WO2024067637A1 - 低共振结构及电子设备 - Google Patents

低共振结构及电子设备 Download PDF

Info

Publication number
WO2024067637A1
WO2024067637A1 PCT/CN2023/121739 CN2023121739W WO2024067637A1 WO 2024067637 A1 WO2024067637 A1 WO 2024067637A1 CN 2023121739 W CN2023121739 W CN 2023121739W WO 2024067637 A1 WO2024067637 A1 WO 2024067637A1
Authority
WO
WIPO (PCT)
Prior art keywords
shock
cavity
absorbing
module
medium
Prior art date
Application number
PCT/CN2023/121739
Other languages
English (en)
French (fr)
Original Assignee
镇江贝斯特新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 镇江贝斯特新材料股份有限公司 filed Critical 镇江贝斯特新材料股份有限公司
Publication of WO2024067637A1 publication Critical patent/WO2024067637A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details

Definitions

  • the present application relates to the field of acoustic and electrical technology, and in particular to a low-resonance structure and an electronic device having the low-resonance structure.
  • An electronic device in the prior art adopts a semi-open cavity design, and a damping part is installed on the leakage hole of the rear cavity to improve the compliance of the rear sound cavity itself. At the same time, the leakage amount is controllable, which can reduce resonance to a certain extent.
  • Another electronic device in the prior art adopts a design of adding a sound-conducting channel to the rear cavity of the speaker module and then connecting it to the open sound cavity. Through multiple changes in direction and reflections in the shock-absorbing channel, the air vibration energy is absorbed to achieve the effect of airflow energy attenuation, thereby reducing the shell resonance to a certain extent.
  • the present application provides a low-resonance structure and electronic device.
  • a shock-absorbing medium inside an open sound cavity, the problem of resonance of the electronic device casing caused by the movement of airflow in the current open sound cavity design can be solved, the impact of the airflow on the casing can be reduced, and the resonance of the electronic device can be reduced, thereby optimizing the user experience.
  • the present application provides a low-resonance structure, which is arranged in a shell of an electronic device, and the low-resonance structure includes at least one functional module and a shock-absorbing medium.
  • the shell has a first shock-absorbing cavity, and the shock-absorbing medium is located in the first shock-absorbing cavity; wherein the shell includes a middle frame and an outer shell, a receiving cavity is formed between the middle frame and the outer shell, a cover is provided in the receiving cavity, at least one functional module is arranged on the middle frame, and the first shock-absorbing cavity is formed between the functional module, the cover and the outer shell.
  • the present application also provides another low-resonance structure, which is arranged in a shell of an electronic device, and the low-resonance structure includes at least one functional module and a shock-absorbing medium.
  • the shell has a second shock-absorbing cavity, and the shock-absorbing medium is located in the second shock-absorbing cavity; wherein the shell includes a screen module, a middle frame and an outer shell, the screen module is connected to the outer shell through the middle frame, at least one functional module is arranged on the screen module, and the second shock-absorbing cavity is formed between the screen module and the middle frame.
  • the present application also provides an electronic device, comprising a housing and the low resonance structure as described above installed in the housing.
  • FIG1 is a schematic structural diagram of an embodiment of the present application.
  • FIG2 is a schematic structural diagram of another embodiment of the present application.
  • FIG3 is a schematic diagram of the exploded structure of the electronic device described in the present application.
  • FIG4 is a frequency response curve of the sound pressure level of four groups of different test samples at different vibration frequencies
  • FIG5 shows the impedance curves of three groups of different test samples at different vibration frequencies.
  • the present application provides a low-resonance structure, which is arranged in a shell 1 of an electronic device.
  • the low-resonance structure includes at least one functional module 7 and a shock-absorbing medium 4.
  • the shell 1 has a first shock-absorbing cavity 31, and the shock-absorbing medium 4 is located in the first shock-absorbing cavity 31; wherein, the shell 1 includes a middle frame 12 and an outer shell 11, a receiving cavity 3 is formed between the middle frame 12 and the outer shell 11, a cover 5 is provided in the receiving cavity 3, at least one functional module 7 is arranged on the middle frame 12, and a first shock-absorbing cavity 31 is formed between the functional module 7, the cover 5 and the outer shell 11.
  • the low-resonance structure of the present application in which the shock-absorbing medium 4 is located in the first shock-absorbing cavity 31 formed between the functional module 7 and the shell 1, can reduce the resonance effect of the functional module 7 on the shell 1 when it is working.
  • the low-resonance structure can significantly reduce the impact on the shell 1 caused by the airflow movement when the functional module 7 is working, thereby reducing the resonance of the electronic device.
  • At least one functional module 7 is fixed to the housing 1 of the electronic device through the middle frame 12 , and the cover 5 is connected to the middle frame 12 to assist in fixing the at least one functional module 7 on the middle frame 12 .
  • the functional module 7 may be a speaker module, a receiver module, a camera module, a processor chip, a battery module, etc.
  • the electronic device may be a mobile phone, a laptop computer, a tablet computer, a wearable device or an AR/VR device, etc., which are not specifically limited here.
  • the functional module 7 is an open
  • the electroacoustic conversion module 2 has an open rear cavity 23 , wherein the open rear cavity 23 of the electroacoustic conversion module 2 is connected to the first damping cavity 31 , and the damping medium 4 is located in the open rear cavity 23 and the first damping cavity 31 .
  • a shock-absorbing medium 4 between the electroacoustic conversion module 2 with an open rear cavity 23 and the shell 1 can reduce the resonance effect of the electroacoustic conversion module 2 of the electronic device on the shell 1 when it is working.
  • the low-resonance structure can significantly reduce the impact on the shell 1 caused by airflow when the electroacoustic conversion module 2 is working, thereby reducing the resonance of the electronic device.
  • the electroacoustic conversion module 2 is fixed inside the shell 1 of the electronic device.
  • the electroacoustic conversion module 2 adopts an open sound cavity design, that is, the rear cavity of the electroacoustic conversion module 2 is directly connected to the internal space of the electronic device.
  • the electroacoustic conversion module 2 is a speaker module 21, and the speaker module 21 is fixed on the back cover 111 through the middle frame 12.
  • the first shock-absorbing cavity 31 is formed between the speaker module 21, the middle frame 12 and the back cover 111, and the speaker unit 211 of the speaker module 21 can extend into the first shock-absorbing cavity 31.
  • the combined structure of the back cover 111 and the middle frame 12 limits the volume of the accommodating cavity 3, and various modules in the electronic device are assembled on the middle frame 12, such as the speaker module 21, the receiver module, the camera module, the processor chip, and the battery module.
  • the speaker module 21 is fixedly connected to the middle frame 12, and the open rear cavity 23 of the speaker module 21 is a fully open rear cavity, that is, the speaker unit 211 of the speaker module 21 is exposed and can extend into the first shock-absorbing cavity 31 defined by the accommodating cavity 3, and the shock-absorbing medium 4 is filled in the first shock-absorbing cavity 31.
  • the low resonance structures of the speaker modules 21 with different structures are subjected to sound vibration tests respectively, and the maximum acceleration value of the back cover 111 of each group of low resonance structures is measured under the same test environment.
  • Test group 1 using the low resonance structure of the speaker module 21 with an open rear cavity 23 in the present application, wherein the first damping cavity 31 is not filled with the damping medium 4;
  • Test group 2 a low resonance structure of a speaker module with a semi-open rear cavity, wherein a rear cover is connected to the speaker module, the rear cover has an opening and a damping member is covered at the opening;
  • Test group 3 A low resonance structure of a speaker module with a rear cavity is used, wherein a sound guide channel is connected to the speaker module and a damping member is filled in the sound guide channel;
  • Test group 4 A low resonance structure of the speaker module 21 with an open rear cavity 23 in the present application is adopted, wherein the first damping cavity 31 is filled with a damping medium 4 .
  • the effective radiation area of the diaphragm of each of the above speaker modules is 70 mm2 .
  • the resonant frequency of the group is 800 Hz
  • the maximum amplitude of each of the above speaker modules is 0.5 mm
  • the back cavity volume of each of the above speaker modules is 4 cm 3 (wherein the length*width*height of the back cavity is 150 mm*60 mm*0.45 mm)
  • the thickness of the back cover is 0.6 mm.
  • the maximum acceleration of the back cover 111 of each test group obtained from the test that the maximum acceleration of the test group 4 filled with the shock-absorbing medium 4 is much smaller than the maximum acceleration of the other three groups. Therefore, filling the shock-absorbing medium 4 between the speaker module 21 and the back cover 111 can effectively reduce the impact on the back cover 111 caused by the airflow when the speaker module 21 is working, thereby reducing the resonance of the electronic device.
  • the shock-absorbing medium 4 is filled in the cavity of the first shock-absorbing cavity 31 and the cavity of the open rear cavity 23; or, the shock-absorbing medium 4 is a shock-absorbing coating formed on the cavity wall of the first shock-absorbing cavity 31 by dipping, coating or pasting.
  • the shock-absorbing medium 4 is directly filled in the first shock-absorbing cavity 31 and the open rear cavity 23; in another feasible embodiment, the shock-absorbing medium 4 is used as a shock-absorbing coating and is formed on the cavity wall of the first shock-absorbing cavity 31 by dipping, coating or pasting.
  • the damping medium 4 is a granular structure or a sheet structure composed of zeolite particles and a matrix medium.
  • the matrix medium and the zeolite particles can be combined by methods such as immersion or spraying.
  • the matrix medium is a granular structure or a sheet structure
  • the zeolite particles, the adhesive and the solvent can be first mixed to form a uniformly dispersed suspension, and then the suspension can be mixed with the granular matrix medium by dipping or spraying, or sprayed or immersed on the surface of the sheet-like matrix medium, and then further dried and solidified to obtain the prepared product, that is, the damping medium 4.
  • the back covers 111 of the electronic devices filled with the shock absorbing media 4 of different structures are subjected to vibration tests, and the sound pressure level and impedance value of each group of back covers 111 at different vibration frequencies are monitored.
  • Test conditions The microphone is facing the diaphragm surface of the speaker module, 1.5V voltage is applied to the speaker module, and 0.05m The acoustic vibration test was performed by field (ie, the microphone was 5 cm from the speaker).
  • Group A the first damping chamber 31 is not filled with the damping medium 4;
  • Group B the first damping cavity 31 is filled with a sheet-like damping medium 4;
  • Group C the first damping chamber 31 is filled with granular damping medium 4;
  • Figure 4 is the frequency response curves of three groups of different test samples at different vibration frequencies, and the uneven curves indicate that the samples resonate at the vibration frequencies corresponding to the peaks/troughs
  • Figure 5 is the impedance curves of three groups of different samples at different vibration frequencies, and the uneven curves indicate that the samples resonate at the vibration frequencies corresponding to the peaks/troughs.
  • the peaks of the curve shown in Figure 5 that the low-frequency resonance peaks of the samples in Group A (not filled with the damping medium 4) are at 400 ⁇ 600 ⁇ 800Hz, and the resonance is obvious; the resonance frequency of the samples in Group B (filled with the sheet-like damping medium 4) is around 1200Hz; the resonance frequency of the samples in Group C (filled with the granular damping medium 4) is 800Hz, and the sound pressure level near the resonance frequency is relatively low.
  • the impedance curve in Figure 5 that the impedance curves of Group B and Group C are relatively smooth, and the resonance of the equipment can be obviously suppressed after filling with the damping medium 4.
  • the granular damping medium 4 has a good damping effect, and the sheet-like damping medium 4 can also achieve damping for the equipment.
  • the material of the matrix medium is sound-absorbing cotton, foam, carbon skeleton or organic skeleton.
  • the sound-absorbing cotton can be centrifugal glass wool, rock wool or mineral wool, and/or the material of the sound-absorbing cotton can be glass fiber, polyester fiber or plant fiber, etc.; the material of the foam is polyurethane, which is not specifically limited here.
  • the shock-absorbing medium 4 is a sheet structure formed by bonding glass fibers and zeolite particles, wherein the thickness of the sheet structure is 0.15 mm to 0.05 mm, the porosity of the sheet structure is greater than or equal to 60%, and the particle size of the zeolite particles is 5 ⁇ m to 200 ⁇ m.
  • the present application also provides a low-resonance structure, which is arranged in a shell 1 of an electronic device, as shown in Figure 2, and the low-resonance structure includes at least one functional module 7 and a shock-absorbing medium 4, the shell 1 has a second shock-absorbing cavity 32, and the shock-absorbing medium 4 is located in the second shock-absorbing cavity 32; wherein, the shell 1 includes a screen module 6, a middle frame 12 and an outer shell 11, the screen module 6 is connected to the outer shell 11 through the middle frame 12, at least one functional module 7 is arranged on the screen module 6, and a second shock-absorbing cavity 32 is formed between the screen module 6 and the middle frame 12.
  • the functional module 7 is a vibration sound module 22, and the vibration sound module 22 can be a moving magnetic exciter, a piezoelectric exciter or a hybrid exciter.
  • the low-resonance structure of the present application in which the shock-absorbing medium 4 is located in the second shock-absorbing cavity 32 formed between the screen module 6 and the middle frame 12, can reduce the resonance effect of the vibration and sound module 22 of the electronic device on the middle frame 12 and the outer shell 11 when it is working.
  • the low-resonance structure of this embodiment can significantly reduce the impact on the middle frame 12 and the outer shell 11 caused by air flow, mechanical vibration and the like when the vibration and sound module 22 is working, thereby reducing the resonance of the electronic device.
  • the vibration sound module 22 is connected with the screen module 6 to drive the screen module 6 to make a sound.
  • other types of modules may be installed between the screen module 6 and the middle frame 12, and the remaining space between the two forms the second shock-absorbing cavity 32.
  • the shock-absorbing medium 4 is filled in the second shock-absorbing cavity 32, which can reduce the impact of the air flow movement caused by the operation of the vibration sound module 22 on the middle frame 12 and the housing 11, thereby reducing the resonance of the electronic device.
  • the damping medium 4 is a granular structure or a sheet structure composed of zeolite particles and a matrix medium.
  • the matrix medium and the zeolite particles can be combined by methods such as immersion or spraying.
  • the matrix medium is a granular structure or a sheet structure
  • the zeolite particles, the adhesive and the solvent can be first mixed to form a uniformly dispersed suspension, and then the suspension can be mixed with the granular matrix medium by dipping or spraying, or sprayed or immersed on the surface of the sheet-like matrix medium, and then further dried and solidified to obtain the prepared product, that is, the damping medium 4.
  • shock absorbing effect test of the shock absorbing medium 4 with different structures has been described in detail through the test data in the first embodiment, and will not be repeated here.
  • the material of the matrix medium is sound-absorbing cotton, foam, carbon skeleton or organic skeleton.
  • the sound-absorbing cotton can be centrifugal glass wool, rock wool or mineral wool, and/or the material of the sound-absorbing cotton can be glass fiber, polyester fiber or plant fiber, etc.; the material of the foam is polyurethane, which is not specifically limited here.
  • the shock-absorbing medium 4 is a sheet structure formed by bonding glass fibers and zeolite particles, wherein the thickness of the sheet structure is 0.15 mm to 0.05 mm, the porosity of the sheet structure is greater than or equal to 60%, and the particle size of the zeolite particles is 5 ⁇ m to 200 ⁇ m.
  • the present application also provides an electronic device, including a housing 1 and the low-resonance structure as described above installed in the housing 1.
  • the specific structure, working principle and beneficial effects of the low-resonance structure are the same as those of the low-resonance structure described in Embodiments 1 and 2, and are not described in detail here.
  • the low-resonance structure inside the electronic device can significantly reduce the Resonance during use optimizes user experience.
  • the electronic device can be a mobile phone, speaker, laptop computer, tablet computer, remote conferencing equipment, wearable device or AR/VR equipment, car, smart home, etc. with the above-mentioned low resonance structure, and no specific limitation is made here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

本申请公开了一种低共振结构及电子设备,低共振结构设置在电子设备的壳体(1)内,低共振结构包括至少一个功能模组(7)以及减震介质(4),壳体(1)具有第一减震腔(31),减震介质(4)位于第一减震腔(31)内;壳体(1)包括中框(12)和外壳(11),中框(12)和外壳(11)之间形成有容置腔(3),容置腔(3)内设有封盖(5),至少一个功能模组(7)设置在中框(12)上,功能模组(7)、封盖(5)与外壳(11)之间形成所述第一减震腔(31)。本申请解决了电子设备内部气流的窜动引起壳体(1)共振的问题,减少气流对于壳体(1)的冲击,降低电子设备的共振,优化用户体验。

Description

低共振结构及电子设备
相关申请
本申请要求专利申请号为202211231927.7、申请日为2022年09月30日、发明创造名称为“低共振结构及电子设备”的中国发明专利申请的优先权。
技术领域
本申请涉及声电技术领域,尤其涉及一种低共振结构及具有该低共振结构的电子设备。
背景技术
现在的主流电子设备在设计上,为了追求扬声器或受话器的高音质效果,往往采用开放式声腔设计,即扬声器模组或受话器模组的后腔不是封闭的,气流可以流入设备内部的声腔。但由于气流的窜动,往往导致设备壳体出现共振,用户持握时震感明显,且震感随着声响提高而更剧烈,体验感较差。因此,如何设计电子设备的声腔结构,使其满足用户握持体验的优化需求,是一个亟待解决的问题。
现有技术中的一种电子设备,采用半开放的腔体设计,在后腔的泄露孔上装配阻尼件,以提升后声腔腔体自身的顺性,同时泄露量可控,可以在一定程度上减少共振。现有技术中的另一种电子设备,采用在扬声器模组后腔上加导声通道再连接开放声腔的设计,通过减震通道内的多次变向与反射,吸收空气振动能量,以实现气流能量衰减的作用,从而在一定能程度上减轻了壳体共振。然而,无论是半开放的腔体设计还是添加了导声通道的腔体,在实际应用中都只能较小程度的减轻壳体共振,电子设备的开放声腔设计导致的壳体共振问题依然有待进一步解决。
发明内容
本申请提供一种低共振结构及电子设备,通过在开放声腔内部填充减震介质,可以解决目前开放式声腔设计由于气流的窜动所带来的电子设备壳体共振的问题,减少气流对于壳体的冲击,进而减少电子设备的共振,优化用户体验。
本申请的上述目的主要通过以下技术方案来实现:
本申请提供一种低共振结构,设置在电子设备的壳体内,所述低共振结构包括至少一个功能模组以及减震介质,所述壳体具有第一减震腔,所述减震介质位于所述第一减震腔内;其中,所述壳体包括中框和外壳,所述中框和所述外壳之间形成有容置腔,所述容置腔内设有封盖,至少一个所述功能模组设置在所述中框上,所述功能模组、所述封盖与所述外壳之间形成所述第一减震腔。
本申请还提供另一种低共振结构,设置在电子设备的壳体内,所述低共振结构包括至少一个功能模组以及减震介质,所述壳体具有第二减震腔,所述减震介质位于所述第二减震腔内;其中,所述壳体包括屏幕模组、中框和外壳,所述屏幕模组通过中框与所述外壳相接,至少一个所述功能模组设置在所述屏幕模组上,所述屏幕模组和所述中框之间形成有所述第二减震腔。
本申请还提供一种电子设备,包括壳体和安装在所述壳体内的如上所述的低共振结构。
与现有技术相比,本申请所述的技术方案具有以下特点和优点:
通过在电子设备内部填充减震介质,减少内部气流对于电子设备壳体的冲击,进而减少电子设备的共振,优化用户体验,提升电子设备的在市场上的竞争力。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。在附图中:
图1为本申请一实施例的结构示意图;
图2为本申请另一实施例的结构示意图;
图3为本申请所述电子设备的分解结构示意图;
图4为四组不同测试样品在不同震动频率下的声压级的频率响应曲线;
图5为三组不同测试样品在不同震动频率下的阻抗曲线。
附图标号说明:
1、壳体;11、外壳;111、后盖;12、中框;2、电声转换模组;21、扬声器模组;
211、扬声器单体;22、振动发声模组;23、开放式后腔;3、容置腔;31、第一减震腔;32、第二减震腔;4、减震介质;5、封盖;6、屏幕模组;7、功能模组。
具体实施方式
为了使本技术领域的人员更好地理解本申请中的技术方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其它实施例,都应当属于本申请保护的范围。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
实施方式一
本申请提供一种低共振结构,设置在电子设备的壳体1内,该低共振结构包括至少一个功能模组7以及减震介质4,壳体1具有第一减震腔31,减震介质4位于第一减震腔31内;其中,壳体1包括中框12和外壳11,中框12和外壳11之间形成有容置腔3,容置腔3内设有封盖5,至少一个功能模组7设置在中框12上,所述功能模组7、封盖5与外壳11之间形成第一减震腔31。
本申请的低共振结构,减震介质4位于功能模组7与壳体1之间形成的第一减震腔31内,能够降低功能模组7在进行工作时对壳体1的共振影响,该低共振结构能够明显降低功能模组7工作时由于气流窜动导致的对壳体1的冲击影响,减少了电子设备的共振。
具体的,至少一个功能模组7通过中框12固定于电子设备的壳体1上,封盖5与中框12相连,用于辅助固定中框12上的至少一个功能模组7。
在本申请中,功能模组7可以为扬声器模组、受话器模组、摄像头模组、处理器芯片、电池模组等,该电子设备可以为手机、笔记本电脑、平板电脑、可穿戴式设备或AR/VR设备等,在此不做具体限定。本申请中,如图1所示,功能模组7为具有开放 式后腔23的电声转换模组2,该电声转换模组2的开放式后腔23与第一减震腔31相连通,减震介质4位于开放式后腔23和第一减震腔31内。
在具有开放式后腔23的电声转换模组2与壳体1之间填充减震介质4,能够降低电子设备的电声转换模组2在进行工作时对壳体1的共振影响,该低共振结构能够明显降低电声转换模组2工作时由于气流窜动导致的对壳体1的冲击,减少了电子设备的共振。
具体的,请参照图1和图3,电声转换模组2固定于电子设备的壳体1内部,该电声转换模组2采用开放式声腔设计,即电声转换模组2的后腔直接与电子设备的内部空间相连通,在本实施例中,电声转换模组2为扬声器模组21,该扬声器模组21通过中框12固定在后盖111上,第一减震腔31形成在扬声器模组21、中框12与后盖111之间,扬声器模组21的扬声器单体211能伸入第一减震腔31内。
具体的,后盖111和中框12的组合结构限制了容置腔3的体积,电子设备中的各类模组装配在中框12上,该些模组例如可为扬声器模组21、受话器模组、摄像头模组、处理器芯片、以及电池模组等。在本实施例中,扬声器模组21与中框12固定连接,该扬声器模组21的开放式后腔23为全开放式后腔,也即,该扬声器模组21的扬声器单体211裸露在外并能伸入容置腔3界定的第一减震腔31内,减震介质4填充于该第一减震腔31中。
为了验证本申请的扬声器模组21与后盖111之间填充的减震介质4可有效降低扬声器模组21工作时由于气流窜动导致的对后盖111的冲击,以下对四组具有不同结构的扬声器模组21的低共振结构进行发声振动测试,具体测试情况如下:
将具有不同结构的扬声器模组21的低共振结构分别进行发声震动测试,在相同的测试环境下,测量每组的低共振结构的后盖111的最大加速度值。
测试组1:采用本申请中的具有开放式后腔23的扬声器模组21的低共振结构,其中,第一减震腔31中未填充减震介质4;
测试组2:采用半开放式后腔的扬声器模组的低共振结构,该低共振结构为在扬声器模组上连接后盖,该后盖具有开孔并在该开孔处覆盖阻尼件;
测试组3:采用具有后腔的扬声器模组的低共振结构,其中,在该扬声器模组上连接导声通道,在该导声通道内填充阻尼件;
测试组4:采用本申请中的具有开放式后腔23的扬声器模组21的低共振结构,其中,第一减震腔31中填充有减震介质4。
测试条件:上述各扬声器模组的振膜的有效辐射面积均为70mm2,上述各扬声器模 组的共振频率均为800Hz,上述各扬声器模组的最大振幅均为0.5mm,上述各扬声器模组的后腔体积均为4cm3(其中,该后腔的长*宽*高为150mm*60mm*0.45mm),后盖的厚度为0.6mm。
测试结果如下表所示:
从测试得到的各测试组的后盖111最大加速度可以看出,填充减震介质4的测试组4的最大加速度远小于其它三组的最大加速度,因此,在扬声器模组21与后盖111之间填充减震介质4可有效降低扬声器模组21工作时由于气流窜动导致的对后盖111的冲击,进而减少电子设备的共振。
根据本申请的一个实施方式,减震介质4填充在第一减震腔31的腔体和开放式后腔23的腔体内;或者,减震介质4为通过浸渍、涂覆或粘贴的方式形成在第一减震腔31的腔壁上的减震涂层。
具体的,在一可行的实施例中,减震介质4直接填充在上述第一减震腔31和开放式后腔23内部;在另一可行的实施例中,减震介质4作为减震涂层,以浸渍、涂覆或粘贴等方式形成在第一减震腔31的腔壁上。
根据本申请的一个实施方式,减震介质4为由沸石颗粒与基体介质组成的颗粒状结构或片状结构。
具体的,基体介质与沸石颗粒可以通过或喷涂等方法进行结合。例如,当基体介质为颗粒状结构或片状结构时,首先可将沸石颗粒、胶黏剂与溶剂混合后形成分散均匀的悬浮液,然后将该悬浮液通过浸渍或喷涂等方式将其与颗粒状的基体介质混合,或者喷涂、浸渍在片状的基体介质的表面上,之后进一步干燥固化即可得到制备后的成品,即减震介质4。
为了验证不同结构的减震介质4的减震效果,以下对三组不同结构的减震介质4进行了振动测试,具体测试情况如下:
将填充有不同结构的减震介质4的电子设备的后盖111进行振动测试,监测每组后盖111在不同振动频率下的声压级以及阻抗值。
测试条件:麦克风对着扬声器模组的振膜面,给扬声器模组加1.5V电压,0.05m自 由场(也即,麦克风距离扬声器5cm)进行发声震动测试。
测试数量:分为三组,分别为A组、B组和C组;
A组:第一减震腔31未填充减震介质4;
B组:第一减震腔31内填充片状减震介质4;
C组:第一减震腔31内填充颗粒状减震介质4;
测试结果:如图4和图5所示,其中,图4为三组不同测试样品在不同震动频率下的频率响应曲线,曲线不平缓表示样品在波峰/波谷处对应的震动频率下有共振;图5为三组不同样品在不同震动频率下的阻抗曲线,曲线不平缓表示样品在波峰/波谷处对应的震动频率下有共振。
由图5的所示曲线的波峰可以看出:A组样品(未填充减震介质4)的低频共振峰在400\600\800Hz,共振明显;B组样品(填充片状减震介质4)的共振频率在1200Hz左右;C组样品(填充颗粒状减震介质4)的共振频率为800Hz,且在共振频率附近的声压级较低。由图5的阻抗曲线可以看出,B组和C组的阻抗曲线都比较平滑,填充减震介质4后明显可以抑制设备的共振。总体来看,颗粒状减震介质4的减震效果好,片状减震介质4也可以实现针对设备的减震。
根据本申请的一个实施方式,基体介质的材料为吸音棉、泡棉、碳骨架或有机骨架。
具体的,该吸音棉可以为离心玻璃棉、岩棉或矿棉等,和/或,该吸音棉的材料可以采用玻璃纤维、聚酯纤维或植物纤维等;泡棉的材料为聚氨酯,在此不做具体限定。
根据本申请的一个实施方式,减震介质4为玻璃纤维与沸石颗粒粘结形成的片状结构,其中,片状结构的厚度为0.15mm~0.05mm,片状结构的孔隙率大于或等于60%,沸石颗粒的粒径为5μm~200μm。
实施方式二
本申请还提供一种低共振结构,设置在电子设备的壳体1内,如图2所示,所述低共振结构包括至少一个功能模组7以及减震介质4,壳体1具有第二减震腔32,减震介质4位于第二减震腔32内;其中,壳体1包括屏幕模组6、中框12和外壳11,屏幕模组6通过中框12与外壳11相接,至少一个功能模组7设置在屏幕模组6上,屏幕模组6和中框12之间形成有第二减震腔32。
在本申请中,该功能模组7为振动发声模组22,该振动发声模组22可为动磁激励器、压电激励器或混合型激励器。
本申请的低共振结构,减震介质4位于屏幕模组6与中框12之间形成的第二减震腔32中,可降低电子设备的振动发声模组22在进行工作时对中框12和外壳11的共振影响,该实施例的低共振结构能够明显降低振动发声模组22工作时由于气流窜动、机械震动等原因导致的对中框12和外壳11的冲击,进而减少电子设备的共振。
具体的,振动发声模组22与屏幕模组6相配合连接,用于驱动屏幕模组6发声。在本申请中,屏幕模组6与中框12之间还可装配有其它各类模组,二者之间的剩余空间形成了该第二减震腔32。为了解决屏幕模组6振动所引起的第二减震腔32内的气流窜动引发中框12和外壳11振动的问题,将减震介质4填充在第二减震腔32中,可降低因振动发声模组22工作而导致的气流窜动对中框12和外壳11的冲击,从而减少电子设备的共振。
根据本申请的一个实施方式,减震介质4为由沸石颗粒与基体介质组成的颗粒状结构或片状结构。
具体的,基体介质与沸石颗粒可以通过或喷涂等方法进行结合。例如,当基体介质为颗粒状结构或片状结构时,首先可将沸石颗粒、胶黏剂与溶剂混合后形成分散均匀的悬浮液,然后将该悬浮液通过浸渍或喷涂等方式将其与颗粒状的基体介质混合,或者喷涂、浸渍在片状的基体介质的表面上,之后进一步干燥固化即可得到制备后的成品,即减震介质4。
不同结构的减震介质4的减震效果测试已在实施方式一中通过测试数据详细说明,此处不在赘述。
根据本申请的一个实施方式,基体介质的材料为吸音棉、泡棉、碳骨架或有机骨架。
具体的,该吸音棉可以为离心玻璃棉、岩棉或矿棉等,和/或,该吸音棉的材料可以采用玻璃纤维、聚酯纤维或植物纤维等;泡棉的材料为聚氨酯,在此不做具体限定。
根据本申请的一个实施方式,减震介质4为玻璃纤维与沸石颗粒粘结形成的片状结构,其中,片状结构的厚度为0.15mm~0.05mm,片状结构的孔隙率大于或等于60%,沸石颗粒的粒径为5μm~200μm。
实施方式三
本申请还提供一种电子设备,包括壳体1和安装在壳体1内的如上所述的低共振结构。该低共振结构的具体结构、工作原理和有益效果与实施方式一和实施方式二所述的低共振结构相同,在此不作赘述。该电子设备内部的低共振结构可以明显减少电子设备 使用过程中的共振,优化用户体验。
具体的,该电子设备可以是具有上述低共振结构的手机、音响、笔记本电脑、平板电脑、远程会议设备、可穿戴设备或AR/VR设备、汽车、智能家居、等,在此不做具体限定。
以上所述的具体实施例,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施例而已,并不用于限定本申请的保护范围,凡在本申请的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种低共振结构,设置在电子设备的壳体内,其中,所述低共振结构包括至少一个功能模组以及减震介质,所述壳体具有第一减震腔,所述减震介质位于所述第一减震腔内;其中,所述壳体包括中框和外壳,所述中框和所述外壳之间形成有容置腔,所述容置腔内设有封盖,至少一个所述功能模组设置在所述中框上,所述功能模组、所述封盖与所述外壳之间形成所述第一减震腔。
  2. 根据权利要求1所述的低共振结构,其中,所述功能模组为具有开放式后腔的电声转换模组,所述电声转换模组的开放式后腔与所述第一减震腔相连通,所述减震介质位于所述第一减震腔和所述开放式后腔内。
  3. 根据权利要求2所述的低共振结构,其中,所述电声转换模组为扬声器模组,所述外壳为所述电子设备的后盖,所述扬声器模组的扬声器单体能伸入所述第一减震腔内。
  4. 根据权利要求2所述的低共振结构,其中,所述减震介质填充在所述第一减震腔的腔体和所述开放式后腔的腔体内;或者,所述减震介质为通过浸渍、涂覆或粘贴的方式形成在所述第一减震腔的腔壁上的减震涂层。
  5. 根据权利要求4所述的低共振结构,其中,所述减震介质为由沸石颗粒与基体介质组成的颗粒状结构或片状结构。
  6. 根据权利要求5所述的低共振结构,其中,所述基体介质的材料为吸音棉、泡棉、碳骨架或有机骨架。
  7. 根据权利要求1所述的低共振结构,其中,所述减震介质为玻璃纤维与沸石颗粒粘结形成的片状结构,其中,所述片状结构的厚度为0.15mm~0.05mm,所述片状结构的孔隙率大于或等于60%,所述沸石颗粒的粒径为5μm~200μm。
  8. 一种低共振结构,设置在电子设备的壳体内,其中,所述低共振结构包括至少一个功能模组以及减震介质,所述壳体具有第二减震腔,所述减震介质位于所述第二减震腔内;其中,所述壳体包括屏幕模组、中框和外壳,所述屏幕模组通过所述中框与所述外壳相接,至少一个所述功能模组设置在所述屏幕模组上,所述屏幕模组和所述中框之间形成有所述第二减震腔。
  9. 根据权利要求8所述的低共振结构,其中,所述功能模组为振动发声模组,所述振动发声模组为动磁激励器、压电激励器或混合型激励器。
  10. 根据权利要求9所述的低共振结构,其中,所述减震介质为由沸石颗粒与基体 介质组成的颗粒状结构或片状结构。
  11. 根据权利要求10所述的低共振结构,其中,所述基体介质的材料为吸音棉、泡棉、碳骨架或有机骨架。
  12. 根据权利要求8所述的低共振结构,其中,所述减震介质为玻璃纤维与沸石颗粒粘结形成的片状结构,其中,所述片状结构的厚度为0.15mm~0.05mm,所述片状结构的孔隙率大于或等于60%,所述沸石颗粒的粒径为5μm~200μm。
  13. 一种电子设备,其中,包括壳体和安装在所述壳体内的如权利要求1~12中任一项所述的低共振结构。
PCT/CN2023/121739 2022-09-30 2023-09-26 低共振结构及电子设备 WO2024067637A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211231927.7A CN115580811A (zh) 2022-09-30 2022-09-30 低共振结构及电子设备
CN202211231927.7 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024067637A1 true WO2024067637A1 (zh) 2024-04-04

Family

ID=84584157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/121739 WO2024067637A1 (zh) 2022-09-30 2023-09-26 低共振结构及电子设备

Country Status (2)

Country Link
CN (1) CN115580811A (zh)
WO (1) WO2024067637A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115580811A (zh) * 2022-09-30 2023-01-06 镇江贝斯特新材料股份有限公司 低共振结构及电子设备
CN116156038B (zh) * 2023-04-04 2023-09-19 荣耀终端有限公司 电子设备

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190389A (ja) * 1995-01-10 1996-07-23 Shinko Electric Co Ltd 消音用音波発生装置
CN110381183A (zh) * 2019-06-29 2019-10-25 瑞声科技(南京)有限公司 一种降低移动终端第二壳体振动的控制方法及控制系统
CN210724969U (zh) * 2019-09-18 2020-06-09 华为技术有限公司 移动终端
CN111866673A (zh) * 2020-08-03 2020-10-30 苏州索迩电子技术有限公司 屏幕发声装置、方法、存储介质及电子装置
CN112188356A (zh) * 2019-07-05 2021-01-05 华为技术有限公司 一种扬声器模组与电子设备
US20210144465A1 (en) * 2019-11-12 2021-05-13 Apple Inc. Coating for improving loudspeaker sound quality
CN113471592A (zh) * 2021-05-27 2021-10-01 荣耀终端有限公司 一种电子设备及电池盖
CN113596672A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 扬声器模组及电子设备
WO2022017146A1 (zh) * 2020-07-22 2022-01-27 中兴通讯股份有限公司 终端、屏幕发声方法、计算机可读存储介质
CN216351753U (zh) * 2021-11-18 2022-04-19 青岛海信激光显示股份有限公司 投影屏幕及激光投影系统
CN115580811A (zh) * 2022-09-30 2023-01-06 镇江贝斯特新材料股份有限公司 低共振结构及电子设备

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08190389A (ja) * 1995-01-10 1996-07-23 Shinko Electric Co Ltd 消音用音波発生装置
CN110381183A (zh) * 2019-06-29 2019-10-25 瑞声科技(南京)有限公司 一种降低移动终端第二壳体振动的控制方法及控制系统
CN112188356A (zh) * 2019-07-05 2021-01-05 华为技术有限公司 一种扬声器模组与电子设备
CN210724969U (zh) * 2019-09-18 2020-06-09 华为技术有限公司 移动终端
US20210144465A1 (en) * 2019-11-12 2021-05-13 Apple Inc. Coating for improving loudspeaker sound quality
CN113596672A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 扬声器模组及电子设备
WO2022017146A1 (zh) * 2020-07-22 2022-01-27 中兴通讯股份有限公司 终端、屏幕发声方法、计算机可读存储介质
CN111866673A (zh) * 2020-08-03 2020-10-30 苏州索迩电子技术有限公司 屏幕发声装置、方法、存储介质及电子装置
CN113471592A (zh) * 2021-05-27 2021-10-01 荣耀终端有限公司 一种电子设备及电池盖
CN216351753U (zh) * 2021-11-18 2022-04-19 青岛海信激光显示股份有限公司 投影屏幕及激光投影系统
CN115580811A (zh) * 2022-09-30 2023-01-06 镇江贝斯特新材料股份有限公司 低共振结构及电子设备

Also Published As

Publication number Publication date
CN115580811A (zh) 2023-01-06

Similar Documents

Publication Publication Date Title
WO2024067637A1 (zh) 低共振结构及电子设备
US10225646B2 (en) Speaker box
CN208353585U (zh) 扬声器箱
WO2022089032A1 (zh) 一种扬声器模组和电子设备
CN101998216A (zh) 一种扬声器和便携式电子设备
CN107690106B (zh) 扬声器箱
WO2020024522A1 (zh) 发声装置及便携终端
CN206389553U (zh) 一种音腔装置和移动终端
CN208798214U (zh) 发声装置及便携终端
CN201523448U (zh) 一种扬声器和便携式电子设备
US7801320B2 (en) Sound sponge for loudspeakers
CN210143089U (zh) 一种防摔蓝牙音箱
CN218103499U (zh) 低共振结构及电子设备
CN209201314U (zh) 扬声器箱
CN207531067U (zh) 扬声器箱
CN219960824U (zh) 吸振结构及电子设备
CN209642956U (zh) 一种新型扬声器
TWM655497U (zh) 吸振結構及電子設備
CN207625787U (zh) 扬声器箱
CN206596176U (zh) 一种耳机
CN207124717U (zh) 一种双面挤压式被动音箱
CN220823280U (zh) 一种扬声器及电子设备
CN207612414U (zh) 扬声器箱
CN109874092A (zh) 一种新型扬声器
CN109068230A (zh) 扬声器箱

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870864

Country of ref document: EP

Kind code of ref document: A1