WO2024067809A1 - 人工心脏瓣膜 - Google Patents

人工心脏瓣膜 Download PDF

Info

Publication number
WO2024067809A1
WO2024067809A1 PCT/CN2023/122612 CN2023122612W WO2024067809A1 WO 2024067809 A1 WO2024067809 A1 WO 2024067809A1 CN 2023122612 W CN2023122612 W CN 2023122612W WO 2024067809 A1 WO2024067809 A1 WO 2024067809A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
stent
equal
inflow
skirt
Prior art date
Application number
PCT/CN2023/122612
Other languages
English (en)
French (fr)
Inventor
张贵
房路遥
张德元
Original Assignee
元心科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 元心科技(深圳)有限公司 filed Critical 元心科技(深圳)有限公司
Priority to CN202380011090.1A priority Critical patent/CN117561040A/zh
Publication of WO2024067809A1 publication Critical patent/WO2024067809A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body

Definitions

  • the present application belongs to the technical field of medical devices, and specifically relates to an artificial heart valve.
  • Heart valves are one-way valves between the atria and ventricles or between the ventricles and arteries.
  • Heart valve disease is one of the most common cardiovascular diseases. Clinically, single/multiple valve structural or functional abnormalities caused by rheumatic inflammation, degenerative changes, congenital malformations, ischemic necrosis, trauma, etc. can lead to valvular stenosis or insufficiency. Mild cases of heart valve disease can be relieved by medication, severe cases can undergo valve repair, and patients who are not suitable for repair need to undergo artificial heart valve replacement.
  • an outer skirt with fiber burrs is added to the outside of the artificial heart valve.
  • the outer skirt can promote blood coagulation in the paravalvular gap, thereby filling the gap between the artificial heart valve and the native valve to achieve the purpose of reducing or eliminating paravalvular leakage.
  • this method can usually only block smaller gaps, and the sealing effect on larger gaps or gaps is usually not ideal.
  • the deformation degree of the elastic filling material is limited, and the sealing effect on larger gaps or gaps is usually not ideal. It is also easy to cause the surrounding tissue to be further expanded, causing certain damage to the surrounding tissue.
  • the present application provides an artificial heart valve, the outer skirt of which can accommodate backflow blood, and the blood flows from the surface of the leaflet assembly close to the stent through the stent hole into the free part of the outer skirt.
  • the blood can flow toward the gap or gap between the surrounding tissue and the artificial heart valve stent, so that the free part of the outer skirt can adaptively fill the gap or gap between the surrounding tissue and the stent under the push of the internal blood and form a seal, thereby achieving a better effect of preventing paravalvular leakage; at the same time, the free part is deformed by the push of the blood to fill the gap or gap, which will not cause the surrounding tissue to be further expanded, and the damage to the surrounding tissue is relatively small.
  • the artificial heart valve provided by the present application includes:
  • a bracket comprising an inflow end and an outflow end, wherein the bracket is formed with a plurality of bracket holes;
  • a leaflet assembly is disposed inside the stent, wherein the leaflet assembly has an inflow edge facing the outflow end;
  • an inner skirt disposed on the inner surface of the bracket, the inner skirt comprising an inflow skirt edge close to the inflow end and an outflow skirt edge close to the outflow end, the inner skirt being connected to the inflow edge;
  • An outer skirt is at least partially arranged on the outer periphery of the support, and the outer skirt includes a closed portion, a free portion and a connecting portion; the closed portion is arranged outside the support and close to the inflow end, and the closed portion is connected to the inner skirt; the free portion is connected to the closed portion and extends in a direction away from the inflow end, the connecting portion is connected to a portion of the free portion close to the outflow end, and the connecting portion is connected to the support and/or the inner skirt; the backflow blood can pass through the support hole between the outflow end and the inflow edge and flow into the free portion, and the free portion can swell in a direction away from the support under the pressure of the backflow blood to form a seal against the surrounding tissue.
  • FIG. 1a is a three-dimensional view of an embodiment of an artificial heart valve of the present application after expansion
  • FIG. 1 b is a detailed internal view of the artificial heart valve shown in FIG. 1 a ;
  • FIGS. 2 to 7 are internal detail views of various embodiments of the artificial heart valve of the present application.
  • FIGS. 8a to 8d are top views of various embodiments of the artificial heart valve of the present application.
  • FIG9a is a schematic diagram of the artificial heart valve of the present application for preventing paravalvular leakage after being implanted in a human body;
  • FIG9b is an enlarged view of point A in FIG9a;
  • 10a to 10d are cross-sectional views of various embodiments of the artificial heart valve implant of the present application.
  • the artificial heart valve proposed in the present application is suitable for implantation in natural or artificial arterial valves, such as aortic valves, mitral valves, tricuspid valves and pulmonary valves.
  • the artificial heart valve can be implanted into the human body through minimally invasive percutaneous intervention under the guidance of imaging equipment such as X-rays and/or ultrasound, or can be implanted into the human body through open-chest surgery.
  • an artificial heart valve may include a stent, a leaflet assembly and an inner skirt.
  • the end of the stent into which the antegrade blood flow flows may be the inflow end
  • the end of the stent into which the antegrade blood flow flows out may be the outflow end.
  • the edge of the leaflet assembly facing the inflow end may be connected to the stent through the inner skirt.
  • the artificial heart valve After the artificial heart valve is implanted in the human body, when the ventricle contracts, antegrade blood flows into the inflow end of the stent, and the antegrade blood squeezes the leaflet assembly, the leaflet assembly opens and fits with the inner surface of the stent, and the antegrade blood flows to the outflow end through the leaflet assembly; when the ventricle begins to relax, no blood flows into the inflow end, and the pressure at the outflow end is higher than the pressure at the inflow end. The pressure forces the blood at the outflow end to flow back to the inflow end, and the leaflet assembly is pushed together by the backflowing blood flow to form a closure to prevent blood from flowing back.
  • the artificial heart valve has the function of a natural heart valve, and can control blood to flow from the inflow end to the outflow end in one direction only, and no backflow occurs.
  • the artificial heart valve 100 proposed in the present application may include a stent 11, a leaflet assembly 12, an inner skirt 13 and an outer skirt 14.
  • the stent 11 may include an inflow end 111 and an outflow end 112, and the stent 11 may be formed with a plurality of stent holes 113.
  • the leaflet assembly 12 may be arranged inside the stent 11, and the leaflet assembly 12 may have an inflow edge 121 facing the outflow end 112.
  • the inflow edge 121 is located on the surface of the leaflet assembly 12 away from the axial center of the stent 11 (i.e., the surface facing the outside of the stent), which may specifically be the position where the leaflet assembly 12 is connected to the inner skirt 13 or the stent 12, and the reflow blood that flows back to the surface of the valve assembly 12 may flow to the free portion 142 at least from the stent hole 113 near the inflow edge 121.
  • the inner skirt 13 may be disposed on the inner surface of the support 11, and the inner skirt 13 may include an inflow skirt 131 close to the inflow end 111 and an outflow skirt 132 close to the outflow end 112, wherein the inflow skirt 131 is close to the inflow end 111, and the outflow skirt 132 is close to the outflow skirt 112 or closer to the outflow end 112 relative to the inflow skirt 131.
  • the inner skirt 13 may be connected to the inflow edge 121.
  • the outer skirt 14 may be at least partially disposed on the outer periphery of the support 11.
  • the outer skirt 14 may include a closed portion 141, a free portion 142 and a connecting portion 143.
  • the closed portion 141 may be disposed outside the support 11, and the closed portion 141 may be disposed close to the inflow end 111.
  • the closed portion 141 may be connected to the inner skirt 13.
  • the free portion 142 may be connected to the closed portion 141 and may extend in a direction away from the inflow end 111.
  • the connecting portion 143 can be connected to the portion of the free portion 142 near the outflow end 112, and the connecting portion 143 can be connected to the support 11 and/or the inner skirt 13.
  • the backflowing blood can pass through the support hole 113 between the outflow end 112 and the inflow edge 121 and flow into the free portion 142.
  • the free portion 142 can expand in a direction away from the support 11 under the pressure of the backflowing blood to form a seal against the surrounding tissue 2.
  • the stent 11 can open the narrowed or occluded surrounding tissue 2, and can also provide support and fixation for the leaflet assembly 12, the inner skirt 13 and the outer skirt 14.
  • the leaflet assembly 12 can be opened or closed to control the flow of blood.
  • the inner skirt 13 can seal the leaflet assembly 12 to the stent 11 by connecting the inflow edge 121 of the leaflet assembly 12.
  • the closing portion 141 seals the side of the free portion 142 close to the inflow end 111, and the blood in the free portion 142 will not leak out from the side of the free portion 142 close to the inflow end 111.
  • the connecting portion 143 connects the part of the free portion 142 close to the outflow end 112, and the soft free portion 142 is fixed to the stent 11 and will not prolapse from the stent 11.
  • the blood in the free portion 142 is Blood will not leak out from the side of the free portion 142 close to the outflow end 112.
  • the backflow blood flows from the surface of the leaflet assembly 12 to the stent hole 113 opened between the outflow end 112 and the inflow edge 121, and further flows into the free portion 142 of the outer skirt 14.
  • the blood will flow toward the gap or notch due to uneven force, thereby pressing the flexible free portion 142 to expand toward the gap or notch.
  • the free portion 142 adaptively fills the gap or notch between the stent 11 and the surrounding tissue 2 under the push of blood and forms a seal, thereby achieving the effect of preventing paravalvular leakage for surrounding tissues 2 of various shapes.
  • the free portion 142 will not cause obvious pressure on the surrounding tissue 2 while closely fitting with the surrounding tissue 2, and will not cause the surrounding tissue 2 to be further expanded, and the damage to the surrounding tissue 2 is relatively small.
  • the stent 11 can have an expanded and contracted state.
  • the stent 11 can be expanded by an expansion device (such as an expansion balloon) or can be self-expanded.
  • the stent 11 can be made of a bioabsorbable material.
  • the stent 11 can be made of iron, iron-based alloy, magnesium, magnesium-based alloy, zinc, zinc-based alloy or an absorbable polymer material.
  • the stent 11 can be absorbed by the human body, eliminating the rigid traction of the valve frame on the leaflets, and can have a better postoperative recovery effect, buffer the tension when the leaflets are closed, and prolong the fatigue time of the leaflets; secondly, after the stent 11 is absorbed, it does not affect the replacement of the valve-in-valve artificial valve again, and can ensure that the valve opening area is not reduced.
  • the stent 11 can also be made of a bio-non-absorbable material.
  • the stent 11 can be made of materials such as nickel-titanium alloy, cobalt-chromium alloy or stainless steel.
  • the inflow end 111 of the stent 11 can be the end of the stent 11 where antegrade blood flows in.
  • the outflow end 112 of the stent 11 can be the end of the stent 11 where antegrade blood flows out.
  • the stent 11 can also include a middle portion (not shown in the mark) located between the inflow end 111 and the outflow end 112.
  • the nominal diameters of the inflow end 111, the outflow end 112 and the middle portion can be consistent or inconsistent.
  • the stent 11 can include a plurality of stent rods 114, and the plurality of stent rods 114 can be arranged crosswise with each other to form a plurality of stent holes 113.
  • the size and shape of the stent hole 113 can be changed by the change in the degree of expansion of the stent 11.
  • the shape of the stent hole 113 can be roughly rhombus, hexagonal, triangular or irregular, etc.
  • the leaflet assembly 12 may include at least two leaflets, for example, two or three leaflets. At least two leaflets may be arranged in the circumference of the stent 11 within the stent 11.
  • the shape of the leaflet may be set with reference to the shape of a natural leaflet, for example, it may be roughly fan-shaped.
  • the inflow edge 121 of the leaflet assembly 12 may be arc-shaped.
  • the leaflet may be prepared from natural biological tissue, such as decellularized bovine pericardium, porcine pericardium, porcine aortic valve, fish float or small intestinal tissue of a mammal.
  • the inner skirt 13 can be arranged on the inner surface of the support 11, and the inner skirt 13 can be connected to the support 11.
  • the inner skirt 13 can seal the inflow edge 121 of the leaflet assembly 12 to fix the leaflet assembly 12 inside the support 11.
  • the inner skirt 13 and the support 11, and the inner skirt 13 and the inflow edge 121 can be sutured, glued and/or welded respectively.
  • the unfolded shape of the inflow skirt 131 and the outflow skirt 132 can be straight, curved or broken line, etc.
  • the outer skirt 14 can be at least partially located on the periphery of the stent 11.
  • the outer skirt 14 can be located on the periphery of the stent 11; or, the extended end 142a of the outer skirt 14 near the outflow end 112 can extend beyond the outflow end 112 and fold back into the stent 11, so that a portion of the outer skirt 14 is located on the periphery of the stent 11, and the remaining portion is located inside the stent 11.
  • the closing portion 141 of the outer skirt 14 may extend outside the bracket 11 along the circumference of the bracket 11.
  • the closing portion 141 may be arranged close to the inflow end 111, that is, the closing portion 141 may be located between the middle of the bracket 11 and the inflow end 111 of the bracket 11.
  • the closing portion 141 may be connected to the bracket 11 while being connected to the inner skirt 13, thereby improving the fixing effect of the closing portion 141 on the bracket 11.
  • the connection methods of the closing portion 141 and the inner skirt 13 and the closing portion 141 and the bracket 11 may also be suturing, gluing and/or welding, respectively.
  • the free portion 142 and the closed portion 141 of the outer skirt 14 may be integrally formed or separately formed, and the free portion 142 and the closed portion 141 may be sewed, glued and/or welded.
  • the free portion 142 may extend along the circumference and axial direction of the bracket 11.
  • the extended end 142a of the free portion 142 may be located outside the bracket 11, or may extend out of the outflow end 112 and be folded back into the bracket 11.
  • the connecting portion 143 of the outer skirt 14 can be connected to the portion of the free portion 142 near the outflow end 112. Specifically, the connecting portion 143 can be connected to the portion of the free portion 142 near the extension end 142a, or can be connected to the extension end 142a.
  • the connecting portion 143 and the free portion 142 can be integrally formed, or can be detachably connected, such as by sewing, gluing and/or welding.
  • the backflow blood can flow into the free portion 142 through the stent hole 113 between the outflow end 112 and the inflow edge 121.
  • the stent hole 113 between the outflow end 112 and the inflow edge 121 can be at least partially exposed, or the outer skirt 14 (if any) and/or the inner skirt 13 (if any) covering the stent hole 113 inside the stent 11 allow blood to pass through or penetrate.
  • the shape of the inflow edge 121 and the stent hole 113 are generally inconsistent, for example, the trajectory of the inflow edge 121 is different from that of the stent hole 113.
  • the sides of the hole 113 do not overlap, or are blocked by the outer skirt 14 (if any) and/or the inner skirt 13 (if any), and the returning blood may pass through the entire hole area or part of the hole area of the above-mentioned multiple stent holes 113.
  • the artificial heart valve 100 of the present application is introduced in detail below.
  • the axial distance between the sealing portion 141 and the inflow end 111 may be A1, the minimum axial distance between the inflow edge 121 and the inflow end 111 may be B1, the axial distance between the inflow skirt 131 and the inflow end 111 may be C1, and the axial distance between the outflow skirt 132 and the inflow end 111 may be C2.
  • the relative position of the sealing portion 141 and the inflow edge 121 may be set, that is, A1 may be greater than, equal to or less than B1, so that the free portion 142 can adapt to the surrounding tissue 2 of different shapes at the implantation position to achieve the effect of preventing paravalvular leakage.
  • the axial distance between the outflow skirt 132 and the inflow end 111 may be greater than (slightly greater than or significantly greater than) the axial distance between the inflow edge 121 and the inflow end 111.
  • the closed portion 141 may be closer to the inflow end 111 than the inflow edge 121 (the portion closest to the inflow end 111), so that the free portion 142 can be more adapted to the gap or notch of the sealing position close to the inflow end 111.
  • the inner skirt 13 is connected to the inflow edge 121, the axial distance A1 between the closing portion 141 and the inflow end 111 is smaller than the minimum axial distance B1 between the inflow edge 121 and the inflow end 111, and the axial distance C1 between the inflow skirt 131 and the inflow end 111 is smaller than the axial distance A1 between the closing portion 141 and the inflow end 111, so that the stent hole 113 located between the closing portion 141 and the inflow edge 121 is covered or closed from the inside by the inner skirt 13, and on the one hand, a closed “pocket" is formed on the return blood path toward the outflow end 112, thereby achieving the effect of preventing paravalvular leakage.
  • the axial distance between the closing portion 141 and the inflow end 111 may be equal to the minimum axial distance between the inflow edge 121 and the inflow end 111.
  • the axial distance between the inflow skirt 131 and the inflow end 111 may be smaller (slightly smaller or significantly smaller) than the axial distance between the closing portion 141/the inflow edge 121 and the inflow end 111, and the axial distance between the outflow skirt 132 and the inflow end 111 may be larger (slightly larger or significantly larger) than the axial distance between the inflow edge 121/or the closing portion 141 and the inflow end 111.
  • the closing portion 141 is flush with the portion of the inflow edge 121 closest to the inflow end 111, and the free portion 142 can better fit the gap or notch whose sealing position is approximately in the middle of the bracket 11.
  • the axial distance between the closing portion 141 and the inflow end 111 may be greater than the minimum axial distance between the inflow edge 121 and the inflow end 111.
  • the axial distance between the inflow skirt 131 and the inflow end 111 may be less than (slightly less than or significantly less than) the minimum axial distance between the inflow edge 121 and the inflow end 111.
  • the axial distance between the outflow skirt 132 and the inflow end 111 may be greater than (slightly greater than or significantly greater than) the axial distance between the closing portion 141 and the inflow end 111.
  • the closing portion 141 may be closer to the outflow end 112 than the inflow edge 121 (the portion closest to the inflow end 111), so that the free portion 142 can be more adapted to the gap or notch where the sealing position is close to the outflow end 112.
  • the above embodiments can be compared on the same axial section, which can pass through the portion of the inflow edge 121 closest to the inflow end 111, that is, the minimum axial distance between the inflow edge 121 and the inflow end 111 can be the axial distance between the portion of the inflow edge 121 closest to the inflow end 111 and the inflow end 111.
  • the inner skirt 13 between the inflow edge 121 and the outflow skirt 132 is permeable to the returning blood
  • A1>B1 at least part of the inner skirt 13 between the closed portion 141 and the outflow skirt 132 is permeable to the returning blood.
  • the part of the inner skirt 13 between the inflow edge 121/closed portion 141 and the outflow skirt 132 will hinder the returning blood from entering the free portion 142.
  • the blood-permeable part of the inner skirt 13 can be made of a blood-permeable material.
  • the blood-permeable part of the inner skirt 13 can also be provided with a through hole 133 through which blood can pass.
  • the shape of the through hole 133 can be triangular, circular, square, polygonal, round, waist-shaped or irregular.
  • the number of the through hole 133 may be one or at least two, and the at least two through holes 133 may be arranged at intervals or in a continuous manner along the circumference of the inner skirt 13 .
  • C1 (the axial distance between the inflow skirt 131 and the inflow end 111) can be greater than 0 and less than or equal to 40% of the nominal length of the stent 11.
  • the exposed inflow end 111 can be embedded in the surrounding tissue 2, and the stent 11 can be limited by the surrounding tissue 2, thereby improving the fixing effect of the artificial heart valve 100 in the human body.
  • C1 may be 5% to 40%, 5% to 35%, 8% to 35%, 10% to 30%, 15% to 20% or 10% to 15% of the nominal length of the stent 11.
  • C1 may be 1%, 5%, 8%, 10%, 15%, 20%, 25%, 30%, 35% or 40% of the nominal length of the stent 11.
  • the above data may be C1 on any axial section, or may be the average value of C1 on multiple arbitrary axial sections.
  • C1 can be greater than or equal to 0.1 mm and less than or equal to 24 mm. Further, C1 can be greater than or equal to 0.5 mm and less than or equal to 20 mm. Furthermore, C1 can be greater than or equal to 1 mm and less than or equal to 15 mm. C1 can include but is not limited to 0.1 mm, 0.5 mm, 1 mm, 3 mm, 5 mm, 10 mm, 15 mm, 20 mm or 24 mm. The above list only refers to the artificial heart valve 100 of conventional nominal length (e.g., 15 to 60 mm), and is not limited to this.
  • the free portion 142 and the closed portion 141 can be spaced apart from the inflow end 111 of the stent 11.
  • A1 (the axial distance between the closed portion 141 and the inflow end 111) can be greater than or equal to 1% of the nominal length of the stent 11, and less than or equal to 49% of the nominal length of the stent 11.
  • A1 is less than 1% of the nominal length of the stent 11, the extension length of the free portion 142 between the closed portion 141 and the inflow edge 121 is relatively long, and the curled profile is relatively large, which increases the difficulty of percutaneous minimally invasive intervention.
  • A1 is greater than 49% of the nominal length of the stent 11, the contact area between the free portion 142 and the surrounding tissue 2 is insufficient, which will reduce the effect of preventing paravalvular leakage.
  • A1 can be consistent or inconsistent on different axial sections, and the above data can be A1 on any axial section, or it can be the average value of A1 on multiple arbitrary axial sections.
  • A1 can be 3% to 49%, 5% to 40%, 8% to 30%, 10% to 40%, 5% to 35%, 15% to 30%, 15% to 20%, or 25% to 30% of the nominal length of the stent 11.
  • A1 can be 1%, 2%, 5%, 8%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 49% of the nominal length of the stent 11, or any value therebetween.
  • A1 can be greater than or equal to 0.3mm and less than or equal to 28mm. Further, A1 can be greater than or equal to 0.5mm and less than or equal to 25mm. Still further, A1 can be greater than or equal to 1mm and less than or equal to 20mm. Specifically, A1 can be 0.3mm, 0.5mm, 1mm, 3mm, 4mm, 5mm, 7mm, 8mm, 10mm, 15mm, 20mm, 25mm, 28mm or any distance between the above data. It should be noted that the above data range can be applicable to artificial heart valves 100 of conventional nominal length, and can be appropriately adjusted in artificial heart valves 100 of special sizes.
  • the axial distance between the extended end 142a of the expanded free portion 142 and the inflow end 111 may be A2, and the difference between A2 and B1 (the minimum axial distance between the inflow edge 121 and the inflow end 111) may be greater than or equal to 30% and less than or equal to 74% of the nominal length of the stent 11.
  • the free portion 142 has enough space to accommodate the backflow blood, and the blood will not leak out from the extended end 142a of the free portion 142, thereby achieving the effect of preventing paravalvular leakage.
  • the difference between A2 and B1 can be 35% to 74%, 35% to 70%, 40% to 70%, 45% to 60%, 35% to 70%, 50% to 70%, 60% to 74%, 55% to 65% or 45% to 60% of the nominal length of the bracket 11.
  • the difference between A2 and B1 can be greater than or equal to 5 mm and less than or equal to 40 mm.
  • the difference between A2 and B1 can be greater than or equal to 6 mm and less than or equal to 35 mm.
  • the difference between A2 and B1 can be greater than or equal to 7 mm and less than or equal to 30 mm.
  • the difference between A2 and B1 can be 5 mm, 6 mm, 7 mm, 8 mm, 10 mm, 20 mm, 25 mm, 30 mm, 35 mm, 39 mm, 40 mm or any length between the above adjacent values.
  • the above data only refers to the nominal length of the conventional bracket 11 and is not limited thereto.
  • the free portion 142 has a radial extension after expansion.
  • the radial extension of the free portion 142 after expansion (indicated by D in the figure) can be defined as: the distance between the outer surface of the free portion 142 and the outer surface of the stent 11 on the radial cross section.
  • the radial extension of the free portion 142 after expansion can be related to the nominal diameter and/or nominal length of the stent 11 when it is deployed, that is, the radial extension of the free portion 142 after expansion can be different on stents 11 with different nominal diameters and/or nominal lengths.
  • the radial extension of the free portion 142 after expansion can also be the same on stents 11 with different nominal diameters and/or nominal lengths.
  • the radial extension D of the free portion 142 after expansion can be greater than or equal to 5% of the nominal diameter of the stent 11, and less than or equal to half of the nominal length of the stent 11.
  • the expanded outer skirt 14 has a sufficient radial expansion amplitude, which can better adapt to fill the gaps or gaps of different sizes between the stent 11 and the surrounding tissue 2, so as to have a better effect of preventing paravalvular leakage.
  • the artificial heart valve 100 has a relatively small overall curling profile under radial compression. When D is less than 5% of the nominal diameter of the stent 11, the free portion 142 may not be able to seal a relatively large gap or gap.
  • the curling profile of the free portion 142 under radial compression is relatively large, which increases the difficulty of percutaneous minimally invasive intervention.
  • the above data range can be D on any radial section, or it can be the average value of D on multiple arbitrary radial sections.
  • D may be greater than or equal to 8% of the nominal diameter of the stent 11 and less than or equal to 50% of the nominal length of the stent 11; or, D may be greater than or equal to 10% of the nominal diameter of the stent 11 and less than or equal to 45% of the nominal length of the stent 11; or, D may be greater than or equal to 9% of the nominal diameter of the stent 11 and less than or equal to 30% of the nominal length of the stent 11; or, D may be greater than or equal to 12% of the nominal diameter of the stent 11 and less than or equal to 40% of the nominal length of the stent 11.
  • D may be greater than or equal to 0.8 mm and less than or equal to 25 mm.
  • D may be 1 to 23 mm, 2 to 25 mm, 3 to 20 mm, 5 to 10 mm, 5 to 15 mm, 5 to 18 mm, 8 to 13 mm, 10 to 18 mm or 16 to 20 mm, etc.
  • D may include, but is not limited to, 0.8 mm, 1 mm, 2 mm, 3 mm, 5 mm, 8 mm, 10 mm, 13 mm, 15 mm, 18 mm, 20 mm, or 25 mm.
  • the nominal diameter and/or nominal length of the stent 11 exceeds the conventional range, D may not be limited to the above data range.
  • the axial distance between the extended end 142a of the expanded free portion 142 and the closed portion 141 may be L, and the axial distance between the outflow end 112 and the closed portion 141 may be H.
  • the length of the free portion 142 may be greater than or equal to L and less than or equal to (H-1/2L) ⁇ .
  • the value of L may be equal to A2-A1.
  • H-1/2L may also be expressed as Or H-1/2 (A2-A1).
  • the free portion 142 has a relatively suitable extension length, and the free portion 142 and the surrounding tissue 2 have a relatively suitable contact area, so that a relatively good effect of preventing paravalvular leakage can be achieved.
  • the length of the free portion 142 may be greater than or equal to L and less than or equal to Please refer to FIG. 10 b and FIG. 10 d .
  • the length of the free portion 142 may be greater than or equal to H+L and less than or equal to (H ⁇ 1/2L) ⁇ .
  • the length of the free portion 142 can be greater than or equal to 10 mm and less than or equal to 31 mm. Further, the length of the free portion 142 can be 10-30 mm, 13-25 mm, 12-20 mm, 15-28 mm, 15.7 mm-20 mm or 18-25 mm, etc.
  • the length of the free portion 142 can include but is not limited to 10 mm, 10.5 mm, 12 mm, 13 mm, 15 mm, 15.7 mm, 16 mm, 16.5 mm, 17 mm, 18 mm, 19 mm, 20 mm, 25 mm, 28 mm, 30 mm or 31 mm.
  • the above data range can be applicable to artificial heart valves 100 of conventional sizes, and can be adjusted accordingly in artificial heart valves 100 of special sizes.
  • the thickness of the free portion 142 may be greater than or equal to 5 ⁇ m and less than or equal to 200 ⁇ m. Further, the thickness of the free portion 142 may be greater than or equal to 10 ⁇ m and less than or equal to 190 ⁇ m. Further, the thickness of the free portion 142 may be greater than or equal to 20 ⁇ m and less than or equal to 180 ⁇ m. Thus, the free portion 142 can have a relatively small curling profile under the premise of having a relatively good anti-valvular leakage effect. When the thickness of the free portion 142 is less than 5 ⁇ m, the free portion 142 is prone to tearing during the unfolding process of the stent 11.
  • the curling profile of the free portion 142 is relatively large, which increases the difficulty of percutaneous minimally invasive intervention of the artificial heart valve 100.
  • the thickness of the free portion 142 may be consistent as a whole, or it may change in the axial direction and/or radial direction.
  • the above data may be the thickness on any radial section, or it may be the average value of the thickness on multiple arbitrary radial sections.
  • the thickness of the free portion 142 may be 5 ⁇ m, 7 ⁇ m, 10 ⁇ m, 15 ⁇ m, 18 ⁇ m, 20 ⁇ m, 30 ⁇ m, 50 ⁇ m, 100 ⁇ m, 150 ⁇ m, 180 ⁇ m, 190 ⁇ m or 200 ⁇ m, but is not limited thereto.
  • the outer skirt 14 may include a connecting portion 143.
  • the connecting portion 143 may include a first connecting sub-portion 143a and a second connecting sub-portion 143b connected to each other. The side or end of the first connecting sub-portion 143a away from the second connecting sub-portion 143b may be connected to the free portion 142, and the side or end of the second connecting sub-portion 143b away from the first connecting sub-portion 143a may be connected to the bracket 11 and/or the inner skirt 13.
  • the first connecting sub-portion 143a and the second connecting sub-portion 143b may be opposite sides or adjacent sides of the connecting portion 143. Through the first connecting sub-portion 143a and the second connecting sub-portion 143b, the free portion 142 can be tightly connected to the outside of the bracket 11 by the connecting portion 143, and the connection between the free portion 142 and the bracket 11 and/or the inner skirt 13 is relatively stable.
  • the first connecting sub-portion 143a and the second connecting sub-portion 143b may be respectively in the shape of a ring, a strip, a block or a dot, etc.
  • the shapes of the first connecting sub-portion 143a and the second connecting sub-portion 143b may be consistent or inconsistent.
  • the connecting portion 143 includes a first connecting sub-portion 143a, a second connecting sub-portion 143b and an extending sub-portion 143c whose two ends are respectively connected to the first connecting sub-portion 143a and the second connecting sub-portion 143b.
  • the first connecting sub-portion 143a can be connected to the free portion 142 at one side or one end away from the extending sub-portion 143c
  • the second connecting sub-portion 143b can be connected to the free portion 142 at one side or one end away from the extending sub-portion 143c.
  • One side or one end of 143c can be connected to the bracket 11 and/or the inner skirt 13.
  • the first connecting sub-portion 143a and the extending sub-portion 143c, and the second connecting sub-portion 143b and the extending sub-portion 143c can be connected by suturing, gluing and/or welding.
  • the setting of the extending sub-portion 143c can make the free portion 142 relatively loosely connected to the outside of the bracket 11, thereby increasing the radial extension amount of the free portion 142 after expansion, and also providing the axial margin of the free portion 142 to follow the contraction of the bracket 11.
  • the shape of the extending sub-portion 143c can be strip-shaped, rod-shaped or sheet-shaped.
  • the number of the connection parts 143 may be at least one, that is, the number of the connection parts 143 may be one or more than one. In order to achieve a better effect of preventing paravalvular leakage, the number of the connection parts 143 may be related to the shape of the first connection part 143a (described in detail later). In the same connection part 143, the number of the first connection sub-parts 143a may be at least one. Of course, the number of the second connection sub-parts 143b and/or the extension sub-parts 143c (if any) in the same connection part 143 may also be at least one.
  • the first connecting sub-portions 143a of the same or different connecting portions 143 can be arranged on the free portion 142 with intervals or in connection with each other (for example, crossing or at least partially overlapping); the second connecting sub-portions 143b of the same or different connecting portions 143 can be arranged on the bracket 11 and/or the inner skirt 13 with intervals or in connection with each other (for example, crossing or at least partially overlapping); the extension sub-portions 143c (if any) of the same or different connecting portions 143 can be arranged between the bracket 11 and the free portion 142 with intervals or in connection with each other (for example, crossing or at least partially overlapping).
  • first connecting sub-portion 143a may also be connected to the second connecting sub-portion 143b and/or the extending sub-portion 143c (if any) of the other connecting portion 143;
  • second connecting sub-portion 143b may also be connected to the first connecting sub-portion 143a and/or the extending sub-portion 143c (if any) of the same or other connecting portion 143;
  • the extending sub-portion 143c (if any) may also be connected to the first connecting sub-portion 143a and/or the second connecting sub-portion 143b of the same or other connecting portion 143, respectively.
  • the number of the first connecting sub-portion 143a and the second connecting sub-portion 143b is at least one
  • the number of the extension sub-portions 143c is at least two
  • the two ends or both sides of any one of the extension sub-portion 143c are respectively connected to the first connecting sub-portion 143a and the second connecting sub-portion 143b
  • one end or one side of the remaining extension sub-portion 143c is connected to the first connecting sub-portion 143a or the second connecting sub-portion 143b
  • the other end or one side is connected to the first connecting sub-portion 143a or the second connecting sub-portion 143b.
  • the axial distance between at least one first connecting sub-portion 143a and the extended end 142a of the free portion 142 can be greater than or equal to 0 and less than or equal to 10 mm.
  • the extended end 142a of the free portion 142 or the portion of the free portion 142 close to the extended end 142a can be connected to the stent 11 by the first connecting sub-portion 143a, which can improve the effective utilization rate of the free portion 142, and the free portion 142 has a larger space to accommodate the backflowing blood.
  • the accommodation space ratio of the free portion 142 is small, and the effective utilization rate is relatively low.
  • the axial distance between at least one first connecting sub-portion 143a and the extension end 142a may be 0-9mm, 0-8mm, 1-9mm, 0-7mm, 1-6mm, 2-5mm or 2-4mm, etc.
  • the axial distance between at least one first connecting sub-portion 143a and the extension end 142a may include but is not limited to 0, 0.5mm, 1mm, 1.5mm, 2mm, 4mm, 6mm, 8mm, 8.5mm, 9mm or 10mm.
  • At least one first connecting sub-portion 143a may be strip-shaped or ring-shaped in the top view (as shown in FIG. 6 ).
  • the angle between the two ends of the strip-shaped first connecting sub-portion 143a with the center of the stent 11 as the vertex may be greater than or equal to 120° and less than 360°. Further, the above angle may be greater than or equal to 130° and less than or equal to 350°. Further, the above angle may be greater than or equal to 140° and less than or equal to 340°. Specifically, the above angle may be 120°, 130°, 140°, 180°, 220°, 260°, 300°, 320°, 330°, 340°, 350°, 360° or any range between the above values.
  • the top view may be a collection of multiple radial cross sections, that is, the shape of the first connecting sub-portion 143a in the top view may be a shape in which multiple radial cross sections overlap.
  • the shapes of at least two first connecting sub-portions 143a in the top view may both be dot-shaped.
  • the angle (shown as ⁇ in the figure) between the two first connecting sub-portions 143a in the top view with the center of the bracket 11 as the vertex may be greater than or equal to 120° and less than or equal to 240°.
  • may be greater than or equal to 130° and less than or equal to 230°.
  • may be greater than or equal to 110° and less than or equal to 220°.
  • may be 120°, 125°, 130°, 140°, 160°, 200°, 210°, 220°, 230°, 235° or 240°, etc.
  • the number of the first connecting sub-portions 143a can be three, and the shapes of the three first connecting sub-portions 143a in the top view can all be dot-shaped, and the angle (indicated by ⁇ in FIG8a) between any two adjacent first connecting sub-portions 143a with the center of the stent 11 as the vertex is 120°.
  • the expansion of the free portion 142 is relatively uniform, and a relatively good effect of preventing paravalvular leakage is achieved.
  • This application does not specifically limit the shape and number of the first connecting sub-portion 143a, as long as the first connecting sub-portion 143a can connect the free portion 142 to the outside of the stent 11 so that the free portion 142 can prevent paravalvular leakage.
  • this application does not specifically limit the shape and number of the second connecting sub-portion 143b and the extension sub-portion 143b (if any), and will not repeat the relevant specific implementations.
  • the extension sub-portion 143c may have a certain extension length.
  • the length of the extension sub-portion 143c may be greater than 0 and less than or equal to the nominal length of the bracket 11. Specifically, when the number of the extension sub-portions 143c of the same connecting portion 143 is one, the above-mentioned length is the length of a single extension sub-portion 143c. When the number of the extension sub-portions 143c of the same connecting portion 143 is more than one, the above-mentioned length is the total length of the extension sub-portion 143c.
  • the length of the extension sub-portion 143c is within the above-mentioned range, the free portion 142 is relatively loosely connected to the outside of the bracket 11, the radial extension amount of the free portion 142 after expansion is relatively appropriate, and the axial margin of the free portion 142 following the contraction of the bracket 11 is also relatively appropriate.
  • the above-mentioned length may also be the total length of the extension sub-portions 143c of different connecting portions 143.
  • the length of the extension sub-portion 143c may be 0.5% to 90%, 1% to 80%, 5% to 80%, 8% to 50%, 10% to 30%, 10% to 40%, 20% to 30%, 40% to 50%, 30% to 70%, 50% to 60%, 60% to 85%, or 70% to 90% of the nominal length of the bracket 11.
  • the length of the extension sub-portion 143c may be 0.5%, 1%, 5%, 8%, 10%, 20%, 30%, 40%, 45%, 50%, 60%, 70%, 80%, 85%, 90%, or 100% of the nominal length of the bracket 11.
  • the length of the extension sub-portion 143c can be 0.5 mm, 1 mm, 5 mm, 8 mm, 10 mm, 20 mm, 30 mm, 40 mm, 45 mm, 50 mm, 60 mm, or any range thereof.
  • the free portion 142 may include an enlarged sub-portion 142b and a liquid-permeable sub-portion 142c that are interconnected.
  • the enlarged sub-portion 142b may be connected to the closed portion 141, and the enlarged sub-portion 142b may be expanded in a direction away from the stent 11 under the pressure of the backflowing blood to form a seal against the surrounding tissue 2.
  • the liquid-permeable sub-portion 142c may allow blood to pass through, so that the blood (if any) between the liquid-permeable sub-portion 142c and the surrounding tissue 2 may enter the enlarged sub-portion 142b through the liquid-permeable sub-portion 142c to provide a better effect of preventing paravalvular leakage.
  • the enlarged sub-portion 142b and the liquid-permeable sub-portion 142c may be an integrally formed arrangement, or may be detachably connected (e.g., suturing, gluing, and/or welding).
  • the liquid-permeable sub-portion 142c can be connected to the first connecting sub-portion 143a of the connecting portion 143. It can be understood that the connecting portion 143 will hinder the expansion of the swelling sub-portion 142b, and the liquid-permeable sub-portion 142c connected to the first connecting sub-portion 143a can increase the radial extension of the swelling sub-portion 142b. Of course, the swelling sub-portion 142b can also be connected to the first connecting sub-portion 143a.
  • the axial length of the liquid-permeable sub-portion 142c may be greater than 0 and less than or equal to 40% of the nominal length of the stent 11. In this way, while the blood (if any) between the liquid-permeable sub-portion 142c and the surrounding tissue 2 enters the expanded sub-portion 142b through the liquid-permeable sub-portion 142c, the blood inside the expanded sub-portion 142b will not leak out from the liquid-permeable sub-portion 142c, thereby having a relatively good anti-valvular leakage effect.
  • the accommodating space of the expanded sub-portion 142b may be insufficient, and the blood inside may leak out through the liquid-permeable sub-portion 142c.
  • the axial length of the liquid-permeable sub-portion 142c may be 0.5% to 35%, 1% to 40%, 5% to 35%, 1% to 25%, 1% to 20%, 8% to 15%, 10% to 20%, 10% to 25%, or 15% to 30% of the nominal length of the stent 11.
  • the axial length of the liquid-permeable sub-portion 142c may be 0.5%, 1%, 5%, 8%, 10%, 15%, 20%, 25%, 30%, 35%, or 40% of the nominal length of the stent 11.
  • the length of the liquid-permeable sub-portion 142c may be 0.3 mm, 0.5 mm, 1 mm, 3 mm, 5 mm, 8 mm, 10 mm, 15 mm, 18 mm, 20 mm, or any range therebetween.
  • the liquid-permeable sub-portion 142c may be made of a material that is permeable to blood (e.g., a polymer film material with a high permeability). Referring to FIG. 7 , the liquid-permeable sub-portion 142c may be provided with an opening 142d for blood to pass through.
  • the shape of the opening 142d may be triangular, circular, square, polygonal, round, waist-shaped, or irregularly shaped.
  • the number of the opening 142d may be one or at least two, and the at least two openings 142d may be arranged at intervals or in a continuous manner along the circumference of the stent 11.
  • the outer skirt 14 can be made of at least one of a biocompatible polymer film, a natural biological tissue or a material modified to be biocompatible on the surface.
  • the biocompatible polymer film can be at least one of polyurethane, polytetrafluoroethylene, expanded polytetrafluoroethylene, polylactic acid, left-handed polylactic acid, right-handed polylactic acid, polyglycolic acid, polycaprolactone, polyamide, polyethylene terephthalate, polygalactose or a copolymer of lactide/caprolactone.
  • the natural biological tissue can be decellularized bovine pericardium, porcine pericardium, porcine aortic valve, fish float, small intestine tissue of mammals, etc.
  • the material modified to be biocompatible on the surface can be at least one of polyurethane, polyethylene terephthalate, polyethylene, polypropylene, polytetrafluoroethylene, polydimethylsiloxane, polymethyl methacrylate or polyoxymethylene.
  • At least two of the closed portion 141, the free portion 142 and the connecting portion 143 can be made of the same material or different materials.
  • the expanded shape of the outer skirt 14 may include at least one of a triangle, a rectangle, a polygon, a semicircle, a semi-ellipse, a fan or a special shape.
  • the unfolded shape of the extended end 142a of the free portion 142 can be roughly in the shape of a straight line, a curve or a broken line.
  • the shape of the extended end 142a can be consistent with the shape of the outflow end 112, and the extended end 142a can be serrated.
  • the outer skirt 14 includes a plurality of connecting portions 143, wherein a portion of the connecting portions 143 and the extended end 142a of the free portion 142 have an axial distance of 0.
  • the extended end 142a of the free portion 142 shown in FIG. 6 can be connected to the outflow end 112 of the stent 11 by means of sutures, etc., and the connecting portion 143 substantially corresponding to the suture included in the outer skirt 14 is substantially overlapped with the extended end 142a; the axial distance between some other connecting portions 143 included in the outer skirt 14 and the extended end 142a of the free portion 142 is greater than 0 and less than 10 mm, such as the two connecting portions 143 arranged axially below the outflow end 112 shown in FIG. 6.
  • connection portion 143 disposed at multiple positions at different axial distances from the extension end 142a can take into account both the effective utilization rate of the free portion 142 and the stability of the outer skirt 14 connected to the bracket 11 or the inner skirt 13.
  • the expanded shape of the extension end 142a can be straight.
  • the expanded shape of the closed portion 141 can be roughly straight, curved, or broken line.
  • the artificial heart valve 100 includes a stent 11, a leaflet assembly 12, an inner skirt 13 and an outer skirt 14.
  • the stent 11 has an inflow end 111 and an outflow end 112, and a plurality of stent rods 114 of the stent 11 are arranged crosswise to form a plurality of stent holes 113.
  • the leaflet assembly 12 is arranged inside the stent 11.
  • the leaflet assembly 12 has an inflow edge 121 facing the outflow end 112, and includes three leaflets arranged in the stent 11 along the circumference of the stent 11.
  • the inner skirt 13 is arranged on the inner surface of the support 11.
  • the inflow skirt 131 of the inner skirt 13 is arranged close to the inflow end 111, and the outflow skirt 132 is connected to the inflow edge 121 of the leaflet assembly 12.
  • the outflow skirt 132 is approximately flush with the inflow edge 121, and the axial distance between the outflow skirt 132 and the inflow end 111 is slightly greater than the axial distance between the inflow edge 121 and the inflow end 111.
  • the outer skirt 14 is arranged on the outer periphery of the stent 11.
  • the outer skirt 14 includes a closed portion 141, a free portion 142 and a connecting portion 143.
  • the closed portion 141 is arranged outside the stent 11, and the closed portion 141 is connected to the inflow skirt edge 131 of the inner skirt 13.
  • the free portion 142 is connected to the closed portion 141 and extends in a direction away from the inflow end 111, and the extended end 142a of the free portion 142 is located between the inflow edge 121 and the outflow end 112.
  • the first connecting sub-portion 143a of the connecting portion 143 is connected to the extended end 142a of the free portion 142, and is dot-shaped, and the number is multiple and is arranged at intervals along the circumference of the free portion 142.
  • the stent hole 113 located between the outflow end 112 and the inflow edge 121 is exposed so that the backflow blood can pass through and flow into the free portion 142.
  • the inflow skirt 131 is located between the inflow edge 121 and the extension end 142 a , and the axial distance between the outflow skirt 132 and the inflow end 111 is significantly greater than the axial distance between the inflow edge 121 and the inflow end 111 .
  • the portion of the inner skirt 13 between the inflow edge 121 and the inflow skirt edge 131 is provided with a through hole 133 to allow the backflowing blood to pass through and flow into the free portion 142 .
  • the extension end 142 a of the free portion 142 extends to the outflow end 112 .
  • the inflow skirt 131 of the inner skirt 13 is located between the closed portion 141 and the inflow end 111, and the axial distance between the inflow skirt 131 and the inflow end 111 is greater than the axial distance between the closed portion 141 and the inflow end 111.
  • the extended end 142a of the free portion 142 extends beyond the outflow end 112 and is folded back into the interior of the bracket 11.
  • the free portion 142 extends to the outflow end 112, and the shape of the extension end 142a is sawtooth-shaped.
  • the liquid-permeable sub-section 142c is provided with an opening 143 for allowing blood to pass through.
  • the liquid-permeable sub-section 142c extends to the outflow end 112, and the connecting portion 143 connects the end of the liquid-permeable sub-section 142c close to the outflow end 112.
  • the parts of the eighth embodiment that are the same in structure as the first to seventh embodiments are not described in detail. Please refer to FIG8a.
  • the number of the connecting parts 143 is three, namely the first connecting part 41, the second connecting part 42 and the third connecting part 43.
  • the first connecting part 41, the second connecting part 42 and the third connecting part 43 are arranged at intervals along the circumference of the bracket 11.
  • the angle (indicated by ⁇ in the figure) between any two adjacent first connecting sub-parts in the top view with the center of the bracket 11 as the vertex is 120°.
  • Example 9 The parts of Example 9 that are the same in structure as Examples 1 to 8 are not described in detail. Please refer to Figure 8b.
  • There are two connecting parts 143 namely the fourth connecting part 44 and the fifth connecting part 45.
  • the fourth connecting part 44 and the fifth connecting part 45 are arranged at intervals along the circumference of the bracket 11.
  • the shapes of the fourth connecting part 44 and the fifth connecting part 45 are both strip (rod) shaped.
  • the angle (denoted by ⁇ in the figure) between the first connecting sub-parts of the two connecting parts 143 with the center of the bracket 11 as the vertex in the top view is greater than 120° and less than 180°.
  • the parts of the embodiment 10 that have the same structure as the embodiments 1 to 9 are not described in detail. Please refer to FIG8c.
  • the sixth connecting part 46 includes a first connecting sub-part 143a, two second connecting sub-parts 143b and two extending sub-parts 143c.
  • the two extending sub-parts 143c are inclined relative to the radial direction and intersect at the first connecting sub-part 143a.
  • the two second connecting sub-parts 143b can be regarded as the beginning and end of the sixth connecting part 46, that is, the middle part of the sixth connecting part 46 is connected to the free part 142, and the two ends are connected to the bracket 11.
  • the seventh connecting part 47 includes two first connecting sub-parts 143a, one second connecting sub-part 143b and two extending sub-parts 143c, that is, the two ends of the seventh connecting part 47 are connected to the free part 142, and the middle part is connected to the bracket 11.
  • the eighth connection portion 48, the ninth connection portion 49, and the extended sub-portions (middle portions) of the tenth connection portion 410 are connected to each other.
  • the parts of the eleventh embodiment that have the same structure as the first to tenth embodiments are not repeated.
  • the number of the connecting parts 143 is three, namely the eleventh connecting part 411, the twelfth connecting part 413 and the thirteenth connecting part 412.
  • the eleventh connecting part 411 includes a plurality of first connecting sub-parts, a second connecting sub-part and an extension sub-part, wherein the two ends of the plurality of extension sub-parts are respectively connected to the first connecting sub-part and the second connecting sub-part.
  • the twelfth connecting part 413 includes a plurality of first connecting sub-parts, a second connecting sub-part and an extension sub-part, wherein the two ends of one of the extension sub-parts are connected to the second connecting sub-part, and the two ends of the remaining extension sub-parts are respectively connected to the first connecting sub-part and the second connecting sub-part.
  • the shape of the thirteenth connecting part 412 in the top view is annular.
  • the thirteenth connecting part 412 includes a first connecting sub-part, a second connecting sub-part and two extension sub-parts, and the two ends of the two extension sub-parts are respectively connected to the same first connecting sub-part and the second connecting sub-part.
  • the second connecting sub-portion is connected to the outflow skirt edge 132 of the inner skirt 13 .
  • FIG. 10 a to FIG. 10 c are the same as some of the technical solutions in Embodiments 1 to 12, and will not be described in detail.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

一种人工心脏瓣膜(100),包括支架(11)、瓣叶组件(12)、内裙(13)和外裙(14);支架(11)包括流入端(111)、流出端(112)和多个支架孔(113);外裙(14)包括封闭部(141)、自由部(142)和连接部(143);封闭部(141)靠近流入端(111)设置且连接内裙(13);自由部(142)连接封闭部(141)且朝向远离流入端(111)的方向延伸,连接部(143)连接自由部(142)靠近流出端(112)的部分,并同时连接支架(11)和/或内裙(13),回流血液可穿过位于流出端(112)和瓣叶组件(12)的流入边缘之间的支架孔(113)并流入自由部(142)内,自由部(142)能在回流血液的压迫下沿远离支架(11)的方向胀大以抵靠周围组织形成密封。

Description

人工心脏瓣膜 技术领域
本申请属于医疗器械技术领域,具体涉及一种人工心脏瓣膜。
背景技术
心脏瓣膜是在心房与心室之间或心室与动脉之间的单向阀门。心脏瓣膜病是最常见的心血管疾病之一。在临床上,由风湿性炎症、退行性改变、先天性畸形、缺血性坏死、创伤等引起的单/多个瓣膜结构或功能性异常可导致瓣膜狭窄或关闭不全。心脏瓣膜病轻者可通过药物治疗缓解症状,重者可进行瓣膜修复,不适用修复的患者需要进行人工心脏瓣膜置换。
由于原生瓣的钙化、原生瓣的赘生物或者原生瓣的缺损等因素,人工心脏瓣膜置换后与原生瓣之间存在缝隙。血液在压力作用下会从人工心脏瓣膜与原生瓣之间的缝隙漏出,形成瓣周漏。加重的瓣周漏会出现胸闷、胸疼、乏力、头晕等症状,严重的瓣周漏会引起心衰、猝死等后果。
目前,已有一些防瓣周漏的方法。例如,在人工心脏瓣膜外增加具有纤维毛边的外裙,外裙可以促进瓣周缝隙内的血液凝固,从而填塞人工心脏瓣膜与原生瓣之间的缝隙,以达到减小或消除瓣周漏的目的。但是,这种方法通常只能阻塞较小的缝隙,对于较大的缝隙或缺口的封堵效果通常不理想。又例如,也有方法在人工心脏瓣膜的周围采用弹性的填充材料,通过填充材料的压缩和膨胀,以减小人工心脏瓣膜与周围组织之间的缝隙,达到减小和防止瓣周漏的目的。但是,弹性填充材料的形变程度有限,对于较大的缝隙或缺口的封堵效果通常也不理想,还容易导致周围组织被进一步撑大,对周围组织产生一定的损害。
发明内容
为了克服上述现有技术中存在的缺陷与不足,本申请提供了一种人工心脏瓣膜,该人工心脏瓣膜的外裙能够容纳回流血液,血液从瓣叶组件靠近支架的表面,经由支架孔流入外裙的自由部内,血液因受力不均匀,可以朝向周围组织与人工心脏瓣膜支架间的间隙或缺口流动,从而外裙的自由部能够在内部血液的推动下自适应地填充周围组织与支架间的间隙或缺口并形成密封,实现比较好的防瓣周漏的效果;同时,自由部受血液的推动而发生形变以填充间隙或缺口,不会导致周围组织被进一步撑大,对周围组织的损害较小。
本申请提供的人工心脏瓣膜包括:
支架,包括流入端和流出端,所述支架形成有多个支架孔;
瓣叶组件,设于所述支架的内部,所述瓣叶组件具有面向所述流出端的流入边缘;
内裙,设于所述支架的内表面,所述内裙包括靠近所述流入端的流入裙边和靠近所述流出端的流出裙边,所述内裙连接所述流入边缘;以及
外裙,至少部分设于所述支架的外周,所述外裙包括封闭部、自由部和连接部;所述封闭部设于所述支架外且靠近所述流入端设置,所述封闭部连接所述内裙;所述自由部连接所述封闭部且朝向远离所述流入端的方向延伸,所述连接部连接所述自由部靠近所述流出端的部分,且所述连接部连接所述支架和/或所述内裙;回流血液可穿过位于所述流出端和所述流入边缘之间的所述支架孔并流入所述自由部内,所述自由部能在所述回流血液的压迫下沿远离所述支架的方向胀大以抵靠周围组织形成密封。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更好地描述和说明这里公开的那些申请的实施例和/或示例,可以参考一幅或多幅附图。用于 描述附图的附加细节或示例不应当被认为是对所公开的申请、目前描述的实施例和/或示例以及目前理解的这些申请的最佳模式中的任何一者的范围的限制。
图1a是本申请人工心脏瓣膜一实施例扩张后的立体图;
图1b是图1a所示人工心脏瓣膜的内部细节图;
图2至图7为本申请人工心脏瓣膜多种实施例的内部细节图;
图8a至图8d为本申请人工心脏瓣膜多种实施例的俯视图;
图9a为本申请人工心脏瓣膜植入人体后防瓣周漏的示意图;
图9b为图9a中A处的放大图;
图10a至图10d为本申请人工心脏瓣膜植多种实施例的剖视图。
具体实施方式
下面将参照附图更详细地描述本申请的示例性实施方式。虽然附图中显示了本申请的示例性实施方式,然而应当理解,可以以各种形式实现本申请而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本申请,并且能够将本申请的范围完整的传达给本领域的技术人员。
本申请提出的人工心脏瓣膜适用植入天然或人工动脉瓣膜中,例如可以植入主动脉瓣膜、二尖瓣瓣膜、三尖瓣瓣膜和肺动脉瓣膜中。该人工心脏瓣膜可以在X射线和/或超声等影像设备指引下,经皮微创介入的方式植入人体,也可以通过外科手术开胸的方式植入人体。
通常地,人工心脏瓣膜可以包括支架、瓣叶组件和内裙。以血流的顺行方向为参照,支架流入顺行血流的一端可以为流入端,支架流出顺行血流的一端可以为流出端。瓣叶组件面向流入端的一侧边缘可以通过内裙连接至支架。人工心脏瓣膜被植入人体后,当心室发生收缩时,支架的流入端有顺行血液流入,顺行血液挤压瓣叶组件,瓣叶组件打开并与支架的内表面贴合,顺行血液经过瓣叶组件流至流出端;当心室开始舒张时,流入端无血液流入,流出端的压力高于流入端的压力,压力迫使流出端的血液向流入端回流,瓣叶组件被回流的血流推动聚拢并形成封闭,阻止血液回流。从而人工心脏瓣膜具有天然心脏瓣膜的功能,能够控制血液只能单向地从流入端流至流出端,不能发生反流。
请参阅图1a至图10d,本申请提出的人工心脏瓣膜100可以包括支架11、瓣叶组件12、内裙13和外裙14。支架11可以包括流入端111和流出端112,支架11可以形成有多个支架孔113。瓣叶组件12可以设于支架11的内部,瓣叶组件12可以具有面向流出端112的流入边缘121,作为一个示例,流入边缘121位于瓣叶组件12背离支架11轴向中心的表面(即可朝向支架外的表面),其具体可以是瓣叶组件12与内裙13或支架12连接的位置,而回流至瓣膜组件12表面的回流血液至少可从流入边缘121附近的支架孔113流向自由部142。内裙13可以设于支架11的内表面,内裙13可以包括靠近流入端111的流入裙边131和靠近流出端112的流出裙边132,其中流入裙边131靠近流入端111,流出裙边132靠近流出裙边112或者相对于流入裙边131更靠近流出端112。内裙13可以连接流入边缘121。外裙14可以至少部分设于支架11的外周。外裙14可以包括封闭部141、自由部142和连接部143。封闭部141可以设于支架11外,封闭部141可以靠近流入端111设置。封闭部141可以连接内裙13。自由部142可以连接封闭部141且可以朝向远离流入端111的方向延伸。连接部143可以连接自由部142靠近流出端112的部分,且连接部143可以连接支架11和/或内裙13。回流血液可穿过位于流出端112和流入边缘121之间的支架孔113并流入自由部142内,自由部142能在回流血液的压迫下沿远离支架11的方向胀大以抵靠周围组织2形成密封。
支架11能够将狭窄或者闭塞的周围组织2打开,也可以对瓣叶组件12、内裙13和外裙14提供支撑和固定。瓣叶组件12可以打开或者关闭以控制血液的流动。内裙13通过连接瓣叶组件12的流入边缘121可以将瓣叶组件12密封连接于支架11上。封闭部141将自由部142靠近流入端111的一侧封口,自由部142内的血液不会从自由部142靠近流入端111的一侧泄露出。连接部143连接自由部142靠近流出端112的部分,柔软的自由部142固定于支架11而不会从支架11上脱垂,自由部142内的 血液不会从自由部142靠近流出端112的一侧泄露出。回流血液从瓣叶组件12的表面流至流出端112和流入边缘121之间开放的支架孔113,并进一步流入外裙14的自由部142内,当支架11与周围组织2之间具有间隙或缺口时,血液因受力不均匀会朝向间隙或缺口流动,从而压迫柔性的自由部142朝向间隙或缺口胀大,由此自由部142在血液的推动下自适应地填充支架11与周围组织2之间的间隙或缺口并形成密封,从而能够对形状各异的周围组织2实现防瓣周漏的效果。同时,自由部142在与周围组织2紧密贴合的同时不会对周围组织2构成明显压迫,不会导致周围组织2被进一步撑大,对周围组织2的损害比较小。
在该人工心脏瓣膜100中,支架11可以具有扩张和收缩状态。支架11可以被扩张装置(例如扩张球囊)扩张,也可以自膨胀扩张。支架11可以由生物可吸收的材料制成。例如,支架11可以由铁、铁基合金、镁、镁基合金、锌、锌基合金或可吸收的高分子材料制成。由此,瓣膜植入人体内皮化后,支架11能够被人体吸收,消除瓣架对瓣叶刚性牵拉,能够具有比较好的术后恢复效果,缓冲瓣叶关闭时张力,延长瓣叶疲劳时间;其次支架11被吸收后,也不影响再次进行瓣中瓣人工瓣膜的置换,可确保瓣膜开口面积不减小。支架11也可以由生物不可吸收的材料制成。例如,支架11可以由镍钛合金、钴铬合金或不锈钢等材料制成。
在该人工心脏瓣膜100中,如上所述,支架11的流入端111可以是支架11流入顺行血液的一端。支架11的流出端112可以是支架11流出顺行血液的一端。支架11还可以包括位于流入端111和流出端112之间的中部(未示出标记)。流入端111、流出端112与中部的标称直径可以为一致,也可以为不一致。支架11可以包括多个支架杆114,多个支架杆114可以相互交叉排列形成多个支架孔113。支架孔113的大小和形状可以受支架11膨胀程度的改变而发生改变。支架孔113的形状可以大致呈菱形、六边形、三角形或者异形等。
在该人工心脏瓣膜100中,瓣叶组件12可以包括至少两个瓣叶,例如可以包括两个或者三个瓣叶。至少两个瓣叶可以在支架11内沿支架11的周向排列。瓣叶的形状可以参考自然瓣叶的形状设置,例如可以大致呈扇形。瓣叶组件12的流入边缘121可以呈圆弧形。瓣叶可以由天然生物组织制备而成,例如脱细胞的牛心包、猪心包、猪主动脉瓣、鱼漂或哺乳动物的小肠组织。
在该人工心脏瓣膜100中,内裙13可以设于支架11的内表面,内裙13可以连接支架11。内裙13可以封闭连接瓣叶组件12的流入边缘121以将瓣叶组件12固定于支架11的内部。内裙13与支架11、内裙13与流入边缘121可以分别为缝合、胶合和/或焊接。流入裙边131和流出裙边132的展开形状可以呈直线状、曲线状或者折线状等。
在该人工心脏瓣膜100中,外裙14可以至少部分位于支架11的外周。换言之,外裙14可以位于支架11的外周;或者,外裙14靠近流出端112的延伸末端142a可以延伸伸出流出端112并反向折叠入支架11内,从而外裙14的一部分位于支架11的外周,余下部分位于支架11内。
外裙14的封闭部141可以沿支架11的周向在支架11外延伸。封闭部141可以靠近流入端111设置,也即封闭部141可以位于支架11的中部与支架11的流入端111之间。封闭部141在连接内裙13的同时也可以连接支架11,由此能够提高封闭部141在支架11上的固定效果。封闭部141与内裙13、封闭部141与支架11的连接方式也可以分别为缝合、胶合和/或焊接。
外裙14的自由部142与封闭部141可以为一体成型设置,也可以为分体设置,自由部142与封闭部141可以缝合、胶合和/或焊接连接。自由部142可以沿支架11的周向和轴向延伸。自由部142的延伸末端142a可以位于支架11外,也可以伸出流出端112并反向折叠入支架11内。
外裙14的连接部143可以连接自由部142靠近流出端112的部分。具体而言,连接部143可以连接自由部142上靠近延伸末端142a的部分,也可以连接延伸末端142a。连接部143与自由部142可以为一体成型,也可以为可拆卸连接,例如缝合、胶合和/或焊接。
在该人工心脏瓣膜100中,回流血液可穿过位于流出端112和流入边缘121之间的支架孔113流入自由部142内。换言之,流出端112和流入边缘121之间的支架孔113可以至少部分是裸露的,或者在支架11内部覆盖上述支架孔113的外裙14(若有)和/或内裙13(若有)是允许血液穿过或者透过的。可以理解的,流入边缘121与支架孔113的形状一般不一致,例如流入边缘121的轨迹与支架 孔113的各边不重叠,或者受到外裙14(若有)和/或内裙13(若有)的遮挡,回流血液穿过的可能是上述多个支架孔113的整个孔区域或者部分孔区域。
以下对本申请人工心脏瓣膜100进行详细介绍。
请参阅图10a至图10d,封闭部141与流入端111的轴向距离可以为A1,流入边缘121与流入端111的最小轴向距离可以为B1,流入裙边131与流入端111的轴向距离可以为C1,流出裙边132与流入端111的轴向距离可以为C2。在本申请人工心脏瓣膜100中,可以对封闭部141与流入边缘121的相对位置进行设置,即A1可以大于、等于或者小于B1,从而自由部142能够适配植入位置不同形状的周围组织2,以实现防瓣周漏的效果。
请参阅图10a和图10b,在一些实施例中,A1<B1,C1<A1,C2>B1。即,封闭部141与流入端111的轴向距离可以小于流入边缘121与流入端111的最小轴向距离。因为内裙13连接封闭部141,所以流入裙边131与流入端111的轴向距离C1可以小于(略小于或明显小于)封闭部141与流入端111的轴向距离。又因为内裙13可以连接流入边缘121,所以流出裙边132与流入端111的轴向距离可以大于(略大于或明显大于)流入边缘121与流入端111的轴向距离。在上述些实施例中,封闭部141可以相比流入边缘121(最靠近流入端111的部分)更靠近流入端111,从而自由部142能够更加适配密封位置靠近流入端111的缝隙或者缺口。另外,由于内裙13连接流入边缘121,封闭部141与流入端111的轴向距离A1小于流入边缘121与流入端111的最小轴向距离B1,流入裙边131与流入端111的轴向距离C1小于封闭部141与流入端111的轴向距离A1,从而使得位于封闭部141与流入边缘121的支架孔113从内侧被内裙13覆盖或封闭,一方面在回流血液路径上形成一个朝向流出端112的封闭“口袋”从而获得防瓣周漏的效果。
请参阅图10d,在另一实施例中,A1=B1,C1<A1,C2>B1。即,封闭部141与流入端111的轴向距离可以等于流入边缘121与流入端111的最小轴向距离。流入裙边131与流入端111的轴向距离可以小于(略小于或明显小于)封闭部141/流入边缘121与流入端111的轴向距离,流出裙边132与流入端111的轴向距离可以大于(略大于或明显大于)流入边缘121/或封闭部141与流入端111的轴向距离。在上述实施例中,封闭部141与流入边缘121最靠近流入端111的部分平齐,自由部142能够更加适配密封位置大概处于支架11中部的缝隙或者缺口。
请参阅图10c,在又一实施例中,A1>B1,C1<B1,C2>A1。即,封闭部141与流入端111的轴向距离可以大于流入边缘121与流入端111的最小轴向距离。流入裙边131与流入端111的轴向距离可以小于(略小于或明显小于)流入边缘121与流入端111的最小轴向距离。流出裙边132与流入端111的轴向距离可以大于(略大于或明显大于)封闭部141与流入端111的轴向距离。在上述实施例中,封闭部141可以相比流入边缘121(最靠近流入端111的部分)更靠近流出端112,从而自由部142能够更加适配密封位置靠近流出端112的缝隙或者缺口。
上述些实施例可以在同一轴向截面上进行比较,该轴向截面可以穿过流入边缘121最靠近流入端111的部分,也即流入边缘121与流入端111的最小轴向距离可以为流入边缘121最靠近流入端111的部分与流入端111的轴向距离。
进一步的,当A1≤B1时,内裙13位于流入边缘121和流出裙边132之间的至少部分可透回流血液;当A1>B1时,内裙13位于封闭部141和流出裙边132之间的至少部分可透回流血液。内裙13在流入边缘121/封闭部141与流出裙边132之间的部分会对回流血液进入自由部142产生阻碍,通过将此部分的内裙13设置为至少部分可透血液,回流血液能够更多地进入自由部142内,以实现更好的防瓣周漏的效果。内裙13可透血液的部分可以由可透血液的材料制备而成。请参阅图3、图6和图10a,内裙13可透血液的部分也可以设置可供血液透过的过孔133。过孔133的形状可以为三角形、圆形、方形、多边形、圆形、腰形或者异形等。过孔133的数量可以为一个,也可以为至少两个,至少两个过孔133可以沿内裙13的周向间隔或者相连排布。
另外,C1(流入裙边131与流入端111的轴向距离)可以为大于0,且小于或等于支架11的标称长度的40%。由此,在保证内裙13与支架11具有比较好的连接效果的前提下,裸露的流入端111能够嵌入周围组织2,支架11能够被周围组织2限位,从而能够提高人工心脏瓣膜100在人体内的固定效 果。进一步的,C1可以为支架11的标称长度的5%~40%、5%~35%、8%~35%、10%~30%、15%~20%或10%~15%等。具体的,C1可以为支架11的标称长度的1%、5%、8%、10%、15%、20%、25%、30%、35%或40%等。上述数据可以是在任意轴向截面上的C1,也可以是在多个任意轴向截面上C1的平均值。
一般的,C1可以为大于或等于0.1mm,且小于或等于24mm。进一步的,C1可以为大于或等于0.5mm,且小于或等于20mm。更进一步的,C1可以为大于或等于1mm,且小于或等于15mm。C1可以包括但不限于0.1mm、0.5mm、1mm、3mm、5mm、10mm、15mm、20mm或24mm。以上列举仅参考了常规标称长度(例如15~60mm)的人工心脏瓣膜100,不限于此。
在本申请人工心脏瓣膜100中,自由部142的和封闭部141与支架11的流入端111可以呈间隔设置。A1(封闭部141与流入端111的轴向距离)可以大于或等于支架11的标称长度的1%,且小于或等于支架11的标称长度的49%。通过调整封闭部141与流入端111的距离,能够在一定程度上调整自由部142与支架11的相对位置。当A1小于支架11的标称长度的1%时,自由部142在封闭部141和流入边缘121之间的延伸长度比较长,卷曲的轮廓比较大,增大了经皮微创介入的难度。当A1大于支架11的标称长度的49%时,自由部142与周围组织2的接触面积不足,会降低防瓣周漏的效果。A1在不同的轴向截面上可以一致或者不一致,上述数据可以是在任意轴向截面上的A1,也可以是在多个任意轴向截面上A1的平均值。
进一步的,A1可以为支架11的标称长度的3%~49%、5%~40%、8%~30%、10%~40%、5%~35%、15%~30%、15%~20%或25%~30%等。具体的,A1可以为支架11标称长度的1%、2%、5%、8%、10%、15%、20%、25%、30%、35%、40%、45%、49%或上述数据之间的任意值。
作为参考的,A1可以大于或等于0.3mm,且小于或等于28mm。进一步的,A1可以大于或等于0.5mm,且小于或等于25mm。更进一步的,A1可以大于或等于1mm,且小于或等于20mm。具体的,A1可以为0.3mm、0.5mm、1mm、3mm、4mm、5mm、7mm、8mm、10mm、15mm、20mm、25mm、28mm或上述数据之间的任意距离。需要说明的,上述数据范围可以适用于常规标称长度的人工心脏瓣膜100,在特殊尺寸的人工心脏瓣膜100中可适当调整。
请参阅图10a至图10d,自由部142胀大后的延伸末端142a与流入端111的轴向距离为可以为A2,A2与B1(流入边缘121与流入端111的最小轴向距离)的差可以为大于或等于支架11的标称长度的30%,且小于或等于支架11的标称长度的74%。由此,自由部142具有足够的空间以容纳回流血液,血液不会从自由部142的延伸末端142a泄露出,从而能够实现防瓣周漏的效果。
进一步的,A2与B1的差可以为支架11的标称长度的35%~74%、35%~70%、40%~70%、45%~60%、35%~70%、50%~70%、60%~74%、55%~65%或45%~60%等。一般的,A2与B1的差可以为大于或等于5mm,且小于或等于40mm。进一步的,A2与B1的差可以为大于或等于6mm,且小于或等于35mm。更进一步的,A2与B1的差可以为大于或等于7mm,且小于或等于30mm。具体地说,A2与B1的差可以为5mm、6mm、7mm、8mm、10mm、20mm、25mm、30mm、35mm、39mm、40mm或上述相邻数值之间的任意长度。同样的,上述数据仅参考了常规支架11的标称长度,不限于此。
自由部142胀大后具有径向伸出量。请参阅图8a至8d,自由部142胀大后的径向伸出量(图中用D示出)可以定义为:在径向截面上,自由部142外表面与支架11外表面的距离。自由部142胀大后的径向伸出量可以与支架11展开时的标称直径和/或标称长度有关,也即,在不同标称直径和/或标称长度的支架11上,自由部142胀大后的径向伸出量可以不同。当然,自由部142胀大后的径向伸出量在不同标称直径和/或标称长度的支架11上也可以相同。
自由部142胀大后的径向伸出量D可以为大于或等于支架11的标称直径的5%,且小于或等于支架11的标称长度的一半。由此,胀大的外裙14具有足够的径向扩展幅度,能够比较好地适应性填充支架11与周围组织2之间不同大小的缝隙或缺口,从而能够具有比较好的防瓣周漏的效果。并且,人工心脏瓣膜100在径向压缩状态下具有比较小的整体卷曲轮廓。当D小于支架11的标称直径的5%时,自由部142可能无法密封比较大的间隙或缺口。当D大于支架11的标称长度的一半时,自由部142在径向压缩状态下的卷曲轮廓比较大,增大了经皮微创介入的难度。同理,上述数据范围可以为在任意径向截面上的D,也可以为在多个任意径向截面上D的平均值。
进一步的,D可以大于或等于支架11的标称直径的8%,且小于或等于支架11的标称长度的50%;或者,D可以大于或等于支架11的标称直径的10%,且小于或等于支架11的标称长度的45%;又或者,D可以大于或等于支架11的标称直径的9%,且小于或等于支架11的标称长度的30%,再或者,D可以大于或等于支架11的标称直径的12%,且小于或等于支架11的标称长度的40%。一般地,D可以为大于或等于0.8mm,且小于或等于25mm。进一步的,D可以为1~23mm、2~25mm、3~20mm、5~10mm、5~15mm、5~18mm、8~13mm、10~18mm或16~20mm等。D可以包括但不限于0.8mm、1mm、2mm、3mm、5mm、8mm、10mm、13mm、15mm、18mm、20mm或25mm。当然,若支架11的标称直径和/或标称长度超出常规,D也可以不限于上述数据范围。
请参阅图10a至图10d,自由部142胀大后的延伸末端142a与封闭部141之间的轴向距离可以为L,流出端112与封闭部141之间的轴向距离可以为H,自由部142的长度可以大于或等于L,且小于或等于(H-1/2L)π。L的值可以等于A2-A1。H-1/2L也可以表示为或者H-1/2(A2-A1)。由此,自由部142具有比较合适的延伸长度,自由部142与周围组织2具有比较合适的接触面积,从而能够实现比较好的防瓣周漏的效果。
请参阅图10a和图10c,当自由部142的延伸末端142a位于支架11外时,自由部142的长度可以大于或等于L,且小于或等于请参阅图10b和图10d,当延伸末端142a延伸出流出端112并反向折叠入支架11内时,自由部142的长度可以大于或等于H+L,且小于或等于(H-1/2L)π。
一般的,自由部142的长度可以大于或等于10mm,且小于或等于31mm。进一步的,自由部142的长度可以为10~30mm、13~25mm、12~20mm、15~28mm、15.7mm~20mm或18~25mm等。例如,自由部142的长度可以为包括但不限于10mm、10.5mm、12mm、13mm、15mm、15.7mm、16mm、16.5mm、17mm、18mm、19mm、20mm、25mm、28mm、30mm或31mm。同样的,上述数据范围可以适用于常规尺寸的人工心脏瓣膜100,在特殊尺寸的人工心脏瓣膜100中,可以相应调整。
自由部142的厚度可以为大于或等于5μm,且小于或等于200μm。进一步的,自由部142的厚度可以为大于或等于10μm,且小于或等于190μm。更进一步的,自由部142的厚度可以为大于或等于20μm,且小于或等于180μm。由此,自由部142能够在具有比较好的防瓣周漏效果的前提下具有比较小的卷曲轮廓。当自由部142的厚度小于5μm时,自由部142在支架11展开的过程中容易发生撕裂。当自由部142的厚度大于200μm时,自由部142的卷曲轮廓比较大,加大了人工心脏瓣膜100经皮微创介入的难度。自由部142的厚度可以整体一致,也可以在轴向和/或径向上发生变化。上述数据可以为在任意径向截面上的厚度,也可以为在多个任意径向截面上厚度的平均值。具体而言,自由部142的厚度可以为5μm、7μm、10μm、15μm、18μm、20μm、30μm、50μm、100μm、150μm、180μm、190μm或者200μm,不限于此。
请参阅图1a至图10d,如上所述,外裙14可以包括连接部143。请参阅图1a至图8a、图9a至图10b,在一些实施例中,连接部143可以包括相互连接的第一连接子部143a和第二连接子部143b。第一连接子部143a远离第二连接子部143b的一侧或一端可以连接自由部142,第二连接子部143b远离第一连接子部143a的一侧或一端可以连接支架11和/或内裙13。第一连接子部143a和第二连接子部143b可以是连接部143的相对两侧或相邻两侧。通过第一连接子部143a和第二连接子部143b,自由部142可以被连接部143紧密连接在支架11外,自由部142与支架11和/或内裙13的连接比较稳定。第一连接子部143a与第二连接子部143b可以分别呈环状、条状、块状或者点状等。第一连接子部143a与第二连接子部143b的形状可以一致或者不一致。
请参阅图8b至图8d、图10c和图10d,在另一些实施例中,连接部143包括第一连接子部143a、第二连接子部143b和两端分别连接第一连接子部143a和第二连接子部143b的延伸子部143c。第一连接子部143a远离延伸子部143c的一侧或一端可以连接自由部142,第二连接子部143b远离延伸子部 143c的一侧或一端可以连接支架11和/或内裙13。第一连接子部143a与延伸子部143c、第二连接子部143b与延伸子部143c可以分别为缝合、胶合和/或焊接连接。延伸子部143c的设置,可以使得自由部142相对松弛地连接于支架11外,如此增大了自由部142胀大后的径向伸出量,也提供了自由部142跟随支架11收缩的轴向余量。延伸子部143c的形状可以呈条状、杆状或者片状等。
连接部143的数量可以为至少一个,也即连接部143的数量可以为一个,也可以为一个以上。为了实现比较好的防瓣周漏的效果,连接部143数量的设置可以与第一连接部143a的形状相关(后文详述)。在同一连接部143中,第一连接子部143a的数量可以为至少一个。当然,第二连接子部143b和/或延伸子部143c(若有)在同一连接部143中的数量也可以为至少一个。
具体的,当第一连接子部143a、第二连接子部143b和/或延伸子部143c(若有)的数量为一个以上时,同一个或者不同个的连接部143的第一连接子部143a可以彼此在自由部142上间隔或者相连(例如交叉或者至少部分重叠)排布;同一个或者不同个的连接部143的第二连接子部143b可以彼此在支架11和/或内裙13上间隔或者相连(例如交叉或者至少部分重叠)排布;同一个或者不同个的连接部143的延伸子部143c(若有)可以彼此在支架11和自由部142之间间隔或者相连(例如交叉或者至少部分重叠)排布。
本申请不限于此。例如,第一连接子部143a也可以连接其他连接部143的第二连接子部143b和/或延伸子部143c(若有);第二连接子部143b也可以连接同一或者其他连接部143的第一连接子部143a和/或延伸子部143c(若有);延伸子部143c(若有)也可以分别连接同一或者其他连接部143的第一连接子部143a和/或第二连接子部143b。
进一步的,在一些实施例中,第一连接子部143a、第二连接子部143b的数量为至少一个,延伸子部143c的数量为至少两个,任意一个延伸子部143c的两端或两侧分别连接第一连接子部143a和第二连接子部143b,余下的延伸子部143c的一端或一侧连接第一连接子部143a或第二连接子部143b,另一端或一侧连接第一连接子部143a或第二连接子部143b。
至少一个第一连接子部143a与自由部142的延伸末端142a的轴向距离可以大于或等于0,且小于或等于10mm。由此,自由部142的延伸末端142a或自由部142靠近延伸末端142a的部分能够被第一连接子部143a连接于支架11上,可以提高自由部142的有效使用率,自由部142容纳回流血液的空间比较大。当第一连接子部143a与延伸末端142a的轴向距离大于10mm时,自由部142的容纳空间比小,有效使用率比较低。
进一步的,至少一个第一连接子部143a与延伸末端142a的轴向距离可以为0~9mm、0~8mm、1~9mm、0~7mm、1~6mm、2~5mm或2~4mm等。具体的,至少一个第一连接子部143a与延伸末端142a的轴向距离可以包括但不限于0、0.5mm、1mm、1.5mm、2mm、4mm、6mm、8mm、8.5mm、9mm或10mm。
在一些实施例中,至少一个第一连接子部143a在俯视面上可以呈条状或者环状(如图6所示)。条状的第一连接子部143a的两端以支架11的中心为顶点的夹角可以为大于或等于120°,且小于360°。进一步的,上述夹角可以为大于或等于130°,且小于或等于350°。更进一步的,上述夹角可以为大于或等于140°,且小于或等于340°。具体的,上述夹角可以为120°、130°、140°、180°、220°、260°、300°、320°、330°、340°、350°、360°或上述数值间的任意范围。需要说明的是,上述俯视面可以是多个径向截面的集合,也即第一连接子部143a在俯视面上的形状可以是多个径向截面重合在一起的形状。
在另一些实施例中,至少两个第一连接子部143a在俯视面上的形状可以均呈点状。请参阅图8b,两个第一连接子部143a在俯视面上以支架11的中心为顶点的夹角(图中用β示出)可以为大于或等于120°,且小于或等于240°。进一步的,β可以为大于或等于130°,且小于或等于230°。更进一步的,β可以为大于或等于110°,且小于或等于220°。具体的,β可以为120°、125°、130°、140°、160°、200°、210°、220°、230°、235°或240°等。
优选的,请参阅图8b,第一连接子部143a的数量可以为三个,三个第一连接子部143a在俯视面上的形状可以均呈点状,任意相邻的两个第一连接子部143a以支架11的中心为顶点的夹角(图8a中用α表示)为120°。由此,自由部142的胀大比较均匀,具有比较好的防瓣周漏的效果。
需要说明的是,以上仅是本申请列举的几种具体实施方式。本申请对第一连接子部143a的形状和数量不做具体限定,只要第一连接子部143a可以将自由部142连接于支架11外,以使自由部142能够防瓣周漏即可。同样的,本申请对第二连接子部143b和延伸子部143b(若有)的形状和数量也不做具体限定,也不再赘述相关的具体实施方式。
延伸子部143c可以具有一定的延伸长度。延伸子部143c的长度可以为大于0,且小于或等于支架11的标称长度。具体而言,当同一个连接部143的延伸子部143c的数量为一个时,上述长度为单个延伸子部143c的长度。当同一个连接部143的延伸子部143c的数量为一个以上时,上述长度为延伸子部143c的总长度。当延伸子部143c的长度位于上述范围内时,自由部142相对松弛地连接于支架11外,自由部142胀大后的径向伸出量比较合适,自由部142跟随支架11收缩的轴向余量也比较合适。当连接部143的数量为至少两个时,上述长度也可以为不同连接部143的延伸子部143c的总长度。
进一步的,延伸子部143c的长度可以为支架11的标称长度的0.5%~90%、1%~80%、5%~80%、8%~50%、10%~30%、10%~40%、20%~30%、40%~50%、30%~70%、50%~60%、60%~85%或70%~90%等。具体的,延伸子部143c的长度可以为支架11的标称长度的0.5%、1%、5%、8%、10%、20%、30%、40%、45%、50%、60%、70%、80%、85%、90%或100%等。示例的,延伸子部143c的长度可以为0.5mm、1mm、5mm、8mm、10mm、20mm、30mm、40mm、45mm、50mm、60mm或上述数据内的任意范围。
请参阅图7,在一些实施例中,进一步的,自由部142可以包括相互连接的胀大子部142b和透液子部142c。胀大子部142b可以连接封闭部141,胀大子部142b能在回流血液的压迫下沿远离支架11的方向胀大以抵靠周围组织2形成密封。透液子部142c能够允许血液透过,从而透液子部142c和周围组织2之间的血液(若有)可以经由透液子部142c进入胀大子部142b内,以提供更好的防瓣周漏的效果。胀大子部142b和透液子部142c可以为一体成型设置,也可以为可拆卸连接(例如缝合、胶合和/或焊接)。
透液子部142c可以连接连接部143的第一连接子部143a。可以理解的,连接部143会对胀大子部142b的胀大产生阻碍,透液子部142c连接第一连接子部143a能够增大胀大子部142b的径向伸出量。当然,胀大子部142b也可以连接第一连接子部143a。
透液子部142c的轴向长度可以为大于0,且小于或等于支架11的标称长度的40%。这样设置,在透液子部142c和周围组织2之间的血液(若有)经由透液子部142c进入胀大子部142b内的同时,胀大子部142b内部的血液也不会从透液子部142c泄露出,从而具有比较好的防瓣周漏效果。当透液子部142c的轴向长度大于支架11的标称长度的40%时,胀大子部142b的容纳空间可能不足,内部的血液可能会通过透液子部142c泄露出。进一步的,透液子部142c的轴向长度可以为支架11的标称长度的0.5%~35%、1%~40%、5%~35%、1%~25%、1%~20%、8%~15%、10%~20%、10%~25%或15%~30%等。具体的,透液子部142c的轴向长度可以为支架11的标称长度的0.5%、1%、5%、8%、10%、15%、20%、25%、30%、35%或40%等。示例的,透液子部142c的长度可以为0.3mm、0.5mm、1mm、3mm、5mm、8mm、10mm、15mm、18mm、20mm或上述数据间的任意范围。
透液子部142c可以由可透血液的材料(例如高渗漏率的高分子薄膜材料)制备而成。请参阅图7,透液子部142c可以开设供血液穿过的开孔142d。开孔142d的形状可以为三角形、圆形、方形、多边形、圆形、腰形或者异形等。开孔142d的数量可以为一个,也可以为至少两个,至少两个开孔142d可以沿支架11的周向间隔或者相连排布。
外裙14可以由生物相容性的高分子薄膜、天然生物组织或表面改性成生物相容的材料的至少一种制备而成。生物相容性的高分子薄膜可以是聚氨基甲酸脂、聚四氟乙烯、膨体聚四氟乙烯、聚乳酸、左旋聚乳酸、右旋聚乳酸、聚羟基乙酸、聚已内酯、聚酰胺、聚对苯二甲酸乙二酯、聚半乳糖或丙交酯/己内酯的共聚物中的至少一种。天然生物组织可以是脱细胞的牛心包、猪心包、猪主动脉瓣、鱼漂、哺乳动物的小肠组织等。表面改性成生物相容的材料可以是聚氨酯、聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚四氟乙烯、聚二甲基硅氧烷、聚甲基丙烯酸甲酯或聚甲醛材料中的至少一种。封闭部141、自由部142和连接部143中的至少两者可以由同种材料制备而成,也可以由不同种材料制备而成。
外裙14的展开形状可以包括三角形、矩形、多边形、半圆形、半椭圆形、扇形或者异形的至少一 种。具体而言,自由部142的延伸末端142a的展开形状可以大致呈直线状、曲线状或者折线状等。例如,请参阅图6,在一实施例中,延伸末端142a的形状可以与流出端112的形状一致,延伸末端142a可以呈锯齿状。外裙14包括多个连接部143,其中一部分的连接部143与自由部142的延伸末端142a轴向距离为0,例如图6所示自由部142的延伸末端142a可以通过缝线等方式连接到支架11的流出端112,而外裙14所包括的与缝线基本对应的连接部143与延伸末端142a基本重合;外裙14包括的另外一些连接部143与自由部142的延伸末端142a轴向距离大于0并小于10mm,比如图6中所示位于流出端112下方的沿轴向设置的两个连接部143。设置在与延伸末端142a轴向距离不同的多个位置处的连接部143可以兼顾自由部142的有效使用率和外裙14连接到支架11或内裙13的稳定性。请参阅图1a至图5、图7,在另一些实施例中,延伸末端142a的展开形状可以呈直线状。封闭部141的展开形状可以大致呈直线状、曲线状或者折线状等。
实施例一
请参阅图1a和图1b,人工心脏瓣膜100包括支架11、瓣叶组件12、内裙13和外裙14。支架11具有流入端111和流出端112,支架11的多个支架杆114相互交叉排布形成多个支架孔113。瓣叶组件12设于支架11的内部。瓣叶组件12具有面向流出端112的流入边缘121,包括三个位于支架11内沿支架11的周向排布的瓣叶。
内裙13设于支架11的内表面。内裙13的流入裙边131靠近流入端111设置,流出裙边132连接瓣叶组件12的流入边缘121,流出裙边132与流入边缘121大概平齐,流出裙边132与流入端111的轴向距离略大于流入边缘121与流入端111的轴向距离。
外裙14设于支架11的外周。外裙14包括封闭部141、自由部142和连接部143。封闭部141设于支架11外,封闭部141连接内裙13的流入裙边131。自由部142连接封闭部141且朝向远离流入端111的方向延伸,自由部142的延伸末端142a位于流入边缘121和流出端112之间。连接部143的第一连接子部143a连接自由部142的延伸末端142a,形状呈点状,数量为多个且沿自由部142的周向间隔设置。位于流出端112和流入边缘121之间的支架孔113裸露以使回流血液能够穿过并流入自由部142内。
实施例二
实施例二与实施例一结构相同的部分不再赘述。请参阅图2,流入裙边131位于流入边缘121和延伸末端142a之间,流出裙边132与流入端111的轴向距离明显大于流入边缘121与流入端111的轴向距离。
实施例三
实施例三与实施例一和实施例二结构相同的部分不再赘述。请参阅图3,内裙13位于流入边缘121和流入裙边131之间的部分开设有过孔133,以使回流血液能够穿过并流入自由部142内。
实施例四
实施例四与实施例一至实施例三结构相同的部分不再赘述。请参阅图4,自由部142的延伸末端142a延伸至流出端112。
实施例五
实施例五与实施例一至实施例四结构相同的部分不再赘述。请参阅图5,内裙13的流入裙边131位于封闭部141和流入端111之间,流入裙边131与流入端111的轴向距离大于封闭部141与流入端111的轴向距离。自由部142的延伸末端142a延伸伸出流出端112并反向折叠入支架11的内部。
实施例六
实施例六与实施例一至实施例五结构相同的部分不再赘述。请参阅图6,自由部142延伸至流出端112,且延伸末端142a的形状呈锯齿状。连接部143的数量为多个,其中一个连接部143的第一连接子部143a呈环状且连接延伸末端142a,余下的连接部143的第一连接子部143a呈条状且靠近延伸末端142a呈间隔设置。
实施例七
实施例七与实施例一至实施例六结构相同的部分不再赘述。请参阅图7,自由部142包括胀大子部 142b和透液子部142c,透液子部142c设置有允许血液穿过的开孔143。透液子部142c延伸至流出端112,连接部143连接透液子部142c的靠近流出端112的末端。
实施例八
实施例八与实施例一至实施例七结构相同的部分不再赘述。请参阅图8a,连接部143的数量为三个,分别为第一连接部41、第二连接部42和第三连接部43。第一连接部41、第二连接部42和第三连接部43沿支架11的周向间隔排布。任意相邻的两个第一连接子部在俯视面上以支架11的中心为顶点的夹角(图中用α表示)为120°。
实施例九
实施例九与实施例一至实施例八结构相同的部分不再赘述。请参阅图8b,连接部143的数量为两个,分别为第四连接部44和第五连接部45,第四连接部44和第五连接部45沿支架11的周向呈间隔排布。第四连接部44和第五连接部45的形状均呈条(杆)状。两个连接部143的第一连接子部在俯视面上以支架11的中心为顶点的夹角(图中用β表示)大于120°,且小于180°。
实施例十
实施例十与实施例一至实施例九结构相同的部分不再赘述。请参阅图8c,连接部143的数量为五个,分别为第六连接部46、第七连接部47、第八连接部48、第九连接部49和第十连接部410。第六连接部46包括一个第一连接子部143a、两个第二连接子部143b和两个延伸子部143c,两个延伸子部143c相对径向倾斜并交汇于第一连接子部143a,两个第二连接子部143b可视为第六连接部46的始末两端,也即第六连接部46的中部连接自由部142,两端连接支架11。第七连接部47包括二个第一连接子部143a、一个第二连接子部143b和两个延伸子部143c,也即第七连接部47的两端连接自由部142,中部连接支架11。第八连接部48、第九连接部49和第十连接部410的延伸子部(中部)相互连接。
实施例十一
实施例十一与实施例一至实施例十结构相同的部分不再赘述。请参阅图8d,连接部143的数量为三个,分别为第十一连接部411、第十二连接部413和第十三连接部412。第十一连接部411包括多个第一连接子部、第二连接子部和延伸子部,其中多个延伸子部的两端分别连接第一连接子部和第二连接子部。第十二连接部413包括多个第一连接子部、第二连接子部和延伸子部,其中一个延伸子部的两端均连接第二连接子部,余下延伸子部的两端分别连接第一连接子部和第二连接子部。第十三连接部412在俯视面上的形状呈环状。第十三连接部412包括一个第一连接子部、一个第二连接子部和两个延伸子部,两个延伸子部的两端分别连接相同的第一连接子部和第二连接子部。
实施例十二
实施例十二与实施例一至实施例十一相同的部分不再赘述。请参阅图10d,第二连接子部连接内裙13的流出裙边132。
图10a至图10c中的技术方案与实施例一~十二中的部分技术方案相同,不再赘述。
以上所述,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (18)

  1. 一种人工心脏瓣膜,其特征在于,包括:
    支架,包括流入端和流出端,所述支架形成有多个支架孔;
    瓣叶组件,设于所述支架的内部,所述瓣叶组件具有面向所述流出端的流入边缘;
    内裙,设于所述支架的内表面,所述内裙包括靠近所述流入端的流入裙边和靠近所述流出端的流出裙边,所述内裙连接所述流入边缘;以及
    外裙,至少部分设于所述支架的外周,所述外裙包括封闭部、自由部和连接部;所述封闭部设于所述支架外且靠近所述流入端设置,所述封闭部连接所述内裙;所述自由部连接所述封闭部且朝向远离所述流入端的方向延伸,所述连接部连接所述自由部靠近所述流出端的部分,且所述连接部连接所述支架和/或所述内裙;回流血液可穿过位于所述流出端和所述流入边缘之间的所述支架孔并流入所述自由部内,所述自由部能在所述回流血液的压迫下沿远离所述支架的方向胀大以抵靠周围组织形成密封。
  2. 根据权利要求1所述的人工心脏瓣膜,其特征在于,所述封闭部与所述流入端的轴向距离为A1,所述流入边缘与所述流入端的最小轴向距离为B1,所述流入裙边与所述流入端的轴向距离为C1,所述流出裙边与所述流入端的轴向距离为C2;所述A1≤所述B1,所述C1<所述A1,所述C2>所述B1;
    或者,所述A1>所述B1,所述C1<所述B1,所述C2>所述A1。
  3. 根据权利要求2所述的人工心脏瓣膜,其特征在于,所述A1大于或等于所述支架的标称长度的1%,且小于或等于所述支架的标称长度的49%。
  4. 根据权利要求2所述的人工心脏瓣膜,其特征在于,所述自由部胀大后的延伸末端与所述流入端的轴向距离为A2,所述A2与所述B1的差为大于或等于所述支架的标称长度的30%,且小于或等于所述支架的标称长度的74%。
  5. 根据权利要求1所述的人工心脏瓣膜,其特征在于,所述自由部胀大后的径向伸出量大于或等于所述支架的标称直径的5%,且小于或等于所述支架的标称长度的一半。
  6. 根据权利要求1所述的人工心脏瓣膜,其特征在于,所述自由部胀大后的延伸末端与所述封闭部的轴向距离为L,所述流出端与所述封闭部的轴向距离为H,所述自由部的长度为大于或等于L,且小于或等于(H-1/2L)π。
  7. 根据权利要求1所述的人工心脏瓣膜,其特征在于,所述自由部的厚度为大于或等于5μm,且小于或等于200μm。
  8. 根据权利要求1所述的人工心脏瓣膜,其特征在于,所述连接部包括相互连接的第一连接子部和第二连接子部;
    或者,所述连接部包括第一连接子部、第二连接子部和两端分别连接所述第一连接子部和所述第二连接子部的延伸子部;
    所述第一连接子部连接所述自由部,所述第二连接子部连接所述支架和/或所述内裙。
  9. 根据权利要求8所述的人工心脏瓣膜,其特征在于,所述连接部的数量为多个,所述多个连接部沿所述自由部的周向间隔设置;或者在同一所述连接部中,所述第一连接子部的数量为多个。
  10. 根据权利要求9所述的人工心脏瓣膜,其特征在于,至少一个所述第一连接子部与所述自由部的延伸末端的轴向距离为大于或等于0,且小于或等于10mm。
  11. 根据权利要求9所述的人工心脏瓣膜,其特征在于,至少一个所述第一连接子部在俯视面上呈条状或者环状,条状的所述第一连接子部的两端在俯视面上以所述支架的中心为顶点的夹角为大于或等于120°,且小于360°;
    或者,至少两个相邻的所述第一连接子部在俯视面上的形状均呈点状,两个所述第一连接子部在俯视面上以所述支架的中心为顶点的夹角为大于或等于120°,且小于或等于240°。
  12. 根据权利要求8所述的人工心脏瓣膜,其特征在于,所述延伸子部的长度大于0,且小于或等于所述支架的标称长度。
  13. 根据权利要求1所述的人工心脏瓣膜,其特征在于,所述自由部包括相互连接的胀大子部和 透液子部,所述胀大子部连接所述封闭部,所述胀大子部能在所述回流血液的压迫下沿远离所述支架的方向胀大以抵靠周围组织形成密封,所述透液子部允许血液透过,所述透液子部的轴向长度为大于0,且小于或等于所述支架的标称长度的40%。
  14. 根据权利要求13所述的人工心脏瓣膜,其特征在于,所述透液子部由可透血液的材料制备而成,和/或所述透液子部设置有供血液透过的开孔。
  15. 根据权利要求1所述的人工心脏瓣膜,其特征在于,所述外裙由生物相容性的高分子薄膜、天然生物组织或表面改性成生物相容的材料的至少一种制备而成。
  16. 根据权利要求1所述的人工心脏瓣膜,其特征在于,所述外裙的展开形状包括三角形、矩形、多边形、半圆形、半椭圆形或者扇形的至少一种。
  17. 根据权利要求2所述的人工心脏瓣膜,其特征在于,所述A1≤所述B1,所述内裙位于所述流入边缘和所述流出裙边之间的至少部分可透所述回流血液;
    或者,所述A1>所述B1,所述内裙位于所述封闭部和所述流出裙边之间的至少部分可透所述回流血液。
  18. 根据权利要求2所述的人工心脏瓣膜,其特征在于,所述C1大于0,且小于或等于所述支架的标称长度的40%。
PCT/CN2023/122612 2022-09-30 2023-09-28 人工心脏瓣膜 WO2024067809A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380011090.1A CN117561040A (zh) 2022-09-30 2023-09-28 人工心脏瓣膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211206902.1 2022-09-30
CN202211206902 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067809A1 true WO2024067809A1 (zh) 2024-04-04

Family

ID=90476294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/122612 WO2024067809A1 (zh) 2022-09-30 2023-09-28 人工心脏瓣膜

Country Status (1)

Country Link
WO (1) WO2024067809A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118021494A (zh) * 2024-04-15 2024-05-14 上海欣吉特生物科技有限公司 一种瓣中瓣支架及瓣膜

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150157455A1 (en) * 2013-12-05 2015-06-11 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20180071089A1 (en) * 2016-09-15 2018-03-15 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US20190053895A1 (en) * 2017-08-18 2019-02-21 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
US20200337837A1 (en) * 2017-10-30 2020-10-29 Endoluminal Sciences Pty Ltd. Expandable sealing skirt technology for leak-proof endovascular prostheses
US20210085453A1 (en) * 2019-09-24 2021-03-25 Medtronic, Inc. Prosthesis with anti-paravalvular leakage component including a one-way valve
CN112603598A (zh) * 2020-12-21 2021-04-06 杭州德晋医疗科技有限公司 人工心脏瓣膜及其支架、以及人工心脏瓣膜置换系统
CN112754731A (zh) * 2021-01-20 2021-05-07 上海纽脉医疗科技有限公司 一种介入式人工心脏瓣膜及医用装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150157455A1 (en) * 2013-12-05 2015-06-11 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US20180071089A1 (en) * 2016-09-15 2018-03-15 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US20190053895A1 (en) * 2017-08-18 2019-02-21 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
US20200337837A1 (en) * 2017-10-30 2020-10-29 Endoluminal Sciences Pty Ltd. Expandable sealing skirt technology for leak-proof endovascular prostheses
US20210085453A1 (en) * 2019-09-24 2021-03-25 Medtronic, Inc. Prosthesis with anti-paravalvular leakage component including a one-way valve
CN112603598A (zh) * 2020-12-21 2021-04-06 杭州德晋医疗科技有限公司 人工心脏瓣膜及其支架、以及人工心脏瓣膜置换系统
CN112754731A (zh) * 2021-01-20 2021-05-07 上海纽脉医疗科技有限公司 一种介入式人工心脏瓣膜及医用装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118021494A (zh) * 2024-04-15 2024-05-14 上海欣吉特生物科技有限公司 一种瓣中瓣支架及瓣膜

Similar Documents

Publication Publication Date Title
US11839538B2 (en) Arrangement, a loop-shaped support, a prosthetic heart valve and a method of repairing or replacing a native heart valve
US11850146B2 (en) Prosthetic valve and deployment system
JP7111610B2 (ja) 埋込可能な心臓弁デバイス、僧帽弁修復デバイス、ならびに関連するシステム及び方法
US7402171B2 (en) Prosthetic valve that permits retrograde flow
US10779935B2 (en) Cardiac stent-valve and delivery device for such a valve
EP1626681B1 (en) Implantable medical device with constrained expansion
JP2016519973A (ja) 埋込可能な心臓弁デバイス、僧帽弁修復デバイス、および関連するシステムおよび方法
JP2021513376A (ja) 弁周囲で漏出する生来の解剖学的な構造物の緩和へ向け並置および調整を補助するステントの機構および方法
WO2024067809A1 (zh) 人工心脏瓣膜
CN115517814A (zh) 一种心脏瓣膜修复装置和系统
CN212382790U (zh) 一种带锚定环的心脏瓣膜装置
EP4271327A1 (en) Prosthetic valve systems, components, and methods
CN117561040A (zh) 人工心脏瓣膜
CN116807688A (zh) 瓣膜支架和瓣膜装置
CN115212010A (zh) 一种人工心脏瓣膜

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202380011090.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871034

Country of ref document: EP

Kind code of ref document: A1