WO2024066928A1 - 路况展示方法、路况处理方法、装置和计算机设备 - Google Patents

路况展示方法、路况处理方法、装置和计算机设备 Download PDF

Info

Publication number
WO2024066928A1
WO2024066928A1 PCT/CN2023/116641 CN2023116641W WO2024066928A1 WO 2024066928 A1 WO2024066928 A1 WO 2024066928A1 CN 2023116641 W CN2023116641 W CN 2023116641W WO 2024066928 A1 WO2024066928 A1 WO 2024066928A1
Authority
WO
WIPO (PCT)
Prior art keywords
road condition
road
texture
current
point
Prior art date
Application number
PCT/CN2023/116641
Other languages
English (en)
French (fr)
Inventor
崔盼盼
冯磊
Original Assignee
腾讯科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 腾讯科技(深圳)有限公司 filed Critical 腾讯科技(深圳)有限公司
Publication of WO2024066928A1 publication Critical patent/WO2024066928A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle

Definitions

  • the present application relates to the field of computer technology, and in particular to a road condition display method, a road condition processing method, an apparatus, a computer device, a storage medium and a computer program product.
  • Navigation technology is used to provide navigation and positioning services and has been widely used in daily life, for example, in online car-hailing applications, navigation applications, map applications, etc. Navigation technology has greatly facilitated people's travel.
  • the road condition information is usually simply and mechanically marked on the navigation screen, and the display of the road condition information is rough and not accurate enough.
  • Embodiments of the present application provide a road condition display method, a road condition processing method, an apparatus, a computer device, a computer-readable storage medium, and a computer program product.
  • the present application provides a road condition display method, which is executed by a terminal, and the method includes:
  • the gradual road condition surface is used to indicate the process of the current road section changing from a first road condition to a second road condition;
  • the gradual road condition surface includes a first road condition texture corresponding to the first road condition, a second road condition texture corresponding to the second road condition, and a gradual road condition texture gradually changing from the first road condition texture to the second road condition texture, and the road condition transition range corresponding to the gradual road condition texture is determined by the road condition textures and road condition coverage range corresponding to the first road condition and the second road condition.
  • the present application also provides a road condition display device.
  • the device comprises:
  • An initial navigation screen display module used to display an initial navigation screen and display a target navigation route on the initial navigation screen
  • a target navigation screen display module for displaying a target navigation screen in response to a navigation triggering event for the target navigation route, and displaying a gradually changing road condition surface corresponding to a current section in the target navigation route on the target navigation screen;
  • the gradual road condition surface is used to indicate the process of the current road section changing from a first road condition to a second road condition;
  • the gradual road condition surface includes a first road condition texture corresponding to the first road condition, a second road condition texture corresponding to the second road condition, and a gradual road condition texture gradually changing from the first road condition texture to the second road condition texture, and the road condition transition range corresponding to the gradual road condition texture is determined by the road condition textures and road condition coverage range corresponding to the first road condition and the second road condition.
  • a computer device includes a memory and one or more processors, wherein the memory stores computer-readable instructions, and the one or more processors implement the steps described in the above-mentioned road condition display method when executing the computer-readable instructions.
  • a computer-readable storage medium stores computer-readable instructions, which, when executed by one or more processors, implement the steps of the above-mentioned road condition display method.
  • a computer program product includes computer-readable instructions, which, when executed by one or more processors, implement the steps described in the above-mentioned road condition display method.
  • the present application provides a road condition processing method, which is executed by a computer device, and the method includes:
  • the road section texture data is used to generate a gradient road condition surface corresponding to the current road section, and the gradient road condition surface is used to indicate the process of the current road section changing from the first road condition to the second road condition.
  • the present application also provides a road condition processing device.
  • the device comprises:
  • a road condition data acquisition module used to acquire initial road condition textures and road condition coverage areas respectively corresponding to the first road condition and the second road condition involved in the current road section;
  • a road condition transition range determination module configured to determine a road condition transition range between the first road condition and the second road condition based on initial road condition textures and road condition coverage ranges corresponding to the first road condition and the second road condition respectively;
  • a gradual road condition texture determination module configured to gradually adjust the road condition texture from the initial road condition texture corresponding to the first road condition to the initial road condition texture corresponding to the second road condition, so as to obtain the gradual road condition texture corresponding to the road condition transition range;
  • a road section texture data determination module is used to obtain the road section texture data corresponding to the current road section based on the initial road condition texture and the corresponding road condition coverage range, the gradient road condition texture and the corresponding road condition transition range; the road section texture data is used to generate the gradient road condition surface corresponding to the current road section, and the gradient road condition surface is used to indicate the process of the current road section changing from the first road condition to the second road condition.
  • a computer device includes a memory and one or more processors, wherein the memory stores computer-readable instructions, and the one or more processors implement the steps of the above-mentioned road condition processing method when executing the computer-readable instructions.
  • a computer-readable storage medium stores computer-readable instructions, which, when executed by one or more processors, implement the steps of the above-mentioned road condition processing method.
  • a computer program product includes computer-readable instructions, and when the computer-readable instructions are executed by one or more processors, the steps of the above-mentioned road condition processing method are implemented.
  • FIG1 is an application environment diagram of a road condition display method and a road condition processing method in one embodiment
  • FIG2 is a schematic diagram of a flow chart of a method for displaying road conditions in an embodiment
  • FIG3 is a schematic diagram of an initial navigation screen in one embodiment
  • FIG4 is a schematic diagram of a target navigation screen in one embodiment
  • FIG5 is a schematic diagram of a target navigation screen in another embodiment
  • FIG6 is a schematic diagram of a target navigation screen in another embodiment
  • FIG7 is a schematic diagram of an initial navigation screen in another embodiment
  • FIG8 is a schematic flow chart of a method for processing road conditions in one embodiment
  • FIG9 is a schematic diagram of a candidate road texture set in one embodiment
  • FIG10 is a schematic diagram of a process for generating a gradually changing road surface in one embodiment
  • FIG11A is a schematic diagram of a road sideline and a road centerline in one embodiment
  • FIG11B is a schematic diagram of area division in one embodiment
  • FIG12 is a schematic diagram of proportional alignment in one embodiment
  • FIG13A is a schematic diagram of a road surface in one embodiment
  • FIG13B is a schematic diagram of road surface division in one embodiment
  • FIG13C is a schematic diagram of a triangulation process in one embodiment
  • FIG14 is a schematic diagram of travel navigation in one embodiment
  • FIG15 is a structural block diagram of a road condition display device in one embodiment
  • FIG16 is a structural block diagram of a road condition processing device in one embodiment
  • FIG17 is a diagram showing the internal structure of a computer device in one embodiment
  • FIG. 18 is a diagram showing the internal structure of a computer device in another embodiment.
  • the trigger operation in the present application includes but is not limited to touch operation, cursor operation, key operation, voice operation and motion operation, etc.
  • the touch operation can be a touch pressing operation or a touch clicking operation or a touch sliding operation, etc.
  • the cursor operation can be an operation of controlling the cursor to click or an operation of controlling the cursor to press or an operation of controlling the cursor to slide.
  • the key operation can be a virtual key operation or a physical key operation, etc.
  • Voice operation refers to an operation controlled by voice.
  • Motion operation refers to an operation controlled by user actions, such as hand actions, head actions, etc.
  • the embodiments of the present invention can be applied to various scenarios, including but not limited to cloud technology, artificial intelligence, smart transportation, assisted driving, navigation, etc.
  • the road condition display method and road condition processing method provided in the embodiment of the present application can be applied to the application environment shown in Figure 1.
  • the terminal 102 communicates with the server 104 through the network.
  • the data storage system can store the data that the server 104 needs to process.
  • the data storage system can be integrated on the server 104, or it can be placed on the cloud or other servers.
  • the terminal 102 can be, but is not limited to, various desktop computers, laptops, smart phones, tablet computers, intelligent voice interaction devices, Internet of Things devices and portable wearable devices.
  • the Internet of Things devices can be smart speakers, smart TVs, smart air conditioners, smart car-mounted devices, aircraft, etc.
  • Portable wearable devices can be smart watches, smart bracelets, head-mounted devices, etc.
  • the server 104 can be implemented with an independent server or a server cluster or cloud server consisting of multiple servers.
  • the terminal 102 displays an initial navigation screen, and displays the target navigation route on the initial navigation screen.
  • the terminal 102 displays the target navigation screen, and displays the gradient road surface corresponding to the current section in the target navigation route on the target navigation screen.
  • the gradient road surface is used to indicate the process of the current section changing from the first road condition to the second road condition;
  • the gradient road surface includes a first road condition texture corresponding to the first road condition, a second road condition texture corresponding to the second road condition, and a gradient road condition texture that gradually changes from the first road condition texture to the second road condition texture.
  • the road condition transition range corresponding to the gradient road condition texture is determined by the road condition texture and road condition coverage range corresponding to the first road condition and the second road condition.
  • the road condition information of the current section is displayed on the navigation screen by displaying the gradient road condition surface corresponding to the current section in the navigation route.
  • the gradient road condition surface can reflect the process of the current section gradually changing from the first road condition to the second road condition, so that the display of the road condition information is more in line with the real road scene, thereby improving the accuracy of the road condition display.
  • the first road condition texture and the second road condition texture are used to distinguish different road conditions, and the gradient road condition texture is used to reflect the change process between different road conditions.
  • the road condition coverage range and the road condition transition range can determine the road condition texture of different road conditions and the coverage range of the gradient road condition texture.
  • the gradient road condition surface generated based on these data can achieve a smooth gradient effect between different road conditions.
  • the generated gradient road condition surface can reflect the process of the current road section gradually changing from the first road condition to the second road condition, so that the display of road condition information is more in line with the real road scene, thereby improving the accuracy of road condition display and improving the accuracy of navigation.
  • the server obtains the initial road condition texture and road condition coverage range corresponding to the first road condition and the second road condition involved in the current road section, and determines the road condition transition range between the first road condition and the second road condition based on the initial road condition texture and road condition coverage range corresponding to the first road condition and the second road condition.
  • the server adjusts the road condition texture from the initial road condition texture corresponding to the first road condition to the initial road condition texture corresponding to the second road condition, and obtains the gradient road condition texture corresponding to the road condition transition range.
  • the server obtains the road section texture data corresponding to the current road section based on the initial road condition texture and the corresponding road condition coverage range, the gradient road condition texture and the corresponding road condition transition range; the road section texture data is used to generate the gradient road condition surface corresponding to the current road section, and the gradient road condition surface is used to indicate the process of the current road section changing from the first road condition to the second road condition.
  • the server can send the road section texture data to the terminal, and the terminal generates the gradient road condition surface based on the road section texture data. In this way, the road section texture data obtained based on the initial road condition texture, the gradient road condition texture, the road condition coverage range and the road condition transition range can be used to generate a gradient road condition surface.
  • the initial road condition texture is used to distinguish different road conditions
  • the gradient road condition texture is used to reflect the changing process between different road conditions.
  • the road condition coverage range and the road condition transition range can determine the coverage range of the initial road condition texture and the gradient road condition texture, so that the generated gradient road condition surface can achieve a smooth gradient effect between different road conditions.
  • the generated gradient road condition surface can reflect the process of the current road section gradually changing from the first road condition to the second road condition, so that the display of road condition information is more in line with the real road scene, thereby improving the accuracy of road condition display and improving the accuracy of navigation.
  • terminal and the server can be used alone to execute the road condition processing method provided in the embodiment of the present application.
  • the terminal and the server can also be used in conjunction to execute the road condition display method and the road condition processing method provided in the embodiment of the present application.
  • a method for displaying road conditions is provided, and the method is applied to a terminal as an example.
  • the method for displaying road conditions includes the following steps:
  • Step S202 displaying an initial navigation screen, and showing a target navigation route on the initial navigation screen.
  • the navigation screen refers to the screen displayed during navigation.
  • the initial navigation screen is the navigation screen used to display the target navigation route.
  • the navigation route refers to the moving route from the starting point to the destination.
  • the starting point refers to the departure point during navigation.
  • the starting point can be the current location of the terminal, or it can be a location input or selected by the user through terminal operation. For example, it can be the location corresponding to the starting point name entered by the user in the input field of the starting point information of the map application; it can be a location determined by selecting a point on the map in the starting point determination interface of the map application; and so on.
  • the destination refers to the arrival point during navigation. The destination can be the place that the user wants to reach by inputting or selecting through terminal operation.
  • the destination can also be a location recommended to the user by the terminal. For example, it can be a location corresponding to recommended food stores, shopping malls, cinemas and other places.
  • the target navigation route refers to the currently determined navigation route.
  • the target navigation route can be a route selected by the user through a selection operation. For example, after determining the starting point and the destination, the terminal displays multiple candidate navigation routes from the same starting point to the same destination in response to the start operation of the route planning function, and the terminal uses the candidate navigation route selected by the user on the display interface as the target navigation route.
  • the target navigation route can also be a route actively recommended to the user. For example, the terminal or server actively uses the navigation route with the shortest navigation distance as the target navigation route; the terminal or server actively uses the navigation route with the shortest estimated navigation time as the target navigation route; and so on.
  • the terminal may display an initial navigation screen with a target navigation route from the starting point to the destination so that the user can understand the moving route from the starting point to the destination.
  • the terminal displays the input destination in response to an input operation of the destination.
  • the terminal In response to an operation of starting a route planning function, the terminal displays at least one candidate navigation route from the terminal's location to the destination.
  • the terminal In response to an operation of selecting a target navigation route from the candidate navigation routes, the terminal displays an initial navigation screen showing the target navigation route.
  • the candidate navigation routes and the target navigation route can be displayed in different navigation interfaces or in the same navigation interface. If displayed in the same navigation interface, the target navigation route and other candidate navigation routes can be displayed separately on the initial navigation screen. Specifically, the target navigation route can be displayed in a strengthened manner and other candidate navigation routes can be displayed in a weakened manner on the initial navigation screen. For example, the target navigation route is displayed in a dark color and other candidate navigation routes are displayed in a light color. Further, if the user wants to change the target navigation route, the terminal can change the target navigation route in response to a trigger operation for other candidate navigation routes.
  • the initial navigation screen can be as shown in Figure 3, where 302 in Figure 3 represents the starting point, 304 represents the destination, route C filled in black is the target navigation route, and route A and route B are other candidate navigation routes.
  • Step S204 in response to the navigation triggering event for the target navigation route, displaying the target navigation screen, and displaying the gradually changing road condition surface corresponding to the current section in the target navigation route on the target navigation screen.
  • the navigation trigger event refers to an event that starts the navigation function.
  • the navigation trigger event for the target navigation route refers to an event that starts navigation according to the target navigation route.
  • the current section is the section currently to be entered in the target navigation route.
  • the current section is the section determined from the target navigation route based on the current positioning position of the terminal. If the starting point of the target navigation route is determined based on the current positioning position of the terminal, the current section can be considered as the starting section in the target navigation route.
  • the navigation trigger event for the target navigation route can be triggered by a trigger operation on the initial navigation screen.
  • the navigation trigger event for the target navigation route can be triggered by a trigger operation on the target navigation route;
  • the navigation trigger event for the target navigation route can be triggered by a trigger operation on a preset area in the initial navigation screen;
  • the navigation trigger event for the target navigation route can be triggered by a trigger operation on a preset control in the initial navigation screen.
  • the target navigation screen displayed in response to the navigation trigger event is used to display the gradient road condition surface corresponding to the current section in the target navigation route.
  • the road conditions involved in the current section include the first road condition and the second road condition.
  • the first road condition and the second road condition are two adjacent and different road conditions.
  • the road condition is used to characterize the congestion of the road.
  • the road conditions can be displayed through road condition textures.
  • Different road textures refers to texture information added to the road, which is used to visually reflect the congestion of the road.
  • the road texture can be a texture presented in at least one of color, line, pattern, etc.
  • different road textures can have different colors; different road textures can have lines of different densities; and so on.
  • the road texture is a texture image.
  • texture images are used to add visual features to the road area on the screen.
  • a gradient road surface refers to a road surface that can present a gradient effect in the picture and reflect the process of road condition changes.
  • the gradient road surface corresponding to the current road section is used to indicate the process of the current road section changing from the first road condition to the second road condition.
  • the gradient road surface uses a gradient transition road condition texture to vividly reflect the process of the current road section changing from the first road condition to the second road condition, which can bring users an experience of road condition changes that is more in line with real road scenes.
  • the gradient road condition surface corresponding to the current road section includes a first road condition texture corresponding to the first road condition, a second road condition texture corresponding to the second road condition, and a gradient road condition texture that gradually changes from the first road condition texture to the second road condition texture.
  • the first road condition texture corresponding to the first road condition is the initial road condition texture corresponding to the first road condition
  • the second road condition texture corresponding to the second road condition is the initial road condition texture corresponding to the second road condition.
  • the initial road condition texture refers to an initialized and fixed road condition texture, which is used to visually distinguish different road conditions when displayed.
  • the initial road condition textures corresponding to various road conditions can be pre-set to distinguish various road conditions.
  • the gradient road condition texture is a set of road condition textures composed of a plurality of regularly changing road condition textures, which is used to visually present a gradient transition effect between road conditions when displayed.
  • the initial road condition texture is a preset texture color
  • the gradient road condition texture includes at least one transition color between preset different texture colors.
  • the road condition texture that gradually changes from the first road condition texture to the second road condition texture includes a road condition texture set consisting of a plurality of road condition textures that regularly change from the first road condition texture to the second road condition texture.
  • the first road condition texture is green
  • the second road condition texture is red
  • the gradient road condition texture corresponding to the road condition transition range between the first road condition and the second road condition may include orderly arranged green, yellow-green, yellow, orange-yellow, orange, orange-red, and red, and the orderly arranged green, yellow-green, yellow, orange-yellow, orange, orange-red, and red may present a color transition process that gradually changes from green to red.
  • the road condition transition range refers to the road section range where the road condition texture transition is required, and the road condition transition range is used to indicate the coverage range of the gradual road condition texture on the road section.
  • the road condition transition range between the first road condition and the second road condition is a transition range determined by the road condition texture and road condition coverage range corresponding to the first road condition and the second road condition, that is, a transition range determined by the initial road condition texture and road condition coverage range corresponding to the first road condition and the second road condition.
  • the terminal or the server can determine the road condition transition range based on the difference between the first road condition and the second road condition in the initial road condition texture and the road condition coverage range.
  • referring to the initial road condition texture of different road conditions can make the road condition transition range change with the change of road conditions, ensuring the flexibility of road condition transition display. For example, if the difference between the initial road condition textures corresponding to different road conditions is large, a larger road condition transition range is used when the road condition transition is displayed. When the texture performance difference of adjacent road conditions is large, a larger space is used to present the process of gradually changing from one texture to another texture, which can make the texture transition more natural and improve the clarity of the road condition transition display. Referring to the road condition coverage of different road conditions when determining the road condition transition range helps to ensure that the road condition transition range does not exceed the road section coverage of a single road condition and ensures the reliability of the road condition transition display.
  • the gradual road condition surface corresponding to the current road section is generated based on the road section texture data corresponding to the current road section.
  • the road section texture data is obtained by the road condition coverage range and initial road condition texture corresponding to the first road condition and the second road condition respectively, the road condition transition range between the first road condition and the second road condition and the corresponding gradual road condition texture.
  • the road section texture data can be obtained by arranging and combining the initial road condition texture corresponding to the first road condition and the second road condition respectively and the gradual road condition texture corresponding to the road condition transition range based on the road condition coverage range corresponding to the first road condition and the second road condition respectively, and the road condition transition range between the first road condition and the second road condition.
  • the road section texture data is obtained by combining the initial road condition texture and the gradual road condition texture arranged in order.
  • the road condition coverage range refers to the road section range corresponding to a single road condition, and the road condition coverage range is used to indicate the initial coverage range of the initial road condition texture on the road section.
  • the terminal when the terminal detects a corresponding trigger operation acting on the initial navigation interface, it triggers a navigation trigger event for the target navigation route. In response to the navigation trigger event, it displays the target navigation screen, and displays the gradient road condition surface corresponding to the current section of the target navigation route on the target navigation screen.
  • the target navigation screen is a three-dimensional stereoscopic screen.
  • the target navigation screen is a local three-dimensional electronic map obtained by projecting the road scene where the current road section is located in the three-dimensional electronic map according to a certain navigation perspective.
  • the target navigation screen is shown in FIG4.
  • the road texture on the road surface corresponding to the current road section is a gradient.
  • a 3D immersive navigation picture can be obtained by shooting with a virtual camera that matches the navigation perspective.
  • the immersive navigation picture can provide users with an immersive navigation experience, allowing users to experience a navigation experience that is more in line with real road scenes.
  • the initial navigation screen and the target navigation screen can be displayed in the same interface, for example, the initial navigation screen is displayed in the left half of the navigation interface, and the target navigation screen is displayed in the right half of the navigation interface.
  • the triggered navigation screen can be displayed independently in response to a trigger operation acting on any navigation screen.
  • the terminal responds to the user's click operation on the target navigation screen, enlarges and displays the target navigation screen, so that the target navigation screen is displayed independently in the navigation interface.
  • the initial navigation screen and the target navigation screen can also be displayed in different interfaces. For example, after determining the target navigation route, the initial navigation screen is displayed first, and when a trigger operation for the current section of the target navigation route is detected, the initial navigation screen jumps to the target navigation screen.
  • the target navigation route is displayed on the initial navigation screen, and in response to the navigation trigger event for the target navigation route, the target navigation screen is displayed, and the gradient road condition surface corresponding to the current section in the target navigation route is displayed on the target navigation screen; wherein the gradient road condition surface is used to indicate the process of the current section changing from the first road condition to the second road condition;
  • the gradient road condition surface includes the first road condition texture corresponding to the first road condition, the second road condition texture corresponding to the second road condition, and the gradient road condition texture that gradually changes from the first road condition texture to the second road condition texture, and the road condition transition range corresponding to the gradient road condition texture is determined by the road condition texture and the road condition coverage range corresponding to the first road condition and the second road condition.
  • the road condition information of the current section is displayed on the navigation screen by displaying the gradient road condition surface corresponding to the current section, and the gradient road condition surface can reflect the process of the current section gradually changing from the first road condition to the second road condition, so that the display of the road condition information is more in line with the real road scene, thereby improving the accuracy of the road condition display.
  • the first road condition texture and the second road condition texture are used to distinguish different road conditions, and the gradient road condition texture is used to reflect the change process between different road conditions.
  • the road condition coverage range and the road condition transition range can determine the road condition texture of different road conditions and the coverage range of the gradient road condition texture.
  • the gradient road condition surface generated based on these data can achieve a smooth gradient effect between different road conditions.
  • the generated gradient road condition surface can reflect the process of the current road section gradually changing from the first road condition to the second road condition, so that the display of road condition information is more in line with the real road scene, thereby improving the accuracy of road condition display and improving the accuracy of navigation.
  • the target navigation route is used to instruct the navigation object to perform travel navigation according to the target navigation route
  • the initial navigation screen includes a navigation start control
  • the navigation start control is used to respond to the navigation trigger event.
  • the target navigation screen In response to the trigger operation for the navigation start control, the target navigation screen is displayed, and the gradient road surface corresponding to the current road section to be entered by the navigation object is displayed on the target navigation screen; the current road section is a road section determined from the target navigation route based on the current positioning position of the navigation object.
  • the target navigation screen is a three-dimensional navigation screen determined by the current navigation perspective corresponding to the navigation object at the positioning position of the navigation object.
  • the navigation object is the object being navigated, for example, it may be a user who enables the navigation function, or it may be a vehicle driven by the user.
  • the terminal determines its own location as the location of the navigation object. For example, when a user navigates through a mobile phone while driving, the location of the mobile phone is the location of the navigation object. For another example, when a user navigates through a car navigation device, the location of the vehicle is the location of the navigation object.
  • the navigation start control is a control for triggering the start of the route navigation function.
  • the route navigation function refers to the function of providing real-time route guidance during navigation.
  • the navigation function of guiding the navigation object to the navigation end point in real time according to the target navigation route from the current location of the navigation object can be started.
  • the gradient road surface corresponding to the current section to be entered by the navigation object can be displayed.
  • the current section is a section determined from the target navigation route based on the current location of the navigation object.
  • the current location of the navigation object can be used as the starting point of the section, and the end point of the section can be determined on the target navigation route, and the section consisting of the starting point and the end point of the section on the target navigation route can be used as the current section.
  • the end point of the section can be obtained by advancing a preset distance along the starting point of the section on the target navigation route.
  • the end point of the section can also be determined on the target navigation route at the location of the navigation object through the current navigation perspective corresponding to the navigation object.
  • the current navigation field of view is determined by the current navigation perspective at the positioning position of the navigation object, and the farthest position on the target navigation route that falls within the current navigation field of view is taken as the end point of the section, that is, the end point of the section is the farthest position that the user can observe on the target navigation screen during navigation, and the current section is the maximum observable section of road on the target navigation route by the user on the target navigation screen.
  • the navigation perspective is the reference position when projecting the electronic map. It is used to determine the navigation field of view during navigation and the range of road scenes that users can observe during navigation.
  • the current navigation perspective corresponding to the navigation object refers to the current position of the navigation object in the navigation object.
  • the 3D navigation picture is a local 3D electronic map projected in the 3D electronic map according to the navigation perspective.
  • the 3D navigation picture is a 3D picture that provides an immersive experience for the user during navigation.
  • the navigation trigger event for the target navigation route can be triggered by a selection operation acting on the navigation start control.
  • the user can trigger the start route navigation function by triggering the navigation start control, and trigger the start route navigation function to trigger the display of the three-dimensional navigation screen corresponding to the current section that the navigation object is about to enter on the target navigation route, so as to guide the navigation object to drive correctly.
  • the gradient road condition surface of the starting section that the navigation object is about to enter is synchronously displayed in the three-dimensional navigation screen, so that the user can understand the road scene and detailed road condition information to be passed in real time.
  • the terminal In response to the user's triggering operation of the navigation start control in the initial navigation screen, the terminal displays an immersive navigation screen in the navigation interface that is obtained by projecting the three-dimensional electronic map at the positioning position of the navigation object according to the current navigation perspective corresponding to the navigation object.
  • the target navigation screen can refer to FIG5 , and the target navigation screen can also display a navigation object logo 502, and the position of the logo in the electronic map can reflect the geographical location of the navigation object. Further, the target navigation screen can also display navigation route guidance information, and the navigation route indication information is text information or graphic information.
  • the logo corresponding to the navigation object includes a guidance arrow indicating the driving direction, which can refer to 502 in FIG5 ; the logo corresponding to the navigation object is used as the starting point to indicate the guidance arrow of the driving direction.
  • the gradient road condition surface corresponding to the current section that the navigation object is about to enter is displayed on the target navigation screen, and the gradient road condition surface starting from the starting section of the target navigation route can be displayed to the user when the navigation object is navigating, to assist the navigation object in travel navigation, and to facilitate the user to view the road condition change process on the navigation route when driving the vehicle.
  • the target navigation screen is a three-dimensional navigation screen determined by the current navigation perspective corresponding to the navigation object at the location of the navigation object, which can bring an immersive navigation screen experience to the user.
  • the navigation screen is more in line with the real visual scene, which helps to improve navigation accuracy.
  • the road condition display method further includes:
  • the gradually changing road condition surfaces corresponding to the various road sections that the navigation object is to enter in sequence on the target navigation route are displayed in order on the target navigation screen that changes synchronously with the movement of the navigation object.
  • the terminal displays a target navigation screen in response to the user's triggering operation on the navigation start control in the initial navigation screen, and displays the gradient road condition surface corresponding to the starting section to be entered by the navigation object in the target navigation screen.
  • the target navigation screen determined by the current navigation perspective corresponding to the navigation object can be updated in real time with the movement of the navigation object to guide the route of the navigation object in real time.
  • the gradient road condition surfaces corresponding to each section that the navigation object enters in sequence on the target navigation route can be displayed in sequence, so that during the driving process of the navigation object, the user can understand the road scene and detailed road condition information of the next section to be passed in real time.
  • FIG 6 three example figures in the target navigation screen that change in real time with the movement of the same navigation object are shown, and the order of (a), (b) and (c) is (a)-(b)-(c).
  • the road conditions involved in the target navigation route include the first road condition, the second road condition, the third road condition and the fourth road condition, which are adjacent in sequence.
  • the first road condition and the second road condition correspond to section A
  • the second road condition and the third road condition correspond to section B
  • the third road condition and the fourth road condition correspond to section C.
  • the road condition surface can be always displayed on the target navigation screen that changes synchronously with the movement of the navigation object. If the target navigation route involves multiple road conditions, each road condition is displayed in turn as the navigation object moves along the target navigation route. If there are different road conditions on the section of the target navigation route displayed on the current navigation screen, the road condition surface displayed is a gradient road condition surface. If there is only one road condition on the section of the target navigation route displayed on the current navigation screen, the road condition surface displayed includes the initial road condition texture corresponding to the single road condition.
  • the gradient road condition surfaces corresponding to each road section that the navigation object is about to enter are displayed in real time in sequence following the movement of the navigation object, thereby providing real-time route guidance for the navigation object and displaying accurate road condition information, which helps to improve navigation accuracy.
  • the road condition display method further includes:
  • a reference navigation screen is displayed, and the gradient road condition surface corresponding to the target section is displayed on the reference navigation screen;
  • the reference navigation screen is a three-dimensional navigation screen determined by a preset navigation perspective at the section positioning position where the target section is located.
  • the reference navigation screen is a navigation screen for displaying a gradually changing road condition surface corresponding to a target section.
  • the target section is any section selected from various sections of the target navigation route. It is understood that the target navigation route can be divided into a plurality of sections according to various road conditions involved in the target navigation route, and one section involves at least two adjacent different road conditions, and a section selected from various sections obtained by division is used as the target section.
  • the preset navigation perspective refers to a pre-set, fixed navigation perspective.
  • the preset navigation perspective can be the system default navigation perspective, or it can be the navigation perspective input or selected by the user through terminal operation.
  • the road segment positioning position is used to locate the geographical location of the road segment.
  • the display of a gradually changing road condition surface can be triggered by a selection operation acting on any road section in the target navigation route.
  • the user can select a road section in each road section involved in the target navigation route to trigger the display of a three-dimensional navigation screen corresponding to the selected road section, and display a gradually changing road condition surface corresponding to the selected road section in the three-dimensional navigation screen, so that the user can know in advance the road scene and detailed road condition information of any road section involved in the target navigation route.
  • the terminal In response to the user's selection operation of a target road section in each road section involved in the target navigation route, the terminal displays an immersive navigation screen in the navigation interface obtained by projecting a three-dimensional electronic map at the road section positioning position where the target road section is located according to a preset navigation perspective.
  • the gradient road condition surface corresponding to the current section is displayed on the target navigation screen, and the gradient road condition surface corresponding to the selected current section can be displayed to the user, and the user can conveniently select to view the road condition change process of any section.
  • the target navigation screen is the three-dimensional navigation screen determined by the preset navigation perspective at the section location where the current section is located, which can bring an immersive navigation screen experience to the user.
  • the navigation screen is more in line with the real visual scene, which helps to improve navigation accuracy.
  • the road condition display method further includes:
  • the global road condition surface corresponding to the target navigation route is displayed on the initial navigation screen; the global road condition surface is used to indicate various road conditions involved in the target navigation route, and the global road condition surface includes initial road condition textures corresponding to various road conditions.
  • the global road condition surface refers to a geometric surface that can present all road conditions involved in the navigation route.
  • the global road condition surface corresponding to the target navigation route is used to indicate the various road conditions involved in the target navigation route.
  • the global road condition surface includes initial road condition textures corresponding to the various road conditions involved in the target navigation route.
  • the global road condition surface uses the initial road condition textures to vividly reflect the various road conditions involved in the navigation route, reflecting the road condition information of the navigation route as a whole.
  • the global traffic surface corresponding to the target navigation route may be displayed so that the user can understand the overall traffic information of the target navigation route.
  • the road condition texture involved in the global road condition surface may only include the initial road condition textures corresponding to each road condition.
  • the initial road condition textures of adjacent road conditions are directly spliced without texture transition.
  • different colors represent different road conditions.
  • the global road condition surface may also be a road condition surface with a gradual texture transition between each group of adjacent road conditions involved in the target navigation route.
  • the global road condition surface corresponding to the target navigation route can also be displayed on the initial navigation screen, so that the user can view various road conditions involved in the target navigation route at one time, thereby improving the efficiency of viewing road conditions.
  • the road condition display method further includes:
  • the gradient road condition surface is refreshed and displayed as an updated road condition surface; the updated road condition surface is used to indicate the updated road condition of the current road section.
  • the road condition information may be updated periodically or in real time, and the initial road condition texture, the corresponding road condition transition range, and the gradual road condition texture corresponding to the first road condition and the second road condition may be updated as the road condition information is updated, and accordingly, the gradual road condition surface may be updated as the road condition information is updated. Therefore, when the road condition of the current road section changes, the terminal may refresh and display the gradual road condition surface as the updated road condition surface to ensure the accuracy of the road condition display.
  • the various road conditions involved in the target navigation route can be obtained, and the road condition transition range between adjacent road conditions and the corresponding gradient road condition texture can be calculated.
  • the initial road condition texture corresponding to the first road condition and the second road condition involved in the current road section, and the gradient road condition texture corresponding to the road condition transition range between the first road condition and the second road condition are directly obtained to generate a gradient road condition surface corresponding to the current road section, so that the gradient road condition surface can be quickly displayed on the target navigation screen.
  • the initial road condition texture of the latest road condition of the current road section is obtained to generate an updated road condition surface, and the gradient road condition surface is refreshed and displayed as the updated road condition surface.
  • the gradually changing road condition surface is refreshed and displayed as an updated road condition surface, which can ensure the timeliness of the displayed road condition information, always display the latest road condition information to the user, and improve the road condition information. Accuracy of information displayed.
  • displaying the gradually changing road condition surface corresponding to the current section in the target navigation route on the target navigation screen includes:
  • a first texture color corresponding to a first road condition is displayed in a starting area of a current road section; a transition texture color gradually changing from the first texture color to a second texture color is displayed in an intermediate area between the starting area and the ending area of the current road section; the transition texture color includes a dynamic number of gradient texture colors, and the number of gradient texture colors is determined based on the road condition transition range; a second texture color corresponding to a second road condition is displayed in the ending area of the current road section.
  • the road condition texture can be represented by color, and the color used to characterize the road condition texture can be called texture color.
  • the first texture color refers to the texture color corresponding to the first road condition
  • the second texture color refers to the texture color corresponding to the second road condition.
  • the transition texture color includes a plurality of gradient texture colors that gradually change from the first texture color to the second texture color, and is used to achieve color transition between different colors.
  • the transition texture color includes a dynamic number of gradient texture colors, and the number of gradient texture colors is determined based on the road condition transition range. It can be understood that the larger the road condition transition range, the more gradient texture colors the transition texture color can contain.
  • the starting area of the current road segment refers to the area including the starting position of the current road segment.
  • the ending area of the current road segment refers to the area including the ending position of the current road segment.
  • the middle area refers to the area between the starting area and the ending area of the current road segment on the current road segment.
  • the initial road condition texture and the gradual road condition texture can be displayed in different areas on the current road section, so as to present a display effect of the initial road condition texture of the first road condition gradually changing to the initial road condition texture of the second road condition on the current road section.
  • the first texture color corresponding to the first road condition can be displayed in the starting area of the current road section to indicate that the road condition of the current road section starts from the first road condition
  • the second texture color corresponding to the second road condition can be displayed in the ending area of the current road section to indicate that the road condition of the current road section ends from the second road condition
  • the transition texture color gradually changing from the first texture color to the second texture color can be displayed in the middle area between the starting area and the ending area of the current road section to indicate that the road condition of the current road section gradually changes from the first road condition to the second road condition.
  • the first texture color corresponding to the first road condition is displayed in the starting area of the current road section
  • the transition texture color gradually changing from the first texture color to the second texture color is displayed in the middle area between the starting area and the ending area of the current road section
  • the second texture color corresponding to the second road condition is displayed in the ending area of the current road section.
  • different road conditions are distinguished by different colors
  • the color transition between road conditions is achieved by transition colors
  • the process of the current road section changing from the first road condition to the second road condition is presented by rich colors.
  • the transition texture color includes a dynamic number of gradient texture colors, and the number of gradient texture colors is determined based on the road condition transition range, which can ensure adaptive color transition under various road condition combinations.
  • a method for displaying road conditions is provided, and the method is applied to a computer device as an example, and the computer device may be a terminal or a server.
  • the method may be executed by the terminal or the server itself alone, or may be implemented through interaction between the terminal and the server.
  • the method for displaying road conditions includes the following steps:
  • Step S802 Obtain initial road condition textures and road condition coverages corresponding to the first road condition and the second road condition involved in the current road section, respectively.
  • the current road section may be any road section with different road conditions.
  • the current road section may be a road section determined by the user through terminal operation, for example, a road section input or selected by the user through terminal operation; when the user triggers route navigation through the terminal, the road section is determined from the target navigation route based on the terminal's positioning position.
  • the initial road condition texture refers to the initialized and fixed road condition texture, which is used to visually distinguish different road conditions when displayed.
  • the road condition coverage range refers to the road section range corresponding to a single road condition, which is used to indicate the initial coverage range of the initial road condition texture on the road section.
  • the computer device can obtain the initial road condition texture and road condition coverage corresponding to the first road condition and the second road condition involved in the current road section locally or from other devices, and generate the road section texture data corresponding to the current road section based on the initial road condition texture and road condition coverage corresponding to the first road condition and the second road condition.
  • the road section texture data can be used to generate the gradient road condition surface corresponding to the current road section.
  • Step S804 determining a traffic condition transition range between the first road condition and the second road condition based on the initial traffic condition textures and traffic condition coverage ranges corresponding to the first road condition and the second road condition, respectively.
  • the road condition transition range refers to the range of the road section where the road condition texture transition is required, and is used to indicate the coverage range of the gradient road condition texture on the road section.
  • the computer device may determine the road condition transition range between the first road condition and the second road condition based on the initial road condition texture and the road condition coverage range corresponding to the first road condition and the second road condition respectively.
  • the difference between the first road condition and the second road condition in the initial road condition texture and the road condition coverage is used to determine the road condition transition range between the first road condition and the second road condition.
  • a target coverage range is determined from the road condition coverage ranges corresponding to the first road condition and the second road condition, respectively, a road condition span is determined based on the initial road condition textures corresponding to the first road condition and the second road condition, respectively, and the target coverage range is adjusted based on the road condition span to obtain a road condition transition range.
  • a road condition coverage range with a smaller coverage amount can be selected from the road condition coverage ranges corresponding to the first road condition and the second road condition, respectively, as the target coverage range, and the target coverage range is narrowed based on the road condition span to obtain a road condition transition range.
  • the road condition transition range decreases as the road condition span decreases. The smaller the road condition span, the greater the range reduction value used to narrow the range, and the smaller the road condition transition range obtained. It can be understood that if the road condition span is small, using a relatively small road condition transition range can effectively reflect the texture transition between different road conditions.
  • Step S806 The road condition texture is gradually adjusted from the initial road condition texture corresponding to the first road condition to the initial road condition texture corresponding to the second road condition, so as to obtain a gradual road condition texture corresponding to the road condition transition range.
  • the gradient road condition texture is a road condition texture set composed of a plurality of regularly changing road condition textures, and is used to visually present a gradient transition effect between road conditions when displayed.
  • the gradient road condition texture corresponding to the road condition transition range between the first road condition and the second road condition includes a road condition texture set composed of a plurality of road condition textures that regularly change from an initial road condition texture corresponding to the first road condition to an initial road condition texture corresponding to the second road condition.
  • the computer device adjusts the road condition texture from the initial road condition texture corresponding to the first road condition to the initial road condition texture corresponding to the second road condition, and obtains a plurality of road condition textures that regularly change between the first road condition texture and the second road condition texture. These regularly changing road condition textures are combined into a gradient road condition texture corresponding to the road condition transition range.
  • the gradient road condition texture can be used to achieve the effect of gradually changing from the first road condition texture to the second road condition texture.
  • Step S808 based on the initial road condition texture and the corresponding road condition coverage range, the gradient road condition texture and the corresponding road condition transition range, obtain the road section texture data corresponding to the current road section; the road section texture data is used to generate the gradient road condition surface corresponding to the current road section, and the gradient road condition surface is used to indicate the process of the current road section changing from the first road condition to the second road condition.
  • the road section texture data refers to the complete texture data corresponding to the current road section.
  • the road section texture data includes the first road condition texture, gradient texture data and the second road condition texture arranged in an orderly manner, which is used to present the texture transition effect from the first road condition to the second road condition.
  • the computer device obtains the road section texture data corresponding to the current road section based on the initial road condition texture and the corresponding road condition coverage range, the gradient road condition texture and the corresponding road condition transition range.
  • the initial road condition texture and the gradient road condition texture can be arranged and combined according to the corresponding road condition coverage range and road condition transition range to obtain the road section texture data corresponding to the current road section.
  • the first road condition texture, the second road condition texture and the gradient texture data are orderly combined to obtain the road section texture data corresponding to the current road section.
  • the first road condition texture, the second road condition texture and the gradient texture data have corresponding coverage ranges respectively.
  • the road section texture data is used to generate a gradient road condition surface corresponding to the current road section.
  • the road condition texture can be sequentially added to the road surface according to the road section texture data, thereby obtaining the gradient road condition surface.
  • the gradient road condition surface can be displayed on the terminal.
  • the road geometry data corresponding to the current road section can be obtained, and a gradient road surface can be generated based on the road geometry data and the road section texture data.
  • the road geometry data is used to characterize the geometric information of the road, such as the shape of the road, the size of the road, etc.
  • the road geometry data is used to generate the road surface.
  • the road section texture data is used to characterize the road texture information of the road, and the road section texture data is used to determine the display texture of the road surface. Based on the road geometry data and the road section texture data, a gradient road surface that conforms to the road geometry can be generated.
  • the road geometry data includes multiple road geometry points for drawing the road. Based on the relative positions of the road geometry points in the road section, texture sampling is performed in the road section texture data to obtain the target road condition texture corresponding to each road geometry point, and a gradient road condition surface is generated based on the target road condition texture and relative position corresponding to each road geometry point.
  • the road condition coverage range corresponding to the first road condition and the second road condition is adjusted to obtain the updated coverage range corresponding to the first road condition and the second road condition.
  • the updated coverage range is used to indicate the target coverage range and the final coverage range of the initial road condition texture on the road section.
  • the first road condition texture, the second road condition texture and the gradient road condition texture are arranged and combined to obtain the road section texture data.
  • the above-mentioned road condition processing method obtains the initial road conditions corresponding to the first road condition and the second road condition involved in the current road section. road condition texture and road condition coverage range; determine the road condition transition range between the first road condition and the second road condition based on the initial road condition texture and road condition coverage range corresponding to the first road condition and the second road condition respectively; adjust the road condition texture from the initial road condition texture corresponding to the first road condition to the initial road condition texture corresponding to the second road condition, and obtain the gradient road condition texture corresponding to the road condition transition range; obtain the section texture data corresponding to the current road section based on the initial road condition texture and the corresponding road condition coverage range, the gradient road condition texture and the corresponding road condition transition range; the section texture data is used to generate the gradient road condition surface corresponding to the current road section, and the gradient road condition surface is used to indicate the process of the current road section changing from the first road condition to the second road condition.
  • the road section texture data obtained based on the initial road condition texture, the gradient road condition texture, the road condition coverage range and the road condition transition range can be used to generate a gradient road condition surface.
  • the initial road condition texture is used to distinguish different road conditions
  • the gradient road condition texture is used to reflect the changing process between different road conditions.
  • the road condition coverage range and the road condition transition range can determine the coverage range of the initial road condition texture and the gradient road condition texture, so that the generated gradient road condition surface can achieve a smooth gradient effect between different road conditions.
  • the generated gradient road condition surface can reflect the process of the current road section gradually changing from the first road condition to the second road condition, so that the display of road condition information is more in line with the real road scene, thereby improving the accuracy of road condition display and improving the accuracy of navigation.
  • step S804 includes:
  • the road condition gradient reference range refers to a maximum road condition gradient range pre-set for the road condition span.
  • the computer device can determine the road condition texture gradient radius based on the difference between the first road condition and the second road condition in the road condition coverage and the initial road condition texture, and the difference between the first road condition and the second road condition in the initial road condition texture can be reflected by the road condition span. Based on the road condition texture gradient radius, the range is divided at the road condition boundary position of the first road condition and the second road condition to obtain the road condition transition range between the first road condition and the second road condition.
  • the computer device can obtain a road condition coverage range with a smaller coverage amount from the road condition coverage ranges corresponding to the first road condition and the second road condition respectively as the target coverage range, and the target coverage range is used to constrain the road condition transition range so that the road condition transition range does not exceed the target coverage range.
  • the computer device can determine the road condition span between the first road condition and the second road condition based on the difference between the initial road condition textures corresponding to the first road condition and the second road condition, and obtain the road condition gradient reference range corresponding to the road condition span, and the road condition gradient reference range is used to constrain the road condition transition range so that the road condition transition range does not exceed the road condition gradient reference range.
  • the computer device determines the road condition texture gradient radius based on the road condition gradient reference range corresponding to the road condition span and the target coverage range, and obtains the range with the smallest coverage amount from the road condition gradient reference range and the target coverage range to generate the road condition texture gradient radius.
  • the road condition transition range generated based on the road condition texture gradient radius can make the road condition transition range not exceed the target coverage range and the road condition transition range not exceed the road condition gradient reference range.
  • an array of 1 row and n columns is used to represent the road segment coverage of the current road segment.
  • the road condition information corresponding to the i-th road condition is represented by (a, b, road condition i), which is used to represent that the i-th road condition covers from the n*a column to the n*b column in the array.
  • the road condition information corresponding to the i+1-th road condition is represented by (b, c, road condition i+1), which is used to represent that the i+1-th road condition covers from the n*b column to the n*c column in the array. Therefore, ⁇ (i) represents the coverage amount of the road condition coverage range corresponding to the i-th road condition, and ⁇ (i+1) represents the coverage amount of the road condition coverage range corresponding to the i+1-th road condition.
  • span(i,i+1) represents the span between road condition i and road condition i+1.
  • value represents the maximum range of road condition gradient corresponding to the span of 1
  • len(i,i+1) represents the maximum range of road condition gradient corresponding to the span between road condition i and road condition i+1 (i.e., the reference range of road condition gradient between road condition i and road condition i+1).
  • Radius represents the gradient radius of the road texture.
  • the road boundary position is n*b
  • the gradient coverage range is n*b-radius to n*b+radius, which is used to represent that the gradient coverage range is from the n*b-radius column to the n*b+radius column in the array.
  • n can be selected to different sizes according to the length of the road section. n increases as the length of the road section increases.
  • the road condition gradient reference range corresponding to the road condition span is less than or equal to the road condition texture set in the candidate road condition texture set.
  • the candidate road condition texture set includes a plurality of road condition textures arranged in order, and the plurality of road condition textures arranged in order include initial road condition textures corresponding to a plurality of different road conditions and at least one transition road condition texture between different initial road condition textures.
  • the texture gradient range corresponding to the road condition span between the first road condition and the second road condition in the candidate road condition texture set refers to, in the candidate road condition texture set, a road condition texture range determined by the initial road condition textures corresponding to the first road condition and the second road condition, and the road condition texture range includes the initial road condition textures corresponding to the first road condition and the second road condition, and each road condition texture between the initial road condition textures corresponding to the first road condition and the second road condition.
  • the road condition texture is represented by color
  • the candidate road condition texture set includes all candidate road condition textures.
  • the candidate road condition texture set involves five road conditions, namely, no road condition, smooth, slow moving, congested, and severely congested.
  • the candidate road condition texture set includes orderly arranged texture colors.
  • each road condition has a corresponding texture color, and there is a color transition between different road conditions.
  • Sample (0) no road condition
  • Sample (0.25) smooth
  • Sample (0.5) slow moving
  • Sample (0.75) congested
  • Sample (1) severely congested
  • Sample (i) represents the road condition information represented by the color obtained from the candidate road condition texture set
  • i represents the percentage position of the texture color
  • the area between adjacent road conditions represents the transition between road conditions.
  • the pixel gradient range between different road conditions is limited, so the pixel gradient range between different road conditions can be used as the texture gradient range corresponding to the road condition span between different road conditions.
  • the road condition texture gradient radius is determined based on the difference between the first road condition and the second road condition in the road condition coverage range and the initial road condition texture. Based on the road condition texture gradient radius, the road condition transition range between the first road condition and the second road condition can be quickly obtained by dividing the range at the road condition boundary position of the first road condition and the second road condition.
  • the target coverage range is determined from the road condition coverage ranges corresponding to the first road condition and the second road condition respectively, and the road condition texture gradient radius is obtained based on the road condition gradient reference range and the target coverage range corresponding to the road condition span between the first road condition and the second road condition.
  • the road condition transition range generated based on the road condition texture gradient radius can ensure that the road condition transition range does not exceed the target coverage range and the road condition transition range does not exceed the road condition gradient reference range.
  • step S806 includes:
  • Each position point included in the road condition transition range is taken as a target position point; based on the distance between the target position point and the starting position point of the road condition transition range, the change in road condition texture of the target position point relative to the starting position point is determined; based on the initial road condition texture corresponding to the starting position point and the change in road condition texture of the target position point relative to the starting position point, the target road condition texture corresponding to the target position point is obtained; based on the target road condition textures corresponding to each position point, the gradient road condition texture corresponding to the road condition transition range is obtained.
  • the road condition transition range includes a plurality of position points arranged in an orderly manner.
  • the position points can divide the road condition transition range into a plurality of small areas, and the target road condition textures corresponding to each position point are determined to combine and obtain the gradient road condition texture.
  • the initial road condition texture corresponding to the starting point of the road condition transition range refers to the first road condition texture
  • the initial road condition texture corresponding to the ending point of the road condition transition range refers to the second road condition texture
  • the target road condition textures corresponding to each position point are first determined, and then the target road condition textures corresponding to each position point are combined into the gradual road condition texture corresponding to the road condition transition range.
  • the computer device uses each position point included in the road condition transition range as a target position point, and determines the target road condition texture corresponding to each target position point. For any target position point, based on the distance between the target position point and the starting position point of the road condition transition range, the road condition texture change amount of the target position point relative to the starting position point is determined. Specifically, the maximum texture change amount can be determined based on the difference between the initial road condition textures corresponding to the starting position point and the ending position point of the road condition transition range, and the road condition texture change amount corresponding to the distance between the target position point and the starting position point is determined from the maximum texture change amount.
  • the proportion of the distance between the target position point and the starting position point relative to the total distance between the starting position point and the ending position point is calculated, and the road condition texture change amount of the target position point relative to the starting position point is obtained based on the product of the proportion and the maximum texture change amount.
  • the target road condition texture corresponding to the target position point is obtained.
  • the initial road condition texture and the road condition texture change amount are added to obtain the target road condition texture.
  • the texture sampling position of the position j in the candidate road texture set is: Wherein, Loc(i) represents the texture sampling position of road condition i in the candidate road condition texture set, and Loc(i+1) represents the texture sampling position of road condition i+1 in the candidate road condition texture set.
  • the change in road condition texture of the target position point relative to the starting position point is determined, and the target road condition texture corresponding to the target position point is obtained based on the initial road condition texture corresponding to the starting position point and the change in road condition texture.
  • the target road condition texture corresponding to each position point changes from the first road condition texture to the second road condition texture at a uniform speed according to the position in the road condition transition range, so that the final gradient road condition texture includes multiple road condition textures that uniformly gradient from the first road condition texture to the second road condition texture.
  • Such a gradient road condition texture helps to ensure the display effect of the gradient transition of the road condition.
  • the road condition processing method further includes:
  • Step S1002 obtaining the edge point position of each road edge point corresponding to the current road section, and determining the texture sampling ratio corresponding to the road edge point based on the edge point position of the road edge point.
  • Step S1004 based on the texture sampling ratio corresponding to the road edge point, texture sampling is performed in the road section texture data to obtain the target road condition texture corresponding to each road edge point.
  • Step S1006 Generate a gradient road condition surface based on the target road condition texture and the position of the road edge point corresponding to each road edge point.
  • the road edge point is a spatial geometric point used to form the road edge.
  • the road edge refers to the boundary line of the road.
  • the edge point position is used to characterize the spatial position of the road edge point.
  • the texture sampling ratio corresponding to the road edge point can be determined.
  • the texture sampling ratio can characterize the edge position of the road edge point on the road edge, and is used for texture sampling from the road section texture data.
  • road edge points used to form the road edge can be obtained, and the target road condition texture corresponding to each road edge point can be determined from the road section texture data. Based on the target road condition texture corresponding to each road edge point and the edge point position, an irregular road surface with texture, specific shape, and gradient texture is generated.
  • the computer device can determine the position of the road edge point on the road edge based on the edge point position of the road edge point and then obtain the texture sampling ratio corresponding to each road edge point, and further perform texture sampling in the road section texture data based on the texture sampling ratio corresponding to the road edge point to obtain the target road condition texture corresponding to each road edge point.
  • the road section texture data includes a plurality of road condition textures arranged in order from the road start point to the road end point.
  • the target road condition texture is sampled from the road section texture data based on the texture sampling ratio of the road edge point.
  • the edge point position of the road edge point is used to form the road surface
  • the target road texture of the road edge point is used to form the texture of the road surface. Combining the edge point position of the road edge point and the target road texture can ultimately obtain a road surface with a texture.
  • an array of 1 row and n columns is used to represent the road texture data of the current road section.
  • the road condition coverage range corresponding to the first road condition corresponds to the 0th column to the n*ath column in the array
  • the road condition coverage range corresponding to the second road condition corresponds to the n*ath column to the nth column in the array.
  • the road condition transition range determined based on the relevant information of the first road condition and the second road condition corresponds to the n*a-radiusth column to the n*a+radiusth column in the array.
  • the final coverage range corresponding to the first road condition corresponds to the 0th column to the n*a-radiusth column in the array
  • the final coverage range corresponding to the second road condition corresponds to the n*a+radiusth column to the nth column in the array.
  • Columns 0 to n*a-radius correspond to the first road condition texture
  • columns n*a-radius to n*a+radius correspond to the gradient road condition texture
  • columns n*a+radius to nth column correspond to the second road condition texture.
  • the road edgeline points include left road edgeline points and right road edgeline points. Determining the texture sampling ratio corresponding to the road edgeline points based on the edgeline point positions of the road edgeline points includes:
  • the left sideline and the right sideline of the current road section are divided into the first type of sideline and the second type of sideline; based on the cumulative distances of the road sideline points on each first type of sideline from the road sideline starting point, the length ratio of each cumulative distance on the first type of sideline is calculated to obtain the texture sampling ratio corresponding to each road sideline point on the first type of sideline; based on the texture sampling ratio corresponding to the road sideline point on the first type of sideline, the sideline point position and the second type of sideline.
  • the road sideline points on the second type of sideline are proportionally aligned to the sideline point position corresponding to the left sideline point of the road on the left sideline, so as to obtain the texture sampling ratios corresponding to the respective road sideline points on the second type of sideline.
  • the ratio alignment is used to align the texture sampling ratio of another road sideline with one road sideline as the reference, so that the road sideline points on the left and right road sidelines in the same horizontal direction can correspond to the same texture sampling ratio. It can be understood that the positions on the left sideline and the right sideline of the road in the same horizontal direction correspond to the same road texture, and the road texture on the gradient road surface generated based on this is horizontally aligned, avoiding the tilt of the road texture on the gradient road surface.
  • the computer device divides the left sideline and the right sideline of the road of the current road section into a first type of sideline and a second type of sideline.
  • the first type of sideline is used as a reference
  • the second type of sideline is used to align the first type of sideline.
  • the right sideline of the road can be used as the first type of sideline and the left sideline of the road can be used as the second type of sideline;
  • the left sideline of the road can be used as the first type of sideline and the right sideline of the road can be used as the second type of sideline.
  • the texture sampling ratios corresponding to each road sideline point on the first type of sideline are first determined.
  • the computer device can calculate the length ratio of each cumulative distance on the first type of sideline based on the cumulative distance of each road sideline point on the first type of sideline from the starting point of the road sideline, and use the length ratio as the texture sampling ratio to obtain the texture sampling ratios corresponding to each road sideline point on the first type of sideline. Then, referring to the edge point positions and texture sampling ratios of the road edge point on the first type of edge line, the computer device proportionally aligns the road edge point on the second type of edge line based on the edge point positions corresponding to the road edge point on the second type of edge line, and obtains the texture sampling ratios corresponding to each road edge point on the second type of edge line.
  • the computer device aligns the left side of the road point based on the edge point position corresponding to the left side of the road point, and obtains the texture sampling ratio corresponding to each left side of the road point.
  • the texture sampling ratio corresponding to the starting point of the right sideline is used as the texture sampling ratio corresponding to the starting point of the left sideline
  • the texture sampling ratio corresponding to the end point of the right sideline is used as the texture sampling ratio corresponding to the end point of the left sideline.
  • the initial sampling ratio corresponding to the left sideline point is determined in the texture sampling ratio interval formed from the texture sampling ratio corresponding to the starting point of the left sideline to the texture sampling ratio corresponding to the end point of the right sideline.
  • the initial sampling ratio corresponding to the left sideline point is adjusted based on the length of the left sideline of the road and the length of the right sideline of the road to obtain the texture sampling ratio corresponding to the left sideline point. It can be understood that when the first type of edgeline is the left side of the road and the second type of edgeline is the right side of the road, the data processing process is similar.
  • the length proportion of each cumulative distance on the first type of sideline is calculated to obtain the texture sampling ratios corresponding to each road sideline point on the first type of sideline.
  • the first road condition texture can be first presented from the starting point to the end point of the first type of sideline, then gradually changed from the first road condition texture to the second road condition texture, and finally the second road condition texture can be presented. Further, by proportional alignment, the road sideline points on the left and right road sidelines in the same horizontal direction can correspond to the same texture sampling ratio.
  • the texture of the road surface is flat and aligned in the horizontal direction, which effectively avoids the tilt of the road condition texture on the road surface, and the road condition texture can also be better displayed at the road corner.
  • the road edge line points on the second type of edge line are proportionally aligned to obtain the texture sampling ratios corresponding to the road edge line points on the second type of edge line, including:
  • Obtain a road centerline corresponding to the current road section ; divide the current road section into regions based on the road centerline to obtain at least two regions; proportionally align the road edgeline points belonging to the second type of edgeline in the region based on the texture sampling ratios and edge point positions corresponding to the road edgeline points belonging to the first type of edgeline in the same region and the edge point positions corresponding to the road edgeline points belonging to the second type of edgeline to obtain the texture sampling ratios corresponding to the respective road edgeline points on the second type of edgeline.
  • the road centerline is the road marking line located in the center of the road, which can reflect the plane position and curvature of the road.
  • proportional alignment can be performed by region.
  • the computer device can divide the current road section into regions based on the road centerline corresponding to the current road section to obtain at least two regions, and perform proportional alignment in each region respectively.
  • the edge point position and the edge point position corresponding to the road edge point belonging to the first type of edge in the same region are proportionally aligned to obtain the texture sampling ratios corresponding to each road edge point belonging to the second type of edge in each region.
  • the left side line points of the road in the region are proportionally aligned to obtain the texture sampling ratios corresponding to the left side line points of the road in each region.
  • the texture sampling ratios corresponding to the left side line points of the road in each region constitute the texture sampling ratios corresponding to each left side line point of the road in the current road section.
  • the current road section is divided into regions based on the road centerline to obtain at least two regions, and proportional alignment is performed on the regions, which can improve the efficiency of proportional alignment.
  • the current road section is divided into regions based on the road centerline to obtain at least two regions, including:
  • the center line of the road is sampled to obtain a plurality of center sampling points; the direction of the segmentation line is determined based on the center sampling point and the corresponding adjacent sampling points to obtain the direction of the segmentation line corresponding to each center sampling point; the region segmentation line is generated along the center sampling point in the direction of the segmentation line to obtain the region segmentation line corresponding to each center sampling point; based on each region segmentation line, the current road section is divided into regions to obtain at least two regions.
  • the adjacent sampling points of the central sampling point include at least one other central sampling point adjacent to the central sampling point in different directions of the road centerline.
  • the road centerline is sampled to obtain central sampling points A-E
  • the central sampling point A is the starting point of the road centerline.
  • the central sampling points A and C are the adjacent sampling points of the central sampling point B
  • the central sampling point A is the forward adjacent sampling point of the central sampling point B
  • the central sampling point C is the backward adjacent sampling point of the central sampling point B.
  • the region division can be performed based on the sampling points obtained by sampling the center line of the road.
  • the computer device can sample the center line of the road to obtain multiple center sampling points, and generate a region segmentation line based on the center sampling points to divide the current road section into regions to obtain at least two regions.
  • a region segmentation line can be determined by the center sampling point and the corresponding segmentation line direction, and a straight line passing through the center sampling point in the segmentation line direction is used as the region segmentation line.
  • the segmentation line direction corresponding to a center sampling point is determined based on the center sampling point and the corresponding adjacent sampling points.
  • the direction of the bisector of the angle formed by the central sampling point and the front adjacent sampling point and the rear adjacent sampling point can be used as the direction of the segmentation line.
  • the direction of the normal line formed by the central sampling point and the front adjacent sampling point or the rear adjacent sampling point can be used as the direction of the segmentation line.
  • equidistant sampling is performed on the center line of the lane, and the intersection of the straight line passing through the center sampling point and the left and right side lines of the lane is found.
  • the direction of the dividing line is selected from the direction of the angle bisector of the angle formed by the center sampling point and the adjacent sampling points on the center line of the lane.
  • the intersection of the adjacent sampling points and the left and right side lines of the lane divides the road surface into several areas.
  • the regional dividing lines corresponding to each central sampling point can be quickly obtained, and the current road section can be divided into regions based on each regional dividing line.
  • the current road section can be divided into regions along the extension direction of the road. The multiple regions obtained by the regional division help to make the road texture accurately gradually transition along the extension direction of the road when the road surface is displayed.
  • the central sampling point is determined in any one of the following ways:
  • the road centerline is dynamically sampled to obtain multiple center sampling points.
  • the road centerline when sampling the road centerline, the road centerline may be sampled at equal distances, and a point may be sampled at every preset distance on the road centerline, thereby obtaining a plurality of center sampling points.
  • the road centerline can also be dynamically sampled according to the curvature of the road centerline, sampling more points in areas with larger curvature on the road centerline and sampling fewer points in areas with smaller curvature on the road centerline, thereby obtaining multiple center sampling points.
  • multiple center sampling points can be quickly obtained by sampling the center line of the road at equal distances.
  • Multiple center sampling points with different spacing distances can be obtained by dynamically sampling the center line of the road according to the curvature of the center line of the road. The greater the curvature, the more center sampling points correspond to the area, that is, more precise sampling is performed at the corners of the road, which helps to improve the accuracy of displaying the road texture at the corners of the road.
  • the left edge points of the road in the area are proportionally aligned to obtain the texture sampling ratios corresponding to the left edge points of the road, including:
  • the starting point and the end point of the road sideline belonging to the first type of sideline in the current area are used as the starting point and the end point of the current first sideline, and the starting point and the end point of the road sideline belonging to the second type of sideline in the current area are used as the starting point and the end point of the current second sideline;
  • the texture sampling ratio corresponding to the starting point of the current first sideline is used as the texture sampling ratio corresponding to the starting point of the current second sideline, and the texture sampling ratio corresponding to the end point of the current first sideline is used as the texture sampling ratio corresponding to the end point of the current second sideline;
  • the distance ratio corresponding to the current second sideline point is calculated; based on the texture sampling ratios corresponding to the starting point of the current second sideline and the end point of the current second sideline, respectively, and the
  • the current area refers to the area currently being processed.
  • the current first edgeline starting point is the starting point of the right side of the road in the current area
  • the current first line end point is the end point of the right side of the road in the current area
  • the current second edgeline starting point is the starting point of the left side of the road in the current area
  • the current second edgeline end point is the end point of the left side of the road in the current area
  • the current second edgeline point is the left edge point currently being processed in the current area
  • the first type edgeline length corresponding to the current area is the length of the right side of the road in the current area
  • the second type edgeline length corresponding to the current area is the length of the left side of the road in the current area.
  • the texture sampling ratio corresponding to the current first sideline starting point is used as the texture sampling ratio corresponding to the current second sideline starting point
  • the texture sampling ratio corresponding to the current first sideline end point is used as the texture sampling ratio corresponding to the current second sideline end point, so that the left and right sideline starting points in a region correspond to the same texture sampling ratio, and the left and right sideline end points correspond to the same texture sampling ratio.
  • the remaining second sideline points belonging to the second type of sideline in the current region are respectively used as the current second sideline points, and the texture sampling ratios corresponding to each current second sideline point are calculated.
  • the distance between the current second sideline point in the current region and the current second sideline starting point and the current second sideline end point is calculated, and the ratio of the two distances is calculated to obtain the distance ratio corresponding to the current second sideline point.
  • the distance ratio can indicate the position of the current second sideline point on the second sideline of the current region. Furthermore, based on the texture sampling ratios corresponding to the current second sideline starting point and the current second sideline end point, and the distance ratio corresponding to the current second sideline point, the initial sampling ratio corresponding to the current second sideline point is obtained.
  • the difference between the texture sampling ratios corresponding to the current second sideline starting point and the current second sideline end point can be calculated to obtain the maximum ratio change, and the sampling ratio change corresponding to the current second sideline point can be obtained by multiplying the maximum ratio change and the distance ratio.
  • the initial sampling ratio corresponding to the current second sideline point is obtained based on the texture sampling ratio corresponding to the current second sideline starting point and the sampling ratio change.
  • the initial sampling ratio is a sampling ratio determined in the texture sampling ratio interval of the second sideline of the region based on the sideline position of the current second sideline starting point on the second sideline of the region.
  • the initial sampling ratio corresponding to the current second sideline point is adjusted based on the first type sideline length and the second type sideline length corresponding to the current region to obtain the texture sampling ratio corresponding to the current second sideline point.
  • the length ratio of the second sideline length of the road and the first sideline length of the road can be calculated, and the texture sampling ratio can be obtained by fusing the initial sampling ratio and the length ratio.
  • the calculation process of proportional alignment is described by taking region 1, the first type of edgeline as the right side line of the road, and the second type of edgeline as the left side line of the road as an example.
  • the cumulative distance ADist of each point R1, R2, R3, and RS1 from the starting point of the right side line is calculated respectively.
  • ADist(i) ADist(i-1)+Dist(i,i-1)
  • ADist(i) represents the cumulative distance of point i from the starting point of the right side line.
  • Dist(i,i-1) represents the distance between the i-th point and the i-1-th point.
  • the texture sampling ratios corresponding to the starting point L1 and the end point LS1 of the region are set to be equal to Ratio(R1) and Ratio(RS1), respectively.
  • the texture sampling ratio corresponding to the current first sideline starting point is used as the texture sampling ratio corresponding to the current second sideline starting point
  • the texture sampling ratio corresponding to the current first sideline end point is used as the texture sampling ratio corresponding to the current second sideline end point, so that the ratios of the left and right sideline starting points and left and right sideline end points of the region are aligned.
  • the distance ratio corresponding to the current second sideline point is calculated; based on the texture sampling ratios corresponding to the current second sideline starting point and the current second sideline end point, respectively, and the distance ratio corresponding to the current second sideline point, the initial sampling ratio corresponding to the current second sideline point is obtained; based on the length of the left side line of the road and the length of the right side line of the road corresponding to the current region, the initial sampling ratio corresponding to the current second sideline point is adjusted to obtain the texture sampling ratio corresponding to the current second sideline point, and finally the ratio alignment of other left and right sideline points in the region is achieved.
  • the road condition display method and road condition processing method of the present application can be applied to navigation scenarios for lane-level maps.
  • the server's route calculation service returns the navigation route from the starting point to the end point to the client.
  • the navigation route is a trajectory line composed of a series of spatial geometric coordinate points.
  • the existing ordinary map expresses the navigation route by generating a regular surface expression with a certain width based on the trajectory line.
  • the client adds texture information representing different road conditions to the regular surface based on the congested road condition information provided by the server's road condition service to express the road condition information.
  • the route calculation service returns a more refined and irregular navigation route, a new road condition implementation solution for irregular navigation routes is required, and a smooth transition effect between road conditions needs to be achieved.
  • the road condition display method and road condition processing method of the present application achieve smooth alignment of road condition effects by dividing the irregular road condition surface area and aligning the proportions, and achieve a natural transition of different road condition effects through precise texture sampling, which can well solve the problem of excessive filling of different road conditions on irregular surfaces.
  • the solution is universal, efficient, and can be quickly applied.
  • the traffic condition display method and traffic condition processing method of the present application include the following contents:
  • the data provided by the comprehensive road calculation service and the road condition service can be used to obtain the two side lines on the left and right sides of the road condition surface formed by spatial geometric points, as well as a lane center line with smooth curvature between the road condition surfaces.
  • the road conditions in different areas are represented by the length ratio interval range of the right side line.
  • the range [0, 0.5, unobstructed] means that the area represented by the right side line from the starting point to 50% of the entire length is green and unobstructed.
  • the road surface is divided. Through simple road surface division, it is ensured that the areas formed by different road surfaces are flat and aligned, and finally the left-right alignment of the color effect of the entire road surface is achieved.
  • equidistant sampling is performed on the center line of the lane, and the intersection with the left and right side lines is found along a straight line in a certain direction through the sampling point. The direction is selected from the direction of the angle bisector formed by the sampling point and the adjacent points before and after the center line. The intersection of adjacent sampling points and the left and right side lines divides the road surface into several areas.
  • the texture sampling ratios corresponding to the area starting point L1 and the end point LS1 equal to Ratio(R1) and Ratio(RS1), respectively.
  • the left and right edges of area 1 are aligned according to the right edge. Similarly, the rest of the areas can be processed in the same way.
  • the road condition surface texture information is constructed.
  • the traffic condition texture is dynamically generated according to the following traffic condition sampling texture.
  • Sample(0) no traffic
  • Sample(0.25) smooth
  • Sample(0.5) slow traffic
  • Sample(0.75) congestion
  • Sample(1) severe congestion
  • Sample(i) represents the traffic condition information represented by the color obtained from the sampling texture
  • i represents the percentage position of the sampling texture
  • the area between adjacent traffic conditions represents the transition between traffic conditions.
  • the color information of the constructed road condition surface texture is recorded using a 1-row n-column array, and the number of columns n can be selected according to the length of the road condition surface.
  • the color information in the corresponding array range is Sample(0.25)
  • the color information contained in road condition 2 ranges from n*a to n columns
  • the color information in the corresponding array range is Sample(0.75).
  • the road texture construction method can be applied to any number of road condition information. After processing all road conditions, the initial data with different road conditions are obtained. The texture information of the road conditions is displayed, but there is no smooth gradient transition effect between the road conditions.
  • a gradual transition of the road condition surface is performed.
  • a gradual transition of the road condition color is required between the i-th road condition (a, b, road condition i).
  • the color boundary position is n*b.
  • the gradient coverage range is from n*b-radius to n*b+radius.
  • the texture sampling position of position j i.e. Loc(j)
  • Loc(i) represents the relative position of road condition i in the sampled texture (expressed as a percentage).
  • len(i,i+1) value*span(i,i+1).
  • span(i,i+1) represents the span between road condition i and road condition i+1.
  • the span between adjacent road conditions in the sampled texture is 1. value represents the maximum range of road condition gradient with a span of 1, and it is guaranteed not to exceed the gradient range of the span of the sampled texture.
  • the texture color information for road conditions i and road conditions i+1 is: n*a to n*b-radius in the array corresponds to Sample(Loc(i)), n*b+radius to n*c in the array corresponds to Sample(Loc(i+1)), and the j-th column within n*b-radius to n*b+radius in the array corresponds to Sample(Loc(j)).
  • Each area is triangulated separately.
  • Area 1 is triangulated as shown in FIG13C , and other areas are triangulated in the same way.
  • Triangulation is a common processing method in rendering technology.
  • the triangulated data, the scale information of each vertex obtained by aligning the scale of the road surface, and the texture color information generated by the construction are uploaded to the GPU, where the color of each vertex is sampled in the texture color information through the scale information, and the rendering technology such as OpenGL can be used to realize the drawing of the gradient road surface.
  • the high-precision positioning and guidance requirements put forward higher requirements for traditional road condition guidance.
  • the guidance surface will appear irregular in shape and requires a better transition effect between road conditions.
  • the lane-level road condition surface generated by the method of the present application is refined to the lane, and the shape is also irregular, which has a better guiding effect.
  • there is also a smooth gradient effect between road conditions which greatly improves the visual effect of the product and makes the display of road condition information more in line with the real road scene, thereby improving the accuracy of the road condition display and the accuracy of navigation.
  • the user can use the navigation application on the terminal for travel navigation.
  • the user can enter the destination in the search bar to view the geographical location of any place.
  • the geographical location of A Mall and the "Route” control can be displayed on the interface.
  • the "Route” control is used to start the route planning function. After the user clicks the "Route” control, referring to (c) in Figure 14, the navigation route from the starting point (the current location of the terminal) to the destination (A Mall) and the "Start Navigation" control can be displayed on the interface.
  • the user can click the "Start Navigation" control to enter the three-dimensional navigation screen.
  • the three-dimensional navigation screen displays the gradient road condition surface corresponding to the section of the road that the user is currently entering on the target navigation route.
  • the interface can display the synchronously moving three-dimensional navigation screen in real time.
  • steps in the flowcharts involved in the above-mentioned embodiments can include multiple steps or multiple stages, and these steps or stages are not necessarily executed at the same time, but can be executed at different times, and the execution order of these steps or stages is not necessarily carried out in sequence, but can be executed in turn or alternately with other steps or at least a part of the steps or stages in other steps.
  • the embodiment of the present application also provides a road condition display device for implementing the road condition display method involved above.
  • the implementation scheme for solving the problem provided by the device is similar to the implementation scheme recorded in the above method, so the specific limitations of one or more road condition display device embodiments provided below can be referred to the above description of The limitations of the road condition display method will not be elaborated here.
  • a road condition display device including: an initial navigation screen display module 1502 and a target navigation screen display module 1504, wherein:
  • the initial navigation screen display module 1502 is used to display the initial navigation screen and display the target navigation route on the initial navigation screen.
  • the target navigation screen display module 1504 is used to display the target navigation screen in response to a navigation triggering event for the target navigation route, and to display the gradually changing road condition surface corresponding to the current section in the target navigation route on the target navigation screen.
  • the gradual road condition surface is used to indicate the process of the current road section changing from the first road condition to the second road condition;
  • the gradual road condition surface includes a first road condition texture corresponding to the first road condition, a second road condition texture corresponding to the second road condition, and a gradual road condition texture that gradually changes from the first road condition texture to the second road condition texture, and the road condition transition range corresponding to the gradual road condition texture is determined by the road condition textures and road condition coverage range corresponding to the first road condition and the second road condition.
  • the target navigation route is used to instruct the navigation object to perform travel navigation according to the target navigation route
  • the initial navigation screen includes a navigation start control
  • the navigation start control is used to respond to a navigation trigger event.
  • the target navigation screen display module 1504 is also used for:
  • the target navigation screen is displayed, and the gradient road condition surface corresponding to the current section to be entered by the navigation object is displayed on the target navigation screen;
  • the current section is a section determined from the target navigation route based on the current positioning position of the navigation object, and the target navigation screen is a three-dimensional navigation screen determined by the current navigation perspective corresponding to the navigation object at the current positioning position of the navigation object.
  • the target navigation screen display module 1504 is further used to:
  • the gradually changing road condition surfaces corresponding to the various road sections that the navigation object is to enter in sequence on the target navigation route are displayed in order on the target navigation screen that changes synchronously with the movement of the navigation object.
  • the target navigation screen display module 1504 is further used to:
  • a reference navigation screen is displayed, and the gradient road condition surface corresponding to the target section is displayed on the reference navigation screen;
  • the reference navigation screen is a three-dimensional navigation screen determined by a preset navigation perspective at the section positioning position where the target section is located.
  • the initial navigation screen display module 1502 is further used to:
  • the global road condition surface corresponding to the target navigation route is displayed on the initial navigation screen; the global road condition surface is used to indicate various road conditions involved in the target navigation route, and the global road condition surface includes initial road condition textures corresponding to various road conditions.
  • the target navigation screen display module 1504 is further used to:
  • the gradient road condition surface is refreshed and displayed as an updated road condition surface; the updated road condition surface is used to indicate the updated road condition of the current road section.
  • the target navigation screen display module 1504 is further used to:
  • a first texture color corresponding to a first road condition is displayed in a starting area of a current road section; a transition texture color gradually changing from the first texture color to a second texture color is displayed between a starting area and an ending area of the current road section; the transition texture color includes a dynamic number of gradient texture colors, and the number of gradient texture colors is determined based on a road condition transition range; a second texture color corresponding to a second road condition is displayed in an ending area of the current road section.
  • the first road condition texture and the second road condition texture are used to distinguish different road conditions
  • the gradient road condition texture is used to reflect the change process between different road conditions.
  • the road condition coverage range and the road condition transition range can determine the road condition texture of different road conditions and the coverage range of the gradient road condition texture.
  • the gradient road condition surface generated can achieve a more detailed display of road condition information and a smooth gradient effect between different road conditions, so that the display of road condition information is more in line with the real road scene, thereby improving the accuracy of road condition display and improving the accuracy of navigation.
  • a road condition processing device including: a road condition data acquisition module 1602, a road condition transition range determination module 1604, a gradual road condition texture determination module 1506 and a road section texture data determination module 1608, wherein:
  • the road condition data acquisition module 1602 is used to obtain the initial road condition texture and road condition coverage respectively corresponding to the first road condition and the second road condition involved in the current road section.
  • the road condition transition range determination module 1604 is used to determine the road condition transition range between the first road condition and the second road condition based on the initial road condition textures and road condition coverage ranges corresponding to the first road condition and the second road condition respectively.
  • the gradual road condition texture determination module 1606 is used to gradually adjust the road condition texture from the initial road condition texture corresponding to the first road condition to the initial road condition texture corresponding to the second road condition, so as to obtain the gradual road condition texture corresponding to the road condition transition range.
  • the road section texture data determination module 1608 is used to obtain the road section texture data corresponding to the current road section based on the initial road condition texture and the corresponding road condition coverage range, the gradient road condition texture and the corresponding road condition transition range; the road section texture data is used to generate the gradient road condition surface corresponding to the current road section, and the gradient road condition surface is used to indicate the process of the current road section changing from the first road condition to the second road condition.
  • the road condition transition range determination module 1604 is further used to:
  • the gradient road texture determination module 1606 is further configured to:
  • Each position point included in the road condition transition range is taken as a target position point; based on the distance between the target position point and the starting position point of the road condition transition range, the change in road condition texture of the target position point relative to the starting position point is determined; based on the initial road condition texture corresponding to the starting position point and the change in road condition texture of the target position point relative to the starting position point, the target road condition texture corresponding to the target position point is obtained; based on the target road condition textures corresponding to each position point, the gradient road condition texture corresponding to the road condition transition range is obtained.
  • the road condition processing device further includes:
  • the texture sampling ratio determination module is used to obtain the edge point position of each road edge point corresponding to the current road section, and determine the texture sampling ratio corresponding to the road edge point based on the edge point position of the road edge point.
  • a target road condition texture determination module is used to perform texture sampling in the road section texture data based on the texture sampling ratio corresponding to the road edge point, and obtain the target road condition texture corresponding to each road edge point;
  • the gradient road surface generation module is used to generate a gradient road surface based on the target road texture and edge point position corresponding to each road edge point.
  • the texture sampling ratio determination module is further configured to:
  • the left sideline and the right sideline of the road in the current road section are divided into first-type sidelines and second-type sidelines; based on the cumulative distances of the road sideline points on each first-type sideline from the starting point of the road sideline, the length ratio of each cumulative distance on the first-type sideline is calculated to obtain the texture sampling ratios corresponding to each road sideline point on the first-type sideline; based on the texture sampling ratios and sideline point positions corresponding to the road sideline points on the first-type sideline and the sideline point positions corresponding to the left sideline points on the second-type sideline, the road sideline points on the second-type sideline are proportionally aligned to obtain the texture sampling ratios corresponding to each road sideline point on the second-type sideline.
  • the texture sampling ratio determination module is further configured to:
  • Obtain a road centerline corresponding to the current road section ; divide the current road section into regions based on the road centerline to obtain at least two regions; proportionally align the road edgeline points belonging to the second type of edgeline in the region based on the texture sampling ratios and edge point positions corresponding to the road edgeline points belonging to the first type of edgeline in the same region and the edge point positions corresponding to the road edgeline points belonging to the second type of edgeline to obtain the texture sampling ratios corresponding to the respective road edgeline points on the second type of edgeline.
  • the texture sampling ratio determination module is further configured to:
  • the center line of the road is sampled to obtain a plurality of center sampling points; the direction of the segmentation line is determined based on the center sampling point and the corresponding adjacent sampling points to obtain the direction of the segmentation line corresponding to each center sampling point; the region segmentation line is generated along the center sampling point in the direction of the segmentation line to obtain the region segmentation line corresponding to each center sampling point; based on each region segmentation line, the current road section is divided into regions to obtain at least two regions.
  • the texture sampling ratio determination module is further used to perform equidistant sampling on the road centerline to obtain multiple center sampling points.
  • the texture sampling ratio determination module is further used to perform dynamic sampling on the road centerline according to the curvature of the road centerline to obtain multiple center sampling points.
  • the texture sampling ratio determination module is further configured to:
  • the starting point and the end point of the road sideline belonging to the first type of sideline in the current area are used as the starting point and the end point of the current first sideline
  • the starting point and the end point of the road sideline belonging to the second type of sideline in the current area are used as the starting point and the end point of the current second sideline
  • the texture sampling ratio corresponding to the starting point of the current first sideline is used as the texture sampling ratio corresponding to the starting point of the current second sideline
  • the texture sampling ratio corresponding to the end point of the current first sideline is used as the texture sampling ratio corresponding to the end point of the current second sideline
  • the current second sideline point is calculated.
  • Corresponding distance ratio based on the texture sampling ratios corresponding to the current second edge point starting point and the current second edge point end point, respectively, and the distance ratio corresponding to the current second edge point, obtain the initial sampling ratio corresponding to the current second edge point; based on the first type edge length and the second type edge length corresponding to the current area, adjust the initial sampling ratio corresponding to the current second edge point to obtain the texture sampling ratio corresponding to the current second edge point.
  • the above-mentioned road condition processing device can be used to generate a gradient road condition surface based on the road section texture data obtained based on the initial road condition texture, the gradient road condition texture, the road condition coverage range and the road condition transition range.
  • the initial road condition texture is used to distinguish different road conditions
  • the gradient road condition texture is used to reflect the change process between different road conditions.
  • the road condition coverage range and the road condition transition range can determine the coverage range of the initial road condition texture and the gradient road condition texture.
  • the gradient road condition surface thus generated can achieve a more detailed display of road condition information and a smooth gradient effect between different road conditions, so that the display of road condition information is more in line with the real road scene, thereby improving the accuracy of road condition display and improving the accuracy of navigation.
  • Each module in the above-mentioned road condition display device and road condition processing device can be implemented in whole or in part by software, hardware and their combination.
  • Each of the above-mentioned modules can be embedded in or independent of the processor in the computer device in the form of hardware, or can be stored in the memory of the computer device in the form of software, so that the processor can call and execute the corresponding operations of each of the above modules.
  • a computer device which may be a server, and its internal structure diagram may be shown in FIG17.
  • the computer device includes a processor, a memory, an input/output interface (Input/Output, referred to as I/O) and a communication interface.
  • the processor, the memory and the input/output interface are connected via a system bus, and the communication interface is connected to the system bus via the input/output interface.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system, a computer-readable instruction and a database.
  • the internal memory provides an environment for the operation of the operating system and the computer-readable instructions in the non-volatile storage medium.
  • the database of the computer device is used to store data such as road condition texture and navigation perspective.
  • the input/output interface of the computer device is used to exchange information between the processor and an external device.
  • the communication interface of the computer device is used to communicate with an external terminal via a network connection.
  • a computer device which may be a terminal, and its internal structure diagram may be shown in FIG18.
  • the computer device includes a processor, a memory, an input/output interface, a communication interface, a display unit, and an input device.
  • the processor, the memory, and the input/output interface are connected via a system bus, and the communication interface, the display unit, and the input device are connected to the system bus via the input/output interface.
  • the processor of the computer device is used to provide computing and control capabilities.
  • the memory of the computer device includes a non-volatile storage medium and an internal memory.
  • the non-volatile storage medium stores an operating system and computer-readable instructions.
  • the internal memory provides an environment for the operation of the operating system and computer-readable instructions in the non-volatile storage medium.
  • the input/output interface of the computer device is used to exchange information between the processor and an external device.
  • the communication interface of the computer device is used to communicate with an external terminal in a wired or wireless manner, and the wireless manner can be implemented through WIFI, a mobile cellular network, NFC (near field communication) or other technologies.
  • a road condition display method and a road condition processing method are implemented.
  • the display unit of the computer device is used to form a visually visible image, and can be a display screen, a projection device or a virtual reality imaging device.
  • the display screen can be a liquid crystal display screen or an electronic ink display screen.
  • the input device of the computer device can be a touch layer covered on the display screen, or a button, trackball or touchpad set on the computer device casing, or an external keyboard, touchpad or mouse, etc.
  • FIGS 17 and 18 are merely block diagrams of partial structures related to the scheme of the present application, and do not constitute a limitation on the computer device to which the scheme of the present application is applied.
  • the specific computer device may include more or fewer components than shown in the figures, or combine certain components, or have a different arrangement of components.
  • a computer device including a memory and one or more processors, wherein the memory stores computer-readable instructions, and the one or more processors implement the steps in the above-mentioned method embodiments when executing the computer-readable instructions.
  • a computer-readable storage medium which stores computer-readable instructions.
  • the steps in the above-mentioned method embodiments are implemented.
  • a computer program product or computer program comprising computer readable instructions stored in a computer readable storage medium.
  • One or more processors of a computer device read the computer readable instructions from the computer readable storage medium, and one or more processors The computer executes the computer-readable instructions so that the computer device executes the steps in the above-mentioned method embodiments.
  • user information including but not limited to user device information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • any reference to the memory, database or other medium used in the embodiments provided in this application can include at least one of non-volatile and volatile memory.
  • Non-volatile memory can include read-only memory (ROM), magnetic tape, floppy disk, flash memory, optical memory, high-density embedded non-volatile memory, resistive random access memory (ReRAM), magnetoresistive random access memory (MRAM), ferroelectric random access memory (FRAM), phase change memory (PCM), graphene memory, etc.
  • Volatile memory can include random access memory (RAM) or external cache memory, etc.
  • RAM can be in various forms, such as static random access memory (SRAM) or dynamic random access memory (DRAM).
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • the database involved in each embodiment provided in this application may include at least one of a relational database and a non-relational database.
  • Non-relational databases may include distributed databases based on blockchains, etc., but are not limited to this.
  • the processor involved in each embodiment provided in this application may be a general-purpose processor, a central processing unit, a graphics processor, a digital signal processor, a programmable logic unit, a data processing logic unit based on quantum computing, etc., but are not limited to this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Navigation (AREA)

Abstract

一种路况展示方法、路况处理方法、装置、计算机设备、存储介质和计算机程序产品。可应用于地图领域、交通领域、自动驾驶领域。方法包括:展示初始导航画面,在初始导航画面上显示目标导航路线(S202);响应于针对目标导航路线的导航触发事件,展示目标导航画面,在目标导航画面上显示目标导航路线中的当前路段所对应的渐变路况面(S204);其中,渐变路况面用于指示当前路段从第一路况变化至第二路况的过程;渐变路况面包括第一路况对应的第一路况纹理、第二路况对应的第二路况纹理、从第一路况纹理渐变至第二路况纹理的渐变路况纹理,渐变路况纹理对应的路况过渡范围是通过第一路况和第二路况对应的路况纹理和路况覆盖范围确定的。

Description

路况展示方法、路况处理方法、装置和计算机设备
本申请要求于2022年09月30日提交中国专利局,申请号为202211211207.4,申请名称为“路况展示方法、路况处理方法、装置和计算机设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,特别是涉及一种路况展示方法、路况处理方法、装置、计算机设备、存储介质和计算机程序产品。
背景技术
随着计算机技术的发展,出现了导航技术。导航技术用于提供导航定位服务,已经广泛应用于日常生活中,例如,应用于网约车应用软件、导航应用软件、地图应用软件等,导航技术极大地方便了人们出行。
传统技术中,在导航时,通常只是在导航画面上简单机械地标注出道路的路况信息,路况信息的展示较粗糙,不够精准。
发明内容
本申请实施例提供了一种路况展示方法、路况处理方法、装置、计算机设备、计算机可读存储介质和计算机程序产品。
本申请提供了一种路况展示方法,由终端执行,所述方法包括:
展示初始导航画面,在所述初始导航画面上显示目标导航路线;及
响应于针对所述目标导航路线的导航触发事件,展示目标导航画面,在所述目标导航画面上显示所述目标导航路线中的当前路段所对应的渐变路况面;
其中,所述渐变路况面用于指示所述当前路段从第一路况变化至第二路况的过程;所述渐变路况面包括所述第一路况对应的第一路况纹理、所述第二路况对应的第二路况纹理、从所述第一路况纹理渐变至所述第二路况纹理的渐变路况纹理,所述渐变路况纹理对应的路况过渡范围是通过所述第一路况和所述第二路况对应的路况纹理和路况覆盖范围确定的。
本申请还提供了一种路况展示装置。所述装置包括:
初始导航画面显示模块,用于展示初始导航画面,在所述初始导航画面上显示目标导航路线;及
目标导航画面显示模块,用于响应于针对所述目标导航路线的导航触发事件,展示目标导航画面,在所述目标导航画面上显示所述目标导航路线中的当前路段所对应的渐变路况面;
其中,所述渐变路况面用于指示所述当前路段从第一路况变化至第二路况的过程;所述渐变路况面包括所述第一路况对应的第一路况纹理、所述第二路况对应的第二路况纹理、从所述第一路况纹理渐变至所述第二路况纹理的渐变路况纹理,所述渐变路况纹理对应的路况过渡范围是通过所述第一路况和所述第二路况对应的路况纹理和路况覆盖范围确定的。
一种计算机设备,包括存储器和一个或多个处理器,所述存储器存储有计算机可读指令,所述一个或多个处理器执行所述计算机可读指令时实现上述路况展示方法所述的步骤。
一种计算机可读存储介质,其上存储有计算机可读指令,所述计算机可读指令被一个或多个处理器执行时实现上述路况展示方法所述的步骤。
一种计算机程序产品,包括计算机可读指令,所述计算机可读指令被一个或多个处理器执行时实现上述路况展示方法所述的步骤。
本申请提供了一种路况处理方法,由计算机设备执行,所述方法包括:
获取当前路段涉及的第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围;
基于所述第一路况和所述第二路况分别对应的初始路况纹理和路况覆盖范围,确定所述第一路况和所述第二路况之间的路况过渡范围;
将路况纹理按照从所述第一路况对应的初始路况纹理渐变调整至所述第二路况对应的初始路况纹理,得到所述路况过渡范围对应的渐变路况纹理;及
基于所述初始路况纹理和对应的路况覆盖范围、所述渐变路况纹理和对应的路况过渡 范围,得到所述当前路段对应的路段纹理数据;所述路段纹理数据用于生成所述当前路段对应的渐变路况面,所述渐变路况面用于指示所述当前路段从所述第一路况变化至所述第二路况的过程。
本申请还提供了一种路况处理装置。所述装置包括:
路况数据获取模块,用于获取当前路段涉及的第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围;
路况过渡范围确定模块,用于基于所述第一路况和所述第二路况分别对应的初始路况纹理和路况覆盖范围,确定所述第一路况和所述第二路况之间的路况过渡范围;
渐变路况纹理确定模块,用于将路况纹理按照从所述第一路况对应的初始路况纹理渐变调整至所述第二路况对应的初始路况纹理,得到所述路况过渡范围对应的渐变路况纹理;及
路段纹理数据确定模块,用于基于所述初始路况纹理和对应的路况覆盖范围、所述渐变路况纹理和对应的路况过渡范围,得到所述当前路段对应的路段纹理数据;所述路段纹理数据用于生成所述当前路段对应的渐变路况面,所述渐变路况面用于指示所述当前路段从所述第一路况变化至所述第二路况的过程。
一种计算机设备,包括存储器和一个或多个处理器,所述存储器存储有计算机可读指令,所述一个或多个处理器执行所述计算机可读指令时实现上述路况处理方法所述的步骤。
一种计算机可读存储介质,其上存储有计算机可读指令,所述计算机可读指令被一个或多个处理器执行时实现上述路况处理方法所述的步骤。
一种计算机程序产品,包括计算机可读指令,所述计算机可读指令被一个或多个处理器执行时实现上述路况处理方法所述的步骤。
本申请的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一个实施例中路况展示方法和路况处理方法的应用环境图;
图2为一个实施例中路况展示方法的流程示意图;
图3为一个实施例中初始导航画面的示意图;
图4为一个实施例中目标导航画面的示意图;
图5为另一个实施例中目标导航画面的示意图;
图6为另一个实施例中目标导航画面的示意图;
图7为另一个实施例中初始导航画面的示意图;
图8为一个实施例中路况处理方法的流程示意图;
图9为一个实施例中候选路况纹理集合的示意图;
图10为一个实施例中生成渐变路况面的流程示意图;
图11A为一个实施例中道路边线和道路中心线的示意图;
图11B为一个实施例中区域划分的示意图;
图12为一个实施例中比例对齐的示意图;
图13A为一个实施例中路况面的示意图;
图13B为一个实施例中路况面划分的示意图;
图13C为一个实施例中三角化处理的示意图;
图14为一个实施例中出行导航的示意图;
图15为一个实施例中路况展示装置的结构框图;
图16为一个实施例中路况处理装置的结构框图;
图17为一个实施例中计算机设备的内部结构图;
图18为另一个实施例中计算机设备的内部结构图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
可以理解,本申请中的触发操作包括但不限于触摸操作、光标操作、按键操作、语音操作和动作操作等,比如,触摸操作可以是触摸按压操作或者触摸点击操作或者触摸滑动操作等。光标操作可以是控制光标进行点击的操作或者控制光标进行按压的操作或者控制光标进行滑动的操作。按键操作可以是虚拟按键操作或者实体按键操作等。语音操作是指通过语音进行控制的操作。动作操作是指通过用户动作进行控制的操作,比如,手部动作,头部动作等等。
本发明实施例可应用于各种场景,包括但不限于云技术、人工智能、智慧交通、辅助驾驶、导航等。
本申请实施例提供的路况展示方法和路况处理方法,可以应用于如图1所示的应用环境中。其中,终端102通过网络与服务器104进行通信。数据存储系统可以存储服务器104需要处理的数据。数据存储系统可以集成在服务器104上,也可以放在云上或其他服务器上。终端102可以但不限于是各种台式计算机、笔记本电脑、智能手机、平板电脑、智能语音交互设备、物联网设备和便携式可穿戴设备,物联网设备可为智能音箱、智能电视、智能空调、智能车载设备、飞行器等。便携式可穿戴设备可为智能手表、智能手环、头戴设备等。服务器104可以用独立的服务器或者是多个服务器组成的服务器集群或者云服务器来实现。
终端102展示初始导航画面,在初始导航画面上显示目标导航路线。终端102响应于针对目标导航路线的导航触发事件,展示目标导航画面,在目标导航画面上显示目标导航路线中的当前路段所对应的渐变路况面。其中,渐变路况面用于指示当前路段从第一路况变化至第二路况的过程;渐变路况面包括第一路况对应的第一路况纹理、第二路况对应的第二路况纹理、从第一路况纹理渐变至第二路况纹理的渐变路况纹理,渐变路况纹理对应的路况过渡范围是通过第一路况和第二路况对应的路况纹理和路况覆盖范围确定的。这样,若触发针对目标导航路线的导航,则在导航画面上通过显示导航路线中当前路段对应的渐变路况面来展示当前路段的路况信息,渐变路况面可以反映当前路段从第一路况逐渐变化至第二路况的过程,使得路况信息的展示更加符合真实的道路场景,从而提高路况展示的精准度。第一路况纹理和第二路况纹理用于区分不同的路况,渐变路况纹理用于反映不同路况之间的变化过程,路况覆盖范围和路况过渡范围可以确定不同路况的路况纹理和渐变路况纹理的覆盖范围,从而基于这些数据生成的渐变路况面可以实现不同路况之间的平滑渐变效果,生成的渐变路况面可以反映当前路段从第一路况逐渐变化至第二路况的过程,使得路况信息的展示更加符合真实的道路场景,从而提高路况展示的精准度,提高导航的准确性。
服务器获取当前路段涉及的第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围,基于第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围,确定第一路况和第二路况之间的路况过渡范围。服务器将路况纹理按照从第一路况对应的初始路况纹理渐变调整至第二路况对应的初始路况纹理,得到路况过渡范围对应的渐变路况纹理。服务器基于初始路况纹理和对应的路况覆盖范围、渐变路况纹理和对应的路况过渡范围,得到当前路段对应的路段纹理数据;路段纹理数据用于生成当前路段对应的渐变路况面,渐变路况面用于指示当前路段从第一路况变化至第二路况的过程。服务器可以将路段纹理数据发送至终端,终端基于路段纹理数据生成渐变路况面。这样,基于初始路况纹理、渐变路况纹理、路况覆盖范围和路况过渡范围得到的路段纹理数据可以用于生成渐变路况面,初始路况纹理用于区分不同的路况,渐变路况纹理用于反映不同路况之间的变化过程,路况覆盖范围和路况过渡范围可以确定初始路况纹理和渐变路况纹理的覆盖范围,从而生成的渐变路况面可以实现不同路况之间的平滑渐变效果,生成的渐变路况面可以反映当前路段从第一路况逐渐变化至第二路况的过程,使得路况信息的展示更加符合真实的道路场景,从而提高路况展示的精准度,提高导航的准确性。
可以理解,终端和服务器均可单独用于执行本申请实施例中提供的路况处理方法。终端和服务器也可协同用于执行本申请实施例中提供的路况展示方法和路况处理方法。
在一个实施例中,如图2所示,提供了一种路况展示方法,以该方法应用于终端来举例说明。参考图2,路况展示方法包括以下步骤:
步骤S202,展示初始导航画面,在初始导航画面上显示目标导航路线。
其中,导航画面是指在导航时展示的画面。初始导航画面是用于展示目标导航路线的导航画面。
导航路线是指从起始地到目的地的移动路线。起始地是指导航时的出发地点。起始地可以是终端的当前定位地点,也可以是用户通过终端操作输入或选择的地点。例如,可以是用户在地图应用程序的起始地信息的输入栏中输入的起始地名称所对应的地点;可以是在地图应用程序的起始地确定界面通过地图选点的方式确定的地点;等等。目的地是指导航时的到达地点。目的地可以是用户通过终端操作输入或选择的想要到达的地点。例如,可以是用户在地图应用程序的目的地信息的输入栏中输入的目的地名称所对应的地点;可以是在地图应用程序的目的地确定界面通过地图选点的方式确定的地点;等等。目的地也可以是通过终端向用户推荐的地点。例如,可以是推荐的美食店铺、商场、电影院等场所对应的地点。
目标导航路线是指当前确定的导航路线。目标导航路线可以是用户通过选择操作选择的路线。例如,在确定起始地和目的地后,终端响应于对路线规划功能的启动操作,展示从同一起始地到同一目的地的多个候选导航路线,终端将用户在展示界面上选中的候选导航路线作为目标导航路线。目标导航路线也可以是主动为用户推荐的路线。例如,终端或服务器主动将导航距离最短的导航路线作为目标导航路线;终端或服务器主动将预计导航时间最短的导航路线作为目标导航路线;等等。
具体地,在确定起始地和目的地的情况下,终端可以显示有从起始地至目的地的目标导航路线的初始导航画面,以便用户了解从起始地到目的地的移动路线。
在一个实施例中,终端响应于对目的地的输入操作,显示输入的目的地。终端响应于对路线规划功能的启动操作,展示从终端的定位位置至目的地的至少一个候选导航路线。终端响应于针对候选导航路线中目标导航路线的选择操作,展示显示有目标导航路线的初始导航画面。
在一个实施例中,在确定目标导航路线后,候选导航路线和目标导航路线可以在不同的导航界面中展示,也可以在同一导航界面中展示。若在同一导航界面中进行展示,在初始导航画面上可以将目标导航路线和其他候选导航路线进行区别展示。具体可以在初始导航画面上,将目标导航路线进行强化展示,将其他候选导航路线进行弱化展示。例如,将目标导航路线用深色展示,将其他候选导航路线用浅色展示。进一步的,若用户想要更换目标导航路线,终端可以响应于针对其他候选导航路线的触发操作,更换目标导航路线。初始导航画面可以如图3所示,图3中的302表示起始地,304表示目的地,用黑色填充的路线C为目标导航路线,路线A和路线B为其他候选导航路线。
步骤S204,响应于针对目标导航路线的导航触发事件,展示目标导航画面,在目标导航画面上显示目标导航路线中的当前路段所对应的渐变路况面。
其中,导航触发事件是指启动导航功能的事件。针对目标导航路线的导航触发事件是指启动按照目标导航路线进行导航的事件。当前路段是在目标导航路线中当前待进入的路段。当前路段是基于终端当前的定位位置从目标导航路线上确定的路段。若目标导航路线的起始地是基于终端当前的定位位置确定的,当前路段可以认为是目标导航路线中的起始路段。
可以通过作用于初始导航画面的触发操作,来触发针对目标导航路线的导航触发事件。例如,通过作用于目标导航路线的触发操作,来触发针对目标导航路线的导航触发事件;通过作用于初始导航画面中预设区域的触发操作,来触发针对目标导航路线的导航触发事件;通过作用于初始导航画面中预设控件的触发操作,来触发针对目标导航路线的导航触发事件。
响应于导航触发事件展示的目标导航画面,是用于展示目标导航路线中当前路段所对应的渐变路况面。当前路段涉及的路况包括第一路况和第二路况。第一路况和第二路况为相邻且不同的两个路况。路况用于表征道路的拥堵情况。
为了在显示时可以区分不同的路况,可以通过路况纹理来展示路况。不同的路况对应 不同的路况纹理。路况纹理是指附加在道路上的纹理信息,用于从视觉上反映道路的拥堵情况。路况纹理可以是以颜色、线条、图案等至少一种方式呈现的纹理。例如,不同的路况纹理可以具有不同的颜色;不同的路况纹理可以具有不同密度的线条;等等。在一个实施例中,路况纹理为纹理图像,在计算机图形学中,纹理图像用于向屏幕上的道路区域添加视觉特征。
渐变路况面是指在画面中可呈现渐变效果、反映道路上路况变化过程的路面。当前路段对应的渐变路况面用于指示当前路段从第一路况变化至第二路况的过程。渐变路况面通过渐变过渡的路况纹理来形象体现当前路段从第一路况变化至第二路况的过程,能够给用户带来更加符合真实道路场景的路况变化的体验。
当前路段对应的渐变路况面包括第一路况对应的第一路况纹理、第二路况对应的第二路况纹理和从第一路况纹理渐变至第二路况纹理的渐变路况纹理。第一路况对应的第一路况纹理为第一路况对应的初始路况纹理,第二路况对应的第二路况纹理为第二路况对应的初始路况纹理。初始路况纹理是指初始化、固定化的路况纹理,用于在显示时从视觉上直观区分不同的路况。可以预先设置各种路况分别对应的初始路况纹理以区分各种路况,例如,可以用不同的颜色来表示不同的路况,各种路况分别存在对应的纹理色。渐变路况纹理是由多种规律变化的路况纹理组成的路况纹理集合,用于在显示时从视觉上呈现路况之间的渐变过渡效果。例如,若用不同的颜色来表示不同的路况,则初始路况纹理为某一种预设的纹理色,渐变路况纹理包括在预设的不同纹理色之间的至少一种过渡颜色。从第一路况纹理渐变至第二路况纹理的路况纹理包括,由从第一路况纹理规律变化至第二路况纹理的多种路况纹理组成的路况纹理集合。例如,第一路况纹理为绿色,第二路况纹理为红色,第一路况和第二路况之间的路况过渡范围所对应的渐变路况纹理可以包括有序排列的绿色、黄绿色、黄色、橙黄色、橙色、橙红色、红色,有序排列的绿色、黄绿色、黄色、橙黄色、橙色、橙红色、红色可以呈现从绿色逐渐变化至红色的颜色过渡过程。
路况过渡范围是指需要进行路况纹理过渡的路段范围,路况过渡范围用于指示渐变路况纹理在路段上的覆盖范围。第一路况和第二路况之间的路况过渡范围是通过第一路况和第二路况对应的路况纹理和路况覆盖范围确定的过渡范围,也就是,是通过第一路况和第二路况对应的初始路况纹理和路况覆盖范围确定的过渡范围。终端或服务器可以基于第一路况和第二路况在初始路况纹理和路况覆盖范围上的差异,确定路况过渡范围。在确定路况过渡范围时参考不同路况的初始路况纹理,可以使得路况过渡范围随着路况的变化而变化,保障路况过渡显示的灵活性。例如,若不同路况对应的初始路况纹理之间的差异较大,则在路况过渡显示时采用较大的路况过渡范围,在相邻路况的纹理表现差异较大时采用更大的空间来呈现从一种纹理逐渐变化至另一种纹理的过程,可以使得纹理过渡更加自然,提高路况过渡显示的清晰度。在确定路况过渡范围时参考不同路况的路况覆盖范围,有助于保障路况过渡范围不超过单个路况的路段覆盖范围,保障路况过渡显示的可靠性。
在一个实施例中,当前路段对应的渐变路况面是基于当前路段对应的路段纹理数据生成的。路段纹理数据是由第一路况和第二路况分别对应的路况覆盖范围和初始路况纹理、第一路况和第二路况之间的路况过渡范围和对应的渐变路况纹理得到。路段纹理数据可以是基于第一路况和第二路况分别对应的路况覆盖范围、第一路况和第二路况之间的路况过渡范围,将第一路况和第二路况分别对应的初始路况纹理和路况过渡范围所对应的渐变路况纹理进行排列组合得到。也就是,路段纹理数据是由有序排列的初始路况纹理和渐变路况纹理组合得到的。路况覆盖范围是指单个路况对应的路段范围,路况覆盖范围用于指示初始路况纹理在路段上的初始覆盖范围。
可以理解,渐变路况面的具体生成过程还可以参考后续路况处理方法的各个实施例的内容。
具体地,终端检测到作用于初始导航界面的相应触发操作时,触发针对目标导航路线的导航触发事件,响应于该导航触发事件,展示目标导航画面,在目标导航画面上显示目标导航路线中当前路段所对应的渐变路况面。
在一个实施例中,目标导航画面为三维的立体画面,目标导航画面是按照一定的导航视角在三维电子地图中对当前路段所处的道路场景进行投影得到的局部三维电子地图。目标导航画面如图4所示,在目标导航画面中当前路段对应的道路面上的路况纹理是渐变过 渡的。在通过三维建模生成的三维地图中,通过与导航视角匹配的虚拟摄像头进行拍摄可以得到三维的沉浸式导航画面。通过沉浸式的导航画面可以给用户提供沉浸式的导航体验,使得用户感受到更加符合真实道路场景的导航体验。
在一个实施例中,初始导航画面和目标导航画面可以在同一界面中展示,例如,在导航界面的左半部分展示初始导航画面,在导航界面的右半部分展示目标导航画面。若初始导航画面和目标导航画面在同一界面中展示,可以响应于作用于任意导航画面的触发操作,将触发的导航画面独立展示。例如,终端响应用户对目标导航画面的点击操作,将目标导航画面放大展示,使得目标导航画面在导航界面中独立展示。当然,初始导航画面和目标导航画面也可以在不同的界面中展示。例如,在确定目标导航路线后,先展示初始导航画面,在检测到针对目标导航路线中当前路段的触发操作,从初始导航画面跳转到目标导航画面。
上述路况展示方法中,通过展示初始导航画面,在初始导航画面上显示目标导航路线,响应于针对目标导航路线的导航触发事件,展示目标导航画面,在目标导航画面上显示目标导航路线中当前路段所对应的渐变路况面;其中,渐变路况面用于指示当前路段从第一路况变化至第二路况的过程;渐变路况面包括第一路况对应的第一路况纹理、第二路况对应的第二路况纹理、从第一路况纹理渐变至第二路况纹理的渐变路况纹理,渐变路况纹理对应的路况过渡范围是通过第一路况和第二路况对应的路况纹理和路况覆盖范围确定的。这样,若触发针对目标导航路线的导航,则在导航画面上通过显示当前路段对应的渐变路况面来展示当前路段的路况信息,渐变路况面可以反映当前路段从第一路况逐渐变化至第二路况的过程,使得路况信息的展示更加符合真实的道路场景,从而提高路况展示的精准度。第一路况纹理和第二路况纹理用于区分不同的路况,渐变路况纹理用于反映不同路况之间的变化过程,路况覆盖范围和路况过渡范围可以确定不同路况的路况纹理和渐变路况纹理的覆盖范围,从而基于这些数据生成的渐变路况面可以实现不同路况之间的平滑渐变效果,生成的渐变路况面可以反映当前路段从第一路况逐渐变化至第二路况的过程,使得路况信息的展示更加符合真实的道路场景,从而提高路况展示的精准度,提高导航的准确性。
在一个实施例中,目标导航路线用于指示导航对象按照目标导航路线进行出行导航,初始导航画面包括导航启动控件,导航启动控件用于响应导航触发事件。步骤S204,包括:
响应于针对导航启动控件的触发操作,展示目标导航画面,在目标导航画面上显示导航对象待进入的当前路段所对应的渐变路况面;当前路段是基于导航对象当前所处的定位位置,从目标导航路线上确定的路段。目标导航画面是在导航对象所处的定位位置,通过导航对象对应的当前导航视角确定的三维导航画面。
其中,导航对象是被导航的对象,例如,可以是启用导航功能的用户,可以是该用户所驾驶的车辆等。终端将自身的定位位置确定为导航对象所处的定位位置。例如,当用户开车时通过手机进行导航,手机的定位位置即为导航对象所处的定位位置,再例如,当用户通过车载导航装置进行导航时,车辆的定位位置即为导航对象所处的定位位置。
导航启动控件是用于触发启动路线导航功能的控件。路线导航功能是指在导航时实时进行路线引导的功能。通过触发导航启动控件,可以启动从导航对象当前所处的定位位置按照目标导航路线实时引导至导航终点的导航功能。在触发导航启动控件后,可以展示导航对象待进入的当前路段所对应的渐变路况面。当前路段是基于导航对象当前所处的定位位置,从目标导航路线上确定的路段。可以将导航对象当前所处的定位位置作为路段起点,在目标导航路线上确定路段终点,将在目标导航路线上由路段起点和路段终点组成的路段作为当前路段。例如,可以在目标导航路线上沿着路段起点前进预设距离得到路段终点。也可以在导航对象所处的定位位置,通过导航对象对应的当前导航视角在目标导航路线上确定路段终点。在导航对象所处的定位位置通过当前导航视角确定当前导航视野,将目标导航路线上落入当前导航视野内的最远位置作为路段终点,也就是,路段终点为用户在导航时在目标导航画面上可观察到的最远位置,当前路段为用户当前在目标导航画面上最大可观察到的位于目标导航路线上的一段道路。
导航视角是对电子地图进行投影时的参考位置,用于确定导航时的导航视野,用于确定用户在导航时可观察到的道路场景范围。导航对象对应的当前导航视角是指导航对象在 当前使用的导航视角。
三维导航画面是在三维电子地图中按照导航视角进行投影得到的局部三维电子地图。三维导航画面是一种在导航时为用户提供沉浸式感受的三维画面。
具体地,针对目标导航路线的导航触发事件可以通过作用于导航启动控件的选择操作来触发。在确定目标导航路线后,用户可以通过触发导航启动控件来触发启动路线导航功能,通过触发启动路线导航功能来触发展示导航对象在目标导航路线上即将进入的当前路段所对应的三维导航画面,以引导导航对象进行正确行驶。在三维导航画面中同步展示导航对象即刻准备进入的起始路段的渐变路况面,使得用户可以实时了解将要经过的道路场景和详细路况信息。终端响应于用户对初始导航画面中导航启动控件的触发操作,在导航界面中,显示按照导航对象对应的当前导航视角在导航对象所处的定位位置对三维电子地图进行投影所得到的沉浸式导航画面。
目标导航画面可以参考图5,目标导航画面中还可以显示有导航对象的标识502,该标识在电子地图中的位置能够反映导航对象的地理位置。进一步的,目标导航画面中还可以显示有导航路线指引信息,该导航路线指示信息为文字信息或图示信息,例如,导航对象对应的标识包括指示行驶方向的指引箭头,可以参考图5中的502;以导航对象对应的标识为起点,用于指示行驶方向的指引箭头。
上述实施例中,响应于针对导航启动控件的触发操作,在目标导航画面上显示导航对象待进入的当前路段所对应的渐变路况面,可以在导航对象出行导航时向用户展示从目标导航路线的起始路段开始呈现的渐变路况面,辅助导航对象进行出行导航,方便用户在驾驶车辆时查看导航路线上的路况变化过程。目标导航画面是在导航对象所处的定位位置,通过导航对象对应的当前导航视角确定的三维导航画面,能够给用户带来沉浸式的导航画面体验,导航画面更加符合真实的视觉场景,有助于提高导航准确性。
在一个实施例中,路况展示方法还包括:
当导航对象按照目标导航路线运动时,在跟随导航对象的运动同步变化的目标导航画面上,有序显示导航对象在目标导航路线上依次待进入的各个路段分别对应的渐变路况面。
具体地,终端响应于用户对初始导航画面中导航启动控件的触发操作,显示目标导航画面,在目标导航画面中显示导航对象待进入的起始路段对应的渐变路况面。当导航对象按照目标导航路线运动时,通过导航对象对应的当前导航视角确定的目标导航画面可以随着导航对象的运动实时更新,以实时对导航对象进行路线引导。在跟随导航对象的运动同步变化的目标导航画面上,可以依次显示导航对象在目标导航路线上依次进入的各个路段分别对应的渐变路况面,以便在导航对象的行驶过程中,让用户实时了解接下来要经过的路段所在的道路场景和详细路况信息。参考图6,展示的是随着同一导航对象的运动实时变化的目标导航画面中的三个示例图,(a)、(b)和(c)出现的顺序为(a)-(b)-(c)。
举例说明,目标导航路线涉及的路况包括依次相邻的第一路况、第二路况、第三路况和第四路况,第一路况和第二路况对应路段A,第二路况和第三路况对应路段B,第三路况和第四路况对应路段C。在用户点击导航启动控件后,显示目标导航画面,随着用户驾驶车辆的行驶,展示道路场景同步移动的目标导航画面,按照各路段在导航画面对应的导航视野中的出现顺序,依次展示路段A、路段B和路况C分别对应的渐变路况面。
当导航对象按照目标导航路线运动时,在跟随导航对象的运动同步变化的目标导航画面上,可以始终显示路况面。若目标导航路线涉及多个路况,随着导航对象按照目标导航路线进行运动,依次展示各个路况。若当前导航画面上显示的目标导航路线上的路段存在不同的路况,则显示的路况面为渐变路况面,若当前导航画面上显示的目标导航路线上的路段只有一个路况,则显示的路况面包括单个路况对应的初始路况纹理。
上述实施例中,当导航对象按照目标导航路线运动时,跟随导航对象的运动依次实时显示导航对象待进入的各个路段分别对应的渐变路况面,从而实时对导航对象进行路线引导和精准路况信息的展示,有助于提高导航准确性。
在一个实施例中,路况展示方法还包括:
响应于针对目标导航路线的各个路段中目标路段的选择操作,展示参考导航画面,在参考导航画面上显示目标路段对应的渐变路况面;参考导航画面是在目标路段所处的路段定位位置,通过预设导航视角确定的三维导航画面。
其中,参考导航画面是用于展示目标路段对应的渐变路况面的导航画面。目标路段是从目标导航路线的各个路段中选择的任意路段。可以理解,按照目标导航路线涉及的各个路况可以将目标导航路线划分为多个路段,一个路段涉及至少两个相邻的不同路况,将从划分得到的各个路段中选中的路段作为目标路段。
预设的导航视角是指预先设置的、固定的导航视角。预设的导航视角可以是系统默认的导航视角,也可以是用户通过终端操作输入或选择的导航视角。路段定位位置用于定位路段所处的地理位置。
具体地,除了在按照目标导航路线进行路线导航时展示渐变路况面,可以通过作用于目标导航路线中任意路段的选择操作来触发展示渐变路况面。用户可以在目标导航路线涉及的各个路段中进行路段选择来触发展示选中路段对应的三维导航画面,在三维导航画面中展示选中路段对应的渐变路况面,使得用户可以预先了解目标导航路线涉及的任意路段所在的道路场景和详细路况信息。终端响应于用户对目标导航路线涉及的各个路段中目标路段的选择操作,在导航界面中,显示按照预设导航视角在目标路段所处的路段定位位置对三维电子地图进行投影所得到的沉浸式导航画面。
上述实施例中,响应于针对目标导航路线的各个路段中当前路段的选择操作,在目标导航画面上显示当前路段对应的渐变路况面,可以向用户展示选中的当前路段对应的渐变路况面,用户可以便捷选择查看任意路段的路况变化过程。目标导航画面是在当前路段所处的路段定位位置,通过预设导航视角确定的三维导航画面,能够给用户带来沉浸式的导航画面体验,导航画面更加符合真实的视觉场景,有助于提高导航准确性。
在一个实施例中,路况展示方法还包括:
在初始导航画面上显示目标导航路线对应的全局路况面;全局路况面用于指示目标导航路线涉及的各个路况,全局路况面包括各个路况分别对应的初始路况纹理。
其中,全局路况面是指可呈现导航路线涉及的所有路况的几何面。目标导航路线对应的全局路况面用于指示目标导航路线涉及的各个路况。全局路况面包括目标导航路线涉及的各个路况分别对应的初始路况纹理,全局路况面通过初始路况纹理来形象体现导航路线涉及的各个路况,从整体上反映导航路线的路况信息。
具体地,在初始导航画面上显示目标导航路线时,可以显示目标导航路线对应的全局路况面,以便用户了解目标导航路线的整体路况信息。
在一个实施例中,为了提高显示效率,全局路况面涉及的路况纹理可以只包括各个路况分别对应的初始路况纹理。参考图7,在全局路况面中,相邻路况的初始路况纹理直接拼接,不进行纹理过渡。在图7中,不同的颜色表示不同的路况。当然,为了提高显示准确性,全局路况面也可以是目标导航路线涉及的各组相邻路况之间纹理渐变过渡的路况面。
上述实施例中,在初始导航画面上还可以显示目标导航路线对应的全局路况面,以便用户一次性查看目标导航路线涉及的各个路况,提高路况查看效率。
在一个实施例中,路况展示方法还包括:
在当前路段的路况发生变化的情况下,将渐变路况面刷新显示为更新路况面;更新路况面用于指示当前路段更新后的路况。
具体地,路况信息可以是定时更新或实时更新的,第一路况和第二路况对应的初始路况纹理、相应的路况过渡范围和渐变路况纹理可以随着路况信息的更新而更新,相应的,渐变路况面可以随着路况信息的更新而更新。因此,在当前路段的路况发生变化的情况下,终端可以将渐变路况面刷新显示为更新路况面,以保障路况显示的准确性。
在一个实施例中,为了提高响应速度,在确定目标导航路线后,就可以获取目标导航路线涉及的各个路况,计算相邻路况之间的路况过渡范围和对应的渐变路况纹理。后续,在响应于针对目标导航路线的导航触发事件时,直接获取当前路段涉及的第一路况和第二路况对应的初始路况纹理、第一路况和第二路况之间的路况过渡范围所对应的渐变路况纹理来生成当前路段所对应的渐变路况面,从而可以在目标导航画面上快速显示渐变路况面。后续,若检测到当前路段的路况发生变化的情况,则获取当前路段的最新路况的初始路况纹理来生成更新路况面,将渐变路况面刷新显示为更新路况面。
上述实施例中,在当前路段的路况发生变化的情况下,将渐变路况面刷新显示为更新路况面,能够保障展示的路况信息的时效性,始终向用户展示最新的路况信息,提高路况 信息的显示准确性。
在一个实施例中,在目标导航画面上显示目标导航路线中的当前路段所对应的渐变路况面,包括:
在当前路段的起始区域显示第一路况对应的第一纹理色;在当前路段的起始区域和终止区域之间的中间区域,显示从第一纹理色渐变至第二纹理色的过渡纹理色;过渡纹理色包括动态数量的渐变纹理色,渐变纹理色的数量是基于路况过渡范围确定的;在当前路段的终止区域显示第二路况对应的第二纹理色。
其中,路况纹理可以采用颜色来表示,用于表征路况纹理的颜色可以称为纹理色。第一纹理色是指第一路况对应的纹理色,第二纹理色是指第二路况对应的纹理色。过渡纹理色包括从第一纹理色渐变至第二纹理色的多个渐变纹理色,用于在不同颜色之间实现颜色过渡。过渡纹理色包括动态数量的渐变纹理色,渐变纹理色的数量是基于路况过渡范围确定的。可以理解,路况过渡范围越大,过渡纹理色包含的渐变纹理色的数量可以越多。
当前路段的起始区域是指包含当前路段的起始位置的区域。当前路段的终止区域是指包含当前路段的终止位置的区域。中间区域是指在当前路段上,位于当前路段的起始区域和终止区域之间的区域。
具体地,在当前路段上可以分区域展示初始路况纹理和渐变路况纹理,从而在当前路段上呈现从第一路况的初始路况纹理渐变至第二路况的初始路况纹理的显示效果。具体可以是在当前路段的起始区域显示第一路况对应的第一纹理色,以表征当前路段的路况是从第一路况开始的,在当前路段的终止区域显示第二路况对应的第二纹理色,以表征当前路段的路况是从第二路况结束的,在当前路段的起始区域和终止区域之间的中间区域,显示从第一纹理色渐变至第二纹理色的过渡纹理色,以表征当前路段的路况从第一路况逐渐变化至第二路况的。
上述实施例中,在当前路段的起始区域显示第一路况对应的第一纹理色,在当前路段的起始区域和终止区域之间的中间区域,显示从第一纹理色渐变至第二纹理色的过渡纹理色,在当前路段的终止区域显示第二路况对应的第二纹理色。这样,通过不同的颜色来区分不同的路况,通过过渡色来实现路况之间的颜色过渡,通过丰富的颜色来呈现当前路段从第一路况变化至第二路况的过程。过渡纹理色包括动态数量的渐变纹理色,渐变纹理色的数量是基于路况过渡范围确定的,可以保障在各种路况组合的情况下实现自适应的颜色过渡。
在一个实施例中,如图8所示,提供了一种路况展示方法,以该方法应用于计算机设备来举例说明,计算机设备可以是终端或服务器。该方法可以由终端或服务器自身单独执行,也可以通过终端和服务器之间的交互来实现。参考图9,路况展示方法包括以下步骤:
步骤S802,获取当前路段涉及的第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围。
其中,当前路段可以是任意的、包含不同路况的路段。当前路段可以是用户通过终端操作确定的路段,例如,用户通过终端操作输入或选择的路段;用户在通过终端触发路线导航时,基于终端的定位位置从目标导航路线中确定的路段。
初始路况纹理是指初始化、固定化的路况纹理,用于在显示时从视觉上直观区分不同的路况。路况覆盖范围是指单个路况对应的路段范围,用于指示初始路况纹理在路段上的初始覆盖范围。
具体地,计算机设备可以在本地或从其他设备上获取当前路段涉及的第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围,基于第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围来生成当前路段对应的路段纹理数据,该路段纹理数据可以用于生成当前路段对应的渐变路况面。
步骤S804,基于第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围,确定第一路况和第二路况之间的路况过渡范围。
其中,路况过渡范围是指需要进行路况纹理过渡的路段范围,用于指示渐变路况纹理在路段上的覆盖范围。
具体地,计算机设备可以基于第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围,确定第一路况和第二路况之间的路况过渡范围。具体可以基于第一路况和第二路 况在初始路况纹理和路况覆盖范围上的差异,确定第一路况和第二路况之间的路况过渡范围。
在一个实施例中,从第一路况和第二路况分别对应的路况覆盖范围中确定目标覆盖范围,基于第一路况和第二路况分别对应的初始路况纹理确定路况跨度,基于路况跨度对目标覆盖范围进行调整,得到路况过渡范围。具体可以从第一路况和第二路况分别对应的路况覆盖范围中选取覆盖量更小的路况覆盖范围作为目标覆盖范围,基于路况跨度对目标覆盖范围进行范围缩小,得到路况过渡范围。例如,路况过渡范围随着路况跨度的减小而减少,路况跨度越小,用于缩小范围的范围缩小值越大,得到的路况过渡范围越小。可以理解,若路况跨度小,采用相对较小的路况过渡范围就可以有效体现不同路况之间的纹理过渡。
步骤S806,将路况纹理按照从第一路况对应的初始路况纹理渐变调整至第二路况对应的初始路况纹理,得到路况过渡范围对应的渐变路况纹理。
其中,渐变路况纹理是由多种规律变化的路况纹理组成的路况纹理集合,用于在显示时从视觉上呈现路况之间的渐变过渡效果。第一路况和第二路况之间的路况过渡范围对应的渐变路况纹理包括,由从第一路况对应的初始路况纹理规律变化至第二路况对应的初始路况纹理的多种路况纹理组成的路况纹理集合。
具体地,为了实现渐变效果,计算机设备将路况纹理按照从第一路况对应的初始路况纹理渐变调整至第二路况对应的初始路况纹理,得到在第一路况纹理和第二路况纹理之间规律变化的多种路况纹理,将这些规律变化的路况纹理组成路况过渡范围对应的渐变路况纹理,渐变路况纹理可以用于实现从第一路况纹理渐变至第二路况纹理的效果。
步骤S808,基于初始路况纹理和对应的路况覆盖范围、渐变路况纹理和对应的路况过渡范围,得到当前路段对应的路段纹理数据;路段纹理数据用于生成当前路段对应的渐变路况面,渐变路况面用于指示当前路段从第一路况变化至第二路况的过程。
其中,路段纹理数据是指当前路段对应的完整纹理数据,路段纹理数据包括有序排列的第一路况纹理、渐变纹理数据和第二路况纹理,用于呈现从第一路况变化至第二路况的纹理过渡效果。
具体地,计算机设备基于初始路况纹理和对应的路况覆盖范围、渐变路况纹理和对应的路况过渡范围,得到当前路段对应的路段纹理数据。可以将初始路况纹理和渐变路况纹理按照对应的路况覆盖范围和路况过渡范围进行排列组合,得到当前路段对应的路段纹理数据。按照第一路况纹理对应的路况覆盖范围、第二路况纹理对应的路况覆盖范围和渐变纹理数据对应的路况过渡范围之间的顺序,将第一路况纹理、第二路况纹理和渐变纹理数据进行有序组合,得到当前路段对应的路段纹理数据。在路段纹理数据中,第一路况纹理、第二路况纹理和渐变纹理数据分别存在对应的覆盖范围。
路段纹理数据用于生成当前路段对应的渐变路况面。在生成渐变路况面时,可以在道路面上按照路段纹理数据有序添加路况纹理,从而得到渐变路况面。渐变路况面可以在终端上进行展示。
在一个实施例中,可以获取当前路段对应的道路几何数据,基于道路几何数据和路段纹理数据生成渐变路况面。道路几何数据用于表征道路的几何信息,例如,道路的形状、道路的大小等。道路几何数据用于生成道路面。路段纹理数据用于表征道路的路况纹理信息,路段纹理数据用于确定道路面的显示纹理。基于道路几何数据和路段纹理数据可以生成符合道路几何形状的渐变路况面。
在一个实施例中,道路几何数据包括多个用于绘制道路的道路几何点,基于道路几何点在路段中的相对位置,在路段纹理数据中进行纹理采样,得到各个道路几何点分别对应的目标路况纹理,基于各个道路几何点分别对应的目标路况纹理和相对位置生成渐变路况面。
在一个实施例中,基于路况过渡范围,对第一路况和第二路况对应的路况覆盖范围进行调整,得到第一路况和第二路况对应的更新覆盖范围。更新覆盖范围用于指示初始路况纹理在路段上的目标覆盖范围、最终覆盖范围。基于路况过渡范围和更新覆盖范围,将第一路况纹理、第二路况纹理和渐变路况纹理进行排列组合,得到路段纹理数据。
上述路况处理方法,通过获取当前路段涉及的第一路况和第二路况分别对应的初始路 况纹理和路况覆盖范围;基于第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围,确定第一路况和第二路况之间的路况过渡范围;将路况纹理按照从第一路况对应的初始路况纹理渐变调整至第二路况对应的初始路况纹理,得到路况过渡范围对应的渐变路况纹理;基于初始路况纹理和对应的路况覆盖范围、渐变路况纹理和对应的路况过渡范围,得到当前路段对应的路段纹理数据;路段纹理数据用于生成当前路段对应的渐变路况面,渐变路况面用于指示当前路段从第一路况变化至第二路况的过程。这样,基于初始路况纹理、渐变路况纹理、路况覆盖范围和路况过渡范围得到的路段纹理数据可以用于生成渐变路况面,初始路况纹理用于区分不同的路况,渐变路况纹理用于反映不同路况之间的变化过程,路况覆盖范围和路况过渡范围可以确定初始路况纹理和渐变路况纹理的覆盖范围,从而生成的渐变路况面可以实现不同路况之间的平滑渐变效果,生成的渐变路况面可以反映当前路段从第一路况逐渐变化至第二路况的过程,使得路况信息的展示更加符合真实的道路场景,从而提高路况展示的精准度,提高导航的准确性。
在一个实施例中,步骤S804,包括:
从第一路况和第二路况分别对应的路况覆盖范围中确定目标覆盖范围;基于第一路况和第二路况对应的初始路况纹理之间的差异确定路况跨度;基于路况跨度对应的路况渐变参考范围和目标覆盖范围,得到路况纹理渐变半径;基于第一路况和第二路况的路况分界位置、路况纹理渐变半径,得到路况过渡范围。
其中,不同的路况跨度对应不同的路况渐变参考范围。路况渐变参考范围是指针对路况跨度,预先设置的最大路况渐变范围。
具体地,计算机设备可以基于第一路况和第二路况在路况覆盖范围和初始路况纹理上的差异确定路况纹理渐变半径,第一路况和第二路况在初始路况纹理上的差异可以通过路况跨度来反映。基于路况纹理渐变半径,在第一路况和第二路况的路况分界位置进行范围划分,得到第一路况和第二路况之间的路况过渡范围。
首先,计算机设备可以从第一路况和第二路况分别对应的路况覆盖范围中获取覆盖量更小的路况覆盖范围作为目标覆盖范围,目标覆盖范围用于约束路况过渡范围,使得路况过渡范围不超过目标覆盖范围。同时,计算机设备可以基于第一路况和第二路况对应的初始路况纹理之间的差异确定第一路况和第二路况之间的路况跨度,获取该路况跨度对应的路况渐变参考范围,路况渐变参考范围用于约束路况过渡范围,使得路况过渡范围不超过路况渐变参考范围。最后,计算机设备基于路况跨度对应的路况渐变参考范围和目标覆盖范围确定路况纹理渐变半径,从路况渐变参考范围和目标覆盖范围中获取覆盖量最小的范围来生成路况纹理渐变半径。基于该路况纹理渐变半径生成的路况过渡范围,可以使得路况过渡范围不超过目标覆盖范围、路况过渡范围不超过路况渐变参考范围。
在一个实施例中,路况过渡范围的计算公式如下:

Δ(i+1)=n*c-n*b
Δ(i)=n*b-n*a
len(i,i+1)=value*span(i,i+1)
其中,用1行n列的数组来表示当前路段的路段覆盖范围。第i个路况对应为路况信息用(a,b,路况i)表示,用于表征第i个路况从数组中第n*a列覆盖至第n*b列。第i+1个路况对应的路况信息用(b,c,路况i+1)表示,用于表征第i+1个路况从数组中第n*b列覆盖至第n*c列。因此,Δ(i)表示第i个路况对应的路况覆盖范围的覆盖量,Δ(i+1)表示第i+1个路况对应的路况覆盖范围的覆盖量。
span(i,i+1)表示路况i和路况i+1之间的跨度。value代表跨度为1时对应的路况渐变最大范围,len(i,i+1)表示路况i和路况i+1之间的跨度对应的路况渐变最大范围(即路况i和路况i+1之间的路况渐变参考范围)。
radius表示路况纹理渐变半径,路况分界位置为n*b,渐变覆盖范围为n*b-radius到n*b+radius,用于表征渐变覆盖范围是从数组中第n*b-radius列到第n*b+radius列。
进一步的,列数n可根据路段长度需要选取不同大小。n随着路段长度的增加而增大。
在一个实施例中,路况跨度对应的路况渐变参考范围小于或等于在候选路况纹理集合 中该路况跨度对应的纹理渐变范围。候选路况纹理集合包括有序排列的多个路况纹理,有序排列的多个路况纹理中包括多个不同路况分别对应的初始路况纹理和不同初始路况纹理之间的至少一个过渡路况纹理。第一路况和第二路况之间的路况跨度在候选路况纹理集合中对应的纹理渐变范围是指,在候选路况纹理集合中,由第一路况和第二路况对应的初始路况纹理确定的路况纹理范围,该路况纹理范围包括第一路况和第二路况对应的初始路况纹理,在第一路况和第二路况对应的初始路况纹理之间的各个路况纹理。
例如,路况纹理用颜色来表示,候选路况纹理集合包括所有候选的路况纹理。如图9所示,候选路况纹理集合涉及5种路况,分别是无路况、畅通、缓行、拥堵以及严重拥堵。候选路况纹理集合包括有序排列的纹理颜色。在候选路况纹理集合中,各个路况存在对应的纹理颜色,不同路况之间具有颜色过渡。针对纹理颜色从左到右,Sample(0)=无路况,Sample(0.25)=畅通,Sample(0.5)=缓行,Sample(0.75)=拥堵,Sample(1)=严重拥堵,Sample(i)代表从候选路况纹理集合中获取的颜色代表的路况信息,i代表纹理颜色的百分比位置,相邻路况之间的区域代表路况之间的过渡。不同路况之间的像素渐变范围是有限的,因此可以将不同路况之间的像素渐变范围作为不同路况之间的路况跨度对应的纹理渐变范围。
上述实施例中,基于第一路况和第二路况在路况覆盖范围和初始路况纹理上的差异确定路况纹理渐变半径,基于路况纹理渐变半径,在第一路况和第二路况的路况分界位置进行范围划分可以快速得到第一路况和第二路况之间的路况过渡范围。从第一路况和第二路况分别对应的路况覆盖范围中确定目标覆盖范围,基于第一路况和第二路况之间的路况跨度对应的路况渐变参考范围和目标覆盖范围,得到路况纹理渐变半径,基于该路况纹理渐变半径生成的路况过渡范围,可以使得路况过渡范围不超过目标覆盖范围、路况过渡范围不超过路况渐变参考范围。
在一个实施例中,步骤S806,包括:
将路况过渡范围包含的各个位置点分别作为目标位置点;基于目标位置点和路况过渡范围的起始位置点之间的距离,确定目标位置点相对于起始位置点的路况纹理变化量,基于起始位置点对应的初始路况纹理和目标位置点相对于起始位置点的路况纹理变化量,得到目标位置点对应的目标路况纹理;基于各个位置点分别对应的目标路况纹理,得到路况过渡范围对应的渐变路况纹理。
其中,路况过渡范围包含多个有序排列的位置点。位置点可以将路况过渡范围划分为多个小区域,通过确定各个位置点分别对应的目标路况纹理来组合得到渐变路况纹理。
可以理解,路况过渡范围的起始位置点对应的初始路况纹理是指第一路况纹理,相应的,路况过渡范围的终止位置点对应的初始路况纹理是指第二路况纹理。
具体地,在生成路况过渡范围对应的渐变路况纹理时,先确定各个位置点分别对应的目标路况纹理,再将各个位置点分别对应的目标路况纹理组成路况过渡范围对应的渐变路况纹理。
计算机设备将路况过渡范围包含的各个位置点分别作为目标位置点,分别确定各个目标位置点对应的目标路况纹理。针对任意一个目标位置点,基于目标位置点和路况过渡范围的起始位置点之间的距离,确定目标位置点相对于起始位置点的路况纹理变化量。具体可以基于路况过渡范围的起始位置点和终止位置点对应的初始路况纹理之间的差异确定最大纹理变化量,从最大纹理变化量中确定目标位置点和起始位置点之间的距离所对应的路况纹理变化量。例如,计算目标位置点和起始位置点之间的距离相对于起始位置点和终止位置点之间的总距离的占比,基于该占比和最大纹理变化量的乘积得到目标位置点相对于起始位置点的路况纹理变化量。针对任意一个目标位置点,基于起始位置点对应的初始路况纹理和路况纹理变化量,得到目标位置点对应的目标路况纹理。例如,将初始路况纹理和路况纹理变化量相加得到目标路况纹理。
在一个实施例中,若渐变覆盖范围为n*b-radius到n*b+radius,对于渐变覆盖范围内位置j,该位置j在候选路况纹理集合中的纹理采样位置为: 其中,Loc(i)代表路况i在候选路况纹理集合中的纹理采样位置,Loc(i+1)代表路况i+1在路况纹理集合中的纹理采样位置。
上述实施例中,基于路况过渡范围包含的位置点和起始位置点之间的距离,确定目标位置点相对于起始位置点的路况纹理变化量,基于起始位置点对应的初始路况纹理和路况纹理变化量得到目标位置点对应的目标路况纹理,各个位置点分别对应的目标路况纹理是按照在路况过渡范围中的位置匀速从第一路况纹理变化至第二路况纹理,从而最终得到的渐变路况纹理包括从第一路况纹理均匀渐变至第二路况纹理的多个路况纹理,这样的渐变路况纹理有助于保障路况渐变过渡的显示效果。
在一个实施例中,如图10所示,路况处理方法还包括:
步骤S1002,获取当前路段对应的各个道路边线点的边线点位置,基于道路边线点的边线点位置确定道路边线点对应的纹理采样比例。
步骤S1004,基于道路边线点对应的纹理采样比例,在路段纹理数据中进行纹理采样,得到各个道路边线点分别对应的目标路况纹理。
步骤S1006,基于各个道路边线点对应的目标路况纹理和边线点位置生成渐变路况面。
其中,道路边线点是用于形成道路边线的空间几何点。道路边线是指道路的边界线。边线点位置用于表征道路边线点的空间位置。基于道路边线点的边线点位置可以确定道路边线点对应的纹理采样比例。纹理采样比例可以表征道路边线点在道路边线上的边线位置,用于从路段纹理数据中进行纹理采样。
具体地,为了生成不规则的、符合道路形态的渐变路况面,可以获取用于形成道路边线的道路边线点,从路段纹理数据中确定各个道路边线点对应的目标路况纹理,基于各个道路边线点对应的目标路况纹理和边线点位置生成具有纹理和特定形态、且纹理渐变的不规则道路面。
计算机设备可以基于道路边线点的边线点位置确定道路边线点在道路边线上的位置进而得到各个道路边线点对应的纹理采样比例,进一步基于道路边线点对应的纹理采样比例在路段纹理数据中进行纹理采样,得到各个道路边线点分别对应的目标路况纹理。路段纹理数据包括从道路起点到道路终点有序排列的多个路况纹理,基于道路边线点的纹理采样比例从路段纹理数据中采样得到目标路况纹理,在进行纹理展示时,将目标路况纹理按照道路边线点的边线位置进行渲染,最终可以呈现按照从道路起点到道路终点渐变过渡的纹理效果。
在生成渐变路况面时,道路边线点的边线点位置用于形成道路面,道路边线点的目标路况纹理用于形成道路面的纹理,结合道路边线点的边线点位置和目标路况纹理最终可以得到具有纹理的道路面。
在一个实施例中,用1行n列的数组来表示当前路段的路段纹理数据,第一路况对应的路况覆盖范围对应数组中第0列至第n*a列,第二路况对应的路况覆盖范围对应数组中第n*a列至第n列。基于第一路况和第二路况的相关信息确定的路况过渡范围对应数组中第n*a-radius列至第n*a+radius列。参考路况过渡范围,第一路况对应最终覆盖范围对应数组中第0列至第n*a-radius列,第二路况对应的最终覆盖范围对应数组中第n*a+radius列至第n列。第0列至第n*a-radius列对应第一路况纹理,第n*a-radius列至第n*a+radius列对应渐变路况纹理,第n*a+radius列至第n列对应第二路况纹理。若某个道路边线点对应的纹理采样比例为m,则从数组中获取第n*m列对应的路况纹理作为道路边线点对应的目标路况纹理。
上述实施例中,通过获取当前路段对应的各个道路边线点的边线点位置,基于道路边线点的边线点位置确定道路边线点对应的纹理采样比例,基于道路边线点对应的纹理采样比例,在路段纹理数据中进行纹理采样,得到各个道路边线点分别对应的目标路况纹理,基于各个道路边线点对应的目标路况纹理和边线点位置能够生成具有纹理和特定形态、且纹理渐变的不规则道路面。
在一个实施例中,道路边线点包括道路左边线点和道路右边线点。基于道路边线点的边线点位置确定道路边线点对应的纹理采样比例,包括:
将当前路段的道路左边线和道路右边线分为第一类型边线和第二类型边线;基于各个第一类型边线上的道路边线点分别距离道路边线起点的累积距离,计算各个累积距离在第一类型边线上的长度占比,得到第一类型边线上的各个道路边线点分别对应的纹理采样比例;基于第一类型边线上的道路边线点对应的纹理采样比例、边线点位置和第二类型边线 上的道路左边线点对应的边线点位置,对第二类型边线上的道路边线点进行比例对齐,得到第二类型边线上的各个道路边线点分别对应的纹理采样比例。
其中,比例对齐用于以一条道路边线为基准,对另一条道路边线进行纹理采样比例的对齐,使得左右道路边线上处于同一水平方向上的道路边线点可以对应相同的纹理采样比例。可以理解,在道路左边线和道路右边线中处于同一水平方向上的位置处对应相同的路况纹理,基于此生成的渐变路况面上的路况纹理是水平方向是平整对齐的,避免在渐变路况面上出现路况纹理的倾斜。
具体地,计算机设备将当前路段的道路左边线和道路右边线分为第一类型边线和第二类型边线,第一类型边线用于作为基准,第二类型边线用于对齐第一类型边线,例如,可以将道路右边线作为第一类型边线,将道路左边线作为第二类型边线;可以将道路左边线作为第一类型边线,将道路右边线作为第二类型边线。针对当前路段的第一类型边线,先确定第一类型边线上的各个道路边线点分别对应的纹理采样比例。考虑到道路边线是由各个道路边线点依次连接得到的,计算机设备可以基于第一类型边线上的各个道路边线点分别距离道路边线起点的累积距离,计算各个累积距离在第一类型边线上的长度占比,将长度占比作为纹理采样比例,得到第一类型边线上的各个道路边线点分别对应的纹理采样比例。然后,参考第一类型边线上的道路边线点的边线点位置和纹理采样比例,计算机设备基于第二类型边线上的道路边线点对应的边线点位置对第二类型边线上的道路边线点进行比例对齐,得到第二类型边线上的各个道路边线点分别对应的纹理采样比例。
以第一类型边线为道路右边线,第二类型边线为道路左边线为例,首先,基于各个道路右边线点分别距离道路右边线起点的累积距离,计算各个累积距离在道路右边线上的长度占比,将长度占比作为纹理采样比例,得到各个道路右边线点分别对应的纹理采样比例。然后,参考道路右边线点的边线点位置和纹理采样比例,计算机设备基于道路左边线点对应的边线点位置对道路左边线点进行比例对齐,得到各个道路左边线点分别对应的纹理采样比例。
在一个实施例中,以第一类型边线为道路右边线,第二类型边线为道路左边线为例,将右边线起点对应的纹理采样比例作为左边线起点对应的纹理采样比例,将右边线终点对应的纹理采样比例作为左边线终点对应的纹理采样比例。基于左边线点在左边线上的边线位置,在从左边线起点对应的纹理采样比例至右边线终点对应的纹理采样比例形成的纹理采样比例区间中确定左边线点对应的初始采样比例。基于道路左边线长度和道路右边线长度对左边线点对应的初始采样比例进行调整,得到左边线点对应的纹理采样比例。可以理解,在第一类型边线为道路左边线,第二类型边线为道路右边线时,数据处理过程类似。
上述实施例中,基于第一类型边线上的各个道路边线点分别距离道路边线起点的累积距离,计算各个累积距离在第一类型边线上的长度占比,得到第一类型边线上的各个道路边线点分别对应的纹理采样比例。通过第一类型边线上的道路边线点对应的纹理采样比例采样得到的目标路况纹理在展示时,可以按照第一类型边线的起点至终点,先呈现第一路况纹理,再从第一路况纹理渐变至第二路况纹理,最后呈现第二路况纹理。进一步的,通过比例对齐可以使得左右道路边线上处于同一水平方向上的道路边线点对应相同的纹理采样比例,通过道路右边线点和道左边线点分别对应的纹理采样比例采样得到的路况纹理在展示时,路况面的纹理在水平方向是平整对齐的,有效避免了在路况面上出现路况纹理的倾斜,在道路拐角处也可以更好地显示路况纹理。
在一个实施例中,基于第一类型边线上的道路边线点对应的纹理采样比例、边线点位置和第二类型边线上的道路左边线点对应的边线点位置,对第二类型边线上的道路边线点进行比例对齐,得到第二类型边线上的各个道路边线点分别对应的纹理采样比例,包括:
获取当前路段对应的道路中心线;基于道路中心线,对当前路段进行区域划分,得到至少两个区域;基于同一区域中属于第一类型边线的道路边线点对应的纹理采样比例、边线点位置和属于第二类型边线的道路边线点对应的边线点位置,对区域中属于第二类型边线的道路边线点进行比例对齐,得到第二类型边线上的各个道路边线点分别对应的纹理采样比例。
其中,道路中心线是位于道路中心的道路标志线,可以反映道路的平面位置和曲直变化。
具体地,为了提高比例对齐的准确性和效率,可以分区域进行比例对齐。计算机设备可以基于当前路段对应的道路中心线对当前路段进行区域划分,得到至少两个区域,在各个区域中分别进行比例对齐,基于同一区域中属于第一类型边线的道路边线点对应的纹理采样比例、边线点位置和属于第二类型边线的道路边线点对应的边线点位置,对区域中属于第二类型边线的道路边线点进行比例对齐,得到各个区域中属于第二类型边线的各个道路边线点分别对应的纹理采样比例。例如,基于同一区域中的道路右边线点对应的纹理采样比例、边线点位置和道路左边线点对应的边线点位置,对区域中的道路左边线点进行比例对齐,得到各个区域的道路左边线点分别对应的纹理采样比例。各个区域的道路左边线点分别对应的纹理采样比例组成当前路段的各个道路左边线点分别对应的纹理采样比例。
上述实施例中,基于道路中心线,对当前路段进行区域划分,得到至少两个区域,分区域进行比例对齐,能够提高比例对齐的效率。
在一个实施例中,基于道路中心线,对当前路段进行区域划分,得到至少两个区域,包括:
对道路中心线进行采样,得到多个中心采样点;基于中心采样点和对应的相邻采样点确定分割线方向,得到各个中心采样点分别对应的分割线方向;沿着中心采样点在分割线方向上生成区域分割线,得到各个中心采样点分别对应的区域分割线;基于各个区域分割线,对当前路段进行区域划分,得到至少两个区域。
其中,中心采样点的相邻采样点包括在道路中心线的不同方向上,与中心采样点相邻的至少一个其他中心采样点。例如,参考图11A,对道路中心线进行采样得到中心采样点A-E,中心采样点A为道路中心线的起点。以中心采样点B为例,中心采样点A和C为中心采样点B的相邻采样点,中心采样点A为中心采样点B的前向相邻采样点,中心采样点C为中心采样点B的后向相邻采样点。
具体地,可以基于对道路中心线进行采样得到的采样点来进行区域划分。计算机设备可以对道路中心线进行采样,得到多个中心采样点,基于中心采样点来生成区域分割线对当前路段进行区域划分,得到至少两个区域。通过中心采样点和对应的分割线方向可以确定一条区域分割线,将在分割线方向上通过中心采样点的直线作为区域分割线。一个中心采样点对应的分割线方向是基于中心采样点和对应的相邻采样点确定的。
在一个实施例中,可以将中心采样点与前向相邻采样点和后向相邻采样点形成的夹角的角平分线方向作为分割线方向。可以将中心采样点与前向相邻采样点或后向相邻采样点形成的直线的法线方向作为分割线方向。
参考图11B,在车道中心线上进行等距离采样,沿过中心采样点分割线方向的直线求与车道左右边线的交点,分割线方向选取中心采样点与车道中心线上前后相邻采样点形成夹角的角平分线方向,相邻采样点与车道左右边线的交点将路况面划分为若干个区域。
上述实施例中,基于对道路中心线采样得到的中心采样点和由中心采样点和对应的相邻采样点确定的分割线方向,能够快速得到各个中心采样点分别对应的区域分割线,基于各个区域分割线对当前路段进行区域划分,能够将当前路段沿着道路延伸方向进行区域划分,基于经过区域划分得到的多个区域有助于在道路面显示时,让路况纹理沿着道路延伸方向进行准确的渐变过渡。
在一个实施例中,中心采样点的确定方式包括以下方式中的任意一种:
对道路中心线进行等距离采样,得到多个中心采样点;
根据道路中心线的曲率,对道路中心线进行动态采样,得到多个中心采样点。
具体地,在对道路中心线进行采样时,可以对道路中心线进行等距离采样,在道路中心线上每隔预设距离采样一个点,从而得到多个中心采样点。
在对道路中心线进行采样时,也可以根据道路中心线的曲率,对道路中心线进行动态采样,在道路中心线上曲率较大的区域采样较多的点,在道路中心线上曲率较小的区域采样较少的点,从而得到多个中心采样点。
上述实施例中,对道路中心线进行等距离采样可以快速得到多个中心采样点。根据道路中心线的曲率对道路中心线进行动态采样可以得到多个间隔距离不尽相同的多个中心采样点,曲率越大的区域对应越多的中心采样点,即在道路拐角处进行更精细的采样,这样有助于提高在对道路拐角处显示路况纹理的精准度。
在一个实施例中,基于同一区域中的道路右边线点对应的纹理采样比例、边线点位置和道路左边线点对应的边线点位置,对区域中的道路左边线点进行比例对齐,得到各个道路左边线点分别对应的纹理采样比例,包括:
将当前区域中属于第一类型边线的道路边线起点和道路边线终点作为当前第一边线起点和当前第一边线终点,将当前区域中属于第二类型边线的道路边线起点和道路边线终点作为当前第二边线起点和当前第二边线终点;将当前第一边线起点对应的纹理采样比例作为当前第二边线起点对应的纹理采样比例,将当前第一边线终点对应的纹理采样比例作为当前第二边线终点对应的纹理采样比例;基于当前区域中属于第二类型边线的当前第二边线点分别距离当前第二边线起点、当前第二边线终点的累积距离,计算当前第二边线点对应的距离比值;基于当前第二边线起点和当前第二边线终点分别对应的纹理采样比例、以及当前第二边线点对应的距离比值,得到当前第二边线点对应的初始采样比例;基于当前区域对应的第一类型边线长度和第二类型边线长度,对当前第二边线点对应的初始采样比例进行调整,得到当前第二边线点对应的纹理采样比例。
其中,当前区域是指当前处理的区域。以第一类型边线为道路右边线,第二类型边线为道路左边线为例,当前第一边线起点为当前区域的道路右边线起点,当前第一线终点为当前区域的道路右边线终点;当前第二边线起点为当前区域的道路左边线起点,当前第二边线终点为当前区域的道路左边线终点;当前第二边线点为当前区域中当前处理的左边线点;当前区域对应的第一类型边线长度为当前区域的道路右边线长度,当前区域对应的第二类型边线长度为当前区域的道路左边线长度。
具体地,在分区域进行比例对齐时,针对当前区域,首先将当前第一边线起点对应的纹理采样比例作为当前第二边线起点对应的纹理采样比例,将当前第一边线终点对应的纹理采样比例作为当前第二边线终点对应的纹理采样比例,使得一个区域中左右边线起点对应相同的纹理采样比例,左右边线终点对应相同的纹理采样比例。然后,将当前区域内剩余的属于第二类型边线的各个第二边线点分别作为当前第二边线点,计算各个当前第二边线点分别对应的纹理采样比例。针对任意一个当前第二边线点,计算当前区域中的当前第二边线点分别和当前第二边线起点、当前第二边线终点的距离,计算两个距离的比值得到当前第二边线点对应的距离比值。距离比值可以指示当前第二边线点在当前区域的第二边线上的位置。进而,基于当前第二边线起点和当前第二边线终点分别对应的纹理采样比例、以及当前第二边线点对应的距离比值,得到当前第二边线点对应的初始采样比例。具体可以计算当前第二边线起点和当前第二边线终点分别对应的纹理采样比例之间的差异得到最大比例变化量,将最大比例变化量和距离比值的乘积得到当前第二边线点对应的采样比例变化量,基于当前第二边线起点对应的纹理采样比例和采样比例变化量得到当前第二边线点对应的初始采样比例。初始采样比例是在区域第二边线的纹理采样比例区间中,基于当前第二边线起点在区域的第二边线上的边线位置确定的采样比例。为了实现左右边线的比例对齐,最后基于当前区域对应的第一类型边线长度和第二类型边线长度,对当前第二边线点对应的初始采样比例进行调整,得到当前第二边线点对应的纹理采样比例。具体可以计算道路第二边线长度和道路第一边线长度的长度比值,融合初始采样比例和长度比值得到纹理采样比例。
在一个实施例中,参考图12,以区域1、第一类型边线为道路右边线,第二类型边线为道路左边线为例说明比例对齐的计算过程。针对区域1,分别计算每个点R1、R2、R3、RS1距离右边线起点的累积距离ADist。其中,ADist(i)=ADist(i-1)+Dist(i,i-1),ADist(i)表示点i距离右边线起点的累积距离。其中,Dist(i,i-1)代表第i个点和第i-1个点之间的距离。假设右边线的总长度为RT,区域1的左右边线长度为LT1、RT1。针对区域1右边线,计算区域1右边线上每个点的长度占比分别为:Ratio(i)=ADist(i)/RT。针对区域1左边线,设置区域起点L1、终点LS1对应的纹理采样比例分别等于Ratio(R1)和Ratio(RS1)。区域1内其他点Li对应的纹理采样比例Ratio(Li)=(Ratio(L1)+(Ratio(LS1)–Ratio(L1))*k)*LT1/RT1。其中,k=(ADist(Li)–ADist(L1))/(ADist(LS1)–ADist(L1)),ADist(Li)=ADist(Li-1)+Dist(Li,Li-1),Dist(Li,Li-1)代表左边线上第i个点和左边线上第i-1个点之间的距离。最终根据右边线完成区域1左右边线的比例对齐,同样当前路段的其余区域可以进行相同的处理。
上述实施例中,将当前第一边线起点对应的纹理采样比例作为当前第二边线起点对应的纹理采样比例,将当前第一边线终点对应的纹理采样比例作为当前第二边线终点对应的纹理采样比例,可以使得区域的左右边线起点、左右边线终点的比例是对齐的。基于当前区域中的当前第二边线点分别距离当前第二边线起点、当前第二边线终点的累积距离,计算当前第二边线点对应的距离比值;基于当前第二边线起点和当前第二边线终点分别对应的纹理采样比例、以及当前第二边线点对应的距离比值,得到当前第二边线点对应的初始采样比例;基于当前区域对应的道路左边线长度和道路右边线长度,对当前第二边线点对应的初始采样比例进行调整,得到当前第二边线点对应的纹理采样比例,最终实现区域中其他左右边线点的比例对齐。
在一个具体的实施例中,本申请的路况显示方法和路况处理方法可以应用于针对车道级地图的导航场景。
在地图导航时,服务器的算路服务向客户端返回从起点到终点的导航路线,导航路线是由一系列空间几何坐标点组成的轨迹线。现有普通地图针对导航路线的表达是根据轨迹线生成具有一定宽度的规则面表达,然后客户端根据服务器的路况服务提供的拥堵路况信息,对规则面附加代表不同路况的纹理信息实现路况信息的表达。但是针对车道级地图,因为算路服务返回的是更精细化且不规则的导航路线,需要新的不规则导航路线的路况实现方案,且需要实现路况间平滑的过渡效果。本申请的路况显示方法和路况处理方法通过不规则路况面区域划分和比例对齐,实现路况效果的平整对齐,并通过精准的纹理采样实现不同路况效果的自然过渡,可以很好的解决不规则面不同路况填充过度问题,方案通用高效,可快速应用。
本申请的路况显示方法和路况处理方法包括以下内容:
针对路况面,如图13A所示,综合算路服务和路况服务提供的数据,可以得到组成路况面的左边和右边两条由空间几何点形成的边线,以及路况面之间的一条曲率平滑的车道中心线,同时不同区域路况通过右边线的长度占比区间范围表示,如范围[0,0.5,畅通]代表右边线从起点到整个长度的50%处代表的区域是绿色畅通的。
一、确定每个顶点对应的比例信息
首先进行路况面划分。通过简单的路况面划分,保证不同路况面形成的区域是平整对齐的,最终实现整个路况面颜色效果的左右对齐。如图13B所示,在车道中心线上进行等距离采样,沿过采样点一定方向的直线求与左右边线的交点,该方向选取采样点与中心线上前后相邻点形成夹角的角平分线方向。相邻采样点与左右边线的交点将路况面划分为若干个区域。
接着进行路况面比例对齐。参考图12,针对区域1,分别计算每个点R1、R2、R3、RS1距离右边线起点的累积距离ADist。其中,ADist(i)=ADist(i-1)+Dist(i,i-1)。假设右边线的总长度为RT,区域1的左右边线长度为LT1、RT1。针对区域1右边线,计算区域1右边线上每个点的长度占比分别为:Ratio(i)=ADist(i)/RT。针对区域1左边线,设置区域起点L1、终点LS1对应的纹理采样比例分别等于Ratio(R1)和Ratio(RS1)。区域1内其他点Li对应的纹理采样比例Ratio(Li)=(Ratio(L1)+(Ratio(LS1)–Ratio(L1))*k)*LT1/RT1,k=(ADist(Li)–ADist(L1))/(ADist(LS1)–ADist(L1)),ADist(Li)=ADist(Li-1)+Dist(Li,Li-1)。最终根据右边线完成区域1左右边线的比例对齐,同理,其余区域可以进行相同的处理。
二、构造路况面纹理颜色信息
首先进行路况面纹理信息构造。针对路况服务提供的实时路况信息,根据如下的路况采样纹理动态生成路况纹理,针对采样纹理从左到右,Sample(0)=无路况,Sample(0.25)=畅通,Sample(0.5)=缓行,Sample(0.75)=拥堵,Sample(1)=严重拥堵,Sample(i)代表从采样纹理中获取的颜色代表的路况信息,i代表采样纹理的百分比位置,相邻路况之间区域代表路况之间的过渡。使用1行n列数组记录构造的路况面纹理颜色信息,列数n可根据路况面长度需要选取不同大小。针对路况范围,路况1包含的颜色信息范围为0到n*a列(其中0<=a<=1),依据路况信息,对应数组范围内的颜色信息为Sample(0.25),路况2包含的颜色信息范围为n*a到n列,对应数组范围内的颜色信息为Sample(0.75)。该路况纹理构造方法可适用于任意多个路况信息,处理完所有路况,初步得到具有不同路 况的纹理信息,但路况之间无平滑渐变过渡效果。
然后进行路况面渐变过渡。针对第i+1个路况信息(b,c,路况i+1),需要与第i个路况(a,b,路况i)之间进行路况颜色的渐变。初步构造得到的路况信息中,路况i+1的颜色覆盖范围为n*b到n*c,覆盖量Δ(i+1)=n*c-n*b,路况i的颜色覆盖范围为n*a到n*b,覆盖量Δ(i)=n*b-n*a,颜色的分界位置为n*b。设置路况分界点处颜色渐变半径为渐变覆盖范围为n*b-radius到n*b+radius。对于渐变覆盖范围内位置j,该位置j的纹理采样位置(即Loc(j))为 其中,Loc(i)代表路况i在采样纹理的相对位置(百分比表示)。len(i,i+1)=value*span(i,i+1),为了保证路况渐变的最大范围,span(i,i+1)代表路况i与路况i+1之间的跨度,针对采样纹理相邻路况之间的跨度为1,value代表跨度为1的路况渐变最大范围,且保证不超过采样纹理该跨度的渐变范围。
针对路况i和路况i+1的纹理颜色信息为:数组中n*a到n*b-radius对应Sample(Loc(i)),数组中n*b+radius到n*c对应Sample(Loc(i+1)),针对数组中n*b-radius到n*b+radius内的第j列,对应Sample(Loc(j))。
三、区域三角化并渲染。
对各个区域分别进行三角化处理。区域1进行如图13C所示的三角化处理方法,其它区域进行相同的操作。三角化处理是渲染技术中常见的处理方法。最后,将三角化后的数据、路况面比例对齐得到的每个顶点的比例信息以及构造生成的纹理颜色信息上传到GPU,其中每个顶点的颜色通过比例信息在纹理颜色信息中采样得到,可利用OpenGL等渲染技术实现渐变路况面的绘制。
上述实施例中,车道级地图中,高精度的定位和引导需求,对传统的路况引导提出了更高的需求,引导面会出现不规则的形状而且需要路况间具有比较好的过渡效果。通过本申请的方法生成的车道级的路况面是精细到车道的,形状也是不规则的,具有更好的引导作用,路况面的左右展示效果除了平整对齐,路况间还具有平滑的渐变效果,很大程度上提升了产品的视觉效果,也使得路况信息的展示更加符合真实的道路场景,从而提高路况展示的精准度,提高导航的准确性。
在一个具体的实施例中,用户可以借助终端上的导航应用进行出行导航。参考图14中的(a),用户可以在搜索栏里输入目的地来查看任意地点的地理位置。参考图14中的(b),用户在搜索栏里输入“A商城”并启动搜索后,界面上可以显示A商场所在的地理位置和“路线”控件。“路线”控件用于启动路线规划功能。在用户点击“路线”控件后,参考图14中的(c),界面上可以显示从起始地(终端当前的定位位置)到目的地(A商场)的导航路线和“开始导航”控件。在确定目标导航路线后,用户可以点击“开始导航”控件进入三维导航画面。参考图14中的(d),在三维导航画面中显示用户在目标导航路线上当前待进入的路段对应的渐变路况面。在用户按照目标导航路线移动时,界面上可以实时显示同步移动的三维导航画面。
应该理解的是,虽然如上所述的各实施例所涉及的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。
基于同样的发明构思,本申请实施例还提供了一种用于实现上述所涉及的路况展示方法的路况展示装置。该装置所提供的解决问题的实现方案与上述方法中所记载的实现方案相似,故下面所提供的一个或多个路况展示装置实施例中的具体限定可以参见上文中对于 路况展示方法的限定,在此不再赘述。
在一个实施例中,如图15所示,提供了一种路况展示装置,包括:初始导航画面显示模块1502和目标导航画面显示模块1504,其中:
初始导航画面显示模块1502,用于展示初始导航画面,在初始导航画面上显示目标导航路线。
目标导航画面显示模块1504,用于响应于针对目标导航路线的导航触发事件,展示目标导航画面,在目标导航画面上显示目标导航路线中的当前路段所对应的渐变路况面。
其中,渐变路况面用于指示当前路段从第一路况变化至第二路况的过程;渐变路况面包括第一路况对应的第一路况纹理、第二路况对应的第二路况纹理、从第一路况纹理渐变至第二路况纹理的渐变路况纹理,渐变路况纹理对应的路况过渡范围是通过第一路况和第二路况对应的路况纹理和路况覆盖范围确定的。
在一个实施例中,目标导航路线用于指示导航对象按照目标导航路线进行出行导航,初始导航画面包括导航启动控件,导航启动控件用于响应导航触发事件。
目标导航画面显示模块1504还用于:
响应于针对导航启动控件的触发操作,展示目标导航画面,在目标导航画面上显示导航对象待进入的当前路段所对应的渐变路况面;当前路段是基于导航对象当前所处的定位位置,从目标导航路线上确定的路段,目标导航画面是在导航对象当前所处的定位位置,通过导航对象对应的当前导航视角确定的三维导航画面。
在一个实施例中,目标导航画面显示模块1504还用于:
当导航对象按照目标导航路线运动时,在跟随导航对象的运动同步变化的目标导航画面上,有序显示导航对象在目标导航路线上依次待进入的各个路段分别对应的渐变路况面。
在一个实施例中,目标导航画面显示模块1504还用于:
响应于针对目标导航路线的各个路段中目标路段的选择操作,展示参考导航画面,在参考导航画面上显示目标路段对应的渐变路况面;参考导航画面是在目标路段所处的路段定位位置,通过预设导航视角确定的三维导航画面。
在一个实施例中,初始导航画面显示模块1502还用于:
在初始导航画面上显示目标导航路线对应的全局路况面;全局路况面用于指示目标导航路线涉及的各个路况,全局路况面包括各个路况分别对应的初始路况纹理。
在一个实施例中,目标导航画面显示模块1504还用于:
在当前路段的路况发生变化的情况下,将渐变路况面刷新显示为更新路况面;更新路况面用于指示当前路段更新后的路况。
在一个实施例中,目标导航画面显示模块1504还用于:
在当前路段的起始区域显示第一路况对应的第一纹理色;在当前路段的起始区域和终止区域之间,显示从第一纹理色渐变至第二纹理色的过渡纹理色;过渡纹理色包括动态数量的渐变纹理色,渐变纹理色的数量是基于路况过渡范围确定的;在当前路段的终止区域显示第二路况对应的第二纹理色。
上述路况展示装置,第一路况纹理和第二路况纹理用于区分不同的路况,渐变路况纹理用于反映不同路况之间的变化过程,路况覆盖范围和路况过渡范围可以确定不同路况的路况纹理和渐变路况纹理的覆盖范围,从而生成的渐变路况面可以实现更精细的路况信息的展示,实现不同路况之间的平滑渐变效果,使得路况信息的展示更加符合真实的道路场景,从而提高路况展示的精准度,提高导航的准确性。
在一个实施例中,如图16所示,提供了一种路况处理装置,包括:路况数据获取模块1602、路况过渡范围确定模块1604、渐变路况纹理确定模块1506和路段纹理数据确定模块1608,其中:
路况数据获取模块1602,用于获取当前路段涉及的第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围。
路况过渡范围确定模块1604,用于基于第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围,确定第一路况和第二路况之间的路况过渡范围。
渐变路况纹理确定模块1606,用于将路况纹理按照从第一路况对应的初始路况纹理渐变调整至第二路况对应的初始路况纹理,得到路况过渡范围对应的渐变路况纹理。
路段纹理数据确定模块1608,用于基于初始路况纹理和对应的路况覆盖范围、渐变路况纹理和对应的路况过渡范围,得到当前路段对应的路段纹理数据;路段纹理数据用于生成当前路段对应的渐变路况面,渐变路况面用于指示当前路段从第一路况变化至第二路况的过程。
在一个实施例中,路况过渡范围确定模块1604还用于:
从第一路况和第二路况分别对应的路况覆盖范围中确定目标覆盖范围;基于第一路况和第二路况对应的初始路况纹理之间的差异确定路况跨度;基于路况跨度对应的路况渐变参考范围和目标覆盖范围,得到路况纹理渐变半径;基于第一路况和第二路况的路况分界位置、路况纹理渐变半径,得到路况过渡范围。
在一个实施例中,渐变路况纹理确定模块1606还用于:
将路况过渡范围包含的各个位置点分别作为目标位置点;基于目标位置点和路况过渡范围的起始位置点之间的距离,确定目标位置点相对于起始位置点的路况纹理变化量,基于起始位置点对应的初始路况纹理和目标位置点相对于起始位置点的路况纹理变化量,得到目标位置点对应的目标路况纹理;基于各个位置点分别对应的目标路况纹理,得到路况过渡范围对应的渐变路况纹理。
在一个实施例中,路况处理装置还包括:
纹理采样比例确定模块,用于获取当前路段对应的各个道路边线点的边线点位置,基于道路边线点的边线点位置确定道路边线点对应的纹理采样比例。
目标路况纹理确定模块,用于基于道路边线点对应的纹理采样比例,在路段纹理数据中进行纹理采样,得到各个道路边线点分别对应的目标路况纹理;
渐变路况面生成模块,用于基于各个道路边线点对应的目标路况纹理和边线点位置生成渐变路况面。
在一个实施例中,纹理采样比例确定模块还用于:
将当前路段的道路左边线和道路右边线分为第一类型边线和第二类型边线;基于各个第一类型边线上的道路边线点分别距离道路边线起点的累积距离,计算各个累积距离在第一类型边线上的长度占比,得到第一类型边线上的各个道路边线点分别对应的纹理采样比例;基于第一类型边线上的道路边线点对应的纹理采样比例、边线点位置和第二类型边线上的道路左边线点对应的边线点位置,对第二类型边线上的道路边线点进行比例对齐,得到第二类型边线上的各个道路边线点分别对应的纹理采样比例。
在一个实施例中,纹理采样比例确定模块还用于:
获取当前路段对应的道路中心线;基于道路中心线,对当前路段进行区域划分,得到至少两个区域;基于同一区域中属于第一类型边线的道路边线点对应的纹理采样比例、边线点位置和属于第二类型边线的道路边线点对应的边线点位置,对区域中属于第二类型边线的道路边线点进行比例对齐,得到第二类型边线上的各个道路边线点分别对应的纹理采样比例。
在一个实施例中,纹理采样比例确定模块还用于:
对道路中心线进行采样,得到多个中心采样点;基于中心采样点和对应的相邻采样点确定分割线方向,得到各个中心采样点分别对应的分割线方向;沿着中心采样点在分割线方向上生成区域分割线,得到各个中心采样点分别对应的区域分割线;基于各个区域分割线,对当前路段进行区域划分,得到至少两个区域。
在一个实施例中,纹理采样比例确定模块还用于对道路中心线进行等距离采样,得到多个中心采样点。纹理采样比例确定模块还用于根据道路中心线的曲率,对道路中心线进行动态采样,得到多个中心采样点。
在一个实施例中,纹理采样比例确定模块还用于:
将当前区域中属于第一类型边线的道路边线起点和道路边线终点作为当前第一边线起点和当前第一边线终点,将当前区域中属于第二类型边线的道路边线起点和道路边线终点作为当前第二边线起点和当前第二边线终点;将当前第一边线起点对应的纹理采样比例作为当前第二边线起点对应的纹理采样比例,将当前第一边线终点对应的纹理采样比例作为当前第二边线终点对应的纹理采样比例;基于当前区域中属于第二类型边线的当前第二边线点分别距离当前第二边线起点、当前第二边线终点的累积距离,计算当前第二边线点 对应的距离比值;基于当前第二边线起点和当前第二边线终点分别对应的纹理采样比例、以及当前第二边线点对应的距离比值,得到当前第二边线点对应的初始采样比例;基于当前区域对应的第一类型边线长度和第二类型边线长度,对当前第二边线点对应的初始采样比例进行调整,得到当前第二边线点对应的纹理采样比例。
上述路况处理装置,基于初始路况纹理、渐变路况纹理、路况覆盖范围和路况过渡范围得到的路段纹理数据可以用于生成渐变路况面,初始路况纹理用于区分不同的路况,渐变路况纹理用于反映不同路况之间的变化过程,路况覆盖范围和路况过渡范围可以确定初始路况纹理和渐变路况纹理的覆盖范围,从而生成的渐变路况面可以实现更精细的路况信息的展示,实现不同路况之间的平滑渐变效果,使得路况信息的展示更加符合真实的道路场景,从而提高路况展示的精准度,提高导航的准确性。
上述路况展示装置和路况处理装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图17所示。该计算机设备包括处理器、存储器、输入/输出接口(Input/Output,简称I/O)和通信接口。其中,处理器、存储器和输入/输出接口通过系统总线连接,通信接口通过输入/输出接口连接到系统总线。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质和内存储器。该非易失性存储介质存储有操作系统、计算机可读指令和数据库。该内存储器为非易失性存储介质中的操作系统和计算机可读指令的运行提供环境。该计算机设备的数据库用于存储路况纹理、导航视角等数据。该计算机设备的输入/输出接口用于处理器与外部设备之间交换信息。该计算机设备的通信接口用于与外部的终端通过网络连接通信。该计算机可读指令被处理器执行时以实现一种路况处理方法。
在一个实施例中,提供了一种计算机设备,该计算机设备可以是终端,其内部结构图可以如图18所示。该计算机设备包括处理器、存储器、输入/输出接口、通信接口、显示单元和输入装置。其中,处理器、存储器和输入/输出接口通过系统总线连接,通信接口、显示单元和输入装置通过输入/输出接口连接到系统总线。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统和计算机可读指令。该内存储器为非易失性存储介质中的操作系统和计算机可读指令的运行提供环境。该计算机设备的输入/输出接口用于处理器与外部设备之间交换信息。该计算机设备的通信接口用于与外部的终端进行有线或无线方式的通信,无线方式可通过WIFI、移动蜂窝网络、NFC(近场通信)或其他技术实现。该计算机可读指令被处理器执行时以实现一种路况展示方法和路况处理方法。该计算机设备的显示单元用于形成视觉可见的画面,可以是显示屏、投影装置或虚拟现实成像装置,显示屏可以是液晶显示屏或电子墨水显示屏,该计算机设备的输入装置可以是显示屏上覆盖的触摸层,也可以是计算机设备外壳上设置的按键、轨迹球或触控板,还可以是外接的键盘、触控板或鼠标等。
本领域技术人员可以理解,图17、18中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。
在一个实施例中,还提供了一种计算机设备,包括存储器和一个或多个处理器,存储器中存储有计算机可读指令,该一个或多个处理器执行计算机可读指令时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机可读存储介质,存储有计算机可读指令,该计算机可读指令被一个或多个处理器执行时实现上述各方法实施例中的步骤。
在一个实施例中,提供了一种计算机程序产品或计算机程序,该计算机程序产品或计算机程序包括计算机可读指令,该计算机可读指令存储在计算机可读存储介质中。计算机设备的一个或多个处理器从计算机可读存储介质读取该计算机可读指令,一个或多个处理 器执行该计算机可读指令,使得该计算机设备执行上述各方法实施例中的步骤。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机可读指令来指令相关的硬件来完成,所述的计算机可读指令可存储于一非易失性计算机可读取存储介质中,该计算机可读指令在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存、光存储器、高密度嵌入式非易失性存储器、阻变存储器(ReRAM)、磁变存储器(Magnetoresistive Random Access Memory,MRAM)、铁电存储器(Ferroelectric Random Access Memory,FRAM)、相变存储器(Phase Change Memory,PCM)、石墨烯存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器等。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory,SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。本申请所提供的各实施例中所涉及的数据库可包括关系型数据库和非关系型数据库中至少一种。非关系型数据库可包括基于区块链的分布式数据库等,不限于此。本申请所提供的各实施例中所涉及的处理器可为通用处理器、中央处理器、图形处理器、数字信号处理器、可编程逻辑器、基于量子计算的数据处理逻辑器等,不限于此。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种路况展示方法,由终端执行,所述方法包括:
    展示初始导航画面,在所述初始导航画面上显示目标导航路线;及
    响应于针对所述目标导航路线的导航触发事件,展示目标导航画面,在所述目标导航画面上显示所述目标导航路线中的当前路段所对应的渐变路况面;
    所述渐变路况面用于指示所述当前路段从第一路况变化至第二路况的过程;所述渐变路况面包括所述第一路况对应的第一路况纹理、所述第二路况对应的第二路况纹理、从所述第一路况纹理渐变至所述第二路况纹理的渐变路况纹理,所述渐变路况纹理对应的路况过渡范围是通过所述第一路况和所述第二路况对应的路况纹理和路况覆盖范围确定的。
  2. 根据权利要求1所述的方法,所述目标导航路线用于指示导航对象按照所述目标导航路线进行出行导航,所述初始导航画面包括导航启动控件,所述导航启动控件用于响应所述导航触发事件;
    所述响应于针对所述目标导航路线的导航触发事件,展示目标导航画面,在所述目标导航画面上显示所述目标导航路线中的当前路段所对应的渐变路况面,包括:
    响应于针对所述导航启动控件的触发操作,展示目标导航画面,在所述目标导航画面上显示所述导航对象待进入的当前路段所对应的渐变路况面;所述当前路段是基于所述导航对象当前所处的定位位置,从所述目标导航路线上确定的路段,所述目标导航画面是在所述导航对象当前所处的定位位置,通过所述导航对象对应的当前导航视角确定的三维导航画面。
  3. 根据权利要求2所述的方法,所述方法还包括:
    当所述导航对象按照所述目标导航路线运动时,在跟随所述导航对象的运动同步变化的目标导航画面上,有序显示所述导航对象在所述目标导航路线上依次待进入的各个路段分别对应的渐变路况面。
  4. 根据权利要求1所述的方法,所述方法还包括:
    响应于针对所述目标导航路线的各个路段中目标路段的选择操作,展示参考导航画面,在所述参考导航画面上显示所述目标路段对应的渐变路况面;所述参考导航画面是在所述目标路段所处的路段定位位置,通过预设导航视角确定的三维导航画面。
  5. 根据权利要求1所述的方法,所述方法还包括:
    在所述初始导航画面上显示所述目标导航路线对应的全局路况面;所述全局路况面用于指示所述目标导航路线涉及的各个路况,所述全局路况面包括所述各个路况分别对应的初始路况纹理。
  6. 根据权利要求1所述的方法,所述方法还包括:
    在所述当前路段的路况发生变化的情况下,将所述渐变路况面刷新显示为更新路况面;所述更新路况面用于指示所述当前路段更新后的路况。
  7. 根据权利要求1所述的方法,所述在所述目标导航画面上显示所述目标导航路线中的当前路段所对应的渐变路况面,包括:
    在所述当前路段的起始区域显示所述第一路况对应的第一纹理色;
    在所述当前路段的起始区域和终止区域之间,显示从所述第一纹理色渐变至所述第二纹理色的过渡纹理色;所述过渡纹理色包括动态数量的渐变纹理色,所述渐变纹理色的数量是基于所述路况过渡范围确定的;及
    在所述当前路段的终止区域显示所述第二路况对应的第二纹理色。
  8. 一种路况处理方法,由计算机设备执行,所述方法还包括:
    获取当前路段涉及的第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围;
    基于所述第一路况和所述第二路况分别对应的初始路况纹理和路况覆盖范围,确定所述第一路况和所述第二路况之间的路况过渡范围;
    将路况纹理按照从所述第一路况对应的初始路况纹理渐变调整至所述第二路况对应的初始路况纹理,得到所述路况过渡范围对应的渐变路况纹理;及
    基于所述初始路况纹理和对应的路况覆盖范围、所述渐变路况纹理和对应的路况过渡范围,得到所述当前路段对应的路段纹理数据;所述路段纹理数据用于生成所述当前路段对应的渐变路况面,所述渐变路况面用于指示所述当前路段从所述第一路况变化至所述第 二路况的过程。
  9. 根据权利要求8所述的方法,所述基于所述第一路况和所述第二路况分别对应的初始路况纹理和路况覆盖范围,确定所述第一路况和所述第二路况之间的路况过渡范围,包括:
    从所述第一路况和所述第二路况分别对应的路况覆盖范围中确定目标覆盖范围;
    基于所述第一路况和所述第二路况对应的初始路况纹理之间的差异确定路况跨度;
    基于所述路况跨度对应的路况渐变参考范围和所述目标覆盖范围,得到路况纹理渐变半径;及
    基于所述第一路况和所述第二路况的路况分界位置、所述路况纹理渐变半径,得到所述路况过渡范围。
  10. 根据权利要求8所述的方法,所述将路况纹理按照从所述第一路况对应的初始路况纹理渐变调整至所述第二路况对应的初始路况纹理,得到所述路况过渡范围对应的渐变路况纹理,包括:
    将所述路况过渡范围包含的各个位置点分别作为目标位置点;
    基于目标位置点和所述路况过渡范围的起始位置点之间的距离,确定目标位置点相对于起始位置点的路况纹理变化量,基于所述起始位置点对应的初始路况纹理和目标位置点相对于起始位置点的路况纹理变化量,得到目标位置点对应的目标路况纹理;及
    基于所述各个位置点分别对应的目标路况纹理,得到所述路况过渡范围对应的渐变路况纹理。
  11. 根据权利要求8所述的方法,所述方法还包括:
    获取所述当前路段对应的各个道路边线点的边线点位置,基于道路边线点的边线点位置确定道路边线点对应的纹理采样比例;
    基于道路边线点对应的纹理采样比例,在所述路段纹理数据中进行纹理采样,得到所述各个道路边线点分别对应的目标路况纹理;及
    基于所述各个道路边线点对应的目标路况纹理和边线点位置生成所述渐变路况面。
  12. 根据权利要求11所述的方法,所述基于道路边线点的边线点位置确定道路边线点对应的纹理采样比例,包括:
    将所述当前路段的道路左边线和道路右边线分为第一类型边线和第二类型边线;
    基于所述第一类型边线上的各个道路边线点分别距离道路边线起点的累积距离,计算各个累积距离在所述第一类型边线上的长度占比,得到所述第一类型边线上的各个道路边线点分别对应的纹理采样比例;及
    基于所述第一类型边线上的道路边线点对应的纹理采样比例、边线点位置和所述第二类型边线上的道路边线点对应的边线点位置,对所述第二类型边线上的道路边线点进行比例对齐,得到所述第二类型边线上的各个道路边线点分别对应的纹理采样比例。
  13. 根据权利要求12所述的方法,所述基于所述第一类型边线上的道路边线点对应的纹理采样比例、边线点位置和所述第二类型边线上的道路边线点对应的边线点位置,对所述第二类型边线上的道路边线点进行比例对齐,得到所述第二类型边线上的各个道路边线点分别对应的纹理采样比例,包括:
    获取所述当前路段对应的道路中心线;
    基于所述道路中心线,对所述当前路段进行区域划分,得到至少两个区域;及
    基于同一区域中属于所述第一类型边线的道路边线点对应的纹理采样比例、边线点位置和属于所述第二类型边线的道路边线点对应的边线点位置,对区域中属于所述第二类型边线的道路边线点进行比例对齐,得到所述第二类型边线上的各个道路边线点分别对应的纹理采样比例。
  14. 根据权利要求13所述的方法,所述基于所述道路中心线,对所述当前路段进行区域划分,得到至少两个区域,包括:
    对所述道路中心线进行采样,得到多个中心采样点;
    基于中心采样点和对应的相邻采样点确定分割线方向,得到各个中心采样点分别对应的分割线方向;
    沿着中心采样点在分割线方向上生成区域分割线,得到各个中心采样点分别对应的区 域分割线;及
    基于各个区域分割线,对所述当前路段进行区域划分,得到所述至少两个区域。
  15. 根据权利要求14所述的方法,所述中心采样点的确定方式包括以下方式中的任意一种:
    对所述道路中心线进行等距离采样,得到多个中心采样点;
    根据所述道路中心线的曲率,对所述道路中心线进行动态采样,得到多个中心采样点。
  16. 根据权利要求13所述的方法,所述基于同一区域中属于所述第一类型边线的道路边线点对应的纹理采样比例、边线点位置和属于所述第二类型边线的道路边线点对应的边线点位置,对区域中属于所述第二类型边线的道路边线点进行比例对齐,得到所述第二类型边线上的各个道路边线点分别对应的纹理采样比例,包括:
    将当前区域中属于所述第一类型边线的道路边线起点和道路边线终点作为当前第一边线起点和当前第一边线终点,将当前区域中属于所述第二类型边线的道路边线起点和道路边线终点作为当前第二边线起点和当前第二边线终点;
    将当前第一边线起点对应的纹理采样比例作为当前第二边线起点对应的纹理采样比例,将当前第一边线终点对应的纹理采样比例作为当前第二边线终点对应的纹理采样比例;
    基于当前区域中属于所述第二类型边线的当前第二边线点分别距离当前第二边线起点、当前第二边线终点的累积距离,计算所述当前第二边线点对应的距离比值;
    基于当前第二边线起点和当前第二边线终点分别对应的纹理采样比例、以及所述当前第二边线点对应的距离比值,得到所述当前第二边线点对应的初始采样比例;及
    基于所述当前区域对应的第一类型边线长度和第二类型边线长度,对所述当前第二边线点对应的初始采样比例进行调整,得到所述当前第二边线点对应的纹理采样比例。
  17. 一种路况展示装置,所述装置包括:
    初始导航画面显示模块,用于展示初始导航画面,在所述初始导航画面上显示目标导航路线;及
    目标导航画面显示模块,用于响应于针对所述目标导航路线的导航触发事件,展示目标导航画面,在所述目标导航画面上显示所述目标导航路线中的当前路段所对应的渐变路况面;
    所述渐变路况面用于指示所述当前路段从第一路况变化至第二路况的过程;所述渐变路况面包括所述第一路况对应的第一路况纹理、所述第二路况对应的第二路况纹理、从所述第一路况纹理渐变至所述第二路况纹理的渐变路况纹理,所述渐变路况纹理对应的路况过渡范围是通过所述第一路况和所述第二路况对应的路况纹理和路况覆盖范围确定的。
  18. 一种路况处理装置,所述装置包括:
    路况数据获取模块,用于获取当前路段涉及的第一路况和第二路况分别对应的初始路况纹理和路况覆盖范围;
    路况过渡范围确定模块,用于基于所述第一路况和所述第二路况分别对应的初始路况纹理和路况覆盖范围,确定所述第一路况和所述第二路况之间的路况过渡范围;
    渐变路况纹理确定模块,用于将路况纹理按照从所述第一路况对应的初始路况纹理渐变调整至所述第二路况对应的初始路况纹理,得到所述路况过渡范围对应的渐变路况纹理;及
    路段纹理数据确定模块,用于基于所述初始路况纹理和对应的路况覆盖范围、所述渐变路况纹理和对应的路况过渡范围,得到所述当前路段对应的路段纹理数据;所述路段纹理数据用于生成所述当前路段对应的渐变路况面,所述渐变路况面用于指示所述当前路段从所述第一路况变化至所述第二路况的过程。
  19. 一种计算机设备,包括存储器和一个或多个处理器,所述存储器存储有计算机可读指令,所述一个或多个处理器执行所述计算机可读指令时实现权利要求1至16中任一项所述的方法的步骤。
  20. 一种计算机可读存储介质,其上存储有计算机可读指令,所述计算机可读指令被一个或多个处理器执行时实现权利要求1至16中任一项所述的方法的步骤。
  21. 一种计算机程序产品,包括计算机可读指令,该计算机可读指令被一个或多个处理器执行时实现权利要求1至16中任一项所述的方法的步骤。
PCT/CN2023/116641 2022-09-30 2023-09-04 路况展示方法、路况处理方法、装置和计算机设备 WO2024066928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211211207.4A CN117848375A (zh) 2022-09-30 2022-09-30 路况展示方法、路况处理方法、装置和计算机设备
CN202211211207.4 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024066928A1 true WO2024066928A1 (zh) 2024-04-04

Family

ID=90476089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/116641 WO2024066928A1 (zh) 2022-09-30 2023-09-04 路况展示方法、路况处理方法、装置和计算机设备

Country Status (2)

Country Link
CN (1) CN117848375A (zh)
WO (1) WO2024066928A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004607A (ja) * 2013-06-21 2015-01-08 三菱電機株式会社 ナビゲーション装置
CN108428356A (zh) * 2018-03-21 2018-08-21 东南大学 一种基于流体密度场的路况图展示及辅助驾驶应用方法
CN109425360A (zh) * 2017-08-24 2019-03-05 阿里巴巴集团控股有限公司 应用于地图中的路况显示方法、装置及显示设备
CN113223134A (zh) * 2020-02-05 2021-08-06 阿里巴巴集团控股有限公司 一种路况绘制的方法、相关装置及客户端
CN114964298A (zh) * 2022-05-23 2022-08-30 广州小鹏汽车科技有限公司 显示方法、车辆和计算机可读存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015004607A (ja) * 2013-06-21 2015-01-08 三菱電機株式会社 ナビゲーション装置
CN109425360A (zh) * 2017-08-24 2019-03-05 阿里巴巴集团控股有限公司 应用于地图中的路况显示方法、装置及显示设备
CN108428356A (zh) * 2018-03-21 2018-08-21 东南大学 一种基于流体密度场的路况图展示及辅助驾驶应用方法
CN113223134A (zh) * 2020-02-05 2021-08-06 阿里巴巴集团控股有限公司 一种路况绘制的方法、相关装置及客户端
CN114964298A (zh) * 2022-05-23 2022-08-30 广州小鹏汽车科技有限公司 显示方法、车辆和计算机可读存储介质

Also Published As

Publication number Publication date
CN117848375A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
EP2643822B1 (en) Guided navigation through geo-located panoramas
US9631942B2 (en) Providing maneuver indicators on a map
US9256983B2 (en) On demand image overlay
US9404766B2 (en) Navigation peek ahead and behind in a navigation application
CN103875024B (zh) 摄影机导航系统及方法
US9417777B2 (en) Enabling quick display transitions between indoor and outdoor map data
US20090289937A1 (en) Multi-scale navigational visualtization
US20210381846A1 (en) Methods and apparatuses for navigation guidance and establishing a three-dimensional real scene model, device and medium
US20150338974A1 (en) Definition and use of node-based points, lines and routes on touch screen devices
US20090319178A1 (en) Overlay of information associated with points of interest of direction based data services
US20130162665A1 (en) Image view in mapping
US20130314398A1 (en) Augmented reality using state plane coordinates
US20140210940A1 (en) Stereo panoramic images
CN110926334B (zh) 测量方法、装置、电子设备及存储介质
US11442596B1 (en) Interactive digital map including context-based photographic imagery
EP3645971B1 (en) Map feature identification using motion data and surfel data
Delikostidis et al. Increasing the usability of pedestrian navigation interfaces by means of landmark visibility analysis
CN108090952A (zh) 建筑物三维建模方法和装置
KR20190086032A (ko) 컨텍스트적 지도 뷰
CN116499491A (zh) 车道级地图导航方法、装置、电子设备及存储介质
US9354076B2 (en) Guiding server, guiding method and recording medium recording guiding program
KR20130137076A (ko) 실시간 관심 지역을 나타내는 3차원 지도를 제공하는 장치 및 방법
US10964112B2 (en) Candidate geometry displays for augmented reality
WO2024066928A1 (zh) 路况展示方法、路况处理方法、装置和计算机设备
US20220397413A1 (en) Augmented Reality Based Point of Interest Guide Device and Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23870168

Country of ref document: EP

Kind code of ref document: A1