WO2024067180A1 - 通信方法、电子设备以及存储介质 - Google Patents

通信方法、电子设备以及存储介质 Download PDF

Info

Publication number
WO2024067180A1
WO2024067180A1 PCT/CN2023/119254 CN2023119254W WO2024067180A1 WO 2024067180 A1 WO2024067180 A1 WO 2024067180A1 CN 2023119254 W CN2023119254 W CN 2023119254W WO 2024067180 A1 WO2024067180 A1 WO 2024067180A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
target
radar device
waveform
target object
Prior art date
Application number
PCT/CN2023/119254
Other languages
English (en)
French (fr)
Inventor
祝艳宏
丁仁天
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024067180A1 publication Critical patent/WO2024067180A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/46Indirect determination of position data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00

Definitions

  • the embodiments of the present application relate to the field of communication technology, and in particular, to a communication method, an electronic device, and a storage medium.
  • Electronic devices are required to have proximity detection capabilities.
  • Electronic devices with proximity detection capabilities can sense objects approaching the electronic devices, and then perform corresponding operations when they sense that there are objects approaching the electronic devices.
  • electronic devices may be provided with sensors for approach detection, but approach detection cannot be performed for objects without sensors.
  • Embodiments of the present application provide a communication method, an electronic device, and a storage medium, which can detect the proximity of an object without a sensor.
  • the present application provides a communication method.
  • the executing entity of the communication method may be a radar device or a control device.
  • the radar device can obtain the position of a movable object in a target area, and based on the position of the movable object and the position of the target object in the target area, when it is determined that the movable object is close to the target object, the target operation is performed, and the target object does not have a proximity detection function.
  • the execution subject of the communication method is a control device
  • the radar device obtains the position of the movable object in the target area
  • it can send the position of the movable object in the target area to the control device, so that the control device can obtain the position of the movable object.
  • the control device can perform a target operation when it is determined that the movable object is close to the target object according to the position of the movable object and the position of the target object in the target area.
  • a device that can obtain the position of a movable object in a target area whether there is a movable object approaching the target object is detected, and a device that does not have the approach detection function is indirectly endowed with the approach detection function, thereby triggering the execution of corresponding operations of the movable object approaching the target object.
  • the position of the target object may be pre-calibrated by a user.
  • the radar device may obtain the position of the target object before obtaining the position of a movable object in the target area. After the radar device obtains the position of the target object, when the execution subject of the communication method is a control device, the radar device may send the position of the target object to the control device so that the control device can obtain the position of the target object.
  • the radar device is an ultra-wideband UWB radar device
  • the user can place a UWB tag on the target object or close to the target object in advance, and the radar device can send a data frame to locate the UWB tag to obtain the position of the target object.
  • the position of the UWB tag can be regarded as the position of the target object, so the radar device can obtain the position of the target object by locating the UWB tag.
  • the radar device can pre-calibrate the target object and obtain the position of the target object.
  • the position of the target object can be obtained by positioning the UWB tag, and the implementation method is simple and easy to implement.
  • the radar device may be an ultra-wideband UWB radar device to obtain a non-UWB radar device.
  • the non-UWB radar device may be an ultrasonic radar or a millimeter wave radar.
  • the embodiment of the present application does not limit the type of non-UWB radar device.
  • the user may remain stationary at the target object for a preset time, and the radar device obtains the position of the target object by sensing the user's position.
  • the radar device may emit a radar signal to obtain the position of the user in the target area, and the radar device uses the user's stationary position as the position of the target object if it detects that the user's stationary time is greater than or equal to the preset time based on the user's position.
  • the radar device can calibrate the target object and obtain the position of the target object by sensing the user's position.
  • the implementation method is simple and easy to implement, and no additional UWB tags are required.
  • the radar device may send a start instruction to a target device in the target area, and the start instruction is used to instruct the target device to perform a corresponding operation.
  • the target device may be a target object, or the target device may not be a target object, but regardless of whether the target device is a target object, the radar device may perform a target operation.
  • the radar device when the communication method is applied to a radar device, can send a trigger event to a control device in the target area in response to a movable object approaching a target object, wherein the trigger event is used to characterize that the movable object is approaching the target object, and the trigger event is used to instruct the control device to send the start instruction to the target device.
  • the control device can send the start instruction to the target device in response to the trigger event to instruct the target device to perform a corresponding operation.
  • the control device may send the start indication to the target device in response to the movable object approaching the target object, where the start indication is used to instruct the target device to perform a corresponding operation.
  • a control device or a radar device may perform a target operation to trigger the target device to perform a corresponding operation so that the target device may respond accurately and promptly.
  • the control device detects that the movable object is approaching the target object as follows: the control device determines that the movable object is approaching the target object based on the position of the movable object and the position of the target object in the target area. If the distance between the movable object and the target object decreases and is less than or equal to a preset distance, the control device determines that the movable object is approaching the target object.
  • the movable object when the movable object gradually approaches the target object and the distance between the movable object and the target object is less than or equal to the preset distance, it can be determined that the movable object is close to the target object. This can avoid the problem of erroneously triggering the control device or radar device to perform target operations when the movable object is far away from the target object.
  • the control device or radar device may also output the position of the target object to facilitate the user to identify the target object. Accordingly, after receiving the identifier of the target object input by the user, the control device or radar device may store the identifier of the target object and the position of the target object accordingly.
  • the identifier of the target object may include but is not limited to the name, number or picture of the target object.
  • control device or the radar device may correspond the position of the target object to the identification of the target object, so that when the movable object approaches the target object, an accurate target operation can be performed according to the identification of the target object.
  • the radar device In the embodiment of the present application, it is necessary to use a radar device to transmit a radar signal to sense and obtain the position of the target object and the position of the movable object. Therefore, the accuracy of the object's position is crucial to the accuracy of proximity detection.
  • the radar device has a close-range blind spot.
  • the position of the object in order to reduce the close-range blind spot of the radar device, the position of the object can be obtained in the following manner. The following is an example of a radar device obtaining the position of a movable object:
  • the radar device can alternately transmit a radar signal of a first waveform and a radar signal of a second waveform to detect the movable object, wherein the first waveform includes a peak and the second waveform includes multiple peaks.
  • the close-range blind area of the radar device is small, such as 20 cm.
  • the close-range blind area of the radar device is large, such as 1 m.
  • the purpose of the radar device alternately transmitting the radar signal of the first waveform and the radar signal of the second waveform is to detect the movable object as much as possible to avoid failing to detect the movable object.
  • a radar signal of a first waveform is emitted to obtain the position of the movable object.
  • a radar signal of a second waveform is emitted to obtain the position of the movable object.
  • the radar device when detecting a movable object, can alternately transmit a radar signal of a first waveform and a radar signal of a second waveform to determine whether the movable object is at the near end or far end of the radar device.
  • the movable object is at the near end of the radar device (i.e., the distance between the movable object and the radar device is less than or equal to the distance threshold)
  • the radar device can transmit the radar signal of the first waveform to continue detecting the movable object to reduce the short-range blind area of the radar device.
  • the radar device can transmit the radar signal of the second waveform to continue detecting the object.
  • the sensitivity of the radar signal of the second waveform is high, so the detection sensitivity of the radar device can be improved.
  • the radar device when transmitting the radar signal of the first waveform to acquire the position of the movable object, the radar device The device also obtains the reflected signal energy of the movable object, and adjusts the transmission power of the radar device according to the reflected signal energy of the movable object, so that the receiver in the radar device is not saturated or critically saturated.
  • the transmit power of the radar device can be adaptively adjusted to make the receiver in the radar device unsaturated or critically saturated, so as to ensure that the radar device can smoothly perceive the movable object.
  • the radar device when the radar device transmits the radar signal of the first waveform to obtain the position of the movable object, the reflected signal energy of the movable object and/or the reflected signal phase change amount can be obtained; and the radar device can detect whether the distance between the movable object and the radar device is greater than the distance threshold according to the reflected signal energy of the movable object and/or the reflected signal phase change amount. When the distance between the movable object and the radar device is greater than the distance threshold, the radar device can alternately transmit the radar signal of the first waveform and the radar signal of the second waveform.
  • the radar device when the movable object is at the near end of the radar device, the radar device can timely detect the distance between the movable object and the radar device based on the reflected signal energy and/or the reflected signal phase change of the movable object.
  • the radar device can alternately transmit the radar signal of the first waveform and the radar signal of the second waveform, so as to avoid the movable object from repeatedly moving at the near end and the far end of the radar device, so that the radar device can accurately perceive the movable object.
  • the present application provides a communication method applied to a radar device, in which the radar device can alternately transmit a radar signal of a first waveform and a radar signal of a second waveform to detect an object, wherein the first waveform includes a peak and the second waveform includes multiple peaks; when the distance between the object and the radar device is less than or equal to a distance threshold, the radar signal of the first waveform is transmitted to detect the object; when the distance between the object and the radar device is greater than the distance threshold, the radar signal of the second waveform is transmitted to detect the object.
  • the method further includes: acquiring reflected signal energy of the object when transmitting the radar signal of the first waveform to detect the object; and adjusting the transmit power of the radar device according to the reflected signal energy of the object so that the receiver in the radar device is unsaturated or critically saturated.
  • the method further includes: when transmitting the radar signal of the first waveform to detect the object, obtaining the reflected signal energy of the object and/or the reflected signal phase change; detecting whether the distance between the object and the radar device is greater than the distance threshold based on the reflected signal energy and/or the reflected signal phase change; if so, alternately transmitting the radar signal of the first waveform and the radar signal of the second waveform.
  • the present application provides an electronic device comprising: a processor; the processor is used to: obtain the position of a movable object in a target area; based on the position of the movable object and the position of the target object in the target area, when it is determined that the movable object is close to the target object, perform a target operation, and the target object does not have a proximity detection function.
  • the processor is further configured to obtain a position of the target object.
  • the electronic device further includes a transceiver; the transceiver is used to send a data frame to locate a UWB tag, and the UWB tag is placed on the target object or close to the target object.
  • the processor is used to obtain the position of the target object according to the result of locating the UWB tag.
  • the electronic device further includes a transceiver; the transceiver is configured to transmit a radar signal and receive a radar signal reflected by a user in the target area.
  • the processor is used to obtain the position of the user in the target area based on the radar signal reflected by the user, and based on the position of the user, if it is detected that the user is stationary for a period of time greater than or equal to a preset period of time, use the position of the user when it is stationary as the position of the target object.
  • the electronic device further includes a transceiver; the transceiver is used to receive the position of the target object from a radar device in the target area, and the radar device is used to obtain the position of the target object.
  • the electronic device also includes a transceiver; the transceiver is used to alternately transmit a radar signal of a first waveform and a radar signal of a second waveform to detect the movable object, the first waveform includes a peak, the second waveform includes a plurality of peaks, and when the distance between the movable object and the electronic device is less than or equal to a distance threshold, the radar signal of the first waveform is transmitted to obtain the position of the movable object, and when the distance between the movable object and the electronic device is greater than the distance threshold, the radar signal of the second waveform is transmitted to obtain the position of the movable object.
  • the transceiver is used to alternately transmit a radar signal of a first waveform and a radar signal of a second waveform to detect the movable object, the first waveform includes a peak, the second waveform includes a plurality of peaks, and when the distance between the movable object and the electronic device is less than or equal to a distance threshold, the radar signal
  • the transceiver transmits the radar signal of the first waveform to obtain the position of the movable object.
  • the processor is further used to obtain the reflected signal energy of the movable object; according to the reflected signal energy of the movable object, the transmission power of the electronic device is adjusted to make the receiver in the electronic device unsaturated or critically saturated.
  • the processor is further used to obtain the reflected signal energy of the movable object and/or the reflected signal phase change; detect whether the distance between the movable object and the electronic device is greater than the distance threshold based on the reflected signal energy of the movable object and/or the reflected signal phase change; the transceiver is further used to alternately transmit the radar signal of the first waveform and the radar signal of the second waveform when the distance between the movable object and the electronic device is greater than the distance threshold.
  • an embodiment of the present application provides an electronic device, which may include: a processor and a memory.
  • the memory is used to store computer executable program code, and the program code includes instructions; when the processor executes the instructions, the instructions cause the electronic device to execute the method in the first aspect and the second aspect.
  • an embodiment of the present application provides a computer program product comprising instructions, which, when executed on a computer, enables the computer to execute the methods in the first and second aspects above.
  • an embodiment of the present application provides a computer-readable storage medium, wherein instructions are stored in the computer-readable storage medium, and when the computer-readable storage medium is run on a computer, the computer executes the methods in the first and second aspects above.
  • FIG1A is a schematic diagram of a system architecture applicable to a communication method provided in an embodiment of the present application.
  • FIG1B is another schematic diagram of a system architecture applicable to the communication method provided in an embodiment of the present application.
  • FIG2 is a flow chart of an embodiment of a communication method provided in an embodiment of the present application.
  • FIG3A is a schematic diagram of a scenario provided in an embodiment of the present application.
  • FIG3B is a schematic diagram of another scenario provided in an embodiment of the present application.
  • FIG4 is a schematic diagram of another scenario provided in an embodiment of the present application.
  • FIG5 is a schematic diagram of another scenario provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of an existing detection object
  • FIG7 is a flow chart of another embodiment of a communication method provided in an embodiment of the present application.
  • FIG8 is a schematic diagram of a waveform without a tail and a waveform with a tail provided in an embodiment of the present application;
  • FIG9 is a flow chart of another embodiment of a communication method provided in an embodiment of the present application.
  • FIG. 10 is a schematic diagram of the structure of an electronic device provided in an embodiment of the present application.
  • Approach detection Senses approaching objects.
  • Objects may include but are not limited to: humans, animals, and objects.
  • Proximity detection technology is widely used in scenarios such as smart homes and smart factories.
  • a smart home scenario if the object is a user, and the speaker has a proximity detection function, when the user approaches the speaker, the speaker can detect that the user is approaching the speaker and can perform operations such as playing audio.
  • the object is an animal, and the animal's feeding device has a proximity detection function, when the animal approaches the feeding device, the feeding device can detect that the animal is approaching the feeding device and then perform operations such as dropping food.
  • the electronic device when different users approach the electronic device, the electronic device may also perform different operations. For example, when the desk lamp detects that user A is approaching the desk lamp, the desk lamp may turn on warm light, and when the desk lamp detects that user B is approaching the desk lamp, the desk lamp may turn on cold light.
  • the embodiments of the present application do not limit the form of the electronic device, and the operations performed by the electronic device when an object is detected approaching the electronic device.
  • the object being close to the electronic device can be understood as: the distance between the object and the electronic device is less than or equal to a preset distance.
  • the electronic device can emit radar pulses, and sense the environment around the first device through the radar pulses reflected by the object.
  • the vehicle can emit radar pulses to sense objects around the vehicle to ensure safe driving.
  • the radar pulse can be referred to as a radar pulse signal or a radar signal.
  • an electronic device locates another electronic device. It can also be understood as an electronic device obtaining the distance between the electronic device and another electronic device.
  • an electronic device may send a data frame for positioning to locate another electronic device.
  • the electronic device is an ultra wide band (UWB) radar device
  • the UWB radar device may send a data frame to another UWB radar device, and the other UWB radar device may respond to the data frame and feed back a response data frame.
  • the UWB device may obtain the distance and angle of the other UWB radar device from the UWB radar device based on the response data frame.
  • UWB ultra wide band
  • the electronic devices in the embodiments of the present application may include, but are not limited to: mobile phones, tablet computers (portable android devices, PADs), personal digital assistants (personal digital assistants, PDAs), handheld devices with wireless communication functions, computing devices, vehicle-mounted devices or wearable devices, virtual reality (virtual reality, VR) terminal devices, augmented reality (augmented reality, AR) terminal devices, wireless terminals in industrial control (industrial control), terminals in smart homes, etc.
  • the forms of the electronic devices are not specifically limited in the embodiments of the present application.
  • the reason why electronic devices have the proximity detection function is that: a sensor is provided in the electronic device, and the sensor can be used for the electronic device to perform proximity detection.
  • the sensor can be: an infrared sensor, an ultrasonic radar, a millimeter wave radar, or a laser radar, etc.
  • the electronic device can perform proximity detection based on the data collected by the sensor.
  • proximity detection For objects without sensors, there is no proximity detection function and proximity detection cannot be performed. For example, if a table is not equipped with a sensor, the table cannot detect whether the user is close to the table. If a bed is not equipped with a sensor, the bed cannot detect whether the user is close to the table. This limits the application scope of proximity detection technology. For example, the table cannot perform the operation of heating the table surface when the user approaches, and the bed cannot perform the operation of adjusting the hardness of the mattress when the user approaches.
  • the embodiment of the present application provides a communication method, which can pre-calibrate the position of an object without a sensor, and then detect the position of a movable object, and perform a corresponding operation when the movable object is detected to be close to the object without a sensor.
  • the embodiment of the present application does not need to add additional sensors to the object without a sensor, which can reduce costs. On the other hand, it can also increase the application scope of proximity detection technology and improve user experience.
  • Fig. 1A is a schematic diagram of a system architecture applicable to the communication method provided in an embodiment of the present application.
  • the system architecture includes a control device 11 and a positioning system 12.
  • the object is a user as an example.
  • the positioning system 12 may include: N single-transmitting single-receiving (1T1R) radar devices, where N is an integer greater than or equal to 3, and FIG1A takes N as 3 as an example.
  • the 1T1R radar device includes a transmitting antenna and a receiving antenna, where T represents the transmitting antenna and R represents the receiving antenna.
  • Radar devices may include, but are not limited to: UWB radar devices, laser radar devices, millimeter wave radar devices, and ultrasonic radar devices.
  • the radar device may be integrated with the electronic devices in the scene.
  • the radar device may be a camera, a lamp, a television, etc.
  • the radar device in the positioning system 12 may also be deployed separately, which is not limited in the present application embodiment.
  • N 1T1R radar devices can be networked to jointly obtain the position of an object.
  • Each 1T1R radar device can obtain the direction of the object separately, and the N 1T1R radar devices can then achieve triangulation positioning through time of arrival (TOA) or time difference of arrival (TDOA), or differential positioning through channel impulse response (CIR) information to obtain the position of the object.
  • TOA time of arrival
  • TDOA time difference of arrival
  • CIR channel impulse response
  • the direction of the object can be understood as: the direction and position relative to the 1T1R radar device.
  • the control device 11 is used to provide an interface for interacting with the user to achieve interaction with the user.
  • the embodiment of the present application does not limit the way in which the user interacts with the control device 11.
  • the user can also interact with the control device 11 by voice or gesture.
  • the control device 11 can be a central control screen, a mobile phone, etc.
  • the control device 11 is taken as a central control screen.
  • control device 11 may be connected to each 1T1R radar device in the positioning system 12. In this example, after the N 1T1R radar devices in the positioning system 12 obtain the position of the object, any radar device may send the position of the object to the control device 11.
  • the N 1T1R radar devices include a master device, which is connected to the control device 11.
  • the master device can be selected by a user from the N 1T1R radar devices, or can be selected by the N 1T1R radar devices, and this embodiment of the present application does not limit this.
  • the master device can send the position of the object to the control device 11.
  • control device 11 may display the position of the object on an interface of the control device 11 .
  • FIG1B is another schematic diagram of a system architecture applicable to the communication method provided in an embodiment of the present application.
  • the system architecture includes a control device 11 and a positioning system 12.
  • the positioning system 12 in FIG1B may include: a multi-transmitting and multi-receiving radar device.
  • the antenna in the multi-transmitting and multi-receiving radar device is a (multi input multi output, MIMO) antenna.
  • the multi-transmit multi-receive radar device includes multiple transmitting antennas and multiple receiving antennas.
  • the multi-transmit multi-receive radar device can transmit radar signals to sense objects to obtain the location of the objects.
  • the multi-transmitting and multi-receiving radar device after the multi-transmitting and multi-receiving radar device obtains the position of the object, it can send the position of the object to the control device 11. Correspondingly, after obtaining the position of the object, the control device 11 can display the position of the object on the interface of the control device 11.
  • the system architecture to which the communication method provided in the embodiment of the present application is applicable may include: a positioning system 12.
  • the positioning system 12 may refer to the description in FIG. 1A and FIG. 1B.
  • any 1T1R radar device in the positioning system 12 can provide an interface for interacting with the user to achieve interaction with the user.
  • the radar device in the positioning system 12 is a multi-transmitting multi-receiving radar device that can provide an interface for interacting with the user to achieve interaction with the user.
  • any 1T1R radar device can display the position of the object.
  • the position of the object can be displayed.
  • FIG2 is a flow chart of an embodiment of the communication method provided in the embodiment of the present application.
  • the execution subject of the communication method may be the control device 11 or the radar device in the positioning system 12.
  • the radar device in the positioning system 12 is: N 1T1R radar devices or multi-transmitting multi-receiving radar devices.
  • the "radar device in the positioning system 12" is referred to as "radar device”.
  • the communication method provided in the embodiment of the present application may include:
  • the target area may include but is not limited to: home, factory, and classroom.
  • the target object is an object in the target area for which no sensor is set, that is, the target object does not have a proximity detection function, and the target object can also be understood as an object to be calibrated.
  • tables and beds can be used as target objects.
  • desks and projectors can be used as target objects.
  • the target object cannot actively implement proximity detection based on the sensor.
  • the position of the target object in the target area can be obtained in advance, that is, the position of the target object can be pre-calibrated, so that when performing proximity detection, it can be determined whether there is an object approaching the target object according to the position of the target object in the target area.
  • the radar device when the execution subject of the communication method is a radar device, the radar device can autonomously obtain the position of the target object. In one example, when the execution subject of the communication method is the control device 11, after obtaining the position of the target object, the radar device can send the position of the target object to the control device 11, so that the control device 11 can obtain the position of the target object.
  • the execution subject of the communication method is a radar device.
  • the UWB radar device can obtain the position of the target object by sending a data frame for positioning.
  • the user can place a UWB tag on the target object, or place the UWB tag close to the target object.
  • the UWB radar device can locate the UWB tag and obtain the position of the UWB tag, which is the position of the target object.
  • the UWB tag can also be set in an electronic device, such as a watch, a bracelet, a mobile phone, etc.
  • the user may place a UWB tag on each target object, or place a UWB tag close to each target object, and the UWB radar device may locate each UWB tag to obtain the position of each target object.
  • the user can first place a UWB tag on the first target object, or place a UWB tag close to the first target object, and the UWB radar device can locate the UWB tag to obtain the position of the first target object.
  • the UWB radar device can output a prompt message to prompt the user that the positioning has been completed.
  • the user can place a UWB tag on the second target object, or place a UWB tag close to the second target object, so that the UWB radar device can continue to locate the UWB tag and obtain the position of the second target object. In this way, the UWB radar device iterates. The device can obtain the location of each target object.
  • the UWB radar device can obtain the location of the target object by tracking the location of the user.
  • the user can move to the location of the target object, and the UWB radar device can determine the location of the target object by obtaining the user's location.
  • the UWB radar device detects that the user is stationary at a location for a period greater than or equal to a first preset time
  • the user's location can be used as the location of the target object.
  • the first preset time can be referred to as a preset time.
  • a user may carry an electronic device including a UWB tag, and a UWB radar device may locate the UWB tag and obtain the user's location to obtain the location of a target object.
  • a UWB radar device may transmit a radar signal for sensing a user and acquiring the user's location in real time to obtain the location of a target object.
  • the user when there are multiple target objects, the user can move to the position of each target object in turn, and the static time length is greater than or equal to the first preset time length, so that the UWB radar device can obtain the position of each target object.
  • the radar device when the radar device is a non-UWB radar device, the radar device can also obtain the location of the target object by tracking the user's location, and refer to the relevant description in "Second".
  • the non-UWB radar device can be: ultrasonic radar device, laser radar device, millimeter wave radar device and other radar devices.
  • the user may also input the location of the target object to the radar device.
  • the radar device can display a spatial layout diagram of the target area
  • the user may select the location of the target object on the spatial layout diagram of the target area, and the radar device may also obtain the location of the target object.
  • the execution subject of the communication method is a radar device as an example.
  • the radar device After the radar device obtains the position of the target object, it can output the position of the target object.
  • the radar device can output the position of the target object in the following manner: the radar device can display the position of the target object on the interface, or the radar device can broadcast the position of the target object in the form of voice.
  • the embodiment of the present application does not limit this.
  • the following embodiment takes the radar device displaying the position of the target object on the interface as an example for explanation.
  • the radar device is a UWB radar device, and the UWB radar device obtains the position of the target object by locating the UWB tag.
  • FIG3A is a schematic diagram of a scenario provided by an embodiment of the present application.
  • the UWB radar device is taken as a smart screen as an example.
  • the main page of the UWB radar device may include: a calibration control 31.
  • the user can operate the calibration control 31 to trigger the UWB radar device to locate the UWB tag to obtain the position of the target object.
  • the user can first operate the calibration control 31 to trigger the UWB radar device to locate the UWB tag, and the UWB radar device can obtain the position of the UWB tag in real time.
  • the user can also obtain the position of the target object after the UWB tag is placed.
  • the UWB radar device can display the position A of the target object on the interface of the UWB radar device.
  • FIG3A and FIG3B illustrate the target object as a desk lamp as an example, and the dotted box represents the user's operation of the control on the smart screen.
  • the interface shown in FIG3A and FIG3B can be an interface applied in a smart screen.
  • the user can also trigger the radar device to start locating the UWB tag on the control device 11 to obtain the location of the target object.
  • the main page of the control device 11 may include: a calibration control 31, and the user operates the calibration control 31 to trigger the UWB radar device to locate the UWB tag to obtain the location of the target object.
  • the user can pre-edit the spatial layout diagram of the target area on the interface of the UWB radar device, or the user can pre-import the spatial layout diagram of the target area into the UWB radar device.
  • the spatial layout diagram of the home can be understood as a floor plan.
  • the UWB radar device can store the spatial layout diagram of the target area. After obtaining the position A of the target object, the UWB radar device can display the position A of the target object in the spatial layout diagram, so that the user can see the position of the target object more intuitively.
  • the radar device is a UWB radar device, and the UWB radar device obtains the location of the target object by tracking the location of the user.
  • the main page of the UWB radar device may include: a calibration control 31.
  • the UWB radar device may be triggered to locate the user's position.
  • the user may move to the position of the target object and remain stationary at the position for a period greater than or equal to a first preset period.
  • the UWB radar device detects that the user remains stationary at the position for a period greater than or equal to the first preset period, and may use the user's position as the position of the target object.
  • the UWB radar device may output the position of the target object, as shown in b in FIG. 3B .
  • Figure 3B is the same as the interface of a in Figure 3A.
  • Figures 3A and 3B are described by taking the smart screen as a multi-transmitting and multi-receiving radar device as an example.
  • the radar device is a non-UWB radar device, and the non-UWB radar device obtains the position of the target object by tracking the position of the user.
  • the non-UWB radar device can output the position of the target object, and the relevant description of the UWB radar device outputting the position of the target object can be referred to.
  • S202 is an optional step, that is, after obtaining the position of the target object, the radar device may not output the position of the target object, and may also execute S203.
  • S203 Receive the identifier of the target object input by the user.
  • the user can input the identifier of the target object to the radar device so that the radar device can correspond to the position of the target object and the identifier of the target object, that is, the radar device can bind the position of the target object and the identifier of the target object.
  • the identifier of the target object is used to distinguish different target objects.
  • the identifier of the target object can be the name, picture, QR code, number, etc. of the target object.
  • the user can enter the identifier of the target object on the interface of the radar device, or the user can also use voice to enter the name of the target object, or the user can also use shooting the target object, scanning the target object, etc. to enter the identifier of the target object, which will not be described in detail in the embodiments of the present application.
  • the user can select the position A, triggering the radar device to display the identification input box 32, and the user can enter the identification of the target object in the identification output box 32.
  • the user can enter the name of the target object "desk lamp" in the identification output box 32.
  • the interface for the radar device to output the position A of the target object may also include: an identification input control 33.
  • the radar device When a user operates the identification input control 33, the radar device may be triggered to display an identification input box 32 at position A.
  • the user may enter the name of the target object "desk lamp" in the identification output box 32.
  • the embodiment of the present application does not limit the interface for the radar device to output the position of the target object, and the way in which the user inputs the identification of the target object.
  • the radar device when there are multiple target objects, can output the position of one target object, and the user can input the identification of the target object. In one example, after obtaining the positions of multiple target objects, the radar device can output the positions of multiple target objects, and the user can input the identification of each target object in the manner shown in Figures 3A and 3B.
  • S204 Store the position of the target object and the identifier of the target object in correspondence with each other.
  • the radar device can store the position of the target object and the identifier of the target object in correspondence. For example, the radar device can store the position of the target object "position A" and the name of the target object "desk lamp” in correspondence, indicating that the desk lamp is at position A.
  • the radar device stores the position of the target object and the identifier of the target object in correspondence with each other, which can be understood as: the radar device binds the target object and the position of the target object.
  • S204 is an optional step, and after completing step 203, the radar device may execute S205-S206.
  • S201-S204 is the process of the radar device calibrating the position of the target object.
  • the user can trigger the radar device to re-acquire the position of the target object to store the target object identifier and the new position of the target object in correspondence.
  • the radar device may perform proximity detection on an object close to the target object according to the position of the target object.
  • the proximity detection process includes S205-S206:
  • the radar device can detect whether an object in the target area moves. If the radar device detects that the position of the object changes within a preset time period, it determines that the object moves and treats the object as a movable object. If the radar device detects that the position of the object does not change within the preset time period, it determines that the object does not move and treats the object as an immovable object.
  • the radar device when the execution subject of the communication method is a radar device, the radar device can obtain the position of the movable object in the target area. In other words, the radar device can track the position of the movable object in the target area in real time. In one example, when the execution subject of the communication method is the control device 11, the radar device tracks the position of the movable object in the target area in real time and can send the position of the movable object to the control device 11.
  • movable objects in the target area may include, but are not limited to, users, animals, and robots.
  • Robots may include, but are not limited to, cleaning robots and delivery robots.
  • the movable object (such as a user) may also wear an electronic device such as a bracelet or a watch containing a UWB tag.
  • the UWB radar device may track the position of the movable object by locating the UWB tag.
  • the UWB radar device may track the second position of the movable object by transmitting a radar signal.
  • the UWB radar device can locate the UWB tag and obtain the first position of the movable object on the one hand, and can transmit a radar signal to sense the second position of the movable object on the other hand.
  • the UWB radar device can fuse the first position and the second position to obtain a more accurate position of the movable object.
  • the UWB radar device can use the midpoint of the first position and the second position as the position of the movable object.
  • the UWB radar device can use the most accurate position of the first position and the second position as the position of the movable object.
  • the radar device when the execution subject of the communication method is a radar device, the radar device can detect whether the movable object is close to the target object based on the position of the movable object and the position of the target object. In one example, when the execution subject of the communication method is the control device 11, the radar device can synchronize the position of the target object and the position of the movable object to the control device 11, so the control device 11 can detect whether the movable object is close to the target object based on the position of the movable object of the radar device and the position of the target object.
  • the radar device determines that the movable object is close to the target object if the distance between the movable object and the target object is less than or equal to the first preset distance based on the position of the movable object and the position of the target object.
  • the first preset distance is such as 30cm.
  • the radar device can obtain the position of the movable object in real time, the radar device can perform the target operation when the distance between the movable object and the target object is equal to the first preset distance.
  • the first preset distance can be referred to as a preset distance.
  • the radar device performing the target operation may include: the radar device sends a start instruction to the target device in the target area, and the start instruction is used to instruct the target device to perform the corresponding operation.
  • the target device can be regarded as a target electronic device in the target area.
  • the target device can be a target object.
  • the radar device can send a start instruction to the desk lamp in response to the user approaching the desk lamp, and the start instruction is used to instruct the desk lamp to turn on.
  • the target device may not be a target object.
  • the radar device can send a start instruction to the desk lamp placed on the table in response to the user approaching the table, and the start instruction is used to instruct the desk lamp to turn on.
  • the radar device and the target device can both access the same network, such as the radar device and the target object can both access the same access point (AP).
  • the radar device can send a start indication to the AP, and in this example, the start indication includes an identifier of the target object.
  • the AP can send a start indication to the target device.
  • the target operation performed by the radar device is related to "the movable device approaching the target object", that is, the movable device approaching the target object can be used as a trigger condition to trigger the radar device to perform the target operation.
  • the radar device when the radar device is not connected to the electronic device in the target area, but the control device (such as the central control screen) can control the electronic device in the target area, the radar device can control the target device in the target area to perform a corresponding operation through the control device in response to detecting that the movable device is close to the target object.
  • the radar device performing the target operation may include: the radar device sends a trigger event to the control device, the trigger event is used to characterize that the movable object is close to the target object, and the trigger event is used to instruct the control device to send a start instruction to the target device.
  • the radar device can access the same network as the control device, or the radar device can be connected to the control device via power line communication (PLC).
  • PLC power line communication
  • the radar device can control the device to send a trigger event, and the control device can send a start instruction to the target device in response to the trigger event.
  • the target object is a table that does not have an approach detection function
  • the movable object is a user.
  • the radar device can send a trigger event to the central control screen.
  • the central control screen can send a start indication to the desk lamp placed on the table, and the start indication is used to instruct the desk lamp to turn on.
  • scene modes can be stored in the control device, and the target devices in different scene modes can be different.
  • scene modes may include, but are not limited to: entering the living room mode, leaving the living room mode, going home mode, watching a movie mode, etc.
  • entering the living room mode as an example, the user enters the living room, the lights in the home are turned on, the TV is turned on, and the lights and TV can be regarded as target devices.
  • the target object can be a sofa in the living room, or a wall in the living room, etc.
  • the radar device can detect that the user (movable object) is close to the sofa (target object), and the radar device can send a trigger event to the control device (such as the central control screen), which is used to characterize the user's approach to the sofa.
  • the control device can determine to start entering the living room mode, and then send a start indication to the lights in the target area, and send a start indication to the TV.
  • the execution subject of the communication method is a control device
  • the control device responds to detecting that the movable device is close to the target object
  • a start instruction may be sent to the target device in the target area, and the start instruction may refer to the relevant description in “one”.
  • the radar device determines that the movable object is getting closer to the target object based on the position of the movable object and the position of the target object, and the distance between the movable object and the target object is less than or equal to the first preset distance, the radar device can determine that the movable object is close to the target object. In this example, when the movable object is getting closer to the target object and the distance between the movable object and the target object is equal to the first preset distance, the radar device can perform a target operation.
  • the radar device when the radar device senses the position of the movable object by transmitting a radar signal, the radar device can also sense the type of the movable object. Exemplarily, the radar device can determine whether the movable object is a user, an animal, or a robot based on the signal reflected by the movable object.
  • the radar device can determine whether to perform a target operation based on the type of the movable object.
  • the target operation performed by the radar device is related to the type of the movable object.
  • Different types of movable objects require different target operations performed by the radar device.
  • the radar device can perform a target operation, such as the radar device sending a start instruction to the desk lamp, and the desk lamp can perform a light-on operation in response to the start instruction. Referring to b in FIG.
  • the radar device may not perform a target operation, such as the radar device not sending a start instruction to the desk lamp.
  • FIG. 4 uses the radar device as a smart screen as an example for illustration, and the embodiments of the present application do not limit the form of the radar device.
  • the radar device can perform a target operation, such as the radar device sending a start instruction to the feeding device, the start instruction is used to instruct the feeding device to put food.
  • a target operation such as the radar device not sending a start instruction to the feeding device.
  • the radar device can also synchronize the type of the movable object to the control device, and the control device can also determine whether to send a start instruction to the target device based on the type of the movable object. Please refer to the relevant description of the radar device.
  • the target area may also include a face recognition device, such as a separately set camera, or the face recognition device may be integrated into the radar device.
  • the face recognition device may identify a user close to the target object and send the user's identifier to the radar device.
  • the user's identifier is used to distinguish different users.
  • the user's identifier may be the user's number, name, picture, etc.
  • the radar device sends a start instruction to the target device
  • the user's identifier may be carried in the start instruction.
  • the target device receives the start instruction, it may perform operations related to the user according to the user's identifier.
  • the desk lamp can receive a start instruction from the radar device, the start instruction includes the identification of user A, and the desk lamp can turn on the warm light in response to the start instruction.
  • the desk lamp can receive a start instruction from the radar device, the start instruction includes the identification of user B, and the desk lamp can turn on the cold light in response to the start instruction.
  • the target operation performed by the radar device is related to the movable object, and the target operation performed by the radar device may be different for different movable objects.
  • the radar device may also synchronize the user's identifier to the control device, and the control device may also carry the user's identifier in the startup instruction.
  • the radar device may also detect whether the movable object is far away from the target object based on the position of the target object and the position of the movable object.
  • the radar device may send a shutdown instruction to the target device.
  • the shutdown instruction is used to instruct the target device to stop performing the corresponding operation.
  • the radar device determines that the movable object is moving away from the target object based on the position of the movable object and the position of the target object, and the distance between the movable object and the target object is greater than or equal to the second preset distance, the radar device can determine that the movable object is moving away from the target object.
  • the second preset distance can be equal to the first preset distance.
  • the second preset distance can be different from the first preset distance, such as the second preset distance is greater than the first preset distance, and the second preset distance can be 50 cm.
  • the position of the target object without a sensor can be obtained in advance, and the position of the target object and the identification of the target object are stored correspondingly.
  • the target operation can be performed.
  • the position of the target object is pre-calibrated with the help of a radar device in the target area, and the radar device detects whether the movable object is close to the target object, so that the approach detection function of the target object without a sensor can be realized.
  • the above embodiment describes a method for detecting a target object approaching a target object without a sensor.
  • the method requires a radar device to transmit a radar signal to sense and obtain the position of the target object and the position of the movable object.
  • the accuracy of the position of the object is crucial to the accuracy of the approach detection.
  • the radar device has a close-range blind spot, that is, the radar device cannot detect objects within a preset range from the radar device.
  • the close-range blind spot of a millimeter-wave radar is 1m, that is, the millimeter-wave radar cannot detect objects within 1m of the millimeter-wave radar.
  • the radar device In the case of a close-range blind spot in a radar device, when an object is in the blind spot of the radar device, the radar device cannot detect the object, and therefore cannot obtain the position of the object.
  • the accuracy of proximity detection is required to be 20-30cm, the radar device is required to detect objects 20cm away from the radar device. Therefore, there is an urgent need for a method to reduce the close-range blind spot of the radar device.
  • the isolation between the transmitter and the receiver in the radar device can be increased, or the isolation between the transmitting antenna and the receiving antenna in the radar device can be increased, so as to avoid the saturation of the receiver when the transmitter is working, thereby reducing the close-range blind spot of the radar device.
  • increasing the isolation between the transmitter and the receiver in the radar device, or increasing the isolation between the transmitting antenna and the receiving antenna in the radar device requires additional isolation components to be provided in the radar device, or increasing the distance between the transmitter and the receiver in the radar device. This method is not suitable for small-sized radar devices such as mobile phones, bracelets, and watches.
  • the radar device if the object is in the blind area of a pulse cycle of the radar device, the radar device will not be able to detect the object when transmitting the radar signal according to the pulse cycle.
  • the pulse cycle can be changed to avoid the object being in the blind area of the pulse cycle of the radar device, so that the radar device can detect the object.
  • the object can be prevented from being in the blind spot of the pulse period of the radar device by changing the pulse period, the close-range blind spot of the radar device cannot be reduced, that is, when the object is in the close-range blind spot of the radar device, the radar device still cannot detect the object.
  • An embodiment of the present application provides a communication method, in which the radar device can transmit radar signals of different waveforms according to the distance of the object from the radar device, thereby reducing the close-range blind spot of the radar device while ensuring that the radar device can detect the object.
  • FIG7 is a flow chart of another embodiment of the communication method provided in the embodiment of the present application.
  • the communication method provided in the embodiment of the present application may include:
  • a radar device alternately transmits a radar signal of a first waveform and a radar signal of a second waveform to detect an object.
  • the first waveform and the second waveform are different.
  • the close-range blind area of the radar device is small, such as 20 cm.
  • the close-range blind area of the radar device is large, such as 1 m.
  • the first waveform may be a waveform without a tail
  • the second waveform may be a waveform with a tail.
  • the first waveform may include, but is not limited to, a Gaussian waveform and a Lorentz waveform
  • the second waveform may be regarded as a waveform after the first waveform has been derived several times.
  • the first waveform includes a peak
  • the second waveform includes multiple peaks.
  • the radar device transmits a radar signal. If the waveform of the radar signal includes a peak, the radar signal can be called a radar signal of the first waveform, and if the waveform of the radar signal includes multiple peaks, the radar signal can be called a radar signal of the second waveform.
  • a waveform having one peak within the second preset time length may be referred to as a waveform without a tail, and a waveform having multiple peaks within the second preset time length may be referred to as a waveform with a tail.
  • the second preset time length may be understood as the duration between two pulse signals. For example, if there is a peak from the time when the radar device transmits the first radar signal to the time when the next radar signal is transmitted, the waveform of the first radar signal may be referred to as a first waveform. If there are multiple peaks from the time when the radar device transmits the first radar signal to the time when the next radar signal is transmitted, the waveform of the first radar signal may be referred to as a second waveform.
  • the second preset time length may also be understood as the pulse width of a radar signal.
  • the waveform a in FIG8 shows a waveform without a tail, and the waveform without a tail has a peak within the second preset time length T, such as peak 1A.
  • the waveform b in FIG8 shows a waveform with a tail, and the waveform with a tail has multiple peaks within the second preset time length T, namely peak 1, peak 2, peak 3 and peak 4.
  • the radar device transmits the radar signal of the waveform shown in b in FIG8, the interference of peaks 2, peak 3 and peak 4 will cause the receiver of the radar device to saturate, and the receiver is in a saturated state for a long time, thereby causing the radar device to have a large close-range blind spot.
  • the radar device transmits the radar signal of the waveform shown in a in FIG8, the waveform of the radar signal has only one peak 1A, and the receiver of the radar device is in a saturated state for a short time, thereby causing the radar device to have a small close-range blind spot.
  • the radar device when the radar device transmits a radar signal of a first waveform, the radar device can detect an object within a first distance range of the radar device.
  • the first distance range is A1-A2, and A1 is 20 cm.
  • the radar device when the radar device transmits a radar signal of a second waveform, the radar device can detect an object within a second distance range of the radar device.
  • the second distance range is The range is B1-B2, and B1 is 1m.
  • a distance threshold X may be pre-set, and the distance threshold X is used to distinguish the near end and the far end of the radar device.
  • the distance range of 0-X may be regarded as the near end of the radar device, and the distance range of X-L may be regarded as the far end of the radar device.
  • L is the farthest coverage distance of the radar signal emitted by the radar device, such as the maximum value of A2 and B2 may be equal to L, and 0-L may be regarded as the coverage range of the radar device.
  • X is greater than A1 and B1.
  • the object When the object is in the distance range of 0-X, that is, the distance between the object and the radar device is less than or equal to the distance threshold, the object is at the near end of the radar device, and when the object is in the distance range of X-L, that is, the distance between the object and the radar device is greater than the distance threshold, the object is at the far end of the radar device.
  • X is greater than B1
  • the object will not move into the short-range blind area of the radar device, and the radar signal with a trailing waveform has higher spectrum utilization and higher sensitivity in detecting objects, so the radar device can use the radar signal with a trailing waveform to detect objects at the far end.
  • the object When the object is at the near end of the radar device, the object will move into the short-range blind area of the radar device, because the short-range blind area of the radar signal without a trailing waveform is smaller than the short-range blind area of the radar signal with a trailing waveform, so in order to ensure that the radar device can detect objects in a larger range, the radar device can use the radar signal without a trailing waveform to detect objects at the near end.
  • the radar device alternately transmits a radar signal of a first waveform and a radar signal of a second waveform, the purpose of which is to determine whether the object is at the near end or the far end of the radar device, and then decide the waveform of the radar signal to reduce the close-range blind spot of the radar device.
  • the radar device alternately transmits a radar signal of a first waveform and a radar signal of a second waveform, which can be understood as: the radar device transmits a radar signal of a first waveform once, then transmits a radar signal of a second waveform once, then transmits a radar signal of a first waveform once, and then transmits a radar signal of a second waveform once, and so on iteratively.
  • the radar device When the object is near the radar device, the radar device transmits a radar signal of a first waveform to detect the object.
  • the close-range blind spot of the radar signal with the first waveform is smaller than the close-range blind spot of the radar signal with the second waveform. Therefore, when an object is at the near end of the radar device, the radar device transmits the radar signal with the first waveform to detect the object, which can increase the coverage range of the radar signal and reduce the close-range blind spot of the radar device, thereby ensuring that the object can be detected.
  • the radar device can also dynamically adjust the transmission power of the radar device's transmitter according to the reflected signal energy of the object, so as to avoid saturation of the radar device's receiver due to excessive reflected signal energy of the object when the object is close to the radar device.
  • the reflected signal energy of the object can be understood as: the energy of the signal after the radar signal of the first waveform is reflected by the object.
  • the radar device can dynamically adjust the transmit power of the radar device according to the reflected signal energy of the object so that the receiver of the radar device is not saturated or critically saturated.
  • the radar device can reduce the current transmit power by a preset power and detect whether the receiver of the radar device is saturated. If the receiver of the radar device is not saturated or critically saturated, the radar device no longer adjusts the transmit power. If the receiver of the radar device is saturated, the radar device can continue to reduce the transmit power by a preset power and detect whether the receiver of the radar device is saturated, and iterate in this way to dynamically adjust the transmit power of the radar device until the receiver of the radar device is not saturated or critically saturated.
  • the radar device may store a mapping relationship between the reflected signal energy of the object and the transmit power of the radar device. After acquiring the reflected signal energy of the object, the radar device may determine the transmit power corresponding to the reflected signal energy of the object according to the mapping relationship. The transmit power corresponding to the reflected signal energy of the object may be referred to as the target transmit power. After acquiring the target transmit power, the radar device may adjust the transmit power of the radar device to the target transmit power. When the radar device transmits a radar signal of a first waveform at the target transmit power, the receiver of the radar device is not saturated or critically saturated.
  • the radar device can detect whether the object has left the near end of the radar device based on the reflected signal energy of the object. If the radar device detects that the reflected signal energy of the object is less than the energy threshold, it indicates that the object has left the near end of the radar device. In this embodiment, the radar device can execute S703. Alternatively, the radar device can execute S701, and execute S703 when the radar device detects that the object is at the far end of the radar device.
  • the energy threshold can be regarded as: the reflected signal energy of the object when the distance between the object and the radar device is X.
  • the radar device can detect whether the object has left the near end of the radar device based on the phase change of the reflected signal of the object. If the radar device detects that the phase change of the reflected signal of the object is greater than a phase threshold, it indicates that the object has left the near end of the radar device.
  • the radar device can detect whether an object has left the near end of the radar device based on the reflected energy signal of the object and the phase change of the reflected signal.
  • the radar device detects that the reflected signal energy of the object is less than the energy threshold, and the phase change of the reflected signal is greater than the phase threshold, it indicates that the object has left the near end of the radar device.
  • the radar device can combine multiple parameters to detect the distance of the object from the radar device with high accuracy.
  • the radar device When the object is at the far end of the radar device, the radar device transmits a radar signal of a second waveform to detect the object, and the detection sensitivity is high.
  • the radar device may execute S701 to ensure that the object can be detected.
  • the bandwidth of the radar signal of the first waveform is equal to the bandwidth of the radar signal of the second waveform, so that no matter the object is near or far from the radar device, the radar device can simultaneously locate the object and perform radar perception on the object.
  • the communication method for reducing the close-range blind spot of a radar device may be shown in FIG9 .
  • the radar device may be configured with a radar signal of a first waveform to detect whether there is an object at the near end of the radar device, and may be configured with a radar signal of a second waveform to detect whether there is an object at the far end of the radar device.
  • configuring the radar signal of the first waveform may be understood as: the radar device transmits a radar signal of the first waveform
  • configuring the radar signal of the second waveform may be understood as: the radar device transmits a radar signal of the second waveform. It should be understood that after the radar device is powered on, it may alternately transmit a radar signal of the first waveform and a radar signal of the second waveform to detect whether the object is at the near end or far end of the radar device.
  • the radar device can continue to alternately transmit a radar signal of a first waveform and a radar signal of a second waveform to detect the object.
  • the radar device can transmit a radar signal of a first waveform to continue detecting the object.
  • the radar device in the process of the radar device transmitting the radar signal of the first waveform, the radar device can adaptively adjust the transmission power of the radar device according to the reflected signal energy of the object.
  • the radar device can also detect whether the object has left the near end of the radar device based on the reflected signal energy of the object and/or the change in the reflected signal phase.
  • the radar device may continue to transmit the radar signal of the first waveform and the radar signal of the second waveform alternately to detect whether the object is at the near end or the far end of the radar device.
  • the radar device when the radar device transmits a radar signal to sense the position of the target object and the position of the movable object, the radar device can use the method in FIG. 7 to reduce the close-range blind spot of the radar device to accurately obtain the position of the target object and the position of the movable object.
  • the radar device taking the radar device obtaining the position of the movable object as an example, the radar device can alternately transmit a radar signal of a first waveform and a radar signal of a second waveform to detect whether the movable object is at the near end or far end of the radar device.
  • the radar device can transmit a radar signal of a first waveform to continue to detect the movable object, and when the movable object is at the far end of the radar device, the radar device can transmit a radar signal of a second waveform to continue to detect the movable object.
  • the radar device when detecting an object, may alternately transmit a radar signal of a first waveform and a radar signal of a second waveform to determine whether the object is at the near end or far end of the radar device.
  • the radar device may transmit the radar signal of the first waveform to continue detecting the movable object to reduce the close-range blind spot of the radar device.
  • the radar device may transmit the radar signal of the second waveform to continue detecting the object.
  • the sensitivity of the radar signal of the second waveform is high, so the detection sensitivity of the radar device may be improved.
  • the embodiment of the present application further provides an electronic device, which may be the first device described in the above embodiment.
  • the electronic device may include: a processor 1001 (e.g., a CPU), and a memory 1002.
  • the memory 1002 may include a high-speed random access memory (RAM), and may also include a non-volatile memory (NVM), such as at least one disk memory.
  • Various instructions may be stored in the memory 1002 to complete various processing functions and implement the method steps of the present application.
  • the electronic device involved in the present application may further include: a power supply 1003, a communication bus 1004 and a communication port 1005.
  • the above-mentioned communication port 1005 is used to realize the connection and communication between the electronic device and other peripherals.
  • the memory 1002 is used to store computer executable program code, and the program code includes instructions; when the processor 1001 executes the instruction, the instruction causes the processor 1001 of the electronic device to perform the action in the above-mentioned method embodiment, and its implementation principle and technical effect are similar, which will not be repeated here.
  • the electronic device may further include: a display screen 1006, and the display screen 1006 is used to display an interface of the electronic device.
  • modules or components described in the above embodiments may be one or more integrated circuits configured to implement the above methods, such as one or more application specific integrated circuits (ASICs), or one or more microprocessors (digital signal processors, DSPs), or one or more field programmable gate arrays (FPGAs), etc.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the processing element may be a general-purpose processor, such as a central processing unit (CPU) or other processors that can call program codes, such as a controller.
  • these modules may be integrated together and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from one website, computer, server or data center to another website, computer, server or data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (e.g., infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by the computer or a data storage device such as a server or data center that includes one or more available media integrated.
  • the available medium can be a magnetic medium (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid-state drive Solid State Disk (SSD)), etc.
  • SSD Solid State Disk
  • plural in this article refers to two or more than two.
  • the term “and/or” in this article is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character "/" in this article generally indicates that the previous and next associated objects are in an "or” relationship; in the formula, the character "/" indicates that the previous and next associated objects are in a "division" relationship.
  • the size of the serial numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本申请实施例提供了一种通信方法、电子设备以及存储介质,获取目标区域中可移动对象的位置;根据所述可移动对象的位置,以及所述目标区域中目标对象的位置,在确定所述可移动对象靠近所述目标对象时,执行目标操作,所述目标对象不具备靠近检测功能。本申请中,可以根据可移动对象的位置与不具备靠近检测功能的目标对象的位置,检测可移动对象是否靠近目标对象,进而可以实现对未设置传感器的物体进行靠近检测。

Description

通信方法、电子设备以及存储介质
本申请要求于2022年09月29日提交中国专利局、申请号为202211212589.2、申请名称为“通信方法、电子设备以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信技术领域,尤其涉及一种通信方法、电子设备以及存储介质。
背景技术
在智慧家庭、智慧工厂等场景中,要求电子设备具备靠近检测能力。具备靠近检测能力的电子设备可以感知靠近电子设备的对象,进而在感知到存在对象靠近电子设备时,执行相应的操作。
目前可以在电子设备中设置有传感器,以用于进行靠近检测。但对于未设置传感器的物体,无法进行靠近检测。
发明内容
本申请实施例提供一种通信方法、电子设备以及存储介质,可以对未设置传感器的物体进行靠近检测。
第一方面,本申请提供一种通信方法,执行该通信方法的执行主体可以为雷达设备或控制设备,以雷达设备为例,雷达设备可以获取目标区域中可移动对象的位置,且根据所述可移动对象的位置,以及所述目标区域中目标对象的位置,在确定所述可移动对象靠近所述目标对象时,执行目标操作,所述目标对象不具备靠近检测功能。
其中,当执行该通信方法的执行主体为控制设备时,雷达设备在获取目标区域中可移动对象的位置后,可以向控制设备发送目标区域中可移动对象的位置,以便控制设备可以获取可移动对象的位置。进而,控制设备可以根据所述可移动对象的位置,以及所述目标区域中目标对象的位置,在确定所述可移动对象靠近所述目标对象时,执行目标操作。
本申请中根据可以获取目标区域中可移动对象的位置的设备,对是否存在可移动对象靠近目标对象进行检测,间接地赋予不具备靠近检测功能具有靠近检测功能,如此可以触发执行可移动对象靠近目标对象的相应的操作。
在一种示例中,目标对象的位置可以为用户预先标定的。或者,在一种示例中,以雷达设备为例,雷达设备可以在获取目标区域中可移动对象的位置之前,获取所述目标对象的位置。其中,当雷达设备获取目标对象的位置后,当执行该通信方法的执行主体为控制设备时,雷达设备可以向控制设备发送目标对象的位置,以便控制设备可以获取目标对象的位置。
下面对雷达设备获取所述目标对象的位置的方法进行说明:
其一,当所述雷达设备为超宽带UWB雷达设备时,用户可以预先将UWB标签放置在所述目标对象上,或靠近所述目标对象放置,雷达设备可以发送数据帧,定位UWB标签,以获取所述目标对象的位置。在该示例中,因为UWB标签放置在所述目标对象上,或靠近所述目标对象放置,UWB标签的位置可以看作目标对象的位置,因此雷达设备通过定位UWB标签,可以以获取所述目标对象的位置。
在该实现方式中,雷达设备可以预先标定目标对象,得到目标对象的位置。其中,可以依靠定位UWB标签,获取目标对象的位置,实施方式简单,易实现。
其二,所述雷达设备可以为超宽带UWB雷达设备获取非UWB雷达设备,非UWB雷达设备如可以为超声波雷达、毫米波雷达,本申请实施例对非UWB雷达设备的类型不做限制。在该示例中,用户可以静止在目标对象处达到预设时长,雷达设备通过感知用户的位置,获取目标对象的位置。其中,雷达设备可以发射雷达信号,获取所述目标区域中用户的位置,其中,雷达设备根据所述用户的位置,若检测到所述用户的静止时长大于或等于预设时长,则将所述用户静止时的位置,作为所述目标对象的位置。
在该实现方式中,无需使用UWB标签,雷达设备通过感知用户的位置,即可实现标定目标对象,得到目标对象的位置,实施方式简单,易实现,且无需借助额外的UWB标签。
下面对可移动对象靠近目标对象后,控制设备、雷达设备执行的目标操作进行说明:
其中,当所述通信方法应用于雷达设备时,雷达设备可以向所述目标区域中的目标设备发送启动指示,所述启动指示用于指示所述目标设备执行相应的操作。在一种示例中,目标设备可以为目标对象,或者目标设备不为目标对象,但无论目标设备是否为目标对象,雷达设备均可以执行目标操作。
在一种示例中,当所述通信方法应用于雷达设备时,雷达设备可以响应于可移动对象靠近目标对象,向所述目标区域中的控制设备发送触发事件,所述触发事件用于表征所述可移动对象靠近所述目标对象,所述触发事件用于指示所述控制设备向所述目标设备发送所述启动指示。在该种示例中,控制设备响应于触发事件,可以向目标设备发送所述启动指示,以指示目标设备执行相应的操作。
在一种示例中,当所述通信方法应用于控制设备时,控制设备响应于可移动对象靠近目标对象,可以向所述目标设备发送所述启动指示,所述启动指示用于指示所述目标设备执行相应的操作。
本申请实施例中,当可移动对象靠近目标对象时,控制设备或雷达设备可以执行目标操作,以触发目标设备执行相应的操作,以便目标设备可以准确、及时地响应。
在一种可能的实现方式中,以所述通信方法应用于控制设备为例,控制设备检测可移动对象靠近目标对象的方式为:控制设备根据所述可移动对象的位置,以及所述目标区域中目标对象的位置,若所述可移动对象与所述目标对象的距离减小,且小于或等于预设距离,则确定所述可移动对象靠近所述目标对象。
在该可能的实现方式中,在可移动对象逐渐靠近目标对象,且可移动对象与所述目标对象的距离小于或等于预设距离时,可以确定可移动对象靠近目标对象,这样可以避免可移动对象远离所述目标对象时,误触发控制设备或雷达设备执行目标操作的问题。
在一种可能的实现方式中,控制设备或雷达设备在获取所述目标对象的位置之后,还可以输出目标对象的位置,便于用户对目标对象进行标识,相应的,控制设备或雷达设备在接收用户输入的所述目标对象的标识后,可以对应存储所述目标对象的标识和所述目标对象的位置。其中,目标对象的标识可以包括但不限于目标对象的名称、编号或图片等。
在该可能的实现方式中,控制设备或雷达设备可以将目标对象的位置和目标对象的标识相对应,以便于在可移动对象靠近目标对象时,可以根据目标对象的标识,执行准确的目标操作。
本申请实施例中需要借助雷达设备发射雷达信号,感知获取目标对象的位置以及可移动对象的位置,因此对象的位置的准确性,对于靠近检测的准确性至关重要。而雷达设备存在近距离盲区,本申请实施例中为了减小雷达设备的近距离盲区,可以采用如下方式获取对象的位置。下面以雷达设备获取可移动对象的位置为例进行说明:
雷达设备可以交替发射第一波形的雷达信号和第二波形的雷达信号,检测所述可移动对象,所述第一波形包括一个波峰,所述第二波形包括多个波峰。雷达设备发射第一波形的雷达信号时,雷达设备的近距离盲区小,如为20cm。雷达设备发射第二波形的雷达信号时,雷达设备的近距离盲区大,如为1m。其中,雷达设备交替发射第一波形的雷达信号和第二波形的雷达信号的目的在于:尽可能检测到可移动对象,以避免检测不到可移动对象。
其中,当所述可移动对象与所述雷达设备的距离小于或等于距离阈值时,发射第一波形的雷达信号,获取所述可移动对象的位置。当所述可移动对象与所述雷达设备的距离大于距离阈值时,发射第二波形的雷达信号,获取所述可移动对象的位置。
本申请中,雷达设备在检测可移动对象时,可以交替发射第一波形的雷达信号和第二波形的雷达信号,以确定可移动对象处于雷达设备的近端或远端。其中,当可移动对象处于雷达设备的近端(即可移动对象与所述雷达设备的距离小于或等于距离阈值)时,因为第一波形的雷达信号的近距离盲区小于第二波形的雷达信号的近距离盲区,雷达设备可以发射第一波形的雷达信号继续检测可移动对象,以减小雷达设备的近距离盲区。当可移动对象处于雷达设备的远端(可移动对象与所述雷达设备的距离大于距离阈值)时,雷达设备可以发射第二波形的雷达信号继续检测对象,第二波形的雷达信号的灵敏度高,因此可以提高雷达设备的检测灵敏度。
在一种可能的实现方式中,在发射所述第一波形的雷达信号获取所述可移动对象的位置时,雷达设 备还获取所述可移动对象的反射信号能量,且根据所述可移动对象的反射信号能量,调整所述雷达设备的发射功率,以使所述雷达设备中的接收机不饱和或临界饱和。
对象距离雷达设备越近,对象的反射信号能量越高。在该可能的实现方式中,当可移动对象处于雷达设备的近端时,为了避免可移动对象距离雷达设备太近导致雷达设备的接收机饱和,可以适应性地调整雷达设备的发射功率,以使所述雷达设备中的接收机不饱和或临界饱和,这样可以保证雷达设备可以顺利感知可移动对象。
在一种可能的实现方式中,在雷达设备发射所述第一波形的雷达信号获取所述可移动对象的位置时,可以获取所述可移动对象的反射信号能量,和/或,反射信号相位变化量;且雷达设备可以根据所述可移动对象的反射信号能量,和/或,反射信号相位变化量,检测所述可移动对象与所述雷达设备的距离是否大于所述距离阈值。其中,当可移动对象与所述雷达设备的距离大于所述距离阈值时,雷达设备可以交替发射所述第一波形的雷达信号和所述第二波形的雷达信号。
在该可能的实现方式中,当可移动对象处于雷达设备的近端时,雷达设备可以根据所述可移动对象的反射信号能量,和/或,反射信号相位变化量,及时检测所述可移动对象与所述雷达设备的距离,在雷达设备的距离大于所述距离阈值时,即可移动对象处于雷达设备的远端时,雷达设备可以交替发射所述第一波形的雷达信号和所述第二波形的雷达信号,这样可以避免可移动对象在雷达设备的近端和远端反复,以便于雷达设备可以准确感知可移动对象。
第二方面,本申请提供一种通信方法,应用于雷达设备,在该方法中,雷达设备可以交替发射第一波形的雷达信号和第二波形的雷达信号,检测对象,所述第一波形包括一个波峰,所述第二波形包括多个波峰;当所述对象与所述雷达设备的距离小于或等于距离阈值时,发射第一波形的雷达信号,检测对象;当所述对象与所述雷达设备的距离大于距离阈值时,发射第二波形的雷达信号,检测对象。
在一种可能的实现方式中,所述方法还包括:在发射所述第一波形的雷达信号检测所述对象时,获取所述对象的反射信号能量;根据所述对象的反射信号能量,调整所述雷达设备的发射功率,以使所述雷达设备中的接收机不饱和或临界饱和。
在一种可能的实现方式中,所述方法还包括:在发射所述第一波形的雷达信号检测所述对象时,获取所述对象的反射信号能量,和/或,反射信号相位变化量;根据所述的反射信号能量,和/或,反射信号相位变化量,检测所述对象与所述雷达设备的距离是否大于所述距离阈值;若是,则交替发射所述第一波形的雷达信号和所述第二波形的雷达信号。
第三方面,本申请提供一种电子设备,包括:处理器;所述处理器,用于:获取目标区域中可移动对象的位置;根据所述可移动对象的位置,以及所述目标区域中目标对象的位置,在确定所述可移动对象靠近所述目标对象时,执行目标操作,所述目标对象不具备靠近检测功能。
在一种可能的实现方式中,所述处理器,还用于获取所述目标对象的位置。
在一种可能的实现方式中,所述电子设备还包括收发器;所述收发器,用于发送数据帧,定位UWB标签,所述UWB标签放置在所述目标对象上,或靠近所述目标对象放置。
所述处理器,用于根据定位所述UWB标签的结果,获取所述目标对象的位置。
在一种可能的实现方式中,所述电子设备还包括收发器;所述收发器,用于发射雷达信号,以及接收所述目标区域中用户反射的雷达信号。
所述处理器,用于根据所述用户反射的雷达信号,获取所述目标区域中用户的位置,以及根据所述用户的位置,若检测到所述用户的静止时长大于或等于预设时长,则将所述用户静止时的位置,作为所述目标对象的位置。
在一种可能的实现方式中,所述电子设备还包括收发器;所述收发器,用于接收来自所述目标区域中雷达设备的所述目标对象的位置,所述雷达设备用于获取所述目标对象的位置。
在一种可能的实现方式中,所述电子设备还包括收发器;所述收发器,用于交替发射第一波形的雷达信号和第二波形的雷达信号,检测所述可移动对象,所述第一波形包括一个波峰,所述第二波形包括多个波峰,且当所述可移动对象与所述电子设备的距离小于或等于距离阈值时,发射第一波形的雷达信号,获取所述可移动对象的位置,以及当所述可移动对象与所述电子设备的距离大于距离阈值时,发射第二波形的雷达信号,获取所述可移动对象的位置。
在一种可能的实现方式中,在所述收发器发射所述第一波形的雷达信号获取所述可移动对象的位置 时,所述处理器,还用于获取所述可移动对象的反射信号能量;根据所述可移动对象的反射信号能量,调整所述电子设备的发射功率,以使所述电子设备中的接收机不饱和或临界饱和。
在一种可能的实现方式中,所述处理器,还用于获取所述可移动对象的反射信号能量,和/或,反射信号相位变化量;根据所述可移动对象的反射信号能量,和/或,反射信号相位变化量,检测所述可移动对象与所述电子设备的距离是否大于所述距离阈值;所述收发器,还用于当所述可移动对象与所述电子设备的距离大于所述距离阈值时,交替发射所述第一波形的雷达信号和所述第二波形的雷达信号。
第四方面,本申请实施例提供一种电子设备,该电子设备可以包括:处理器、存储器。存储器用于存储计算机可执行程序代码,程序代码包括指令;当处理器执行指令时,指令使所述电子设备执行如第一方面、第二方面中的方法。
第五方面,本申请实施例提供一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面中的方法。
第六方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面、第二方面中的方法。
上述第二方面至第六方面的各可能的实现方式,其有益效果可以参见上述第一方面所带来的有益效果,在此不加赘述。
附图说明
图1A为本申请实施例提供的通信方法适用的系统架构的一种示意图;
图1B为本申请实施例提供的通信方法适用的系统架构的另一种示意图;
图2为本申请实施例提供的通信方法的一种实施例的流程示意图;
图3A为本申请实施例提供的一种场景示意图;
图3B为本申请实施例提供的另一种场景示意图;
图4为本申请实施例提供的另一种场景示意图;
图5为本申请实施例提供的另一种场景示意图;
图6为已有的一种检测对象的示意图;
图7为本申请实施例提供的通信方法的另一实施例的流程示意图;
图8为本申请实施例提供的无拖尾波形和有拖尾波形的示意图;
图9为本申请实施例提供的通信方法的另一实施例的流程示意图;
图10为本申请实施例提供的电子设备的一种结构示意图。
具体实施方式
本申请实施例涉及到的术语释义:
靠近检测:感知靠近的对象。对象可以包括但不限于:人体、动物,以及物体。
靠近检测技术广泛应用于智慧家庭、智慧工厂等场景中。示例性的,如在智慧家庭场景中,以对象为用户为例,如音箱具备靠近检测功能,当用户靠近音箱时,音箱可以检测到用户靠近音箱,可以执行播放音频的操作。示例性的,以对象为动物为例,若动物的喂食设备具备靠近检测功能,当动物靠近喂食设备时,喂食设备可以检测到动物靠近喂食设备,进而执行投放食物等操作。
应理解,不同类型的电子设备在检测到对象靠近时,可以执行不同的操作。
在一种示例中,在不同的用户靠近电子设备时,电子设备也可以执行不同的操作。示例性的,台灯检测到用户A靠近台灯时,台灯可以打开暖光,台灯检测到用户B靠近台灯时,台灯可以打开冷光。本申请实施例中对电子设备的形态,以及电子设备在检测到对象靠近电子设备时执行的操作不做限制。
在一种示例中,对象靠近电子设备可以理解为:对象距离电子设备的距离小于或等于预设距离。
雷达感知:电子设备可以发射雷达脉冲,且通过对象反射的雷达脉冲,感知第一设备周围的环境。示例性的,无人驾驶场景中,车辆可以发射雷达脉冲,以感知车辆周围的对象,以保证安全驾驶。在一种示例中,雷达脉冲可以称为雷达脉冲信号、雷达信号。
定位:如电子设备定位另一电子设备,也可以理解为电子设备获取电子设备与另一电子设备的距离 和角度。示例性的,电子设备可以发送用于定位的数据帧,以定位另一电子设备。如电子设备为超宽带(ultra wide band,UWB)雷达设备时,UWB雷达设备可以向另一UWB雷达设备发送数据帧,另一UWB雷达设备响应于该数据帧,可以反馈响应数据帧。UWB设备可以根据该响应数据帧,获取该另一UWB雷达设备距离UWB雷达设备的距离和角度。
本申请实施例中的电子设备可以包括但不限于:手机、平板电脑(portable android device,PAD)、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备、车载设备或可穿戴设备,虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、智慧家庭(smart home)中的终端等,本申请实施例中对电子设备的形态不做具体限定。
目前,电子设备之所以具备靠近检测功能,是因为:电子设备中设置有传感器,该传感器可以用于电子设备进行靠近检测。示例性的,如传感器可以为:红外传感器、超声波雷达、毫米波雷达,或激光雷达等。电子设备可以基于传感器采集的数据,进行靠近检测。
对于未设置传感器的物体,不具备靠近检测功能,无法进行靠近检测。示例性的,如桌子未设置传感器,桌子无法检测用户是否靠近桌子,如床未设置传感器,床也无法检测用户是否靠近桌子。这就限制了靠近检测技术的应用范围,示例性的,如桌子无法在用户靠近时,执行加热桌子表面的操作,床也无法在用户靠近时,执行调整床垫的硬度的操作。
本申请实施例提供一种通信方法,可以预先标定未设置传感器的物体的位置,进而检测可移动对象的位置,在检测到可移动对象靠近未设置传感器的物体时,执行相应的操作。本申请实施例一方面无需在未设置传感器的物体中额外增加设置传感器,可以降低成本,另一方面也可以提高靠近检测技术的应用范围,提高用户体验。
在介绍本申请实施例提供的通信方法之前,首先对本申请实施例提供的通信方法适用的系统架构进行说明:
图1A为本申请实施例提供的通信方法适用的系统架构的一种示意图。参照图1A,该系统架构中包括控制设备11和定位系统12。图1A和图1B中以对象为用户为例。
在一种示例中,定位系统12可以包括:N个单发射单接收(1T1R)的雷达设备,N为大于或等于3的整数,图1A中以N为3为例。其中,1T1R的雷达设备中包括一个发射天线和一个接收天线,T表征发射(transmit)天线,R表征接收(receive)天线。
雷达设备可以包括但不限于:UWB雷达设备、激光雷达设备、毫米波雷达设备、超声雷达设备。在一种示例中,雷达设备可以与场景中的电子设备集成部署,如在家庭场景中,雷达设备可以为摄像头、灯、电视等。在一种示例中,定位系统12中的雷达设备也可以单独部署,本申请实施例对此不作限制。
在该示例中,N个1T1R的雷达设备可以组网,以共同获取对象的位置。其中,每个1T1R的雷达设备可以分别获取对象的方位,N个1T1R的雷达设备再通过到达时间(time of arrival,TOA)或到达时间差(time difference of arrival,TDOA)实现三角定位,或者通过信道冲击响应(chancel impulse response,CIR)信息的差分定位,获取对象的位置。其中,对象的方位可以理解为:相对于1T1R的雷达设备的方向和位置。
控制设备11,用于提供与用户交互的界面,以实现与用户的交互。本申请实施例并不限制用户与控制设备11交互的方式,如用户还可以采用语音方式、或手势等与控制设备11交互。在一种示例中,控制设备11可以如中控屏、手机等。图1A和图1B中以控制设备11为中控屏为例。
在一种示例中,控制设备11可以与定位系统12中的每个1T1R的雷达设备连接。在该示例中,定位系统12中的N个1T1R的雷达设备在获取对象的位置后,可以由任一雷达设备向控制设备11发送对象的位置。
在一种示例中,N个1T1R的雷达设备中包括主设备,该主设备与控制设备11连接。示例性的,主设备可以为用户在N个1T1R的雷达设备中选择的,或者是由N个1T1R的雷达设备选举得到的,本申请实施例对此不作限制。在该示例中,定位系统12中的N个1T1R的雷达设备在获取对象的位置后,主设备可以向控制设备11发送对象的位置。
在一种示例中,控制设备11在得到对象的位置后,可以在控制设备11的界面上显示对象的位置。
图1B为本申请实施例提供的通信方法适用的系统架构的另一种示意图。参照图1B,该系统架构中包括控制设备11和定位系统12。与图1A不同的是,图1B中的定位系统12可以包括:多发射多接收的雷达设备。示例性的,多发射多接收的雷达设备中的天线为(multi input multi output,MIMO)天线。
多发射多接收的雷达设备中包括多个发射天线和多个接收天线,多发射多接收的雷达设备可以发射雷达信号感知对象,以获取对象的位置。
在该系统架构中,多发射多接收的雷达设备获取对象的位置后,可以向控制设备11发送对象的位置。相应的,控制设备11在得到对象的位置后,可以在控制设备11的界面上显示对象的位置。
在一种实施例中,本申请实施例提供的通信方法适用的系统架构中可以包括:定位系统12。定位系统12可以参照图1A和图1B中的描述。
在该种实施例中,在图1A所示的系统架构中,定位系统12中的任一1T1R的雷达设备可以提供与用户交互的界面,以实现与用户的交互。在图1B所示的系统架构中,定位系统12中的雷达设备为多发射多接收的雷达设备可以提供与用户交互的界面,以实现与用户的交互。
示例性的,定位系统12中的N个1T1R的雷达设备获取对象的位置后,可以由任一1T1R的雷达设备显示对象的位置。或者,多发射多接收的雷达设备得到对象的位置后,可以显示对象的位置。
下面结合具体的实施例对本申请实施例提供的通信方法进行说明。下面这几个实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图2为本申请实施例提供的通信方法的一种实施例的流程示意图。其中,执行通信方法的执行主体可以为控制设备11、或定位系统12中的雷达设备。应理解,定位系统12中的雷达设备为:N个1T1R的雷达设备或多发射多接收的雷达设备,下述实施例中将“定位系统12中的雷达设备”简称为“雷达设备”。
参照图2,本申请实施例提供的通信方法可以包括:
S201,获取目标区域中目标对象的位置。
目标区域可以包括但不限于:家庭、工厂,以及教室。目标对象为目标区域中未设置传感器的对象,即目标对象不具备靠近检测功能,目标对象也可以理解为待标定位置的对象。
示例性的,家庭场景中,若用户需求桌子、床等未设置传感器的对象具备靠近检测功能,则可以将桌子、床作为目标对象。工厂场景中,若用户需求办公桌、投影仪等未设置传感器的对象具备靠近检测功能,则可以将办公桌、投影仪作为目标对象。
因为目标对象中未设置传感器,目标对象无法主动基于传感器实现靠近检测。本申请实施例中,可以预先获取目标区域中目标对象的位置,即预先标定目标对象的位置,以在进行靠近检测时,根据目标区域中目标对象的位置,来判断是否有对象靠近目标对象。
在一种示例中,当执行通信方法的执行主体为雷达设备时,雷达设备可以自主获取目标对象的位置。在一种示例中,当执行通信方法的执行主体为控制设备11时,雷达设备在获取目标对象的位置后,可以向控制设备11发送目标对象的位置,如此控制设备11可以获取目标对象的位置。下述以执行通信方法的执行主体为雷达设备为例进行说明。
其一,当雷达设备为UWB雷达设备时,UWB雷达设备可以通过发送用于定位的数据帧的方式,获取目标对象的位置。
用户可以将UWB标签(tag)放置在目标对象上,或将UWB标签靠近目标对象放置。这样,UWB雷达设备可以定位UWB标签,得到UWB标签的位置,UWB标签的位置即为目标对象的位置。在一种示例中,UWB标签还可以设置在电子设备中,电子设备如手表、手环、手机等。
在一种示例中,当目标对象为多个时,用户可以在每个目标对象上放置一个UWB标签,或者,靠近每个目标对象放置一个UWB标签,UWB雷达设备可以定位每个UWB标签,以得到每个目标对象的位置。
在一种示例中,当目标对象为多个时,用户可以先在第一个目标对象上放置一个UWB标签,或者,靠近该第一个目标对象放置一个UWB标签,UWB雷达设备可以定位该UWB标签,得到第一个目标对象的位置。在UWB雷达设备得到第一个目标对象的位置后,UWB雷达设备可以输出提示信息,提示用户已完成定位。用户可以在第二个目标对象上放置UWB标签,或者,靠近该第二个目标对象放置UWB标签,以便于UWB雷达设备可以继续定位UWB标签,得到第二个目标对象的位置。如此迭代,UWB雷达 设备可以获取每个目标对象的位置。
其二,当雷达设备为UWB雷达设备时,UWB雷达设备可以通过追踪用户的位置的方式,获取目标对象的位置。
本申请实施例中,用户可以移动至目标对象的位置处,UWB雷达设备可以通过获取用户的位置,确定目标对象的位置。其中,当UWB雷达设备检测到用户在一位置处的静止时长大于或等于第一预设时长时,可以将用户的位置作为目标对象的位置。在一种示例中,该第一预设时长可以称为预设时长。
在一种示例中,用户可以携带包含有UWB标签的电子设备,UWB雷达设备可以定位UWB标签,获取用户的位置,以得到目标对象的位置。
在一种示例中,UWB雷达设备可以发射用于感知用户的雷达信号,实时获取用户的位置,以得到目标对象的位置。
在该实施例中,当目标对象为多个时,用户可以依次移动至每个目标对象的位置处,且静止时长大于或等于第一预设时长,这样UWB雷达设备可以获取每个目标对象的位置。
其三,当雷达设备为非UWB雷达设备时,雷达设备还可以通过追踪用户的位置的方式,获取目标对象的位置,可以参照“其二”中的相关描述。在该实施例中,非UWB雷达设备如可以为:超声雷达设备、激光雷达设备、毫米波雷达设备等雷达设备。
在一种实施例中,用户也可以向雷达设备输入目标对象的位置。在该种实施例中,如雷达设备可以显示目标区域的空间布局图,用户可以在目标区域的空间布局图上选择目标对象的位置,如此雷达设备也可以获取目标对象的位置。
S202,输出目标对象的位置。
这里以执行通信方法的执行主体为雷达设备为例,当雷达设备获取目标对象的位置后,可以输出目标对象的位置。其中,雷达设备输出目标对象的位置的方式可以为:雷达设备可以在界面上显示目标对象的位置,或者雷达设备可以采用语音的方式播报目标对象的位置,本申请实施例对此不做限制,下述实施例中以雷达设备在界面上显示目标对象的位置为例进行说明。
其一,雷达设备为UWB雷达设备,且UWB雷达设备通过定位UWB标签,获取目标对象的位置。
图3A为本申请实施例提供的一种场景示意图。图3A中以UWB雷达设备为智慧屏为例,参照图3A中的a,UWB雷达设备的主页面可以包括:标定控件31。用户可以在将UWB标签放置好后,操作该标定控件31,以触发UWB雷达设备定位UWB标签,以获取目标对象的位置。或者,用户可以先操作标定控件31,触发UWB雷达设备定位UWB标签,UWB雷达设备可以实时获取UWB标签的位置。同理的,用户可以在将UWB标签放置好后,UWB雷达设备也可以获取目标对象的位置。参照图3A中的b,UWB雷达设备在获取目标对象的位置后,可以在UWB雷达设备的界面上显示目标对象的位置A。图3A和图3B中以目标对象为台灯为例进行说明,且以虚线框表征用户操作智慧屏上的控件。在一种示例中,图3A和图3B所示的界面可以为智慧屏中应用的界面。应理解,用户也可以在控制设备11上触发雷达设备开始定位UWB标签,以获取目标对象的位置。示例性的,如控制设备11的主页面上可以包括:标定控件31,用户操作标定控件31,以触发UWB雷达设备定位UWB标签,以获取目标对象的位置。
在一种示例中,用户可以预先在UWB雷达设备的界面上编辑目标区域的空间布局图,或者用户可以预先将目标区域的空间布局图导入UWB雷达设备。示例性的,以家庭为例,家庭的空间布局图可以理解为户型图。在该示例中,UWB雷达设备可以存储目标区域的空间布局图,UWB雷达设备在获取目标对象的位置A后,可以在空间布局图中显示目标对象的位置A,这样用户可以更为直观地看到目标对象的位置。
其二,雷达设备为UWB雷达设备,且UWB雷达设备通过追踪用户的位置,获取目标对象的位置。
示例性的,参照图3B中的a,UWB雷达设备的主页面可以包括:标定控件31。用户操作该标定控件31后,可以触发UWB雷达设备定位用户的位置,用户可以移动至目标对象的位置处,且静止在该位置的时长大于或等于第一预设时长。UWB雷达设备检测到用户在该位置处静止的时长大于或等于第一预设时长,可以将用户的位置作为目标对象的位置。在该实施例中,当UWB雷达设备获取目标对象的位置后,可以输出目标对象的位置,如图3B中的b所示。
应理解,图3B中的a的界面与图3A中的a的界面相同。图3A和图3B中以智慧屏为多发射多接收雷达设备为例进行说明。
其三,雷达设备为非UWB雷达设备,且非UWB雷达设备通过追踪用户的位置,获取目标对象的位置。在该示例中,非UWB雷达设备可以输出目标对象的位置,可以参照UWB雷达设备输出目标对象的位置的相关描述。
在一种示例中,S202为可选步骤,即雷达设备在获取目标对象的位置后,可以不输出目标对象的位置,也可以执行S203。
S203,接收用户输入的目标对象的标识。
雷达设备输出目标对象的位置后,用户可以向雷达设备输入目标对象的标识,以便雷达设备可以对应目标对象的位置和目标对象的标识,即雷达设备可以绑定目标对象的位置和目标对象的标识。目标对象的标识用于区分不同的目标对象,示例性的,如目标对象的标识可以为目标对象的名称、图片、二维码、编号等。其中,用户可以在雷达设备的界面上输入目标对象的标识,或者用户还可以采用语音方式输入目标对象的名称,或者,用户还可以采用拍摄目标对象、扫描目标对象等方式输入目标对象的标识,本申请实施例对此不作赘述。
示例性的,雷达设备输出目标对象的位置A后,用户可以选中位置A,触发雷达设备显示标识输入框32,用户可以在标识输出框32中输入目标对象的标识。参照图3A中的c,用户可以在标识输出框32中输入目标对象的名称“台灯”。
示例性的,参照图3B中的b,雷达设备输出目标对象的位置A的界面还可以包括:标识输入控件33。用户操作标识输入控件33,可以触发雷达设备在位置A处显示标识输入框32。参照图3B中的c,用户可以在标识输出框32中输入目标对象的名称“台灯”。本申请实施例对雷达设备输出目标对象的位置的界面,以及用户输入目标对象的标识的方式不做限制。
在一种示例中,当目标对象为多个时,雷达设备可以输出一个目标对象的位置,用户可以输入该目标对象的标识。在一种示例中,雷达设备在获取多个目标对象的位置后,可以输出多个目标对象的位置,用户可以采用图3A和图3B所示的方式,输入每个目标对象的标识。
S204,将目标对象的位置和目标对象的标识对应存储。
雷达设备在获取目标对象的位置,以及接收用户输入的目标对象的标识后,可以将目标对象的位置和目标对象的标识对应存储。示例性的,雷达设备可以将目标对象的位置“位置A”和目标对象的名称“台灯”对应存储,表征台灯处于位置A。
在一种示例中,雷达设备将目标对象的位置和目标对象的标识对应存储,可以理解为:雷达设备绑定目标对象和目标对象的位置。
在一种示例中,S204为可选步骤,在完成步骤203后,雷达设备可以执行S205-S206。
S201-S204为雷达设备标定目标对象的位置的过程,在一种示例中,若目标区域中的目标对象的位置发生改变,用户可以触发雷达设备重新获取目标对象的位置,以将目标对象的标识和目标对象的新的位置对应存储。
在一种实施例中,在雷达设备标定目标对象的位置后,雷达设备可以根据目标对象的位置,对靠近目标对象的对象进行靠近检测,靠近检测的过程包括S205-S206:
S205,获取目标区域中可移动对象的位置。
雷达设备可以检测目标区域中的对象是否移动。如雷达设备若检测到对象的位置在一预设时长内发生改变,则确定对象移动,将该对象作为可移动对象。如雷达设备若检测到对象的位置在该预设时长内未发生改变,则确定对象不移动,将该对象作为不可移动对象。
在一种示例中,当执行通信方法的执行主体为雷达设备时,雷达设备可以获取目标区域中可移动对象的位置,换句话说,雷达设备可以实时追踪目标区域中可移动对象的位置。在一种示例中,当执行通信方法的执行主体为控制设备11时,雷达设备实时追踪目标区域中可移动对象的位置,可以向控制设备11发送可移动对象的位置。
在一种示例中,目标区域中可移动对象可以包括但不限于:用户、动物,以及机器人。机器人可以包括但不限于:清洁机器人,以及派送机器人。
在一种示例中,可移动对象(如用户)还可以佩戴包含有UWB标签的手环、或手表等电子设备,在该示例中,UWB雷达设备可以通过定位UWB标签,追踪可移动对象的位置。在一种示例中,UWB雷达设备可以通过发射雷达信号,追踪可移动对象的第二位置。
在一种示例中,UWB雷达设备一方面可以定位UWB标签,获取可移动对象的第一位置,另一方面可以发射雷达信号,感知可移动对象的第二位置,UWB雷达设备可以融合第一位置和第二位置,得到准确性更高的可移动对象的位置。示例性的,UWB雷达设备可以将第一位置和第二位置的中点,作为可移动对象的位置。或者,UWB雷达设备可以将第一位置和第二位置中精度最高的位置,作为可移动对象的位置。
S206,根据可移动对象的位置和目标对象的位置,在确定可移动对象靠近目标对象时,执行目标操作。
在一种示例中,当执行通信方法的执行主体为雷达设备时,雷达设备可以根据可移动对象的位置和目标对象的位置,检测可移动对象是否靠近目标对象。在一种示例中,当执行通信方法的执行主体为控制设备11时,雷达设备可以向控制设备11同步目标对象的位置,以及可移动对象的位置,因此控制设备11可以根据雷达设备可移动对象的位置和目标对象的位置,检测可移动对象是否靠近目标对象。
以执行通信方法的执行主体为雷达设备为例,在一种示例中,雷达设备根据可移动对象的位置和目标对象的位置,若确定可移动对象和目标对象之间的距离小于或等于第一预设距离,雷达设备可以确定可移动对象靠近目标对象。示例性的,第一预设距离如30cm。在该示例中,因为雷达设备可以实时获取可移动对象的位置,因此在可移动对象和目标对象之间的距离等于第一预设距离时,雷达设备可以执行目标操作。在一种示例中,可以将该第一预设距离称为预设距离。
其一,在雷达设备可以与目标区域中的电子设备连接的情况下,雷达设备执行目标操作可以包括:雷达设备向目标区域中的目标设备发送启动指示,启动指示用于指示目标设备执行相应的操作。其中,目标设备可以看作目标区域中的目标电子设备。在一种示例中,目标设备可以为目标对象,示例性的,当目标对象为不具备靠近检测功能的台灯时,以可移动对象为用户为例,雷达设备响应于用户靠近台灯,可以向台灯发送启动指示,该启动指示用于指示台灯打开。在一种示例中,目标设备可以不为目标对象,示例性的,目标对象为不具备靠近检测功能的桌子,以可移动对象为用户为例,雷达设备响应于用户靠近桌子,雷达设备可以向桌子上放置的台灯发送启动指示,该启动指示用于指示台灯打开。
在一种示例中,如雷达设备和目标设备均可以接入同一网络,如雷达设备、目标对象均接入同一接入点(access point,AP)。雷达设备可以向AP发送启动指示,在该示例中,启动指示中包括目标对象的标识。AP响应于接收到来自雷达设备的启动指示,可以向目标设备发送启动指示。
应注意,无论目标设备是否为目标对象,雷达设备执行的目标操作均与“可移动设备靠近目标对象”相关,即可移动设备靠近目标对象可以作为触发条件,触发雷达设备执行目标操作。
其二,在雷达设备未与目标区域中的电子设备连接,但控制设备(如中控屏)可以控制目标区域中的电子设备的情况下,雷达设备响应于检测到可移动设备靠近目标对象,可以通过控制设备控制目标区域中的目标设备执行相应的操作。在该种示例中,雷达设备执行目标操作可以包括:雷达设备向控制设备发送触发事件,触发事件用于表征可移动对象靠近目标对象,触发事件用于指示控制设备向目标设备发送启动指示。
在一种示例中,如控制设备和目标设备均可以接入同一网络,雷达设备可以与控制设备接入同一网络,或者雷达设备可以与控制设备电力线通信连接(power line communication,PLC)。在该示例中,雷达设备可以控制设备发送触发事件,控制设备响应于触发事件,可以向目标设备发送启动指示。
示例性的,目标对象为不具备靠近检测功能的桌子,以可移动对象为用户为例,雷达设备响应于用户靠近桌子,雷达设备可以向中控屏发送触发事件,中控屏响应于触发事件,可以向桌子上放置的台灯发送启动指示,该启动指示用于指示台灯打开。
在一种示例中,如控制设备中可以存储各种场景模式,不同的场景模式中目标设备可以不同。示例性的,场景模式可以包括但不限于:进入客厅模式、离开客厅模式、回家模式、观影模式等。以进入客厅模式为例,用户进入客厅,家庭中的灯打开、电视打开,灯和电视可以看作目标设备。其中,目标对象可以为客厅的沙发、或者客厅的一面墙等。以目标对象为客厅的沙发为例,当用户靠近沙发时,雷达设备可以检测到用户(可移动对象)靠近沙发(目标对象),雷达设备可以向控制设备(如中控屏)发送触发事件,该触发事件用于表征用户靠近沙发。控制设备响应于该触发事件,可以确定启动进入客厅模式,进而可以向目标区域中的灯发送启动指示,以及向电视发送启动指示。
其三,当执行通信方法的执行主体为控制设备时,控制设备响应于检测到可移动设备靠近目标对象, 可以向目标区域中的目标设备发送启动指示,启动指示可以参照“其一”中的相关描述。
应注意的是,可移动对象在逐渐靠近目标对象的过程中,存在可移动对象和目标对象之间的距离等于第一预设距离,且在可移动对象在逐渐远离目标对象的过程中,也会存在可移动对象和目标对象之间的距离等于第一预设距离。为了避免在可移动对象在逐渐远离目标对象的过程中,雷达设备也执行目标操作,如雷达设备也向目标设备发送启动指示,在一种示例中,雷达设备根据可移动对象的位置和目标对象的位置,若确定可移动对象距离目标对象越来越近,且可移动对象和目标对象之间的距离小于或等于第一预设距离,雷达设备可以确定可移动对象靠近目标对象。在该示例中,当可移动对象距离目标对象越来越近,且在可移动对象和目标对象之间的距离等于第一预设距离时,雷达设备可以执行目标操作。
在一种示例中,当雷达设备通过发射雷达信号,感知获取可移动对象的位置时,雷达设备也可以感知可移动对象的类型。示例性的,雷达设备可以根据经可移动对象反射的信号,确定可移动对象为用户、动物还是机器人。
在该示例中,雷达设备可以根据可移动对象的类型,确定是否执行目标操作。换句话说,雷达设备执行的目标操作与可移动对象的类型相关,可移动对象的类型不同,雷达设备执行的目标操作不同。示例性的,参照图4中的a,以目标对象为台灯为例,当靠近台灯的可移动对象为用户时,雷达设备可以执行目标操作,如雷达设备向台灯发送启动指示,台灯响应于启动指示,可以执行开灯操作。参照图4中的b,当靠近台灯的可移动对象为动物时,雷达设备可以不执行目标操作,如雷达设备不向台灯发送启动指示。应理解,图4中以雷达设备为智慧屏为例进行说明,本申请实施例不限制雷达设备的形态。
示例性的,以目标对象为动物的喂食设备为例,当靠近喂食设备的可移动对象为动物时,雷达设备可以执行目标操作,如雷达设备向喂食设备发送启动指示,启动指示用于指示喂食设备投放食物。当靠近台灯的可移动对象为用户时,雷达设备可以执行目标操作,如雷达设备不向喂食设备发送启动指示。
当执行通信方法的执行主体为控制设备时,雷达设备还可以将可移动对象的类型同步至控制设备,控制设备也可以根据可移动对象的类型,确定是否执行向目标设备发送启动指示,可以参照雷达设备的相关描述。
在一种示例中,目标区域中还可以包括人脸识别设备,人脸识别设备如单独设置的摄像头,或人脸识别设备可以集成在雷达设备中。以人脸识别设备单独设置为例,人脸识别设备可以识别靠近目标对象的用户,且向雷达设备发送用户的标识。用户的标识用于区分不同的用户,示例性的,用户的标识可以为用户的编号、名称、图片等。在该示例中,雷达设备在向目标设备发送启动指示时,可以在启动指示中携带用户的标识。在目标设备接收到启动指示时,可以根据用户的标识,执行与用户相关的操作。
示例性的,参照图5中的a,以目标对象为台灯为例,当用户A靠近台灯时,台灯可以接收到来自雷达设备的启动指示,启动指示中包括用户A的标识,台灯响应于该启动指示,可以打开暖光。参照图5中的b,当用户B靠近台灯时,台灯可以接收到来自雷达设备的启动指示,该启动指示中包括用户B的标识,台灯响应于该启动指示,可以打开冷光。换句话说,雷达设备执行的目标操作与可移动对象相关,可移动对象不同,雷达设备执行的目标操作可以不同。
当执行通信方法的执行主体为控制设备时,雷达设备还可以将用户的标识同步至控制设备,控制设备也可以在启动指示中携带用户的标识。
在一种示例中,雷达设备还可以根据目标对象的位置和可移动对象的位置,检测可移动对象是否远离目标对象。其中,当雷达设备确定可移动对象是否远离目标对象时,雷达设备可以向目标设备发送关闭指示。其中,该关闭指示用于指示目标设备停止执行相应的操作。
在该示例中,雷达设备根据可移动对象的位置和目标对象的位置,若确定可移动对象距离目标对象越来越远,且可移动对象和目标对象之间的距离大于或等于第二预设距离,雷达设备可以确定可移动对象远离目标对象。在一种示例中,第二预设距离可以与第一预设距离相等。在一种示例中,第二预设距离可以与第一预设距离不同,如第二预设距离大于第一预设距离,第二预设距离如可以为50cm。
本申请实施例中,可以预先获取未设置传感器的目标对象的位置,且将目标对象的位置和目标对象的标识对应存储,在实际的靠近检测过程中,可以根据目标对象的位置和可移动对象的位置,检测可移动对象是否靠近目标对象。在可移动对象靠近目标对象时,可以执行目标操作。本申请实施例中借助目标区域中的雷达设备,预先标定目标对象的位置,由雷达设备检测可移动对象是否靠近目标对象,这样可以实现未设置传感器的目标对象的靠近检测功能。
如上实施例中讲述了未设置传感器的目标对象实现靠近检测的方法,在一种实施例中,该方法需要借助雷达设备发射雷达信号,感知获取目标对象的位置以及可移动对象的位置。对象的位置的准确性,对于靠近检测的准确性至关重要。
雷达设备存在近距离盲区,即雷达设备检测不到距离雷达设备预设范围内的对象。示例性的,如毫米波雷达的近距离盲区为1m,即毫米波雷达检测不到距离毫米波雷达1m内的对象。在雷达设备存在近距离盲区的情况下,当对象处于雷达设备的盲区内时,雷达设备检测不到对象,因此无法获取对象的位置。在家庭场景等空间尺寸较小的目标区域中,如靠近检测的精度要求在20-30cm,即要求雷达设备能够检测到距离雷达设备20cm之外的对象,因此亟需一种减小雷达设备的近距离盲区的方法。
在一种实施例中,可以通过增大雷达设备中发射机和接收机的隔离度,或增大雷达设备中发送天线和接收天线的隔离度,以避免发射机工作时接收机发生饱和,以减小雷达设备的近距离盲区。但增大雷达设备中发射机和接收机的隔离度,或增大雷达设备中发送天线和接收天线的隔离度,需要在雷达设备中额外设置隔离组件,或者增加雷达设备中发射机与接收机之间的距离,该种方法不适用于小尺寸的手机、手环、手表等雷达设备。
在一种实施例中,参照图6中的a,如果对象处于雷达设备的一个脉冲周期的盲区内,雷达设备按照该脉冲周期发射雷达信号,将无法检测到对象。在该种实施例中,参照图6中的b,可以通过改变脉冲周期的方式,避免对象处于雷达设备的脉冲周期的盲区,使得雷达设备可以检测到对象。
但该种实施例中,通过改变脉冲周期的方式虽然可以避免对象处于雷达设备的脉冲周期的盲区,但是无法减小雷达设备的近距离盲区,即对象处于雷达设备的近距离盲区时,雷达设备还是无法检测到对象。
本申请实施例提供一种通信方法,根据对象距离雷达设备的距离,雷达设备可以发射不同波形的雷达信号,在保证雷达设备可以检测到对象的基础上,减小雷达设备的近距离盲区。
图7为本申请实施例提供的通信方法的另一实施例的流程示意图。参照图7,本申请实施例提供的通信方法可以包括:
S701,雷达设备交替发射第一波形的雷达信号和第二波形的雷达信号,以检测对象。
第一波形和第二波形不同。雷达设备发射第一波形的雷达信号时,雷达设备的近距离盲区小,如为20cm。雷达设备发射第二波形的雷达信号时,雷达设备的近距离盲区大,如为1m。示例性的,如第一波形可以为无拖尾波形,第二波形可以为有拖尾波形。在一种示例中,第一波形可以包括但不限于:高斯波形、洛伦兹波形,第二波形可以看作是第一波形经过若干次求导后的波形。
第一波形包括一个波峰,第二波形包括多个波峰。换句话说,雷达设备发射一个雷达信号,若雷达信号的波形包括一个波峰,该雷达信号可以称为第一波形的雷达信号,若雷达信号的波形包括多个波峰,该雷达信号可以称为第二波形的雷达信号。
在一种示例中,可以将第二预设时长内存在一个波峰的波形称为无拖尾波形,将第二预设时长内存在多个波峰的波形称为有拖尾波形。示例性的,第二预设时长可以理解为:两个脉冲信号之间的时长,如从雷达设备发射第一雷达信号,到发射下一雷达信号之前,存在一个波峰,则第一雷达信号的波形可以称为第一波形,如从雷达设备发射第一雷达信号,至发射下一雷达信号之前,存在多个波峰,则第一雷达信号的波形可以称为第二波形。在一种示例中,第二预设时长也可以理解为一个雷达信号的脉冲宽度。
图8中的a所示的为无拖尾波形,无拖尾波形在第二预设时长T内存在一个波峰,如波峰1A。图8中的b所示的为有拖尾波形,有拖尾波形在第二预设时长T内存在多个波峰,分别为波峰1、波峰2、波峰3以及波峰4。雷达设备发射图8中的b所示的波形的雷达信号时,波峰2、波峰3以及波峰4的干扰会造成雷达设备的接收机饱和,且接收机处于饱和状态的时间长,因此造成雷达设备的近距离盲区大。而雷达设备发射图8中的a所示的波形的雷达信号时,雷达信号的波形只有一个波峰1A,雷达设备的接收机处于饱和状态的时间短,因此雷达设备的近距离盲区小。
如图8中的a所示,雷达设备发射第一波形的雷达信号时,雷达设备可以检测到雷达设备的第一距离范围内的对象。示例性的,第一距离范围如A1-A2,A1如20cm。如图8中的b所示,雷达设备发射第二波形的雷达信号时,雷达设备可以检测到处于雷达设备的第二距离范围内的对象。示例性的,第二距离 范围如B1-B2,B1如1m。
本申请实施例中,可以预先设置距离阈值X,距离阈值X用于区分雷达设备的近端和远端。其中,0-X的距离范围可以看作雷达设备的近端,X-L的距离范围可以看作雷达设备的远端。其中,L为雷达设备发射的雷达信号的最远覆盖距离,如A2和B2中的最大值可以与L相等,0-L可以看做雷达设备的覆盖范围。在一种示例中,X大于A1、B1。
当对象处于0-X的距离范围时,即对象与雷达设备的距离小于或等于距离阈值时,对象处于雷达设备的近端,当对象处于X-L的距离范围时,即对象与雷达设备的距离大于距离阈值时,对象处于雷达设备的远端。其中,当对象处于雷达设备的远端时,因为X大于B1,对象不会移动至雷达设备的近距离盲区内,且有拖尾波形的雷达信号的频谱利用率更高、检测对象的灵敏度更高,因此雷达设备可以采用有拖尾波形的雷达信号检测处于远端的对象。当对象处于雷达设备的近端时,对象会移动至雷达设备的近距离盲区内,因为无拖尾波形的雷达信号的近距离盲区小于有拖尾波形的雷达信号的近距离盲区,因此为了保证雷达设备可以在更大的范围内检测到对象,雷达设备可以采用无拖尾波形的雷达信号检测处于近端的对象。
本申请实施例中,雷达设备交替发射第一波形的雷达信号和第二波形的雷达信号,目的在于:确定对象处于雷达设备的近端还是远端,进而决策雷达信号的波形,以减小雷达设备的近距离盲区。其中,雷达设备交替发射第一波形的雷达信号和第二波形的雷达信号,可以理解为:雷达设备发射一次第一波形的雷达信号后,发射一次第二波形的雷达信号,接着发射一次第一波形的雷达信号,再发射一次第二波形的雷达信号,如此迭代。
S702,当对象处于雷达设备的近端时,雷达设备发射第一波形的雷达信号检测对象。
第一波形的雷达信号的近距离盲区小于第二波形的雷达信号的近距离盲区,因此当对象处于雷达设备的近端时,雷达设备发射第一波形的雷达信号检测对象,可以增大雷达信号的覆盖范围,减小雷达设备的近距离盲区,保证能够检测到对象。
在一种实施例中,雷达设备还可以根据对象的反射信号能量,动态调整雷达设备的发射机的发射功率,以避免对象距离雷达设备较近时,对象的反射信号能量过高造成雷达设备的接收机饱和。其中,对象的反射信号能量可以理解为:第一波形的雷达信号经对象反射后的信号的能量。
对象距离雷达设备越近,对象的反射信号能量越高。
在一种示例中,雷达设备可以根据对象的反射信号能量,动态调整雷达设备的发射功率,使得雷达设备的接收机不饱和或者临界饱和。示例性的,对象的反射信号能量增大,雷达设备可以将当前的发射功率减小预设功率,且检测雷达设备的接收机是否饱和。若雷达设备的接收机不饱和或者临界饱和,雷达设备不再调整发射功率。若雷达设备的接收机饱和,雷达设备可以继续将发射功率减小预设功率,且检测雷达设备的接收机是否饱和,如此迭代,以动态调整雷达设备的发射功率,直至雷达设备的接收机不饱和或者临界饱和。
在一种示例中,雷达设备中可以存储对象的反射信号能量和雷达设备的发射功率的映射关系。雷达设备在获取到对象的反射信号能量后,可以根据该映射关系,确定对象的反射信号能量对应的发射功率,可以将对象的反射信号能量对应的发射功率称为目标发射功率,雷达设备在获取目标发射功率后,可以调整雷达设备的发射功率至目标发射功率。其中,雷达设备以目标发射功率发射第一波形的雷达信号时,雷达设备的接收机不饱和或者临界饱和。
在一种实施例中,雷达设备可以根据对象的反射信号能量,检测对象是否离开雷达设备的近端。其中,若雷达设备检测到对象的反射信号能量小于能量阈值,表征对象离开雷达设备的近端,在该种实施例中,雷达设备可以执行S703。或者,雷达设备可以执行S701,在雷达设备检测到对象处于雷达设备的远端时,执行S703。在一种示例中,能量阈值可以看作:对象距离雷达设备的距离为X时,对象的反射信号能量。
在一种示例中,雷达设备可以根据对象的反射信号相位变化量,检测对象是否离开雷达设备的近端。其中,若雷达设备检测到对象的反射信号相位变化量大于相位阈值,表征对象离开雷达设备的近端。
其中,当对象A的反射信号能量和对象B的反射信号能量相同时,会存在对象A距离雷达设备的距离与对象B距离雷达设备的距离不同的情况,这种情况出现的原因是对象A的反射率与对象B的反射率不同。因此采用对象的反射信号能量这一个参数确定对象距离雷达设备的距离的准确性较低,进而造成 判断对象是否离开雷达设备的近端的准确性低。在一种示例中,雷达设备可以根据对象的反射能量信号,以及反射信号的相位变化量,检测对象是否离开雷达设备的近端。其中,若雷达设备检测到对象的反射信号能量小于能量阈值,且反射信号的相位变化量大于相位阈值,表征对象离开雷达设备的近端。在该示例中,雷达设备可以结合多个参数检测对象距离雷达设备的距离,准确性高。
S703,当对象处于雷达设备的远端时,雷达设备发射第二波形的雷达信号检测对象。
当对象处于雷达设备的远端时,雷达设备发射第二波形的雷达信号检测对象,检测灵敏度高。
在一种实施例中,若雷达设备发射第二波形的雷达信号,检测不到对象,雷达设备可以执行S701,以保证可以检测到对象。
在S702和S703中,第一波形的雷达信号的带宽与第二波形的雷达信号的带宽相等,这样无论对象在雷达设备的近端还是远端,雷达设备可以实现同时定位对象,以及对对象进行雷达感知。
在一种实施例中,本申请实施例提供的减小雷达设备的近距离盲区的通信方法可以如图9所示。参照图9,雷达设备可以配置第一波形的雷达信号,检测雷达设备的近端是否存在对象,且配置第二波形的雷达信号,检测雷达设备的远端是否存在对象。其中,配置第一波形的雷达信号可以理解为:雷达设备发射第一波形的雷达信号,配置第二波形的雷达信号可以理解为:雷达设备发射第二波形的雷达信号。应理解,雷达设备上电后,可以交替发射第一波形的雷达信号和第二波形的雷达信号,以检测对象处于雷达设备的近端或远端。
其中,若雷达设备的覆盖范围内(0-L)不存在对象,雷达设备可以继续交替发射第一波形的雷达信号和第二波形的雷达信号,以检测对象。当雷达设备的覆盖范围内(0-L)存在对象,且对象处于雷达设备的近端时,雷达设备可以发射第一波形的雷达信号继续检测对象。其中,在雷达设备发射第一波形的雷达信号的过程中,雷达设备可以根据对象的反射信号能量,适应性调整雷达设备的发射功率。另,雷达设备还可以根据对象的反射信号能量,和/或,反射信号相位的变化量,检测对象是否离开雷达设备的近端。
其中,当对象离开雷达设备的近端时,雷达设备可以继续交替发射第一波形的雷达信号和第二波形的雷达信号,以检测对象处于雷达设备的近端或远端。
在图2所示的实施例中,雷达设备在发射雷达信号,感知目标对象的位置和可移动对象的位置时,雷达设备可以采用图7中的方法,减小雷达设备的近距离盲区,以准确获取目标对象的位置和可移动对象的位置。示例性的,以雷达设备获取可移动对象的位置为例,雷达设备可以交替发射第一波形的雷达信号和第二波形的雷达信号,以检测可移动对象处于雷达设备的近端或远端。当可移动对象处于雷达设备的近端时,雷达设备可以发射第一波形的雷达信号继续检测可移动对象,当可移动对象处于雷达设备的远端时,雷达设备可以发射第二波形的雷达信号继续检测可移动对象。
本申请实施例中,雷达设备在检测对象时,可以交替发射第一波形的雷达信号和第二波形的雷达信号,以确定对象处于雷达设备的近端或远端。其中,当对象处于雷达设备的近端时,因为第一波形的雷达信号的近距离盲区小于第二波形的雷达信号的近距离盲区,雷达设备可以发射第一波形的雷达信号继续检测可移动对象,以减小雷达设备的近距离盲区。当可移动对象处于雷达设备的远端时,雷达设备可以发射第二波形的雷达信号继续检测对象,第二波形的雷达信号的灵敏度高,因此可以提高雷达设备的检测灵敏度。
在一种实施例中,本申请实施例还提供一种电子设备,该电子设备可以为上述实施例中所述的第一设备。参照图10,该电子设备中可以包括:处理器1001(例如CPU)、存储器1002。存储器1002可能包含高速随机存取存储器(random-access memory,RAM),也可能还包括非易失性存储器(non-volatile memory,NVM),例如至少一个磁盘存储器,存储器1002中可以存储各种指令,以用于完成各种处理功能以及实现本申请的方法步骤。
可选的,本申请涉及的电子设备还可以包括:电源1003、通信总线1004以及通信端口1005。上述通信端口1005用于实现电子设备与其他外设之间进行连接通信。在本申请实施例中,存储器1002用于存储计算机可执行程序代码,程序代码包括指令;当处理器1001执行指令时,指令使电子设备的处理器1001执行上述方法实施例中的动作,其实现原理和技术效果类似,在此不再赘述。
在一种示例中,电子设备还可以包括:显示屏1006,显示屏1006用于显示电子设备的界面。
需要说明的是,上述实施例中所述的模块或部件可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个专用集成电路(application specific integrated circuit,ASIC),或,一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(central processing unit,CPU)或其它可以调用程序代码的处理器如控制器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本文中的术语“多个”是指两个或两个以上。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系;在公式中,字符“/”,表示前后关联对象是一种“相除”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。
可以理解的是,在本申请的实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施例的实施过程构成任何限定。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    获取目标区域中可移动对象的位置;
    根据所述可移动对象的位置,以及所述目标区域中目标对象的位置,在确定所述可移动对象靠近所述目标对象时,执行目标操作,所述目标对象不具备靠近检测功能。
  2. 根据权利要求1所述的方法,其特征在于,所述获取目标区域中可移动对象的位置之前,还包括:
    获取所述目标对象的位置。
  3. 根据权利要求2所述的方法,其特征在于,所述通信方法应用于雷达设备,所述雷达设备为超宽带UWB雷达设备,所述获取所述目标对象的位置,包括:
    发送数据帧,定位UWB标签,以获取所述目标对象的位置,所述UWB标签放置在所述目标对象上,或靠近所述目标对象放置。
  4. 根据权利要求2所述的方法,其特征在于,所述通信方法应用于雷达设备,所述获取所述目标对象的位置,包括:
    发射雷达信号,获取所述目标区域中用户的位置;
    根据所述用户的位置,若检测到所述用户的静止时长大于或等于预设时长,则将所述用户静止时的位置,作为所述目标对象的位置。
  5. 根据权利要求2所述的方法,其特征在于,所述通信方法应用于控制设备,所述获取所述目标对象的位置,包括:
    接收来自所述目标区域中雷达设备的所述目标对象的位置,所述雷达设备用于获取所述目标对象的位置。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,当所述通信方法应用于雷达设备时,所述执行目标操作,包括:
    向所述目标区域中的目标设备发送启动指示,所述启动指示用于指示所述目标设备执行相应的操作;或者,
    向所述目标区域中的控制设备发送触发事件,所述触发事件用于表征所述可移动对象靠近所述目标对象,所述触发事件用于指示所述控制设备向所述目标设备发送所述启动指示;
    当所述通信方法应用于控制设备时,所述执行目标操作,包括:
    向所述目标设备发送所述启动指示,所述启动指示用于指示所述目标设备执行相应的操作。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述可移动对象的位置,以及所述目标区域中目标对象的位置,若所述可移动对象与所述目标对象的距离减小,且小于或等于预设距离,则确定所述可移动对象靠近所述目标对象。
  8. 根据权利要求2-5中任一项所述的方法,其特征在于,所述获取所述目标对象的位置之后,还包括:
    接收用户输入的所述目标对象的标识;
    对应存储所述目标对象的标识和所述目标对象的位置。
  9. 根据权利要求1所述的方法,其特征在于,所述通信方法应用于雷达设备,所述获取目标区域中可移动对象的位置,包括:
    交替发射第一波形的雷达信号和第二波形的雷达信号,检测所述可移动对象,所述第一波形包括一个波峰,所述第二波形包括多个波峰;
    当所述可移动对象与所述雷达设备的距离小于或等于距离阈值时,发射第一波形的雷达信号,获取所述可移动对象的位置;
    当所述可移动对象与所述雷达设备的距离大于距离阈值时,发射第二波形的雷达信号,获取所述可移动对象的位置。
  10. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    在发射所述第一波形的雷达信号获取所述可移动对象的位置时,获取所述可移动对象的反射信号能量;
    根据所述可移动对象的反射信号能量,调整所述雷达设备的发射功率,以使所述雷达设备中的接收机不饱和或临界饱和。
  11. 根据权利要求9所述的方法,其特征在于,所述方法还包括:
    在发射所述第一波形的雷达信号获取所述可移动对象的位置时,获取所述可移动对象的反射信号能量,和/或,反射信号相位变化量;
    根据所述可移动对象的反射信号能量,和/或,反射信号相位变化量,检测所述可移动对象与所述雷达设备的距离是否大于所述距离阈值;
    若是,则交替发射所述第一波形的雷达信号和所述第二波形的雷达信号。
  12. 一种通信方法,其特征在于,应用于雷达设备,所述方法包括:
    交替发射第一波形的雷达信号和第二波形的雷达信号,检测对象,所述第一波形包括一个波峰,所述第二波形包括多个波峰;
    当所述对象与所述雷达设备的距离小于或等于距离阈值时,发射第一波形的雷达信号,检测对象;
    当所述对象与所述雷达设备的距离大于距离阈值时,发射第二波形的雷达信号,检测对象。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    在发射所述第一波形的雷达信号检测所述对象时,获取所述对象的反射信号能量;
    根据所述对象的反射信号能量,调整所述雷达设备的发射功率,以使所述雷达设备中的接收机不饱和或临界饱和。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    在发射所述第一波形的雷达信号检测所述对象时,获取所述对象的反射信号能量,和/或,反射信号相位变化量;
    根据所述的反射信号能量,和/或,反射信号相位变化量,检测所述对象与所述雷达设备的距离是否大于所述距离阈值;
    若是,则交替发射所述第一波形的雷达信号和所述第二波形的雷达信号。
  15. 一种电子设备,其特征在于,包括:处理器;所述处理器,用于:
    获取目标区域中可移动对象的位置;
    根据所述可移动对象的位置,以及所述目标区域中目标对象的位置,在确定所述可移动对象靠近所述目标对象时,执行目标操作,所述目标对象不具备靠近检测功能。
  16. 根据权利要求15所述的电子设备,其特征在于,所述处理器,还用于获取所述目标对象的位置。
  17. 根据权利要求16所述的电子设备,其特征在于,所述电子设备还包括收发器;
    所述收发器,用于发送数据帧,定位UWB标签,所述UWB标签放置在所述目标对象上,或靠近所述目标对象放置;
    所述处理器,用于根据定位所述UWB标签的结果,获取所述目标对象的位置。
  18. 根据权利要求16所述的电子设备,其特征在于,所述电子设备还包括收发器;
    所述收发器,用于发射雷达信号,以及接收所述目标区域中用户反射的雷达信号;
    所述处理器,用于:
    根据所述用户反射的雷达信号,获取所述目标区域中用户的位置;
    根据所述用户的位置,若检测到所述用户的静止时长大于或等于预设时长,则将所述用户静止时的位置,作为所述目标对象的位置。
  19. 根据权利要求16所述的电子设备,其特征在于,所述电子设备还包括收发器;
    所述收发器,用于接收来自所述目标区域中雷达设备的所述目标对象的位置,所述雷达设备用于获取所述目标对象的位置。
  20. 根据权利要求15所述的电子设备,其特征在于,所述电子设备还包括收发器;
    所述收发器,用于:
    交替发射第一波形的雷达信号和第二波形的雷达信号,检测所述可移动对象,所述第一波形包括一个波峰,所述第二波形包括多个波峰;
    当所述可移动对象与所述电子设备的距离小于或等于距离阈值时,发射第一波形的雷达信号,获取 所述可移动对象的位置;
    当所述可移动对象与所述电子设备的距离大于距离阈值时,发射第二波形的雷达信号,获取所述可移动对象的位置。
  21. 根据权利要求20所述的电子设备,其特征在于,在所述收发器发射所述第一波形的雷达信号获取所述可移动对象的位置时,所述处理器,还用于:
    获取所述可移动对象的反射信号能量;
    根据所述可移动对象的反射信号能量,调整所述电子设备的发射功率,以使所述电子设备中的接收机不饱和或临界饱和。
  22. 根据权利要求21所述的电子设备,其特征在于,所述处理器,还用于:
    获取所述可移动对象的反射信号能量,和/或,反射信号相位变化量;
    根据所述可移动对象的反射信号能量,和/或,反射信号相位变化量,检测所述可移动对象与所述电子设备的距离是否大于所述距离阈值;
    所述收发器,还用于当所述可移动对象与所述电子设备的距离大于所述距离阈值时,交替发射所述第一波形的雷达信号和所述第二波形的雷达信号。
  23. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或指令,当所述计算机程序或指令被运行时,实现如权利要求1-14中任一项所述的方法。
PCT/CN2023/119254 2022-09-29 2023-09-15 通信方法、电子设备以及存储介质 WO2024067180A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211212589.2A CN117826135A (zh) 2022-09-29 2022-09-29 通信方法、电子设备以及存储介质
CN202211212589.2 2022-09-29

Publications (1)

Publication Number Publication Date
WO2024067180A1 true WO2024067180A1 (zh) 2024-04-04

Family

ID=90476133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119254 WO2024067180A1 (zh) 2022-09-29 2023-09-15 通信方法、电子设备以及存储介质

Country Status (2)

Country Link
CN (1) CN117826135A (zh)
WO (1) WO2024067180A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150268328A1 (en) * 2011-12-30 2015-09-24 Flir Systems, Inc. Radar system providing multiple waveforms for long range and short range target detection
CN106154944A (zh) * 2016-06-30 2016-11-23 联想(北京)有限公司 一种数据处理方法及电子设备
CN111106997A (zh) * 2019-12-30 2020-05-05 北京三快在线科技有限公司 消息提醒方法、装置、设备及存储介质
CN111679260A (zh) * 2020-05-19 2020-09-18 上海禾赛光电科技有限公司 拖点识别处理方法、激光雷达以及计算机可读存储介质
JP2020159773A (ja) * 2019-03-25 2020-10-01 古河電気工業株式会社 レーダ装置及び物標検出方法
CN112383857A (zh) * 2020-11-10 2021-02-19 维沃移动通信有限公司 耳机控制方法、控制装置以及耳机
CN113961070A (zh) * 2021-10-11 2022-01-21 维沃移动通信有限公司 电子设备控制方法和装置
CN114430603A (zh) * 2022-01-25 2022-05-03 广州小鹏汽车科技有限公司 一种迎宾控制方法、装置和车辆
CN114979779A (zh) * 2022-05-09 2022-08-30 Oppo广东移动通信有限公司 一种设备控制方法及装置、设备、存储介质
CN115113219A (zh) * 2022-06-14 2022-09-27 探维科技(北京)有限公司 测量距离的方法及激光雷达

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150268328A1 (en) * 2011-12-30 2015-09-24 Flir Systems, Inc. Radar system providing multiple waveforms for long range and short range target detection
CN106154944A (zh) * 2016-06-30 2016-11-23 联想(北京)有限公司 一种数据处理方法及电子设备
JP2020159773A (ja) * 2019-03-25 2020-10-01 古河電気工業株式会社 レーダ装置及び物標検出方法
CN111106997A (zh) * 2019-12-30 2020-05-05 北京三快在线科技有限公司 消息提醒方法、装置、设备及存储介质
CN111679260A (zh) * 2020-05-19 2020-09-18 上海禾赛光电科技有限公司 拖点识别处理方法、激光雷达以及计算机可读存储介质
CN112383857A (zh) * 2020-11-10 2021-02-19 维沃移动通信有限公司 耳机控制方法、控制装置以及耳机
CN113961070A (zh) * 2021-10-11 2022-01-21 维沃移动通信有限公司 电子设备控制方法和装置
CN114430603A (zh) * 2022-01-25 2022-05-03 广州小鹏汽车科技有限公司 一种迎宾控制方法、装置和车辆
CN114979779A (zh) * 2022-05-09 2022-08-30 Oppo广东移动通信有限公司 一种设备控制方法及装置、设备、存储介质
CN115113219A (zh) * 2022-06-14 2022-09-27 探维科技(北京)有限公司 测量距离的方法及激光雷达

Also Published As

Publication number Publication date
CN117826135A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
WO2011123833A1 (en) Immersive multimedia terminal
US8869588B2 (en) Ultrasonic positioning system with reverberation and flight time compensation
KR101618783B1 (ko) 이동 단말기, 이동 단말기의 제어방법, 그리고, 이동 단말기를 포함하는 제어시스템
CN109029252B (zh) 物体检测方法、装置、存储介质及电子设备
WO2023020415A1 (zh) 定位方法、装置和电子设备
US20130182539A1 (en) Multipath reflection processing in ultrasonic gesture recognition systems
WO2024067180A1 (zh) 通信方法、电子设备以及存储介质
JP2016538800A (ja) 対象物位置特定方法、装置、プログラム、及び記憶媒体
US20220337986A1 (en) Method of ultra-wideband communication based on account information and electronic device therefor
CN109298791A (zh) 终端控制方法、装置、存储介质及移动终端
CN104244055A (zh) 多媒体设备有效空间范围内实时交互方法
US11171725B2 (en) Mobile terminal
CN112399556B (zh) 网络连接方法、终端及计算机存储介质
CN110557196A (zh) 视线光通信系统中的设备感知
CN109061660A (zh) 终端设备以及用于终端设备的距离测量方法及装置
US20220113401A1 (en) Radar-based localization from interference
KR20210116119A (ko) 통신 수행 방법 및 장치
CN116794669A (zh) 激光测距方法、装置、控制器及激光测距传感器
CN107025780B (zh) 交互方法及通信设备
KR102629291B1 (ko) 가상의 필드를 이용하여 레이더 신호의 송수신 시간을 보유하는 전자 장치 및 그 제어 방법
WO2020073237A1 (zh) 无线充电的请求方法、装置及无线充电接收设备
CN113453147A (zh) 一种基于uwb的手势交互控制系统
US20230421990A1 (en) Automated Device Control Session
WO2021007733A1 (zh) 识别操作终端设备的手势的方法和终端设备
WO2024061062A1 (zh) 通信方法、电子设备,以及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870414

Country of ref document: EP

Kind code of ref document: A1