WO2024066577A1 - 电池热管理系统、电池包和车辆 - Google Patents

电池热管理系统、电池包和车辆 Download PDF

Info

Publication number
WO2024066577A1
WO2024066577A1 PCT/CN2023/103968 CN2023103968W WO2024066577A1 WO 2024066577 A1 WO2024066577 A1 WO 2024066577A1 CN 2023103968 W CN2023103968 W CN 2023103968W WO 2024066577 A1 WO2024066577 A1 WO 2024066577A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
management system
conductive shell
thermal management
pulse
Prior art date
Application number
PCT/CN2023/103968
Other languages
English (en)
French (fr)
Inventor
程晗
王信月
熊明
袁万颂
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2024066577A1 publication Critical patent/WO2024066577A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals

Definitions

  • the present application belongs to the field of battery heating technology, and specifically relates to a battery thermal management system, a battery pack and a vehicle.
  • the heating plates arranged on the module frame generally only heat the bottom or side of the battery, but cannot heat the large surface with the highest heat transfer efficiency, and will occupy additional space and reduce space utilization.
  • the heating plate inside the battery has the problem of contamination in the battery after the plastic coating of the metal heating plate is damaged, which is easy to cause safety accidents, and also has the defect of occupying the space inside the battery.
  • the present application aims to solve one of the technical problems in the related art at least to some extent.
  • one purpose of the present application is to propose a battery thermal management system to solve the problem that the heating device in the existing battery thermal management system occupies the internal space of the battery and has low heat conduction efficiency.
  • Another objective of the present application is to provide a battery pack.
  • Another purpose of the present application is to provide a vehicle
  • the present application provides a battery thermal management system, including a battery and a pulse charging and discharging device, wherein the battery includes a pole core and a conductive shell, wherein the conductive shell is arranged on the periphery of the pole core, and the pulse charging and discharging device is electrically connected to the battery, wherein the pulse charging and discharging device is used to perform pulse charging and discharging on the battery to generate a changing magnetic field, the conductive shell is located in the changing magnetic field, and the conductive shell is used to generate an induced current and heat the pole core.
  • a changing magnetic field is generated when the battery is pulse charged/discharged.
  • the magnetic field causes the conductive shell located in the magnetic field to generate an induced electromotive force and an induced current.
  • the induced current generated by the conductive shell forms an eddy current effect, generates heat energy, and begins to heat the battery core.
  • the conductive shell is arranged on the periphery of the core, the heat transfer area is large, which improves the thermal conductivity efficiency. When the conductive shell is heated, it can effectively heat the position with the lowest core temperature.
  • the heating power of the battery can be freely adjusted by controlling the frequency and current of the pulse charge/discharge of the pulse charge and discharge device.
  • the conductive shell heats the battery core, the battery has little impact on other external systems (other batteries, package and module structural parts, and electrical and thermal management systems).
  • FIG1 is a schematic diagram of a battery pulse discharge state of a battery thermal management system provided by an embodiment of the present application
  • FIG. 2 is a diagram of energy conversion during heating of a battery thermal management system provided in an embodiment of the present application.
  • an embodiment of the present application provides a battery thermal management system, including a battery and a pulse charge and discharge device, wherein the battery includes a pole core and a conductive shell 1, wherein the conductive shell 1 is arranged on the periphery of the pole core for accommodating the pole core, and the pulse charge and discharge device is electrically connected to the battery, wherein the pulse charge and discharge device is used to perform pulse charge and discharge on the battery to generate a changing magnetic field, the conductive shell is located in the changing magnetic field, and the conductive shell is used to generate an induced current and heat the pole core.
  • the pulse charge and discharge device is used to generate a changing current to charge the battery, or to control the battery to discharge according to a changing current.
  • a changing magnetic field is generated when the battery is pulse charged/discharged.
  • the changing magnetic field causes the conductive shell 1 located in the magnetic field to generate an induced electromotive force and an induced current.
  • the induced current generated by the conductive shell 1 forms an eddy current effect, generates heat energy, and begins to heat the battery's pole core.
  • the conductive shell 1 is arranged on the periphery of the pole core, the heat transfer area is large, which improves the thermal conductivity efficiency. When the conductive shell 1 is heated and started, it can effectively heat the position of the pole core with the lowest temperature.
  • the heating power of the battery can be freely adjusted by controlling the frequency and current of the pulse charge/discharge of the pulse charge and discharge device.
  • Conductive shell 1 When the battery core is heated, the battery has little impact on other external systems (other batteries, package and module structural parts, and electrical and thermal management systems).
  • the heating effect on the side close to the core is better than the heating effect on the side far from the core. Therefore, the battery thermal management system disclosed in this application can further reduce the impact of the heated battery on other batteries and make the heating more concentrated.
  • applying alternating current to the battery can not only perform eddy current heating, but also assist in self-heating due to the application of alternating current, and the heating effect is more obvious.
  • the current path inside the pole core during the battery charge/discharge process can be simplified to a current direction 2 perpendicular to the cross section of the battery shell.
  • the current I represented by the current direction 2 changes, a changing magnetic field will be generated.
  • Maxwell's equations which are composed of Gauss's theorem of electric field, electric field circulation law, Gauss's theorem of magnetic field and Ampere's circuit law.
  • the mathematical expression is as follows:
  • is the charge density, in C/m 3 ;
  • the electromagnetic induction heating in this embodiment is a quasi-steady electromagnetic field
  • the frequency is much lower than the radio and optical high-frequency electromagnetic field frequency, so the equations It is much smaller than the current density, and the displacement current density can be ignored. Therefore, the Maxwell equations are transformed into differential form, and the simplified formula is as follows:
  • ⁇ 0 is the magnetic permeability of vacuum (4 ⁇ 10 ⁇ (-7)N/A2).
  • Total current density Source current density That is, the pulse current density and eddy current density applied to the battery by the pulse charge and discharge device and magnetic induction intensity The relationship between them is as follows:
  • the current density in the eddy current heating area corresponds to the heating power at each point during the induction heating process:
  • the magnetic field vector It reflects the induced source current I for the induced eddy current density
  • is the magnetic permeability of the conductive shell 1 material, in units of H/m;
  • is the dielectric constant, with the unit of F/m.
  • the pulse discharge frequency applied to the battery by the pulse charge and discharge device is greater than 10 Hz.
  • the pulse discharge frequency applied by the pulse charge and discharge device to the battery is 10 Hz to 10000 Hz.
  • the pulse discharge frequency is lower than 10 Hz, the heat generation power of the conductive shell 1 is too small and the heating efficiency is low.
  • the cost is too high.
  • the range of the pulse current is applicable to lithium-ion batteries at -10°C.
  • the maximum value of k needs to be reduced as appropriate based on actual conditions.
  • the k value is less than 0.3, the pulse current I is small, the heat generation power of the conductive shell 1 is too low, and the heating rate is too slow.
  • the k value is greater than 20, it is difficult to discharge lithium-ion batteries due to their high internal resistance and large polarization at low temperatures.
  • the ratio of the relative magnetic permeability ⁇ r to the resistivity ⁇ of the conductive shell 1 is 500 ⁇ r / ⁇ 5 x 106 , where the unit of ⁇ is 10-6 ⁇ m.
  • the ratio of the relative magnetic permeability ⁇ r to the resistivity ⁇ of the conductive shell 1 can be any value among 500, 1000, 5000, 8000, 30000, 170000, 1 x 106 , 3 x 106 , 5 x 106 , etc., as long as the ratio of the relative magnetic permeability ⁇ r to the resistivity ⁇ of the conductive shell 1 is between 500 and 5 x 106.
  • the induced current generated by the conductive shell 1 is larger, thereby increasing the heating power.
  • the ratio of the relative magnetic permeability ⁇ r to the resistivity ⁇ of the material of the conductive shell 1 is less than 500, in the changing magnetic field generated by the pulse charging and discharging of the battery, the induced current generated by the conductive shell 1 is too small or basically negligible, so the eddy current heating power is too small or negligible or offsets the heat dissipation of the battery itself.
  • the conductive shell 1 is made of a material selected from an iron-based soft magnetic alloy, which includes one or more of silicon steel, soft magnetic stainless steel, Permalloy, low carbon soft steel, amorphous soft magnetic alloy and nanocrystalline soft magnetic alloy.
  • an iron-based soft magnetic alloy which includes one or more of silicon steel, soft magnetic stainless steel, Permalloy, low carbon soft steel, amorphous soft magnetic alloy and nanocrystalline soft magnetic alloy.
  • the ⁇ r / ⁇ ratio of common silicon steel is between 8000 and 30000; the ⁇ r / ⁇ ratio of Permalloy is between 35000 and 170000; the ⁇ r / ⁇ ratio of some types of iron-based nanocrystalline alloys is between 0.8 ⁇ 10 6 and 2 ⁇ 10 6 .
  • the Si content is between 0.2% and 5%, and the rest is Fe and a small amount of other elements (mass fraction of a single element ⁇ 1%) used to improve material properties, which is a ferrosilicon alloy.
  • the Cr content is 10-19%
  • the Si content is 0.5-3%
  • the rest is Fe and a small amount of other elements used to improve material properties.
  • the amorphous soft magnetic alloy is selected from one or more of an iron-based amorphous alloy and an iron-nickel-based amorphous alloy. Specifically, in the iron-based amorphous alloy, Fe accounts for 80% by weight, and Si and B elements account for 20% by weight. In the iron-nickel-based amorphous alloy, Ni accounts for 40% by weight, Fe accounts for 40% by weight, and 20% is other metal elements used to improve performance.
  • the nanocrystalline soft magnetic alloy is selected from an iron-based nanocrystalline alloy.
  • the iron-based nanocrystalline alloy is mainly composed of Fe, with a small amount of Nb, Cu, Si, and B elements added to form an amorphous material formed by a rapid solidification process and then subjected to heat treatment.
  • the thickness of the conductive shell 1 is T, where 0 ⁇ T ⁇ ,
  • is the skin effect penetration depth, in mm
  • K 0 is the skin effect penetration depth coefficient
  • the unit of ⁇ is ⁇ m
  • f is the pulse discharge frequency, in Hz.
  • the present application reduces the waste of conductive shell materials by controlling the thickness of the conductive shell, improves heating efficiency, and reduces the impact of single cells on other external systems (other batteries, package and module structural parts, and electrical and thermal management systems) during heating.
  • K 0 is related to the shape of the shell, generally a cylinder is 50300, while other special shapes have different effects.
  • a cylindrical battery is taken as an example for description.
  • the conductive shell 1 includes a cover plate and an outer shell, the pole core is accommodated in the outer shell, the cover plate is used to seal the outer shell, and the thickness of the outer shell is T.
  • the thickness of the outer shell is limited to reduce the cost of the battery cell while ensuring the heating of the battery cell, thereby improving the overall energy density and battery space utilization.
  • the battery includes a positive electrode column and a negative electrode column, and the positive electrode column and the negative electrode column are respectively arranged at two ends of the conductive shell 1 and are electrically connected to the pole core. It should be noted here that the positive electrode column and the negative electrode column can also be arranged side by side at one end of the conductive shell 1.
  • an embodiment of the present application also provides a battery pack, including the battery thermal management system described in any of the above embodiments.
  • the battery pack since the battery cells are connected in series or parallel, the battery pack only needs to apply a changing current to the total positive and total negative to achieve self-heating of all the battery cells, and the heating is relative to the external components.
  • This embodiment is more uniform for the battery pack, and each battery cell can be self-heated by the shell.
  • the heating power difference between batteries at different assembly positions in the battery pack is small, the thermal management system of the entire battery pack is simple and direct, and the space utilization rate is high.
  • an embodiment of the present application further provides a vehicle, comprising the battery thermal management system described in any one of the above embodiments.
  • the battery thermal management system includes a battery and a pulse charging and discharging device.
  • the capacity of the battery is 100Ah.
  • the pulse charging and discharging frequency applied to the battery by the pulse charging and discharging device is 500Hz, and the pulse current is 500A.
  • the material of the conductive shell 1 is silicon steel, and the ratio of the relative magnetic permeability ⁇ r to the resistivity ⁇ is approximately 10000.
  • Embodiment 1 is used to illustrate the heating efficiency of the battery thermal management system disclosed in the present application.
  • the difference from Embodiment 1 is that the pulse charge and discharge frequency applied to the battery by the pulse charge and discharge device is 1000 Hz.
  • This embodiment is used to illustrate the heating efficiency of the battery thermal management system disclosed in this application.
  • the difference from embodiment 1 is Yu:
  • the pulse current is 350A.
  • This embodiment is used to illustrate the heating efficiency of the battery thermal management system disclosed in the present application, and is different from Embodiment 1 in that the ratio of the relative magnetic permeability ⁇ r to the resistivity ⁇ is approximately 500.
  • Embodiment 1 This embodiment is used to illustrate the heating efficiency of the battery thermal management system disclosed in this application.
  • the difference from Embodiment 1 is that the pulse charge and discharge frequency applied to the battery by the pulse charge and discharge device is 7500 Hz, the pulse current is 1500 A, and the ratio of relative magnetic permeability ⁇ r to resistivity ⁇ is approximately 500.
  • This comparative example is used to illustrate the heating efficiency of the battery thermal management system disclosed in the present application.
  • the difference from Example 1 is that the conductive shell material is an aluminum alloy material, and the ratio of the relative magnetic permeability ⁇ r to the resistivity ⁇ is 24.
  • This comparative example is used to illustrate the heating efficiency of the battery thermal management system disclosed in the present application.
  • the difference from Example 1 is that the pulse charging and discharging frequency applied to the battery by the pulse charging and discharging device is 7500 Hz, the pulse current is 1500 A, the conductive shell material is aluminum alloy, and the ratio of relative magnetic permeability ⁇ r to resistivity ⁇ is 24.
  • Test method Arrange the temperature sampling point inside the battery to be tested, at the center of the battery core. Ensure that the starting temperature and test environment are the same, and after heating for the same time (300s), record the temperature of the temperature sampling points of different embodiments/comparative examples. Repeat the above 10 times and take the average value.
  • Example 1 According to the test results of Example 1 and Comparative Example 1, the ratio of the relative magnetic permeability to the resistivity of the conductive shell is too small, the heating efficiency is reduced, and the heating cannot be effectively achieved.
  • a suitable conductive shell material By selecting a suitable conductive shell material, the heating of the battery by the conductive shell is achieved.
  • the heating power of the conductive shell 1 can be freely adjusted and flexibly controlled by controlling the frequency of the pulse charge and discharge during self-heating of the battery and the size of the pulse current.
  • Example 4 and Comparative Example 1 when the ratio of the relative magnetic permeability to the resistivity of the conductive shell is taken as the lower limit of the preferred range of 500, there is still a certain heating effect, but because the pulse frequency and pulse current used are small, the induced eddy current heating power of the conductive shell 1 is The effect is poor, and the contribution to battery heating is less than 10%.
  • Example 5 and Comparative Example 2 when the pulse charge and discharge frequency and the pulse current increase, it can be seen from Example 5 and Comparative Example 2 that when the ratio of the relative magnetic permeability to the resistivity of the conductive shell 1 is 500, the induced eddy current heating effect of the conductive shell 1 is improved, while the heating effect of the conductive shell made of commonly used aluminum alloy materials is not effectively improved even if the pulse charge and discharge frequency and the pulse current are increased.

Abstract

一种电池热管理系统及电池包和车辆,电池热管理系统包括电池和脉冲充放电装置,所述电池包括极芯和导电壳体(1),导电壳体(1)设置在极芯的外周,脉冲充放电装置与电池电连接,其中,脉冲充放电装置用于对电池进行脉冲充放电以产生变化的磁场,导电壳体(1)位于变化的磁场内,且导电壳体(1)用于产生感应电流并对极芯进行加热。

Description

电池热管理系统、电池包和车辆
相关申请的交叉引用
本申请基于申请号为202211189986.2、申请日为2022年09月28日的中国专利申请提出,并要求上述中国专利申请的优先权,上述中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请属于电池加热技术领域,具体涉及电池热管理系统、电池包和车辆。
背景技术
目前,由于资源短缺,电池作为新能源载体已经成为一种趋势,更多地用于电动汽车等。现有的电池包都使用气凝胶作为阻隔电池之间热传导的缓冲材料,用于降低单个电池热失控后的传热速率,延长模组或电池包体热扩散的时间。另一方面,为了克服锂离子电池在低温下放电功率较低和低温下充电功率受限的问题,需要在电池低温启动或者充电时对电池进行加热,以尽快将电池的温度升至合理区间。现有技术中多采用在电池包框架上布置加热片,或者在电池内部设置加热片的方案。但是,在模组框架上布置的加热片一般仅仅加热电池的底部或者侧面,而不能加热传热效率最高的大面,同时会占用额外的空间,降低空间使用率。在电池内部的加热片则存在金属加热片塑料包膜破损后引发电池内污染的问题,容易引起安全事故,同样也存在挤占电池内空间的缺陷。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请的一个目的在于提出一种电池热管理系统,解决现有电池热管理系统中加热装置占用电池内部空间且导热效率低的问题。
本申请的另一目的在于提出一种电池包。
本申请的另一目的在于提出一种车辆
本申请提供了一种电池热管理系统,包括电池和脉冲充放电装置,所述电池包括极芯和导电壳体,所述导电壳体设置在所述极芯的外周,所述脉冲充放电装置与所述电池电连接,其中,所述脉冲充放电装置用于对所述电池进行脉冲充放电以产生变化的磁场,所述导电壳体位于变化的磁场内,且所述导电壳体用于产生感应电流并对所述极芯进行加热。
根据本申请提供的电池热管理系统,电池进行脉冲充/放电时产生变化的磁场,变化的 磁场使位于磁场中的导电壳体产生感应电动势以及感应电流,导电壳体产生的感应电流形成涡流效应,产生热能,开始对电池的极芯进行加热。通过导电壳体作为加热部件,不会额外占用电池包以及电池内部的空间。同时由于导电壳体设置在极芯的外周,传热面积大,使得导热效率提高,导电壳体加热启动时可以有效的加热极芯温度最低的位置。并且电池的加热功率可以通过控制脉冲充放电装置的脉冲充/放电的频率和电流大小自由调整。导电壳体对电池的极芯加热时,电池对于外部其他系统(其他电池、包体和模组结构件以及电、热管理系统)的影响小。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
图1是本申请一实施例提供的一种电池热管理系统的电池脉冲放电的状态示意图;
图2是本申请一实施例提供的一种电池热管理系统的加热过程中能量转化过程图。
具体实施方式
为了使本申请所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例和附图,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
如图1和图2所示,本申请实施例提供了一种电池热管理系统,包括电池和脉冲充放电装置,所述电池包括极芯和导电壳体1,所述导电壳体1设置在所述极芯的外周,用于容置极芯,所述脉冲充放电装置与所述电池电连接,其中,所述脉冲充放电装置用于对所述电池进行脉冲充放电以产生变化的磁场,所述导电壳体位于变化的磁场内,且所述导电壳体用于产生感应电流并对所述极芯进行加热。该脉冲充放电装置用于产生变化的电流对电池进行充电,或者控制电池按照变化的电流进行放电。具体地,该变化的电流可以是交流电也可以为变化的直流电。在对电池进行脉冲充放电的情况下,由于流过极芯的电流为变化的电流进而极芯产生变化的磁场,所述导电壳体1位于所述变化磁场内能够产生感应电流,进而发热以对所述极芯进行加热。具体地,导电壳体1需要在满足电池所需的强度、密封性等要求的基础上,实现在电池脉冲放电的变化磁场中受电磁感应产生涡流加热的功能。
在本实施例中,电池进行脉冲充/放电时产生变化的磁场,变化的磁场使位于磁场中的导电壳体1产生感应电动势以及感应电流,导电壳体1产生的感应电流形成涡流效应,产生热能,开始对电池的极芯进行加热。通过导电壳体1作为加热部件,不会额外占用电池包以及电池内部的空间。同时由于导电壳体1设置在极芯的外周,传热面积大,使得导热效率提高,导电壳体1加热启动时可以有效的加热极芯温度最低的位置。并且电池的加热功率可以通过控制脉冲充放电装置的脉冲充/放电的频率和电流大小自由调整。导电壳体1 对电池的极芯加热时,电池对于外部其他系统(其他电池、包体和模组结构件以及电、热管理系统)的影响小。首先,由于导电壳体产生的涡流现象,以使靠近极芯一侧的加热效果比远离极芯一侧的加热效果好,因此本申请公开的电池热管理系统还能够进一步降低加热电池对其他电池的影响,使加热更加集中。其次,对于单个电芯来说,对电池施加交流电不仅可以进行涡流加热,还可以因为施加交流电进而自身辅助加热,加热效果更加明显。
具体地,电池充/放电过程中极芯内部电流路径可简化为垂直于电池壳体截面的电流方向2,当电流方向2所表示的电流I产生变化时,将产生变化的磁场。
具体地,电磁感应问题的基本方程式麦克斯伟方程组,麦克斯伟方程组由电场高斯定理、电场环流定律、磁场高斯定理和安培环路定律组成,数学表达式如下:
式中:
为电位移,单位为C/m;
ρ为电荷密度,单位为C/m3
q为电荷,单位为C;
为电场强度,单位为V/m;
为磁感应强度,单位为A/m;
为磁场强度,单位为A/m;
为电流密度,单位为A/m2
由于本实施例中电磁感应加热为似稳电磁场,频率远小于无线电和光高频电磁场频率,所以方程组中远小于电流密度,位移电流密度忽略不计。故将麦克斯伟方程组化成微分形式,简化公式如下:
式中:
为对应向量的散度;
为对应向量的旋度。
其中,对应电场产生磁场的毕奥-萨伐尔定律:
式中:
为电流矢量,单位为A,
μ0为真空磁导率(4π×10^(-7)N/A2)。
总电流密度源电流密度即脉冲充放电装置对电池施加的脉冲电流密度、涡流密度和磁感应强度之间关系如下:
为方便表示感应的涡流密度引入磁场矢量作为计算磁感应强度的辅助量, 由毕奥-萨伐尔定律(2-3)的积分形式可知的关系如下:
将公式(2-4)和(2-5)联立,可得涡流密度和磁场矢量关系:
涡流加热区域电流密度和感应加热过程中各点的加热功率一一对应:
由以上公式(2-5)、(2-6)可知:磁场矢量反应出感应的源电流I对于感应涡流密度的影响,源电流变化的幅值越大,导电壳体1中的感应电流越大;源电流变化的频率f越高,壳体中感应电流越大。相应的,壳体中感应电流越大,涡流加热功率越高。
而对于产生感应电流的壳体中,

式中,μ为导电壳体1材料的磁导率,单位为H/m;
ε为介电常数,单位为F/m。
同时,由(2-4)、(2-8)可知,导电壳体1材料的磁导率μ越大,越大,感应涡流密度越大,涡流加热功率越高。由(2-7)可知,导电壳体1材料的电阻率σ越小,涡流加热功率p越高。
在一些实施例中,所述脉冲充放电装置对电池施加的脉冲放电频率大于10Hz。
在一些实施例中,所述脉冲充放电装置对电池施加的脉冲放电频率为10Hz~10000Hz。脉冲放电频率低于10Hz时导电壳体1的产热功率过小,加热效率低。脉冲放电频率高于 10000Hz时,成本过高。
在一些实施例中,所述脉冲充放电装置对电池施加的脉冲电流I=kA,其中,A为电池容量,单位为Ah;k为系数,0.3≤k≤20。具体地,该脉冲电流的范围适用于-10℃时的锂离子电池,随着电池加热前所处的温度进一步降低,k的最大取值需根据实际情况酌情减少。当k值小于0.3时,脉冲电流I较小,导电壳体1的产热功率过低,加热速率过慢。当k值大于20时,由于锂离子电池在低温时内阻高、极化大,难以放电。
在一些实施例中,导电壳体1的温度在-45℃-100℃时,所述导电壳体1的相对磁导率μr与电阻率σ的比值为500≤μr/σ≤5 x 106,其中,σ的单位为10-6Ω·m。具体地,导电壳体1的相对磁导率μr与电阻率σ的比值可以为500、1000、5000、8000、30000、170000、1x 106、3 x 106、5 x 106等中任意值,只要导电壳体1的相对磁导率μr与电阻率σ的比值在500~5 x 106之间即可,通过选用磁导率与电阻率的比值较大的材料制作导电壳体1,使得导电壳体1产生的感应电流较大,从而提高加热功率。当导电壳体1的材料为相对磁导率μr与电阻率σ的比值小于500时,在电池进行脉冲充放电产生的变化磁场中,导电壳体1产生的感应电流过小或者基本忽略不计,故而涡流加热功率过小或可忽略不计或与电池本身的散热相互抵消。
导电壳体材料的磁导率μ越大,越大,感应涡流密度越大,涡流加热功率越高。导电壳体材料的电阻率σ越小,涡流加热功率p越高。因此导电壳体材料的电阻率σ需要尽量低的同时磁导率μ需要尽可能高,使得导电壳体1产生的感应电流较大,从而提高加热功率。
在一些实施例中,所述导电壳体1的材料选自铁基软磁性合金,所述铁基软磁性合金包括硅钢、软磁性不锈钢、坡莫合金、低碳软钢、非晶软磁合金和纳米晶软磁合金中的一种或多种。25℃时,常见硅钢的μr/ρ比值在8000~30000之间;坡莫合金μr/ρ比值在35000~170000;部分种类的铁基纳米晶合金μr/ρ比值在0.8×106-2×106
具体地,硅钢中,Si含量介于0.2~5%,其余为Fe以及少量用于改善材料性能的其他元素(单元素质量分数≤1%)的硅铁合金。
软磁性不锈钢中,Cr含量10~19%,Si含量0.5~3%,其余为Fe以及少量用于改善材料性能的其他元素。
坡莫合金中,Ni含量30~90%,其余为Fe及少量其他用于改善性能的元素构成。
所述非晶软磁合金选自铁基非晶合金和铁镍基非晶合金中的一种或多种。具体地,铁基非晶合金中Fe质量占比80%,Si、B类元素质量占比20%。铁镍基非晶合金中Ni质量占比40%,Fe质量占比40%,20%其他用于改善性能类的金属元素
所述纳米晶软磁合金选自铁基纳米晶合金。具体地,铁基纳米晶合金由Fe为主,加入少量的Nb、Cu、Si、B元素构成的合金经快速凝固工艺形成的非晶态材料经热处理。
在一些实施例中,所述导电壳体1的厚度为T,其中,0<T≤δ,
δ为趋肤效应透入深度,单位为mm;
K0为趋肤效应渗入深度系数;
σ单位为Ω·m;
f为脉冲放电频率,单位为Hz。
本申请通过设置控制导电壳体的厚度减少导电壳体材料的浪费,提高加热效率,以及减少加热时,单体电池对于外部其他系统(其他电池、包体和模组结构件以及电、热管理系统)的影响。
具体地,K0与壳体形状有关,一般圆柱为50300,而其他异形形状则有不同的效果。本实施例中,以圆柱电池为例进行说明。
在一些实施例中,所述导电壳体1包括盖板和外壳,所述极芯容置在所述外壳内,所述盖板用于密封所述外壳,所述外壳的厚度为T。在该实施例中,通过限定外壳的厚度以在保证电芯加热的同时降低电芯的成本,提高整体能量密度和电池空间利用率。
在一些实施例中,所述电池包括正极柱和负极柱,所述正极柱和所述负极柱分别设置在所述导电壳体1的两端,且与所述极芯电连接。需要在此进行说明的是,所述正极柱和所述负极柱也可以并排设置在所述导电壳体1的一端。
另一方面,本申请一实施例还提供一种电池包,包括上述任意一实施例所述的电池热管理系统。对于电池包来说,由于电芯均是串联或者并联等形式进行连接,电池包仅需要对总正和总负施加变化的电流即可实现全部电芯的自加热,并且相对于外部部件进行加热,本实施例对于电池包来说更加均匀,每个电芯均可以靠壳体进行自加热。同时电池包体内不同装配位置电池与电池之间加热功率差异小、整个电池包体热管理系统简洁直接、空间利用率高。
另一方面,本申请一实施例还提供一种车辆,包括上述任意一实施例所述的电池热管理系统。
以下通过实施例对本申请进行进一步的说明。
实施例1
本实施例用于说明本申请公开的电池热管理系统的加热效率,电池热管理系统包括电池和脉冲充放电装置,电池的容量为100Ah,脉冲充放电装置对电池施加的脉冲充放电频率为500Hz,脉冲电流为500A,导电壳体1的材料为硅钢,相对磁导率μr与电阻率σ的比值约为10000。
实施例2
本实施例用于说明本申请公开的电池热管理系统的加热效率,与实施例1不同之处在于:脉冲充放电装置对电池施加的脉冲充放电频率为1000Hz。
实施例3
本实施例用于说明本申请公开的电池热管理系统的加热效率,与实施例1不同之处在 于:脉冲电流为350A。
实施例4
本实施例用于说明本申请公开的电池热管理系统的加热效率,与实施例1不同之处在于:相对磁导率μr与电阻率σ的比值约为500。
实施例5
本实施例用于说明本申请公开的电池热管理系统的加热效率,与实施例1不同之处在于:脉冲充放电装置对电池施加的脉冲充放电频率为7500Hz,脉冲电流为1500A,相对磁导率μr与电阻率σ的比值约为500。
对比例1
本对比例用于说明本申请公开的电池热管理系统的加热效率,与实施例1不同之处在于:导电壳体材料为铝合金材料,相对磁导率μr与电阻率σ的比值为24。
对比例2
本对比例用于说明本申请公开的电池热管理系统的加热效率,与实施例1不同之处在于:脉冲充放电装置对电池施加的脉冲充放电频率为7500Hz,脉冲电流为1500A,导电壳体材料为铝合金材料,相对磁导率μr与电阻率σ的比值为24。
以下通过测试对本申请的有益效果进行进一步的说明。
测试方法:将温度采样点布置于待测电池内部,位置为电池极芯居中位置。保证起始温度相同、测试环境相同的条件下,加热相同时间(300s)后,记录不同实施例/对比例温度采样点温度。重复以上10次,取平均值。
对电池的加热效率进行测试,分析结果如表1所示:
表1
根据实施例1和对比例1的测试结果可知,导电壳体的相对磁导率与电阻率比值过小,加热效率降低,无法有效实现加热。通过选用合适的导电壳体材料,实现导电壳体对电池的加热。根据实施例1-3的测试结果可知,通过改变脉冲充放电频率和脉冲电流,在相同的加热时间内,电池加热的效果不同,也就是说导电壳体1的加热功率可以通过控制电池自加热时脉冲充放电的频率和脉冲电流的大小自由调整,灵活控制。根据实施例1、实施例4和对比例1,导电壳体的相对磁导率与电阻率比值取值为优选范围的下限值500时,仍能有一定加热效果,但是因采用的脉冲频率和脉冲电流较小,导电壳体1感应涡流加热功率 效果较差,对于电池加热贡献占比低于10%,但当脉冲充放电频率和脉冲电流增大时,由实施例5和对比例2可知,导电壳体1的相对磁导率与电阻率比值为500时,导电壳体1感应涡流加热效果得到提升,而常用的铝合金材料的导电壳体即使将脉冲充放电频率和脉冲电流增大,其加热效果也未得到有效的提升。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种电池热管理系统,其中,包括电池和脉冲充放电装置,所述电池包括极芯和导电壳体,所述导电壳体设置在所述极芯的外周,所述脉冲充放电装置与所述电池电连接,其中,所述脉冲充放电装置用于对所述电池进行脉冲充放电以产生变化的磁场,所述导电壳体位于变化的磁场内,且所述导电壳体用于产生感应电流并对所述极芯进行加热。
  2. 根据权利要求1所述的电池热管理系统,其中,所述脉冲充放电装置对电池施加的脉冲充放电频率大于10Hz。
  3. 根据权利要求1或2所述的电池热管理系统,其中,所述脉冲充放电装置对电池施加的脉冲电流I=kA,其中,A为电池容量,单位为Ah;k为系数,0.3≤k≤20,I的单位为A。
  4. 根据权利要求1-3中任一项所述的电池热管理系统,其中,所述导电壳体的相对磁导率μr与电阻率σ的比值为500≤μr/σ≤5x 106,其中,σ的单位为10-6Ω·m。
  5. 根据权利要求4所述的电池热管理系统,其中,所述导电壳体的材料选自铁基软磁性合金,所述铁基软磁性合金包括硅钢、软磁性不锈钢、坡莫合金、低碳软钢、非晶软磁合金和纳米晶软磁合金中的一种或多种。
  6. 根据权利要求1-5中任一项所述的电池热管理系统,其中,所述导电壳体的厚度为T,其中,0<T≤δ,
    δ为趋肤效应透入深度,单位为mm;
    K0为趋肤效应渗入深度系数;
    σ单位为Ω·m;
    f为脉冲充放电频率,单位为Hz;
    μr为导电壳体的相对磁导率。
  7. 根据权利要求6所述的电池热管理系统,其中,所述导电壳体包括盖板和外壳,所述极芯容置在所述外壳内,所述盖板用于密封所述外壳,所述外壳的厚度为T。
  8. 根据权利要求1-7中任一项所述的电池热管理系统,其中,所述电池包括正极柱和负极柱,所述正极柱和所述负极柱分别设置在所述导电壳体的两端,且与所述极芯电连接。
  9. 一种电池包,其中,包括权利要求1-8中任一项所述的电池热管理系统。
  10. 一种车辆,其中,包括权利要求1-8中任一项所述的电池热管理系统。
PCT/CN2023/103968 2022-09-28 2023-06-29 电池热管理系统、电池包和车辆 WO2024066577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211189986.2A CN117832688A (zh) 2022-09-28 2022-09-28 一种电池热管理系统、电池包和车辆
CN202211189986.2 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024066577A1 true WO2024066577A1 (zh) 2024-04-04

Family

ID=90475930

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/103968 WO2024066577A1 (zh) 2022-09-28 2023-06-29 电池热管理系统、电池包和车辆

Country Status (2)

Country Link
CN (1) CN117832688A (zh)
WO (1) WO2024066577A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160932A (ja) * 2009-01-07 2010-07-22 Mitsubishi Motors Corp 蓄電池の加熱装置
CN204596904U (zh) * 2015-04-10 2015-08-26 西安中科新能源科技有限公司 一种带有加热装置的锂电池组
CN113381078A (zh) * 2021-06-08 2021-09-10 歌尔科技有限公司 一种卷绕式电池及tws蓝牙耳机
CN215451553U (zh) * 2021-04-30 2022-01-07 比亚迪股份有限公司 电池热管理系统及车辆
CN114173542A (zh) * 2020-09-11 2022-03-11 Oppo广东移动通信有限公司 电路结构、电池、电子设备及电池的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010160932A (ja) * 2009-01-07 2010-07-22 Mitsubishi Motors Corp 蓄電池の加熱装置
CN204596904U (zh) * 2015-04-10 2015-08-26 西安中科新能源科技有限公司 一种带有加热装置的锂电池组
CN114173542A (zh) * 2020-09-11 2022-03-11 Oppo广东移动通信有限公司 电路结构、电池、电子设备及电池的制造方法
CN215451553U (zh) * 2021-04-30 2022-01-07 比亚迪股份有限公司 电池热管理系统及车辆
CN113381078A (zh) * 2021-06-08 2021-09-10 歌尔科技有限公司 一种卷绕式电池及tws蓝牙耳机

Also Published As

Publication number Publication date
CN117832688A (zh) 2024-04-05

Similar Documents

Publication Publication Date Title
CN107039708B (zh) 一种锂离子电池组低温自加热方法
CN106450586B (zh) 一种基于lc谐振和ptc电阻带进行加热的电源系统及车辆
KR101271858B1 (ko) 방열 특성이 향상된 배터리 팩
CN109786878A (zh) 一种电动汽车动力电池充电/加热控制方法
CN206849962U (zh) 一种高安全性自加热聚合物锂离子二次电池
US20120068551A1 (en) Electrical-energy storage devices
CN108336454A (zh) 具备自加热功能的固态电池
CN111446519A (zh) 一种带内部加热装置的锂离子电池
CN113363621A (zh) 一种基于涡流加热的电动汽车冷启动系统
WO2024066577A1 (zh) 电池热管理系统、电池包和车辆
CN106784582A (zh) 适用于大倍率放电的锂离子电池以及极片
CN214314619U (zh) 电池加热装置及锂电池
Liu et al. Study on the capacity fading of pristine and FePO4 coated LiNi1/3Co1/3Mn1/3O2 by Electrochemical and Magnetical techniques
JP3956891B2 (ja) 電極の製造方法
WO2020147148A1 (zh) 一种带内部加热装置的锂离子电池
CN215451553U (zh) 电池热管理系统及车辆
CN214378548U (zh) 一种高效、均匀散热的单体锂离子电池
CN208225959U (zh) 加热温度可控的电池包及电池包系统
US11837704B2 (en) Electrochemical devices including internal eddy current heating
CN107154656B (zh) 电池组之间的电量均衡装置及方法
JP2011138672A (ja) 電池システム加熱方法
CN109301157A (zh) 一种基于石墨烯薄膜的锂离子电池
KR20150041351A (ko) 전극 탭 제조 장치 및 방법
CN208127375U (zh) 充电电池及其电芯
Xiong et al. Low-temperature heating and optimal charging methods for lithium-ion batteries