information corresponding to the current resource group and at least part of the other resource groups respectively.
  • the side link control information of the resource indication information includes resource indication information corresponding to the current resource group
  • the side link control information includes a first section SCI and a second section SCI
  • mapping of the second section SCI satisfies at least one of the following:
  • the second section SCI is mapped into the corresponding resource group where the first section SCI is located;
  • the second section SCI is mapped on the resources occupied by the first terminal according to the rule of frequency domain first and then time domain.
  • the first terminal sends side link control information, wherein:
  • the second section SCI is mapped on the guard band
  • the second section SCI is not mapped on the guard band.
  • the number of resource blocks included in the guard band is equal to the number of interleaved resources in the resource pool or resource group.
  • the resource group identifier is predefined by a protocol, preconfigured by a network-side device, configured, and/or determined by the first terminal.
  • the determination order of the reserved resources in the resource indication information includes at least one of the following:
  • the resources in the resource group corresponding to the resource indication information are preferentially indicated.
  • an embodiment of the present application provides a resource indication device, which can be applied to a network side device.
  • the resource indication device 110 includes:
  • a second sending module 1101 is configured for a network side device to send downlink control information to the first terminal according to a numbering rule of a subchannel and/or a resource group, wherein the numbering rule of the subchannel and/or the resource group includes a mapping rule between a subchannel and an interleaved resource, and the downlink control information includes resource indication information, and the resource indication information is used to indicate the first terminal to use for sending occupied and/or reserved resources;
  • the third sending module 1102 is configured for the first terminal to carry the resource indication information in the sidelink control information and send the information to the second terminal.
  • the embodiment of the present application pre-configures the numbering rules of sub-channels and/or resource groups, and then uses the numbering rules of sub-channels and/or resource groups for resource indication in the unlicensed frequency band, wherein the resource indication information can be sent by the network side device to the terminal, for example, it can be sent to the first terminal and then sent to the second terminal by the first terminal, or the network side device can send it to the first terminal and the second terminal at the same time, so that the network side device can indicate the resources occupied or reserved by the first terminal according to the numbering rules of the sub-channels and/or resource groups, and can meet the rules such as OCB in the unlicensed frequency band, and can not change the existing framework of Sidelink, ensure the utilization of resources, and ensure the communication between the sending and receiving ends in different scenarios, as well as the problem of how to perform resource indication and resource allocation, which can adapt to the potential diversified application scenarios and various needs in the future. .
  • an embodiment of the present application provides a resource indication device, which can be applied to a network side device.
  • the resource indication device 120 includes:
  • a receiving module 1201 is used to detect and/or receive sidelink control information sent by the first terminal and/or downlink control information sent by a network side device, wherein the sidelink control information and the downlink control information are generated according to the numbering rule of the subchannel and/or resource group, the numbering rule of the subchannel and/or resource group includes a mapping rule between a subchannel and an interleaved resource, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate the resources occupied and/or reserved by the first terminal;
  • the determination module 1202 is used to determine the resources occupied and/or reserved by the first terminal according to the resource indication information.
  • the embodiment of the present application pre-configures the numbering rules of sub-channels and/or resource groups, and then uses the numbering rules of sub-channels and/or resource groups for resource indication in the unlicensed frequency band.
  • the second terminal receives the resource indication information sent by the first terminal or the network side device
  • the resources occupied or reserved by the first terminal can be determined according to the resource indication information and the numbering rules of the sub-channels and/or resource groups, which can meet the rules such as OCB in the unlicensed frequency band, and the existing framework of Sidelink can be unchanged, thereby ensuring the utilization of resources, and ensuring the communication between the sending and receiving ends in different scenarios, as well as the problem of how to perform resource indication and resource allocation, which can adapt to potential diversified application scenarios and various needs in the future.
  • the detecting and/or receiving the sidelink control information sent by the first terminal includes at least one of the following:
  • the resource indication information includes resource indication information and/or associated information on at least part of the resource group set;
  • Detection is performed on the resource group set and/or side link control information is received to obtain the resource indication information, wherein the resource indication information includes at least part of the resource indication information and/or associated information on the current resource group set.
  • the resource group identifier is predefined by a protocol, preconfigured by a network-side device, configured and/or determined by the first terminal, or the resource group identifier is a resource group identifier corresponding to the resources occupied and/or reserved by the first terminal in at least part of the resource groups occupied and/or reserved by the first object except the current resource group for sending the side-link control information.
  • the detection and/or reception of side-link control information sent by the first terminal and/or network side device includes at least one of the following: detecting and/or receiving the side-link control information on the resource group corresponding to the resource group identifier in the associated information, or skipping the detection and/or reception of the side-link control information on the resource group corresponding to the resource group identifier in the associated information.
  • the side link control information includes a first section SCI and a second section SCI
  • the second section SCI is detected and/or decoded on resources occupied or reserved by the first terminal.
  • the second section SCI is not detected and/or decoded in the guard band.
  • the resource indication device in the embodiment of the present application can be an electronic device, such as an electronic device with an operating system, or a component in an electronic device, such as an integrated circuit or a chip.
  • the electronic device can be a terminal, or it can be other devices other than a terminal.
  • the terminal can include but is not limited to the types of terminals listed above, and other devices can be servers, network attached storage (NAS), etc., which are not specifically limited in the embodiment of the present application.
  • the resource indication device provided in the embodiment of the present application can implement each process implemented by the method embodiments of Figures 2 to 6 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • an embodiment of the present application further provides a communication device 1300, including a processor 1301 and a memory 1302, wherein the memory 1302 stores a program or instruction that can be run on the processor 1301.
  • the communication device 1300 is a terminal
  • the program or instruction is executed by the processor 1301 to implement the various steps of the above-mentioned resource indication method embodiment, and can achieve the same technical effect.
  • the communication device 1300 is a network side device
  • the program or instruction is executed by the processor 1301 to implement the various steps of the above-mentioned resource indication method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a terminal, as shown in FIG14 , which is a schematic diagram of the hardware structure of a terminal for implementing the embodiment of the present application.
  • the terminal 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409 and at least some of the components of the processor 1410.
  • the terminal 1400 may also include a power source (such as a battery) for supplying power to each component, and the power source may be logically connected to the processor 1410 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • a power source such as a battery
  • the terminal structure shown in FIG14 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange components differently, which will not be described in detail here.
  • the input unit 1404 may include a graphics processing unit (GPU) 14041 and a microphone 14042, and the graphics processor 14041 processes the image data of a static picture or video obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode.
  • the display unit 1406 may include a display panel 14061, and the display panel 14061 may be configured in the form of a liquid crystal display, an organic light emitting diode, etc.
  • the user input unit 1407 includes a touch panel 14071 and at least one of the other input devices 14072.
  • the touch panel 14071 is also called a touch screen.
  • the touch panel 14071 may include a touch detection
  • Other input devices 14072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, which will not be described in detail here.
  • the radio frequency unit 1401 can transmit the data to the processor 1410 for processing; in addition, the radio frequency unit 1401 can send uplink data to the network side device.
  • the radio frequency unit 1401 includes but is not limited to an antenna, an amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, etc.
  • the memory 1409 can be used to store software programs or instructions and various data.
  • the memory 1409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instruction required for at least one function (such as a sound playback function, an image playback function, etc.), etc.
  • the memory 1409 may include a volatile memory or a non-volatile memory, or the memory 1409 may include both volatile and non-volatile memories.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), an electrically erasable programmable read-only memory (EEPROM), or a flash memory.
  • the volatile memory may be a random access memory (RAM), a static random access memory (SRAM), a dynamic random access memory (DRAM), a synchronous dynamic random access memory (SDRAM), a double data rate synchronous dynamic random access memory (DDRSDRAM), an enhanced synchronous dynamic random access memory (ESDRAM), a synchronous link dynamic random access memory (SLDRAM) and a direct memory bus random access memory (DRRAM).
  • the memory 1409 in the embodiment of the present application includes but is not limited to these and any other suitable types of memory.
  • the processor 1410 may include one or more processing units; optionally, the processor 1410 integrates an application processor and a modem processor, wherein the application processor mainly processes operations related to an operating system, a user interface, and application programs, and the modem processor mainly processes wireless communication signals, such as a baseband processor. It is understandable that the modem processor may not be integrated into the processor 1410.
  • the radio frequency unit 1401 is used for the first terminal to send side link control information according to the numbering rule of the subchannel and/or resource group, wherein the numbering rule of the subchannel and/or resource group includes a mapping rule between the subchannel and the interleaved resource, and the side link control information includes resource indication information, and the resource indication information is used to indicate the resources occupied and/or reserved by the first terminal.
  • the numbering rule of the sub-channel and/or the resource group satisfies at least one of the following:
  • the subchannel includes 1 interleaved resource
  • the subchannel includes K interleaved resources, the resource group includes M interleaved resources, K and M are integers, wherein K is a divisor of M, or K is not a divisor of M.
  • m is an integer, wherein the numbering rule of the subchannel and/or the resource group satisfies at least one of the following:
  • the subchannels in the resource group are numbered starting from the m+1th interleaved resource
  • the subchannels in the resource group are numbered starting from the first interleaved resource.
  • the numbering rule between the sub-channels and/or the resource groups includes at least one of the following:
  • the subchannel index of the subchannel starts from 0 and increases in the order from low to high or from high to low in the frequency domain;
  • the subchannel index of the subchannel starts from the first starting sequence number and increases in order from low to high or from high to low in the frequency domain; wherein the first starting sequence number is configured or pre-configured by the network side device, or determined by the terminal;
  • the subchannel index of the subchannel starts from 0 and increases in the order from low to high or from high to low in the frequency domain;
  • the subchannel index of the subchannel starts from the first starting sequence number and increases in the order from low to high or from high to low in the frequency domain;
  • the subchannel index of the subchannel starts from the index of the interleaved resource with the lowest or highest frequency domain position on the resource group and increases in the order from low to high or from high to low in the frequency domain;
  • the resource group index of the resource group starts from 0 and increases in the order from low to high or from high to low in the frequency domain;
  • the resource group index of the resource group starts from a second starting sequence number and increases in order from low to high or from high to low in the frequency domain; wherein the second starting sequence number is configured or pre-configured by the network side device, or determined by the terminal.
  • mapping rule between the sub-channel and the interleaved resource includes at least one of the following:
  • the subchannel index number of the subchannel is the same as the interleaved resource index of the interleaved resource in each of the corresponding resource groups;
  • the subchannel index number of the subchannel increases accordingly with the increase of the resource group identifier of each corresponding resource group and the interleaved resource index of the interleaved resource of the resource group;
  • the subchannel includes interleaved resources in a resource group having the same index order as the subchannel;
  • the subchannel includes interleaved resources in a resource group that differ from the subchannel index by N, where N is the total number of subchannels included in a resource group with a higher frequency domain or a lower frequency domain than the resource group;
  • the subchannel index of the subchannel is the same as the interleaved resource index of the interleaved resource of the corresponding first resource group;
  • the subchannel indexes of the subchannels start from 0 and are numbered in sequence.
  • the numbers of the sub-channels and/or the resource groups are predefined by a protocol or determined according to configuration and/or preconfiguration of the second object.
  • the configuration and/or pre-configuration of the second object includes at least one of a first starting sequence number, a second starting sequence number, a starting position of the sub-channel, a total number of the sub-channels, a starting position of the resource group, and a total number of the resource groups, and the second object includes at least one of the following:
  • Carrier fractional bandwidth; resource pool; virtual resource pool; virtual fractional bandwidth; indicative resource range.
  • the sidelink control information includes at least one of the following:
  • the starting position of the subchannel in the resource indication information in the side link control information is determined according to the configuration and/or pre-configuration of the second object
  • the resource indication information in the side link control information is determined according to the total number of sub-channels, wherein the total number of sub-channels is determined according to the configuration and/or pre-configuration of the second object;
  • the resource indication information in the sidelink control information is determined according to the starting position of the resource group, wherein the starting position of the resource group is determined according to the configuration and/or pre-configuration of the second object;
  • the resource indication information in the side link control information is determined according to the total number of resource groups, wherein the total number of resource groups is predefined by a protocol, or configured or preconfigured by a second object.
  • the first terminal sends the sidelink control information, including at least one of the following:
  • the first terminal sends side link control information on the resource group, wherein the side link control information includes resource indication information and/or associated information;
  • the first terminal sends side-link control information on a resource group set, wherein the resource group set is a part of the resource groups of the first object, or a designated resource group, or a primary resource group; the side-link control information includes resource indication information and/or associated information; the specific resource group and/or the primary resource group is predefined by a protocol, or preconfigured by a network, or configured by a network, or determined by a terminal.
  • the occupied and/or reserved subchannel is located in one of the resource groups
  • the occupied and/or reserved sub-channel is located in a plurality of the resource groups.
  • the association information includes at least one of the following:
  • a resource group identifier of a resource group in a resource group where resources occupied by the first terminal are located and a resource group in which resources in a resource group where the sidelink control information is located have the same starting position relative to the resource group;
  • a resource group identifier of a resource group in the resource group where the resources occupied by the first terminal are located and a resource group in which the resources in the resource group where the sidelink control information is located have a different starting position relative to the resource group.
  • the resource indication information includes at least one of the following:
  • the resource indication information includes resource indication information corresponding to the current resource group; wherein the current resource group is the resource group where the sidelink control information is located;
  • the resource indication information includes resource indication information of resources occupied and/or reserved by the first terminal;
  • the resource indication information includes resource indication information corresponding to a resource group at least partially occupied and/or reserved by the first terminal;
  • the resource indication information includes resource indication information corresponding to the current resource group and at least part of the other resource groups respectively;
  • the side link control information of the resource indication information includes the resource indication information corresponding to the current resource group
  • the side link control information includes a first section SCI and a second section SCI
  • the mapping of the second section SCI The shot satisfies at least one of the following:
  • the second section SCI is mapped into the corresponding resource group where the first section SCI is located;
  • the second section SCI is mapped on the resources occupied by the first terminal according to the rule of frequency domain first and then time domain.
  • the first terminal sends side link control information, wherein:
  • the second section SCI is mapped on the guard band
  • the second section SCI is not mapped on the guard band.
  • the number of resource blocks included in the guard band is equal to the number of interleaved resources in the resource pool or resource group.
  • the resource group identifier is predefined by a protocol, preconfigured by a network-side device, configured, and/or determined by the first terminal.
  • the determination order of the reserved resources in the resource indication information includes at least one of the following:
  • the resources in the resource group corresponding to the resource indication information are preferentially indicated.
  • the radio frequency unit 1401 is used to detect and/or receive sidelink control information sent by the first terminal, and/or downlink control information sent by the network side device, wherein the sidelink control information and the downlink control information are generated according to the numbering rule of the subchannel and/or resource group, the numbering rule of the subchannel and/or resource group includes a mapping rule between a subchannel and an interleaved resource, and the sidelink control information includes resource indication information, and the resource indication information is used to indicate the resources occupied and/or reserved by the first terminal;
  • the radio frequency unit 1401 is used to determine the resources occupied and/or reserved by the first terminal according to the resource indication information.
  • the detecting and/or receiving the sidelink control information sent by the first terminal includes at least one of the following:
  • the resource indication information includes resource indication information and/or associated information on at least part of the resource group set;
  • Detection is performed on the resource group set and/or side link control information is received to obtain the resource indication information, wherein the resource indication information includes at least part of the resource indication information and/or associated information on the current resource group set.
  • the resource group identifier is predefined by a protocol, preconfigured by a network-side device, configured and/or determined by the first terminal, or the resource group identifier is a resource group identifier corresponding to the resources occupied and/or reserved by the first terminal in at least part of the resource groups occupied and/or reserved by the first object except the current resource group for sending the side-link control information.
  • the detection and/or reception of side-link control information sent by the first terminal and/or network side device includes at least one of the following: detecting and/or receiving the side-link control information on the resource group corresponding to the resource group identifier in the associated information, or skipping the detection and/or reception of the side-link control information on the resource group corresponding to the resource group identifier in the associated information.
  • the side link control information includes a first section SCI and a second section SCI
  • the second section SCI is detected and/or decoded on resources occupied or reserved by the first terminal.
  • the second section SCI is detected and/or decoded in a guard band.
  • the network side device 1500 includes: an antenna 151, a radio frequency device 152, a baseband device 153, a processor 154 and a memory 155.
  • the antenna 151 is connected to the radio frequency device 152.
  • the radio frequency device 152 receives information through the antenna 151 and sends the received information to the baseband device 153 for processing.
  • the baseband device 153 processes the information to be sent and sends it to the radio frequency device 152, and the radio frequency device 152 processes the received information and sends it out through the antenna 151.
  • the method executed by the network-side device in the above embodiment may be implemented in the baseband device 153, which includes a baseband processor.
  • the baseband device 153 may include, for example, at least one baseband board, on which a plurality of chips are arranged, as shown in FIG15 , wherein one of the chips is, for example, a baseband processor, which is connected to the memory 155 through a bus interface to call a program in the memory 155 and execute the network device operations shown in the above method embodiment.
  • the network side device may also include a network interface 156, which is, for example, a common public radio interface (CPRI).
  • a network interface 156 which is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1500 of the embodiment of the present invention also includes: instructions or programs stored in the memory 155 and executable on the processor 154.
  • the processor 154 calls the instructions or programs in the memory 155 to execute the method shown in Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a network side device.
  • the network side device 1600 includes: a processor 1601, a network interface 1602 and a memory 1603.
  • the network interface 1602 is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the network side device 1600 of the embodiment of the present invention also includes: instructions or programs stored in the memory 1603 and executable on the processor 1601.
  • the processor 1601 calls the instructions or programs in the memory 1603 to execute the methods executed by the modules shown in Figure 7 and achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a readable storage medium, on which a program or instruction is stored.
  • a program or instruction is stored.
  • the various processes of the above-mentioned resource indication method embodiment are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the processor is the processor in the terminal described in the above embodiment.
  • the readable storage medium includes It includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
  • An embodiment of the present application further provides a chip, which includes a processor and a communication interface, wherein the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the various processes of the above-mentioned resource indication method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • the chip mentioned in the embodiments of the present application can also be called a system-level chip, a system chip, a chip system or a system-on-chip chip, etc.
  • the embodiment of the present application further provides a computer program/program product, which is stored in a storage medium.
  • the computer program/program product is executed by at least one processor to implement the various processes of the above-mentioned resource indication method embodiment, and can achieve the same technical effect. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a resource indication system, including: a terminal and a network side device, wherein the terminal can be used to execute the steps of the resource indication method described above, and the network side device can be used to execute the steps of the resource indication method described above.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the technical solution of the present application can be embodied in the form of a computer software product, which is stored in a storage medium (such as ROM/RAM, a magnetic disk, or an optical disk), and includes a number of instructions for enabling a terminal (which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in each embodiment of the present application.
  • a storage medium such as ROM/RAM, a magnetic disk, or an optical disk
  • a terminal which can be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.
  • modules, units, and sub-units can be implemented in one or more application specific integrated circuits (ASIC), digital signal processors (DSP), digital signal processing devices (DSPD), programmable logic devices (PLD), field programmable gate arrays (FPGA), general-purpose processors, controllers, microcontrollers, microprocessors, other electronic units for performing the functions described in the present disclosure or a combination thereof.
  • ASIC application specific integrated circuits
  • DSP digital signal processors
  • DSPD digital signal processing devices
  • PLD programmable logic devices
  • FPGA field programmable gate arrays
  • the technology described in the embodiments of the present disclosure can be implemented by a module (such as a process, function, etc.) that performs the functions described in the embodiments of the present disclosure.
  • the software code can be stored in a memory and executed by a processor.
  • the memory can be implemented in the processor or outside the processor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种资源指示方法、终端及网络侧设备,属于通信领域,本申请实施例的资源指示方法包括:第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源。

Description

资源指示方法、终端及网络侧设备
相关申请的交叉引用
本申请要求在2023年04月06日提交中国专利局、申请号为202310370394.9、名称为“资源指示方法、终端及网络侧设备”,以及在2022年9月30日提交中国专利局、申请号为202211224194.4、名称为“资源指示方法、终端及网络侧设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种资源指示方法、终端及网络侧设备。
背景技术
长期演进(Long Term Evolution,LTE)系统长从第12个发布版本开始支持旁链路(Sidelink,或译为副链路,侧链路,边链路等)传输,即终端(User Equipment,UE)之间直接在物理层上进行数据传输。LTE Sidelink是基于广播进行通讯的,虽然可用于支持车联网(vehicle to everything,V2X)的基本安全类通信,但不适用于其他更高级的V2X业务。5G NR(New Radio,新无线/新空口)系统将支持更加先进的Sidelink传输设计,例如,单播,多播或组播等,从而可以支持更全面的业务类型。
在未来通信系统中,Sidelink的非授权频段(unlicensed band)可以作为授权频段(licensed band)的补充帮助运营商对服务进行扩容。然而,在非授权频段,需要满足OCB(OccupiedChannel Bandwidth,非授权频段针对发送信号的占用带宽)要求,即每次传输需要占满LBT(Listen before Talk,先听后说)带宽的80%。但是,目前在非授权频段上仍然缺乏有效的资源指示方式。
发明内容
本申请实施例提供一种资源指示方法、终端及网络侧设备,能够解决在非授权频段上仍然缺乏有效的资源指示方式的问题。
第一方面,提供了一种资源指示方法,该方法包括:
第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源。
第二方面,提供了一种资源指示方法,该方法包括:
网络侧设备根据子信道和/或资源组的编号规则向所述第一终端发送下行链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述下行链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端用于发送占用和/或预留的资源;
和/或,所述第一终端将所述资源指示信息承载于旁链路控制信息后发送至所述第二 终端。
第三方面,提供了一种资源指示方法,该方法包括:
检测和/或接收所述第一终端发送的旁链路控制信息,和/或网络侧设备发送的下行链路控制信息,其中,所述旁链路控制信息和下行链路控制信息根据所述根据子信道和/或资源组的编号规则生成,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源;
根据所述资源指示信息,确定所述第一终端占用和/或预留的资源。
第四方面,提供了一种资源指示的装置,该装置包括:
第一发送模块,用于第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源。
第五方面,提供了一种资源指示的装置,该装置包括:
第二发送模块,用于网络侧设备根据子信道和/或资源组的编号规则向所述第一终端发送下行链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述下行链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端用于发送占用和/或预留的资源;
第三发送模块,用于所述第一终端将所述资源指示信息承载于旁链路控制信息后发送至所述第二终端。
第六方面,提供了一种资源指示的装置,该装置包括:
接收模块,用于检测和/或接收所述第一终端发送的旁链路控制信息,和/或网络侧设备发送的下行链路控制信息,其中,所述旁链路控制信息和下行链路控制信息根据所述根据子信道和/或资源组的编号规则生成,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源;
确定模块,用于根据所述资源指示信息,确定所述第一终端占用和/或预留的资源。
第七方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面或者第三方面所述的方法的步骤。
第八方面,提供了一种通信设备,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤;其中,所述通信设备为网络侧设备或者终端设备。
第九方面,提供了一种资源指示系统,包括:第一终端和通信设备,所述第一终端可用于执行如上述第一方面和第三方面所述的资源指示方法的步骤,所述通信设备可用 于执行如上述第二方面所述的资源指示方法的步骤。
第十方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤,或者实现如第三方面所述的方法的步骤。
第十一方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第十二方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面或者第二方面所述的方法的步骤。
第十三方面,提供了一种传输装置/设备,其中,包括所述装置/设备(被配置成)用于执行以实现如第一方面或者第二方面所述的方法的步骤。
在本申请实施例中,第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,子信道和/或资源组的编号规则可以包括子信道和交错资源之间的映射规则,旁链路控制信息包括资源指示信息,资源指示信息用于指示第一终端占用和/或预留的资源。本申请实施例预先配置子信道和交错资源之间的映射规则,然后将子信道和交错资源之间的映射规则用于在非授权频段上资源指示,使得第一终端可以根据子信道和交错资源之间的映射规则来指示其占用或者预留的资源,可以满足非授权频段上OCB等规则,且可以不改变Sidelink的已有框架,保证了资源的利用率,以及在不同场景下保证了收发两端的通信,以及如何进行资源指示和资源分配的问题,可以适应未来潜在的多样化应用场景和各种需求。
附图说明
图1是本申请实施例可应用的一种无线通信系统的框图;
图2是本申请实施例中的一种资源指示方法的流程图;
图3是本申请实施例中的一种subchannel与interlace的关系的示意图之一
图4是本申请实施例中的一种subchannel与interlace的关系的示意图之二;
图5是一种能力受限终端的资源指示的示意图;
图6是本申请实施例中的一种能力受限终端的资源指示的示意图;
图7是本申请实施例中的另一种资源指示方法的流程图;
图8是本申请实施例中的又一种资源指示方法的流程图;
图9A-图9E是本申请实施例中的一种资源指示的示意图;
图10是本申请实施例中的一种资源指示装置的结构框图;
图11是本申请实施例中的另一种资源指示装置的结构框图;
图12是本申请实施例中的又一种资源指示装置的结构框图;
图13是本申请实施例中的一种通信设备的结构框图;
图14是本申请实施例中的一种终端设备的结构框图;
图15是本申请实施例中的一种网络侧设备的结构框图;
图16是本申请实施例中另一种网络侧设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、 智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的资源指示进行详细地说明。
第一方面,参见图2所示,为本申请实施例所提供的一种资源指示方法的实施流程图,该方法可以包括以下步骤:
步骤201、第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源。
在具体实现中,为了与NR部署保持一致并尽可能的最大化基于NR的非授权频段接入,非授权频段可以工作在5GHz,37GHz和60GHz频段。非授权频段的大带宽(80MHz或者100MHz)能够减小基站和UE的实施复杂度。由于非授权频段由多种无线接入技术(RAT,Radio Access Technology)共用,例如WiFi,雷达,长期演进-授权频谱辅助接入(long term evolution-licensed-assisted access,LTE-LAA)等等,因此在某些国家或者区域,非授权频段在使用时必须符合regulation(规则)以保证所有设备可以公平的使用非授频段的资源,例如LBT(listen before talk,先听后说),MCOT(maximum channel occupancy time,最大信道占用时间)等规则。当传输节点需要发送信息时,需要先做LBT时,对周围的节点进行功率检测(energy detection,ED),当检测到的功率低于一个门限时,认为信道为空(idle),传输节点可以进行发送。反之,则认为信道为忙,传输节点不能进行发送。其中,传输节点可以是基站,UE,WiFi AP等等。传输节点开始传输后,占用的信道时间COT(Channel OccupancyTime,信道占用时间)不能超过MCOT。此外,根据OCB要求,在非授权频段上,传输节点在每次传输时要占用整个频带的至少70%(60GHz)或者80%(5GHz)的带宽。
在NRU中常用的LBT的类型(type)可以分为Type1,Type2A,Type2B和Type2C。Type1LBT是基于回退(back-off)的信道侦听机制,当传输节点侦听到信道为忙时,进行回退,继续做侦听,直到侦听到信道为空。Type2C是发送节点不做LBT,即no LBT 或者immediate transmission。Type2A和Type2B LBT是one-shot LBT,即节点在传输前做一次LBT,信道为空则进行传输,信道为忙则不传输。区别是Type2A在25us内做LBT,适用于在共享COT时,两个传输之间的gap(时间间隔)大于等于25us。而Type2B在16us内做LBT,适用于在共享COT时,两个传输之间的gap等于16us。此外,还有Type2LBT,适用于LAA/eLAA/FeLAA,当共享COT时,两个传输之间的gap大于等于25us,eNB和UE可以采用Type 2LBT。此外,在frequency range 2-2中,LBT的类型有Type1,Type2和Type3.Type1是基于回退的信道侦听机制,Type2是one-shot LBT,在8us内做5us的LBT,Type3是不做LBT。
目前在Sidelink中,第一终端只会在传输所在的资源上发送一个SCI(Sidelink Control information,旁链路控制信息),且SCI承载的资源指示域会以subchannel(子信道)为单位指示此次传输的资源,其中,subchannel可以包括1个interlace或者多个interlace。但是,由于在非授权频段上传输时,PSSCH(Physical Sidelink Shared Channel,物理旁链路共享信道)等信道接入的单位是RB set,且需要满足OCB需求,因此引入interlace(交错资源)来满足非授权频段的规则。具体地,通过引入interlace,可以充分利用非授权频段,以及能满足OCB规定,资源分配时利用了interlace结构,一个interlace由均匀分布在系统带宽上的整数个资源块(RB,Resource Block)组成,资源指示时以interlace为基本单位,分配给每个终端的资源至少为一个interlace。在非授权频段上,终端需要先执行LBT,当LBT成功后才可以进行传输,LBT的单位是RB set(资源组),具体地,1个LBT通常占20MHz的带宽,Sidelink整个非授权频段的载波带宽基于LBT被划分为多个RB set,举例来说,终端配置的BWP(Bandwidth Part,部分带宽)的带宽是40MHz、60MHz、80MHz等,如果BWP是40MHz,则可以有2个LBT(或者说是2个RB set),如果BWP是60MHz,则可以有3个LBT(或者说是3个RB set),如果BWP是80MHz,则可以有4个LBT(或者说是4个RB set),其中,每个RB set由多个interlace组成。为了尽量保留Sidelink的已有框架,在非授权频段上进行资源选择,资源指示和资源排除,本申请实施例研究了subchannel和RB set的interlace之间的关系。
在本申请实施例中,subchannel和interlace的关系可以通过subchannel和/或RB set的编号规则实现,其中,subchannel和/或RB set的编号规则可以包括subchannel和interlace之间的映射规则。具体地,在第一终端与其他终端,例如第二终端进行通信时,第一终端以subchannel为单位指示需要占用或者预留的资源,然后根据subchannel和/或RB set的编号规则发SCI至第二终端,其中,SCI包括资源指示信息(FRIV,Frequency reservation indicator value),资源指示信息用于指示第一终端占用和/或预留的资源,第二终端接收到资源指示信息后,就可以根据资源指示信息确认第一终端占用或者预留的资源。其中,第一终端占用的资源指的是发送SCI的slot(时隙)上用于传输第一对象的资源,还可以描述为用于传输或发送的资源。
具体地,资源指示信息用于指示第一终端在非授权频段的第一对象占用的资源,资 源可以包括频域资源和时域资源,其中,第一对象包括以下至少一项:
PSCCH(Physical Sidelink Control Channel,物理旁链路控制信道);
PSSCH(Physical Sidelink Shared Channel,物理旁链路共享信道);
PSFCH(Physical Sidelink Feedback Channel,物理旁链路反馈信道;
SSB(Synchronization Signal,同步广播块)等等。
由上述步骤201可知,在本申请实施例中,第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,旁链路控制信息包括资源指示信息,资源指示信息用于指示第一终端占用和/或预留的资源。本申请实施例预先配置子信道和交错资源之间的映射规则,然后将子信道和交错资源之间的映射规则用于在非授权频段上资源指示,使得第一终端可以根据子信道和交错资源之间的映射规则来指示其占用或者预留的资源,可以满足非授权频段上OCB等规则,且可以不改变Sidelink的已有框架,保证了资源的利用率,以及在不同场景下保证了收发两端的通信,以及如何进行资源指示和资源分配的问题,可以适应未来潜在的多样化应用场景和各种需求。
在本实施例中,资源组可以是RB set,channel,PRB的集合等。
作为一个可选实施例,所述子信道和/或所述资源组的编号规则满足以下至少一项:
所述子信道包括1个交错资源;
或者,
所述子信道包括K个交错资源,所述资源组包括M个交错资源,所述K和所述M为整数,可选地,所述K是所述M的约数,或者,所述K不是所述M的约数。
在Sidelink的非授权频段(SLU)中,subchannel的大小可以被固定为1个interlace,也可能是可配置,例如配置为subchannel等于K个interlace,此时subchannel的大小就随着K的配置值而变化,使得配置更加灵活。
具体地,当subchannel由K个interlace组成时,且此时RB set包括M个interlace,可选地,此时K可以是M的约数(或者说M是K的倍数),或者,K可以不是M的约数。
作为一个可选实施例,当所述K不是所述M的约数,对所述M和所述K进行取模运算得到的余数为m时,所述m为整数,其中,所述子信道和/或所述资源组的编号规则满足以下至少一项:
所述资源组中的子信道从第m+1个交错资源开始编号;
所述资源组中的子信道从第1个交错资源开始编号。
当配置的K不是M的约数时,假设对M和K进行取模运算得到的余数为m,即mod(M,K)=m,则此时subchannel和/或RB set的编号规则满足以下至少一项:
A-1项:起始subchannel从第m+1个interlace开始编号;
A-2项:起始subchannel从第1个interlace开始编号;
此外,对于多余的m个interlace可以进行如下处理:
A-3项:多余的m个interlace不被用于传输;
A-4项:多余的m个interlace组成一个subchannel;
A-5项:多余的m个interlace都被配置为guard band(保护频段);
A-6项:多余的m个interlace被配置在guard band的相邻频域。
其中,非授权频段包括对应的第二对象,第二对象可以包括以下至少一项:载波;部分带宽(bandwidth part,BWP);资源池(resource pool);虚拟资源池;虚拟部分带宽;可指示资源范围。
在本申请实施例中,当subchannel等于K个interlace时,而此时RB set或第二对象是由M个interlace组成时,可能会出现K无法被M整除的情况,在这种情况下,需要定义剩余的interlace如何处理。例如,此时起始subchannel可以是从interlace 0(第1个interlace)开始编号,即将频域位置最高的m个interlace空出来,则这些interlace不会被用于传输和/或接收。同时,此时起始subchannel可以是从interlace m(第m+1个interlace)开始编号,还可能是位置最低的m个interlace空出来。又或者,将这些interlace配置为guard band,或配置在guard band的频域相邻位置,起到更好的隔离带宽的作用。除此之外,额外的m个interlace还可以被编为一个特殊的subchannel,如此终端仍然可以使用这些interlace进行传输。
作为一个可选实施例,所述子信道和/或所述资源组的编号规则包括以下至少一项:
B-1项:在第二对象上,所述子信道的子信道索引从0开始,按频域由低到高或由高到低的顺序增加;
B-2项:在第二对象上,所述子信道的子信道索引从第一起始序号开始,按频域由低到高或由高到低的顺序增加;其中,第一起始序号由网络侧设备配置或预配置,或终端确定;例如,终端会根据指示给自己的第一起始序号,在资源池内对subchannel进行编号,此时资源池的起始subchannel不再是0,而是第一起始序号。
B-3项:在至少部分资源组上,所述子信道的子信道索引从0开始,按频域由低到高或由高到低的顺序增加;例如,每个资源组上的子信道的索引都从0开始,或者从第二个资源组从0开始。
B-4项:在至少部分资源组上,所述子信道的子信道索引从第一起始序号开始,按频域由低到高或由高到低的顺序增加;
B-5项:在至少部分资源组上,所述子信道的子信道索引从所述资源组上频域位置最低或最高的交错资源的索引开始,按频域由低到高或由高到低的顺序增加;
B-6项:在第二对象上,所述资源组的资源组索引从0开始,按频域由低到高或由高到低的顺序增加;
B-7项:在第二对象上,所述资源组的资源组索引从第二起始序号开始,按频域由低到高或由高到低的顺序增加;其中,第二起始序号由网络侧设备配置或预配置,或终端 确定。例如,终端会根据指示给自己的第二起始序号,确认资源池内的RB set的索引,以便于理解接收到的资源指示,或自己进行资源指示。
此时,子信道对应的interlace可能是与子信道索引相同的interlace,或者索引上加一个偏移值的interlace,或者是频域内顺序相同的interlace等,具体参照子信道与interlace之间的映射规则。
在本申请实施例中,在对subchannel和RB set编号时,subchannel的子信道索引(subchannel index)在第二对象的起点与interlace的交错资源索引(interlace index)的起点可以不同,或者subchannel index的起点与interlace的interlace index在第二对象的起点可以相同。
具体地,在对subchannel进行编号时,subchannel index在第二对象进行编号,也可以在部分资源组上进行编号,其中,subchannel index可以从第一起始序号开始,也可以从0开始,按频域由低到高或由高到低的顺序增加。对RB set进行编号时,interlace index在第二对象进行编号,其中,interlace index可以从第二起始序号开始,也可以从0开始,按频域由低到高或由高到低的顺序增加。
在本申请实施例中,当subchannel在RB set内编号,FRIV指示的P个资源位于同一个RB set内(此时,一个FRIV只可以预留当前RB set内的资源,以节省开销,且更符合subchannel独立编号的出发点)。当subchannel在RB set内编号,且PSSCH所在的每个RB set内都发送FRIV时,第一指示信息包括第一RB set指示,所述第一Rb set指示用于指示FRIV的后P-1个资源所在的RB set标识(index或相对当前RB set的位置/gap)。
具体地,当1subchannel=1interlace,或者说interlace在一个RB set内的部分
1、subchannel index=interlace index(此时subchannel在每个RB set里面独立编号)。
2、subchannel index=RB set index*interlace number+interlace index(此时subchannel在resource pool里面编号,假设从0开始)。例如,参照图3,是本发明实施例提供的一种subchannel与interlace的关系的示意图之一,图中包括RB set 0和RB set 1两个RB set,其中,每个RB set分别包括10个interlace。在第一个RB set(RB set 0)时,subchannel index可以与RB set 0的interlace index相同,例如在图3中,subchannel index 0对应RB set 0中的interlace index 0,……subchannel index 9对应RB set 0中的interlace index 9,然后,subchannel index随着第二个RB set(即RB set 1)内的subchannel index会在interlace index的基础上加上RB set 0的interlace number(交错资源数目,此处为10个),例如在图3中,subchannel index 10对应RB set 1中的interlace index 2,……subchannel index 19对应RB set 0中的interlace index 1。
当1subchannel=K interlace时,或者说interlace在一个RB set内的部分。
1、subchannel index=interlace(K*index+1)~interlace(K*(index+1))。
作为一个可选实施例,所述子信道和所述交错资源之间的映射规则包括以下至少一 项:
C-1项:所述子信道的子信道索引编号与对应的每个所述资源组中的所述交错资源的交错资源索引相同;即,子信道包括与所述子信道索引相同的交错资源,或资源组内与所述子信道索引相同的资源。例如,子信道0会映射到index为0的交错资源上,或者说index为0的interlace会映射到subchannel 0上。进一步的解释,当终端指示的资源为subchannel 0时,这个资源的实际物理资源位置是在interlace 0上。
C-2项:所述子信道的子信道索引编号随着对应的每个所述资源组的资源组标识和所述资源组的所述交错资源的交错资源索引的增加相应增加;例如,在RB set 0里面,子信道索引为1的资源会映射到interlace 1上,但是随着频域的增加,子信道的索引也会随之增加,此时,假设每个RB set里面包含5个subchannel,因此在RB set 1里面,此时interlace1的资源会映射到子信道5上面,或者说与子信道5对应。
C-3项:所述子信道包括资源组内与所述子信道索引顺序相同的交错资源;例如,资源组内第一个子信道的资源会映射到第一个interlace的资源上,因为此时资源组的起始interlace index可能与起始subchannel index不同。
C-4项:所述子信道包括资源组内与所述子信道索引相差N的交错资源,其中,N为比所述资源组频域更高或频域更低的资源组包括的总子信道数目;
C-5项:第一个所述资源组中,所述子信道的子信道索引与对应的第一个所述资源组的交错资源的交错资源索引相同;
C-6项:第一个所述资源组中,所述子信道的子信道索引从0开始,按顺序进行编号。所述顺序可以是频域顺序,例如频域从低到高的顺序,或者频域从高到低的顺序。
可选地,所述subchannel和/或所述RB set的编号可以由协议预定义或根据第二对象的配置和/或预配置确定,所述RB set的资源组标识可以通过协议预定义、网络侧设备预配置、配置和/或所述第一终端确定,本申请实施例均对此无需加以限制。
示例性地,参照图4,是本发明实施例提供的一种subchannel与interlace的关系的示意图,图中包括RB set 0和RB set 1两个RB set,其中,每个RB set分别包括10个interlace。
对于C-1项,参照图4,在RB set 0中,subchannel包括RB set 0内与子信道索引相同的交错资源,例如,subchannel index 0对应RB set 0中的interlace index 0,……subchannel index 9对应RB set 0中的interlace index 9。
对于C-2项:subchannel包括资源组内与subchannel index相差一个偏移值的interlace,其中,偏移值为整数,例如,偏移值可以2。
对于C-3项,参照图4,在RB set 1中,subchannel包括RB set 1内与subchannel index顺序相同的interlace,例如subchannel index 0对应RB set 1中的interlace index 2,……subchannel index 9对应RB set 1中的interlace index1。
对于C-4项,subchannel包括RB set内与subchannel index相同的interlace,例如,都包括index 0、index 1等等。
对于C-5项,第一个RB set中,subchannel的subchannel index与对应的第一个RB set的interlace的interlace index相同,例如,index都是1,都是2等等。
对于C-6项,第一个RB set中,subchannel的subchannel index从0开始,按顺序进行编号,例如,0,1,2……9。
作为一个可选实施例,第一资源组中子信道与交错资源的映射规则与最低或最高资源组中子信道与交错资源的映射规则相同,所述第一资源组为最低或最高资源组之外的其他资源组。
可以理解的是,所述子信道和所述交错资源之间的映射规则包括:
资源池或其他第二对象上的第一资源组中子信道和所述交错资源之间的映射规则相同,且都等于最低RB set子信道和所述交错资源之间的映射规则。此时第一资源组为第二对象上除最低RB set之外的所有RB set。例如,在一个资源池中,最低RB set上的sub-channel index是从0开始的,而此时RB set上的最低PRB属于interlace 0,则此RB set上属于interlace 0的PRB都属于或者说映射到sub-channel 0中,而属于interlace 1的PRB都属于或者说映射到sub-channel 1中,以此类推。则在频域位置更高的RB set 1等RB set上,属于interlace 0的PRB也都属于或者说映射到RB set 1中的sub-channel 0中,属于interlace 1的PRB都属于或者说映射到RB set 1中的sub-channel 1中,以此类推。又例如,在一个资源池中,最低RB set上的sub-channel index是从0开始的,且此RB set上属于interlace 2和interlace 3的PRB都属于或者说映射到sub-channel 0中,而属于interlace 4和interlace5的PRB都属于或者说映射到sub-channel 1中,,而由于资源池中只有10个interlace,则属于interlace 0和interlace 1的PRB都属于或者说映射到sub-channel 5中,以此类推,循环往复。则此时,在频域位置更高的RB set 1等RB set上,RB set 1中的属于interlace 2和interlace 3的PRB都属于或者说映射到RB set 1中的sub-channel 0中,而属于interlace 4和interlace5的PRB都属于或者说RB set 1中的映射到sub-channel 1中,属于interlace 0和interlace 1的PRB都属于或者说映射到sub-channel 5中,以此类推,循环往复。可以看到,这也可以描述为所有资源组中子信道与interlace的映射规则相同。例如,每个资源组中subchannel 0对应的都是此资源组中的interlace 0和interlace 1。
作为一个可选实施例,所述旁链路控制信息,包括以下至少一项:
D-1项:所述旁链路控制信息中的资源指示信息中的子信道的起始位置根据第二对象的配置和/或预配置确定;
D-2项:所述旁链路控制信息中的资源指示信息根据子信道的总个数确定,其中所述子信道的总个数根据第二对象的配置和/或预配置确定;
D-3项:所述旁链路控制信息中的资源指示信息根据资源组的起始位置确定,其中所述资源组的起始位置根据第二对象的配置和/或预配置确定;
D-4项:所述旁链路控制信息中的资源指示信息根据资源组的总个数确定,其中所述资源组的总个数由协议预定义,或第二对象配置、预配置。
其中,所述第二对象的配置和/或预配置可以包括第一起始序号,第二起始序号,所述子信道的起始位置、所述子信道的总个数、所述资源组的起始位置,所述资源组的总个数中的至少一项。
作为本申请的一个可选示例,第二对象预配置/配置包括以下内容的至少之一:
1)第一起始序号(例如可以是2等),第二起始序号(例如可以是3等);例如,资源池上的第一个subchannel的起始序号可以是第一起始序号。资源池上的第一个RB set的起始序号可以是第二起始序号。
2)频带的起始位置,例如某个物理PRB,start subchannel(子信道的起始位置)、start RB set(资源组的起始位置)和/或RB set index(资源组标识)和/或interlace index(交错资源索引)等,即终端被配置一个start subchannel,start subchannel是一个全局位置,终端在资源指示时可以基于start subchannel,便于其他终端理解;
2-1)例如,starting PRB表示资源池的起始位置(相对于BWP起始位置的相对位置);
2-2)可选地,Subchannel start index是资源池内第一个subchannel的起始位置;
2-3)可选地,RB start index是该资源池内第一个RB set的起始位置;
2-4)可选地,RB set index+interlace index表示资源池的起始位置;
3)第一对象,即载波/BWP/资源池/可指示频域资源范围/虚拟资源池/虚拟BWP的大小,例如,subchannel number(子信道的总个数),RB set number(子信道的总个数)等(便于终端根据此参数进行FRIV编码);
3-1)第一对象,即载波/BWP/资源池/可指示频域资源范围/虚拟资源池/虚拟BWP指的是实际配置的大小,例如R16中RRC(Radio Resource Control,无线资源控制)参数指示的资源池的大小;
3-2)第一对象,即载波/BWP/资源池/可指示频域资源范围/虚拟资源池/虚拟BWP的大小指的是网络配置/预配置给终端的一个辅助参数,此参数表示终端在用SCI指示频域资源时,需要基于此参数指示的频域范围大小计算FRIV,而不是终端本身支持的频域范围。
在商业场景下,终端可能是一种能力受限终端。具体地,所述的能力受限终端指的是硬件或软件能力只支持特定带宽上限或存在解调能力上限等其他能力的终端。例如,终端可能只支持20MHz带宽的终端,此时,如果能力受限终端配置了较大带宽(例如80MHz)的频段或资源池上时,则终端只能对其中的20MHz进行检测、解调等,而对于80MHz中除这20MHz之外无法进行检测、调解等。在这种情况下,需要考虑的场景在较大带宽的频段或资源池内,如果要支持能力受限终端与其他终端通信,则在资源指示、资源预留等方面需要保证能力受限终端的理解与其他终端一致,否则会导致能力受限终端与其他终端出现通信相关问题。
参照图5,假设终端A是一个能力受限终端,当终端A指示它自己占用或者预留的资源时,如果subchannel的编号是按照终端A支持的带宽进行编号的,例如图5中的上 方的RB set,那么终端A预留的资源subchannel 0~subchannel 5,在终端A自己看来是图5中的RB set 1的资源块,可是对于其他终端来说,如果其他终端支持图5中全部的带宽,即支持RB set 0和RB set 1这两个RB set的带宽,那么其他终端在检测终端A的资源指示,预留的资源就会被理解为RB set 0的资源块,导致终端A与其他终端出现通信相关问题。
针对上述能力受限终端存在问题,在本申请实施例中,可以采用以下几种方法解决:
作为一个可选方式,编号时统一subchannel的起点和/或interlace的起点,则在所有配置在第二对象(例如载波/BWP/resource pool等)上的终端看来,subchannel和interlace有一个相同的起点。则此时,不管终端工作在哪个频点或能力是否受限,指示的subchannel和interlace都是唯一的,此时不会出现对资源位置的理解不同的问题,如图6所示,subchannel index和RB set都是基于Virtual resource pool(虚拟资源池)编号,其中,subchannel number(子信道编号)表示配置整个频域范围,Operation bandwidth(操作带宽)表示的是终端在整个频域范围内支持的带宽,其中,start subchannel index(起始子信道索引)为终端支持的带宽的第一个subchannel的子信道索引。对于能力受限终端,虽然它只支持较少的带宽,但是网络侧设备会给它指示一个start subchannel index和subchannel number,使得终端知道自己所在的第二对象在整个subchannel和interlace编号频域范围的位置,以及subchannel和interlace的个数,方便终端进行资源指示。例如,如图5所示,终端A会被配置/指示start subchannel是10,整个频域范围是20,则终端A在指示预留的RB set 1的资源块时,指示的subchannel会是subchannel 10~subchannel1 5,而不再是subchannel 0~subchannel 5。
作为另一个可选方式,每个subchannel和interlace都在RB set上独立编号,终端在指示资源时需要携带RB set标识,此时RB set的index(资源组标识)是唯一的,如此终端A和与其他终端就不会出现对资源位置理解不同的问题。
作为一个可选实施例,所述第一终端发送旁链路控制信息,包括以下至少一项:
E-1项:所述第一终端在资源组上发送旁链路控制信息,其中,所述旁链路控制信息包括资源指示信息和/或关联信息;
E-2项:所述第一终端在资源组集合上发送旁链路控制信息,其中,所述资源组集合为所述第一对象的所述资源组中的部分资源组,或指定资源组,或首要资源组;所述旁链路控制信息包括资源指示信息和/或关联信息;所述特定资源组和/或首要资源组由协议预定义,或网络预配置,或网络配置,或终端确定。
作为一个可选实施例,所述关联信息包括以下至少一项:
F-1项:所述第一终端占用的资源所在的资源组的资源组标识;
F-2项:所述第一终端占用的资源所在的部分资源组的资源组标识;
F-3项:所述第一终端占用的资源所在的资源组中与所述旁链路控制信息所在的资源组中的资源相对资源组的起始位置相同的资源组的资源组标识;
F-4项:所述第一终端占用的资源所在的资源组中与所述旁链路控制信息所在的资源组中的资源相对资源组的起始位置不同的资源组的资源组标识。
作为一个可选实施例,所述资源指示信息包括以下至少一项:
G-1项:所述资源指示信息中包括所述当前资源组对应的资源指示信息;其中,所述当前资源组为所述旁链路控制信息所在的资源组;例如,FRIV只指示其所在的资源组内的资源。
G-2项:所述资源指示信息中包括所述第一终端占用和/或预留的资源的资源指示信息;例如,一个FRIV指示终端在占用和/或预留的所有资源,或者多个FRIV一起指示终端在占用和/或预留的所有资源。
G-3项:所述资源指示信息中包括所述第一终端至少部分占用和/或预留的资源组对应的资源指示信息;
G-4项:第一终端占用和/或预留的资源不连续时,所述资源指示信息中包括所述当前资源组和至少部分所述其他资源组分别对应的资源指示信息。
在本申请实施例中,第一终端可以在资源组上发送旁链路控制信息,也可以在资源组集合上发送旁链路控制信息,其中,资源组集合为第一对象的资源组中的部分资源组,或指定资源组,或首要资源组(primary RB set)。
对于E-1项,第一终端在每个RB set上发送旁链路控制信息,以第一对象为PSSCH、第二对象为resource pool为了例,其中,旁链路控制信息包括资源指示信息FRIV和/或关联信息,满足以下内容的至少之一:
a)资源指示信息指示当前RB set上面的资源,或第一对象占据的所有RB set上面的资源:
i.例如,第一种情况为,在subchannel基于每个RB set进行编号时,第一终端在PSSCH所在的每个RB set上都独立发送FRIV,此FRIV只指示当前RB set的频域资源分配情况。除此之外,在subchannel基于resource pool进行编号时,终端也可以在PSSCH所在的每个RB set上发送FRIV,来指示当前RB set的频域资源分配情况。此时,接收端需要对每个RB set进行检测,来确定发送端所有的频域资源。
ii.第二种情况,在subchannel基于每个RB set进行编号时,或在subchannel基于resource pool编号而指示的频域资源是不连续的时候,第一终端在PSSCH所在的每个RB set上都发送FRIV,此FRIV指示当前PSSCH传输的所有频域资源分配情况。此时,要想指示所有频域资源,要么需要所有RB set上所有频域资源的分配情况都相同,这样就可以使用一个FRIV指示,否则每个RB set上都需要发送多个FRIV,来指示所有PSSCH上的资源分配情况。还有一种情况是,所有PSSCH上频域资源分配的subchannel size(子信道数目)相同,这样只需要额外指示多个FRIV的起始subchannel。此时,对接收端来说,当盲检到一个RB set上面的FRIV,即可跳过PSSCH占用的其他RB set来降低检测复杂度。接收端的盲检顺序可能是随机的,或是频域从低到高,或是频域从高到低, 或是从特定RB set或Primary RB set开始。
iii.第三种情况,在subchannel基于resource pool进行编号时,最简单的是PSSCH占用的频域资源在resource pool内是连续的,此时可以reuse R16/R17的资源指示方法,即只使用一个FRIV指示所有RB set上面的频域资源。此时,对接收端来说,需要盲检RB set内的SCI,直到检测到此FRIV。
b)其中,关联信息为N个RB set的标识,N为整数。(指示当前发送的TB/TBs所占据的其他N个RB set,可能是其余占据的部分RB set,也可能是全部)。
i.可选地,N个RB set是与发送指示信息与关联信息的RB set上频域分配资源相对位置相同/不同的RB set(接收端在检测关联信息后,可以跳过关联信息对应的RB set上面的盲检动作,降低检测复杂度)
1.当频域分配资源起始subchannel相同时,可以不发其他RB set的起始subchannel,或者发送且设置为一个特定的值/无效值。
ii.可选地,此N个RB set由网络预配置/配置/终端确定(接收端在检测此信息后,可以只在这些RB set上进行检测,降低检测复杂度)。
c)其中,关联信息除了可以为N个RB set的标识,也可以为bitmap(位图)
i.可选地,bitmap中每个bit按照预设顺序和RB set依次对应,例如,RB set的标识可以为bitmap中对应位置的比特1或比特0,或RB set index等。
d)指示信息指示的是除guard band以外的起始subchannel和subchannel size(假设此时guard band包括在subchannel内)。
对于E-2项,第一终端在RB set集合上发送指示信息(终端在有限的RB set上发送全部/部分RB set上的资源指示信息,例如,当只在一个RB set上发送所有RB set上的FRIV,如果各个RB set上起始subchannel的位置不同,则在需要在此RB set上指示出其他RB set上面的FRIV的起始subchannel,从而可以根据此指示计算出其他RB set的频域资源指示信息):
a)其中,资源指示信息包括当前RB set上的频域资源指示信息,和/或其他全部/部分RB set上的资源指示信息
i.其中,资源指示信息包括起始subchannel和/或起始interlace,和/或subchannel和/或interlace的个数。
b)RB set集合为当前发送的TB/TBs所占据的所有RB set,或部分RB set,或特定RB set,和/或primary RB set(当资源指示信息只在部分RB set上指示时,接收端可能需要盲检SCI,宽带情况下复杂度较高,因此如果只在特定的RB set上,例如primary RB set上传输时,由于收发双发均知道primary RB set的位置,因此可以降低SCI检测复杂度)。
i.终端在RB set集合内,发送资源指示信息。
1.例如,终端在RB set集合内发送资源指示信息,其他RB set上不发送,且在RB se集合内的每个RB set上都发送PSSCH相关的资源指示信息。此时,如果终端的频域资源 包括RB set集合外的频域资源,则RB set集合内的RB set会发送多个FRIV,和/或关联信息来指示这些频域资源。对接收端来说,可以不对RB set集合以外的RB set进行检测,从而降低检测复杂度。
ii.其中,特定RB set或primary RB set由协议预定义/网络预配置/网络配置/终端确定。
1.例如,unicast(单播)的UE之间可以协商/配置1个或多个primary RB set。
iii.可选地,此N个RB set是与发送资源指示信息与关联信息的RB set上频域分配资源相对位置相同的RB set(接收端在检测关联信息后,跳过这些RB set上面的盲检动作,直接到对应的subchannel位置解码SCI,从而降低检测复杂度)。
1.可选地,此N个RB set由网络预配置/配置/终端确定(接收端在检测此信息后,只在这些RB set上进行检测,降低检测复杂度)。
作为一个可选实施例,
所述占用和/或预留的子信道位于一个所述资源组中;
或者,所述占用和/或预留的子信道位于多个所述资源组中。
在本申请实施例中,当1个interlace被定义在大于1个RB set的范围内时,假如配置为subchannel包括个1interlace或K个interlace,则:
1、可选地,终端指示的subchannel可以为interlace位于某个RB set上的部分(相当于允许终端只在RB set部分的资源上传输);
2、可选地,终端指示的subchannel为某个RB set上的全部interlace(相当于终端interlace涉及到的RB sets上面要么使用全部的资源传输,要么不传输)。
在本申请实施例中,在第一终端占用和/或预留了多个所述资源组中的资源的情况下,保护频带的利用满足以下至少一项:
保护频带中被利用的资源由所述第一终端指示的资源确定;
保护频带中与所述第一终端占用和/或预留的资源中属于相同交错资源的资源可以被用于传输;
例如,当终端指示了多个资源组的资源,即占用或预留多个资源组的资源时,连续的资源组之间的保护频带也可以被认为用于了PSCCH/PSSCH传输,即保护频带是否被用于PSCCH/PSSCH由指示信息隐式指示,接收终端需要通过资源的指示信息判断保护频带是否被用于传输。由于保护频带包含属于多个interlace的PRB,所以一种情况是保护频带全部被用于传输,这种情况不再赘述。另一种情况是保护频带的部分被用于传输。例如,为了与终端指示的其他资源组上的资源保持一致,且便于多用户复用,保护频带上与这些资源中属于相同交错资源的资源可以被用于传输。比如终端指示了RB set 0和RB set 1中的sub-channel 0用于传输,而sub-channel 0对应于interlace 0和interlace 1。也就是说此时终端利用的资源都位于interlace 0和interlace 1上,则此时RB set 0和RB set 1之间的保护频带中同样也属于interlace 0和interlace 1的PRB资源可以被用于传输,而其他的PRB资源则不被用于传输。换一个说法,可以认为两个连续资源组之间的保护频 带也根据资源组中sub-channel与interlace的对应关系隐式映射到了对应的sub-channel上,当两个连续资源组上的某个sub-channel被指示占用和/或预留时,则终端认为此sub-channel上的属于保护频带的资源也被用于传输。
作为一个可选实施例,当所述资源指示信息的所述旁链路控制信息中包括所述当前资源组对应的资源指示信息时,所述旁链路控制信息包括第一节SCI和第二节SCI,第二节SCI的映射满足以下至少一项:
所述第二节SCI映射在对应的所述第一节SCI所在的资源组内;
所述第二节SCI在所述第一终端占用的资源上按照先频域后时域的规则进行映射。
具体地,在Sidelink中,PSSCH用于传输数据。PSSCH关联的控制信息分别携带在PSCCH和PSSCH的SCI中。其中,SCI分为两级,1st stage SCI(第一节SCI)在PSCCH中,2nd stage SCI(第二节SCI)在PSSCH中。
其中,在本申请实施例中,2nd SCI映射满足以下条件的至少之一:
a)当每个RB set上都独立传输SCI时,2nd SCI映射在对应的1st SCI所在的RB set内(好处是终端可以独立解码每个RB set),或映射到PSSCH所占据的所有RB set内(相当于重用R16/R17的规则,开销较少,但是需要收到所有RB set才能解调,且此时需要依靠1st SCI携带ID等信息用于验证终端在哪些RB set上面发送了PSCCH和PSSCH)。
b),当传输所占据的RB set集合上面只有一个SCI时,2nd SCI按照先频域后时域的规则映射,无论资源是否跨RB set,或者在对应的1st SCI所在的RB set内按照先频域后时域的规则映射。
作为一个可选实施例,所述第一终端发送旁链路控制信息,其中:
所述第二节SCI映射在保护频带上;
或者,所述第二节SCI不映射在保护频带上。
在本申请实施例中,当guard band用于PSSCH的传输时,2nd SCI可以映射在guard band上,或者2nd SCI不可以映射在guard band上。
在本申请实施例中,guard band的RB数量等于资源池/RB set内的interlace数量,在某些情况下保证subchannel的大小在有guard band的情况下也可以保持一致等等。
作为一个可选实施例,所述资源指示信息中预留资源的确定顺序包括以下至少一项:
随机确定;
频域和/或时域由高到低;
频域和/或时域由低到高;
优先指示所述资源指示信息所对应的资源组内的资源。
当然,除了上述预留资源的确定顺序之外,也可以根据其他方式作为预留资源的确定顺序,本申请实施例对此无需加以限制。
第二方面,参见图7所示,为本申请实施例所提供的另一种资源指示方法的实施流 程图,该方法可以包括以下步骤:
步骤701、网络侧设备根据子信道和/或资源组的编号规则向所述第一终端发送下行链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述下行链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端用于发送占用和/或预留的资源;
步骤702、所述第一终端将所述资源指示信息承载于旁链路控制信息后发送至所述第二终端。
在本申请实施例中,资源指示信息既可以由第一终端发送,也可以由网络侧设备发送,具体地,网络侧设备可以根据子信道和/或资源组的编号规则,向第一终端发送下行链路控制信息(DCI,Downlink Control Information),其中,下行链路控制信息中包括资源指示信息,基于资源指示信息可以指示第一终端在非授权频段的第一对象中占用或者预留的资源。第一终端在接收到资源指示信息后,还可以将资源指示信息承载于旁链路控制信息(SCI)后发送至第二终端,使得第二终端确定第一终端在非授权频段的第一对象中占用或者预留的资源。
作为另一种可选示例,网络侧设备可以根据子信道和/或资源组的编号规则,向第一终端和第二终端同时发送下行链路控制信息,使得第一终端和第二终端可以确定第一终端在非授权频段的第一对象中占用或者预留的资源。
由上述步骤701至702可知,本申请实施例预先配置子信道和/或资源组的编号规则,然后将子信道和/或资源组的编号规则用于在非授权频段上资源指示,其中,资源指示信息可以由网络侧设备发送给终端,例如可以发送给第一终端后第一终端再发送给第二终端,或者网络侧设备同时发送给第一终端和第二终端,使得网络侧设备可以根据子信道和/或资源组的编号规则来指示第一终端占用或者预留的资源,可以满足非授权频段上OCB等规则,且可以不改变Sidelink的已有框架,保证了资源的利用率,以及在不同场景下保证了收发两端的通信,以及如何进行资源指示和资源分配的问题,可以适应未来潜在的多样化应用场景和各种需求。
第三方面,参见图8所示,为本申请实施例所提供的又一种资源指示方法的实施流程图,该方法可以包括以下步骤:
步骤801、检测和/或接收所述第一终端发送的旁链路控制信息,和/或网络侧设备发送的下行链路控制信息,其中,所述旁链路控制信息和下行链路控制信息根据所述根据子信道和/或资源组的编号规则生成,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源;
步骤802、根据所述资源指示信息,确定所述第一终端占用和/或预留的资源。
在本申请实施例中,第二终端作为接收端,可以检测和/或接收第一终端发送的旁链 路控制信息,和/或网络侧设备发送的下行链路控制信息,然后,可以从旁链路控制信息中提取出资源指示信息或者从下行链路控制信息提取出资源指示信息,其中,资源指示信息是第一终端或者网络侧设备根据子信道和/或资源组的编号规则生成的。第二终端获取到资源指示信息后,就可以确定第一终端在非授权频段的第一对象中占用或者预留的资源,其中,第二终端是可以根据子信道和/或资源组的编号规则来确定第一终端在非授权频段的第一对象中占用或者预留的资源,具体为第一终端在在非授权频段以子信道为单位的第一对象中占用或者预留的资源。
由上述步骤801至802可知,本申请实施例预先配置子信道和/或资源组的编号规则,然后将子信道和/或资源组的编号规则用于在非授权频段上资源指示,其中,当第二终端接收到第一终端或者网络侧设备发送的资源指示信息时,可以根据资源指示信息和子信道和/或资源组的编号规则来确定第一终端占用或者预留的资源,可以满足非授权频段上OCB等规则,且可以不改变Sidelink的已有框架,保证了资源的利用率,以及在不同场景下保证了收发两端的通信,以及如何进行资源指示和资源分配的问题,可以适应未来潜在的多样化应用场景和各种需求。
作为一个可选实施例,所述检测和/或接收所述第一终端发送旁链路控制信息,包括以下至少一项:
H-1项:在资源组上检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分资源组上的资源指示信息和/或关联信息;
H-2项:在资源组上检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括当前资源组上的资源指示信息和/或关联信息;
H-3项:在资源组集合上进行检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分资源组集合上的资源指示信息和/或关联信息;
H-4项:在资源组集合上进行检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分当前资源组集合上的资源指示信息和/或关联信息。
其中,资源组标识通过协议预定义、网络侧设备预配置、配置和/或所述第一终端确定,或者,资源组标识为所述第一终端占用和/或预留的资源在所述第一对象除发送所述旁链路控制信息的当前资源组之外的至少部分其他资源组占用和/或预留的资源对应的资源组标识。
在本申请实施例中,第二终端可以在第一对象的每个资源组上检测和/或接收旁链路控制信息以得到资源指示信息,也可以在第一对象的资源组集合上检测和/或接收旁链路控制信息以得到资源指示信息。
其中,部分资源组可以是指的第一对象中一个或者多个资源组,也可以是全部的资源组,部分资源组集合可以是指的第一对象中一个或者多个资源组集合,也可以是全部的资源组集合。
对于H-1项,若第一终端或者网络侧设备是在每个RB set上发送旁链路控制信息,且该旁链路控制信息中包括第一对象的X1个RB set的FRIV和N个RB set的资源组标识,则第二终端可以根据X1个RB set的FRIV,确定第一终端占用和/或预留的X1个RB set的资源,而当第二终端当盲检到一个RB set上面X1个RB set的FRIV,跳过第一对象的其他RB set的检测,从而降低检测复杂度。
对于H-2项,若第一终端或者网络侧设备是在每个RB set上发送旁链路控制信息,且该旁链路控制信息中包括第一对象的当前RB set的FRIV和N个RB set的资源组标识,则第二终端可以根据当前RB set的FRIV,确定第一终端占用和/或预留的当前RB set的资源,此时,第二终端可以继续检测N个RB set的资源组标识对应的资源组或者跳过N个RB set的资源组标识对应的资源组,从而跳过第一对象的某些RB set的检测,从而降低检测复杂度。
对于H-3项,若第一终端或者网络侧设备是在RB set集合上发送旁链路控制信息,且该旁链路控制信息中包括第一对象的X2个RB set集合的FRIV和N个RB set的资源组标识,则第二终端可以根据X2个RB set集合的FRIV,确定第一终端占用和/或预留的X2个RB set集合的资源,而当第二终端当盲检到一个RB set集合上面X2个RB set集合的FRIV,跳过第一对象的其他RB set集合的检测,从而降低检测复杂度。
对于H-2项,若第一终端或者网络侧设备是在每个RB set上发送旁链路控制信息,且该旁链路控制信息中包括第一对象的当前RB set集合的FRIV和N个RB set的资源组标识,则第二终端可以根据当前RB set的FRIV,确定第一终端占用和/或预留的当前RB set集合的资源,此时,第二终端可以继续检测N个RB set的资源组标识对应的资源组集合或者跳过N个RB set的资源组标识对应的资源组集合,从而跳过第一对象的某些RB set集合的检测,从而降低检测复杂度。
作为一个可选实施例,所述检测和/或接收所述第一终端和/或网络侧设备发送旁链路控制信息,包括以下至少一项:检测和/或接收所述关联信息中的资源组标识对应的资源组上的旁链路控制信息,或者,跳过检测和/或接收所述关联信息中的资源组标识对应的资源组上的旁链路控制信息。
在具体实现中,第二终端可以对每个资源组上的旁链路控制信息进行检测,从而得到资源指示信息,以根据资源指示信息确定第一终端占用或者和/或预留的资源。
在本申请实施例中,关联信息可以包括资源组标识,第二终端可以根据关联信息的资源组标识,对关联信息的资源组标识对应的资源组上的旁链路控制信息进行检测和/或接收,或者,跳过检测和/或接收关联信息的资源组标识对应的资源组上的旁链路控制信息,从而第二终端可以在传输所在的任意一个RB set或者RB set集合上检测到SCI即可停止检测其他SCI,降低盲检复杂度。
作为一个可选实施例,所述旁链路控制信息包括第一节SCI和第二节SCI,
在所述第一节SCI所在的资源组上检测和/或解码对应的所述第二节SCI;
或者,在所述第一终端占用或者预留的资源上检测和/或解码所述第二节SCI。
在本申请实施例中,第二终端只在第一节SCI所在的资源组内检测和/或解码对应的第二节SCI,或者,第二终端在发送端指示的资源上检测和/或解码第二节SCI。
作为一个可选实施例,
在保护频带上检测和/或解码所述第二节SCI;
或者,非保护频带上检测和/或解码所述第二节SCI。
在本申请实施例中,第二终端可以在保护频带上检测和/或解码第二节SCI,或者,可以不在保护频带上(非保护频带)检测和/或解码第二节SCI。
在具体实现中,以频域资源为例(当然也适用于时域资源等其他资源),频域资源指示在不同的条件下有不同的方法。第一种方法是重用R16/R17的频域资源指示思想,即终端在PSCCH上发送FRIV,指示预留资源的起始subchannel与subchannel个数,如下图9A。这个方法开销较小,但是要求预留资源即使在跨RB set的情况下也需要频域连续,同时还要求所有终端都不是能力受限终端,即具备所有RB set上的SCI检测能力。因此,一种相对改进的方法是终端在PSSCH所在的每个RB set上都发送SCI,即都发送频域资源指示信息,如下图9B。在这种指示方法中,每个SCI指示的频域资源仍然都是PSSCH所占用的全部频域资源。
然而当终端在多个RB set上发送PSSCH/PSCCH时,假如subchannel和interlace都是在RB set内进行定义的,此时终端无法使用一个FRIV来指示多个RB set上面的资源分配情况,因为每个RB set上面的subchannel编号是独立的,如果仍然要指示PSSCH所占用的全部频域资源,就需要在SCI中发送多个FRIV,每一个FRIV对应一个RB set内的频域资源分配情况,如图9C所示。除此之外,如果各个RB set上起始subchannel的位置不同,则在需要在此RB set上指示出其他RB set上面的FRIV的起始subchannel,从而可以根据此指示计算出其他RB set的频域资源指示信息。毫无疑问,这种指示方法复杂度较高。因此,相对的,针对这个问题有两种改进方法,一种是终端在每个RB set上分别只指示此RB set上的资源分配情况,如图9D所示,或者在部分RB set上,指示全部RB set上的资源分配情况,如图9E所示。
如果是第一种情况,资源分配情况的指示较为简单。此时,按照此思想,第二节SCI也只会映射在独立的RB set上。由于在R16/R17中,第二节SCI是按照先频域后时域的方法进行映射,与RB set无关,因此,在SLU(Sidelink的非授权频段)下,可能需要修改2nd SCI的映射规则,第二节SCI在映射时,要考虑RB set的边界,即在RB set内按照先频域后时域的方法进行映射。
如果是第二种情况,资源分配的指示会更为复杂。第一种可能类似于上述第一种情况,终端在每个RB set上进行资源指示,但是会指示所有RB set上面的资源分配情况,或其他L个RB set上的资源分配情况,即图9C所示。在这种情况下,接收端可以在传 输所在的任意一个RB set上检测到SCI即可停止检测其他SCI,降低盲检复杂度。第二种可能是,终端只在部分RB set上发送资源指示信息,比如说只在一个RB set上,例如最低/最高/特定/primary RB set上发送,如图9E所示,或者在部分RB set上进行发送,同时在一些RB set上携带关联信息,第一关联指示用于指示其他N个RB set。此N个RB set是与发送资源指示信息与关联信息的RB set上频域分配资源相对位置相同的RB set。相对位置相同的意思是每个RB set内的频域资源的start subchannel都相同。当接收端在检测此信息后,就可以跳过这些RB set上面的盲检动作,降低检测复杂度,或者,此N个RB set由网络预配置/配置/终端确定,接收端在检测此信息后,只在这些RB set上进行检测,跳过其他RB set,降低检测复杂度。
本申请实施例,定义了在SLU场景下,终端只发送一个SCI时,或者,当终端在每个RB set内发送SCI时,如何指示不同RB set内的资源。同时还定义了SLU场景下subchannel与interlace的关系。
本申请实施例提供的资源指示方法,执行主体可以为资源指示装置。本申请实施例中以资源指示装置执行资源指示方法为例,说明本申请实施例提供的资源指示装置。
第四方面,本申请实施例提供了一种资源指示装置,该装置可以应用于第一终端,如图10所示,该资源指示装置100包括:
第一发送模块1001,用于第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源。
在本申请实施例中,第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,子信道和/或资源组的编号规则可以包括子信道和交错资源之间的映射规则,旁链路控制信息包括资源指示信息,资源指示信息用于指示第一终端占用和/或预留的资源。本申请实施例预先配置子信道和交错资源之间的映射规则,然后将子信道和交错资源之间的映射规则用于在非授权频段上资源指示,使得第一终端可以根据子信道和交错资源之间的映射规则来指示其占用或者预留的资源,可以满足非授权频段上OCB等规则,且可以不改变Sidelink的已有框架,保证了资源的利用率,以及在不同场景下保证了收发两端的通信,以及如何进行资源指示和资源分配的问题,可以适应未来潜在的多样化应用场景和各种需求。
可选地,所述子信道和/或所述资源组的编号规则满足以下至少一项:
所述子信道包括1个交错资源;
或者,
所述子信道包括K个交错资源,所述资源组包括M个交错资源,所述K和所述M 为整数,其中,所述K是所述M的约数,或者,所述K不是所述M的约数。
可选地,
当所述K不是所述M的约数,对所述M和所述K进行取模运算得到的余数为m时,所述m为整数,其中,所述子信道和/或所述资源组的编号规则满足以下至少一项:
所述资源组中的子信道从第m+1个交错资源开始编号;
所述资源组中的子信道从第1个交错资源开始编号。
可选地,所述子信道和/或所述资源组之间的编号规则包括以下至少一项:
在第二对象上,所述子信道的子信道索引从0开始,按频域由低到高或由高到低的顺序增加;
在第二对象上,所述子信道的子信道索引从第一起始序号开始,按频域由低到高或由高到低的顺序增加;其中,第一起始序号由网络侧设备配置或预配置,或终端确定;
在至少部分资源组上,所述子信道的子信道索引从0开始,按频域由低到高或由高到低的顺序增加;
在至少部分资源组上,所述子信道的子信道索引从第一起始序号开始,按频域由低到高或由高到低的顺序增加;
在至少部分资源组上,所述子信道的子信道索引从所述资源组上频域位置最低或最高的交错资源的索引开始,按频域由低到高或由高到低的顺序增加;
在第二对象上,所述资源组的资源组索引从0开始,按频域由低到高或由高到低的顺序增加;
在第二对象上,所述资源组的资源组索引从第二起始序号开始,按频域由低到高或由高到低的顺序增加;其中,第二起始序号由网络侧设备配置或预配置,或终端确定。
可选地,所述子信道和所述交错资源之间的映射规则包括以下至少一项:
所述子信道的子信道索引编号与对应的每个所述资源组中的所述交错资源的交错资源索引相同;
所述子信道的子信道索引编号随着对应的每个所述资源组的资源组标识和所述资源组的所述交错资源的交错资源索引的增加相应增加;
所述子信道包括资源组内与所述子信道索引顺序相同的交错资源;
所述子信道包括资源组内与所述子信道索引相差N的交错资源,其中,N为比所述资源组频域更高或频域更低的资源组包括的总子信道数目;
第一个所述资源组中,所述子信道的子信道索引与对应的第一个所述资源组的交错资源的交错资源索引相同;
第一个所述资源组中,所述子信道的子信道索引从0开始,按顺序进行编号。
可选地,所述子信道和/或所述资源组的编号由协议预定义或根据第二对象的配置和/或预配置确定。
可选地,所述第二对象的配置和/或预配置包括第一起始序号,第二起始序号,所述 子信道的起始位置、所述子信道的总个数、所述资源组的起始位置,所述资源组的总个数中的至少一项,所述第二对象包括以下至少一项:
载波;部分带宽;资源池;虚拟资源池;虚拟部分带宽;可指示资源范围。
可选地,所述旁链路控制信息,包括以下至少一项:
所述旁链路控制信息中的资源指示信息中的子信道的起始位置根据第二对象的配置和/或预配置确定;
所述旁链路控制信息中的资源指示信息根据子信道的总个数确定,其中所述子信道的总个数根据第二对象的配置和/或预配置确定;
所述旁链路控制信息中的资源指示信息根据资源组的起始位置确定,其中所述资源组的起始位置根据第二对象的配置和/或预配置确定;
所述旁链路控制信息中的资源指示信息根据资源组的总个数确定,其中所述资源组的总个数由协议预定义,或第二对象配置、预配置。
可选地,所述第一终端发送旁链路控制信息,包括以下至少一项:
所述第一终端在资源组上发送旁链路控制信息,其中,所述旁链路控制信息包括资源指示信息和/或关联信息;
所述第一终端在资源组集合上发送旁链路控制信息,其中,所述资源组集合为所述第一对象的所述资源组中的部分资源组,或指定资源组,或首要资源组;所述旁链路控制信息包括资源指示信息和/或关联信息;所述特定资源组和/或首要资源组由协议预定义,或网络预配置,或网络配置,或终端确定。
可选地,
所述占用和/或预留的子信道位于一个所述资源组中;
或者,所述占用和/或预留的子信道位于多个所述资源组中。
可选地,所述关联信息包括以下至少一项:
所述第一终端占用的资源所在的资源组的资源组标识;
所述第一终端占用的资源所在的部分资源组的资源组标识;
所述第一终端占用的资源所在的资源组中与所述旁链路控制信息所在的资源组中的资源相对资源组的起始位置相同的资源组的资源组标识;
所述第一终端占用的资源所在的资源组中与所述旁链路控制信息所在的资源组中的资源相对资源组的起始位置不同的资源组的资源组标识。
可选地,所述资源指示信息包括以下至少一项:
所述资源指示信息中包括所述当前资源组对应的资源指示信息;其中,所述当前资源组为所述旁链路控制信息所在的资源组;
所述资源指示信息中包括所述第一终端占用和/或预留的资源的资源指示信息;
所述资源指示信息中包括所述第一终端至少部分占用和/或预留的资源组对应的资源指示信息;
第一终端占用和/或预留的资源不连续时,所述资源指示信息中包括所述当前资源组和至少部分所述其他资源组分别对应的资源指示信息。
可选地,当所述资源指示信息的所述旁链路控制信息中包括所述当前资源组对应的资源指示信息时,所述旁链路控制信息包括第一节SCI和第二节SCI,第二节SCI的映射满足以下至少一项:
所述第二节SCI映射在对应的所述第一节SCI所在的资源组内;
所述第二节SCI在所述第一终端占用的资源上按照先频域后时域的规则进行映射。
可选地,所述第一终端发送旁链路控制信息,其中:
所述第二节SCI映射在保护频带上;
或者,所述第二节SCI不映射在保护频带上。
可选地,所述保护频带包含的资源块数量等于资源池或资源组内的交错资源数量。
可选地,所述资源组标识通过协议预定义、网络侧设备预配置、配置和/或所述第一终端确定。
可选地,所述资源指示信息中预留资源的确定顺序包括以下至少一项:
随机确定;
频域和/或时域由高到低;
频域和/或时域由低到高;
优先指示所述资源指示信息所对应的资源组内的资源。
第五方面,本申请实施例提供了一种资源指示装置,该装置可以应用于网络侧设备,如图11所示,该资源指示装置110包括:
第二发送模块1101,用于网络侧设备根据子信道和/或资源组的编号规则向所述第一终端发送下行链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述下行链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端用于发送占用和/或预留的资源;
第三发送模块1102,用于所述第一终端将所述资源指示信息承载于旁链路控制信息后发送至所述第二终端。
本申请实施例预先配置子信道和/或资源组的编号规则,然后将子信道和/或资源组的编号规则用于在非授权频段上资源指示,其中,资源指示信息可以由网络侧设备发送给终端,例如可以发送给第一终端后第一终端再发送给第二终端,或者网络侧设备同时发送给第一终端和第二终端,使得网络侧设备可以根据子信道和/或资源组的编号规则来指示第一终端占用或者预留的资源,可以满足非授权频段上OCB等规则,且可以不改变Sidelink的已有框架,保证了资源的利用率,以及在不同场景下保证了收发两端的通信,以及如何进行资源指示和资源分配的问题,可以适应未来潜在的多样化应用场景和各种需求。。
第六方面,本申请实施例提供了一种资源指示装置,该装置可以应用于网络侧设备,如图12所示,该资源指示装置120包括:
接收模块1201,用于检测和/或接收所述第一终端发送的旁链路控制信息,和/或网络侧设备发送的下行链路控制信息,其中,所述旁链路控制信息和下行链路控制信息根据所述根据子信道和/或资源组的编号规则生成,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源;
确定模块1202,用于根据所述资源指示信息,确定所述第一终端占用和/或预留的资源。
本申请实施例预先配置子信道和/或资源组的编号规则,然后将子信道和/或资源组的编号规则用于在非授权频段上资源指示,其中,当第二终端接收到第一终端或者网络侧设备发送的资源指示信息时,可以根据资源指示信息和子信道和/或资源组的编号规则来确定第一终端占用或者预留的资源,可以满足非授权频段上OCB等规则,且可以不改变Sidelink的已有框架,保证了资源的利用率,以及在不同场景下保证了收发两端的通信,以及如何进行资源指示和资源分配的问题,可以适应未来潜在的多样化应用场景和各种需求。
可选地,所述检测和/或接收所述第一终端发送旁链路控制信息,包括以下至少一项:
在资源组上检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分资源组上的资源指示信息和/或关联信息;
在资源组上检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括当前资源组上的资源指示信息和/或关联信息;
在资源组集合上进行检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分资源组集合上的资源指示信息和/或关联信息;
在资源组集合上进行检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分当前资源组集合上的资源指示信息和/或关联信息。
可选地,资源组标识通过协议预定义、网络侧设备预配置、配置和/或所述第一终端确定,或者,资源组标识为所述第一终端占用和/或预留的资源在所述第一对象除发送所述旁链路控制信息的当前资源组之外的至少部分其他资源组占用和/或预留的资源对应的资源组标识。
可选地,所述检测和/或接收所述第一终端和/或网络侧设备发送旁链路控制信息,包括以下至少一项:检测和/或接收所述关联信息中的资源组标识对应的资源组上的旁链路控制信息,或者,跳过检测和/或接收所述关联信息中的资源组标识对应的资源组上的旁链路控制信息。
可选地,所述旁链路控制信息包括第一节SCI和第二节SCI,
在所述第一节SCI所在的资源组上检测和/或解码对应的所述第二节SCI;
或者,在所述第一终端占用或者预留的资源上检测和/或解码所述第二节SCI。
可选地,
在保护频带上检测和/或解码所述第二节SCI;
或者,不在保护频带上检测和/或解码所述第二节SCI。
本申请实施例中的资源指示装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的资源指示装置能够实现图2至图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选地,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述资源指示方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为网络侧设备时,该程序或指令被处理器1301执行时实现上述资源指示方法实施例的各个步骤,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,如图14所示,为实现本申请实施例的一种终端的硬件结构示意图。
该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理单元(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072中的至少一种。触控面板14071,也称为触摸屏。触控面板14071可包括触摸检测 装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401接收来自网络侧设备的下行数据后,可以传输给处理器1410进行处理;另外,射频单元1401可以向网络侧设备发送上行数据。通常,射频单元1401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括易失性存储器或非易失性存储器,或者,存储器1409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1409包括但不限于这些和任意其它适合类型的存储器。
处理器1410可包括一个或多个处理单元;可选地,处理器1410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,射频单元1401,用于第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源。
可选地,所述子信道和/或所述资源组的编号规则满足以下至少一项:
所述子信道包括1个交错资源;
或者,
所述子信道包括K个交错资源,所述资源组包括M个交错资源,所述K和所述M为整数,其中,所述K是所述M的约数,或者,所述K不是所述M的约数。
可选地,
当所述K不是所述M的约数,对所述M和所述K进行取模运算得到的余数为m时,所述m为整数,其中,所述子信道和/或所述资源组的编号规则满足以下至少一项:
所述资源组中的子信道从第m+1个交错资源开始编号;
所述资源组中的子信道从第1个交错资源开始编号。
可选地,所述子信道和/或所述资源组之间的编号规则包括以下至少一项:
在第二对象上,所述子信道的子信道索引从0开始,按频域由低到高或由高到低的顺序增加;
在第二对象上,所述子信道的子信道索引从第一起始序号开始,按频域由低到高或由高到低的顺序增加;其中,第一起始序号由网络侧设备配置或预配置,或终端确定;
在至少部分资源组上,所述子信道的子信道索引从0开始,按频域由低到高或由高到低的顺序增加;
在至少部分资源组上,所述子信道的子信道索引从第一起始序号开始,按频域由低到高或由高到低的顺序增加;
在至少部分资源组上,所述子信道的子信道索引从所述资源组上频域位置最低或最高的交错资源的索引开始,按频域由低到高或由高到低的顺序增加;
在第二对象上,所述资源组的资源组索引从0开始,按频域由低到高或由高到低的顺序增加;
在第二对象上,所述资源组的资源组索引从第二起始序号开始,按频域由低到高或由高到低的顺序增加;其中,第二起始序号由网络侧设备配置或预配置,或终端确定。
可选地,所述子信道和所述交错资源之间的映射规则包括以下至少一项:
所述子信道的子信道索引编号与对应的每个所述资源组中的所述交错资源的交错资源索引相同;
所述子信道的子信道索引编号随着对应的每个所述资源组的资源组标识和所述资源组的所述交错资源的交错资源索引的增加相应增加;
所述子信道包括资源组内与所述子信道索引顺序相同的交错资源;
所述子信道包括资源组内与所述子信道索引相差N的交错资源,其中,N为比所述资源组频域更高或频域更低的资源组包括的总子信道数目;
第一个所述资源组中,所述子信道的子信道索引与对应的第一个所述资源组的交错资源的交错资源索引相同;
第一个所述资源组中,所述子信道的子信道索引从0开始,按顺序进行编号。
可选地,所述子信道和/或所述资源组的编号由协议预定义或根据第二对象的配置和/或预配置确定。
可选地,所述第二对象的配置和/或预配置包括第一起始序号,第二起始序号,所述子信道的起始位置、所述子信道的总个数、所述资源组的起始位置,所述资源组的总个数中的至少一项,所述第二对象包括以下至少一项:
载波;部分带宽;资源池;虚拟资源池;虚拟部分带宽;可指示资源范围。
可选地,所述旁链路控制信息,包括以下至少一项:
所述旁链路控制信息中的资源指示信息中的子信道的起始位置根据第二对象的配置和/或预配置确定;
所述旁链路控制信息中的资源指示信息根据子信道的总个数确定,其中所述子信道的总个数根据第二对象的配置和/或预配置确定;
所述旁链路控制信息中的资源指示信息根据资源组的起始位置确定,其中所述资源组的起始位置根据第二对象的配置和/或预配置确定;
所述旁链路控制信息中的资源指示信息根据资源组的总个数确定,其中所述资源组的总个数由协议预定义,或第二对象配置、预配置。
可选地,所述第一终端发送旁链路控制信息,包括以下至少一项:
所述第一终端在资源组上发送旁链路控制信息,其中,所述旁链路控制信息包括资源指示信息和/或关联信息;
所述第一终端在资源组集合上发送旁链路控制信息,其中,所述资源组集合为所述第一对象的所述资源组中的部分资源组,或指定资源组,或首要资源组;所述旁链路控制信息包括资源指示信息和/或关联信息;所述特定资源组和/或首要资源组由协议预定义,或网络预配置,或网络配置,或终端确定。
可选地,
所述占用和/或预留的子信道位于一个所述资源组中;
或者,所述占用和/或预留的子信道位于多个所述资源组中。
可选地,所述关联信息包括以下至少一项:
所述第一终端占用的资源所在的资源组的资源组标识;
所述第一终端占用的资源所在的部分资源组的资源组标识;
所述第一终端占用的资源所在的资源组中与所述旁链路控制信息所在的资源组中的资源相对资源组的起始位置相同的资源组的资源组标识;
所述第一终端占用的资源所在的资源组中与所述旁链路控制信息所在的资源组中的资源相对资源组的起始位置不同的资源组的资源组标识。
可选地,所述资源指示信息包括以下至少一项:
所述资源指示信息中包括所述当前资源组对应的资源指示信息;其中,所述当前资源组为所述旁链路控制信息所在的资源组;
所述资源指示信息中包括所述第一终端占用和/或预留的资源的资源指示信息;
所述资源指示信息中包括所述第一终端至少部分占用和/或预留的资源组对应的资源指示信息;
第一终端占用和/或预留的资源不连续时,所述资源指示信息中包括所述当前资源组和至少部分所述其他资源组分别对应的资源指示信息;
可选地,当所述资源指示信息的所述旁链路控制信息中包括所述当前资源组对应的资源指示信息时,所述旁链路控制信息包括第一节SCI和第二节SCI,第二节SCI的映 射满足以下至少一项:
所述第二节SCI映射在对应的所述第一节SCI所在的资源组内;
所述第二节SCI在所述第一终端占用的资源上按照先频域后时域的规则进行映射。
可选地,所述第一终端发送旁链路控制信息,其中:
所述第二节SCI映射在保护频带上;
或者,所述第二节SCI不映射在保护频带上。
可选地,所述保护频带包含的资源块数量等于资源池或资源组内的交错资源数量。
可选地,所述资源组标识通过协议预定义、网络侧设备预配置、配置和/或所述第一终端确定。
可选地,所述资源指示信息中预留资源的确定顺序包括以下至少一项:
随机确定;
频域和/或时域由高到低;
频域和/或时域由低到高;
优先指示所述资源指示信息所对应的资源组内的资源。
其中,射频单元1401用于检测和/或接收所述第一终端发送的旁链路控制信息,和/或网络侧设备发送的下行链路控制信息,其中,所述旁链路控制信息和下行链路控制信息根据所述根据子信道和/或资源组的编号规则生成,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源;
射频单元1401用于根据所述资源指示信息,确定所述第一终端占用和/或预留的资源。
可选地,所述检测和/或接收所述第一终端发送旁链路控制信息,包括以下至少一项:
在资源组上检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分资源组上的资源指示信息和/或关联信息;
在资源组上检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括当前资源组上的资源指示信息和/或关联信息;
在资源组集合上进行检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分资源组集合上的资源指示信息和/或关联信息;
在资源组集合上进行检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分当前资源组集合上的资源指示信息和/或关联信息。
可选地,资源组标识通过协议预定义、网络侧设备预配置、配置和/或所述第一终端确定,或者,资源组标识为所述第一终端占用和/或预留的资源在所述第一对象除发送所述旁链路控制信息的当前资源组之外的至少部分其他资源组占用和/或预留的资源对应的资源组标识。
可选地,所述检测和/或接收所述第一终端和/或网络侧设备发送旁链路控制信息,包括以下至少一项:检测和/或接收所述关联信息中的资源组标识对应的资源组上的旁链路控制信息,或者,跳过检测和/或接收所述关联信息中的资源组标识对应的资源组上的旁链路控制信息。
可选地,所述旁链路控制信息包括第一节SCI和第二节SCI,
在所述第一节SCI所在的资源组上检测和/或解码对应的所述第二节SCI;
或者,在所述第一终端占用或者预留的资源上检测和/或解码所述第二节SCI。
可选地,
在保护频带上检测和/或解码所述第二节SCI;
或者,保护频带上检测和/或解码所述第二节SCI。
本申请实施例还提供一种网络侧设备,如图15所示,该网络侧设备1500包括:天线151、射频装置152、基带装置153、处理器154和存储器155。天线151与射频装置152连接。在上行方向上,射频装置152通过天线151接收信息,将接收的信息发送给基带装置153进行处理。在下行方向上,基带装置153对要发送的信息进行处理,并发送给射频装置152,射频装置152对收到的信息进行处理后经过天线151发送出去。
以上实施例中网络侧设备执行的方法可以在基带装置153中实现,该基带装置153包括基带处理器。
基带装置153例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为基带处理器,通过总线接口与存储器155连接,以调用存储器155中的程序,执行以上方法实施例中所示的网络设备操作。
该网络侧设备还可以包括网络接口156,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1500还包括:存储在存储器155上并可在处理器154上运行的指令或程序,处理器154调用存储器155中的指令或程序执行图7所示的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供了一种网络侧设备。如图16所示,该网络侧设备1600包括:处理器1601、网络接口1602和存储器1603。其中,网络接口1602例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的网络侧设备1600还包括:存储在存储器1603上并可在处理器1601上运行的指令或程序,处理器1601调用存储器1603中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述资源指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包 括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述资源指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述资源指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种资源指示.系统,包括:终端及网络侧设备,所述终端可用于执行如上所述的资源指示方法的步骤,所述网络侧设备可用于执行如上所述的资源指示方法的步骤。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽咯,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,模块、单元、子单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processor,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (32)

  1. 一种资源指示方法,其中,包括:
    第一终端根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源。
  2. 根据权利要求1所述的方法,其中,所述子信道和/或所述资源组的编号规则满足以下至少一项:
    所述子信道包括1个交错资源;
    或者,
    所述子信道包括K个交错资源,所述资源组包括M个交错资源,所述K和所述M为整数,其中,所述K是所述M的约数,或者,所述K不是所述M的约数。
  3. 根据权利要求2所述的方法,其中,
    当所述K不是所述M的约数,对所述M和所述K进行取模运算得到的余数为m时,所述m为整数,所述子信道和/或所述资源组的编号规则满足以下至少一项:
    所述资源组中的子信道从第m+1个交错资源开始编号;
    所述资源组中的子信道从第1个交错资源开始编号。
  4. 根据权利要求1所述的方法,其中,所述子信道和/或所述资源组之间的编号规则包括以下至少一项:
    在第二对象上,所述子信道的子信道索引从0开始,按频域由低到高或由高到低的顺序增加;
    在第二对象上,所述子信道的子信道索引从第一起始序号开始,按频域由低到高或由高到低的顺序增加;其中,第一起始序号由网络侧设备配置或预配置,或终端确定;
    在至少部分资源组上,所述子信道的子信道索引从0开始,按频域由低到高或由高到低的顺序增加;
    在至少部分资源组上,所述子信道的子信道索引从第一起始序号开始,按频域由低到高或由高到低的顺序增加;
    在至少部分资源组上,所述子信道的子信道索引从所述资源组上频域位置最低或最高的交错资源的索引开始,按频域由低到高或由高到低的顺序增加;
    在第二对象上,所述资源组的资源组索引从0开始,按频域由低到高或由高到低的顺序增加;
    在第二对象上,所述资源组的资源组索引从第二起始序号开始,按频域由低到高或由高到低的顺序增加;其中,第二起始序号由网络侧设备配置或预配置,或终端确定。
  5. 根据权利要求1所述的方法,其中,所述子信道和所述交错资源之间的映射规则包括以下至少一项:
    所述子信道的子信道索引编号与对应的所述资源组中的所述交错资源的交错资源索 引相同;
    所述子信道的子信道索引编号随着对应的所述资源组的资源组标识和所述资源组的所述交错资源的交错资源索引的增加相应增加;
    所述子信道包括资源组内与所述子信道索引顺序相同的交错资源;
    所述子信道包括资源组内与所述子信道索引相差N的交错资源,其中,N为比所述资源组频域更高或频域更低的资源组包括的总子信道数目;
    第一个所述资源组中,所述子信道的子信道索引与对应的第一个所述资源组的交错资源的交错资源索引相同;
    第一个所述资源组中,所述子信道的子信道索引从0开始,按顺序进行编号。
  6. 根据权利要求1或5所述的方法,其中,第一资源组中子信道与交错资源的映射规则与最低或最高资源组中子信道与交错资源的映射规则相同,所述第一资源组为最低或最高资源组之外的其他资源组。
  7. 根据权利要求1所述的方法,其中,所述子信道和/或所述资源组的编号由协议预定义或根据第二对象的配置和/或预配置确定。
  8. 根据权利要求7所述的方法,其中,所述第二对象的配置和/或预配置包括第一起始序号,第二起始序号,所述子信道的起始位置、所述子信道的总个数、所述资源组的起始位置,所述资源组的总个数中的至少一项,所述第二对象包括以下至少一项:
    载波;部分带宽;资源池;虚拟资源池;虚拟部分带宽;可指示资源范围。
  9. 根据权利要求6所述的方法,其中,所述旁链路控制信息,包括以下至少一项:
    所述旁链路控制信息中的资源指示信息中的子信道的起始位置根据第二对象的配置和/或预配置确定;
    所述旁链路控制信息中的资源指示信息根据子信道的总个数确定,其中所述子信道的总个数根据第二对象的配置和/或预配置确定;
    所述旁链路控制信息中的资源指示信息根据资源组的起始位置确定,其中所述资源组的起始位置根据第二对象的配置和/或预配置确定;
    所述旁链路控制信息中的资源指示信息根据资源组的总个数确定,其中所述资源组的总个数由协议预定义,或第二对象配置、预配置。
  10. 根据权利要求1所述的方法,其中,所述第一终端发送旁链路控制信息,包括以下至少一项:
    所述第一终端在资源组上发送旁链路控制信息,其中,所述旁链路控制信息包括资源指示信息和/或关联信息;
    所述第一终端在资源组集合上发送旁链路控制信息,其中,所述资源组集合为所述第一对象的所述资源组中的部分资源组,或指定资源组,或首要资源组;所述旁链路控制信息包括资源指示信息和/或关联信息;所述特定资源组和/或首要资源组由协议预定义,或网络预配置,或网络配置,或终端确定。
  11. 根据权利要求10所述的方法,其中,
    所述占用和/或预留的子信道位于一个所述资源组中;
    或者,所述占用和/或预留的子信道位于多个所述资源组中。
  12. 根据权利要求1,10或11所述的方法,其中,
    在所述第一终端占用和/或预留了多个所述资源组中的资源的情况下,保护频带的利用满足以下至少一项:
    保护频带中被利用的资源由所述第一终端指示的资源确定;
    保护频带中与所述第一终端占用和/或预留的资源中属于相同交错资源的资源可以被用于传输。
  13. 根据权利要求10所述的方法,其中,所述关联信息包括以下至少一项:
    所述第一终端占用的资源所在的资源组的资源组标识;
    所述第一终端占用的资源所在的部分资源组的资源组标识;
    所述第一终端占用的资源所在的资源组中与所述旁链路控制信息所在的资源组中的资源相对资源组的起始位置相同的资源组的资源组标识;
    所述第一终端占用的资源所在的资源组中与所述旁链路控制信息所在的资源组中的资源相对资源组的起始位置不同的资源组的资源组标识。
  14. 根据权利要求10所述的方法,其中,所述资源指示信息包括以下至少一项:
    所述资源指示信息中包括所述当前资源组对应的资源指示信息;其中,所述当前资源组为所述旁链路控制信息所在的资源组;
    所述资源指示信息中包括所述第一终端占用和/或预留的资源的资源指示信息;
    所述资源指示信息中包括所述第一终端至少部分占用和/或预留的资源组对应的资源指示信息;
    第一终端占用和/或预留的资源不连续时,所述资源指示信息中包括所述当前资源组和至少部分所述其他资源组分别对应的资源指示信息。
  15. 根据权利要求14所述的方法,其中,当所述资源指示信息的所述旁链路控制信息中包括所述当前资源组对应的资源指示信息时,所述旁链路控制信息包括第一节SCI和第二节SCI,第二节SCI的映射满足以下至少一项:
    所述第二节SCI映射在对应的所述第一节SCI所在的资源组内;
    所述第二节SCI在所述第一终端占用的资源上按照先频域后时域的规则进行映射。
  16. 根据权利要求15所述的方法,其中,所述第一终端发送旁链路控制信息,其中:
    所述第二节SCI映射在保护频带上;
    或者,所述第二节SCI不映射在保护频带上。
  17. 根据权利要求16所述的方法,其中,所述保护频带包含的资源块数量等于资源池或资源组内的交错资源数量。
  18. 根据权利要求13所述的方法,其中,所述资源组标识通过协议预定义、网络侧设 备预配置、配置和/或所述第一终端确定。
  19. 根据权利要求1所述的方法,其中,所述资源指示信息中预留资源的确定顺序包括以下至少一项:
    随机确定;
    频域和/或时域由高到低;
    频域和/或时域由低到高;
    优先指示所述资源指示信息所对应的资源组内的资源。
  20. 一种资源指示方法,其中,包括:
    网络侧设备根据子信道和/或资源组的编号规则向所述第一终端发送下行链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述下行链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端用于发送占用和/或预留的资源;
    和/或,所述第一终端将所述资源指示信息承载于旁链路控制信息后发送至所述第二终端。
  21. 一种资源指示方法,其中,包括:
    检测和/或接收所述第一终端发送的旁链路控制信息,和/或网络侧设备发送的下行链路控制信息,其中,所述旁链路控制信息和下行链路控制信息根据所述根据子信道和/或资源组的编号规则生成,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源;
    根据所述资源指示信息,确定所述第一终端占用和/或预留的资源。
  22. 根据权利要求21所述的方法,其中,所述检测和/或接收所述第一终端发送旁链路控制信息,包括以下至少一项:
    在资源组上检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分资源组上的资源指示信息和/或关联信息;
    在资源组上检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括当前资源组上的资源指示信息和/或关联信息;
    在资源组集合上进行检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分资源组集合上的资源指示信息和/或关联信息;
    在资源组集合上进行检测和/或接收旁链路控制信息,得到所述资源指示信息,其中,所述资源指示信息包括至少部分当前资源组集合上的资源指示信息和/或关联信息。
  23. 根据权利要求22所述的方法,其中,资源组标识通过协议预定义、网络侧设备预配置、配置和/或所述第一终端确定,或者,资源组标识为所述第一终端占用和/或预留的资源在所述第一对象除发送所述旁链路控制信息的当前资源组之外的至少部分其他资源 组占用和/或预留的资源对应的资源组标识。
  24. 根据权利要求23所述的方法,其中,所述检测和/或接收所述第一终端和/或网络侧设备发送旁链路控制信息,包括以下至少一项:检测和/或接收所述关联信息中的资源组标识对应的资源组上的旁链路控制信息,或者,跳过检测和/或接收所述关联信息中的资源组标识对应的资源组上的旁链路控制信息。
  25. 根据权利要求21所述的方法,其中,所述旁链路控制信息包括第一节SCI和第二节SCI,
    在所述第一节SCI所在的资源组上检测和/或解码对应的所述第二节SCI;
    或者,在所述第一终端占用或者预留的资源上检测和/或解码所述第二节SCI。
  26. 根据权利要求24所述的方法,其中,
    在保护频带上检测和/或解码所述第二节SCI;
    或者,在非保护频带上检测和/或解码所述第二节SCI。
  27. 一种资源指示装置,其中,包括:
    第一发送模块,根据子信道和/或资源组的编号规则发送旁链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源。
  28. 一种资源指示装置,其中,包括:
    第二发送模块,根据子信道和/或资源组的编号规则向所述第一终端发送下行链路控制信息,其中,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述下行链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端用于发送占用和/或预留的资源;
    第三发送模块,用于所述第一终端将所述资源指示信息承载于旁链路控制信息后发送至所述第二终端。
  29. 一种资源指示装置,其中,包括:
    接收模块,用于检测和/或接收所述第一终端发送的旁链路控制信息,和/或网络侧设备发送的下行链路控制信息,其中,所述旁链路控制信息和下行链路控制信息根据所述根据子信道和/或资源组的编号规则生成,所述子信道和/或资源组的编号规则包括子信道和交错资源之间的映射规则,所述旁链路控制信息包括资源指示信息,所述资源指示信息用于指示所述第一终端占用和/或预留的资源;
    确定模块,用于根据所述资源指示信息,确定所述第一终端占用和/或预留的资源。
  30. 一种终端,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19任一项所述的资源指示方法的步骤,或者,实现如权利要求21至26任一项所述的资源指示方法的步骤。
  31. 一种网络侧设备,其中,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求20所述的资源指示方法的步骤。
  32. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至19任一项所述的资源指示方法,或者实现如权利要求20所述的资源指示方法的步骤,或者实现如权利要求21至26任一项所述的资源指示方法的步骤。
PCT/CN2023/122867 2022-09-30 2023-09-28 资源指示方法、终端及网络侧设备 WO2024067856A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211224194.4 2022-09-30
CN202211224194 2022-09-30
CN202310370394.9 2023-04-06
CN202310370394.9A CN117812739A (zh) 2022-09-30 2023-04-06 资源指示方法、终端及网络侧设备

Publications (1)

Publication Number Publication Date
WO2024067856A1 true WO2024067856A1 (zh) 2024-04-04

Family

ID=90420759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122867 WO2024067856A1 (zh) 2022-09-30 2023-09-28 资源指示方法、终端及网络侧设备

Country Status (2)

Country Link
CN (1) CN117812739A (zh)
WO (1) WO2024067856A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021232382A1 (zh) * 2020-05-21 2021-11-25 Oppo广东移动通信有限公司 侧行反馈资源配置方法、终端设备和网络设备
CN114467352A (zh) * 2022-01-06 2022-05-10 北京小米移动软件有限公司 一种资源分配指示方法、资源分配获取方法及其装置
CN114586390A (zh) * 2022-01-24 2022-06-03 北京小米移动软件有限公司 一种资源指示方法、资源确定方法及其装置
CN114938718A (zh) * 2022-04-14 2022-08-23 北京小米移动软件有限公司 一种资源配置的方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021232382A1 (zh) * 2020-05-21 2021-11-25 Oppo广东移动通信有限公司 侧行反馈资源配置方法、终端设备和网络设备
CN114467352A (zh) * 2022-01-06 2022-05-10 北京小米移动软件有限公司 一种资源分配指示方法、资源分配获取方法及其装置
CN114586390A (zh) * 2022-01-24 2022-06-03 北京小米移动软件有限公司 一种资源指示方法、资源确定方法及其装置
CN114938718A (zh) * 2022-04-14 2022-08-23 北京小米移动软件有限公司 一种资源配置的方法及其装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "Physical channel design for sidelink on unlicensed spectrum", 3GPP TSG RAN WG1 #109-E, R1-2203750, 29 April 2022 (2022-04-29), XP052153166 *
ROBERT BOSCH GMBH: "Discussion on channel access mechanism for sidelink on unlicensed spectrum", 3GPP TSG RAN WG1 #109-E, R1-2204868, 29 April 2022 (2022-04-29), XP052191683 *

Also Published As

Publication number Publication date
CN117812739A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US11387969B2 (en) Signal transmission method, related device, and system
CN109076539B (zh) 用户装置以及基站
CN109275191B (zh) 一种传输方法及其装置
RU2771047C2 (ru) Система, устройство и способ предоставления ресурса восходящей линии связи
JP7306399B2 (ja) 電子機器、無線通信方法及びコンピューター読み取り可能な記録媒体
US11265903B2 (en) Uplink transmission method and apparatus
US10397949B2 (en) PUCCH resource configuration method in carrier aggregation and equipments thereof
US11665736B2 (en) Control channel position determining method, device, and processor-readable storage medium
WO2019062585A1 (zh) 一种资源调度方法、网络设备以及通信设备
JP7306400B2 (ja) 電子機器及び無線通信方法
CN113424618B (zh) 一种通信方法、装置及计算机可读存储介质
WO2022021241A1 (zh) 同步信号块的传输方法、装置、设备及存储介质
CN110267227A (zh) 一种数据传输方法、相关设备及系统
US20240040595A1 (en) Method and Apparatus for Determining Sidelink Feedback Resource, Terminal, and Storage Medium
US20240172277A1 (en) Channel access method and processing method for sidelink feedback information, and related device
US20220264377A1 (en) Method and apparatus for resource allocation for embb/urllc
US11996959B2 (en) SRS transmission method, access network device, and terminal device
WO2024067856A1 (zh) 资源指示方法、终端及网络侧设备
JP2022521484A (ja) 送受信機デバイスおよびスケジューリングデバイス
US11425731B2 (en) Electronic device, wireless communication method and computer readable medium for managing resource blocks
WO2021019740A1 (ja) 端末
WO2024032786A1 (zh) 侧链路的功率控制方法及终端
WO2024067499A1 (zh) 通信方法及通信装置
JP7488392B2 (ja) 基地局、無線通信方法及び集積回路
WO2023202577A1 (zh) 同步信息发送方法、装置、ue及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871080

Country of ref document: EP

Kind code of ref document: A1