WO2024067042A1 - 确定屏幕漏光的跌落深度的方法、装置及电子设备 - Google Patents

确定屏幕漏光的跌落深度的方法、装置及电子设备 Download PDF

Info

Publication number
WO2024067042A1
WO2024067042A1 PCT/CN2023/118032 CN2023118032W WO2024067042A1 WO 2024067042 A1 WO2024067042 A1 WO 2024067042A1 CN 2023118032 W CN2023118032 W CN 2023118032W WO 2024067042 A1 WO2024067042 A1 WO 2024067042A1
Authority
WO
WIPO (PCT)
Prior art keywords
sequence
sampling
drop
sampling sequence
data
Prior art date
Application number
PCT/CN2023/118032
Other languages
English (en)
French (fr)
Inventor
杨香玉
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Publication of WO2024067042A1 publication Critical patent/WO2024067042A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Definitions

  • the present application relates to the technical field of ambient light detection, and more specifically, to a method, device and electronic device for determining the falling depth of screen light leakage.
  • the under-screen light sensor can detect the ambient light of the electronic device, allowing the electronic device to implement functions such as self-adjustment of screen brightness based on the ambient light.
  • the ambient light detection must remove the influence of screen light leakage, which has a decisive influence on the accuracy of ambient light detection. Therefore, how to accurately calculate screen light leakage is a technical problem that needs to be solved urgently.
  • the embodiments of the present application provide a method, device and electronic device for determining the falling depth of screen light leakage, which can improve the accuracy of screen light leakage calculation, thereby helping to improve the accuracy and reliability of ambient light detection.
  • a method for determining a drop depth of screen light leakage comprising: acquiring sampling data according to a vertical synchronization signal; determining a first sampling sequence, and a second sampling sequence and/or a third sampling sequence according to the sampling data, the first sampling sequence being a sampling sequence of a drop zone of a screen light leakage drop waveform, the second sampling sequence being a sampling sequence on the left side of the drop zone of the screen light leakage drop waveform, and the third sampling sequence being a sampling sequence on the right side of the drop zone of the screen drop waveform; determining the drop depth according to the first sampling sequence, the second sampling sequence and/or the third sampling sequence.
  • the detection of ambient light needs to exclude the influence of screen light leakage. Since the drop depth of screen light leakage has nothing to do with the ambient light, the screen light leakage is usually calculated based on the model of screen light leakage drop depth-light leakage amount. Thus, the detection of ambient light is realized.
  • sampling data is obtained, so that the sensor can obtain sampling data based on the actual refresh situation of the screen, reduce the acquisition of noise, and help improve the signal-to-noise ratio of the final calculation result; by collecting the data of the drop zone, the left side of the drop zone and/or the right side of the drop zone of the screen leakage waveform, it is possible to flexibly select data from different areas for calculation when determining the drop depth of the screen leakage waveform, thereby avoiding the influence of factors such as ambient light strobe and sensor signal-to-noise ratio on the drop depth calculation, improving the accuracy of screen leakage calculation, and improving the distortion of screen leakage calculation in complex environments, thereby helping to improve the accuracy of ambient light detection.
  • acquiring the sampled data according to the vertical synchronization signal includes: receiving the vertical synchronization signal sent by the screen, and acquiring the sampled data after a first delay.
  • a vertical synchronization signal is used as a trigger, and data collection begins after a first delay.
  • the first delay may be different, thereby helping to improve the consistency of the sampled data.
  • determining the first sampling sequence, and the second sampling sequence and/or the third sampling sequence based on the sampling data includes: filtering the sampling data according to a signal-to-noise ratio requirement; and determining the first sampling sequence, and the second sampling sequence and/or the third sampling sequence based on the filtered sampling data.
  • the sampled data after acquiring the sampled data, can be filtered according to the signal-to-noise ratio requirements of different devices and apparatuses to obtain filtered sampled data.
  • the influence of the noise of the device or apparatus itself on the drop depth calculation can be effectively improved or eliminated, thereby improving the accuracy of the drop depth calculation and helping to improve the accuracy of ambient light detection.
  • determining the first sampling sequence, and the second sampling sequence and/or the third sampling sequence based on the sampling data includes: determining, based on the timing position corresponding to the sampling data, that the filtered sampling data belongs to the first sampling sequence, the second sampling sequence and/or the third sampling sequence.
  • the filtering process includes mean filtering and median filtering.
  • determining the drop depth according to the first sampling sequence, and the second sampling sequence and/or the third sampling sequence includes: determining a drop depth sequence according to the first sampling sequence, and the second sampling sequence and/or the third sampling sequence; determining the drop depth according to the drop depth sequence.
  • the sampling data is determined as the sampling sequence of the drop area and the non-drop area. After the columns are compiled, different sampling data can be flexibly selected to calculate the drop depth, thereby adapting to equipment of different models and requirements, and improving the flexibility of drop depth calculation.
  • determining the drop depth sequence according to the first sampling sequence, and the second sampling sequence and/or the third sampling sequence includes: determining the drop depth sequence according to the first sampling sequence and the second sampling sequence; or determining the drop depth sequence according to the first sampling sequence and the third sampling sequence; or determining the drop depth sequence according to the first sampling sequence, the second sampling sequence and the third sampling sequence.
  • the drop depth sequence is determined according to the first sampling sequence and the second sampling sequence; or the drop depth sequence is determined according to the first sampling sequence and the third sampling sequence.
  • the drop depth sequence is determined according to the first sampling sequence, the second sampling sequence and the third sampling sequence.
  • determining the drop depth sequence based on the first sampling sequence and the second sampling sequence includes: determining that the average value of the sampling data corresponding to M sampling points near the first time sequence position in the second sampling sequence is a first maximum value, where M is a positive integer; or determining that the average value of the sampling data corresponding to M sampling points near the time sequence position corresponding to the sampling data with the largest value in the second sampling sequence is a first maximum value, where M is a positive integer; and calculating the difference between the first maximum value and the first sampling sequence to determine the drop depth sequence.
  • determining the drop depth sequence based on the first sampling sequence and the third sampling sequence includes: determining that the average value of the sampling data corresponding to N sampling points near the second timing position in the third sampling sequence is the second maximum value, where N is a positive integer; or determining that the average value of the sampling data corresponding to N sampling points near the timing position corresponding to the sampling data with the largest value in the third sampling sequence is the second maximum value, where N is a positive integer; and calculating the difference between the second maximum value and the first sampling sequence to determine the drop depth sequence.
  • determining the drop depth sequence according to the first sampling sequence, the second sampling sequence and the third sampling sequence includes: calculating the interpolation operation results of the second sampling sequence and the third sampling sequence at the timing position corresponding to the first sampling sequence to obtain a fourth sampling sequence; calculating the difference between the fourth sampling sequence and the first sampling sequence To determine the drop depth sequence.
  • a drop depth sequence in a complex environment where the ambient light is flickering, can be calculated through interpolation operations, and the influence of the flickering ambient light on the drop depth calculation can be eliminated through interpolation operations, thereby improving the accuracy of the drop depth calculation in a complex environment and helping to improve the accuracy of ambient light detection.
  • the interpolation operation includes a linear interpolation operation, a cubic spline interpolation operation, and a polynomial interpolation operation.
  • determining the drop depth according to the drop depth sequence includes: determining the drop depth according to fixed data in the drop depth sequence; and determining the drop depth according to variable data in the drop depth sequence.
  • determining the drop depth through the drop depth sequence includes: determining the drop depth through fixed data in the drop depth sequence; and determining the drop depth through variable data in the drop depth sequence.
  • determining the drop depth based on fixed data in the drop depth sequence includes: determining that all data in the drop depth sequence are the drop depth; or determining that the average value of the data in the drop depth sequence is the drop depth; or determining that the average value of m data near the third time series position in the drop depth sequence is the drop depth, where m is a positive integer; or obtaining a weight coefficient sequence corresponding to the length of the drop depth sequence, and determining that the average value of all data after multiplying each data in the drop depth sequence by the corresponding data in the weight coefficient sequence is the drop depth.
  • determining the drop depth through the changing data in the drop depth sequence includes: determining the average value of the first n data in the drop depth sequence from large to small as the drop depth, where n is a positive integer; or determining the average value of h data near the time series position corresponding to the data with the largest value in the drop depth sequence as the drop depth, where h is a positive integer.
  • the drop depth is determined according to fixed data in the drop depth sequence; or when the screen light leakage drop waveform is inconsistent, the drop depth is determined according to changing data in the drop depth sequence.
  • a device for determining a drop depth of screen light leakage comprising: a first sensor, the first sensor being used to obtain sampling data according to a vertical synchronization signal; A first processor, the first processor is used to determine a first sampling sequence, a second sampling sequence and/or a third sampling sequence according to the sampling data; determine the drop depth according to the first sampling sequence, the second sampling sequence and/or the third sampling sequence; wherein the first sampling sequence is a sampling sequence of a drop zone of a screen light leakage drop waveform, the second sampling sequence is a sampling sequence on the left side of the drop zone of the screen light leakage drop waveform, and the third sampling sequence is a sampling sequence on the right side of the drop zone of the screen drop waveform.
  • the first sensor is used to receive a vertical synchronization signal sent by the screen, and obtain the sampled data after a first time delay.
  • the first processor is configured to filter the sampled data according to a signal-to-noise ratio requirement; and determine the first sampling sequence, and the second sampling sequence and/or the third sampling sequence according to the filtered sampled data.
  • the signal-to-noise ratio requirement includes a signal-to-noise ratio of the screen and a signal-to-noise ratio of the device.
  • the first processor is used to determine, according to a time sequence position corresponding to the sampled data, whether the filtered sampled data belongs to the first sampled sequence, the second sampled sequence and/or the third sampled sequence.
  • the filtering process includes mean filtering and median filtering.
  • the first processor is configured to determine a drop depth sequence according to the first sampling sequence, and the second sampling sequence and/or the third sampling sequence; and determine the drop depth according to the drop depth sequence.
  • the first processor is used to determine the drop depth sequence according to the first sampling sequence and the second sampling sequence; or to determine the drop depth sequence according to the first sampling sequence and the third sampling sequence; or to determine the drop depth sequence according to the first sampling sequence, the second sampling sequence and the third sampling sequence.
  • the first processor is used to determine the drop depth sequence according to the first sampling sequence and the second sampling sequence; or determine the drop depth sequence according to the first sampling sequence and the third sampling sequence.
  • the drop frequency of the screen leakage light is close to the ambient light stroboscopic frequency or the drop frequency of the screen leakage light is a multiple of the ambient light stroboscopic frequency.
  • the first processor is used to determine the drop depth sequence according to the first sampling sequence, the second sampling sequence and the third sampling sequence.
  • the first processor is used to determine that the average value of the sampling data corresponding to M sampling points near the first time sequence position in the second sampling sequence is a first maximum value, and calculate the difference between the first maximum value and the first sampling sequence to determine the drop depth sequence, where M is a positive integer; or the first processor is used to determine that the average value of the sampling data corresponding to M sampling points near the time sequence position corresponding to the sampling data with the largest value in the second sampling sequence is a first maximum value, where M is a positive integer, and calculate the difference between the first maximum value and the first sampling sequence to determine the drop depth sequence.
  • the first processor is used to determine that the average value of the sampling data corresponding to N sampling points near the second timing position in the third sampling sequence is the second maximum value, and calculate the difference between the second maximum value and the first sampling sequence to determine the drop depth sequence, where N is a positive integer; or the first processor is used to determine that the average value of the sampling data corresponding to N sampling points near the timing position corresponding to the sampling data with the largest value in the third sampling sequence is the second maximum value, where N is a positive integer, and calculate the difference between the second maximum value and the first sampling sequence to determine the drop depth sequence.
  • the first processor is used to calculate the interpolation results of the first sampling sequence and the third sampling sequence at the timing positions corresponding to the second sampling sequence to obtain a fourth sampling sequence, and calculate the difference between the fourth sampling sequence and the first sampling sequence to determine the drop depth sequence.
  • the interpolation operation includes a linear interpolation operation, a cubic spline interpolation operation, and a polynomial interpolation operation.
  • determining the drop depth according to the drop depth sequence includes: the first processor is used to determine the drop depth through fixed data in the drop depth sequence; or the first processor is used to determine the drop depth through variable data in the drop depth sequence.
  • the first processor is used to determine that all data of the drop depth sequence are the drop depth; or determine that the average value of the data of the drop depth sequence is the drop depth; or determine that the average value of m data near the third time sequence position in the drop depth sequence is the drop depth, where m is a positive integer; or obtain a weight coefficient sequence corresponding to the sequence length and the drop depth sequence length, and determine that each data in the drop depth sequence corresponds to the The average value of all data after multiplying the data in the weight coefficient sequence is the drop depth.
  • the first processor is used to determine the average value of the first n data in the drop depth sequence from large to small as the drop depth, where n is a positive integer; or to determine the average value of h data near the time series position corresponding to the data with the largest value in the drop depth sequence as the drop depth, where h is a positive integer.
  • the first processor when the screen light leakage drop waveform is consistent, the first processor is used to determine the drop depth through fixed data in the drop depth sequence; or when the screen light leakage drop waveform is not consistent, the first processor is used to determine the drop depth through changing data in the drop depth sequence.
  • a device for detecting ambient light comprising: the device comprising: a second sensor, the second sensor being used to obtain collected light data, the collected light data comprising ambient light data and screen light leakage data; a second processor, the second processor being used to obtain the screen light leakage data, and calculate the difference between the collected light data and the screen light leakage data to detect the ambient light, the screen light leakage data being calculated based on a screen light leakage drop depth-screen light leakage amount model; a device for determining the drop depth of screen light leakage as described in any possible implementation method of the second aspect, the device being used to detect the drop depth of the screen light leakage.
  • an electronic device comprising: a display screen; and a device for determining a falling depth of screen light leakage as described in any possible implementation of the second aspect, wherein the device is disposed below the display screen, and the device is used for ambient light detection.
  • FIG. 1 is a schematic diagram of a dimming cycle according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for determining the drop depth of screen light according to an embodiment of the present application.
  • FIG. 3 is another schematic flowchart of a method for determining the drop depth of screen light according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a dimming waveform and sampling points in an embodiment of the present application.
  • FIG. 5 is a schematic diagram of another dimming waveform and sampling points in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a device for determining a drop depth of screen light leakage according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an ambient light detection device according to an embodiment of the present application.
  • FIG8 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Light sensors can detect the ambient light of the electronic device, so that the electronic device can realize functions such as self-adjustment of screen brightness based on changes in ambient light.
  • light sensors which were originally set above the screen, have been moved under the screen, so that the detection of ambient light must take into account the influence of screen leakage.
  • the display screen since the display screen emits light during the display process, a portion of the screen light will be received by the light sensor at this time, that is, screen light leakage. Therefore, the light received by the light sensor set under the screen is the sum of the external ambient light and the screen leakage light.
  • the light intensity detected by the light sensor is the intensity of ambient light superimposed on the intensity of the display screen. Therefore, in order to accurately detect the ambient light intensity, it is necessary to subtract the intensity of screen leakage light from the light intensity detected by the sensor. It can be said that the accuracy of the light intensity estimation of screen leakage light directly determines the accuracy of ambient light detection.
  • FIG1 shows a schematic diagram of a dimming cycle of a display screen.
  • a display screen emits screen light based on its dimming cycle, and the dimming method may be, for example, pulse width modulation (PWM) dimming, direct current (DC) dimming, etc.
  • PWM pulse width modulation
  • DC direct current
  • the luminous power of a display screen will not remain constant, but will drop periodically over time.
  • a dimming cycle includes a drop zone (Blank) and a non-drop zone (Non-blank).
  • the drop zone refers to an interval within the dimming cycle where the luminous power or light intensity is relatively small, such as area a in FIG1 .
  • the display screen has less light leakage;
  • the non-drop zone refers to an interval with a larger luminous power or light intensity within the dimming cycle, such as area b in Figure 1.
  • the difference between the luminous power or light intensity in the non-drop zone and the luminous power or light intensity in the drop zone is the drop depth.
  • the screen leakage is the screen light received by the optical sensor, in fact, the dimming waveform of the display screen is exactly the same as the screen leakage waveform.
  • the dimming waveform described in this application is the light leakage waveform
  • the dimming cycle described in this application is the light leakage cycle
  • the drop depth of the dimming waveform of the display screen described in this application is the drop depth of the screen leakage waveform.
  • the dimming cycle may further include a corner zone between the drop zone and the non-drop zone.
  • the drop depth of screen light leakage is not affected by ambient light
  • a common method for detecting the amount of screen light leakage is to detect the amount of screen light leakage by establishing a relationship model of "screen light leakage drop depth-light leakage amount". Therefore, the determination of the drop depth becomes a key factor affecting the detection of light leakage, and then becomes a key factor affecting the accuracy of ambient light detection.
  • the signal-to-noise ratio of devices due to the influence of ambient light strobe, it is easy to cause the calculated result of the drop depth to be inconsistent with the actual result, resulting in calculation distortion.
  • an embodiment of the present application provides a method for determining the drop depth of screen leakage, which can accurately calculate the drop depth of screen leakage in a complex environment, improve the distortion of the drop depth calculation, and thus help improve the accuracy of ambient light detection.
  • Fig. 2 shows a schematic flow chart of a method for determining the drop depth of screen light in an embodiment of the present application. As shown in Fig. 2, the method 100 for determining the drop depth of screen light includes some or all of the following steps.
  • step S101 sampling data is obtained according to the vertical synchronization signal (Vertical Synchronization Signal, VSync).
  • VSync Vertical Synchronization Signal
  • step S102 a first sampling sequence, a second sampling sequence and/or a third sampling sequence are determined according to the sampling data.
  • the first sampling sequence is the sampling sequence of the drop area of the screen leakage drop waveform
  • the second sampling sequence is the sampling sequence on the left side of the drop area of the screen leakage drop waveform
  • the third sampling sequence is the sampling sequence on the right side of the drop area of the screen drop waveform.
  • the first sampling sequence, the second sampling sequence and/or the third sampling sequence are in the same dimming cycle.
  • the first sampling sequence refers to the sampling sequence of the drop zone in a dimming cycle
  • the second sampling sequence refers to the sampling sequence of the non-drop zone on the left side of the drop zone in the same dimming cycle
  • the third sampling sequence refers to the sampling sequence of the non-drop zone on the left side of the drop zone in the same dimming cycle.
  • the sampling sequence refers to the sampling sequence of the non-drop area on the right side of the drop area in the same dimming cycle.
  • step S103 the drop depth is determined according to the first sampling sequence, and the second sampling sequence and/or the third sampling sequence.
  • the sampled data is determined as different sampling sequences in the drop zone, the left side of the drop zone, and the right side of the drop zone according to the division of the drop zone, and each sampling sequence includes at least one sampling point, and each sampling point corresponds to a timing position. Therefore, when determining the drop depth, different sampling sequences and different calculation methods can be selected according to actual conditions to determine the drop depth, so that the calculation result of the drop depth is more in line with the actual result. For example, according to the ambient light strobe, the signal-to-noise ratio of the chip or sensor, etc., different combinations of the first sampling sequence, the second sampling sequence and/or the third sampling sequence are selected to determine the drop depth.
  • the first sampling sequence, and the second sampling sequence and/or the third sampling sequence includes the following cases or a combination of the following cases: the first sampling sequence and the second sampling sequence; the first sampling sequence and the third sampling sequence; the first sampling sequence, the second sampling sequence and the third sampling sequence. In other words, determining the first sampling sequence, and the second sampling sequence and/or the third sampling sequence is to determine the drop zone sequence and at least one non-drop zone sequence.
  • data is collected based on the vertical synchronization signal, and by collecting data from the drop area, the left side of the drop area, and the right side of the drop area of the screen light leakage waveform, it is possible to flexibly select data from different areas for calculation when determining the drop depth of the screen light leakage waveform.
  • the influence of the signal-to-noise ratio and the complex environment on the drop depth calculation is fully considered, thereby improving the accuracy of the screen light leakage calculation and helping to improve the accuracy of ambient light detection.
  • FIG. 3 is another schematic flow chart of a method 100 for determining a drop depth of screen light in an embodiment of the present application.
  • step S101 acquiring sampled data according to the vertical synchronization signal includes:
  • the positions of light sensors under display screens of different models or manufacturers are different, there is a time difference between when the light sensor receives the vertical synchronization signal and when the light sensor can obtain the sampled data. Therefore, when the vertical synchronization signal is introduced to obtain the sampled data, sampling is started after a delay of a period of time after receiving the vertical synchronization signal, so that light sensors set at different positions under the display screen can accurately obtain the sampled data.
  • the specific value of the first delay is different, and can be configured according to factors such as the specific position of the sensor under the screen.
  • step S102 determining the first sampling sequence, and the second sampling sequence and/or the third sampling sequence according to the sampling data includes:
  • S1021 Filter the sampled data according to the signal-to-noise ratio requirement.
  • S1022 determine a first sampling sequence, a second sampling sequence and/or a third sampling sequence according to the filtered sampling data.
  • the sampled data can be filtered according to the signal-to-noise ratio requirements so that the sampling sequence used for the calculation of the drop depth is not affected by the noise of the device itself.
  • the signal-to-noise ratio requirements include the signal-to-noise ratio requirements of the above-mentioned optical sensors, optical sensor chips, display screens and other devices.
  • the optical sensor can output a stable signal.
  • the signal received by the optical sensor may actually be jittery or contain noise.
  • a signal-to-noise ratio requirement is generated, and the above-mentioned signal-to-noise ratio requirement is determined by the circuit architecture or circuit characteristics of devices such as sensors or sensor chips.
  • the sampled data can also be selectively filtered according to the signal-to-noise ratio requirements. That is, at least part of the sampled data is filtered. For example, for a certain model of screen, when its signal-to-noise ratio requirement is known, if its own noise has an impact or a large impact on the data in the drop zone, the sampled data in the drop zone is filtered, and the first sampling sequence is determined based on the filtered sampled data in the drop zone.
  • filtering the sampled data according to the signal-to-noise ratio requirement can effectively remove the influence of the noise of the device or apparatus itself on the fall depth calculation, thereby improving the accuracy of the fall depth calculation and helping to improve the accuracy of ambient light detection.
  • the filtering process includes mean filtering and/or median filtering, wherein the mean filtering may be a sliding mean filtering with a certain window width.
  • determining the first sampling sequence, and the second sampling sequence and/or the third sampling sequence based on the sampling data includes: determining that the filtered sampling data belongs to the first sampling sequence, the second sampling sequence and/or the third sampling sequence based on the timing position corresponding to the sampling data.
  • the multiple sampling points are arranged on the drop waveform of screen light leakage in sequence.
  • the sequence of the sampling points it can be divided into a first sampling sequence, a second sampling sequence and/or a third sampling sequence.
  • sampling points there are J+I+K sampling points in a dimming cycle, and according to the sequence position, The sampling points can be divided into a first sampling sequence S j , a second sampling sequence S i and a third sampling sequence S k , where j, i, k represent the time sequence positions corresponding to the sampling points, j, i, k are integers and satisfy I+1 ⁇ j ⁇ I+J, 1 ⁇ i ⁇ I, I+J+1 ⁇ k ⁇ I+J+K.
  • step S103 determining the drop depth according to the first sampling sequence S j , and the second sampling sequence S i and/or the third sampling sequence S k includes:
  • S1032 Determine the drop depth according to the drop depth sequence.
  • a drop depth calculation scheme that is more suitable for actual conditions can be designed for different system brightness, screen dimming waveform regularity characteristics under grayscale, ambient light characteristics, etc.
  • Grayscale refers to the grayscale value of the screen display image. Based on this, by selecting different sampling sequences to determine the drop depth sequence, and then using the drop depth sequence to calculate the drop depth, it helps to improve the flexibility of the drop depth calculation, so that the drop depth determined by method 100 under different ambient lights can be flexibly adapted to devices and equipment of different models and different needs.
  • Fig. 4 shows a schematic diagram of a dimming waveform and sampling points in an embodiment of the present application.
  • determining the drop depth sequence according to the first sampling sequence S j , and the second sampling sequence Si and/or the third sampling sequence Sk includes: determining the drop depth sequence according to the first sampling sequence S j and the second sampling sequence Si ; or determining the drop depth sequence according to the first sampling sequence S j and the third sampling sequence Sk ; or determining the drop depth sequence according to the first sampling sequence S j , the second sampling sequence Si and the third sampling sequence Sk .
  • the data of the drop zone a and the non-drop zone b1 on the left side of the drop zone can be selected for calculation, or the data of the drop zone a and the non-drop zone b2 on the right side of the drop zone can be selected for calculation, or the data of the drop zone a, the non-drop zone b1 on the left side of the drop zone, and the non-drop zone b2 on the right side of the drop zone can be selected for calculation.
  • the drop frequency of the screen leakage light is higher than the ambient light stroboscopic frequency and the drop frequency of the screen leakage light is not in a multiple frequency relationship with the ambient light stroboscopic frequency
  • the drop depth sequence D j is determined according to the second sampling sequence S i ; or the drop depth sequence D j is determined according to the first sampling sequence S j and the third sampling sequence S k .
  • the lengths of the second sampling sequence, the first sampling sequence and the third sampling sequence are 2, 3 and 4 respectively.
  • the accurate drop depth can be obtained by using the data of the drop area and a non-drop area. Therefore, the drop depth sequence D j can be calculated based on the first sampling sequence S j and the second sampling sequence S i , and the drop depth sequence D j can also be calculated based on the first sampling sequence S j and the third sampling sequence S k .
  • the sequence length of the drop depth sequence D j is the same as that of the first sampling sequence S j .
  • FIG. 5 is a schematic diagram showing another dimming waveform and sampling points in an embodiment of the present application.
  • the drop depth sequence D j is determined according to the first sampling sequence S j , the second sampling sequence Si and the third sampling sequence Sk .
  • the phase difference between the stroboscopic ambient light and the screen leakage light cannot be averaged by multiple data.
  • the influence of the stroboscopic ambient light can be removed by interpolation operation. That is, the interpolation result can be calculated according to the sampling values and corresponding time sequence positions of the second sampling sequence S i and the third sampling sequence S k at the time sequence position corresponding to the first sampling sequence S j to obtain an interpolation sequence P j , and then the accurate drop depth sequence D j is calculated by the interpolation sequence P j and the first sampling sequence S j .
  • the sequence length of the drop depth sequence D j is the same as that of the first sampling sequence S j .
  • the drop frequency of screen light leakage is close to the ambient light stroboscopic frequency means that the absolute value of the difference between the drop frequency of screen light leakage and the ambient light stroboscopic frequency is less than or equal to the first threshold, and the first threshold is greater than or equal to 0.
  • the first threshold can be a fixed value or a range of values.
  • the first threshold can also be set according to the signal-to-noise ratio requirements of devices such as light sensors, light sensor chips, and display screens, the specific properties of the ambient light in the environment where the display screen is located, etc.
  • the above interpolation operation can also be used to obtain the drop depth sequence D j .
  • the interpolation result is calculated at the time position corresponding to the first sampling sequence S j to obtain an interpolation sequence P j , and then the drop depth sequence D j is calculated by the interpolation sequence P j and the first sampling sequence S j .
  • the sequence length of the drop depth sequence D j is the same as that of the first sampling sequence S j .
  • the interpolation method can also be used to accurately eliminate the influence of the ambient light stroboscopic.
  • the above-mentioned methods for determining the drop depth sequence Dj in different cases are only examples, and the method for determining the drop depth sequence Dj can be selected according to factors such as data accuracy and data calculation amount.
  • determining the drop depth sequence D j according to the first sampling sequence S j and the second sampling sequence Si includes: determining that the average value of the sampling data corresponding to M sampling points near the first timing position i set in the second sampling sequence Si is the first maximum value L1, where M is a positive integer; and calculating the difference between the first maximum value L1 and the first sampling sequence S j to determine the drop depth sequence D j .
  • sampling data corresponding to M sampling points near the first time sequence position iset can be selected in the second sampling sequence Sj , and the average value of the M sampling data is used as the first maximum value L1.
  • the drop depth sequence Dj is obtained by subtracting the first maximum value L1 from each sampling data in the first sampling sequence Sj .
  • M is 1
  • the sampling data corresponding to the first time sequence position iset is selected as the first maximum value L1.
  • determining the drop depth sequence Dj according to the first sampling sequence Sj and the second sampling sequence Sj includes: determining that the average value of the sampling data corresponding to M sampling points near the time position i max corresponding to the sampling data with the largest value in the second sampling sequence Sj is the first maximum value L1, where M is a positive integer; and calculating the difference between the first maximum value L1 and the first sampling sequence Sj to determine the drop depth sequence Dj .
  • the average value of M sampling data near the time sequence position i max corresponding to the sampling data with the largest value in the second sampling sequence Sj can be taken as the first maximum value L1.
  • the drop depth sequence Dj is obtained by subtracting the first maximum value L1 from each sampling data in the first sampling sequence Sj .
  • M is 1, the value in the second sampling sequence Sj is selected.
  • the largest sampled data is the first maximum value L1.
  • the first maximum value L1 can be used to characterize the light intensity or luminous power of the second sampling sequence Si on the left side of the drop area.
  • determining the drop depth sequence D j according to the first sampling sequence S j and the third sampling sequence S k includes: determining that the average value of the sampling data corresponding to N sampling points near the second timing position k set in the third sampling sequence S k is the second maximum value L2, where N is a positive integer; and calculating the difference between the second maximum value L2 and the first sampling sequence S j to determine the drop depth sequence D j .
  • the sampling data corresponding to N sampling points near the second time sequence position kset can be selected in the third sampling sequence Sk, and the average value of the N sampling data is used as the second maximum value L2.
  • the drop depth sequence Dj is obtained by subtracting the second maximum value L2 from each sampling data in the first sampling sequence Sj .
  • N is 1, the sampling data corresponding to the second time sequence position kset is selected as the second maximum value L2.
  • determining the drop depth sequence D j according to the first sampling sequence S j and the third sampling sequence S k includes: determining that the average value of the sampling data corresponding to N sampling points near the time position kmax corresponding to the sampling data with the largest value in the third sampling sequence S k is the second maximum value L2, where N is a positive integer; and calculating the difference between the second maximum value L2 and the first sampling sequence S j to determine the drop depth sequence D j .
  • the average value of N sampled data near the time sequence position kmax corresponding to the sampled data with the largest value in the third sampling sequence Sk can be taken as the second maximum value L2.
  • the drop depth sequence Dj is obtained by subtracting the second maximum value L2 from each sampled data in the first sampling sequence Sj .
  • N is 1
  • the sampled data with the largest value in the third sampling sequence Sk is selected as the second maximum value L2.
  • the second maximum value L2 can be used to characterize the light intensity or luminous power of the third sampling sequence Sk on the right side of the drop area.
  • determining the drop depth sequence D j according to the first sampling sequence S j , the second sampling sequence S i and the third sampling sequence S k includes: calculating the interpolation operation results of the second sampling sequence S i and the third sampling sequence S k at the timing positions corresponding to the first sampling sequence S j to obtain a fourth sampling sequence P j ; calculating the difference between the fourth sampling sequence P j and the first sampling sequence S j to determine the drop depth sequence D j .
  • the sampling values of the second sampling sequence Sj and the third sampling sequence Sk and their corresponding time positions i and k can be interpolated at the time position j corresponding to the first sampling sequence Sj to obtain the fourth sampling sequence Pj .
  • the length is the same as that of the first sampling sequence S j .
  • the drop depth sequence D j is obtained by subtracting the values of the fourth sampling sequence P j from those of the first sampling sequence at the same time sequence position j. Please continue to refer to Figure 5.
  • the interpolation operation includes at least one of a linear interpolation operation, a cubic spline interpolation operation, and a polynomial interpolation operation.
  • the drop depth sequence Dj can be as close to the actual drop depth as possible. Furthermore, after obtaining the drop depth sequence Dj , different schemes can be used to determine the drop depth that is ultimately used for the calculation of the "screen light leakage drop depth-light leakage amount" model.
  • determining the drop depth according to the drop depth sequence D j includes: determining the drop depth according to fixed data in the drop depth sequence D j ; or determining the drop depth according to variable data in the drop depth sequence D j .
  • the data in the drop depth sequence Dj can be selected for calculation according to the "screen light leakage drop depth-light leakage amount" model. For example, when the model is more complex, select fixed data to determine the drop depth to reduce the overall amount of calculation and help improve calculation efficiency. When the model is more complex, select variable data to determine the drop depth so that the calculated value of the light leakage amount is closer to the true value.
  • the fixed data in the drop depth sequence Dj can be, for example, data corresponding to a fixed time series position, all data in the drop depth sequence Dj , data corresponding to a fixed number in the drop depth sequence Dj, etc.
  • the variable data in the drop depth sequence Dj can be, for example, the maximum value, the median of some data, etc.
  • determining the drop depth according to the fixed data in the drop depth sequence Dj includes: determining all the data in the drop depth sequence Dj as the drop depth. That is, all the data in the drop depth sequence Dj are used to calculate the light leakage amount in the "screen light leakage drop depth-light leakage amount" model.
  • determining the drop depth according to the fixed data in the drop depth sequence D j includes: obtaining a weight coefficient sequence ⁇ j corresponding to the sequence length and the length of the drop depth sequence D j , and determining that the average value of all data after multiplying each data in the drop depth sequence D j by the data in the corresponding weight coefficient sequence ⁇ j is the drop depth. That is, the average value of D j * ⁇ j is the drop depth.
  • the weight coefficient sequence ⁇ j can be designed so that each value in the drop depth sequence Dj corresponds to a weight coefficient, and the value with low signal-to-noise ratio in the drop depth sequence Dj is controlled to be calculated with the small weight coefficient in ⁇ j , and the value with high signal-to-noise ratio in Dj is calculated with the large weight coefficient in ⁇ j , so that the weight of the value with low signal-to-noise ratio in Dj is small, and the weight of the value with high signal-to-noise ratio in Dj is large, thereby improving the overall signal-to-noise ratio of the drop depth used for model calculation.
  • determining the drop depth according to fixed data in the drop depth sequence D j includes: determining an average value of all data in the drop depth sequence D j as the drop depth.
  • determining the drop depth based on fixed data in the drop depth sequence D j includes: determining an average value of m data near a third time sequence position j set in the drop depth sequence D j as the drop depth, where m is a positive integer.
  • the drop depth is determined by fixed data in the drop depth sequence Dj .
  • the data difference between different dimming cycles is small.
  • the above method of determining the drop depth by fixed data can be selected to ensure the accuracy of calculating the light leakage amount while reducing the amount of calculation of the light leakage amount.
  • determining the drop depth based on the changing data in the drop depth sequence D j includes: determining the average value of the first n data in the drop depth sequence D j from large to small as the drop depth, where n is a positive integer.
  • determining the drop depth based on the changing data in the drop depth sequence Dj includes: determining the average value of h data near the time series position corresponding to the data with the largest value in the drop depth sequence Dj as the drop depth, where h is a positive integer.
  • the drop zone and non-drop zone in DC dimming are The proportion within the cycle usually remains unchanged, and the average power is adjusted by adjusting the power of the drop area and the non-drop area in the same proportion. At this time, the drop depth and the average power have a nearly linear relationship. At the same time, when the amount of light leakage is constant, the greater the drop depth, the higher the accuracy of the calculated light leakage. Therefore, for the model in DC dimming, you can choose a drop depth determination method that makes the final drop depth used for calculation larger.
  • the drop depth is determined by the changing data in the drop depth sequence.
  • the data difference between different dimming cycles is large.
  • the above method of determining the drop depth by changing data can be selected to further improve the accuracy of the light leakage calculation.
  • the maximum value in the second sampling sequence S i can be dynamically found.
  • the drop depth sequence D j is obtained by subtracting L1 from the sampling value at each timing position in the first sampling sequence S j , and the maximum value is dynamically found in D j as the final drop depth output.
  • Fig. 6 is a schematic structural diagram of the device 600 for determining the drop depth of screen light leakage.
  • the device 600 includes a first sensor 601 and a first processor 602.
  • the first sensor 601 is used to obtain sampling data according to a vertical synchronization signal;
  • the first processor 602 is used to determine a first sampling sequence S j , a second sampling sequence S i and/or a third sampling sequence S k according to the sampling data, and determine a fall depth according to the first sampling sequence S j , the second sampling sequence S i and/or the third sampling sequence S k .
  • the first sampling sequence Sj is a sampling sequence of the drop zone of the screen light leakage drop waveform
  • the second sampling sequence Si is a sampling sequence on the left side of the drop zone of the screen light leakage drop waveform
  • the third sampling sequence Sk is a sampling sequence on the right side of the drop zone of the screen drop waveform. It can be understood that the first sampling sequence, the second sampling sequence and/or the third sampling sequence are in the same dimming cycle.
  • the first sampling sequence refers to the sampling sequence of the drop zone in a dimming cycle
  • the second sampling sequence refers to the sampling sequence of the non-drop zone on the left side of the drop zone in the same dimming cycle
  • the third sampling sequence refers to the sampling sequence of the non-drop zone on the right side of the drop zone in the same dimming cycle.
  • the first sensor 601 is used to receive a vertical synchronization signal sent by the screen and obtain sampling data after a first delay.
  • the first processor 602 is used to process the sampled data according to the signal-to-noise ratio requirement. Perform filtering processing; determine the first sampling sequence S j , the second sampling sequence S i and/or the third sampling sequence S k according to the filtered sampling data.
  • the signal-to-noise ratio requirement includes a signal-to-noise ratio of the screen and a signal-to-noise ratio of the device.
  • the first processor 602 is configured to determine, according to the time sequence position corresponding to the sampled data, whether the filtered sampled data belongs to the first sampled sequence S j , the second sampled sequence S i and/or the third sampled sequence S k .
  • the filtering process includes at least one of mean filtering and median filtering.
  • the first processor 602 is configured to determine a drop depth sequence D j according to the first sampling sequence S j , and the second sampling sequence Si and/or the third sampling sequence Sk; and determine the drop depth according to the drop depth sequence D j .
  • the first processor 602 is used to determine the drop depth sequence D j according to the first sampling sequence S j and the second sampling sequence S i ; or determine the drop depth sequence D j according to the first sampling sequence S j and the third sampling sequence S k ; or determine the drop depth sequence D j according to the first sampling sequence S j, the second sampling sequence S i and the third sampling sequence S k .
  • the first processor 602 is used to determine the drop depth sequence D j according to the first sampling sequence S j and the second sampling sequence S i ; or determine the drop depth sequence D j according to the first sampling sequence S j and the third sampling sequence S k .
  • the first processor 602 is used to determine the drop depth sequence D j according to the first sampling sequence S j , the second sampling sequence Si and the third sampling sequence Sk .
  • the first processor 602 is used to determine that the average value of the sampling data corresponding to M sampling points near the first timing position i set in the second sampling sequence Si is the first maximum value L1, and calculate the difference between the first maximum value L1 and the first sampling sequence Sj to determine the drop depth sequence Dj , where M is a positive integer.
  • the first processor 602 is used to determine that the average value of the sampling data corresponding to the M sampling points near the time position i max corresponding to the sampling data with the largest value in the second sampling sequence Si is the first maximum value L1, and calculate the difference between the first maximum value L1 and the first sampling sequence Sj to determine the fall depth sequence Dj , where M is a positive integer.
  • the first processor 602 is used to determine that the average value of the sampling data corresponding to N sampling points near the second timing position k set in the third sampling sequence S k is the second maximum value L2, and calculate the difference between the second maximum value L2 and the first sampling sequence S j to determine the drop depth sequence D j , where N is a positive integer.
  • the first processor 602 is used to determine that the average value of the sampling data corresponding to N sampling points near the time position kmax corresponding to the sampling data with the largest value in the third sampling sequence S k is the second maximum value L2, and calculate the difference between the second maximum value L2 and the first sampling sequence S j to determine the fall depth sequence D j , where N is a positive integer.
  • the first processor 602 is used to calculate the interpolation results of the second sampling sequence Si and the third sampling sequence Sk at the timing position i corresponding to the first sampling sequence Sj to obtain a fourth sampling sequence Pj , and calculate the difference between the fourth sampling sequence Pj and the first sampling sequence Sj to determine the drop depth sequence Dj .
  • the interpolation operation includes at least one of a linear interpolation operation, a cubic spline interpolation operation, and a polynomial interpolation operation.
  • the first processor 602 is used to determine the drop depth by using fixed data in the drop depth sequence D j ; or the first processor 602 is used to determine the drop depth by using variable data in the drop depth sequence D j .
  • the first processor 602 is used to determine that all data in the drop depth sequence D j are the drop depth; or determine that the average value of the data in the drop depth sequence D j is the drop depth; or determine that the average value of m data near the third time sequence position j set in the drop depth sequence D j is the drop depth, where m is a positive integer; or obtain a weight coefficient sequence ⁇ j corresponding to the sequence length and the length of the drop depth sequence D j , and determine that the average value of all data after multiplying each data in the drop depth sequence D j with the data in the corresponding weight coefficient sequence ⁇ j is the drop depth.
  • the first processor is used to determine that the average value of the first n data in the drop depth sequence Dj from large to small is the drop depth, where n is a positive integer; or to determine that the average value of h data near the time series position corresponding to the data with the largest value in the drop depth sequence is the drop depth, where h is a positive integer.
  • the first processor 602 when the screen light leakage drop waveform is consistent, the first processor 602 is used to determine the drop depth through the fixed data in the drop depth sequence D j ; when the screen light leakage drop waveform is not consistent, the first processor 602 is used to determine the drop depth through the changing data in the drop depth sequence D j .
  • the device 600 for determining the drop depth of screen light leakage provided in the embodiment of the present application can implement the corresponding method 100 for determining the drop depth of screen light leakage in the aforementioned method embodiment, and has the beneficial effects of the corresponding method embodiment, which will not be repeated here.
  • Fig. 7 is a schematic structural diagram of a device 700 for detecting ambient light.
  • the apparatus 700 for detecting ambient light includes a second sensor 701 , a second processor 702 , and the apparatus 600 for determining the drop depth of screen light leakage.
  • the second sensor 701 is used to obtain the collected light data, which includes the ambient light data and the screen light leakage data.
  • the second processor 702 is used to obtain the screen light leakage data, and calculate the difference between the collected light data and the screen light leakage data to detect the ambient light.
  • the screen light leakage data can be calculated according to the screen light leakage drop depth-screen light leakage amount model in the aforementioned method embodiment.
  • the device 600 for determining the drop depth of the screen light leakage is used to detect the drop depth of the screen light leakage.
  • the device 700 for detecting ambient light may only include the device 600 for determining the drop depth of screen light leakage.
  • the second sensor 701 may be the first sensor 601
  • the second processor 702 may be the first processor 602 .
  • FIG8 shows a schematic structural diagram of an electronic device 800.
  • the electronic device 800 includes a display screen 801 and a device 600 for determining the drop depth of screen light leakage.
  • the device 600 is arranged below the display screen 801.
  • the device 600 can be used to determine the drop depth, and can calculate the screen light leakage amount according to the screen light leakage drop depth-screen light leakage amount model in the aforementioned method embodiment, thereby realizing ambient light detection.
  • the first processor 602 and the second processor 702 described in the embodiment of the present application may include one or more processing cores.
  • the first processor 602 and the second processor 702 are connected to the first sensor 601 and the second sensor 701 using various interfaces and lines, and execute various functions and process data of the device 600 or the device 700 by running or executing instructions, programs, code sets or instruction sets stored in the memory, and calling data stored in the memory.
  • the first processor 602 and the second processor 702 may be implemented in at least one hardware form of digital signal processing (DSP), field programmable gate array (FPGA), and programmable logic array (PLA).
  • DSP digital signal processing
  • FPGA field programmable gate array
  • PDA programmable logic array
  • the first processor 602 and the second processor 702 may integrate one or a combination of a central processing unit (CPU), an ambient light detector (GPU), and a modem.
  • CPU central processing unit
  • GPU ambient light detector
  • modem modem
  • the first sensor 601 and the second sensor 701 may be any photosensitive devices for collecting light to detect light intensity, and no specific photosensitive sensors are limited herein.
  • the electronic device 800 in the embodiment of the present application can be a portable or mobile computing device such as a terminal device, a mobile phone, a tablet computer, a laptop computer, a desktop computer, a gaming device, an in-vehicle electronic device or a wearable smart device, as well as other electronic devices such as an electronic database, a car, and an automated teller machine (ATM).
  • a portable or mobile computing device such as a terminal device, a mobile phone, a tablet computer, a laptop computer, a desktop computer, a gaming device, an in-vehicle electronic device or a wearable smart device, as well as other electronic devices such as an electronic database, a car, and an automated teller machine (ATM).
  • ATM automated teller machine
  • the wearable smart device includes a full-featured, large-size, and can achieve complete or partial functions without relying on a smart phone, such as a smart watch or smart glasses, etc., as well as a device that only focuses on a certain type of application function and needs to be used in conjunction with other devices such as a smart phone, such as various smart bracelets and smart jewelry for vital sign monitoring.
  • the display screen 801 may be used to display information input by a user or information provided to a user and various graphical user interfaces of the electronic device, which may be composed of images, texts, icons, videos, and any combination thereof.
  • the first processor 602 and the second processor 702 may obtain a detection light intensity value based on the light received by the first sensor 601 and the second sensor 701. Subsequently, the first processor 602 and the second processor 702 may determine the current ambient light intensity value based on the detection light intensity value, and adjust the brightness of the display screen 801 based on the current ambient light intensity value.
  • the display screen 801 may be an OLED display screen.
  • OLED organic light-emitting diode
  • the OLED display screen has good light transmittance and can pass visible light. Therefore, when the OLED display screen displays the content effect, it does not affect the first sensor 601 and the second sensor 701 receiving visible light. It should be understood that the OLED display screen is only used as an example, and the embodiments of the present application are not limited thereto.
  • the devices and methods disclosed in the embodiments of the present application can be implemented in other ways. For example, some features of the method embodiments described above can be ignored or not executed.
  • the device embodiments described above are merely schematic, and the division of units is only a logical function division. There may be other division methods in actual implementation, and multiple units or components may be combined or integrated into another system.
  • the coupling between the units or the coupling between the components may be direct coupling or indirect coupling, and the above coupling includes electrical, mechanical or other forms of connection.
  • modules described in this application as separate components may or may not be physically separate, and the components shown as modules may or may not be physical modules.
  • the functional modules in each embodiment may be integrated into one processing unit, or each module may exist physically separately, or two or more modules may be integrated into one unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种确定屏幕漏光的跌落深度的方法、装置及电子设备,方法包括:根据垂直同步信号,获取采样数据;根据所述采样数据,确定第一采样序列,以及第二采样序列和/或第三采样序列,所述第一采样序列为屏幕漏光跌落波形的跌落区的采样序列,所述第二采样序列为所述屏幕漏光跌落波形的跌落区左侧的采样序列,所述第三采样序列为所述屏幕跌落波形的跌落区右侧的采样序列;根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定所述跌落深度。该方法能够提高屏幕漏光计算的准确性,从而帮助提高环境光检测的准确性与可靠性。

Description

确定屏幕漏光的跌落深度的方法、装置及电子设备
本申请要求于2022年9月30日提交中国专利局、申请号为202211209421.6、发明名称为“确定屏幕漏光的跌落深度的方法、装置及电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及环境光检测技术领域,并且更具体地,涉及一种确定屏幕漏光的跌落深度的方法、装置及电子设备。
背景技术
为了追求更好的使用体验,全面屏成为电子设备等移动终端的发展趋势,使得电子设备内各个部件向屏下发展。
屏下光传感器能够检测电子设备所处环境的环境光,使得电子设备能够基于环境光实现屏幕亮度自调节等功能。而环境光检测必须去除屏幕漏光的影响,屏幕漏光对环境光检测的准确性具有决定性的影响。因此,如何准确计算屏幕漏光是一项亟待解决的技术问题。
发明内容
本申请实施例提供了一种确定屏幕漏光的跌落深度的方法、装置及电子设备,能够提高屏幕漏光计算的准确性,从而帮助提高环境光检测的准确性与可靠性。
第一方面,提供了一种确定屏幕漏光的跌落深度的方法,所述方法包括:根据垂直同步信号,获取采样数据;根据所述采样数据,确定第一采样序列,以及第二采样序列和/或第三采样序列,所述第一采样序列为屏幕漏光跌落波形的跌落区的采样序列,所述第二采样序列为所述屏幕漏光跌落波形的跌落区左侧的采样序列,所述第三采样序列为所述屏幕跌落波形的跌落区右侧的采样序列;根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定所述跌落深度。
环境光的检测需要排除屏幕漏光的影响,由于屏幕漏光的跌落深度与环境光无关,因此,通常基于屏幕漏光跌落深度-漏光量的模型计算屏幕漏光, 进而实现环境光的检测。本申请实施例中,基于垂直同步信号,获取采样数据,能够使得传感器基于屏幕的实际刷新情况获取采样数据,减少噪声的获取,有助于提高最终计算结果的信噪比;通过采集屏幕漏光波形的跌落区、跌落区左侧和/或跌落区右侧的数据,使得确定屏幕漏光波形的跌落深度时能够灵活选择不同区域的数据进行计算,从而避免如环境光频闪、传感器信噪比等因素对跌落深度计算的影响,提高屏幕漏光计算的准确性,改善复杂环境下屏幕漏光计算失真的情况,从而帮助提高环境光检测的准确性。
在一种可能的实现方式中,所述根据垂直同步信号,获取采样数据包括:接收所述屏幕发送的垂直同步信号,经过第一时延后获取所述采样数据。
本申请的实施例中,以垂直同步信号为触发,经过第一时延后开始数据的采集,对于设置于显示屏下不同位置的传感器,第一时延可以不同,由此,有助于提高采样数据的一致性。
在一种可能的实现方式中,所述根据所述采样数据,确定第一采样序列,以及第二采样序列和/或第三采样序列包括:根据信噪比需求,对所述采样数据进行滤波处理;根据滤波后的所述采样数据确定所述第一采样序列,以及所述第二采样序列和/或所述第三采样序列。
本申请的实施例中,在获取采样数据后,可以根据不同设备、装置的信噪比需求对采样数据进行滤波处理,获得滤波后的采样数据。通过使用滤波后的采样数据进行屏幕漏光的跌落深度计算,能够有效改善或消除设备或装置自身的噪声对跌落深度计算的影响,从而提高跌落深度计算的准确性,帮助提高环境光检测的准确性。
在一种可能的实现方式中,所述根据所述采样数据,确定第一采样序列,以及第二采样序列和/或第三采样序列包括:根据所述采样数据对应的时序位置,确定滤波后的所述采样数据属于所述第一采样序列、所述第二采样序列和/或所述第三采样序列。
在一种可能的实现方式中,滤波处理包括均值滤波、中值滤波。
在一种可能的实现方式中,所述根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定所述跌落深度包括:根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定跌落深度序列;根据所述跌落深度序列确定所述跌落深度。
本申请的实施例中,将采样数据分别确定成跌落区和非跌落区的采样序 列后,能够灵活选择不同的采样数据进行跌落深度的计算,从而适应型号不同、需求不同的设备,提高了跌落深度计算的灵活性。
在一种可能的实现方式中,所述根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定跌落深度序列包括:根据所述第一采样序列和所述第二采样序列确定所述跌落深度序列;或根据所述第一采样序列和所述第三采样序列确定所述跌落深度序列;或根据所述第一采样序列、所述第二采样序列和所述第三采样序列确定所述跌落深度序列。
在一种可能的实现方式中,在所述屏幕漏光的跌落频率高于环境光频闪频率且所述屏幕漏光的跌落频率与所述环境光频闪频率不是倍频关系时,根据所述第一采样序列和所述第二采样序列确定所述跌落深度序列;或根据所述第一采样序列和所述第三采样序列确定所述跌落深度序列。
在一种可能的实现方式中,在所述屏幕漏光的跌落频率与所述环境光频闪频率相近或所述屏幕漏光的跌落频率与所述环境光频闪频率是倍频关系时,根据所述第一采样序列、所述第二采样序列和所述第三采样序列确定所述跌落深度序列。
在一种可能的实现方式中,所述根据所述第一采样序列和所述第二采样序列确定所述跌落深度序列包括:确定所述第二采样序列中第一时序位置附近M个采样点对应的采样数据的平均值为第一最大值,M为正整数;或确定所述第二采样序列中数值最大的采样数据对应的时序位置附近M个采样点对应的采样数据的平均值为第一最大值,M为正整数;计算所述第一最大值与所述第一采样序列的差值以确定所述跌落深度序列。
在一种可能的实现方式中,所述根据所述第一采样序列和所述第三采样序列确定所述跌落深度序列包括:确定所述第三采样序列中第二时序位置附近N个采样点对应的采样数据的平均值为第二最大值,N为正整数;或确定所述第三采样序列中数值最大的采样数据对应的时序位置附近N个采样点对应的采样数据的平均值为第二最大值,N为正整数;计算所述第二最大值与所述第一采样序列的差值以确定所述跌落深度序列。
在一种可能的实现方式中,所述根据所述第一采样序列、所述第二采样序列和所述第三采样序列确定所述跌落深度序列包括:计算所述第二采样序列和所述第三采样序列在所述第一采样序列对应的时序位置的插值运算结果以获取第四采样序列;计算所述第四采样序列与所述第一采样序列的差值 以确定所述跌落深度序列。
本申请的实施例中,在环境光为具有频闪等复杂环境中,可以通过插值运算计算得到跌落深度序列,通过插值运算消除频闪环境光对跌落深度计算的影响,从而提高复杂环境下跌落深度计算的准确性,帮助提高环境光检测的准确性。
在一种可能的实现方式中,所述插值运算包括线性插值运算、三次样条插值运算和多项式插值运算。
在一种可能的实现方式中,所述根据所述跌落深度序列确定所述跌落深度包括:根据所述跌落深度序列中固定的数据确定所述跌落深度;根据所述跌落深度序列中变化的数据确定所述跌落深度。
在一种可能的实现方式中,所述通过所述跌落深度序列确定所述跌落深度包括:通过所述跌落深度序列中固定的数据确定所述跌落深度;通过所述跌落深度序列中变化的数据确定所述跌落深度。
在一种可能的实现方式中,所述根据所述跌落深度序列中固定的数据确定所述跌落深度包括:确定所述跌落深度序列的所有数据为所述跌落深度;或确定所述跌落深度序列的数据平均值为所述跌落深度;或确定所述跌落深度序列中第三时序位置附近m个数据的平均值为所述跌落深度,m为正整数;或获取序列长度与所述跌落深度序列长度对应的权重系数序列,确定所述跌落深度序列中的每个数据与其对应的所述权重系数序列中的数据相乘后所有数据的平均值为所述跌落深度。
在一种可能的实现方式中,所述通过所述跌落深度序列中变化的数据确定所述跌落深度包括:确定所述跌落深度序列中数值由大到小的前n个数据的平均值为所述跌落深度,n为正整数;或确定所述跌落深度序列中数值最大的数据对应的时序位置附近h个数据的平均值为所述跌落深度,h为正整数。
在一种可能的实现方式中,在所述屏幕漏光跌落波形具有一致性时,根据所述跌落深度序列中固定的数据确定所述跌落深度;或在所述屏幕漏光跌落波形不具有一致性时,根据所述跌落深度序列中变化的数据确定所述跌落深度。
第二方面,提供一种用于确定屏幕漏光的跌落深度的装置,所述装置包括:第一传感器,所述第一传感器用于根据垂直同步信号,获取采样数据; 第一处理器,所述第一处理器用于根据所述采样数据确定第一采样序列,以及第二采样序列和/或第三采样序列;根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定所述跌落深度;其中,所述第一采样序列为屏幕漏光跌落波形的跌落区的采样序列,所述第二采样序列为所述屏幕漏光跌落波形的跌落区左侧的采样序列,所述第三采样序列为所述屏幕跌落波形的跌落区右侧的采样序列。
在一种可能的实现方式中,所述第一传感器用于接收所述屏幕发送的垂直同步信号,并经过第一时延后获取所述采样数据。
在一种可能的实现方式中,所述第一处理器用于根据信噪比需求,对所述采样数据进行滤波处理;根据滤波后的所述采样数据确定所述第一采样序列,以及所述第二采样序列和/或所述第三采样序列。
在一种可能的实现方式中,所述信噪比需求包括所述屏幕的信噪比、所述装置的信噪比。
在一种可能的实现方式中,所述第一处理器用于根据所述采样数据对应的时序位置,确定滤波后的所述采样数据属于所述第一采样序列、所述第二采样序列和/或所述第三采样序列。
在一种可能的实现方式中,所述滤波处理包括均值滤波、中值滤波。
在一种可能的实现方式中,所述第一处理器用于根据所述第一采样序列,以及所述第二采样序列和/或所述第三采样序列确定跌落深度序列;根据所述跌落深度序列确定所述跌落深度。
在一种可能的实现方式中,所述第一处理器用于根据所述第一采样序列和所述第二采样序列确定所述跌落深度序列;或根据所述第一采样序列和所述第三采样序列确定所述跌落深度序列;或根据所述第一采样序列、所述第二采样序列和所述第三采样序列确定所述跌落深度序列。
在一种可能的实现方式中,在所述屏幕漏光的跌落频率高于环境光频闪频率且所述屏幕漏光的跌落频率与所述环境光频闪频率不是倍频关系时,所述第一处理器用于根据所述第一采样序列和所述第二采样序列确定所述跌落深度序列;或根据所述第一采样序列和所述第三采样序列确定所述跌落深度序列。
在一种可能的实现方式中,在所述屏幕漏光的跌落频率与所述环境光频闪频率相近或所述屏幕漏光的跌落频率与所述环境光频闪频率是倍频关系 时,所述第一处理器用于根据所述第一采样序列、所述第二采样序列和所述第三采样序列确定所述跌落深度序列。
在一种可能的实现方式中,所述第一处理器用于确定所述第二采样序列中第一时序位置附近M个采样点对应的采样数据的平均值为第一最大值,并计算所述第一最大值与所述第一采样序列的差值以确定所述跌落深度序列,M为正整数;或所述第一处理器用于确定所述第二采样序列中数值最大的采样数据对应的时序位置附近M个采样点对应的采样数据的平均值为第一最大值,M为正整数,并计算所述第一最大值与所述第一采样序列的差值以确定所述跌落深度序列。
在一种可能的实现方式中,所述第一处理器用于确定所述第三采样序列中第二时序位置附近N个采样点对应的采样数据的平均值为第二最大值,并计算所述第二最大值与所述第一采样序列的差值以确定所述跌落深度序列,N为正整数;或所述第一处理器用于确定所述第三采样序列中数值最大的采样数据对应的时序位置附近N个采样点对应的采样数据的平均值为第二最大值,N为正整数,并计算所述第二最大值与所述第一采样序列的差值以确定所述跌落深度序列。
在一种可能的实现方式中,所述第一处理器用于计算所述第一采样序列和所述第三采样序列在所述第二采样序列对应的时序位置的插值运算结果以获取第四采样序列,并计算所述第四采样序列与所述第一采样序列的差值以确定所述跌落深度序列。
在一种可能的实现方式中,所述插值运算包括线性插值运算、三次样条插值运算和多项式插值运算。
在一种可能的实现方式中,所述根据所述跌落深度序列确定所述跌落深度包括:所述第一处理器用于通过所述跌落深度序列中固定的数据确定所述跌落深度;或所述第一处理器用于通过所述跌落深度序列中变化的数据确定所述跌落深度。
在一种可能的实现方式中,所述第一处理器用于确定所述跌落深度序列的所有数据为所述跌落深度;或确定所述跌落深度序列的数据平均值为所述跌落深度;或确定所述跌落深度序列中第三时序位置附近m个数据的平均值为所述跌落深度,m为正整数;或获取序列长度与所述跌落深度序列长度对应的权重系数序列,确定所述跌落深度序列中的每个数据与其对应的所述 权重系数序列中的数据相乘后所有数据的平均值为所述跌落深度。
在一种可能的实现方式中,所述第一处理器用于确定所述跌落深度序列中数值由大到小的前n个数据的平均值为所述跌落深度,n为正整数;或确定所述跌落深度序列中数值最大的数据对应的时序位置附近h个数据的平均值为所述跌落深度,h为正整数。
在一种可能的实现方式中,在所述屏幕漏光跌落波形具有一致性时,所述第一处理器用于通过所述跌落深度序列中固定的数据确定所述跌落深度;或在所述屏幕漏光跌落波形不具有一致性时,所述第一处理器用于通过所述跌落深度序列中变化的数据确定所述跌落深度。
第三方面,提供一种检测环境光的装置,所述装置包括:所述装置包括:第二传感器,所述第二传感器用于获取采集光数据,所述采集光数据包括环境光数据和屏幕漏光数据;第二处理器,所述第二处理器用于获取所述屏幕漏光数据,并计算所述采集光数据与所述屏幕漏光数据的差值以检测所述环境光,所述屏幕漏光数据根据屏幕漏光跌落深度-屏幕漏光量模型计算得到;如第二方面任一可能的实现方式所述的用于确定屏幕漏光的跌落深度的装置,所述装置用于检测所述屏幕漏光的跌落深度。
第四方面,提供一种电子设备,包括:显示屏;以及如第二方面任一可能的实现方式所述的用于确定屏幕漏光的跌落深度的装置,所述装置设置于所述显示屏的下方,所述装置用于环境光检测。
附图说明
图1是本申请实施例一种调光周期的示意图。
图2是本申请实施例一种确定屏幕光的跌落深度的方法的示意性流程图。
图3是本申请实施例一种确定屏幕光的跌落深度的方法的另一示意性流程图。
图4是本申请实施例中一种调光波形以及采样点的示意图。
图5是本申请实施例中另一种调光波形以及采样点的示意图。
图6是本申请实施例一种用于确定屏幕漏光的跌落深度的装置的示意性结构图。
图7是本申请实施例一种环境光检测装置的示意性结构图。
图8是本申请实施例一种电子设备的示意性结构图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
应理解,在本申请实施例和所附权利要求书中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请实施例。例如,在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“上述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
光传感器能够检测电子设备所在环境的环境光,从而使得电子设备能够基于环境光的变化实现屏幕亮度自调节等功能。为了实现更高的屏占比和全面屏,光传感器这类原本设置于屏幕上方的器件被移至屏下,使得环境光的检测必须考虑屏幕漏光的影响。
具体来说,由于显示屏在显示的过程中,屏幕会发光,此时,会有一部分屏幕光被光传感器接收,即屏幕漏光。因此,设置在屏下的光传感器接收到的光为外界环境光和屏幕漏光之和。换言之,光传感器检测到的光强是环境光光强叠加显示屏的发光光强。故为了准确检测环境光强,需要将传感器检测到的光强减去屏幕漏光的光强,可以说,屏幕漏光的光强估算是否准确直接决定了环境光检测的准确性。
图1展示了显示屏的一个调光周期的示意图。通常,显示屏基于其调光周期发出屏幕光,该调光方式例如可以为脉冲宽度调制(Pulse width modulation,PWM)调光、直流(Direct current,DC)调光等。显示屏的发光功率不会一直保持不变,其随着时间发生周期性跌落,由此,一个调光周期包括跌落区(Blank)和非跌落区(Non-blank)。其中,跌落区指调光周期内发光功率或光强较小的区间,例如图1中的a区域,在跌落区中显示屏的漏光较少; 而非跌落区指调光周期内发光功率或光强较大的区间,例如图1中的b区域,在非跌落区中显示屏的漏光较多。非跌落区的发光功率或光强与跌落区的发光功率或光强的差值即跌落深度。如上所述,由于屏幕漏光是被光学传感器接收到的屏幕光,所以实际上,显示屏的调光波形与屏幕漏光波形完全一致,换言之,本申请所述的调光波形就是漏光波形,本申请所述的调光周期就是漏光周期,本申请所述的显示屏的调光波形的跌落深度即屏幕漏光波形的跌落深度。
应理解,图1中跌落区和非跌落区的划分仅作为一种示例。在其他示例中,调光周期还可以包括位于跌落区和非跌落区之间的转角区(Corner)。
由于屏幕漏光的跌落深度不受环境光影响,因此,一种常见的检测屏幕的漏光量的方法通过建立一个“屏幕漏光跌落深度-漏光量”的关系模型来检测屏幕的漏光量。因此,跌落深度的确定成为影响漏光量检测的关键因素,进而成为影响环境光检测准确性的关键因素。但实际确定跌落深度的过程中,受环境光频闪、传感器或芯片等设备的信噪比影响,易导致跌落深度的计算结果与实际结果不一致,出现计算失真的情况。
为此,本申请实施例提供一种确定屏幕漏光的跌落深度的方法,能够在复杂环境下准确计算屏幕漏光的跌落深度,改善跌落深度计算失真的情况,从而帮助提升环境光检测的准确性。
图2示出了本申请实施例中一种确定屏幕光的跌落深度的方法的示意性流程图。如图2所示,确定屏幕光的跌落深度的方法100包括以下步骤中的部分或全部。
在步骤S101中,根据垂直同步信号(Vertical Synchronization Signal,VSync),获取采样数据。
在步骤S102中,根据采样数据,确定第一采样序列,以及第二采样序列和/或第三采样序列。
其中,第一采样序列为屏幕漏光跌落波形的跌落区的采样序列,第二采样序列为屏幕漏光跌落波形的跌落区左侧的采样序列,第三采样序列为屏幕跌落波形的跌落区右侧的采样序列。
可以理解,所述第一采样序列、第二采样序列和/或第三采样序列在同一个调光周期内,换言之,第一采样序列指一个调光周期内跌落区的采样序列,第二采样序列指同一个调光周期内跌落区左侧的非跌落区的采样序列,第三 采样序列指同一个调光周期内跌落区右侧的非跌落区的采样序列。
在步骤S103中,根据第一采样序列,以及第二采样序列和/或第三采样序列确定跌落深度。
也就是说,方法100在以垂直同步信号为触发,获取采样数据后,根据跌落区的划分,将采样数据分别在跌落区、跌落区左侧、跌落区右侧中确定为不同的采样序列,每个采样序列包括至少一个采样点,每个采样点分别对应一个时序位置。由此,在确定跌落深度时,可以根据实际情况选择不同的采样序列、不同的计算方式来确定跌落深度,使得跌落深度的计算结果更贴合实际结果。例如,根据环境光频闪的情况、芯片或传感器的信噪比等情况选择根据第一采样序列、第二采样序列和/或第三采样序列的不同组合方式来确定跌落深度。
“第一采样序列,以及第二采样序列和/或第三采样序列”包括以下几种情况或以下几种情况的组合:第一采样序列和第二采样序列;第一采样序列和第三采样序列;第一采样序列、第二采样序列和第三采样序列。换言之,确定第一采样序列,以及第二采样序列和/或第三采样序列即确定跌落区序列和至少一个非跌落区序列。
可见,本实施例中,基于垂直同步信号采集数据,并通过采集屏幕漏光波形的跌落区、跌落区左侧和跌落区右侧的数据,使得确定屏幕漏光波形的跌落深度时能够灵活选择不同区域的数据进行计算,在确定跌落深度时充分考虑信噪比、复杂环境对跌落深度计算的影响,从而提高屏幕漏光计算的准确性,帮助提高环境光检测的准确性。
图3为本申请实施例中一种确定屏幕光的跌落深度的方法100的另一示意性流程图。
可选地,在步骤S101中,根据垂直同步信号获取采样数据包括:
S1011,接收屏幕发送的垂直同步信号,经过第一时延后获取采样数据。
具体来说,由于光传感器在不同型号或厂家的显示屏下的位置不同,因此,光传感器接收到垂直同步信号与光传感器能够获取采样数据之间存在时间差。因此,在引入垂直同步信号来获取采样数据时,在接收垂直同步信号后经过一段时间的时延再开始采样,使得设置于显示屏下不同位置的光传感器可以准确地获取采样数据。对于不同位置的传感器来说,第一时延的具体数值不同,可以根据传感器在屏幕下方的具体位置等因素进行配置。
可见,以垂直同步信号为触发,经过第一时延后获取采样数据有助于提高采样数据的一致性,从而帮助提高跌落深度检测的准确性。
可选地,在步骤S102中,根据采样数据确定第一采样序列,以及第二采样序列和/或第三采样序列包括:
S1021,根据信噪比需求,对采样数据进行滤波处理。
S1022,根据滤波后的采样数据确定第一采样序列,以及第二采样序列和/或第三采样序列。
实际计算过程中,如光传感器、光传感器芯片、显示屏等装置自身存在一定噪声,使得采集数据受噪声影响而失真。因此,可以根据信噪比需求对采样数据进行滤波处理,使得用于跌落深度计算的采样序列不受装置自身噪声的影响。信噪比需求包括上述光传感器、光传感器芯片、显示屏等装置的信噪比需求。理想状态下,光传感器能够输出稳定的信号。但光传感器接收到的信号实际上可能是抖动的或者包含噪声的,为了实现光传感器输出信号的稳定性,由此,产生了信噪比需求,上述信噪比需求由传感器或传感器芯片等装置的电路架构或电路特性决定。另外,还可以根据信噪比需求,对采样数据进行选择性滤波处理。即对至少部分采样数据进行滤波处理。例如,针对某一型号的屏幕,在已知其信噪比需求的情况下,若其自身噪声对跌落区的数据有影响或影响较大,则对跌落区的采样数据进行滤波处理,根据滤波后的跌落区采样数据确定第一采样序列。
本实施例中,根据信噪比需求对采样数据进行滤波处理能够有效去除设备或装置自身的噪声对跌落深度计算的影响,从而提高跌落深度计算的准确性,帮助提高环境光检测的准确性。
在一些实施例中,滤波处理包括均值滤波和/或中值滤波。其中,均值滤波可以是具有一定窗口宽度的滑动均值滤波。
在一些实施例中,根据采样数据,确定第一采样序列,以及第二采样序列和/或第三采样序列包括:根据采样数据对应的时序位置,确定滤波后的采样数据属于第一采样序列、第二采样序列和/或第三采样序列。
具体来说,以一个调光周期为示例,一个调光周期内具有任意个数的多个采样点,该多个采样点按照时序先后依次排布于屏幕漏光的跌落波形上,根据采样点的时序先后能够将其划分为第一采样序列、第二采样序列和/或第三采样序列。例如,一个调光周期内具有J+I+K个采样点,根据时序位置能 够将采样点分为第一采样序列Sj、第二采样序列Si和第三采样序列Sk。其中,j、i、k表示采样点对应的时序位置,j、i、k为整数且满足I+1≤j≤I+J,1≤i≤I,I+J+1≤k≤I+J+K。
本实施例中,通过将采样数据确定为不同的采样序列,使得后续计算过程中能够根据实际情况选择合适的数据、应用在合适的计算方案中来确定跌落深度。
可选地,在步骤S103中,根据第一采样序列Sj,以及第二采样序列Si和/或第三采样序列Sk确定跌落深度包括:
S1031,根据第一采样序列Sj,以及第二采样序列Si和/或第三采样序列Sk确定跌落深度序列。
S1032,根据跌落深度序列确定跌落深度。
具体来说,针对不同的系统亮度、灰阶下屏幕调光波形规律特点、环境光特点等可以设计更加适应实际情况的跌落深度计算方案。灰阶指屏幕显示图片的灰度值。基于此,通过选择不同的采样序列确定出跌落深度序列,再用跌落深度序列来计算跌落深度,有助于提高跌落深度计算的灵活性,使得通过方法100在不同的环境光下确定的跌落深度能够灵活适应不同型号、不同需求的装置和设备。
接下来,简单介绍确定跌落深度序列的具体过程。图4示出了本申请实施例中一种调光波形以及采样点的示意图。
在S1031中,根据第一采样序列Sj,以及第二采样序列Si和/或第三采样序列Sk确定跌落深度序列包括:根据第一采样序列Sj和第二采样序列Si确定跌落深度序列;或者根据第一采样序列Sj和第三采样序列Sk确定跌落深度序列;或者根据第一采样序列Sj、第二采样序列Si和第三采样序列Sk确定跌落深度序列。
具体地,如图4所示,在确定跌落深度序列Dj时,或者说,在选择用于跌落深度计算的采样数据时,可以选择跌落区a以及跌落区左侧非跌落区b1的数据进行计算,或者,可以选择跌落区a以及跌落区右侧非跌落区b2的数据进行计算,还可以选择跌落区a、跌落区左侧非跌落区b1和跌落区右侧非跌落区b2的数据进行计算。
在一些实施例中,在屏幕漏光的跌落频率高于环境光频闪频率且屏幕漏光的跌落频率与环境光频闪频率不是倍频关系时,根据第一采样序列Sj和第 二采样序列Si确定跌落深度序列Dj;或根据第一采样序列Sj和第三采样序列Sk确定跌落深度序列Dj
请继续参见图4,以一个调光周期采集9个采样点为示例,采样数据被确定为第一采样序列Sj(j=3、4、5)、第二采样序列Si(i=1、2)和第三采样序列Sk(k=6、7、8、9),第二采样序列、第一采样序列和第三采样序列的长度分别为2、3、4。屏幕漏光的跌落频率高于环境光频闪频率且屏幕漏光的跌落频率与环境光频闪频率不是倍频关系时,频闪环境光与屏幕漏光之间的相位差可以在多个数据的计算中被平均,此时,使用跌落区和一个非跌落区的数据即可得到准确的跌落深度。故可以根据第一采样序列Sj与第二采样序列Si计算得到跌落深度序列Dj,也可以根据第一采样序列Sj与第三采样序列Sk计算得到跌落深度序列Dj,跌落深度序列Dj的序列长度与第一采样序列Sj相同。
图5示出了本申请实施例中另一种调光波形以及采样点的示意图。
如图5所示,在一些实施例中,在屏幕漏光的跌落频率与环境光频闪频率相近或屏幕漏光的跌落频率与环境光频闪频率是倍频关系时,根据第一采样序列Sj、第二采样序列Si和第三采样序列Sk确定跌落深度序列Dj
具体来说,仍以一个调光周期采集9个采样点为示例,采样数据被确定为第一采样序列Sj(j=2、3、4、5、6)、第二采样序列Si(i=1)和第三采样序列Sk(k=7、8、9),第二采样序列、第一采样序列和第三采样序列的长度分别为1、5、3。在屏幕漏光的跌落频率与环境光频闪频率相近或屏幕漏光的跌落频率与环境光频闪频率是倍频关系的情况下,频闪环境光与屏幕漏光之间的相位差无法被多个数据平均,此时,可以通过插值运算来去除频闪环境光的影响。即可以根据第二采样序列Si与第三采样序列Sk的采样值和对应的时序位置在第一采样序列Sj对应的时序位置计算插值结果得到一个插值序列Pj,再通过插值序列Pj与第一采样序列Sj计算得到准确的跌落深度序列Dj。跌落深度序列Dj的序列长度与第一采样序列Sj相同。
“屏幕漏光的跌落频率与环境光频闪频率相近”表示屏幕漏光的跌落频率与环境光频闪频率的差值的绝对值小于或等于第一阈值,第一阈值大于或等于0,第一阈值可以是固定的数值,也可以是一个数值范围。另外,第一阈值还可以根据光传感器、光传感器芯片、显示屏等装置的信噪比需求、显示屏所处环境的环境光的具体性质等进行设置。
应理解,在屏幕漏光的跌落频率高于环境光频闪频率且与环境光频闪频率不是倍频关系时也可以使用上述插值运算得到跌落深度序列Dj。具体来说,请继续参见图4,以一个调光周期采集9个采样点为示例,采样数据被确定为第一采样序列Sj(j=3、4、5)、第二采样序列Si(i=1、2)和第三采样序列Sk(k=6、7、8、9),第二采样序列、第一采样序列和第三采样序列的长度分别为2、3、4。此时,根据第二采样序列Si与第三采样序列Sk的采样值和对应的时序位置在第一采样序列Sj对应的时序位置计算插值结果得到一个插值序列Pj,再通过插值序列Pj与第一采样序列Sj计算得到跌落深度序列Dj。跌落深度序列Dj的序列长度与第一采样序列Sj相同。这种情况下尽管屏幕漏光与环境光之间的相位差可能被平均,但也可以利用插值运算的方法来准确消除环境光频闪的影响。上述不同情况下的跌落深度序列Dj的确定方法仅作为示例,跌落深度序列Dj的确定方法可以根据数据准确性、数据计算量等因素进行选择。
在一些实施例中,根据第一采样序列Sj和第二采样序列Si确定跌落深度序列Dj包括:确定第二采样序列Si中第一时序位置iset附近M个采样点对应的采样数据的平均值为第一最大值L1,其中,M为正整数;计算第一最大值L1与第一采样序列Sj的差值以确定跌落深度序列Dj
具体来说,在确定跌落深度序列Dj时,可以在第二采样序列Si中选择第一时序位置iset附近M个采样点对应的采样数据,将该M个采样数据的平均值作为第一最大值L1。通过将第一最大值L1与第一采样序列Sj中的每一个采样数据相减,得到跌落深度序列Dj。当M取1时,即选择第一时序位置iset对应的采样数据为第一最大值L1。
在一些实施例中,根据第一采样序列Sj和第二采样序列Si确定跌落深度序列Dj包括:确定第二采样序列Si中数值最大的采样数据对应的时序位置imax附近M个采样点对应的采样数据的平均值为所述第一最大值L1,其中,M为正整数;计算第一最大值L1与第一采样序列Sj的差值以确定跌落深度序列Dj
具体来说,在确定跌落深度序列Dj时,可以在第二采样序列Si中数值最大的采样数据对应的时序位置imax附近取M个采样数据的平均值作为第一最大值L1。通过将第一最大值L1与第一采样序列Sj中的每一个采样数据相减,得到跌落深度序列Dj。当M取1时,即选择第二采样序列Si中数值 最大的采样数据为第一最大值L1。
可以理解,上述第一最大值L1可以用于表征跌落区左侧的第二采样序列Si的光强或发光功率。
在一些实施例中,根据第一采样序列Sj和第三采样序列Sk确定跌落深度序列Dj包括:确定第三采样序列Sk中第二时序位置kset附近N个采样点对应的采样数据的平均值为第二最大值L2,其中,N为正整数;计算第二最大值L2与第一采样序列Sj的差值以确定跌落深度序列Dj
具体来说,在确定跌落深度序列Dj时,可以在第三采样序列Sk中选择第二时序位置kset附近N个采样点对应的采样数据,将该N个采样数据的平均值作为第二最大值L2。通过将第二最大值L2与第一采样序列Sj中的每一个采样数据相减,得到跌落深度序列Dj。当N取1时,即选择第二时序位置kset对应的采样数据为第二最大值L2。
在一些实施例中,根据第一采样序列Sj和第三采样序列Sk确定跌落深度序列Dj包括:确定第三采样序列Sk中数值最大的采样数据对应的时序位置kmax附近N个采样点对应的采样数据的平均值为所述第二最大值L2,其中,N为正整数;计算第二最大值L2与第一采样序列Sj的差值以确定跌落深度序列Dj
具体来说,在确定跌落深度序列Dj时,可以在第三采样序列Sk中数值最大的采样数据对应的时序位置kmax附近取N个采样数据的平均值作为第二最大值L2。通过将第二最大值L2与第一采样序列Sj中的每一个采样数据相减,得到跌落深度序列Dj。当N取1时,即选择第三采样序列Sk中数值最大的采样数据为第二最大值L2。
可以理解,上述第二最大值L2可以用于表征跌落区右侧的第三采样序列Sk的光强或发光功率。
在一些实施例中,根据第一采样序列Sj、第二采样序列Si和第三采样序列Sk确定跌落深度序列Dj包括:计算第二采样序列Si和第三采样序列Sk在第一采样序列Sj对应的时序位置的插值运算结果以获取第四采样序列Pj;计算第四采样序列Pj与第一采样序列Sj的差值以确定跌落深度序列Dj
具体来说,在确定跌落深度序列Dj时,还可以通过第二采样序列Si与第三采样序列Sk的采样值和其对应的时序位置i、k在第一采样序列Sj对应的时序位置j进行插值运算,得到第四采样序列Pj,第四采样序列Pj的序列 长度与第一采样序列Sj相同。通过将第四采样序列Pj与第一采样序列在相同时序位置j的数值作差,得到跌落深度序列Dj。请继续参见图5,以一个调光周期采集9个采样点为示例,采样数据被确定为第一采样序列Sj(j=2、3、4、5、6)、第二采样序列Si(i=1)和第三采样序列Sk(k=7、8、9),根据S1、S7、S8、S9以及i=1、k=7、8、9,通过插值运算确定出在j=2、3、4、5、6位置的第四采样序列Pj,然后根据D2=P2-S2、D3=P3-S3、D4=P4-S4、D5=P5-S5、D6=P6-S6得到跌落深度序列Dj(j=2、3、4、5、6)。
在一些实施例中,插值运算包括线性插值运算、三次样条插值运算和多项式插值运算中的至少一种。
由此,通过选择不同的采样序列、基于不同的跌落深度算法得到的跌落深度序列Dj能够最大程度接近真实的跌落深度。进一步地,在得到跌落深度序列Dj后,还可以通过不同的方案确定最终用于“屏幕漏光跌落深度-漏光量”模型计算的跌落深度。
在一些实施例中,根据跌落深度序列Dj确定跌落深度包括:根据跌落深度序列Dj中固定的数据确定跌落深度;或根据跌落深度序列Dj中变化的数据确定跌落深度。
具体来说,在得到跌落深度序列Dj后,可以根据“屏幕漏光跌落深度-漏光量”模型选择跌落深度序列Dj中的数据用于计算。例如,在模型较为复杂的情况下,选择固定的数据来确定跌落深度以减少整体运算量,帮助提高计算效率。在模型较为复杂的情况下,选择变化的数据来确定跌落深度,使得漏光量的计算值更加接近真实值。跌落深度序列Dj中固定的数据例如可以是固定时序位置对应的数据、跌落深度序列Dj中的所有的数据、跌落深度序列Dj中固定个数相应的数据等。跌落深度序列Dj中变化的数据例如可以是最大值、部分数据的中值等。
在一些实施例中,根据跌落深度序列Dj中固定的数据确定跌落深度包括:确定所述跌落深度序列Dj的所有数据为所述跌落深度。即跌落深度序列Dj中所有的数据均用于“屏幕漏光跌落深度-漏光量”模型中漏光量的计算。
在一些实施例中,根据跌落深度序列Dj中固定的数据确定跌落深度包括:获取序列长度与跌落深度序列Dj长度对应的权重系数序列θj,确定跌落深度序列Dj中的每个数据与其对应的权重系数序列θj中的数据相乘后所有数据的平均值为跌落深度。即Djj的平均值为跌落深度。
具体来说,例如,在PWM调光时不仅需要调节跌落区和非跌落区的发光功率来调节屏幕亮度,还需要调节非跌落区在一个调光周期内的占比来调节平均发光功率。此时存在相同的跌落深度对应不同的漏光量的情况,故需要大量详细的跌落深度序列Dj数据参与模型中漏光量的计算。又例如,对于跌落深度序列Dj来说,跌落深度越小,其数值的信噪比越低,对漏光量计算的结果造成的误差(例如,抖动误差等)越大。此时,可以通过设计权重系数序列θj,使得跌落深度序列Dj中的每一个数值对应一个权重系数,控制跌落深度序列Dj中信噪比低的数值与θj中小的权重系数进行计算,Dj中信噪比高的数值与θj中大的权重系数进行计算,进而使得Dj中信噪比低的数值的权重小,Dj中信噪比高的数值的权重大,从而提高用于模型计算的跌落深度的总体信噪比。
在一些实施例中,根据跌落深度序列Dj中固定的数据确定跌落深度包括:确定跌落深度序列Dj的所有数据的平均值为跌落深度。
在一些实施例中,根据跌落深度序列Dj中固定的数据确定跌落深度包括:确定跌落深度序列Dj中第三时序位置jset附近m个数据的平均值为跌落深度,m为正整数。
在一些实施例中,在屏幕漏光跌落波形具有一致性时,通过跌落深度序列Dj中固定的数据确定跌落深度。在屏幕漏光跌落波形一致性较好时,不同调光周期的数据差异性较小,此时可以选择上述通过固定的数据确定跌落深度的方法,在保证计算漏光量的准确性的同时,减小计算漏光量的运算量。
示例性地,请继续参见图4,在屏幕漏光跌落波形一致性较好时,可以固定选择第二采样序列Si中时序位置i=1的采样值作为第一最大值L1,通过L1与第一采样序列Sj中的每个时序位置的采样值相减得到跌落深度序列Dj,并在Dj中固定选择时序位置j=4的值作为最终的跌落深度输出。
在一些实施例中,根据跌落深度序列Dj中变化的数据确定跌落深度包括:确定跌落深度序列Dj中数值由大到小的前n个数据的平均值为跌落深度,n为正整数。
在一些实施例中,根据跌落深度序列Dj中变化的数据确定跌落深度包括:确定跌落深度序列Dj中数值最大的数据对应的时序位置附近h个数据的平均值为跌落深度,h为正整数。
具体来说,以DC调光作为示例,DC调光中跌落区和非跌落区在调光 周期内的占比通常保持不变,通过同比例调节跌落区和非跌落区的功率来调节平均功率,此时,跌落深度和平均功率有近线形关系。同时,当漏光量一定时,跌落深度越大,计算的漏光量准确性越高。故对于DC调光中的模型,可以选择使最终用于计算的跌落深度较大的跌落深度确定方法。
在一些实施例中,在屏幕漏光跌落波形不具有一致性质,通过跌落深度序列中变化的数据确定跌落深度。在屏幕漏光跌落波形一致性较差时,不同调光周期之间的数据差异性较大,此时可以选择上述通过变化的数据确定跌落深度的方法,进一步提高漏光量计算的准确性。
示例性地,请继续参见图4,在屏幕漏光跌落波形的一致性不好时,可以动态寻找第二采样序列Si中的最大值,比如时序位置i=1的采样值最大,即将时序位置i=1的采样值作为第一最大值L1,通过L1与第一采样序列Sj中的每个时序位置的采样值相减得到跌落深度序列Dj,并在Dj中动态寻找最大值作为最终的跌落深度输出。比如,跌落深度序列Dj中时序位置j=4的值最大,即选择时序位置j=4的值作为最终的跌落深度输出。
本申请实施例还提供一种用于确定屏幕漏光的跌落深度的装置。图6为该用于确定屏幕漏光的跌落深度的装置600的示意性结构图。
参见图6,装置600包括第一传感器601和第一处理器602。其中,第一传感器601用于根据垂直同步信号,获取采样数据;第一处理器602用于根据所述采样数据确定第一采样序列Sj,以及第二采样序列Si和/或第三采样序列Sk,根据第一采样序列Sj,以及第二采样序列Si和/或第三采样序列Sk确定跌落深度。
第一采样序列Sj为屏幕漏光跌落波形的跌落区的采样序列,第二采样序列Si为屏幕漏光跌落波形的跌落区左侧的采样序列,第三采样序列Sk为所述屏幕跌落波形的跌落区右侧的采样序列。可以理解,所述第一采样序列、第二采样序列和/或第三采样序列在同一个调光周期内,换言之,第一采样序列指一个调光周期内跌落区的采样序列,第二采样序列指同一个调光周期内跌落区左侧的非跌落区的采样序列,第三采样序列指同一个调光周期内跌落区右侧的非跌落区的采样序列。
在一些实施例中,第一传感器601用于接收屏幕发送的垂直同步信号,并经过第一时延后获取采样数据。
在一些实施例中,第一处理器602用于根据信噪比需求,对采样数据进 行滤波处理;根据滤波后的采样数据确定第一采样序列Sj,以及第二采样序列Si和/或第三采样序列Sk
在一些实施例中,信噪比需求包括所述屏幕的信噪比、所述装置的信噪比。
在一些实施例中,第一处理器602用于根据采样数据对应的时序位置,确定滤波后的采样数据属于第一采样序列Sj、第二采样序列Si和/或第三采样序列Sk
在一些实施例中,滤波处理包括均值滤波和中值滤波中的至少一个。
在一些实施例中,第一处理器602用于根据第一采样序列Sj,以及第二采样序列Si和/或第三采样序列Sk确定跌落深度序列Dj;根据跌落深度序列Dj确定跌落深度。
在一些实施例中,第一处理器602用于根据第一采样序列Sj和第二采样序列Si确定跌落深度序列Dj;或根据第一采样序列Sj和第三采样序列Sk确定跌落深度序列Dj;或根据第一采样序列Sj、第二采样序列Si和第三采样序列Sk确定跌落深度序列Dj
在一些实施例中,在屏幕漏光的跌落频率高于环境光频闪频率且屏幕漏光的跌落频率与环境光频闪频率不是倍频关系时,第一处理器602用于根据第一采样序列Sj和第二采样序列Si确定跌落深度序列Dj;或根据第一采样序列Sj和第三采样序列Sk确定跌落深度序列Dj
在一些实施例中,在屏幕漏光的跌落频率与环境光频闪频率相近或屏幕漏光的跌落频率与环境光频闪频率是倍频关系时,第一处理器602用于根据第一采样序列Sj、所述第二采样序列Si和所述第三采样序列Sk确定所述跌落深度序列Dj
在一些实施例中,第一处理器602用于确定第二采样序列Si中第一时序位置iset附近M个采样点对应的采样数据的平均值为第一最大值L1,并计算第一最大值L1与第一采样序列Sj的差值以确定跌落深度序列Dj,M为正整数。
在一些实施例中,第一处理器602用于确定第二采样序列Si中数值最大的采样数据对应的时序位置imax附近M个采样点对应的采样数据的平均值为第一最大值L1,并计算第一最大值L1与第一采样序列Sj的差值以确定跌落深度序列Dj,M为正整数。
在一些实施例中,第一处理器602用于确定第三采样序列Sk中第二时序位置kset附近N个采样点对应的采样数据的平均值为第二最大值L2,并计算第二最大值L2与第一采样序列Sj的差值以确定跌落深度序列Dj,N为正整数。
在一些实施例中,第一处理器602用于确定所述第三采样序列Sk中数值最大的采样数据对应的时序位置kmax附近N个采样点对应的采样数据的平均值为第二最大值L2,并计算第二最大值L2与第一采样序列Sj的差值以确定跌落深度序列Dj,N为正整数。
在一些实施例中,第一处理器602用于计算第二采样序列Si和第三采样序列Sk在所述第一采样序列Sj对应的时序位置i的插值运算结果以获取第四采样序列Pj,并计算第四采样序列Pj与第一采样序列Sj的差值以确定跌落深度序列Dj
在一些实施例中,插值运算包括线性插值运算、三次样条插值运算和多项式插值运算中的至少一个。
在一些实施例中,第一处理器602用于通过跌落深度序列Dj中固定的数据确定跌落深度;或第一处理器602用于通过跌落深度序列Dj中变化的数据确定跌落深度。
在一些实施例中,第一处理器602用于确定跌落深度序列Dj的所有数据为跌落深度;或确定跌落深度序列Dj的数据平均值为跌落深度;或确定跌落深度序列Dj中第三时序位置jset附近m个数据的平均值为跌落深度,m为正整数;或获取序列长度与跌落深度序列Dj长度对应的权重系数序列θj,并确定跌落深度序列Dj中的每个数据与其对应的权重系数序列θj中的数据相乘后所有数据的平均值为跌落深度。
在一些实施例中,第一处理器用于确定跌落深度序列Dj中数值由大到小的前n个数据的平均值为跌落深度,n为正整数;或确定所述跌落深度序列中数值最大的数据对应的时序位置附近h个数据的平均值为所述跌落深度,h为正整数。
在一些实施例中,屏幕漏光跌落波形具有一致性时,第一处理器602用于通过跌落深度序列Dj中固定的数据确定跌落深度;在屏幕漏光跌落波形不具有一致性时,第一处理器602用于通过跌落深度序列Dj中变化的数据确定跌落深度。
综上,本申请实施例提供的用于确定屏幕漏光的跌落深度的装置600能够实现前述方法实施例中相应的确定屏幕漏光的跌落深度的方法100,并具有相应的方法实施例的有益效果,在此不再赘述。
另外,本申请实施例还提供一种检测环境光的装置。图7为检测环境光的装置700的示意性结构图。
参见图7,检测环境光的装置700包括第二传感器701、第二处理器702以及用于确定屏幕漏光的跌落深度的装置600。
具体来说,第二传感器701用于获取采集光数据,采集光数据包括环境光数据和屏幕漏光数据。第二处理器702用于获取屏幕漏光数据,并计算采集光数据与屏幕漏光数据的差值以检测环境光,屏幕漏光数据可以根据前述方法实施例中的屏幕漏光跌落深度-屏幕漏光量模型计算得到。用于确定屏幕漏光的跌落深度的装置600用于检测屏幕漏光的跌落深度。
在一些实施例中,检测环境光的装置700可以仅包括用于确定屏幕漏光的跌落深度的装置600。此时,上述第二传感器701可以是第一传感器601,上述第二处理器702可以是第一处理器602。
本申请实施例还提供一种电子设备。图8示出了电子设备800的示意性结构图。如图8所示,电子设备800包括显示屏801以及用于确定屏幕漏光的跌落深度的装置600,该装置600设置于显示屏801的下方,该装置600可以用于确定跌落深度,并可以根据前述方法实施例中的屏幕漏光跌落深度-屏幕漏光量模型计算得到屏幕漏光量,进而实现环境光检测。
本申请实施例所述的第一处理器602、第二处理器702可以包括一个或者多个处理核。第一处理器602、第二处理器702利用各种接口和线路与第一传感器601、第二传感器701连接,通过运行或执行存储在存储器内的指令、程序、代码集或指令集,以及调用存储在存储器内的数据,执行装置600或装置700的各种功能和处理数据。
可选地,第一处理器602、第二处理器702可以采用数字信号处理(Digital Signal Processing,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。第一处理器602、第二处理器702可集成中央处理器(Central Processing Unit,CPU)、环境光检测器(Graphics Processing Unit,GPU)和调制解调器等中的一种或几种的组合。
第一传感器601、第二传感器701可以是用于采集光线以进行光强度检测的任意光感器件,此处不对具体的光感传感器进行限定。
作为示例而非限定,本申请实施例中的电子设备800可以为终端设备、手机、平板电脑、笔记本电脑、台式机电脑、游戏设备、车载电子设备或穿戴式智能设备等便携式或移动计算设备,以及电子数据库、汽车、银行自动柜员机(Automated Teller Machine,ATM)等其他电子设备。该穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等设备。
显示屏801可用于显示由用户输入的信息或提供给用户的信息以及电子设备的各种图形用户接口,这些图形用户接口可以由图像、文本、图标、视频和其任意组合来构成。在一些实施例中第一处理器602、第二处理器702可根据第一传感器601、第二传感器701接收的光线获取检测光强度值。随后,第一处理器602、第二处理器702可根据检测光强度值确定当前的环境光强度值,并根据当前环境光强度值调节显示屏801的亮度。
可选地,显示屏801可以是OLED显示屏。具体地,有机发光二极管(Organic Light-Emitting Diode,OLED)显示屏具有良好的透光性,能够通过可见光。因此,OLED显示屏在展现内容效果的情况下,不影响第一传感器601、第二传感器701接收可见光。应理解,OLED显示屏仅作为示例,本申请的实施例并不限于此。
需要说明的是,在不冲突的前提下,本申请描述的各个实施例和/或各个实施例中的技术特征可以任意的相互组合,组合之后得到的技术方案也应落入本申请的保护范围。
本申请实施例中所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的方法实施例的一些特征可以忽略或者不执行。以上所描述的装置实施例仅仅是示意性的,单元的划分仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,多个单元或组件可以结合或者可以集成到另一个系统。另外,各单元之间的耦合或各个组件之间的耦合可以是直接耦合,也可以是间接耦合,上述耦合包括电的、机械的或其它形式的连接。
本申请所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是或者也可以不是物理模块。另外,在本申 请各个实施例中的各功能模块可以集成在一个处理单元中,也可以是各个模块单独物理存在,也可以两个或两个以上模块集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种确定屏幕漏光的跌落深度的方法,其特征在于,所述方法包括:
    根据垂直同步信号,获取采样数据;
    根据所述采样数据,确定第一采样序列,以及第二采样序列和/或第三采样序列,所述第一采样序列为屏幕漏光跌落波形的跌落区的采样序列,所述第二采样序列为所述屏幕漏光跌落波形的跌落区左侧的采样序列,所述第三采样序列为所述屏幕漏光跌落波形的跌落区右侧的采样序列;
    根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定所述跌落深度。
  2. 根据权利要求1所述的方法,其特征在于,所述根据垂直同步信号,获取采样数据包括:
    接收所述屏幕发送的垂直同步信号,经过第一时延后获取所述采样数据。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述采样数据,确定第一采样序列,以及第二采样序列和/或第三采样序列包括:
    根据信噪比需求,对所述采样数据进行滤波处理;
    根据滤波后的所述采样数据确定所述第一采样序列,以及所述第二采样序列和/或所述第三采样序列。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定所述跌落深度包括:
    根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定跌落深度序列;
    根据所述跌落深度序列确定所述跌落深度。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定跌落深度序列包括:
    根据所述第一采样序列和所述第二采样序列确定所述跌落深度序列;或
    根据所述第一采样序列和所述第三采样序列确定所述跌落深度序列;或
    根据所述第一采样序列、所述第二采样序列和所述第三采样序列确定所述跌落深度序列。
  6. 根据权利要求5所述的方法,其特征在于,在所述屏幕漏光的跌落频率高于环境光频闪频率且所述屏幕漏光的跌落频率与所述环境光频闪频率不是倍频关系时,根据所述第一采样序列和所述第二采样序列确定所述跌 落深度序列;或根据所述第一采样序列和所述第三采样序列确定所述跌落深度序列。
  7. 根据权利要求5所述的方法,其特征在于,在所述屏幕漏光的跌落频率与环境光频闪频率相近或所述屏幕漏光的跌落频率与所述环境光频闪频率是倍频关系时,根据所述第一采样序列、所述第二采样序列和所述第三采样序列确定所述跌落深度序列。
  8. 根据权利要求5或6所述的方法,其特征在于,所述根据所述第一采样序列和所述第二采样序列确定所述跌落深度序列包括:
    确定所述第二采样序列中第一时序位置附近M个采样点对应的采样数据的平均值为第一最大值,M为正整数;或
    确定所述第二采样序列中数值最大的采样数据对应的时序位置附近M个采样点对应的采样数据的平均值为第一最大值,M为正整数;
    计算所述第一最大值与所述第一采样序列的差值以确定所述跌落深度序列。
  9. 根据权利要求5或6所述的方法,其特征在于,所述根据所述第一采样序列和所述第三采样序列确定所述跌落深度序列包括:
    确定所述第三采样序列中第二时序位置附近N个采样点对应的采样数据的平均值为第二最大值,N为正整数;或
    确定所述第三采样序列中数值最大的采样数据对应的时序位置附近N个采样点对应的采样数据的平均值为第二最大值,N为正整数;
    计算所述第二最大值与所述第一采样序列的差值以确定所述跌落深度序列。
  10. 根据权利要求5或7所述的方法,其特征在于,所述根据所述第一采样序列、所述第二采样序列和所述第三采样序列确定所述跌落深度序列包括:
    计算所述第二采样序列和所述第三采样序列在所述第一采样序列对应的时序位置的插值运算结果以获取第四采样序列;
    计算所述第四采样序列与所述第一采样序列的差值以确定所述跌落深度序列。
  11. 根据权利要求4所述的方法,其特征在于,所述根据所述跌落深度序列确定所述跌落深度包括:
    根据所述跌落深度序列中固定的数据确定所述跌落深度;或
    根据所述跌落深度序列中变化的数据确定所述跌落深度。
  12. 根据权利要求11所述的方法,其特征在于,所述根据所述跌落深度序列中固定的数据确定所述跌落深度包括:
    确定所述跌落深度序列的所有数据为所述跌落深度;或
    确定所述跌落深度序列的所有数据的平均值为所述跌落深度;或
    确定所述跌落深度序列中第三时序位置附近m个数据的平均值为所述跌落深度,m为正整数;或
    获取序列长度与所述跌落深度序列长度对应的权重系数序列,确定所述跌落深度序列中的每个数据与其对应的所述权重系数序列中的数据相乘后所有数据的平均值为所述跌落深度。
  13. 根据权利要求11所述的方法,其特征在于,所述根据所述跌落深度序列中变化的数据确定所述跌落深度包括:
    确定所述跌落深度序列中数值由大到小的前n个数据的平均值为所述跌落深度,n为正整数;或
    确定所述跌落深度序列中数值最大的数据对应的时序位置附近h个数据的平均值为所述跌落深度,h为正整数。
  14. 根据权利要求11-13中任一项所述的方法,其特征在于,
    在所述屏幕漏光跌落波形具有一致性时,根据所述跌落深度序列中固定的数据确定所述跌落深度;或
    在所述屏幕漏光跌落波形不具有一致性时,根据所述跌落深度序列中变化的数据确定所述跌落深度。
  15. 一种用于确定屏幕漏光的跌落深度的装置,其特征在于,所述装置包括:
    第一传感器,所述第一传感器用于根据垂直同步信号,获取采样数据;
    第一处理器,所述第一处理器用于根据所述采样数据确定第一采样序列,以及第二采样序列和/或第三采样序列;根据所述第一采样序列,以及第二采样序列和/或第三采样序列确定所述跌落深度;
    其中,所述第一采样序列为屏幕漏光跌落波形的跌落区的采样序列,所述第二采样序列为所述屏幕漏光跌落波形的跌落区左侧的采样序列,所述第三采样序列为所述屏幕跌落波形的跌落区右侧的采样序列。
  16. 根据权利要求15所述的装置,其特征在于,所述第一传感器用于接收所述屏幕发送的垂直同步信号,并经过第一时延后获取所述采样数据。
  17. 根据权利要求15所述的装置,其特征在于,所述第一处理器用于根据信噪比需求,对所述采样数据进行滤波处理;根据滤波后的所述采样数据确定所述第一采样序列,以及所述第二采样序列和/或所述第三采样序列。
  18. 根据权利要求15-17中任一项所述的装置,其特征在于,所述第一处理器用于根据所述第一采样序列,以及所述第二采样序列和/或所述第三采样序列确定跌落深度序列;根据所述跌落深度序列确定所述跌落深度。
  19. 根据权利要求18所述的装置,其特征在于,所述第一处理器用于
    根据所述第一采样序列和所述第二采样序列确定所述跌落深度序列;或
    根据所述第一采样序列和所述第三采样序列确定所述跌落深度序列;或
    根据所述第一采样序列、所述第二采样序列和所述第三采样序列确定所述跌落深度序列。
  20. 根据权利要求18所述的装置,其特征在于,所述根据所述跌落深度序列确定所述跌落深度包括:
    所述第一处理器用于通过所述跌落深度序列中固定的数据确定所述跌落深度;或
    所述第一处理器用于通过所述跌落深度序列中变化的数据确定所述跌落深度。
  21. 根据权利要求20所述的装置,其特征在于,在所述屏幕漏光跌落波形具有一致性时,所述第一处理器用于通过所述跌落深度序列中固定的数据确定所述跌落深度;或
    在所述屏幕漏光跌落波形不具有一致性时,所述第一处理器用于通过所述跌落深度序列中变化的数据确定所述跌落深度。
  22. 一种检测环境光的装置,其特征在于,所述装置包括:
    第二传感器,所述第二传感器用于获取采集光数据,所述采集光数据包括环境光数据和屏幕漏光数据;
    第二处理器,所述第二处理器用于获取所述屏幕漏光数据,并计算所述采集光数据与所述屏幕漏光数据的差值以检测所述环境光,所述屏幕漏光数据根据屏幕漏光跌落深度-屏幕漏光量模型计算得到;
    如权利要求15-21中任一项所述的用于确定屏幕漏光的跌落深度的装置, 所述装置用于检测所述屏幕漏光的跌落深度。
  23. 一种电子设备,其特征在于,包括:
    显示屏;以及
    根据权利要求15-21中任一项所述的用于确定屏幕漏光的跌落深度的装置,所述装置设置于所述显示屏的下方,所述装置用于环境光检测。
PCT/CN2023/118032 2022-09-30 2023-09-11 确定屏幕漏光的跌落深度的方法、装置及电子设备 WO2024067042A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211209421.6 2022-09-30
CN202211209421.6A CN115290299B (zh) 2022-09-30 2022-09-30 确定屏幕漏光的跌落深度的方法、装置及电子设备

Publications (1)

Publication Number Publication Date
WO2024067042A1 true WO2024067042A1 (zh) 2024-04-04

Family

ID=83833580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/118032 WO2024067042A1 (zh) 2022-09-30 2023-09-11 确定屏幕漏光的跌落深度的方法、装置及电子设备

Country Status (2)

Country Link
CN (1) CN115290299B (zh)
WO (1) WO2024067042A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115290299B (zh) * 2022-09-30 2023-04-07 深圳市汇顶科技股份有限公司 确定屏幕漏光的跌落深度的方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200182690A1 (en) * 2018-12-06 2020-06-11 Lite-On Singapore Pte. Ltd. Method for ambient light subtraction
CN113077738A (zh) * 2020-01-03 2021-07-06 北京小米移动软件有限公司 环境光检测方法及装置、存储介质
CN113899449A (zh) * 2021-09-30 2022-01-07 深圳市汇顶科技股份有限公司 环境光感应值的检测方法、电子设备以及存储介质
CN114283743A (zh) * 2021-12-27 2022-04-05 深圳市汇顶科技股份有限公司 显示屏下检测环境光的方法、装置及电子设备
CN114281629A (zh) * 2021-12-27 2022-04-05 深圳市汇顶科技股份有限公司 用于估计屏幕漏光量的方法、装置和电子设备
CN114333735A (zh) * 2021-12-27 2022-04-12 深圳市汇顶科技股份有限公司 显示屏下检测环境光的方法、装置和电子设备
CN115290299A (zh) * 2022-09-30 2022-11-04 深圳市汇顶科技股份有限公司 确定屏幕漏光的跌落深度的方法、装置及电子设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2558000B (en) * 2016-12-21 2020-06-10 Apical Ltd Display control
JP6523532B2 (ja) * 2018-06-20 2019-06-05 株式会社半導体エネルギー研究所 表示装置
CN112534496A (zh) * 2018-08-10 2021-03-19 ams有限公司 环境光传感器系统
CN112840393A (zh) * 2018-10-11 2021-05-25 ams有限公司 环境光传感器
EP3909252A1 (en) * 2019-01-09 2021-11-17 Dolby Laboratories Licensing Corporation Display management with ambient light compensation
CN111486950B (zh) * 2020-04-20 2022-04-19 Oppo广东移动通信有限公司 环境光检测方法、装置、电子设备及存储介质
CN111613176B (zh) * 2020-05-18 2021-07-13 维沃移动通信有限公司 环境光检测方法及电子设备
CN112781832A (zh) * 2021-01-26 2021-05-11 北京小米移动软件有限公司 用于终端设备的确定环境光的方法、装置、设备及介质
CN112964359A (zh) * 2021-02-01 2021-06-15 深圳市汇顶科技股份有限公司 一种环境光传感器及电子设备
CN112985589A (zh) * 2021-02-05 2021-06-18 深圳市汇顶科技股份有限公司 环境光照度检测、校正系数计算方法、装置和电子设备
CN114613317B (zh) * 2022-02-18 2023-10-31 深圳市汇顶科技股份有限公司 电子设备的环境光强度的计算方法、相关电子设备和芯片

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200182690A1 (en) * 2018-12-06 2020-06-11 Lite-On Singapore Pte. Ltd. Method for ambient light subtraction
CN113077738A (zh) * 2020-01-03 2021-07-06 北京小米移动软件有限公司 环境光检测方法及装置、存储介质
CN113899449A (zh) * 2021-09-30 2022-01-07 深圳市汇顶科技股份有限公司 环境光感应值的检测方法、电子设备以及存储介质
CN114283743A (zh) * 2021-12-27 2022-04-05 深圳市汇顶科技股份有限公司 显示屏下检测环境光的方法、装置及电子设备
CN114281629A (zh) * 2021-12-27 2022-04-05 深圳市汇顶科技股份有限公司 用于估计屏幕漏光量的方法、装置和电子设备
CN114333735A (zh) * 2021-12-27 2022-04-12 深圳市汇顶科技股份有限公司 显示屏下检测环境光的方法、装置和电子设备
CN115290299A (zh) * 2022-09-30 2022-11-04 深圳市汇顶科技股份有限公司 确定屏幕漏光的跌落深度的方法、装置及电子设备

Also Published As

Publication number Publication date
CN115290299A (zh) 2022-11-04
CN115290299B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
WO2024067042A1 (zh) 确定屏幕漏光的跌落深度的方法、装置及电子设备
US8418046B2 (en) Data signal handling circuitry and methods with error analysis capabilities
JP3586116B2 (ja) 画質自動調整装置及び表示装置
US10001855B2 (en) Touch display device and method for driving the same
CN102097050B (zh) 一种实现显示信号无缝切换的装置和方法
TW200408195A (en) Data recovery circuit, phase detection circuit and method for detecting and correcting phase conditions
US20160260365A1 (en) Gate driving circuit, display panel and display apparatus
WO2021223526A1 (zh) gamma调试方法和装置
CN110221729A (zh) 一种驱动方法、装置及显示装置
CN101510419B (zh) 显示器的自动频率和相位调节装置和方法
CN104301617A (zh) 闪烁检测方法和闪烁检测设备
CN101206837A (zh) Led动态背光源控制算法
CN105721786A (zh) 图像感测装置与图像感测的方法
CN105320319A (zh) 触控式电子系统的触控装置及控制方法
CN109754763B (zh) 背光驱动模组及其工作方法、和显示装置
WO2022056860A1 (zh) 触控芯片、打码方法和电子设备
CN104112430A (zh) 一种提升显示屏一体黑效果和动态对比度的系统及方法
CN103390389A (zh) 液晶显示装置、面板驱动装置及控制电路
EP4202385A1 (en) Method and apparatus for detecting ambient light under display screen and electronic device
TWI529581B (zh) 觸控式電子系統之觸控裝置及控制方法
CN102012602B (zh) 一种基于摄像头模组的环境光监测方法
CN212230036U (zh) 显示面板检测装置及系统
CN105141856B (zh) 一种光照控制方法及装置
CN106841729A (zh) 一种数字荧光示波器波形显示数据的转换计算方法
JP5194067B2 (ja) 誤り率測定装置及び誤り率測定方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870281

Country of ref document: EP

Kind code of ref document: A1