WO2024066952A1 - 一种双目色度计及扩展现实眼镜的色度测量方法 - Google Patents

一种双目色度计及扩展现实眼镜的色度测量方法 Download PDF

Info

Publication number
WO2024066952A1
WO2024066952A1 PCT/CN2023/116957 CN2023116957W WO2024066952A1 WO 2024066952 A1 WO2024066952 A1 WO 2024066952A1 CN 2023116957 W CN2023116957 W CN 2023116957W WO 2024066952 A1 WO2024066952 A1 WO 2024066952A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
filters
wheel
chromaticity
filter wheel
Prior art date
Application number
PCT/CN2023/116957
Other languages
English (en)
French (fr)
Inventor
曾强龙
钟凡
Original Assignee
武汉加特林光学仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211173126.XA external-priority patent/CN115452150A/zh
Priority claimed from CN202222552982.8U external-priority patent/CN218121181U/zh
Application filed by 武汉加特林光学仪器有限公司 filed Critical 武汉加特林光学仪器有限公司
Publication of WO2024066952A1 publication Critical patent/WO2024066952A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Definitions

  • the present invention belongs to the field of display device measurement, and more specifically, relates to a binocular colorimeter and a colorimetry method of extended reality glasses.
  • the chromaticity and brightness uniformity of a display screen is an important indicator for evaluating the quality of the display screen.
  • a point colorimeter has a small measurement area, and the diameter of the measurement area is usually within 30 mm. Therefore, it is usually necessary to use a point colorimeter to measure the chromaticity and brightness of multiple positions on the display screen, and then evaluate the chromaticity and brightness uniformity of the display screen. The process is cumbersome and time-consuming.
  • An imaging colorimeter obtains the chromaticity and brightness distribution of the entire display screen or a certain area of a larger display screen by imaging. Compared with a point colorimeter, it is faster, provides more information, and is more suitable for real-time monitoring of the chromaticity and brightness uniformity of the screen on the production line.
  • the market mainly uses XYZ filter colorimeters (X filter, Y filter and Z filter) to measure the chromaticity and brightness uniformity of the display screen on VR glasses.
  • XYZ filter colorimeters X filter, Y filter and Z filter
  • the filter wheel By rotating the filter wheel and switching the filter to a position coaxial with the lens and image sensor, the measurement of a single color coordinate value can be achieved.
  • the filter wheel To measure multiple color coordinate values, the filter wheel must be rotated to switch multiple corresponding filters to complete the complete chromaticity measurement.
  • the present invention provides a binocular colorimeter and a colorimetry method for extended reality glasses, the purpose of which is to be able to rotate the filter wheel multiple times to switch the measurement channels, thereby simultaneously realizing the measurement of the two display screens of the extended reality glasses without the need to measure the two display screens separately.
  • the present invention provides a binocular colorimeter, the binocular colorimeter comprising two left and right optical lenses at the front end, a rotatable filter wheel at the middle part, and two left and right image sensors at the rear end;
  • the left and right optical lenses are arranged in parallel;
  • the left and right image sensors are coaxially arranged with the left and right optical lenses;
  • At least three filters are arranged on the circumference of the filter wheel, and at least three of the at least three filters have different spectral transmittances.
  • the filter wheel switches the measurement channels by rotating, and two of the at least three filters form a group of measurement channels.
  • Any set of measurement channels is coaxially arranged with the left and right image sensors and the left and right optical lenses.
  • the device is configured so that complete XYZ tristimulus values of two optical signals to be measured can be obtained by switching multiple groups of measurement channels.
  • the binocular colorimeter further comprises a driving member, and an output end of the driving member is drivingly connected to the filter wheel to drive the filter wheel to rotate.
  • the driving member is a motor
  • a gear is coaxially sleeved on the output shaft of the motor
  • a rack ring is sleeved on the outer periphery of the filter wheel and the gear
  • the rack ring is meshed with the gear to link the motor and the filter wheel.
  • the driving member is a hand wheel
  • the rotating shaft of the hand wheel and the rotating shaft of the filter wheel are coaxially fixedly connected.
  • the binocular colorimeter further includes an image processor, which is used to receive images generated by the left and right image sensors and generate corresponding color coordinate values.
  • the at least three filters are three filters, and the three filters are evenly arranged in sequence along the circumference of the filter wheel as an X filter, a Y filter, and a Z filter, the X filter, the Y filter, and the Z filter have different spectral transmittances, and a distance between any two adjacent filters is equal to a distance between the left and right optical lenses.
  • the at least three filters are four filters, and the four filters are sequentially a first filter, a second filter, a third filter and a first filter along the circumference of the filter wheel; the spectral transmittances of the first filter, the second filter and the third filter are different; the spacing between any two adjacent filters is equal to the spacing between the left and right optical lenses; when the filter wheel is in the first group of measurement channel positions, the first filter and the second filter are respectively coaxially arranged with the left and right optical lenses.
  • the at least three filters are four filters, and the four filters are evenly arranged along the circumference of the filter wheel as a first filter, a second filter, a third filter and a second filter, and the spectral transmittances of the first filter, the second filter and the third filter are different.
  • the first filter and the third filter are coaxially arranged with the left and right optical lenses, respectively.
  • the at least three filters are six filters, and the six filters are X filter, X filter, Y filter, Y filter, Z filter and Z filter in sequence along the circumference of the filter wheel, the X filter, the Y filter and the Z filter have different spectral transmittances, and a spacing between any two adjacent filters is equal to a spacing between the left and right optical lenses.
  • the at least three filters are six filters, and the six filters are X filter, Y filter, Z filter, X filter, Y filter and Z filter in sequence along the circumference of the filter wheel, the X filter, the Y filter and the Z filter have different spectral transmittances, and the spacing between any two filters with the same spectral transmittance is equal to the spacing between the left and right optical lenses.
  • the present invention provides a method for measuring the chromaticity of extended reality glasses, the method comprising:
  • the colorimetric measuring instrument comprises two left and right optical lenses at the front end, a rotatable filter wheel at the middle part, and two left and right image sensors at the rear end, and at least three filters are arranged in the circumference of the filter wheel, and the spectral transmittances of at least three filters among the at least three filters are different from each other;
  • the filter wheel switches the measurement channels by rotating, two filters of the at least three filters form a group of measurement channels, and the left and right image sensors, any group of measurement channels, and the left and right optical lenses are coaxially arranged;
  • the filter wheel is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values are obtained by two paths of light emitted from two display screens respectively passing through multiple groups of measurement channels;
  • the color coordinate values of the two display screen measurement areas are obtained according to the XYZ tristimulus values of the two display screen measurement areas.
  • At least three filters are arranged on the circumference of the filter wheel, including:
  • the at least three filters are three filters, and the three filters are evenly arranged in sequence along the circumference of the filter wheel as an X filter, a Y filter, and a Z filter.
  • the X filter, the Y filter, and the Z filter have different spectral transmittances, and the distance between any two adjacent filters is equal to the distance between the left and right optical lenses.
  • the filter wheel is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values of two light paths emitted from two display screens respectively passing through multiple groups of measurement channels are obtained, including:
  • the XYZ tristimulus values of each display are obtained respectively.
  • At least three filters are arranged on the circumference of the filter wheel, including:
  • the at least three filters are four filters, and the four filters are sequentially a first filter, a second filter, a third filter and a first filter along the circumference of the filter wheel.
  • the first filter, the second filter and the third filter have different spectral transmittances, and the spacing between any two adjacent filters is equal to the spacing between the left and right optical lenses.
  • the filter wheel is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values of two paths of light emitted from two display screens respectively passing through multiple groups of measurement channels are obtained, including:
  • the first filter and the second filter are coaxially arranged with the left and right optical lenses, respectively, to obtain a first set of chromaticity-related information measurement values of the two display screens;
  • the second filter and the third filter are coaxially arranged with the left and right optical lenses, respectively, to obtain a second set of chromaticity-related information measurement values of the two display screens;
  • the third filter and the first filter are coaxially arranged with the left and right optical lenses, respectively, to obtain a third set of chromaticity-related information measurement values of the two display screens;
  • the XYZ tristimulus values of each display are obtained respectively.
  • At least three filters are arranged on the circumference of the filter wheel, including:
  • the at least three filters are four filters, and the four filters are evenly arranged along the circumference of the filter wheel as a first filter, a second filter, a third filter and a second filter.
  • the first filter, the second filter and the third filter have different spectral transmittances, and the left and right optical lenses are located at diagonal corners of the four filters.
  • the filter wheel is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values of two light paths emitted from two display screens respectively passing through multiple groups of measurement channels are obtained, including:
  • the filter wheel Adjusts the filter wheel so that the filter wheel is in the first measurement channel position, the first filter and the third filter are coaxially arranged with the left and right optical lenses, respectively, to obtain a first set of chromaticity-related information measurement values of the two display screens;
  • the second filter and the second filter are coaxially arranged with the left and right optical lenses, respectively, to obtain a second set of chromaticity-related information measurement values of the two display screens;
  • the third filter and the first filter are coaxially arranged with the left and right optical lenses, respectively, to obtain a third set of chromaticity-related information measurement values of the two display screens;
  • the XYZ tristimulus values of each display are obtained respectively.
  • At least three filters are arranged on the circumference of the filter wheel, including:
  • the at least three filters are six filters, and the six filters are X filter, X filter, Y filter, Y filter, Z filter and Z filter in order along the circumference of the filter wheel, the spectral transmittance of the X filter, the Y filter and the Z filter are different, and the distance between any two adjacent filters is equal to the distance between the left and right optical lenses. distance.
  • the filter wheel is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values of two light paths emitted from two display screens respectively passing through multiple groups of measurement channels are obtained, including:
  • the X filter and the X filter are coaxially arranged with the left and right optical lenses respectively, and obtain a first set of chromaticity-related information measurement values of the two display screens;
  • the Y filter and the Y filter are coaxially arranged with the left and right optical lenses, respectively, to obtain a second set of chromaticity-related information measurement values of the two display screens;
  • the Z filter and the Z filter are respectively arranged coaxially with the left and right optical lenses, and obtain a third set of chromaticity-related information measurement values of the two display screens;
  • the XYZ tristimulus values of each display are obtained respectively.
  • At least three filters are arranged on the circumference of the filter wheel, including:
  • the at least three filters are six filters, and the six filters are X filter, Y filter, Z filter, X filter, Y filter and Z filter in sequence along the circumference of the filter wheel, the X filter, the Y filter and the Z filter have different spectral transmittances, and the spacing between any two filters with the same spectral transmittance is equal to the spacing between the left and right optical lenses.
  • the extended reality glasses include any one of AR glasses, VR glasses, and MR glasses.
  • the two display screens are simultaneously facing the left and right optical lenses.
  • the two filters of the filter wheel are coaxially arranged with the left and right image sensors and the left and right optical lenses, so as to obtain a set of chromaticity-related information measurement values of the two display screens.
  • the filter wheel is rotated multiple times to switch the measurement channels (two filters with different spectral transmittances are adjusted to be placed in different measurement channel positions), and multiple groups of chromaticity-related information measurement values of two light beams emitted from the two display screens of the glasses through multiple groups of measurement channels are obtained, and the XYZ tristimulus values of the measurement areas of the two display screens are obtained respectively according to the multiple groups of chromaticity-related information measurement values of the two display screens. Finally, the color coordinate values of the measurement areas of the two display screens are obtained according to the XYZ tristimulus values of the measurement areas of the two display screens, so as to obtain the color coordinate values of the two display screens simultaneously by rotating the filter wheel multiple times.
  • a binocular colorimeter provided by an embodiment of the present invention can rotate the filter wheel multiple times to switch the measurement channels, thereby simultaneously measuring two VR display screens without having to measure the two display screens separately.
  • FIG1 is a schematic diagram of the structure of a binocular colorimeter provided by an embodiment of the present invention.
  • FIG. 2 is a flow chart of a method for measuring chromaticity of extended reality glasses provided in an embodiment of the present invention.
  • first and second are used for descriptive purposes only and should not be understood as indicating or implying relative importance or implicitly indicating the number of the indicated technical features. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise clearly and specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and the like should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • installed can be a fixed connection, a detachable connection, or an integral connection
  • it can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium, it can be the internal connection of two elements or the interaction relationship between two elements, unless otherwise clearly defined.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • a first feature can be “above” or “below” a second feature.
  • the first and second features are directly in contact, or the first and second features are indirectly in contact through an intermediate medium.
  • the first feature being “above”, “above” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature is lower in level than the second feature.
  • FIG1 is a schematic diagram of the structure of a binocular colorimeter provided by an embodiment of the present invention.
  • the binocular colorimeter includes two left and right optical lenses 1 located at the front end, a rotatable filter wheel 2 located in the middle part, and two left and right image sensors 3 located at the rear end.
  • the left and right optical lenses 1 are arranged in parallel.
  • the left and right image sensors 3 are coaxially arranged with the left and right optical lenses 1 .
  • At least three filters are arranged on the circumference of the filter wheel 2, and at least three filters 21 of the at least three filters have different spectral transmittances.
  • the filter wheel 2 switches the measurement channels by rotating, and two filters 21 of the at least three filters form a group of measurement channels.
  • Any set of measurement channels is coaxially arranged with the left and right image sensors 3 and the left and right optical lenses 1, so that complete XYZ tristimulus values of two paths of light signals to be measured can be obtained by switching multiple sets of measurement channels.
  • the filter wheel 2 when testing two display screens of AR/VR glasses, first, when the filter wheel 2 is in the first group of measurement channel positions, the two display screens are simultaneously facing the left and right optical lenses 1. At this time, the two filters 21 of the filter wheel 2 are coaxially arranged with the left and right image sensors 3 and the left and right optical lenses 1, so as to obtain a set of chromaticity-related information measurement values of the two display screens.
  • the filter wheel 2 is rotated multiple times to switch the measurement channels (the two filters 21 with different spectral transmittances are adjusted to be placed in different measurement channel positions), and multiple groups of chromaticity-related information measurement values of the two paths of light emitted from the two display screens of the glasses through multiple groups of measurement channels are obtained, and the XYZ tristimulus values of the measurement areas of the two display screens are obtained respectively according to the multiple groups of chromaticity-related information measurement values of the two display screens (through the left and right image sensors 3). Finally, the color coordinate values of the measurement areas of the two display screens are obtained according to the XYZ tristimulus values of the measurement areas of the two display screens, so that the color coordinate values of the two display screens are simultaneously obtained by rotating the filter wheel 2 multiple times.
  • the binocular colorimeter provided by the embodiment of the present invention can rotate the filter wheel 2 multiple times to switch the measurement channels, thereby simultaneously measuring the two VR display screens without measuring the two display screens separately.
  • each filter 21 has a different spectral transmittance and is used to transmit light signals of different frequencies. Each filter 21 can only transmit light signals of one frequency, and other light signals cannot pass through the filter 21 .
  • the image processor 6 is used to receive the images generated by the left and right image sensors 3 and generate corresponding color coordinate values, and can directly process and analyze the optical information, thereby quickly acquiring the color coordinate values and improving the measurement efficiency.
  • the binocular colorimeter further includes a driving member, an output end of the driving member is drivingly connected to the filter wheel 2 to drive the filter wheel 2 to rotate, thereby driving the filter wheel 2 to rotate through the driving member, thereby completing convenient adjustment of different filters 21.
  • the driving member is a motor 4, a gear 41 is coaxially sleeved on the output shaft of the motor 4, a rack ring 5 is sleeved on the outer periphery of the filter wheel 2 and the gear 41, and the rack ring 5 and the gear 41 are meshed to link the motor 4 and the filter wheel 2.
  • the motor 4 drives the gear 41 and the rack ring 5 to rotate, thereby eventually driving the filter wheel 2 to rotate, thereby avoiding manual rotation.
  • the driving member is a hand wheel
  • the rotating shaft of the hand wheel and the rotating shaft of the filter wheel 2 are coaxially fixedly connected, so that the filter wheel 2 can also be driven to rotate conveniently by the hand wheel.
  • the at least three filters are three filters 21, and the three filters 21 are evenly arranged in sequence along the circumference of the filter wheel 2 as an X filter 211, a Y filter 212, and a Z filter 213 (that is, the angle between any two adjacent filters 21 is 120°), the X filter 211, the Y filter 212, and the Z filter 213 have different spectral transmittances, and the distance between any two adjacent filters 21 is equal to the distance between the left and right optical lenses 1.
  • the filter wheel 2 is adjusted so that when the filter wheel 2 is in the first group of measurement channel positions, the X filter 211 and the Y filter 212 are coaxial with the left and right image sensors 3 (or the left and right optical lenses 1), respectively, to obtain the first group of chromaticity-related information measurement values of the two display screens. Then, the filter wheel 2 is rotated clockwise to a corresponding angle of 120°, that is, the filter wheel 2 is in the second group of measurement channel positions, so that the Y filter 212 and the Z filter 213 are coaxial with the left and right image sensors 3, respectively, to obtain the second group of chromaticity-related information measurement values of the two display screens.
  • the filter wheel 2 is rotated clockwise again to a corresponding angle of 120°, that is, the filter wheel 2 is in the third group of measurement channel positions, so that the Z filter 213 and the X filter 211 are coaxial with the left and right image sensors 3, respectively, to obtain the third group of chromaticity-related information measurement values of the two display screens.
  • the filters 21 corresponding to each display screen are switched three times (three different spectra) respectively.
  • the transmittance filter 21) simultaneously obtains the XYZ tristimulus values of the two display screen measurement areas, thereby finally obtaining the color coordinate values of the two display screen measurement areas.
  • At least three filters are four filters 21, and the four filters 21 are sequentially a first filter, a second filter, a third filter and a first filter along the circumference of the filter wheel 2.
  • the spectral transmittances of the first filter, the second filter and the third filter are different.
  • the spacing between any two adjacent filters 21 is equal to the spacing between the left and right optical lenses 1.
  • first filter the second filter and the third filter may correspond to one of the X filter 211, the Y filter 212 and the Z filter 213 respectively.
  • the first filter is an X filter 211
  • the second filter is a Y filter 212
  • the third filter is a Z filter 213
  • the first filter may be a Y filter 212
  • the second filter may be a Z filter 213
  • the third filter may be an X filter 211):
  • the filter wheel 2 is adjusted so that when the filter wheel 2 is in the first group of measurement channel positions (see FIG. 1 ), the X filter 211 and the Y filter 212 are coaxial with the left and right image sensors 3, respectively, and the first group of chromaticity-related information measurement values of the two display screens are obtained.
  • the filter wheel 2 is rotated so that when the filter wheel 2 is in the second group of measurement channel positions, the Y filter 212 and the Z filter 213 are coaxial with the two image sensors 3, respectively, and the second group of chromaticity-related information measurement values of the two display screens are obtained.
  • the filter wheel 2 is rotated so that when the filter wheel 2 is in the third group of measurement channel positions, the Z filter 213 and the X filter 211 are coaxial with the two image sensors 3, respectively, and the third group of chromaticity-related information measurement values of the two display screens are obtained.
  • the two filters 21 in front of the two image sensors 3 are switched three times in the order of "X filter 211, Y filter 212, Z filter 213" and "Y filter 212, Z filter 213 and X filter 211" respectively, so that the XYZ tristimulus values of the two display screen measurement areas are obtained at the same time, thereby finally obtaining the color coordinate values of the two display screen measurement areas.
  • At least three filters are four filters 21, and the four filters 21 are uniformly arranged along the circumference of the filter wheel 2 as a first filter, a second filter, a third filter, and a second filter (that is, the angle between two adjacent filters 21 is 90°).
  • the spectral transmittances of the first filter, the second filter, and the third filter are different.
  • the first filter and the third filter are coaxially arranged with the left and right optical lenses 1, respectively.
  • the first filter is an X filter 211
  • the second filter is a Y filter 212
  • the third filter is a Z filter 213 as an example for description:
  • the filter wheel 2 is adjusted so that when the filter wheel 2 is in the first group of measurement channel positions, the X filter 211 and the Z filter 213 are coaxial with the left and right image sensors 3, respectively, to obtain the first group of chromaticity of the two display screens. Then, the angle corresponding to the clockwise rotation of the filter wheel 2 is 90°, that is, the filter wheel 2 is in the second group of measurement channel positions, so that the Y filter 212 and the Y filter 212 are coaxial with the left and right image sensors 3, respectively, and the second group of chromaticity related information measurement values of the two display screens are obtained.
  • the angle corresponding to the rotation of the filter wheel 2 again is 90°, that is, the filter wheel 2 is in the third group of measurement channel positions, so that the Z filter 213 and the X filter 211 are coaxial with the left and right image sensors 3, respectively, and the third group of chromaticity related information measurement values of the two display screens are obtained.
  • the filter 21 corresponding to each display screen is switched three times (three filters 21 with different spectral transmittances), and the XYZ tristimulus values of the measurement areas of the two display screens are obtained at the same time, thereby finally obtaining the color coordinate values of the measurement areas of the two display screens.
  • the at least three filters are six filters 21, and the six filters 21 are X filter 211, X filter 211, Y filter 212, Y filter 212, Z filter 213 and Z filter 213 in sequence along the circumference of the filter wheel 2.
  • the spectral transmittances of the X filter 211, the Y filter 212 and the Z filter 213 are different, and the distance between any two adjacent filters 21 is equal to the distance between the left and right optical lenses 1.
  • the filters 21 corresponding to the two display screens are respectively “X filter 211, X filter 211”, “Y filter 212, Y filter 212” and “Z filter 213, Z filter 213”.
  • the at least three filters are six filters 21, and the six filters 21 are X filter 211, Y filter 212, Z filter 213, X filter 211, Y filter 212 and Z filter 213 in sequence along the circumference of the filter wheel 2, the spectral transmittance of the X filter 211, the Y filter 212 and the Z filter 213 are different, and the distance between any two filters 21 with the same spectral transmittance is equal to the distance between the left and right optical lenses 1.
  • the filters 21 corresponding to the two display screens are respectively “X filter 211, X filter 211”, “Y filter 212, Y filter 212” and “Z filter 213, Z filter 213”.
  • the relative arrangement of the multiple filters 21 on the filter wheel 2 can be various and can be designed according to specific process conditions, and the present invention is not limited to this.
  • the filter wheel 2 and the left and right image sensors 3 are all packaged in a camera body.
  • FIG2 is a flow chart of a method for measuring chromaticity of extended reality glasses provided by an embodiment of the present invention. As shown in FIG2 , the measuring method includes:
  • the colorimetric measuring instrument i.e., the binocular colorimeter mentioned above
  • the colorimetric measuring instrument includes two left and right optical lenses 1 located at the front end, a rotatable filter wheel 2 located in the middle part, and two left and right image sensors 3 located at the rear end (see FIG. 1 ), and at least three filters are arranged in the circumference of the filter wheel 2, and the spectral transmittances of at least three filters 21 among the at least three filters are different from each other.
  • the filter wheel 2 switches the measuring channels by rotating, at least two filters out of the three filters form a group of measuring channels, and the left and right image sensors 3, any group of measuring channels, and the left and right optical lenses 1 are coaxially arranged.
  • the filter wheel 2 when testing two display screens of the extended reality glasses, first, align the left and right optical lenses 1 of the colorimetry instrument with the left and right display screens of the extended reality glasses. At this time, when the filter wheel 2 is in the first measurement channel position, the two filters 21 of the filter wheel 2 are coaxially arranged with the left and right image sensors 3 and the left and right optical lenses 1, so as to obtain a set of colorimetry-related information measurement values of the two display screens.
  • the filter wheel 2 is rotated multiple times to switch the measurement channels (the two filters 21 with different spectral transmittances are adjusted to be placed in different measurement channel positions), and multiple sets of colorimetry-related information measurement values of two paths of light emitted from the two display screens of the glasses through multiple sets of measurement channels are obtained.
  • the XYZ tristimulus values of the measurement areas of the two display screens are obtained respectively.
  • the color coordinate values of the measurement areas of the two display screens are obtained, so that the color coordinate values of the two display screens are simultaneously obtained by rotating the filter wheel 2 multiple times.
  • the chromaticity measurement method of the extended reality glasses provided by the embodiment of the present invention can rotate the filter wheel 2 multiple times to switch the measurement channels, thereby simultaneously measuring the two display screens of the extended reality glasses without measuring the two display screens separately.
  • each filter 21 has a different spectral transmittance and is used to transmit light signals of different frequencies. Each filter 21 can only transmit light signals of one frequency, and other light signals cannot pass through the filter 21 .
  • the image processor 6 is used to receive the images generated by the left and right image sensors 3 and generate corresponding color coordinate values, and can directly process and analyze the optical information, thereby quickly acquiring the color coordinate values and improving the measurement efficiency.
  • At least three filters are arranged on the circumference of the filter wheel 2, including:
  • At least three filters are three filters, and the three filters are evenly arranged along the circumference of the filter wheel 2, namely, an X filter 211, a Y filter 212, and a Z filter 213 (i.e., the angle between two adjacent filters is 120°), and the spectral transmittances of the X filter 211, the Y filter 212, and the Z filter 213 are different, and the distance between any two adjacent filters 21 is equal to the distance between the left and right light sources.
  • the color coordinate values of the two display screens can be obtained simultaneously by passing through three filters and rotating the filter wheel 2 three times.
  • the filter wheel 2 is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values of two light paths emitted from the two display screens of the glasses through multiple groups of measurement channels are obtained, including:
  • the X filter 211 and the Y filter 212 are coaxial with the left and right optical lenses 1 (or the left and right image sensors 3), respectively, to obtain a first set of chromaticity-related information measurement values of the two display screens.
  • the angle corresponding to rotating the filter wheel 2 clockwise is 120°, that is, the filter wheel 2 is in the second measurement channel position, so that the Y filter 212 and the Z filter 213 are coaxial with the left and right image sensors 3, respectively, and the second set of chromaticity-related information measurement values of the two display screens are obtained.
  • the angle corresponding to rotating the filter wheel 2 clockwise again is 120°, that is, the filter wheel 2 is in the third measurement channel position, so that the Z filter 213 and the X filter 211 are coaxial with the left and right image sensors 3, respectively, and the third set of chromaticity-related information measurement values of the two display screens are obtained.
  • the XYZ tristimulus values of each display screen are obtained respectively, thereby obtaining the color coordinate values of the two display screen measurement areas according to the XYZ tristimulus values of the two display screen measurement areas.
  • At least three filters are arranged on the circumference of the filter wheel 2, including:
  • At least three filters are four filters, and the four filters are the first filter, the second filter, the third filter and the first filter in sequence along the circumference of the filter wheel 2.
  • the spectral transmittances of the first filter, the second filter and the third filter are different.
  • the spacing between any two adjacent filters 21 is equal to the spacing between the left and right optical lenses 1.
  • the filter wheel 2 is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values of two paths of light emitted from two display screens of the glasses through multiple groups of measurement channels are obtained, including:
  • the filter wheel 2 is adjusted so that the filter wheel is in the first measurement channel position, and the first filter and the second filter are coaxially arranged with the left and right optical lenses 1, respectively, to obtain a first set of chromaticity-related information measurement values of the two display screens.
  • the third filter and the first filter are coaxially arranged with the left and right optical lenses 1, respectively, to obtain a third set of chromaticity-related information measurement values of the two display screens.
  • first filter the second filter and the third filter may correspond to one of the X filter 211, the Y filter 212 and the Z filter 213 respectively.
  • the first filter is an X filter 211
  • the second filter is a Y filter 212
  • the third filter is a Z filter 213
  • the first filter may be a Y filter 212
  • the second filter is a Z filter 213
  • the third filter is an X filter 211):
  • the filter wheel 2 when the filter wheel 2 is in the first measurement channel position (see FIG. 1 ), the X filter 211 and the Y filter 212 are coaxial with the left and right optical lenses 1 (or the left and right image sensors 3), respectively, and the first set of chromaticity-related information measurement values of the two display screens are obtained.
  • the filter wheel 2 is rotated so that the filter wheel 2 is in the second measurement channel position, at which time the Y filter 212 and the Z filter 213 are coaxial with the left and right optical lenses 1 (or the left and right image sensors 3), respectively, and the second set of chromaticity-related information measurement values of the two display screens are obtained.
  • the filter wheel 2 is rotated so that the filter wheel 2 is in the third measurement channel position, the Z filter 213 and the X filter 211 are coaxial with the left and right optical lenses 1 (or the left and right image sensors 3), respectively, and the third set of chromaticity-related information measurement values of the two display screens are obtained.
  • the two filters 21 in front of the two image sensors 3 are switched three times in the order of "X filter 211, Y filter 212, Z filter 213" and "Y filter 212, Z filter 213 and X filter 211" respectively, so that the XYZ tristimulus values of the two display screen measurement areas are obtained at the same time, thereby finally obtaining the color coordinate values of the two display screen measurement areas.
  • At least three filters are arranged on the circumference of the filter wheel 2, including:
  • At least three filters are four filters, and the four filters 21 are evenly arranged along the circumference of the filter wheel 2 as the first filter, the second filter, the third filter and the second filter (that is, the angle between two adjacent filters is 90°).
  • the spectral transmittances of the first filter, the second filter and the third filter are different.
  • the left and right optical lenses 1 are located at the diagonals of the four filters 21.
  • four filters are also passed through, and the filter wheel 2 is rotated three times to simultaneously obtain the color coordinate values of the two display screens.
  • the filter wheel 2 is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values of two paths of light emitted from two display screens of the glasses through multiple groups of measurement channels are obtained, including:
  • the filter wheel 2 is adjusted so that the filter wheel is in the first measurement channel position, and the first filter and the third filter are coaxially arranged with the left and right optical lenses 1, respectively, to obtain a first set of chromaticity-related information measurement values of the two display screens.
  • the second filter is coaxially arranged with the left and right optical lenses 1 respectively to obtain a second set of chromaticity-related information measurement values of the two display screens.
  • the measurement channel of the filter wheel 2 is rotated so that the filter wheel is in the third measurement channel position.
  • the third filter and the first filter are respectively arranged coaxially with the left and right optical lenses 1 to obtain a third set of chromaticity-related information measurement values of the two display screens.
  • the following also takes the case where the first filter is an X filter 211, the second filter is a Y filter 212, and the third filter is a Z filter 213 as an example for description:
  • the filter wheel 2 when the filter wheel 2 is in the first measurement channel position, the X filter 211 and the Z filter 213 are coaxial with the left and right optical lenses 1 (or the left and right image sensors 3), respectively, to obtain the first set of chromaticity-related information measurement values of the two display screens. Then, the filter wheel 2 is rotated clockwise to a corresponding angle of 90°, that is, the filter wheel 2 is in the second measurement channel position, so that the Y filter 212 and the Y filter 212 are coaxial with the left and right optical lenses 1 (or the left and right image sensors 3), respectively, to obtain the second set of chromaticity-related information measurement values of the two display screens.
  • the filter wheel 2 is rotated again to a corresponding angle of 90°, that is, the filter wheel 2 is in the third measurement channel position, so that the Z filter 213 and the X filter 211 are coaxial with the left and right optical lenses 1 (or the left and right image sensors 3), respectively, to obtain the third set of chromaticity-related information measurement values of the two display screens.
  • the filters 21 corresponding to each display screen are switched three times (three filters 21 with different spectral transmittances), and the XYZ tristimulus values of the two display screen measurement areas are obtained simultaneously, thereby finally obtaining the color coordinate values of the two display screen measurement areas.
  • At least three filters are arranged on the circumference of the filter wheel 2, including:
  • the at least three filters are six filters, and the six filters 21 are X filter 211, X filter 211, Y filter 212, Y filter 212, Z filter 213 and Z filter 213 in sequence along the circumference of the filter wheel 2.
  • the spectral transmittances of the X filter 211, the Y filter 212 and the Z filter 213 are different, and the distance between any two adjacent filters 21 is equal to the distance between the left and right optical lenses 1.
  • the color coordinate values of the two display screens can be obtained simultaneously.
  • the filter wheel 2 is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values of two paths of light emitted from two display screens of the glasses through multiple groups of measurement channels are obtained, including:
  • the filter wheel 2 is adjusted so that the filter wheel is in the first measurement channel position, and the X filter 211 and the X filter 211 are coaxially arranged with the left and right optical lenses 1, respectively, to obtain the first set of chromaticity-related information measurement values of the two display screens.
  • the filters 21 corresponding to the two display screens after three rotations are respectively "X filter 211, X filter 211", “Y filter 212, Y filter 212" and "Z filter 213, Z filter 213".
  • At least three filters are arranged around the filter wheel 2, including:
  • the at least three filters are six filters, and the six filters 21 are X filter 211, Y filter 212, Z filter 213, X filter 211, Y filter 212 and Z filter 213 in sequence along the circumference of the filter wheel 2, the spectral transmittance of the X filter 211, the Y filter 212 and the Z filter 213 are different, and the distance between any two filters 21 with the same spectral transmittance is equal to the distance between the left and right optical lenses 1.
  • the filter wheel 2 is rotated multiple times to switch the measurement channels, and multiple groups of chromaticity-related information measurement values of two paths of light emitted from two display screens of the glasses through multiple groups of measurement channels are obtained, including:
  • the filter wheel 2 is adjusted so that the filter wheel is in the first measurement channel position, and the X filter 211 and the X filter 211 are coaxially arranged with the left and right optical lenses 1, respectively, to obtain the first set of chromaticity-related information measurement values of the two display screens.
  • the filters 21 corresponding to the two display screens after three rotations are respectively "X filter 211, X filter 211", “Y filter 212, Y filter 212" and "Z filter 213, Z filter 213".
  • the relative arrangement of the multiple filters 21 on the filter wheel 2 can be various and can be designed according to specific process conditions, and the present invention is not limited to this.
  • the filter wheel 2 and the left and right image sensors 3 are all packaged in a camera body.
  • extended reality glasses include any one of AR glasses, VR glasses, and MR glasses.
  • the binocular colorimeter further includes a driving member, and an output end of the driving member is drivingly connected to the filter wheel 2 to drive the filter wheel 2 to rotate, thereby driving the filter wheel 2 to rotate through the driving member, thereby completing convenient adjustment of different filters 21.
  • the driving member is a motor 4, a gear 41 is coaxially sleeved on the output shaft of the motor 4, a rack ring 5 is sleeved on the outer periphery of the filter wheel 2 and the gear 41, and the rack ring 5 and the gear 41 are meshed to link the motor 4 and the filter wheel 2.
  • the motor 4 drives the gear 41 and the rack ring 5 to rotate, thereby eventually driving the filter wheel 2 to rotate, thereby avoiding manual rotation.
  • the driving member is a hand wheel
  • the rotating shaft of the hand wheel and the rotating shaft of the filter wheel 2 are coaxially fixedly connected, so that the filter wheel 2 can also be driven to rotate conveniently by the hand wheel.
  • each filter 21 can be inserted into a through hole on the filter wheel 2 .
  • each filter 21 may also be bonded to the outer edge of the filter wheel 2 .
  • the present invention does not limit the installation method of the filter 21.
  • angle marks are provided on the circumference of the filter wheel 2 , so as to achieve precise adjustment of the rotation of the filter wheel 2 .

Abstract

一种双目色度计及扩展现实眼镜的色度测量方法,属于显示器件测量领域。双目色度计包括位于前端的左右两个光学镜头(1)、位于中间部分的可旋转的滤镜轮(2)和位于后端的左右两个图像传感器(3)。滤镜轮(2)周向上设置有至少三个滤镜(21),且至少三个滤镜(21)中至少有三个滤镜(21)的光谱透过率互不相同,滤镜轮(2)通过旋转切换测量通道,至少三个滤镜(21)中的两个滤镜(21)形成一组测量通道。任意一组测量通道均与左右两个图像传感器(3)、左右两个光学镜头(1)同轴布置。这种双目色度计,可以多次旋转滤镜轮(2)进行测量通道的切换,从而同时实现对VR两个显示屏的测量,无需分别对两个显示屏单独测量。

Description

一种双目色度计及扩展现实眼镜的色度测量方法 【技术领域】
本发明属于显示器件测量领域,更具体地,涉及一种双目色度计及扩展现实眼镜的色度测量方法。
【背景技术】
显示屏色度亮度均匀性是评价显示屏质量的重要指标。通常有点式与成像式两种方式测量显示屏色度和亮度。点式色度计,顾名思义,即测量区域较小,测量区域直径通常在30mm以内,因此通常需要使用点式色度计测量显示屏的多个位置的色度亮度,而后评估显示屏色度亮度均匀性,过程繁琐,耗时较长。成像式色度计是通过成像的方式获得整个显示屏或较大显示屏某个区域的色度亮度分布,相较点式色度计速度快,提供的信息更多,更适合产线上实时监督屏体色度亮度均匀性。
目前,市场上主要通过XYZ滤镜式色度计(X滤镜、Y滤镜以及Z滤镜)来测量VR眼镜上显示屏的色度亮度均匀性,通过转动滤镜轮,将滤镜切换到与镜头和图像传感器同轴的位置,可以实现单个色坐标值的测量,要测量多个色坐标值就要转动滤镜轮切换多个对应的滤镜完成完整的色度测量即可。
然而,在对AR/VR眼镜这类具有两个显示屏进行测试量时,需要通过上述色度计分别对两个显示屏进行测量,导致测试效率较低。
【发明内容】
针对现有技术的以上缺陷或改进需求,本发明提供了一种双目色度计及扩展现实眼镜的色度测量方法,其目的在于可以多次旋转滤镜轮进行测量通道的切换,从而同时实现对扩展现实眼镜的两个显示屏的测量,无需分别对两个显示屏单独测量。
第一方面,本发明提供了一种双目色度计,所述双目色度计包括位于前端的左右两个光学镜头、位于中间部分的可旋转的滤镜轮和位于后端的左右两个图像传感器;
所述左右两个光学镜头并行排列布置;
所述左右两个图像传感器与所述左右两个光学镜头同轴布置;
所述滤镜轮周向上设置有至少三个滤镜,且所述至少三个滤镜中至少有三个滤镜的光谱透过率互不相同,所述滤镜轮通过旋转切换测量通道,所述至少三个滤镜中的两个滤镜形成一组测量通道;
任意一组测量通道均与所述左右两个图像传感器、所述左右两个光学镜头同轴布 置,从而使得通过切换多组测量通道获得两路待测光信号完整的XYZ三刺激值。
可选地,所述双目色度计还包括驱动件,所述驱动件的输出端和所述滤镜轮传动连接,以驱动所述滤镜轮旋转。
可选地,所述驱动件为电机,所述电机的输出轴上同轴套设有齿轮,所述滤镜轮和所述齿轮外周套设有齿条环,所述齿条环和所述齿轮啮合,以联动所述电机和所述滤镜轮。
可选地,所述驱动件为手轮,所述手轮的旋转轴和所述滤镜轮的旋转轴同轴固定连接。
可选地,所述双目色度计还包括图像处理器,所述图像处理器用于接收所述左右两个图像传感器生成的图像,并生成相对应的色坐标值。
可选地,所述至少三个滤镜为三个滤镜,三个所述滤镜沿所述滤镜轮周向上依次均匀为X滤镜、Y滤镜和Z滤镜,所述X滤镜、所述Y滤镜和所述Z滤镜的光谱透过率不同,任意相邻的两个所述滤镜的间距等于所述左右两个光学镜头的间距。
可选地,所述至少三个滤镜为四个滤镜,四个所述滤镜沿所述滤镜轮周向上依次为第一滤镜、第二滤镜、第三滤镜和第一滤镜,所述第一滤镜、所述第二滤镜和所述第三滤镜的光谱透过率不同,任意相邻的两个所述滤镜的间距等于所述左右两个光学镜头的间距,所述滤镜轮处于第一组测量通道位置时,所述第一滤镜、所述第二滤镜分别与所述左右两个光学镜头同轴布置。
可选地,所述至少三个滤镜为四个滤镜,四个所述滤镜沿所述滤镜轮周向上依次均匀为第一滤镜、第二滤镜、第三滤镜和第二滤镜,所述第一滤镜、所述第二滤镜和所述第三滤镜的光谱透过率不同,所述滤镜轮处于第一组测量通道位置时,所述第一滤镜、所述第三滤镜分别与所述左右两个光学镜头同轴布置。
可选地,所述至少三个滤镜为六个滤镜,六个所述滤镜沿所述滤镜轮周向上依次为X滤镜、X滤镜、Y滤镜、Y滤镜、Z滤镜和Z滤镜,所述X滤镜、所述Y滤镜和所述Z滤镜的光谱透过率不同,且任意相邻的两个所述滤镜的间距等于所述左右两个光学镜头的间距。
可选地,所述至少三个滤镜为六个滤镜,且六个所述滤镜沿所述滤镜轮周向上依次为X滤镜、Y滤镜、Z滤镜、X滤镜、Y滤镜和Z滤镜,所述X滤镜、所述Y滤镜和所述Z滤镜的光谱透过率不同,且任意相同的两个光谱透过率的所述滤镜的间距等于所述左右两个光学镜头的间距。
第二方面,本发明提供了一种扩展现实眼镜的色度测量方法,所述测量方法包括:
将色度测量仪器的左右两个光学镜头与扩展现实眼镜的左右两个显示屏对齐设置;
所述色度测量仪器包括,位于前端的左右两个光学镜头、位于中间部分的可旋转的滤镜轮和位于后端的左右两个图像传感器,并在所述滤镜轮周向上设置有至少三个滤镜,且所述至少三个滤镜中至少有三个滤镜的光谱透过率互不相同;
所述滤镜轮通过旋转切换测量通道,所述至少三个滤镜中的两个滤镜形成一组测量通道,所述左右两个图像传感器、任意一组测量通道、所述左右两个光学镜头同轴布置;
多次旋转所述滤镜轮进行测量通道的切换,获得分别从两个显示屏发射的两路光线通过多组测量通道的多组色度相关信息测量值;
根据所述两个显示屏的多组色度相关信息测量值分别获得两个显示屏测量区域的XYZ三刺激值;
根据所述两个显示屏测量区域的XYZ三刺激值获得所述两个显示屏测量区域的色坐标值。
可选地,所述在所述滤镜轮周向上设置有至少三个滤镜,包括:
所述至少三个滤镜为三个滤镜,三个所述滤镜沿所述滤镜轮周向上依次均匀为X滤镜、Y滤镜和Z滤镜,所述X滤镜、所述Y滤镜和所述Z滤镜的光谱透过率不同,任意相邻的两个所述滤镜的间距等于所述左右两个光学镜头的间距。
可选地,多次旋转所述滤镜轮进行测量通道的切换,获得分别从两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
调整所述滤镜轮,使得所述滤镜轮处于第一次测量通道位置,获得两个显示屏的第一组色度相关信息测量值;
旋转切换两次所述滤镜轮的测量通道,分别获得两个显示屏的第二组色度相关信息测量值和第三组色度相关信息测量值;
根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
可选地,所述在所述滤镜轮周向上设置有至少三个滤镜,包括:
所述至少三个滤镜为四个滤镜,四个所述滤镜沿所述滤镜轮周向上依次为第一滤镜、第二滤镜、第三滤镜和第一滤镜,所述第一滤镜、所述第二滤镜和所述第三滤镜的光谱透过率不同,任意相邻的两个所述滤镜的间距等于所述左右两个光学镜头的间距。
可选地,多次旋转所述滤镜轮进行测量通道的切换,获得分别从两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
调整所述滤镜轮,使得所述滤镜轮处于第一次测量通道位置,所述第一滤镜、第二滤镜分别与所述左右两个光学镜头同轴布置,获得两个显示屏的第一组色度相关信息测量值;
旋转所述滤镜轮的测量通道,使得所述滤镜轮处于第二次测量通道位置,所述第二滤镜、第三滤镜分别与所述左右两个光学镜头同轴布置,获得两个显示屏的第二组色度相关信息测量值;
旋转所述滤镜轮的测量通道,使得所述滤镜轮处于第三次测量通道位置,所述第三滤镜、第一滤镜分别与所述左右两个光学镜头同轴布置,获得两个显示屏的第三组色度相关信息测量值;
根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
可选地,所述在所述滤镜轮周向上设置有至少三个滤镜,包括:
所述至少三个滤镜为四个滤镜,四个所述滤镜沿所述滤镜轮周向上依次均匀为第一滤镜、第二滤镜、第三滤镜和第二滤镜,所述第一滤镜、所述第二滤镜和所述第三滤镜的光谱透过率不同,所述左右两个光学镜头位于四个所述滤镜的对角上。
可选地,多次旋转所述滤镜轮进行测量通道的切换,获得分别从两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
调整所述滤镜轮,使得所述滤镜轮处于第一次测量通道位置,所述第一滤镜、第三滤镜分别与所述左右两个光学镜头同轴布置,获得两个显示屏的第一组色度相关信息测量值;
旋转所述滤镜轮的测量通道,使得所述滤镜轮处于第二次测量通道位置,所述第二滤镜、第二滤镜分别与所述左右两个光学镜头同轴布置,获得两个显示屏的第二组色度相关信息测量值;
旋转所述滤镜轮的测量通道,使得所述滤镜轮处于第三次测量通道位置,所述第三滤镜、第一滤镜分别与所述左右两个光学镜头同轴布置,获得两个显示屏的第三组色度相关信息测量值;
根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
可选地,所述在所述滤镜轮周向上设置有至少三个滤镜,包括:
所述至少三个滤镜为六个滤镜,六个所述滤镜沿所述滤镜轮周向上依次为X滤镜、X滤镜、Y滤镜、Y滤镜、Z滤镜和Z滤镜,所述X滤镜、所述Y滤镜和所述Z滤镜的光谱透过率不同,且任意相邻的两个所述滤镜的间距等于所述左右两个光学镜头的间 距。
可选地,多次旋转所述滤镜轮进行测量通道的切换,获得分别从两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
调整所述滤镜轮,使得所述滤镜轮处于第一次测量通道位置,所述X滤镜、所述X滤镜分别与所述左右两个光学镜头同轴布置,获得两个显示屏的第一组色度相关信息测量值;
旋转所述滤镜轮的测量通道,使得所述滤镜轮处于第二次测量通道位置,所述Y滤镜、所述Y滤镜分别与所述左右两个光学镜头同轴布置,获得两个显示屏的第二组色度相关信息测量值;
旋转所述滤镜轮的测量通道,使得所述滤镜轮处于第三次测量通道位置,所述Z滤镜和所述Z滤镜分别与所述左右两个光学镜头同轴布置,获得两个显示屏的第三组色度相关信息测量值;
根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
可选地,所述在所述滤镜轮周向上设置有至少三个滤镜,包括:
所述至少三个滤镜为六个滤镜,且六个所述滤镜沿所述滤镜轮周向上依次为X滤镜、Y滤镜、Z滤镜、X滤镜、Y滤镜和Z滤镜,所述X滤镜、所述Y滤镜和所述Z滤镜的光谱透过率不同,且任意相同的两个光谱透过率的所述滤镜的间距等于所述左右两个光学镜头的间距。
可选地,所述扩展现实眼镜包括,AR眼镜、VR眼镜、MR眼镜中的任意一种。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有的有益效果包括:
对于本发明实施例提供的一种双目色度计,在对AR/VR眼镜的两个显示屏进行测试时,首先,滤镜轮处于第一组测量通道位置时,两个显示屏同时分别正对左右两个光学镜头。此时,滤镜轮的两个滤镜均与左右两个图像传感器、左右两个光学镜头同轴布置,从而获得两个显示屏的一组色度相关信息测量值。然后,多次旋转滤镜轮进行测量通道的切换(分别调节不同光谱透过率的两个滤镜来置于不同的测量通道位置),获得分别从眼镜两个显示屏发射的两路光线通过多组测量通道的多组色度相关信息测量值,根据两个显示屏的多组色度相关信息测量值分别获得两个显示屏测量区域的XYZ三刺激值。最后,根据两个显示屏测量区域的XYZ三刺激值获得两个显示屏测量区域的色坐标值,从而通过多次旋转滤镜轮来同时获取两个显示屏的色坐标值。
也就是说,本发明实施例提供的一种双目色度计,可以多次旋转滤镜轮进行测量通道的切换,从而同时实现对VR两个显示屏的测量,无需分别对两个显示屏单独测量。
【附图说明】
图1是本发明实施例提供的一种双目色度计的结构示意图;
图2是本发明实施例提供的一种扩展现实眼镜的色度测量方法的流程图。
在所有附图中,同样的附图标记表示相同的技术特征,具体为:
1、光学镜头;2、滤镜轮;21、滤镜;211、X滤镜;212、Y滤镜;213、Z滤镜;3、图像传感器;4、电机;41、齿轮;5、齿条环;6、图像处理器。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可 以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
实施例:
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
图1是本发明实施例提供的一种双目色度计的结构示意图,如图1所示,该双目色度计包括位于前端的左右两个光学镜头1、位于中间部分的可旋转的滤镜轮2和位于后端的左右两个图像传感器3。
左右两个光学镜头1并行排列布置。
左右两个图像传感器3与左右两个光学镜头1同轴布置。
滤镜轮2周向上设置有至少三个滤镜,且至少三个滤镜中至少有三个滤镜21的光谱透过率互不相同,滤镜轮2通过旋转切换测量通道,至少三个滤镜中的两个滤镜21形成一组测量通道。
任意一组测量通道均与左右两个图像传感器3、左右两个光学镜头1同轴布置,从而使得通过切换多组测量通道获得两路待测光信号完整的XYZ三刺激值。
对于本发明实施例提供的一种双目色度计,在对AR/VR眼镜的两个显示屏进行测试时,首先,滤镜轮2处于第一组测量通道位置时,两个显示屏同时分别正对左右两个光学镜头1。此时,滤镜轮2的两个滤镜21均与左右两个图像传感器3、左右两个光学镜头1同轴布置,从而获得两个显示屏的一组色度相关信息测量值。然后,多次旋转滤镜轮2进行测量通道的切换(分别调节不同光谱透过率的两个滤镜21来置于不同的测量通道位置),获得分别从眼镜两个显示屏发射的两路光线通过多组测量通道的多组色度相关信息测量值,根据两个显示屏的多组色度相关信息测量值分别获得两个显示屏测量区域的XYZ三刺激值(通过左右两个图像传感器3)。最后,根据两个显示屏测量区域的XYZ三刺激值获得两个显示屏测量区域的色坐标值,从而通过多次旋转滤镜轮2来同时获取两个显示屏的色坐标值。
也就是说,本发明实施例提供的一种双目色度计,可以多次旋转滤镜轮2进行测量通道的切换,从而同时实现对VR两个显示屏的测量,无需分别对两个显示屏单独测量。
需要说明的是,各滤镜21具有不同的光谱透过率,用于透过不同频率的光信号。每个滤镜21仅可通过一种频率的光信号,其他光信号无法通过该滤镜21。
在本实施例中,图像处理器6用于接收左右两个图像传感器3生成的图像,并生成相对应的色坐标值,可以直接处理分析光学信息,从而快速获取色坐标值,提高测量效率。
在本实施例中,双目色度计还包括驱动件,驱动件的输出端和滤镜轮2传动连接,以驱动滤镜轮2旋转,从而通过驱动件驱动滤镜轮2转动,进而完成对不同滤镜21的便捷调节。
在本发明的一种实现方式中,驱动件为电机4,电机4的输出轴上同轴套设有齿轮41,滤镜轮2和齿轮41外周套设有齿条环5,齿条环5和齿轮41啮合,以联动电机4和滤镜轮2。
在上述实施方式中,通过电机4带动齿轮41、齿条环5转动,从而最终带动滤镜轮2转动,避免人工转动。
在本发明的另一种实现方式中,驱动件为手轮,手轮的旋转轴和滤镜轮2的旋转轴同轴固定连接,从而通过手轮同样可以带动滤镜轮2便捷转动。
在本发明的第一种实现方式中,至少三个滤镜为三个滤镜21,三个滤镜21沿滤镜轮2周向上依次均匀为X滤镜211、Y滤镜212和Z滤镜213(即任意相邻的两个滤镜21之间间隔的角度为120°),X滤镜211、Y滤镜212和Z滤镜213的光谱透过率不同,任意相邻的两个滤镜21的间距等于左右两个光学镜头1的间距。
示例性地,调整滤镜轮2,使得滤镜轮2处于第一组测量通道位置时,X滤镜211和Y滤镜212分别与左右两个图像传感器3(或者左右两个光学镜头1)同轴,获得两个显示屏的第一组色度相关信息测量值。然后,顺时针转动滤镜轮2对应的角度为120°,即滤镜轮2处于第二组测量通道位置,使得Y滤镜212和Z滤镜213分别与左右两个图像传感器3同轴,获得两个显示屏的第二组色度相关信息测量值。最后,再次顺时针转动滤镜轮2对应的角度为120°,即滤镜轮2处于第三组测量通道位置,使得Z滤镜213和X滤镜211分别与左右两个图像传感器3同轴,获得两个显示屏的第三组色度相关信息测量值。最终使得各显示屏对应的滤镜21分别切换了三次(三个不同光谱 透过率滤镜21),就同时获取了两个显示屏测量区域的XYZ三刺激值,从而最终获得两个显示屏测量区域的色坐标值。
在本发明的第二种实现方式中,至少三个滤镜为四个滤镜21,四个滤镜21沿滤镜轮2周向上依次为第一滤镜、第二滤镜、第三滤镜和第一滤镜,第一滤镜、第二滤镜和第三滤镜的光谱透过率不同,任意相邻的两个滤镜21的间距等于左右两个光学镜头1的间距,滤镜轮2处于第一组测量通道位置时,第一滤镜、第二滤镜分别与左右两个光学镜头1同轴布置。
需要说明的是,第一滤镜、第二滤镜和第三滤镜可以分别对应为X滤镜211、Y滤镜212和Z滤镜213的一种。
以下以第一滤镜为X滤镜211,第二滤镜为Y滤镜212,第三滤镜为Z滤镜213为例进行举例说明(例如:还可以为,第一滤镜为Y滤镜212,第二滤镜为Z滤镜213,第三滤镜为X滤镜211):
示例性地,调整滤镜轮2,使得滤镜轮2处于第一组测量通道位置时(见图1),X滤镜211和Y滤镜212分别与左右两个图像传感器3同轴时,获得两个显示屏的第一组色度相关信息测量值。旋转滤镜轮2,使得滤镜轮2处于第二组测量通道位置时,此时Y滤镜212和Z滤镜213分别与两个图像传感器3同轴,获得两个显示屏的第二组色度相关信息测量值。旋转滤镜轮2,使得滤镜轮2处于第三组测量通道位置时,Z滤镜213和X滤镜211分别与两个图像传感器3同轴,获得两个显示屏的第三组色度相关信息测量值。这样两个图像传感器3前方的两个滤镜21分别按“X滤镜211、Y滤镜212、Z滤镜213”和“Y滤镜212、Z滤镜213和X滤镜211”的顺序各切换了三次,就同时获取了两个显示屏测量区域的XYZ三刺激值,从而最终获得两个显示屏测量区域的色坐标值。
在本发明的第三种实现方式中,至少三个滤镜为四个滤镜21,四个滤镜21沿滤镜轮2周向上依次均匀为第一滤镜、第二滤镜、第三滤镜和第二滤镜(即相邻两个滤镜21之间的夹角为90°),第一滤镜、第二滤镜和第三滤镜的光谱透过率不同,滤镜轮2处于第一组测量通道位置时,第一滤镜、第三滤镜分别与左右两个光学镜头1同轴布置。
以下同样以第一滤镜为X滤镜211,第二滤镜为Y滤镜212,第三滤镜为Z滤镜213为例进行举例说明:
示例性地,调整滤镜轮2,使得滤镜轮2处于第一组测量通道位置时,使得X滤镜211和Z滤镜213分别与左右两个图像传感器3同轴,获得两个显示屏的第一组色度 相关信息测量值。然后,顺时针转动滤镜轮2对应的角度为90°,即滤镜轮2处于第二组测量通道位置,使得Y滤镜212和Y滤镜212分别与左右两个图像传感器3同轴,获得两个显示屏的第二组色度相关信息测量值。最后,再次转动滤镜轮2对应的角度为90°,即滤镜轮2处于第三组测量通道位置,使得Z滤镜213和X滤镜211分别与左右两个图像传感器3同轴,获得两个显示屏的第三组色度相关信息测量值。最终使得各显示屏对应的滤镜21分别切换了三次(三个不同光谱透过率滤镜21),就同时获取了两个显示屏测量区域的XYZ三刺激值,从而最终获得两个显示屏测量区域的色坐标值。
在本发明的第四种实现方式中,至少三个滤镜为六个滤镜21,六个滤镜21沿滤镜轮2周向上依次为X滤镜211、X滤镜211、Y滤镜212、Y滤镜212、Z滤镜213和Z滤镜213,X滤镜211、Y滤镜212和Z滤镜213的光谱透过率不同,且任意相邻的两个滤镜21的间距等于左右两个光学镜头1的间距。
同理,三次转动下两个显示屏分别对应的滤镜21分别为“X滤镜211、X滤镜211”、“Y滤镜212、Y滤镜212”和“Z滤镜213、Z滤镜213”。
或者,至少三个滤镜为六个滤镜21,且六个滤镜21沿滤镜轮2周向上依次为X滤镜211、Y滤镜212、Z滤镜213、X滤镜211、Y滤镜212和Z滤镜213,X滤镜211、Y滤镜212和Z滤镜213的光谱透过率不同,且任意相同的两个光谱透过率的滤镜21的间距等于左右两个光学镜头1的间距。
同理,三次转动下两个显示屏分别对应的滤镜21分别为“X滤镜211、X滤镜211”、“Y滤镜212、Y滤镜212”和“Z滤镜213、Z滤镜213”。
总的来说,多个滤镜21在滤镜轮2上的相对布置形式可以是多种,可以根据具体工艺条件设计,本发明对此不作限制。
在本实施例中,滤镜轮2和左右两个图像传感器3均封装在一相机主体内。
图2是本发明实施例提供的一种扩展现实眼镜的色度测量方法的流程图,如图2所示,该测量方法包括:
S1、将色度测量仪器的左右两个光学镜头1与扩展现实眼镜的左右两个显示屏对齐设置。
色度测量仪器(即可为前文的双目色度计)包括,位于前端的左右两个光学镜头1、位于中间部分的可旋转的滤镜轮2和位于后端的左右两个图像传感器3(见图1),并在滤镜轮2周向上设置有至少三个滤镜,且至少三个滤镜中至少有三个滤镜21的光谱透过率互不相同。
S2、滤镜轮2通过旋转切换测量通道,至少三个滤镜中的两个滤镜形成一组测量通道,左右两个图像传感器3、任意一组测量通道、左右两个光学镜头1同轴布置。
S3、多次旋转滤镜轮2进行测量通道的切换,获得分别从两个显示屏发射的两路光线通过多组测量通道的多组色度相关信息测量值。
S4、根据两个显示屏的多组色度相关信息测量值分别获得两个显示屏测量区域的XYZ三刺激值(通过左右两个图像传感器3)。
S5、根据两个显示屏测量区域的XYZ三刺激值获得两个显示屏测量区域的色坐标值。
对于本发明实施例提供的一种扩展现实眼镜的色度测量方法,在对扩展现实眼镜的两个显示屏进行测试时,首先,将色度测量仪器的左右两个光学镜头1与扩展现实眼镜的左右两个显示屏对齐设置。此时,滤镜轮2处于第一次测量通道位置时,滤镜轮2的两个滤镜21均与左右两个图像传感器3、左右两个光学镜头1同轴布置,从而获得两个显示屏的一组色度相关信息测量值。然后,多次旋转滤镜轮2进行测量通道的切换(分别调节不同光谱透过率的两个滤镜21来置于不同的测量通道位置),获得分别从眼镜两个显示屏发射的两路光线通过多组测量通道的多组色度相关信息测量值。根据两个显示屏的多组色度相关信息测量值分别获得两个显示屏测量区域的XYZ三刺激值。根据两个显示屏测量区域的XYZ三刺激值获得两个显示屏测量区域的色坐标值,从而通过多次旋转滤镜轮2来同时获取两个显示屏的色坐标值。
也就是说,本发明实施例提供的一种扩展现实眼镜的色度测量方法,可以多次旋转滤镜轮2进行测量通道的切换,从而同时实现对扩展现实眼镜的两个显示屏的测量,无需分别对两个显示屏单独测量。
需要说明的是,各滤镜21具有不同的光谱透过率,用于透过不同频率的光信号。每个滤镜21仅可通过一种频率的光信号,其他光信号无法通过该滤镜21。
在本实施例中,图像处理器6用于接收左右两个图像传感器3生成的图像,并生成相对应的色坐标值,可以直接处理分析光学信息,从而快速获取色坐标值,提高测量效率。
在本发明的第一种实现方式中,在滤镜轮2周向上设置有至少三个滤镜,包括:
至少三个滤镜为三个滤镜,三个滤镜沿滤镜轮2周向上依次均匀为X滤镜211、Y滤镜212和Z滤镜213(即相邻两个滤镜之间的夹角为120°),X滤镜211、Y滤镜212和Z滤镜213的光谱透过率不同,任意相邻的两个滤镜21的间距等于左右两个光 学镜头1的间距,此时通过3个滤镜,且滤镜轮2转动3次即可同时获取两个显示屏的色坐标值。
具体为,多次旋转滤镜轮2进行测量通道的切换,获得分别从眼镜两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
(1)调整滤镜轮2,使得滤镜轮处于第一次测量通道位置,获得两个显示屏的第一组色度相关信息测量值。
示例性地,滤镜轮处于初始的一组测量通道时,X滤镜211和Y滤镜212分别与左右两个光学镜头1(或者左右两个图像传感器3)同轴,获得两个显示屏的第一组色度相关信息测量值。
(2)旋转切换两次滤镜轮2的测量通道,分别获得两个显示屏的第二组色度相关信息测量值和第三组色度相关信息测量值。
示例性地,顺时针转动滤镜轮2对应的角度为120°,即滤镜轮2处于第二次测量通道位置,使得Y滤镜212和Z滤镜213分别与左右两个图像传感器3同轴,获得两个显示屏的第二组色度相关信息测量值。再次顺时针转动滤镜轮2对应的角度为120°,即滤镜轮2处于第三次测量通道位置,使得Z滤镜213和X滤镜211分别与左右两个图像传感器3同轴,获得两个显示屏的第三组色度相关信息测量值。
(3)根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值,从而根据两个显示屏测量区域的XYZ三刺激值获得两个显示屏测量区域的色坐标值。
在本发明的第二种实现方式中,在滤镜轮2周向上设置有至少三个滤镜,包括:
至少三个滤镜为四个滤镜,四个滤镜沿滤镜轮2周向上依次为第一滤镜、第二滤镜、第三滤镜和第一滤镜,第一滤镜、第二滤镜和第三滤镜的光谱透过率不同,任意相邻的两个滤镜21的间距等于左右两个光学镜头1的间距,此时通过4个滤镜,且滤镜轮2转动3次即可同时获取两个显示屏的色坐标值。
具体地,多次旋转滤镜轮2进行测量通道的切换,获得分别从眼镜两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
(1)调整滤镜轮2,使得滤镜轮处于第一次测量通道位置,第一滤镜、第二滤镜分别与左右两个光学镜头1同轴布置,获得两个显示屏的第一组色度相关信息测量值。
(2)旋转滤镜轮2的测量通道,使得滤镜轮处于第二次测量通道位置,第二滤镜、第三滤镜分别与左右两个光学镜头1同轴布置,获得两个显示屏的第二组色度相关信息测量值。
(3)旋转滤镜轮2的测量通道,使得滤镜轮处于第三次测量通道位置,第三滤镜、第一滤镜分别与左右两个光学镜头1同轴布置,获得两个显示屏的第三组色度相关信息测量值。
(4)根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
需要说明的是,第一滤镜、第二滤镜和第三滤镜可以分别对应为X滤镜211、Y滤镜212和Z滤镜213的一种。
示例性地,以下以第一滤镜为X滤镜211,第二滤镜为Y滤镜212,第三滤镜为Z滤镜213为例进行举例说明(例如:还可以为,第一滤镜为Y滤镜212,第二滤镜为Z滤镜213,第三滤镜为X滤镜211):
示例性地,滤镜轮2处于第一次测量通道位置时(见图1),X滤镜211和Y滤镜212分别与左右两个光学镜头1(或者左右两个图像传感器3)同轴时,获得两个显示屏的第一组色度相关信息测量值。旋转滤镜轮2,使得滤镜轮2处于第二次测量通道位置时,此时Y滤镜212和Z滤镜213分别与左右两个光学镜头1(或者左右两个图像传感器3)同轴,获得两个显示屏的第二组色度相关信息测量值。旋转滤镜轮2,使得滤镜轮2处于第三次测量通道位置时,Z滤镜213和X滤镜211分别与左右两个光学镜头1(或者左右两个图像传感器3)同轴,获得两个显示屏的第三组色度相关信息测量值。这样两个图像传感器3前方的两个滤镜21分别按“X滤镜211、Y滤镜212、Z滤镜213”和“Y滤镜212、Z滤镜213和X滤镜211”的顺序各切换了三次,就同时获取了两个显示屏测量区域的XYZ三刺激值,从而最终获得两个显示屏测量区域的色坐标值。
在本发明的第三种实现方式中,在滤镜轮2周向上设置有至少三个滤镜,包括:
至少三个滤镜为四个滤镜,四个滤镜21沿滤镜轮2周向上依次均匀为第一滤镜、第二滤镜、第三滤镜和第二滤镜(即相邻两个滤镜之间的夹角为90°),第一滤镜、第二滤镜和第三滤镜的光谱透过率不同,左右两个光学镜头1位于四个滤镜21的对角上,此时同样通过4个滤镜,且滤镜轮2转动3次即可同时获取两个显示屏的色坐标值。
具体地,多次旋转滤镜轮2进行测量通道的切换,获得分别从眼镜两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
(1)调整滤镜轮2,使得滤镜轮处于第一次测量通道位置,第一滤镜、第三滤镜分别与左右两个光学镜头1同轴布置,获得两个显示屏的第一组色度相关信息测量值。
(2)旋转滤镜轮2的测量通道,使得滤镜轮处于第二次测量通道位置,第二滤镜、 第二滤镜分别与左右两个光学镜头1同轴布置,获得两个显示屏的第二组色度相关信息测量值。
(3)旋转滤镜轮2的测量通道,使得滤镜轮处于第三次测量通道位置,第三滤镜、第一滤镜分别与左右两个光学镜头1同轴布置,获得两个显示屏的第三组色度相关信息测量值。
(4)根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
示例性地,以下同样以第一滤镜为X滤镜211,第二滤镜为Y滤镜212,第三滤镜为Z滤镜213为例进行举例说明:
示例性地,滤镜轮2处于第一次测量通道位置时,使得X滤镜211和Z滤镜213分别与左右两个光学镜头1(或者左右两个图像传感器3)同轴,获得两个显示屏的第一组色度相关信息测量值。然后,顺时针转动滤镜轮2对应的角度为90°,即滤镜轮2处于第二次测量通道位置,使得Y滤镜212和Y滤镜212分别与左右两个光学镜头1(或者左右两个图像传感器3)同轴,获得两个显示屏的第二组色度相关信息测量值。最后,再次转动滤镜轮2对应的角度为90°,即滤镜轮2处于第三次测量通道位置,使得Z滤镜213和X滤镜211分别与左右两个光学镜头1(或者左右两个图像传感器3)同轴,获得两个显示屏的第三组色度相关信息测量值。最终使得各显示屏对应的滤镜21分别切换了三次(三个不同光谱透过率滤镜21),就同时获取了两个显示屏测量区域的XYZ三刺激值,从而最终获得两个显示屏测量区域的色坐标值。
在本发明的第四种实现方式中,在滤镜轮2周向上设置有至少三个滤镜,包括:
至少三个滤镜为六个滤镜,六个滤镜21沿滤镜轮2周向上依次为X滤镜211、X滤镜211、Y滤镜212、Y滤镜212、Z滤镜213和Z滤镜213,X滤镜211、Y滤镜212和Z滤镜213的光谱透过率不同,且任意相邻的两个滤镜21的间距等于左右两个光学镜头1的间距,此时通过6个滤镜,且滤镜轮2转动3次即可同时获取两个显示屏的色坐标值。
具体地,多次旋转滤镜轮2进行测量通道的切换,获得分别从眼镜两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
(1)调整滤镜轮2,使得滤镜轮处于第一次测量通道位置,X滤镜211、X滤镜211分别与左右两个光学镜头1同轴布置,获得两个显示屏的第一组色度相关信息测量值。
(2)旋转滤镜轮2的测量通道,使得滤镜轮处于第二次测量通道位置,Y滤镜212、 Y滤镜212分别与左右两个光学镜头1同轴布置,获得两个显示屏的第二组色度相关信息测量值。
(3)旋转滤镜轮2的测量通道,使得滤镜轮处于第三次测量通道位置,Z滤镜213和Z滤镜213分别与左右两个光学镜头1同轴布置,获得两个显示屏的第三组色度相关信息测量值。
(4)根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
即此时,三次转动下两个显示屏分别对应的滤镜21分别为“X滤镜211、X滤镜211”、“Y滤镜212、Y滤镜212”和“Z滤镜213、Z滤镜213”。
同理,在滤镜轮2周向上设置有至少三个滤镜,包括:
至少三个滤镜为六个滤镜,且六个滤镜21沿滤镜轮2周向上依次为X滤镜211、Y滤镜212、Z滤镜213、X滤镜211、Y滤镜212和Z滤镜213,X滤镜211、Y滤镜212和Z滤镜213的光谱透过率不同,且任意相同的两个光谱透过率的滤镜21的间距等于左右两个光学镜头1的间距。
具体地,多次旋转滤镜轮2进行测量通道的切换,获得分别从眼镜两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
(1)调整滤镜轮2,使得滤镜轮处于第一次测量通道位置,X滤镜211、X滤镜211分别与左右两个光学镜头1同轴布置,获得两个显示屏的第一组色度相关信息测量值。
(2)旋转滤镜轮2的测量通道,使得滤镜轮处于第二次测量通道位置,Y滤镜212、Y滤镜212分别与左右两个光学镜头1同轴布置,获得两个显示屏的第二组色度相关信息测量值。
(3)旋转滤镜轮2的测量通道,使得滤镜轮处于第三次测量通道位置,Z滤镜213和Z滤镜213分别与左右两个光学镜头1同轴布置,获得两个显示屏的第三组色度相关信息测量值。
(4)根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
此时,三次转动下两个显示屏分别对应的滤镜21分别为“X滤镜211、X滤镜211”、“Y滤镜212、Y滤镜212”和“Z滤镜213、Z滤镜213”。
总的来说,多个滤镜21在滤镜轮2上的相对布置形式可以是多种,可以根据具体工艺条件设计,本发明对此不作限制。
在本实施例中,滤镜轮2和左右两个图像传感器3均封装在一相机主体内。
另外,扩展现实眼镜包括,AR眼镜、VR眼镜、MR眼镜中的任意一种。
在本实施例中,双目色度计还包括驱动件,驱动件的输出端和滤镜轮2传动连接,以驱动滤镜轮2旋转,从而通过驱动件驱动滤镜轮2转动,进而完成对不同滤镜21的便捷调节。
在本发明的一种实现方式中,驱动件为电机4,电机4的输出轴上同轴套设有齿轮41,滤镜轮2和齿轮41外周套设有齿条环5,齿条环5和齿轮41啮合,以联动电机4和滤镜轮2。
在上述实施方式中,通过电机4带动齿轮41、齿条环5转动,从而最终带动滤镜轮2转动,避免人工转动。
在本发明的另一种实现方式中,驱动件为手轮,手轮的旋转轴和滤镜轮2的旋转轴同轴固定连接,从而通过手轮同样可以带动滤镜轮2便捷转动。
在本发明的一种实现方式中,各滤镜21可以均插装在滤镜轮2上的通孔中。
在本发明的另一种实现方式中,各滤镜21也可以均粘接在滤镜轮2的外边缘上。
也就是说,本发明对滤镜21的安装方式不作限制。
在本实施例中,滤镜轮2的周向上设置有角度标识,从而实现滤镜轮2转动的精确调节。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (21)

  1. 一种双目色度计,其特征在于,所述双目色度计包括位于前端的左右两个光学镜头(1)、位于中间部分的可旋转的滤镜轮(2)和位于后端的左右两个图像传感器(3);
    所述左右两个光学镜头(1)并行排列布置;
    所述左右两个图像传感器(3)与所述左右两个光学镜头(1)同轴布置;
    所述滤镜轮(2)周向上设置有至少三个滤镜,且所述至少三个滤镜中至少有三个滤镜(21)的光谱透过率互不相同,所述滤镜轮(2)通过旋转切换测量通道,所述至少三个滤镜中的两个滤镜(21)形成一组测量通道;
    任意一组测量通道均与所述左右两个图像传感器(3)、所述左右两个光学镜头(1)同轴布置,从而使得通过切换多组测量通道获得两路待测光信号完整的XYZ三刺激值。
  2. 根据权利要求1所述的一种双目色度计,其特征在于,所述双目色度计还包括驱动件,所述驱动件的输出端和所述滤镜轮(2)传动连接,以驱动所述滤镜轮(2)旋转。
  3. 根据权利要求2所述的一种双目色度计,其特征在于,所述驱动件为电机(4),所述电机(4)的输出轴上同轴套设有齿轮(41),所述滤镜轮(2)和所述齿轮(41)外周套设有齿条环(5),所述齿条环(5)和所述齿轮(41)啮合,以联动所述电机(4)和所述滤镜轮(2)。
  4. 根据权利要求2所述的一种双目色度计,其特征在于,所述驱动件为手轮,所述手轮的旋转轴和所述滤镜轮(2)的旋转轴同轴固定连接。
  5. 根据权利要求1-4任意一项所述的一种双目色度计,其特征在于,所述双目色度计还包括图像处理器(6),所述图像处理器(6)用于接收所述左右两个图像传感器(3)生成的图像,并生成相对应的色坐标值。
  6. 根据权利要求1所述的一种双目色度计,其特征在于,所述至少三个滤镜为三个滤镜(21),三个所述滤镜(21)沿所述滤镜轮(2)周向上依次均匀为X滤镜(211)、Y滤镜(212)和Z滤镜(213),所述X滤镜(211)、所述Y滤镜(212)和所述Z滤镜(213)的光谱透过率不同,任意相邻的两个所述滤镜(21)的间距等于所述左右两个光学镜头(1)的间距。
  7. 根据权利要求1所述的一种双目色度计,其特征在于,所述至少三个滤镜为四个滤镜(21),四个所述滤镜(21)沿所述滤镜轮(2)周向上依次为第一滤镜、第二滤镜、第三滤镜和第一滤镜,所述第一滤镜、所述第二滤镜和所述第三滤镜的光谱透过率不同,任意相邻的两个所述滤镜(21)的间距等于所述左右两个光学镜头(1)的间距, 所述滤镜轮(2)处于第一组测量通道位置时,所述第一滤镜、所述第二滤镜分别与所述左右两个光学镜头(1)同轴布置。
  8. 根据权利要求1所述的一种双目色度计,其特征在于,所述至少三个滤镜为四个滤镜(21),四个所述滤镜(21)沿所述滤镜轮(2)周向上依次均匀为第一滤镜、第二滤镜、第三滤镜和第二滤镜,所述第一滤镜、所述第二滤镜和所述第三滤镜的光谱透过率不同,所述滤镜轮(2)处于第一组测量通道位置时,所述第一滤镜、所述第三滤镜分别与所述左右两个光学镜头(1)同轴布置。
  9. 根据权利要求1所述的一种双目色度计,其特征在于,所述至少三个滤镜为六个滤镜(21),六个所述滤镜(21)沿所述滤镜轮(2)周向上依次为X滤镜(211)、X滤镜(211)、Y滤镜(212)、Y滤镜(212)、Z滤镜(213)和Z滤镜(213),所述X滤镜(211)、所述Y滤镜(212)和所述Z滤镜(213)的光谱透过率不同,且任意相邻的两个所述滤镜(21)的间距等于所述左右两个光学镜头(1)的间距。
  10. 根据权利要求1所述的一种双目色度计,其特征在于,所述至少三个滤镜为六个滤镜(21),且六个所述滤镜(21)沿所述滤镜轮(2)周向上依次为X滤镜(211)、Y滤镜(212)、Z滤镜(213)、X滤镜(211)、Y滤镜(212)和Z滤镜(213),所述X滤镜(211)、所述Y滤镜(212)和所述Z滤镜(213)的光谱透过率不同,且任意相同的两个光谱透过率的所述滤镜(21)的间距等于所述左右两个光学镜头(1)的间距。
  11. 一种扩展现实眼镜的色度测量方法,其特征在于,所述测量方法包括:
    将色度测量仪器的左右两个光学镜头(1)与扩展现实眼镜的左右两个显示屏对齐设置;
    所述色度测量仪器包括,位于前端的左右两个光学镜头(1)、位于中间部分的可旋转的滤镜轮(2)和位于后端的左右两个图像传感器(3),并在所述滤镜轮(2)周向上设置有至少三个滤镜,且所述至少三个滤镜中至少有三个滤镜(21)的光谱透过率互不相同;
    所述滤镜轮(2)通过旋转切换测量通道,所述至少三个滤镜中的两个滤镜形成一组测量通道,所述左右两个图像传感器(3)、任意一组测量通道、所述左右两个光学镜头(1)同轴布置;
    多次旋转所述滤镜轮(2)进行测量通道的切换,获得分别从两个显示屏发射的两路光线通过多组测量通道的多组色度相关信息测量值;
    根据所述两个显示屏的多组色度相关信息测量值分别获得两个显示屏测量区域的XYZ三刺激值;
    根据所述两个显示屏测量区域的XYZ三刺激值获得所述两个显示屏测量区域的色坐标值。
  12. 根据权利要求11所述的一种扩展现实眼镜的色度测量方法,其特征在于,所述在所述滤镜轮(2)周向上设置有至少三个滤镜,包括:
    所述至少三个滤镜为三个滤镜,三个所述滤镜沿所述滤镜轮(2)周向上依次均匀为X滤镜(211)、Y滤镜(212)和Z滤镜(213),所述X滤镜(211)、所述Y滤镜(212)和所述Z滤镜(213)的光谱透过率不同,任意相邻的两个所述滤镜(21)的间距等于所述左右两个光学镜头(1)的间距。
  13. 根据权利要求12所述的一种扩展现实眼镜的色度测量方法,其特征在于,多次旋转所述滤镜轮(2)进行测量通道的切换,获得分别从两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
    调整所述滤镜轮(2),使得所述滤镜轮处于第一次测量通道位置,获得两个显示屏的第一组色度相关信息测量值;
    旋转切换两次所述滤镜轮(2)的测量通道,分别获得两个显示屏的第二组色度相关信息测量值和第三组色度相关信息测量值;
    根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
  14. 根据权利要求11所述的一种扩展现实眼镜的色度测量方法,其特征在于,所述在所述滤镜轮(2)周向上设置有至少三个滤镜,包括:
    所述至少三个滤镜为四个滤镜,四个所述滤镜沿所述滤镜轮(2)周向上依次为第一滤镜、第二滤镜、第三滤镜和第一滤镜,所述第一滤镜、所述第二滤镜和所述第三滤镜的光谱透过率不同,任意相邻的两个所述滤镜(21)的间距等于所述左右两个光学镜头(1)的间距。
  15. 根据权利要求14所述的一种扩展现实眼镜的色度测量方法,其特征在于,多次旋转所述滤镜轮(2)进行测量通道的切换,获得分别从两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
    调整所述滤镜轮(2),使得所述滤镜轮处于第一次测量通道位置,所述第一滤镜、第二滤镜分别与所述左右两个光学镜头(1)同轴布置,获得两个显示屏的第一组色度相关信息测量值;
    旋转所述滤镜轮(2)的测量通道,使得所述滤镜轮处于第二次测量通道位置,所述第二滤镜、第三滤镜分别与所述左右两个光学镜头(1)同轴布置,获得两个显示屏的第二组色度相关信息测量值;
    旋转所述滤镜轮(2)的测量通道,使得所述滤镜轮处于第三次测量通道位置,所述第三滤镜、第一滤镜分别与所述左右两个光学镜头(1)同轴布置,获得两个显示屏的第三组色度相关信息测量值;
    根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
  16. 根据权利要求11所述的一种扩展现实眼镜的色度测量方法,其特征在于,所述在所述滤镜轮(2)周向上设置有至少三个滤镜,包括:
    所述至少三个滤镜为四个滤镜,四个所述滤镜(21)沿所述滤镜轮(2)周向上依次均匀为第一滤镜、第二滤镜、第三滤镜和第二滤镜,所述第一滤镜、所述第二滤镜和所述第三滤镜的光谱透过率不同,所述左右两个光学镜头(1)位于四个所述滤镜(21)的对角上。
  17. 根据权利要求16所述的一种扩展现实眼镜的色度测量方法,其特征在于,多次旋转所述滤镜轮(2)进行测量通道的切换,获得分别从两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
    调整所述滤镜轮(2),使得所述滤镜轮处于第一次测量通道位置,所述第一滤镜、第三滤镜分别与所述左右两个光学镜头(1)同轴布置,获得两个显示屏的第一组色度相关信息测量值;
    旋转所述滤镜轮(2)的测量通道,使得所述滤镜轮处于第二次测量通道位置,所述第二滤镜、第二滤镜分别与所述左右两个光学镜头(1)同轴布置,获得两个显示屏的第二组色度相关信息测量值;
    旋转所述滤镜轮(2)的测量通道,使得所述滤镜轮处于第三次测量通道位置,所述第三滤镜、第一滤镜分别与所述左右两个光学镜头(1)同轴布置,获得两个显示屏的第三组色度相关信息测量值;
    根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
  18. 根据权利要求11所述的一种扩展现实眼镜的色度测量方法,其特征在于,所述在所述滤镜轮(2)周向上设置有至少三个滤镜,包括:
    所述至少三个滤镜为六个滤镜,六个所述滤镜(21)沿所述滤镜轮(2)周向上依次为X滤镜(211)、X滤镜(211)、Y滤镜(212)、Y滤镜(212)、Z滤镜(213) 和Z滤镜(213),所述X滤镜(211)、所述Y滤镜(212)和所述Z滤镜(213)的光谱透过率不同,且任意相邻的两个所述滤镜(21)的间距等于所述左右两个光学镜头(1)的间距。
  19. 根据权利要求18所述的一种扩展现实眼镜的色度测量方法,其特征在于,多次旋转所述滤镜轮(2)进行测量通道的切换,获得分别从两个显示屏发射的两路光通过多组测量通道的多组色度相关信息测量值,包括:
    调整所述滤镜轮(2),使得所述滤镜轮处于第一次测量通道位置,所述X滤镜(211)、所述X滤镜(211)分别与所述左右两个光学镜头(1)同轴布置,获得两个显示屏的第一组色度相关信息测量值;
    旋转所述滤镜轮(2)的测量通道,使得所述滤镜轮处于第二次测量通道位置,所述Y滤镜(212)、所述Y滤镜(212)分别与所述左右两个光学镜头(1)同轴布置,获得两个显示屏的第二组色度相关信息测量值;
    旋转所述滤镜轮(2)的测量通道,使得所述滤镜轮处于第三次测量通道位置,所述Z滤镜(213)和所述Z滤镜(213)分别与所述左右两个光学镜头(1)同轴布置,获得两个显示屏的第三组色度相关信息测量值;
    根据三组色度相关信息测量值,分别获得每个显示屏的XYZ三刺激值。
  20. 根据权利要求11所述的一种扩展现实眼镜的色度测量方法,其特征在于,所述在所述滤镜轮(2)周向上设置有至少三个滤镜,包括:
    所述至少三个滤镜为六个滤镜,且六个所述滤镜(21)沿所述滤镜轮(2)周向上依次为X滤镜(211)、Y滤镜(212)、Z滤镜(213)、X滤镜(211)、Y滤镜(212)和Z滤镜(213),所述X滤镜(211)、所述Y滤镜(212)和所述Z滤镜(213)的光谱透过率不同,且任意相同的两个光谱透过率的所述滤镜(21)的间距等于所述左右两个光学镜头(1)的间距。
  21. 根据权利要求11-20任意一项所述的一种扩展现实眼镜的色度测量方法,其特征在于,所述扩展现实眼镜包括,AR眼镜、VR眼镜、MR眼镜中的任意一种。
PCT/CN2023/116957 2022-09-26 2023-09-05 一种双目色度计及扩展现实眼镜的色度测量方法 WO2024066952A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211173126.XA CN115452150A (zh) 2022-09-26 2022-09-26 一种扩展现实眼镜的色度测量方法
CN202222552982.8U CN218121181U (zh) 2022-09-26 2022-09-26 一种双目色度计
CN202222552982.8 2022-09-26
CN202211173126.X 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024066952A1 true WO2024066952A1 (zh) 2024-04-04

Family

ID=90475988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116957 WO2024066952A1 (zh) 2022-09-26 2023-09-05 一种双目色度计及扩展现实眼镜的色度测量方法

Country Status (1)

Country Link
WO (1) WO2024066952A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036317A (en) * 1997-12-15 2000-03-14 Seegers; Bjoern Method of spectral or colorimetric characterization of a self-illuminating imaging system
CN105578021A (zh) * 2014-10-15 2016-05-11 上海弘视通信技术有限公司 双目相机的成像方法及其装置
CN205940759U (zh) * 2016-08-15 2017-02-08 长春希达电子技术有限公司 一种全自动多通道led显示屏用采集设备
CN109813537A (zh) * 2019-03-22 2019-05-28 昆山钧沃光电有限公司 一种显示屏检测装置及方法
CN115452150A (zh) * 2022-09-26 2022-12-09 武汉加特林光学仪器有限公司 一种扩展现实眼镜的色度测量方法
CN218121181U (zh) * 2022-09-26 2022-12-23 武汉加特林光学仪器有限公司 一种双目色度计

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036317A (en) * 1997-12-15 2000-03-14 Seegers; Bjoern Method of spectral or colorimetric characterization of a self-illuminating imaging system
CN105578021A (zh) * 2014-10-15 2016-05-11 上海弘视通信技术有限公司 双目相机的成像方法及其装置
CN205940759U (zh) * 2016-08-15 2017-02-08 长春希达电子技术有限公司 一种全自动多通道led显示屏用采集设备
CN109813537A (zh) * 2019-03-22 2019-05-28 昆山钧沃光电有限公司 一种显示屏检测装置及方法
CN115452150A (zh) * 2022-09-26 2022-12-09 武汉加特林光学仪器有限公司 一种扩展现实眼镜的色度测量方法
CN218121181U (zh) * 2022-09-26 2022-12-23 武汉加特林光学仪器有限公司 一种双目色度计

Similar Documents

Publication Publication Date Title
CN111256826B (zh) 显示屏色度测量方法、装置及终端设备
JP2019070648A (ja) 分光器で支援された特別設計パターン閉ループ較正による高精度イメージング測色計
US20060279647A1 (en) Multi-spectral image capturing apparatus and adapter lens
JP2014185958A (ja) 呈色測定装置
CN103559866B (zh) 一种图像显示控制方法及装置
WO2011076050A1 (zh) 一种二维光谱测量装置
CN101403701B (zh) 数字式光弹仪
Gibson et al. Colorimetric characterization of three computer displays (LCD and CRT)
WO2024066952A1 (zh) 一种双目色度计及扩展现实眼镜的色度测量方法
CN218121181U (zh) 一种双目色度计
CN115452150A (zh) 一种扩展现实眼镜的色度测量方法
CN103308172A (zh) 一种测量视觉阈值的装置与方法
JP2016138749A (ja) 分光測定装置
CN215931247U (zh) 一种光学测量设备
Becker et al. P‐84: Spectrometer‐Enhanced Imaging Colorimetry
WO2016065856A1 (zh) 一种基于滤光单元的光辐射测量方法及其装置
CN106124054A (zh) 一种大幅面光谱分光成像测色装置
CN107153000B (zh) 一种便携式滤镜光学性能检测装置及其检测方法
CN214502673U (zh) 色度仪
JP2010203825A (ja) モニタの分光分布測定方法
WO2018012478A1 (ja) 測色計
JP2771785B2 (ja) スペクトル画像分析装置
CN214951793U (zh) 一种显微成像式彩色亮度计及校准装置
CN216669001U (zh) 一种分光滤镜轮及自标定的滤镜式成像色度计
KR20160139345A (ko) 3ccd형 면측정 휘도색도계