WO2024066739A1 - 一种改善超薄带钢表面辊印的方法 - Google Patents

一种改善超薄带钢表面辊印的方法 Download PDF

Info

Publication number
WO2024066739A1
WO2024066739A1 PCT/CN2023/111244 CN2023111244W WO2024066739A1 WO 2024066739 A1 WO2024066739 A1 WO 2024066739A1 CN 2023111244 W CN2023111244 W CN 2023111244W WO 2024066739 A1 WO2024066739 A1 WO 2024066739A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
strip
ultra
rolling mill
roller
Prior art date
Application number
PCT/CN2023/111244
Other languages
English (en)
French (fr)
Inventor
陈爱华
李化龙
刘新院
王宇豪
刘玉君
袁良民
钱斌
李婷婷
Original Assignee
江苏省沙钢钢铁研究院有限公司
江苏沙钢集团有限公司
张家港中美超薄带科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏省沙钢钢铁研究院有限公司, 江苏沙钢集团有限公司, 张家港中美超薄带科技有限公司 filed Critical 江苏省沙钢钢铁研究院有限公司
Publication of WO2024066739A1 publication Critical patent/WO2024066739A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling

Definitions

  • the invention belongs to the technical field of steel production, and relates to a plate shape control technology for ultra-thin hot-rolled strip steel, and more specifically to a method for improving roller marks on the surface of ultra-thin strip steel.
  • the ultra-thin strip steel production process of twin-roll thin strip continuous casting is to directly cast the liquid molten steel into a cast strip with a thickness of less than 2.5mm through a pair of casting rolls rotating in opposite directions.
  • the thin cast strip is then sent to the rolling mill rolls through guide rolls and pinch rolls.
  • the rolling mill is pressed down to roll to form an ultra-thin hot-rolled strip steel product.
  • the thickness of the ultra-thin strip steel product is generally less than 1.5mm.
  • roller marks caused by the threading process mainly a threading process, galvanizing sinking roller marks, and roller marks caused by furnace bottom nodules. None of them involve the roller marks of twin-roller casting and rolling of ultra-thin strip steel. The above methods cannot be used to solve the roller marks caused by the twin-roller casting and rolling process.
  • Chinese patent CN103468919B reduces the roller marks on the steel plate surface by adjusting the temperature gradient in the quenching furnace and the swing speed of the steel plate in the furnace.
  • Chinese patent CN103710518B controls the roller nodules in the heating furnace to notify the roller marks on the steel plate surface. Both technologies solve the roller marks produced by thick plates during heat treatment.
  • Chinese patents CN106893958B and CN107779803B solve the roller marks on the strip surface during the galvanizing production process by modifying the automatic spray dust reduction system of the hopper of the galvanizing unit and detecting and modifying the sinking roller.
  • Chinese patent CN110976516B eliminates the roller marks on the surface of multi-pass hot-rolled strip by adjusting the descaling water spraying method and increasing the temperature of the strip head.
  • Chinese patent CN112986277B improves the accuracy of roller mark statistics and detection by splicing images captured by the camera, dividing them according to the circumference of the roller, and performing feature matching on sub-blocks at the same position in each divided image. The patent does not propose a method for solving the roller mark problem.
  • the purpose of the present invention is to provide a production control method for improving or even avoiding roller marks on the surface of ultra-thin strip steel.
  • the method of the present invention controls the convexity, thickness, temperature and surface state of the incoming hot-rolled material, and at the same time controls the pre-rolling tension, rolling mill pressing speed, rolling pressing amount and rolling mill cooling water volume during the hot rolling start-up pressing process, thereby effectively solving the roller mark defects of ultra-thin strip steel generated during the rolling mill pressing process after the hot rolling threading is completed, avoiding the occurrence of batch continuous roller mark defects during the production process of ultra-thin strip steel, and significantly improving the surface quality and product qualification rate of ultra-thin hot-rolled strip steel.
  • the method of the present invention also effectively reduces the economic losses caused by surface defects.
  • a method for improving the roll mark on the surface of an ultra-thin steel strip comprising:
  • the rolling speed of the hydraulic cylinder of the rolling mill is controlled within the range of 0.6 to 0.9 mm/s.
  • the step (1) further comprises: adjusting the pressure of the casting roller hydraulic cylinder to control the casting force within the range of 1500 to 4000 N; and/or controlling the casting speed within the range of 40 to 70 m/min to control the thickness of the cast strip within the range of 1.8 to 2.0 mm.
  • the step (2) further comprises: adjusting the surface profile of the casting roll and the convexity of the casting roll to control the convexity of the cast strip plate shape within the range of 40 to 65 ⁇ m.
  • the step (3) further comprises: adjusting the nitrogen flow rate in the hot box to 1000-2500 m 3 /h to control the temperature of the cast strip before entering the rolling mill to be in the range of 1050-1150°C.
  • the step (4) further comprises: controlling the air flow rate of the hot box protective atmosphere within the range of 120-160 m 3 /h.
  • the step (4) further comprises: controlling the oxide scale thickness of the cast strip before entering the rolling mill to be in the range of 7 to 13 ⁇ m.
  • the step (5) further comprises: controlling the tension of the steel strip before entering the rolling mill to be in the range of 2.0 to 3.0 MPa.
  • the step (6) further comprises: controlling the flow rate of cooling water of the rolling mill, controlling the cooling water volume of the rolling mill within the range of 65-80% to accelerate the establishment of thermal convexity of the rolling mill.
  • the step (7) further comprises: controlling the roll gap of the rolling mill to control the initial rolling reduction within the range of 18% to 25%.
  • the step (8) further comprises: controlling the opening rolling reduction rate of the hot rolling mill to be in the range of 0.7 to 0.85 mm/s.
  • step (7) or step (8) further comprises: adjusting the surface profile of the roller to control the roller crown to 40 to 90 ⁇ m.
  • a hot-rolled thin steel strip is provided, wherein the above-mentioned method is used to control the roller mark on the surface of the hot-rolled thin steel strip during the production process.
  • the roll mark failure rate of the hot-rolled ultra-thin steel strip is not higher than 1.0%.
  • the technical advantages and beneficial technical effects of the present invention include at least:
  • the method of the present invention controls the performance of the ultra-thin cast strip and the parameters of the rolling reduction.
  • the technical problem of roll marks during the twin-roll casting process is effectively solved. More specifically, the method of the present invention avoids roll marks during the production of ultra-thin strip steel by adjusting parameters such as cast strip thickness, cast strip convexity, cast strip temperature, hot box air flow, pre-rolling tension, mill cooling water volume, mill start-rolling reduction amount and reduction rate.
  • FIG1 shows a schematic diagram of roller printing on the surface of ultra-thin steel strip in the prior art
  • FIG2 is a schematic diagram showing the surface of the ultra-thin steel strip after being improved by the method of the present invention.
  • the thickness of the cast strip is extremely thin.
  • the hot rolling mill produces compressive stress deformation on the thin strip steel at high temperature during the pressing process, which can easily cause uneven rolling of the wide strip steel along the width direction.
  • the strip steel is severely squeezed locally, causing rupture or waves, causing trauma to the surface of the rolls, and then pressed onto the surface of the hot-rolled thin strip steel again, forming continuous batches of roll marks, as shown in Figure 1.
  • the qualified molten steel is cast into a continuous cast strip through a pair of rotating casting rollers.
  • the casting force is controlled to be 1600N and the casting speed is 65m/min.
  • the cast strip with a thickness of 1.86mm is obtained.
  • the convexity of the cast strip is controlled to be 58um. After the cast strip is led out of the casting roller, it enters the hot rolling mill through the hot box.
  • the nitrogen flow rate in the hot box is adjusted to 1390m3/h
  • the temperature of the cast strip before entering the rolling mill is controlled to be 1080°C
  • the oxygen flow rate in the hot box is adjusted to 150m3/h
  • the oxide scale with a thickness of 10um is formed on the surface of the cast strip before entering the rolling mill.
  • the strip tension before rolling is adjusted to 2.2MPa.
  • the convexity of the roll is controlled to be 65um through the pre-designed roll profile.
  • the cooling water volume of the rolling mill is adjusted to 65%
  • the hydraulic cylinder of the rolling mill is adjusted
  • the rolling reduction is controlled to be 20%
  • the rolling reduction rate is 0.82mm/s.
  • the surface of the ultra-thin steel strip produced by twin-roll casting according to this embodiment is smooth and has no continuous roll mark defects, as shown in Figure 2. Furthermore, after the method of Example 1 is improved, the roll mark judgment rate is 0.6%.
  • the qualified molten steel is cast into a continuous cast strip through a pair of rotating casting rollers.
  • the casting force is controlled to be 3800N and the casting speed is 55m/min.
  • the cast strip with a thickness of 1.82mm is obtained.
  • the convexity of the cast strip is controlled to be 46um. After the cast strip is led out of the casting roller, it enters the hot rolling mill through the hot box.
  • the nitrogen flow rate in the hot box is adjusted to 1980m3/h
  • the temperature of the cast strip before entering the rolling mill is controlled to be 1105°C
  • the oxygen flow rate in the hot box is adjusted to 130m3/h
  • the oxide scale with a thickness of 8um is formed on the surface of the cast strip before entering the rolling mill.
  • the pre-rolling strip tension is adjusted to 2.9MPa.
  • the convexity of the roll is controlled to be 51um through the pre-designed roll profile.
  • the cooling water volume of the rolling mill is adjusted to 78%
  • the hydraulic cylinder of the rolling mill is adjusted
  • the rolling reduction is controlled to be 24%
  • the rolling reduction rate is 0.80mm/s.
  • the surface of the ultra-thin steel strip produced by twin-roll casting according to this embodiment is smooth and has no continuous roll mark defects. After the method of embodiment 2 is improved, the roll mark judgment rate is 0.5%.
  • the qualified molten steel is cast into a continuous cast strip through a pair of rotating casting rollers.
  • the casting force is controlled to be 2600N and the casting speed is 48m/min.
  • the cast strip with a thickness of 1.89mm is obtained.
  • the convexity of the cast strip is controlled to be 62um.
  • the nitrogen flow rate in the hot box is adjusted to 2350m3/h
  • the temperature of the cast strip before entering the rolling mill is controlled to be 1145°C
  • the oxygen flow rate in the hot box is adjusted to 155m3/h
  • the oxide scale with a thickness of 12um is formed on the surface of the cast strip before entering the rolling mill.
  • the strip tension before rolling is adjusted to 2.6MPa.
  • the convexity of the roll is controlled to be 86um through the pre-designed roll profile.
  • the cooling water volume of the rolling mill was adjusted to 72%
  • the hydraulic cylinder of the rolling mill was adjusted
  • the rolling reduction was controlled to 22%
  • the rolling reduction rate was 0.71 mm/s.
  • the surface of the ultra-thin strip steel produced by twin-roll casting according to this embodiment was smooth and free of continuous roll mark defects. After the method of embodiment 3 was improved, the roll mark judgment rate was 0.2%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Continuous Casting (AREA)

Abstract

一种改善超薄带钢表面辊印的方法,通过调整铸带厚度至1.8~2.0mm、铸带凸度至35~80μm、铸带温度至1050~1200℃、热箱空气流量至100~200m 3/h、轧机前带钢张力至2.0~3.5MPa、开轧压下量至15~25%、开轧压下速率至0.6~0.9mm/s,至少改善、甚至避免了双辊铸轧生产超薄带钢的辊印缺陷。

Description

一种改善超薄带钢表面辊印的方法 技术领域
本发明属于钢铁生产技术领域,涉及超薄热轧带钢板形控制技术,更具体涉及一种改善超薄带钢表面辊印的方法。
背景技术
双辊薄带连铸的超薄带钢生产工艺,是将液态钢水经过一对相向旋转的铸辊直接浇铸成厚度在2.5mm以下的铸带,成带的薄铸带随后经过导向辊和夹送辊送至轧机的轧辊之间,当薄带钢进入卷取机并建立卷取张力后,轧机压下进行轧制形成超薄热轧带钢产品,超薄带钢产品的厚度一般在1.5mm以下。
由于铸带厚度极薄,热轧轧制的难度大幅增加,轧机压下过程中,极易造成薄带钢轧碎,损伤轧辊,在后续的轧制过程中,轧辊表面缺陷复制到轧带表面,形成连续辊印。通常此类缺陷在整个双辊铸轧生产过程中持续约400吨产品,形成严重的生产质量问题。
目前,国内关于辊印问题的研究主要集中在多机架热连轧、镀锌过程、热处理炉内等方面,主要解决由于穿带过程导致的辊印、镀锌沉没辊印、炉底结瘤导致的辊印等方面,均未涉及双辊铸轧超薄带钢开轧辊印方面,而上述的方法均不能用于解决双辊铸轧开轧过程产生的辊印。
中国专利CN103468919B通过调整淬火炉内温度梯度和钢板在炉内的摇摆速度减少钢板表面辊印,中国专利CN103710518B通过控制加热炉内辊道结瘤来通知钢板表面的辊印,这两种技术均解决的是厚板在热处理过程中产生的辊印问题。中国专利CN106893958B和中国专利CN107779803B分别通过对镀锌机组的料斗自动喷淋降尘系统改造、沉没辊进行检测改造解决镀锌生产过程中带钢表面的辊印。中国专利CN110976516B通过调整除鳞水喷淋方式,提高带钢头部温度的方法来消除多道次热连轧带钢表面辊印。中国专利CN112986277B通过将相机采集的图像进行拼接,按轧辊周长进行切分,针对各切分图中同一位置的子区块进行特征匹配,提高辊印统计和检测的准确性,该专利未提出如何解决辊印的方法。
可见,现有技术中,对辊印的解决均集中在热连轧、镀锌、平整等生产工序,而对双辊铸轧工艺的一道次热轧生产过程,特别是开轧的辊印问题,均未有相关解决方案披露。因此可以说,双辊铸轧生产超薄热轧带钢表面辊印的解决技术仍属于本领域的技术空缺。
发明内容
本发明的目的是提供一种改善、甚至避免超薄带钢表面辊印的生产控制方法。本发明的方法,通过对一道次热轧来料的凸度、厚度、温度以及表面状态进行控制,同时对热轧开轧压下过程中的轧前张力、轧机压下速度、轧制压下量、轧机冷却水量进行控制,有效解决了超薄带钢在热轧穿带完成后,轧机压下过程中产生的辊印缺陷,避免了超薄带钢生产过程中批量性连续性辊印缺陷的发生,显著提高了超薄热轧带钢表面质量和产品合格率。同时,本发明的方法,还有效降低了由于表面缺陷造成的经济损失。
本发明的目的是通过下述技术方案来实现的:
根据本发明的第一方面,提出了一种改善超薄带钢表面辊印的方法,所述方法包括:
在双辊连铸过程中:
(1)将铸带厚度控制在1.8~2.0mm的范围;
(2)将铸带的凸度控制在35~80μm的范围;
在铸带进入热轧机前:
(3)将铸带温度控制在1050~1200℃的范围;
(4)将热箱保护气氛的空气流量控制在100~200m3/h的范围;
(5)将轧机前带钢张力控制在2.0~3.5MPa的范围;
在热轧机轧制压下过程中:
(6)将轧机冷却水量控制在50~80%的范围;
(7)将开轧压下量控制在15%~25%的范围;
(8)将轧机液压缸开轧压下速率控制在0.6~0.9mm/s的范围。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(1)进一步包括:调整铸辊液压缸的压力,以控制铸轧力在1500~4000N的范围;和/或控制浇铸速度在40~70m/min的范围,以将铸带厚度控制在1.8~2.0mm的范围。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(2)进一步包括:调整铸辊表面轮廓和铸辊辊型凸度,以将铸带板形凸度控制在40~65μm的范围。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(3)进一步包括:调整热箱内氮气流量在1000~2500m3/h,以控制铸带在进入轧机前的温度在1050~1150℃的范围。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(4)进一步包括:将热箱保护气氛的空气流量控制在120~160m3/h的范围。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(4)进一步包括:将铸带进入轧机前的氧化皮厚度控制在7~13μm的范围。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(5)进一步包括:将进入轧机前的带钢张力控制在2.0~3.0MPa的范围。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(6)进一步包括:控制轧机冷却水流量,将轧机冷却水量控制在65~80%的范围,以加快轧辊热凸度的建立。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(7)进一步包括:控制轧机辊缝,以将开轧压下量控制在18%~25%的范围。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(8)进一步包括:将热轧机的开轧压下速率控制在0.7~0.85mm/s的范围。
根据本发明的改善超薄带钢表面辊印的方法,优选地,所述步骤(7)或步骤(8)进一步包括:调整轧辊表面轮廓,将轧辊凸度控制在40~90μm。
根据本发明的第二方面,提出了一种热轧薄带钢,所述热轧薄带钢在生产过程中采用前述方法对表面的辊印进行控制。
根据本发明的热轧薄带钢,优选地,所述热轧超薄带钢的辊印判次率不高于1.0%。
有益技术效果
与现有技术相比,本发明的技术优势及有益技术效果至少包括:
本发明的方法,通过对超薄铸带的性能和开轧压下参数等进行控制, 有效解决了双辊铸轧过程中开轧辊印的技术问题。更具体而言,本发明的方法通过调整铸带厚度、铸带凸度、铸带温度、热箱空气流量、轧前张力、轧机冷却水量、轧机开轧压下量和压下速率等参数,避免双辊铸轧生产超薄带钢的辊印缺陷。
附图说明
为了更清楚地介绍本发明的实施例的技术方案,下面将对实施例的附图作简单的介绍。显而易见,下面描述中的附图仅仅涉及本发明的一些实施案例,而非对本发明的限制。
图1示出了现有技术中的超薄带钢表面辊印示意图;
图2示出了本发明的方法改善后的超薄带钢表面示意图。
具体实施方式
为了使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另作定义,本发明所使用的技术术语或科学术语应当为本发明所属领域具有一般技能的人士所理解的通常意义。
双辊铸轧生产薄带钢时,铸带厚度极薄,进入热轧机后,热轧机压下过程对薄带钢在高温下产生压应力变形,极易造成宽带钢沿宽度方向的轧制不均匀,带钢局部受挤压严重,造成破裂,或者波浪,对轧辊表面形成创伤,并再次压到热轧薄带钢表面,形成连续批量的辊印,如图1所示。
实施例1
将冶炼合格的钢水经过一对旋转的铸辊浇铸成连续铸带,控制铸轧力大小为1600N,浇铸速度为65m/min,得到厚度为1.86mm的铸带,根据调整的铸辊表面轮廓,控制所得到的铸带凸度为58um。铸带导出铸辊后,经过热箱进入热轧机。在轧辊压下前,调整热箱内氮气流量为1390m3/h,控制铸带进入轧机前的温度为1080℃,调整热箱内氧气流量为150m3/h,控制铸带进入轧机前在表面形成厚度为10um的氧化皮,同时调整轧前带钢张力为2.2MPa。通过事先设计的轧辊辊型轮廓,控制轧辊的凸度为65um。在开轧压下过程中,调整轧机冷却水量为65%,调整轧机液压缸形成,控制开轧压下量为20%,开轧压下速率为0.82mm/s。按照本实施例进行双辊铸轧生产的超薄带钢表面光滑,无连续辊印缺陷,如图2所示。进一步,实施例1的方法改善后,辊印判次率为0.6%。
实施例2
将冶炼合格的钢水经过一对旋转的铸辊浇铸成连续铸带,控制铸轧力大小为3800N,浇铸速度为55m/min,得到厚度为1.82mm的铸带,根据调整的铸辊表面轮廓,控制所得到的铸带凸度为46um。铸带导出铸辊后,经过热箱进入热轧机。在轧辊压下前,调整热箱内氮气流量为1980m3/h,控制铸带进入轧机前的温度为1105℃,调整热箱内氧气流量为130m3/h,控制铸带进入轧机前在表面形成厚度为8um的氧化皮,同时调整轧前带钢张力为2.9MPa。通过事先设计的轧辊辊型轮廓,控制轧辊的凸度为51um。在开轧压下过程中,调整轧机冷却水量为78%,调整轧机液压缸形成,控制开轧压下量为24%,开轧压下速率为0.80mm/s。按照本实施例进行双辊铸轧生产的超薄带钢表面光滑,无连续辊印缺陷。实施例2的方法改善后,辊印判次率为0.5%。
实施例3
将冶炼合格的钢水经过一对旋转的铸辊浇铸成连续铸带,控制铸轧力大小为2600N,浇铸速度为48m/min,得到厚度为1.89mm的铸带,根据调整的铸辊表面轮廓,控制所得到的铸带凸度为62um。铸带导出铸辊后,经过热箱进入热轧机。在轧辊压下前,调整热箱内氮气流量为2350m3/h,控制铸带进入轧机前的温度为1145℃,调整热箱内氧气流量为155m3/h,控制铸带进入轧机前在表面形成厚度为12um的氧化皮,同时调整轧前带钢张力为2.6MPa。通过事先设计的轧辊辊型轮廓,控制轧辊的凸度为86um。 在开轧压下过程中,调整轧机冷却水量为72%,调整轧机液压缸形成,控制开轧压下量为22%,开轧压下速率为0.71mm/s。按照本实施例进行双辊铸轧生产的超薄带钢表面光滑,无连续辊印缺陷。实施例3的方法改善后,辊印判次率为0.2%。
以上所述仅是本发明的具体实施方式,应该指出,对于本技术领域的普通技术人员来说,不在脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明保护的范围。

Claims (13)

  1. 一种改善超薄带钢表面辊印的方法,其特征在于,所述方法包括:
    在双辊连铸过程中:
    (1)将铸带厚度控制在1.8~2.0mm的范围;
    (2)将铸带的凸度控制在35~80μm的范围;
    在铸带进入热轧机前:
    (3)将铸带温度控制在1050~1200℃的范围;
    (4)将热箱保护气氛的空气流量控制在100~200m3/h的范围;
    (5)将轧机前带钢张力控制在2.0~3.5MPa的范围;
    在热轧机轧制压下过程中:
    (6)将轧机冷却水量控制在50~80%的范围;
    (7)将开轧压下量控制在15%~25%的范围;
    (8)将轧机液压缸开轧压下速率控制在0.6~0.9mm/s的范围。
  2. 根据权利要求1所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(1)进一步包括:
    调整铸辊液压缸的压力,以控制铸轧力在1500~4000N的范围;和/或
    控制浇铸速度在40~70m/min的范围,
    以将铸带厚度控制在1.8~2.0mm的范围。
  3. 根据权利要求1所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(2)进一步包括:
    调整铸辊表面轮廓和铸辊辊型凸度,以将铸带板形凸度控制在40~65μm的范围。
  4. 根据权利要求1所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(3)进一步包括:
    调整热箱内氮气流量在1000~2500m3/h,以控制铸带在进入轧机前的温度在1050~1150℃的范围。
  5. 根据权利要求1所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(4)进一步包括:
    将热箱保护气氛的空气流量控制在120~160m3/h的范围。
  6. 根据权利要求1所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(4)进一步包括:
    将铸带进入轧机前的氧化皮厚度控制在7~13μm的范围。
  7. 根据权利要求1所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(5)进一步包括:
    将进入轧机前的带钢张力控制在2.0~3.0MPa的范围。
  8. 根据权利要求1所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(6)进一步包括:
    控制轧机冷却水流量,将轧机冷却水量控制在65~80%的范围,以加快轧辊热凸度的建立。
  9. 根据权利要求1所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(7)进一步包括:
    控制轧机辊缝,以将开轧压下量控制在18%~25%的范围。
  10. 根据权利要求1所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(8)进一步包括:
    将热轧机的开轧压下速率控制在0.7~0.85mm/s的范围。
  11. 根据权利要求9或10所述的改善超薄带钢表面辊印的方法,其特征在于,所述步骤(7)或步骤(8)进一步包括:
    调整轧辊表面轮廓,将轧辊凸度控制在40~90μm。
  12. 一种热轧薄带钢,其特征在于,所述热轧薄带钢在生产过程中采用根据权利要求1-11中任一项所述的方法控制辊印。
  13. 根据权利要求12所述的热轧薄带钢,其特征在于,所述热轧超薄带钢的辊印判次率不高于1.0%。
PCT/CN2023/111244 2022-09-27 2023-08-04 一种改善超薄带钢表面辊印的方法 WO2024066739A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211185722.XA CN115625199A (zh) 2022-09-27 2022-09-27 一种改善超薄带钢表面辊印的方法
CN202211185722.X 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024066739A1 true WO2024066739A1 (zh) 2024-04-04

Family

ID=84905127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/111244 WO2024066739A1 (zh) 2022-09-27 2023-08-04 一种改善超薄带钢表面辊印的方法

Country Status (2)

Country Link
CN (1) CN115625199A (zh)
WO (1) WO2024066739A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115625199A (zh) * 2022-09-27 2023-01-20 张家港中美超薄带科技有限公司 一种改善超薄带钢表面辊印的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072498A (ko) * 2010-12-24 2012-07-04 주식회사 포스코 쌍롤식 박판 주조 공정에 의한 내크랙성 마르텐사이트계 스테인리스 열연박판 제조용 압연롤 및 그 압연롤을 이용한 내크랙성 마르텐사이트계 스테인리스 열연박판의 제조 방법
CN107186185A (zh) * 2017-04-27 2017-09-22 酒泉钢铁(集团)有限责任公司 一种双相不锈钢双辊薄带铸轧生产工艺
CN109731913A (zh) * 2019-02-21 2019-05-10 江苏沙钢集团有限公司 一种降低双辊连铸产线轧机轧制力的方法
CN110976516A (zh) * 2019-12-30 2020-04-10 唐山市德龙钢铁有限公司 一种消除热轧带钢表面辊印的轧制方法
CN112296285A (zh) * 2020-09-18 2021-02-02 江苏沙钢集团有限公司 一种改善双辊铸轧薄带褶皱的方法
CN114850212A (zh) * 2022-04-27 2022-08-05 首钢智新迁安电磁材料有限公司 一种消除冷轧过程中带钢表面辊印缺陷的方法
CN115625199A (zh) * 2022-09-27 2023-01-20 张家港中美超薄带科技有限公司 一种改善超薄带钢表面辊印的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072498A (ko) * 2010-12-24 2012-07-04 주식회사 포스코 쌍롤식 박판 주조 공정에 의한 내크랙성 마르텐사이트계 스테인리스 열연박판 제조용 압연롤 및 그 압연롤을 이용한 내크랙성 마르텐사이트계 스테인리스 열연박판의 제조 방법
CN107186185A (zh) * 2017-04-27 2017-09-22 酒泉钢铁(集团)有限责任公司 一种双相不锈钢双辊薄带铸轧生产工艺
CN109731913A (zh) * 2019-02-21 2019-05-10 江苏沙钢集团有限公司 一种降低双辊连铸产线轧机轧制力的方法
CN110976516A (zh) * 2019-12-30 2020-04-10 唐山市德龙钢铁有限公司 一种消除热轧带钢表面辊印的轧制方法
CN112296285A (zh) * 2020-09-18 2021-02-02 江苏沙钢集团有限公司 一种改善双辊铸轧薄带褶皱的方法
CN114850212A (zh) * 2022-04-27 2022-08-05 首钢智新迁安电磁材料有限公司 一种消除冷轧过程中带钢表面辊印缺陷的方法
CN115625199A (zh) * 2022-09-27 2023-01-20 张家港中美超薄带科技有限公司 一种改善超薄带钢表面辊印的方法

Also Published As

Publication number Publication date
CN115625199A (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
WO2024066739A1 (zh) 一种改善超薄带钢表面辊印的方法
CN109234495B (zh) 一种低圧缩比高探伤要求SM4Gr2MnNi模具钢板的连铸生产工艺
WO2020052625A1 (zh) 一种超薄热轧带钢的生产方法
WO2022057924A1 (en) Controlling surface wrinkles on thin strip produced by twin roll casting and hot rolling
WO2020030040A1 (en) Production of twin-roll cast and hot rolled steel strip
CN110216151B (zh) 一种消除短流程极薄带钢飞翘的控制方法
CN109967528B (zh) 一种防止热轧带钢sphc高温卷取刮伤的方法
CN112246869B (zh) 一种优异热轧取向硅钢板形的控制方法
WO2020169078A1 (zh) 一种改善双辊连铸轧带表面质量的轧制方法
CN107142364A (zh) 一种超纯铁素体不锈钢双辊薄带铸轧生产工艺
CN107186185A (zh) 一种双相不锈钢双辊薄带铸轧生产工艺
CN102921750A (zh) 一种消除带钢表面亮带的方法
CN100360249C (zh) 超薄铝箔的短流程生产工艺
CN111420989A (zh) 生产中厚钢板的方法及系统
JP2003062647A (ja) 連続鋳造鋳片の直送圧延方法
WO2021258578A1 (zh) 一种连铸连轧的薄带生产工艺
CN109226260B (zh) 一种避免超低碳钢边部毛刺缺陷的方法
CN109092895B (zh) 一种钢筋连铸连轧系统以及钢筋连铸连轧生产方法
CN113549744B (zh) 一种高硅铝成分钢板生产方法
CN114058966B (zh) 基于三辊连铸机制备高硅无取向电工薄带钢的方法
WO2021175242A1 (en) Boron-added steel and production method thereof
CN110280601B (zh) 6mm以下厚度规格高强度钢的轧制过程板型控制方法
CN113042695A (zh) 一种厚板坯角部裂纹控制工艺
JPS61206506A (ja) 熱延鋼板製造設備
JPS61206507A (ja) 冷延鋼板製造設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869985

Country of ref document: EP

Kind code of ref document: A1