WO2024067033A1 - 标志点识别方法、装置、设备及存储介质 - Google Patents

标志点识别方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024067033A1
WO2024067033A1 PCT/CN2023/117858 CN2023117858W WO2024067033A1 WO 2024067033 A1 WO2024067033 A1 WO 2024067033A1 CN 2023117858 W CN2023117858 W CN 2023117858W WO 2024067033 A1 WO2024067033 A1 WO 2024067033A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
dimensional coordinates
landmark
points
dimensional coordinate
Prior art date
Application number
PCT/CN2023/117858
Other languages
English (en)
French (fr)
Inventor
陈晓军
章惠全
康帅兵
向小平
Original Assignee
先临三维科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先临三维科技股份有限公司 filed Critical 先临三维科技股份有限公司
Publication of WO2024067033A1 publication Critical patent/WO2024067033A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/003Navigation within 3D models or images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30036Dental; Teeth
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30204Marker

Definitions

  • the embodiments of the present disclosure relate to the field of computer technology, and in particular to a landmark recognition method, device, equipment, and storage medium.
  • mandibular movement tracking is constantly improving with the development of technology.
  • the user is often required to wear a target in order to track the mandibular movement by tracking the movement of the landmarks on the target.
  • the user needs to wear the maxillary target 110 on the frontal bone and the mandibular target 120 on the lower dentition
  • the user needs to wear the maxillary target 210 on the upper dentition and the mandibular target 220 on the lower dentition.
  • the shape and structure of the target are fixed, it may not be compatible with the user's dental condition.
  • the target cannot be fixed in the mouth of an edentulous user or a user with severe overbite, resulting in poor adaptability in clinical use.
  • the technical problem to be solved by the present disclosure is to solve the problem that the shape and structure of the existing target are fixed, which may not be suitable for the user's dental condition.
  • the target cannot be fixed in the mouth of an edentulous user or a user with severe overbite, resulting in poor adaptability in clinical use.
  • the embodiments of the present disclosure provide a landmark point recognition method, device, equipment and storage medium, including:
  • a first aspect of an embodiment of the present disclosure provides a landmark recognition method, the method comprising:
  • a first landmark point located on the upper jaw and a second landmark point located on the lower jaw are identified from the plurality of landmark points.
  • a second aspect of an embodiment of the present disclosure provides a landmark point recognition device, the device comprising:
  • a first acquisition module used for acquiring a plurality of first three-dimensional coordinates corresponding to a plurality of landmark points when the upper jaw and the lower jaw are in a first posture
  • a second acquisition module used for acquiring a plurality of second three-dimensional coordinates corresponding to a plurality of landmark points when the upper jaw and the lower jaw are in a second posture
  • the recognition module is used to recognize a first landmark point located on the upper jaw and a second landmark point located on the lower jaw from a plurality of landmark points according to a plurality of first three-dimensional coordinates and a plurality of second three-dimensional coordinates.
  • a third aspect of an embodiment of the present disclosure provides an electronic device, the server comprising: a processor and a memory, wherein a computer program is stored in the memory, and when the computer program is executed by the processor, the processor executes the method of the first aspect above.
  • a fourth aspect of an embodiment of the present disclosure provides a computer-readable storage medium, in which a computer program is stored.
  • the computer program is executed by a processor, the landmark point recognition method of the first aspect described above can be implemented.
  • the landmark point recognition method provided by the embodiment of the present disclosure can be used when the upper jaw and the lower jaw are in In the case of the first posture, multiple first three-dimensional coordinates corresponding to the multiple marker points are obtained, and when the maxilla and mandible are in the second posture, multiple second three-dimensional coordinates corresponding to the multiple marker points are obtained, so that the first marker point located on the maxilla and the second marker point located on the mandible are identified from the multiple marker points according to the multiple first three-dimensional coordinates and the multiple second three-dimensional coordinates.
  • the multiple marker points used to track the mandibular movement can be directly fixed on the teeth or gingival mucosa of the maxilla (maxilla and mandible)
  • the specific fixed positions of the multiple marker points can be flexibly selected according to the user's dental conditions in clinical use, and by obtaining the multiple first three-dimensional coordinates and the multiple second three-dimensional coordinates corresponding to the multiple marker points, the scanner can distinguish the first marker point located on the maxilla and the second marker point located on the mandible for subsequent application in mandibular movement tracking, thereby improving the applicability of the marker points in mandibular movement tracking.
  • FIG1 is a schematic diagram of the structure of a target provided by the prior art
  • FIG2 is a schematic diagram of the structure of another target provided by the prior art.
  • FIG3 is a flow chart of a landmark point recognition method provided by an embodiment of the present disclosure.
  • FIG4 is a schematic diagram of a first posture provided by an embodiment of the present disclosure.
  • FIG5 is a schematic diagram of a second posture provided by an embodiment of the present disclosure.
  • FIG6 is a schematic diagram of a vertical axis provided by an embodiment of the present disclosure.
  • FIG7 is a schematic diagram of the structure of a landmark point recognition device provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the structure of an electronic device in an embodiment of the present disclosure.
  • FIG3 is a flow chart of a method for identifying a landmark point provided by an embodiment of the present disclosure, and the method can be performed by an electronic device.
  • the electronic device can be exemplarily understood as a device with a page display function such as a mobile phone, a tablet computer, a laptop computer, a desktop computer, a smart TV, etc.
  • the method provided by this embodiment includes the following steps:
  • multiple marker points can be fixed on the user's jaw in advance (for example, by sticking, etc.) according to the user's dental condition. Specifically, one or more first marker points are fixed on the upper jaw, and one or more second marker points are fixed on the lower jaw. In this way, when the upper jaw and lower jaw of the user are in a first posture, multiple first three-dimensional coordinates corresponding to the multiple marker points can be obtained.
  • the specific form of the marking point can be set by those skilled in the art according to actual conditions and is not limited here.
  • the marker points may include two-dimensional marker points, or three-dimensional marker points, etc.; from the perspective of shape, the marker points may include marker points with circular features, rectangular features, triangular features, etc.
  • the marker points may be two-dimensional circular marker points, three-dimensional spherical marker points, two-dimensional rectangular marker points, two-dimensional triangular marker points, etc., but are not limited to these.
  • the sizes and shapes of the multiple marker points can be the same.
  • all first marker points fixed on the upper jaw have the same size and shape
  • all second marker points fixed on the lower jaw have the same size and shape, but the size and/or shape of the first marker point is different from that of the second marker point, etc., but it is not limited to this.
  • the number of landmarks and their specific locations on the jaws can be customized according to the user's dental needs.
  • the tooth situation can be personalized, and there is no limitation here.
  • the landmarks may be fixed on the gums, and for cases of dentate jaws and no overbite problem, the landmarks may be fixed on the teeth and/or gums, but the invention is not limited thereto.
  • the first posture may be any posture that can expose the multiple marker points.
  • FIG. 4 is a schematic diagram of a first posture provided by an embodiment of the present disclosure.
  • a plurality of two-dimensional circular marking points 410 are pasted on the teeth and jaws of the user.
  • the first three-dimensional coordinates are three-dimensional coordinates used to characterize the position of the marker point in the first posture.
  • the first three-dimensional coordinates may be coordinates in a world coordinate system or in a camera coordinate system, which is not limited here.
  • a three-dimensional scanning device such as a mouth scanner or a face scanner can be used to obtain multiple first three-dimensional coordinates corresponding to multiple marker points.
  • the first three-dimensional coordinates are the coordinates in the camera coordinate system (i.e., the three-dimensional scanning device coordinate system), but it is not limited to this.
  • a plurality of second three-dimensional coordinates corresponding to a plurality of landmark points may be acquired.
  • the second posture may be any posture that is different from the first posture and can expose the multiple marker points.
  • FIG5 is a schematic diagram of a second posture provided by an embodiment of the present disclosure.
  • the positions of multiple two-dimensional circular marking points 410 on the user's jaw change relative to the first posture.
  • the second three-dimensional coordinates are three-dimensional coordinates used to characterize the position of the marker point in the second posture.
  • the first three-dimensional coordinates may be coordinates in a world coordinate system or in a camera coordinate system, which is not limited here.
  • a three-dimensional scanning device such as a mouth scanner or a face scanner can be used to obtain multiple second three-dimensional coordinates corresponding to multiple marker points.
  • the second three-dimensional coordinates are coordinates in the camera coordinate system (i.e., the three-dimensional scanning device coordinate system), but are not limited to this.
  • a first landmark point located on the upper jaw and a second landmark point located on the lower jaw are identified among the points.
  • the multiple landmark points can be distinguished according to the multiple first three-dimensional coordinates and the multiple second three-dimensional coordinates to distinguish the first landmark point located on the upper jaw and the second landmark point located on the lower jaw, so as to be used in subsequent dental and maxillary movement tracking.
  • the target shown in FIG1 has the following problems: First, in fact, during the movement of the mandible, the upper target 110 fixed on the frontal bone will be affected by the movement of the skin and muscles, and it is impossible not to be displaced, resulting in a large error between the tracked movement of the mandible relative to the maxilla and the actual movement of the mandible relative to the maxilla; second, the distance between the lower target 120 and the posterior teeth is far, and the transformation relationship of the tracking movement is proportional to the distance, resulting in the error between the tracked movement of the mandible relative to the maxilla and the actual movement of the mandible relative to the maxilla is further amplified by the long distance; third, since the shape and structure of the upper target 110 and the lower target 120 are fixed, they may not be compatible with the user's dental conditions, resulting in poor adaptability in clinical use.
  • the target shown in FIG2 has the same problems as the second and third problems in the target shown in FIG1.
  • one or more first landmarks could be directly fixed on the maxilla
  • there was no need to fix the upper target on the frontal bone thereby avoiding errors caused by movement of the upper target.
  • the landmarks were directly fixed on the maxilla and the landmarks could be fixed on the posterior teeth, the distance between the landmarks and the posterior teeth could be shortened, thereby reducing tracking errors.
  • the fixed position of the landmarks could be personalized according to the user's dental condition, the applicability of the landmarks in mandibular movement tracking could be improved.
  • the multiple marker points used for tracking the movement of the mandible can be directly fixed on the teeth or gingival mucosa of the maxilla (upper jaw and lower jaw)
  • the specific fixed positions of the multiple marker points can be flexibly selected according to the user's dental condition in clinical use, and by obtaining the multiple first three-dimensional coordinates and the multiple second three-dimensional coordinates corresponding to the multiple marker points, the first marker point located on the upper jaw and the second marker point located on the lower jaw can be distinguished for subsequent application in the tracking of the movement of the mandible, thereby improving the accuracy of the marker points in the tracking of the movement of the mandible. Applicability in tracking.
  • identifying a first landmark point located on the upper jaw and a second landmark point located on the lower jaw from the plurality of landmark points includes:
  • the stitching process is to determine a suitable coordinate transformation to merge the data obtained from each perspective into a unified coordinate system.
  • the stitching process is performed on multiple marker points, that is, multiple first three-dimensional coordinates and multiple second three-dimensional coordinates are merged into a unified coordinate system, so as to compare the marker points in the first posture and the second posture.
  • the two three-dimensional coordinate sets are respectively a three-dimensional coordinate set corresponding to the first marking point and a three-dimensional coordinate set corresponding to the second marking point, and the three-dimensional coordinates in the two three-dimensional coordinate sets are in the same coordinate system.
  • the three-dimensional coordinate set corresponding to the first marker point includes: the three-dimensional coordinate of each first marker point when multiple first three-dimensional coordinates and multiple second three-dimensional coordinates are merged into a unified coordinate system so that the first marker point in the first posture and the first marker point in the second posture coincide with each other.
  • the three-dimensional coordinate set corresponding to the second marker point includes the three-dimensional coordinate of each second marker point when multiple first three-dimensional coordinates and multiple second three-dimensional coordinates are merged into a unified coordinate system so that the second marker point in the first posture and the second marker point in the second posture coincide with each other.
  • the coordinate system of the three-dimensional coordinates in the three-dimensional set includes a horizontal axis, a vertical axis and a vertical axis, and the vertical axis coordinate value is the coordinate value in the vertical axis direction, wherein the vertical axis is the arrangement direction of the maxilla and the mandible.
  • Fig. 6 is a schematic diagram of a vertical axis provided by an embodiment of the present disclosure.
  • the upper jaw and the lower jaw are arranged vertically in the paper, the vertical axis extends in the vertical direction, and the positive axis is upward, that is, the positive axis is in the direction from the lower jaw to the upper jaw.
  • S132 may include: for each three-dimensional coordinate set, averaging the vertical axis coordinate values of the three-dimensional coordinates in the three-dimensional coordinate set to obtain two average values corresponding to the two three-dimensional coordinate sets; comparing the two average values, taking the three-dimensional coordinate set with a smaller average value as the three-dimensional coordinate set with a smaller vertical axis coordinate value, and taking the three-dimensional coordinate set with a larger average value as the three-dimensional coordinate set with a larger vertical axis coordinate value.
  • a three-dimensional coordinate set (referred to as the first three-dimensional coordinate set) includes three three-dimensional coordinates, namely (x1, y1, z1), (x2, y2, z2), and (x3, y3, z3), (z1+z2+z3)/3 is the average value corresponding to the three-dimensional coordinate set
  • a three-dimensional coordinate set (referred to as the second three-dimensional coordinate set) includes (x4, y4, z4), (x5, y5, z5), and (x6, y6, z6), (z4+z5+z6)/3 is the average value corresponding to the three-dimensional coordinate set, then when (z1+z2+z3)/3 is greater than (z4+z5+z6)/3, the vertical axis coordinate value of the first three-dimensional coordinate set is greater than the vertical axis coordinate value of the second three-dimensional coordinate set, and when (z1+z2+z3)/3 is less than (z4+
  • the average value of the vertical axis coordinate values in the three-dimensional coordinate set can represent the overall size of the vertical axis coordinate values in the three-dimensional coordinate set, determining the overall size relationship of the vertical axis coordinate values in two three-dimensional coordinate sets based on the size of the average value can make the method of obtaining the comparison result simple, fast and accurate.
  • S132 may include: for each three-dimensional coordinate set, determining Determine the maximum value of the vertical axis coordinate values of the three-dimensional coordinates in the three-dimensional coordinate set, and obtain two maximum values corresponding to the two three-dimensional coordinate sets; compare the two maximum values, and use the three-dimensional coordinate set with the smaller maximum value as the three-dimensional coordinate set with the smaller vertical axis coordinate value, and use the three-dimensional coordinate set with the larger maximum value as the three-dimensional coordinate set with the larger vertical axis coordinate value.
  • the marker point corresponding to the three-dimensional coordinate in the three-dimensional coordinate set with a larger vertical axis coordinate value is used as the first marker point
  • the marker point corresponding to the three-dimensional coordinate in the three-dimensional coordinate set with a smaller vertical axis coordinate value is used as the second marker point.
  • the marker points corresponding to multiple three-dimensional coordinates in the three-dimensional coordinate set with smaller vertical axis coordinate values are used as the first marker points, and the marker points corresponding to multiple three-dimensional coordinates in the three-dimensional coordinate set with larger vertical axis coordinate values are used as the second marker points.
  • the three-dimensional coordinate set corresponding to the first marker point can be recorded as P maxillary target
  • the three-dimensional coordinate set corresponding to the second marker point can be recorded as P mandibular target
  • P maxillary target and P mandibular target can be saved in a file for subsequent mandibular movement tracking.
  • the marker point includes a two-dimensional circular marker point.
  • the first three-dimensional coordinates and the second three-dimensional coordinates of the marker point it is necessary to first identify the marker point from the scanning results obtained by scanning the teeth and jaws with the scanner.
  • a circular scanning result can be obtained when scanning directly facing the marker point, and an elliptical scanning result can be obtained when scanning not directly facing the marker point.
  • the elliptical scanning result is corrected to a circular scanning result, and then the three-dimensional coordinates (the first three-dimensional coordinates or the second three-dimensional coordinates) are determined based on the circular scanning result. In this way, no matter from which direction the marker point is scanned, the three-dimensional coordinates can be determined by the directly obtained circular scanning result or the corrected circular scanning result, thereby obtaining more accurate three-dimensional coordinates.
  • the diameter of the two-dimensional circular marking point is less than 6 mm.
  • the shapes and sizes of the multiple marking points are the same.
  • the landmark point constraint condition can be set to be more stringent, thereby reducing the risk of misidentifying other objects as landmark points.
  • the plurality of marking points include at least three first marking points that are not on the same straight line, and at least three second marking points that are not on the same straight line.
  • FIG7 is a schematic diagram of the structure of a landmark point recognition device provided by an embodiment of the present disclosure, and the landmark point recognition device can be understood as the above-mentioned electronic device or a part of the functional modules in the above-mentioned electronic device.
  • the landmark point recognition device 700 includes:
  • a first acquisition module 710 is used to acquire a plurality of first three-dimensional coordinates corresponding to a plurality of landmark points when the upper jaw and the lower jaw are in a first posture;
  • a second acquisition module 720 configured to acquire a plurality of second three-dimensional coordinates corresponding to a plurality of landmark points when the upper jaw and the lower jaw are in a second posture
  • the identification module 730 is used to identify a first landmark point located on the upper jaw and a second landmark point located on the lower jaw from the plurality of landmark points according to the plurality of first three-dimensional coordinates and the plurality of second three-dimensional coordinates.
  • the identification module 730 may include:
  • a splicing submodule configured to splice the plurality of marker points according to the plurality of first three-dimensional coordinates and the plurality of second three-dimensional coordinates to obtain two three-dimensional coordinate sets;
  • the comparison submodule is used to compare the vertical axis coordinate values of two three-dimensional coordinate sets to obtain the comparison Compare results;
  • the determination submodule is used to, based on the comparison result, take the marker point corresponding to the three-dimensional coordinate in the three-dimensional coordinate set with the smaller vertical axis coordinate value as the first marker point, and take the marker point corresponding to the three-dimensional coordinate in the three-dimensional coordinate set with the larger vertical axis coordinate value as the second marker point.
  • the comparison submodule may include:
  • a first determining unit is used to average the vertical axis coordinate values of the three-dimensional coordinates in each three-dimensional coordinate set to obtain two average values corresponding to the two three-dimensional coordinate sets;
  • the second determination unit is used to compare the two average values, take the three-dimensional coordinate set with the smaller average value as the three-dimensional coordinate set with the smaller vertical axis coordinate value, and take the three-dimensional coordinate set with the larger average value as the three-dimensional coordinate set with the larger vertical axis coordinate value.
  • the marker points include two-dimensional circular marker points.
  • the diameter of the two-dimensional circular marking point is less than 6 mm.
  • the shapes and sizes of the multiple marking points are the same.
  • the plurality of marking points include at least three first marking points that are not on the same straight line, and at least three second marking points that are not on the same straight line.
  • the device provided in this embodiment can execute the method of any of the above embodiments, and its execution method and beneficial effects are similar, which will not be repeated here.
  • An embodiment of the present disclosure further provides an electronic device, which includes: a memory, in which a computer program is stored; and a processor, for executing the computer program.
  • a computer program is stored; and a processor, for executing the computer program.
  • FIG8 is a schematic diagram of the structure of an electronic device in an embodiment of the present disclosure.
  • the electronic device 700 in the embodiment of the present disclosure may include, but is not limited to, mobile terminals such as mobile phones, laptop computers, digital broadcast receivers, PDAs (personal digital assistants), PADs (tablet computers), PMPs (portable multimedia players), vehicle-mounted terminals (such as vehicle-mounted navigation terminals), etc., and fixed terminals such as digital TVs, desktop computers, etc.
  • the electronic device shown in FIG8 is merely an example and should not impose any limitations on the functions and scope of use of the embodiments of the present disclosure.
  • the electronic device 700 may include a processing device (e.g., a central processing unit, a graphics processing unit, etc.) 701, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 702 or a program loaded from a storage device 708 to a random access memory (RAM) 703.
  • a processing device e.g., a central processing unit, a graphics processing unit, etc.
  • RAM random access memory
  • various programs and data required for the operation of the electronic device 700 are also stored.
  • the processing device 701, the ROM 702, and the RAM 703 are connected to each other via a bus 704.
  • An input/output (I/O) interface 705 is also connected to the bus 704.
  • the following devices may be connected to the I/O interface 705: input devices 706 including, for example, a touch screen, a touchpad, a keyboard, a mouse, a camera, a microphone, an accelerometer, a gyroscope, etc.; output devices 707 including, for example, a liquid crystal display (LCD), a speaker, a vibrator, etc.; storage devices 708 including, for example, a magnetic tape, a hard disk, etc.; and communication devices 709.
  • the communication device 709 may allow the electronic device 700 to communicate wirelessly or wired with other devices to exchange data.
  • FIG. 8 shows an electronic device 700 with various devices, it should be understood that it is not required to implement or have all the devices shown. More or fewer devices may be implemented or have alternatively.
  • an embodiment of the present disclosure includes a computer program product, which includes a computer program carried on a non-transitory computer-readable medium, and the computer program contains program code for executing the method shown in the flowchart.
  • the computer program can be downloaded and installed from a network through a communication device 709, or installed from a storage device 708, or installed from a ROM 702.
  • the processing device 701 the above-mentioned functions defined in the method of the embodiment of the present disclosure are executed.
  • the computer-readable medium disclosed above may be a computer-readable signal medium or a computer-readable storage medium or any combination of the two.
  • the computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above.
  • Computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium containing or storing a program that can be used by or in combination with an instruction execution system, device or device.
  • a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, which carries a computer-readable program code. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the above.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which may send, propagate, or transmit a program for use by or in combination with an instruction execution system, device or device.
  • the program code contained on the computer-readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination of the above.
  • the client and server may communicate using any currently known or future developed network protocol such as HTTP (HyperText Transfer Protocol), and may be interconnected with any form or medium of digital data communication (e.g., a communication network).
  • HTTP HyperText Transfer Protocol
  • Examples of communication networks include a local area network ("LAN”), a wide area network ("WAN”), an internet (e.g., the Internet), and a peer-to-peer network (e.g., an ad hoc peer-to-peer network), as well as any currently known or future developed network.
  • the computer-readable medium may be included in the electronic device, or may exist independently without being incorporated into the electronic device.
  • the computer-readable medium carries one or more programs.
  • the electronic device When the one or more programs are executed by the electronic device, the electronic device:
  • a first landmark point located on the upper jaw and a second landmark point located on the lower jaw are identified from the plurality of landmark points.
  • Computer program code for performing operations of the present disclosure may be written in one or more programming languages, or a combination thereof, including but not limited to object-oriented programming languages such as Java, Smalltalk, C++, and conventional procedural programming languages. Programming language—such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on the remote computer or server.
  • the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., through the Internet using an Internet service provider).
  • LAN local area network
  • WAN wide area network
  • Internet service provider e.g., AT&T, MCI, Sprint, EarthLink, MSN, GTE, etc.
  • each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function.
  • the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved.
  • each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
  • the units involved in the embodiments described in the present disclosure may be implemented by software or hardware, wherein the name of a unit does not, in some cases, constitute a limitation on the unit itself.
  • exemplary types of hardware logic components include: field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips (SOCs), complex programmable logic devices (CPLDs), and the like.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • ASSPs application specific standard products
  • SOCs systems on chips
  • CPLDs complex programmable logic devices
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, apparatus, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or Any suitable combination of the above.
  • machine-readable storage media would include electrical connections based on one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), optical fibers, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the above.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or flash memory erasable programmable read-only memory
  • CD-ROM compact disk read-only memory
  • CD-ROM compact disk read-only memory
  • magnetic storage device or any suitable combination of the above.
  • the embodiments of the present disclosure further provide a computer-readable storage medium, in which a computer program is stored.
  • a computer program is stored.
  • the method of any of the above embodiments can be implemented.
  • the execution method and beneficial effects are similar and will not be repeated here.
  • the landmark point recognition method provided by the present disclosure can directly fix multiple landmark points for tracking mandibular movement on the teeth or gingival mucosa of the maxilla (upper jaw and lower jaw), so that the specific fixed positions of the multiple landmark points can be flexibly selected according to the user's tooth condition in clinical use, and the multiple first three-dimensional coordinates and multiple landmark points corresponding to the multiple landmark points are obtained.
  • the second three-dimensional coordinate can distinguish the first landmark point located on the upper jaw and the second landmark point located on the lower jaw, so as to facilitate subsequent application in mandibular motion tracking.
  • the applicability of the landmark point in mandibular motion tracking can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Software Systems (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • General Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)

Abstract

本公开实施例涉及一种标志点识别方法、装置、设备及存储介质,其中,标志点识别方法包括:在上颌和下颌处于第一姿态的情况下,获取多个标志点对应的多个第一三维坐标;在上颌和下颌处于第二姿态的情况下,获取多个标志点对应的多个第二三维坐标;根据多个第一三维坐标和多个第二三维坐标,从多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点。根据本公开实施例,可提高标志点的在下颌运动追踪中的适用性。

Description

标志点识别方法、装置、设备及存储介质
本公开要求于2022年9月30日提交中国专利局、申请号为202211209537.X、发明名称为“标志点识别方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开实施例涉及计算机技术领域,尤其涉及一种标志点识别方法、装置、设备及存储介质。
背景技术
目前,由于下颌运动的动态分析是治疗颞颌关节病、咬合疾病、以及牙列缺损缺失等病症的关键手段,因此,下颌运动追踪的研究手段随着技术发展在不断改进。现有的下颌运动追踪方案中,往往需要用户佩戴标靶以便通过追踪标靶上标志点的运动来追踪下颌运动,在一些方案中,如图1所示,用户需要将上颌标靶110佩戴在额骨处,并将下颌标靶120佩戴在下牙列上,而在另一些方案中,如图2所示,用户需要将上颌标靶210佩戴在上牙列上,并将下颌标靶220佩戴在下牙列上。
但是,由于标靶的形状和结构是固定的,有可能与用户的牙齿情况并不适配,例如,在无牙颌和覆合严重的用户口内无法固定标靶,导致在临床使用中适应性差。
发明内容
(一)要解决的技术问题
本公开要解决的技术问题是解决现有的标靶的形状和结构是固定的,有可能与用户的牙齿情况并不适配,例如,在无牙颌和覆合严重的用户口内无法固定标靶,导致在临床使用中适应性差的问题。
(二)技术方案
为了解决上述技术问题,本公开实施例提供了一种标志点识别方法、装置、设备及存储介质,包括:。
本公开实施例的第一方面提供了一种标志点识别方法,该方法包括:
在上颌和下颌处于第一姿态的情况下,获取多个标志点对应的多个第一三维坐标;
在上颌和下颌处于第二姿态的情况下,获取多个标志点对应的多个第二三维坐标;
根据多个第一三维坐标和多个第二三维坐标,从多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点。
本公开实施例的第二方面提供了一种标志点识别装置,该装置包括:
第一获取模块,用于在上颌和下颌处于第一姿态的情况下,获取多个标志点对应的多个第一三维坐标;
第二获取模块,用于在上颌和下颌处于第二姿态的情况下,获取多个标志点对应的多个第二三维坐标;
识别模块,用于根据多个第一三维坐标和多个第二三维坐标,从多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点。
本公开实施例的第三方面提供了一种电子设备,该服务器包括:处理器和存储器,其中,所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,所述处理器执行上述第一方面的方法。
本公开实施例的第四方面提供了一种计算机可读存储介质,该存储介质中存储有计算机程序,当该计算机程序被处理器执行时,可以实现上述第一方面的标志点识别方法。
(三)有益效果
本公开实施例提供的上述技术方案与现有技术相比具有如下优点:
本公开实施例提供的该标志点识别方法,能够在上颌和下颌处于 第一姿态的情况下,获取多个标志点对应的多个第一三维坐标,并在上颌和下颌处于第二姿态的情况下,获取多个标志点对应的多个第二三维坐标,从而根据多个第一三维坐标和多个第二三维坐标,从多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点。采用上述技术方案,由于用于追踪下颌运动的多个标志点可以直接固定在牙颌(上颌和下颌)的牙齿或牙龈黏膜上,使得在临床使用中可以根据用户的牙齿情况灵活选取多个标志点的具体固定位置,并且,通过获取多个标志点对应的多个第一三维坐标和多个第二三维坐标,可以使扫描仪区分出位于上颌上的第一标志点和位于下颌上的第二标志点,以便后续应用在下颌运动追踪中,如此,可提高标志点的在下颌运动追踪中的适用性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是现有技术提供的一种标靶的结构示意图;
图2是现有技术提供的另一种标靶的结构示意图;
图3是本公开实施例提供的一种标志点识别方法的流程图;
图4是本公开实施例提供的一种第一姿态的示意图;
图5是本公开实施例提供的一种第二姿态的示意图;
图6是本公开实施例提供的一种竖轴的示意图;
图7是本公开实施例提供的一种标志点识别装置的结构示意图;
图8是本公开实施例中的一种电子设备的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
图3是本公开实施例提供的一种标志点识别方法的流程图,该方法可以由一种电子设备来执行。该电子设备可以示例性的理解为诸如手机、平板电脑、笔记本电脑、台式机、智能电视等具有页面展示功能的设备。如图3所示,本实施例提供的方法包括如下步骤:
S310、在上颌和下颌处于第一姿态的情况下,获取多个标志点对应的多个第一三维坐标。
在本公开实施例中,可以预先根据用户的牙齿情况在用户的牙颌上固定(例如通过粘贴等方式固定)多个标志点,具体地,在上颌上固定一个或多个第一标志点,并在下颌上固定一个或多个第二标志点,如此,在用户的上颌和下颌处于第一姿态的情况下,可以获取多个标志点对应的多个第一三维坐标。
具体地,标志点的具体形态本领域技术人员可根据实际情况设置,此处不作限定。
示例性的,从空间维度上看,标志点可以包括二维标志点、或三维标志点等;从形状上看,标志点可以包括具有圆形特征、矩形特征、三角形特征等的标志点,例如,标志点可以为二维圆形标志点、三维球体标志点、二维矩形标志点、二维三角形标志点等,但并不限于此。
需要说明的是,该多个标志点的尺寸和形状可以相同,当然,该多个标志点中也可以存在至少两种形态(尺寸和形状)的标志点,例如,固定在上颌的所有第一标志点的尺寸和形状相同,固定在下颌的所有第二标志点的尺寸和形状相同,但是第一标志点的尺寸和/或形状与第二标志点不同等,但并不限于此。
具体地,标志点的数量以及在牙颌上的具体位置可根据用户的牙 齿情况进行个性化设置,此处也不作限定。
示例性的,对于无牙颌和覆合严重的情况,可以将标志点固定在牙龈上,对于有牙且无覆合问题的情况,可以将标志点固定在牙齿和/或牙龈上,但并不限于此。
具体地,第一姿态可以为任意能够裸露出该多个标志点的姿态。
示例性的,图4是本公开实施例提供的一种第一姿态的示意图,参见图4,用户的牙颌上粘贴有多个二维圆形标志点410。
具体地,第一三维坐标为用于表征第一姿态下标志点的位置的三维坐标。第一三维坐标可以为世界坐标系下的坐标,也可以为相机坐标系下的坐标,此处不作限定。
示例性地,可以采用口扫扫描仪、面扫扫描仪等三维扫描设备获取多个标志点对应的多个第一三维坐标,此时,第一三维坐标为相机坐标系(即三维扫描设备坐标系)下的坐标,但并不限于此。
S320、在上颌和下颌处于第二姿态的情况下,获取多个标志点对应的多个第二三维坐标。
在本公开实施例中,当引导用户进行上下颌运行以使上颌和下颌处于第二姿态的情况时,可以获取多个标志点对应的多个第二三维坐标。
具体地,第二姿态可以为任意能够裸露出该多个标志点的、与第一姿态不同的姿态。
示例性的,图5是本公开实施例提供的一种第二姿态的示意图,参见图4和5,由于第一姿态和第二姿态不同,因此,相对第一姿态而言,用户的牙颌上的多个二维圆形标志点410的位置发生变化。
具体地,第二三维坐标为用于表征第二姿态下标志点的位置的三维坐标。第一三维坐标可以为世界坐标系下的坐标,也可以为相机坐标系下的坐标,此处不作限定。
示例性地,可以采用口扫扫描仪、面扫扫描仪等三维扫描设备获取多个标志点对应的多个第二三维坐标,此时,第二三维坐标为相机坐标系(即三维扫描设备坐标系)下的坐标,但并不限于此。
S330、根据多个第一三维坐标和多个第二三维坐标,从多个标志 点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点。
在本公开实施例,在获取到第一姿态下多个标志点对应的多个第一三维坐标、以及第二姿态下多个标志点对应的多个第二三维坐标后,可以根据多个第一三维坐标和多个第二三维坐标对多个标志点进行区分,区分出位于上颌上的第一标志点、以及位于下颌上的第二标志点,以便后续用于牙颌运动追踪中。
可以理解的是,申请人通过对现有技术中的标靶进行研究发现,针对图1所示的标靶,其具有如下问题:第一,实际上在下颌的运动过程中,固定在额骨处的上标靶110会受到运动皮肤和肌肉的影响,不可能不发生位移,导致追踪得到的下颌相对上颌的运动与实际上下颌相对上颌的运动之间误差较大;第二,下标靶120和后牙之间的距离较远,而追踪运动的变换关系与该距离成正比,导致追踪得到的下颌相对上颌的运动与实际上下颌相对上颌的运动之间误差被远距离进一步放大;第三,由于上标靶110和下标靶120的形状和结构是固定的,有可能与用户的牙齿情况并不适配导致在临床使用中适应性差。针对图2所示的标靶,其具有的问题与图1所示的标靶中的第二个问题和第三个问题相同。有鉴于此,申请人考虑到可以直接将多个标志点固定在牙颌上,一方面,由于可以直接将一个或多个第一标志点固定在上颌上,因此无需将上标靶固定在额骨处,从而可以避免上标靶移动带来的误差;另一方面,由于标志点直接固定在牙颌上,并且可以在后牙上固定标志点,因此,可以缩短标志点和后牙之间的距离,从而减小追踪误差;再一方面,由于可以根据用户的牙齿情况个性化设置标志点的固定位置,因此可提高标志点的在下颌运动追踪中的适用性。
本公开实施例,由于用于追踪下颌运动的多个标志点可以直接固定在牙颌(上颌和下颌)的牙齿或牙龈黏膜上,使得在临床使用中可以根据用户的牙齿情况灵活选取多个标志点的具体固定位置,并且,通过获取多个标志点对应的多个第一三维坐标和多个第二三维坐标,可以区分出位于上颌上的第一标志点和位于下颌上的第二标志点,以便后续应用在下颌运动追踪中,如此,可提高标志点的在下颌运动追 踪中的适用性。
在本公开另一种实施方式中,根据多个第一三维坐标和多个第二三维坐标,从多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点,包括:
S131、根据多个第一三维坐标和多个第二三维坐标对多个标志点进行拼接处理,得到两个三维坐标集合。
具体地,拼接处理是确定一个合适的坐标变换,将从各个视角得到的数据合并到一个统一的坐标系下。在本公开实施例中,对多个标志点进行拼接处理即将多个第一三维坐标和多个第二三维坐标合并到一个统一的坐标系下,以便将第一姿态下和第二姿态下的标志点进行对比。
本领域技术人员可采用任意可能的拼接算法对多个标志点进行拼接处理,例如迭代最近点算法(Iterative Closest Point,IPC)、非刚性最近点迭代(Non-rigid Iterative Closest Point,NICP)等,但并不限于此。
具体地,两个三维坐标集合分别为第一标志点对应的三维坐标集合、以及第二标志点对应的三维坐标集合,且该两个三维坐标集合中的三维坐标在同一坐标系下。
其中,第一标志点对应的三维坐标集合中包括:将多个第一三维坐标和多个第二三维坐标合并到一个统一的坐标系下使得第一姿态下的第一标志点和第二姿态下的第一标志点重合时,每个第一标志点的三维坐标,同理,第二标志点对应的三维坐标集合中包括将多个第一三维坐标和多个第二三维坐标合并到一个统一的坐标系下使得第一姿态下的第二标志点和第二姿态下的第二标志点重合时,每个第二标志点的三维坐标。
可以理解的是,在对多个标志点进行拼接处理的过程中,当将多个第一三维坐标和多个第二三维坐标合并到一个统一的坐标系下时,若第一姿态下的上颌上的第一标志点和第二姿态下的上颌上的第一标志点重合、或者第一姿态下的下颌上的第二标志点和第二姿态下的下颌上的第二标志点重合,则第一姿态下的多个标志点和第二姿态下的 多个标志点的重合度最高,因此,将重合度最高的两种情况下重合的标志点对应的三维坐标提取出来,可得到两个三维坐标集合,后续只需区分该两个三维坐标集合哪个是第一标志点对应的三维坐标集合、以及哪个是第二标志点对应的三维坐标集合即可。
S132、比较两个三维坐标集合的竖轴坐标值,得到比较结果。
具体地,三维集合中的三维坐标所在的坐标系包括横轴、纵轴和竖轴,竖轴坐标值即竖轴方向上的坐标值,其中,竖轴为上颌和下颌的排列方向。
示例性的,图6是本公开实施例提供的一种竖轴的示意图。参见图6,上颌和下颌沿纸面的竖直方向上下排列,竖轴的延伸方向为竖直方向,且正轴方向向上即正轴方向为下颌指向上颌的方向。
在一些实施例中,S132可以包括:针对每个三维坐标集合,对三维坐标集合中三维坐标的竖轴坐标值进行平均处理,得到两个三维坐标集合对应的两个平均值;比较两个平均值,将平均值较小的三维坐标集合作为竖轴坐标值较小的三维坐标集合,并将平均值较大的三维坐标集合作为竖轴坐标值较大的三维坐标集合。
示例性的,若竖轴如图6所示,一个三维坐标集合(称之为第一三维坐标集合)中包括三个三维坐标,分别为(x1,y1,z1)、(x2,y2,z2)、以及(x3,y3,z3),(z1+z2+z3)/3为该三维坐标集合对应的平均值,一个三维坐标集合(称之为第二三维坐标集合)中包括(x4,y4,z4)、(x5,y5,z5)、以及(x6,y6,z6),(z4+z5+z6)/3为该三维坐标集合对应的平均值,则当(z1+z2+z3)/3大于(z4+z5+z6)/3时,第一三维坐标集合的竖轴坐标值大于第二三维坐标集合的竖轴坐标值,当(z1+z2+z3)/3小于(z4+z5+z6)/3时,第一三维坐标集合的竖轴坐标值小于第二三维坐标集合的竖轴坐标值。
可以理解的是,由于三维坐标集合中竖轴坐标值的平均值可以代表该三维坐标集合中竖轴坐标值的整体大小,因此,根据平均值大小来确定两个三维坐标集合中竖轴坐标值的整体大小关系,可使比较结果的获取方式简单、快速、准确。
在另一些实施例中,S132可以包括:针对每个三维坐标集合,确 定该三维坐标集合中三维坐标的竖轴坐标值中的最大值,得到两个三维坐标集合对应的两个最大值;比较两个最大值,将最大值较小的三维坐标集合作为竖轴坐标值较小的三维坐标集合,并将最大值较大的三维坐标集合作为竖轴坐标值较大的三维坐标集合。
S133、根据比较结果,将竖轴坐标值较大的三维坐标集合中的三维坐标对应的标志点作为第一标志点,并将竖轴坐标值较小的三维坐标集合中的三维坐标对应的标志点作为第二标志点。
当然,本领域技术人员可以理解的是,若竖轴的正轴方向为上颌指向下颌的方向,则将竖轴坐标值较小的三维坐标集合中的多个三维坐标对应的标志点作为第一标志点,并将竖轴坐标值较大的三维坐标集合中的多个三维坐标对应的标志点作为第二标志点。
具体地,可以将第一标志点对应的三维坐标集合记作P上颌标靶,并且将第二标志点对应的三维坐标集合记作P下颌标靶,并将P上颌标靶和P下颌标靶保存到文件中,用于后续下颌运动追踪时使用。
在本公开另一种实施方式中,标志点包括二维圆形标志点。
可以理解的是,为获取标志点的第一三维坐标和第二三维坐标,需要先从扫描仪对牙颌进行扫描得到的扫描结果中识别出标志点,对于二维圆形标志点,当正对标志点进行扫描时可以得到圆形扫描结果,当非正对标志点进行扫描时可以得到椭圆形扫描结果,并将椭圆形扫描结果修正为圆形扫描结果,然后再根据圆形扫描结果确定三维坐标(第一三维坐标或第二三维坐标),如此,无论从哪个方向对标志点进行扫描,都可以通过直接得到的圆形扫描结果、或者修正后的圆形扫描结果确定三维坐标,从而获得更精准的三维坐标。
在本公开再一种实施方式中,二维圆形标志点的直径小于6毫米。
可以理解的是,在后续追踪下颌运动的过程中,往往需要获取不同帧中牙颌的牙颌三维模型,并根据牙齿上的牙窝等牙齿特征对牙颌三维模型进行拼接处理,通过设置二维圆形标志点的直径小于6毫米,可避免由于标志点过大带来的遮挡牙齿上的牙齿特征的问题,从而提高对牙颌模型进行拼接处理的精度。
在本公开再一种实施方式中,多个标志点的形状和尺寸相同。
可以理解的是,如前文所述,为获取标志点的第一三维坐标和第二三维坐标,需要先从扫描仪对牙颌进行扫描得到的扫描结果中识别出标志点,具体地,当扫描结果中的某一物体满足预设的标志点约束条件时可确定其为标志点。当多个标志点的形状和尺寸相同时,可以将标志点约束条件设置地更严苛,从而降低将其它物体误识别为标志点的风险。
在本公开再一种实施方式中,多个标志点中包括至少三个不在同一直线上的第一标志点、以及至少三个不在同一直线上的第二标志点。
可以理解的是,在后续追踪下颌运动过程中,往往需要通过追踪标志点的运动来追踪下颌运动,在追踪标志点的运动的过程中,需要对标志点在当前时刻的三维坐标和在前一时刻的三维坐标进行拼接处理,申请人考虑到当标志点在同一条直线上时,在拼接处理时容易出现错误,因此,本公开实施例中通过设置包括至少三个不在同一直线上的第一标志点、至少三个不在同一直线上的第二标志点,以降低出现拼接错误的风险,如此,有利于降低后续计算下颌运动轨迹时降低出现抖动的风险。
图7是本公开实施例提供的一种标志点识别装置的结构示意图,该标志点识别装置可以被理解为上述电子设备或者上述电子设备中的部分功能模块。如图7所示,该标志点识别装置700包括:
第一获取模块710,用于在上颌和下颌处于第一姿态的情况下,获取多个标志点对应的多个第一三维坐标;
第二获取模块720,用于在上颌和下颌处于第二姿态的情况下,获取多个标志点对应的多个第二三维坐标;
识别模块730,用于根据多个第一三维坐标和多个第二三维坐标,从多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点。
在本公开另一种实施方式中,识别模块730可以包括:
拼接子模块,用于根据所述多个第一三维坐标和所述多个第二三维坐标对所述多个标志点进行拼接处理,得到两个三维坐标集合;
比较子模块,用于比较两个三维坐标集合的竖轴坐标值,得到比 较结果;
确定子模块,用于根据比较结果,将竖轴坐标值较小的三维坐标集合中的三维坐标对应的标志点作为第一标志点,并将竖轴坐标值较大的三维坐标集合中的三维坐标对应的标志点作为第二标志点。
在本公开又一种实施方式中,比较子模块可以包括:
第一确定单元,用于针对每个三维坐标集合,对三维坐标集合中三维坐标的竖轴坐标值进行平均处理,得到两个三维坐标集合对应的两个平均值;
第二确定单元,用于比较两个平均值,将平均值较小的三维坐标集合作为竖轴坐标值较小的三维坐标集合,并将平均值较大的三维坐标集合作为竖轴坐标值较大的三维坐标集合。
在本公开再一种实施方式中,标志点包括二维圆形标志点。
在本公开再一种实施方式中,二维圆形标志点的直径小于6毫米。
在本公开再一种实施方式中,多个标志点的形状和尺寸相同。
在本公开再一种实施方式中,多个标志点中包括至少三个不在同一直线上的第一标志点、以及至少三个不在同一直线上的第二标志点。
本实施例提供的装置能够执行上述任一实施例的方法,其执行方式和有益效果类似,在这里不再赘述。
本公开实施例还提供了一种电子设备,该电子设备包括:存储器,存储器中存储有计算机程序;处理器,用于执行所述计算机程序,当所述计算机程序被所述处理器执行时可以实现上述任一实施例的方法。
示例的,图8是本公开实施例中的一种电子设备的结构示意图。下面具体参考图8,其示出了适于用来实现本公开实施例中的电子设备700的结构示意图。本公开实施例中的电子设备700可以包括但不限于诸如移动电话、笔记本电脑、数字广播接收器、PDA(个人数字助理)、PAD(平板电脑)、PMP(便携式多媒体播放器)、车载终端(例如车载导航终端)等等的移动终端以及诸如数字TV、台式计算机等等的固定终端。图8示出的电子设备仅仅是一个示例,不应对本公开实施例的功能和使用范围带来任何限制。
如图8所示,电子设备700可以包括处理装置(例如中央处理器、图形处理器等)701,其可以根据存储在只读存储器(ROM)702中的程序或者从存储装置708加载到随机访问存储器(RAM)703中的程序而执行各种适当的动作和处理。在RAM 703中,还存储有电子设备700操作所需的各种程序和数据。处理装置701、ROM 702以及RAM 703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。
通常,以下装置可以连接至I/O接口705:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置706;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置707;包括例如磁带、硬盘等的存储装置708;以及通信装置709。通信装置709可以允许电子设备700与其他设备进行无线或有线通信以交换数据。虽然图8示出了具有各种装置的电子设备700,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。
特别地,根据本公开的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括承载在非暂态计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以通过通信装置709从网络上被下载和安装,或者从存储装置708被安装,或者从ROM 702被安装。在该计算机程序被处理装置701执行时,执行本公开实施例的方法中限定的上述功能。
需要说明的是,本公开上述的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是上述两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或 者上述的任意合适的组合。在本公开中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者上述的任意合适的组合。
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText Transfer Protocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。
上述计算机可读介质可以是上述电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。
上述计算机可读介质承载有一个或者多个程序,当上述一个或者多个程序被该电子设备执行时,使得该电子设备:
在上颌和下颌处于第一姿态的情况下,获取多个标志点对应的多个第一三维坐标;
在上颌和下颌处于第二姿态的情况下,获取多个标志点对应的多个第二三维坐标;
根据多个第一三维坐标和多个第二三维坐标,从多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点。
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的操作的计算机程序代码,上述程序设计语言包括但不限于面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式 程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。其中,单元的名称在某种情况下并不构成对该单元本身的限定。
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、装置或设备使用或与指令执行系统、装置或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、装置或设备,或者 上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
本公开实施例还提供一种计算机可读存储介质,所述存储介质中存储有计算机程序,当所述计算机程序被处理器执行时可以实现上述任一实施例的方法,其执行方式和有益效果类似,在这里不再赘述。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
工业实用性
本公开提供的标志点识别方法,由于用于追踪下颌运动的多个标志点可以直接固定在牙颌(上颌和下颌)的牙齿或牙龈黏膜上,使得在临床使用中可以根据用户的牙齿情况灵活选取多个标志点的具体固定位置,并且,通过获取多个标志点对应的多个第一三维坐标和多个 第二三维坐标,可以区分出位于上颌上的第一标志点和位于下颌上的第二标志点,以便后续应用在下颌运动追踪中,如此,可提高标志点的在下颌运动追踪中的适用性。

Claims (10)

  1. 一种标志点识别方法,其特征在于,包括:
    在上颌和下颌处于第一姿态的情况下,获取多个标志点对应的多个第一三维坐标;
    在所述上颌和所述下颌处于第二姿态的情况下,获取所述多个标志点对应的多个第二三维坐标;
    根据所述多个第一三维坐标和所述多个第二三维坐标,从所述多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述多个第一三维坐标和所述多个第二三维坐标,从所述多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点,包括:
    根据所述多个第一三维坐标和所述多个第二三维坐标对所述多个标志点进行拼接处理,得到两个三维坐标集合;
    比较所述两个三维坐标集合的竖轴坐标值,得到比较结果;
    根据所述比较结果,将竖轴坐标值较大的三维坐标集合中的三维坐标对应的标志点作为所述第一标志点,并将竖轴坐标值较小的三维坐标集合中的三维坐标对应的标志点作为所述第二标志点。
  3. 根据权利要求2所述的方法,其特征在于,所述比较所述两个三维坐标集合的竖轴坐标值,得到比较结果,包括:
    针对每个三维坐标集合,对所述三维坐标集合中三维坐标的竖轴坐标值进行平均处理,得到所述两个三维坐标集合对应的两个平均值;
    比较所述两个平均值,将平均值较小的三维坐标集合作为竖轴坐标值较小的三维坐标集合,并将平均值较大的三维坐标集合作为竖轴坐标值较大的三维坐标集合。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述标志点包括二维圆形标志点。
  5. 根据权利要求4所述的方法,其特征在于,所述二维圆形标志点的直径小于6毫米。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述多个标志点的形状和尺寸相同。
  7. 根据权利要求1所述的方法,其特征在于,所述多个标志点中包括至少三个不在同一直线上的第一标志点、以及至少三个不在同一直线上的第二标志点。
  8. 一种标志点识别装置,其特征在于,包括:
    第一获取模块,用于在上颌和下颌处于第一姿态的情况下,获取多个标志点对应的多个第一三维坐标;
    第二获取模块,用于在所述上颌和所述下颌处于第二姿态的情况下,获取所述多个标志点对应的多个第二三维坐标;
    识别模块,用于根据所述多个第一三维坐标和所述多个第二三维坐标,从所述多个标志点中识别出位于上颌上的第一标志点、以及位于下颌上的第二标志点。
  9. 一种电子设备,其特征在于,包括:
    处理器和存储器,其中,所述存储器中存储有计算机程序,当所述计算机程序被所述处理器执行时,所述处理器执行权利要求1-7任一项所述的方法。
  10. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1-7中任一项所述的方法。
PCT/CN2023/117858 2022-09-30 2023-09-08 标志点识别方法、装置、设备及存储介质 WO2024067033A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211209537.X 2022-09-30
CN202211209537.XA CN115526910A (zh) 2022-09-30 2022-09-30 标志点识别方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024067033A1 true WO2024067033A1 (zh) 2024-04-04

Family

ID=84699613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117858 WO2024067033A1 (zh) 2022-09-30 2023-09-08 标志点识别方法、装置、设备及存储介质

Country Status (2)

Country Link
CN (1) CN115526910A (zh)
WO (1) WO2024067033A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115526910A (zh) * 2022-09-30 2022-12-27 先临三维科技股份有限公司 标志点识别方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176035A (zh) * 2019-05-08 2019-08-27 深圳市易尚展示股份有限公司 标志点的定位方法、装置、计算机设备和存储介质
CN112790888A (zh) * 2021-01-26 2021-05-14 雅客智慧(北京)科技有限公司 下颌运动捕捉系统、捕捉方法以及模拟方法
US20210196213A1 (en) * 2017-10-23 2021-07-01 Niigata University Dental image processing device, dental imaging system, dental image processing method, and program
CN114998443A (zh) * 2022-05-10 2022-09-02 浙江大学 一种基于多目计算机视觉的高精度电子面弓方法
CN115526910A (zh) * 2022-09-30 2022-12-27 先临三维科技股份有限公司 标志点识别方法、装置、设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210196213A1 (en) * 2017-10-23 2021-07-01 Niigata University Dental image processing device, dental imaging system, dental image processing method, and program
CN110176035A (zh) * 2019-05-08 2019-08-27 深圳市易尚展示股份有限公司 标志点的定位方法、装置、计算机设备和存储介质
CN112790888A (zh) * 2021-01-26 2021-05-14 雅客智慧(北京)科技有限公司 下颌运动捕捉系统、捕捉方法以及模拟方法
CN114998443A (zh) * 2022-05-10 2022-09-02 浙江大学 一种基于多目计算机视觉的高精度电子面弓方法
CN115526910A (zh) * 2022-09-30 2022-12-27 先临三维科技股份有限公司 标志点识别方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115526910A (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
WO2024067033A1 (zh) 标志点识别方法、装置、设备及存储介质
US10646317B2 (en) Occlusal state identifying method, occlusal state identifying apparatus, and storage medium
WO2016143022A1 (ja) 歯冠情報取得プログラム、情報処理装置、及び歯冠情報取得方法
WO2020207190A1 (zh) 一种三维信息确定方法、三维信息确定装置及终端设备
US7215803B2 (en) Method and apparatus for interactive remote viewing and collaboration of dental images
WO2007021007A1 (ja) 歯の咬み合わせ修正支援装置、プログラム、及び記録媒体
WO2020062493A1 (zh) 图像处理方法和装置
CN112184910B (zh) 一种牙颌模型咬合关系建立方法及系统
WO2024125048A1 (zh) 一种扫描处理方法、装置、设备及介质
WO2023241704A1 (zh) 牙齿模型的获取方法、装置、设备及介质
WO2024087910A1 (zh) 正畸治疗监测方法、装置、设备及存储介质
CN108904084B (zh) 用于获取口内数字化印模的系统和方法
WO2024109268A1 (zh) 一种数字模型比对方法、装置、设备及介质
CN115457196A (zh) 一种咬合调整方法、装置、设备及介质
WO2024109622A1 (zh) 一种牙颌模型剖面线生成方法、装置、设备及介质
WO2023198099A1 (zh) 基于人工智能的口腔检测方法、装置、电子设备及介质
Tanikawa et al. Automated cephalometry: system performance reliability using landmark-dependent criteria
WO2024109795A1 (zh) 一种扫描处理方法、装置、设备及介质
WO2023198101A1 (zh) 基于人工智能的口腔检测方法、装置、电子设备及介质
US20230274431A1 (en) Image processing apparatus, method for controlling same, and storage medium
US20230210634A1 (en) Outlier detection for clear aligner treatment
CN110487264A (zh) 修正地图的方法、装置、电子设备、及存储介质
CN114748195A (zh) 扫描装置及其连接方法、装置、电子设备及介质
CN107145708A (zh) 一种3d手术计划报告生成方法及生成系统
US20230404708A1 (en) Method for optimizing archline and apparatus using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870272

Country of ref document: EP

Kind code of ref document: A1