WO2024066529A1 - 地下铝土大倾角中厚矿层双采矿机开采方法 - Google Patents

地下铝土大倾角中厚矿层双采矿机开采方法 Download PDF

Info

Publication number
WO2024066529A1
WO2024066529A1 PCT/CN2023/102558 CN2023102558W WO2024066529A1 WO 2024066529 A1 WO2024066529 A1 WO 2024066529A1 CN 2023102558 W CN2023102558 W CN 2023102558W WO 2024066529 A1 WO2024066529 A1 WO 2024066529A1
Authority
WO
WIPO (PCT)
Prior art keywords
mining
mining machine
ore
cutting
medium
Prior art date
Application number
PCT/CN2023/102558
Other languages
English (en)
French (fr)
Inventor
章立强
周常飞
李庆亮
宋晓华
胡璟
王振乾
胡滔
董超
顾恩洋
杨贵城
郭岱
Original Assignee
天地上海采掘装备科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天地上海采掘装备科技有限公司 filed Critical 天地上海采掘装备科技有限公司
Priority to AU2023258380A priority Critical patent/AU2023258380A1/en
Publication of WO2024066529A1 publication Critical patent/WO2024066529A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/22Methods of underground mining; Layouts therefor for ores, e.g. mining placers

Definitions

  • the invention relates to a method for mining a medium-thick bauxite layer, which is suitable for a working face with a large inclination angle and a situation where a high-grade mineral material layer is relatively thick and accounts for a large proportion of the entire mining face.
  • the invention aims to provide a double-miner mining method for underground bauxite with a large dip angle and a medium-thick ore layer, which has high mining efficiency and good economy.
  • a double-mining-machine mining method for underground bauxite medium-thick ore layers with a large dip angle wherein a high-grade ore layer is left in the middle of the mine wall in the height direction when the working face is arranged, and medium-grade ore layers are located above and below the high-grade ore layer of the mine wall.
  • a mixed mining operation of full height is carried out with the high-grade ore layer and the medium-grade ore layer as the target ore layers, and a roof and a bottom plate are formed respectively after the upper and lower medium-grade ore layers are mined. After the roof plate is formed, the exposed roof plate is randomly supported by pulling a support toward the mine wall side.
  • Two mining machines are arranged on the same working face at the same time, and the two mining machines cut obliquely from the middle and higher end of the working face respectively, and descend to the lower end and the middle of the working face respectively to mine simultaneously, and the two mining machines are carried out in parallel.
  • Both mining machines are equipped with high-power rocker arms and medium-diameter drums. Twice the drum diameter should be no less than the height of the mine wall.
  • the specifications and configurations of the two mining machines are preferably identical.
  • the underground bauxite high-angle medium-thick ore layer dual-miner mining method may include the following steps:
  • Mining machine C1 is parked between the midpoint D and the high end of the working surface, and mining machine C2 is parked at the high end. At this time, the parking positions of the two mining machines are the initial positions;
  • the pushing device pushes the conveyor toward the mine wall by a cutting depth, the pushing length is from the lower end to a bevel distance from the mining machine C1, and the mining machine C2 stops and waits;
  • the mining machine C1 moves to the lower end for a stop distance plus an oblique cutting distance. At this time, the mining machine C1 obliquely cuts into the mine wall for the first time in a cycle; then the pushing device continues to push the conveyor; the mining machine C2 continues to stop and wait;
  • Mining machine C1 cuts and loads ore while walking toward the lower end, and cuts the top plate and bottom plate flat.
  • the bracket follows the walking direction of mining machine C1 and randomly supports the top plate.
  • Mining machine C2 stops and waits.
  • the pushing device continues to push the conveyor. The end point of the movement is at an oblique distance from the mining machine C2;
  • the mining machine C1 continues to descend while cutting and loading the ore, and cuts the top plate and the bottom plate flat, and the bracket follows the rear of the mining machine C1 in the direction of travel to provide random support for the top plate; the mining machine C2 descends a stop distance plus an oblique cutting distance and then stops, at which time the mining machine C2 obliquely cuts into the mine wall;
  • Mining machine C1 continues to descend while cutting and loading ore, and cuts the top plate and bottom plate flat, and the bracket follows the mining machine C1 in the direction of travel to provide random support for the top plate; mining machine C2 descends while cutting and loading ore, and cuts the top plate and bottom plate flat, until the mine wall is cut through, and the bracket follows the mining machine C2 in the direction of travel to provide random support for the top plate; the pushing device continues to push the conveyor to end B; end B refers to the end at the higher position of the working surface;
  • Mining machine C1 continues to move downward and stops after reaching the lower end; mining machine C2 moves upward without cutting;
  • the mining machine C1 moves upward to cut off the bottom step at the lower end; the mining machine C2 continues to move upward and cuts the ore within a range of a stop distance plus a bevel distance from the upper end;
  • the mining machine C1 moves upward without cutting; the pushing device pushes a section of the conveyor from the lower end behind the moving direction of the mining machine C1 toward the mine wall by a cutting depth, and a bevel distance is maintained between the end point of the push and the mining machine C1; the mining machine C2 moves downward to cut off the bottom step of the high end;
  • the mining machine C1 continues to move upward without a knife until it stops at the initial position, and the pushing device continues to push the conveyor, and a bevel cutting distance is maintained between the end point of the pushing and the mining machine C1; the mining machine C2 moves upward and returns to the high end, that is, the initial position, and stops; and returns to step S3 to continue the next cycle.
  • step S3 the position of the mining machine C1 after the first oblique cut into the mine wall in one cycle is preferably close to the midpoint D of the working surface.
  • the upper limit of the length of the working face is preferably not less than 100 m.
  • the working face can be significantly lengthened, for example, from the original 100m to 100m-1000m or even longer, which is equivalent to the length of more than one original working face. This significantly reduces the number of tunnels between working faces, thus greatly saving the engineering costs brought about by tunnel excavation.
  • medium-grade and high-grade mineral materials are mixedly mined in a one-time full-height mining manner, and low-grade mineral materials are not mined, thereby obtaining the highest mining efficiency and the best economy.
  • the two mining machines cut simultaneously from the middle and one end of the working face respectively. Compared with cutting simultaneously from two adjacent locations, this can effectively avoid the safety risks of mutual influence caused by close operation of equipment.
  • FIG1 is a schematic diagram of a mineral mining process according to the present invention.
  • FIG2 is a side view of the working face equipment when two mining machines are mining in parallel;
  • Figure 3 is a schematic diagram of the cutting state of the mine wall (both mining machines are in the initial position before cutting begins);
  • FIG4 is a schematic diagram of the cutting state of the mine wall (the mining machine C1 has finished its downward mining and the mining machine C2 is in the downward mining process);
  • FIG5 is a schematic diagram of the cutting state of the mine wall (the mining machine C1 is moving upward with no cutter, and the mining machine C2 is moving upward and cutting the mine within a stop distance plus an oblique cutting distance from the high end);
  • FIG6 is a schematic diagram of the cutting state of the mine wall (mining machines C1 and C2 move upward and return to their respective initial positions after mining is completed).
  • the present invention discloses a double-mining machine mining method for underground bauxite with large dip angle and medium-thick ore layer, which is a mechanized mining method suitable for working faces with thick high-grade ore layers.
  • the main working face equipment required includes a mining machine, a conveyor S, a support Z and a push device T.
  • the conveyor is a device that is composed of multiple troughs and connected in pairs, forming a parallel paving from one end of the working surface to the other end (the upper and lower frames of each trough are respectively provided with scrapers connected by chains, and the chains are driven by the power of the end, forming a circular motion chain as a whole, and the materials are transported to the end through the scrapers).
  • the bracket is an independent device connecting each trough, and there are also multiple corresponding ones. Although there is no connection between the supports, in order to better prevent leakage of gangue from the roof between the supports, a retractable guard plate is set at the joint of each support.
  • multiple supports (together forming protection within the entire surface) and multiple conveyor troughs (continuously conveying materials to the end and transported out by the other end conveyor) are applied to the two mining machines at the same time to protect them.
  • the bracket pushes the conveyor through the support resistance, forming an S-bend section by section until the end is pushed straight.
  • the oil cylinder connected to the conveying trough acts to pull the bracket forward by retracting the piston rod.
  • the high-grade ore layer when laying out the working face, should be left in the middle of the height direction of the mine wall, and the high-grade ore layer of the mine wall is above and below the medium-grade ore layer.
  • the high-grade ore layer and the medium-grade ore layer are used as the target ore layers to implement a mixed mining operation of full height.
  • the upper and lower medium-grade ore layers are mined to form a roof and a floor respectively. After the roof is formed, the exposed roof is randomly supported by pulling the support Z to the side of the mine wall.
  • the medium and high-grade ore K is a usable ore
  • the low-grade ore and rock are waste F.
  • Two mining machines C1 and C2 are set on the same working surface at the same time. The two mining machines cut obliquely from the middle and higher end of the working surface respectively, and go down to the lower end and middle of the working surface respectively to mine simultaneously, and the two mining machines are in parallel.
  • the present invention combines the fact that the traction speed of the mining machine is much lower than the speed of the support pulling and the conveyor pushing, and proposes an efficient mining method in which two mining machines work together on a working face.
  • Both mining machines are equipped with high-power rocker arms and medium-diameter drums. Twice the drum diameter should be no less than the height of the mine wall.
  • the underground bauxite high-angle medium-thick ore layer dual-miner mining method may include the following steps:
  • the entire working surface is a high-angle working surface, and the two ends of the working surface are respectively recorded as the low end and the high end (in this embodiment, they can correspond to the left end and the right end of the working surface shown in the figure).
  • the mining machine C1 is parked between the midpoint D and the high end of the working surface, and the mining machine C2 is parked at the high end.
  • the parking positions of the two mining machines are the initial positions.
  • the distribution of the medium and high-grade ore layers on the mine wall is shown in Figure 3.
  • Lt which is called the stop distance.
  • the pushing device T pushes the conveyor toward the mine wall by a cutting depth.
  • the pushing length is from the lower end to a bevel distance from the mining machine C1 (the distance that the mining machine travels along the mine wall when cutting obliquely, recorded as Lx).
  • the conveyor forms an S-shaped bend for the first time in a cycle.
  • the S-shaped bend is the preparation for the mining machine C1 to enter the mine wall for the first time in a cycle.
  • the mining machine C2 stops and waits.
  • the mining machine C1 moves to the lower end for a stop distance plus an oblique cutting distance. At this time, the mining machine C1 obliquely cuts into the mine wall for the first time in a cycle and starts the first cut. Then the pushing device T continues to push the conveyor (the so-called continued pushing of the conveyor means that the end point of the previous push is used as the starting point of this push, and the conveyor is pushed toward the mine wall by a cutting depth distance in the same unidirectional pushing sequence from one end of the working surface to the other end as before). The mining machine C2 continues to stop and wait.
  • the mining machine C1 cuts and loads the ore while walking toward the lower end (i.e., descending), and cuts the top plate and the bottom plate flat.
  • the bracket follows the walking direction of the mining machine C1 and randomly supports the top plate.
  • the mining machine C1 starts the first mining in a cycle; the mining machine C2 stops and waits; the pushing device continues to push the conveyor, and the end point of the pushing is separated from the mining machine C2 by an oblique cutting distance Lx.
  • the mining machine C1 continues to descend while cutting and loading ore, and cuts the top plate and the bottom plate flat, and the bracket follows the rear of the mining machine C1 in the direction of travel to provide random support for the top plate; the mining machine C2 descends a stop distance plus an oblique cutting distance and then stops, at which time the mining machine C2 obliquely cuts into the mine wall.
  • Mining machine C1 continues to descend while cutting and loading ore, and cuts the top and bottom plates flat, and the bracket follows the mining machine C1 in the direction of travel to provide random support for the top plate; mining machine C2 descends while cutting and loading ore, and cuts the top and bottom plates flat, until the mine wall is cut through, and the bracket follows the mining machine C2 in the direction of travel to provide random support for the top plate; the pushing device continues to push the conveyor to the B end, that is, to push the subsequent conveyor straight to eliminate the S-shaped bend.
  • the state of the mine wall is shown in Figure 4.
  • the B end refers to the end of the side at a higher position of the working face. This is not marked in the attached figure.
  • the effect of gravity can be fully utilized to reduce the consumption of traction force, thereby reducing the loss of the traction system of the mining machine.
  • Mining machine C1 continues to descend and stops after reaching the lower end; mining machine C2 ascends without cutting.
  • the mining machine C1 moves upward to cut off the bottom step at the lower end, and the mining of the mining machine C1 is now completed; the mining machine C2 continues to move upward and cuts the ore within a range of a stop distance plus a bevel distance from the upper end.
  • the state of the mine wall is shown in FIG5 .
  • the mining machine C1 moves upward without cutting; the pushing device pushes a section of conveyor from the lower end behind the moving direction of the mining machine C1 toward the mine wall by a cutting depth, and an oblique cutting distance is maintained between the end point of the push and the mining machine C1; the mining machine C2 moves downward to cut off the bottom step of the high end.
  • Mining machine C1 continues to move upward without cutting until it stops at the initial position.
  • the pushing device continues to push the conveyor, and the end point of the push maintains an oblique distance from the mining machine C1.
  • Mining machine C2 moves upward and returns to the high end, that is, the initial position, and stops.
  • the mining situation of the mine wall is shown in Figure 6. Return to step S3 to continue the next cycle.
  • next cycle means that in the same working face at the moment, since the mining of a cutting depth of ore is completed, the two mining machines return to the same position (relative to the working face) of the previous cycle, so the same operating steps as the previous cycle can be performed.
  • step S3 the position of the mining machine C1 after the first oblique cut into the mine wall in a cycle is preferably close to the midpoint D of the working surface, so that the mining lengths of the two mining machines are as close as possible, ensuring that the two mining machines mine synchronously and minimizing the extra waiting time of any mining machine caused by asynchrony.
  • the upper limit of the length of the mine wall of the working face is preferably not less than 100m, for example 100-1000m, or even longer. Compared with the original 100m, the number of tunnels between mine walls can be greatly reduced, thereby greatly saving the engineering cost corresponding to the tunnel excavation volume.
  • the present embodiment is aimed at mining ores with relatively high hardness, such as bauxite, and coal mining can also adopt the mining method of one working face with two machines in principle.
  • the coal mining machine can run at a relatively fast traction speed, combined with fast pulling and pushing, to achieve rapid mining (the pulling speed can keep up with the traction speed). Therefore, the coal mining face does not need to adopt the method of one working face with two machines to achieve efficient mining (conversely, at the coal mining face, if one face with two machines is adopted, the coal mining machines need to be transported and fed through the same conveyor, and the pulling speed cannot far exceed the traction speed, which will restrict the mining efficiency of the entire face).
  • the mining machine has a low traction speed and low mining efficiency for the mining of medium and high hardness materials (such as bauxite ore).
  • medium and high hardness materials such as bauxite ore.
  • a dual-machine method can be adopted on one side, using fast pulling and dual/multiple devices with low-speed traction to cut, so as to improve the overall mining efficiency of a single side.
  • full height mining in one go refers to the use of double drums (one up and one down: the upper drum mines along the top plate, and the lower drum mines along the bottom plate) to achieve full mining of the entire effective height of the working face, that is, the entire height of the mine can be mined in one pass.
  • bauxite layers determine that they are not only hard, but also have the prominent characteristic of uneven thickness distribution, especially in different strike sections of the same surface, or between different surfaces, or even in different positions of a surface.
  • high-capacity large-scale equipment can be used for mining, but for thin ore distribution (even no ore components, only high-hardness stones), it is difficult to use the same equipment to mine thick and thin layers.
  • the one-way mining method of downward cutting and upward empty cutting is adopted according to the characteristics of the angle, and the advantage of the mining machine's own gravity is used (downward mining can be carried out as long as a certain traction output is achieved), which can alleviate sliding wear.
  • the design concept of a large torque low-heavy mining machine with a large space and great cutting capacity is adopted to improve the adaptability to thin ore layers as much as possible, and the wide mining height capacity takes into account the mining of thick ore layers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

一种地下铝土大倾角中厚矿层双采矿机开采方法,具体为:布设工作面时将高品位矿料层留设于矿壁高度方向的中部,矿壁的高品位矿料层的上方和下方均为中等品位矿料层,以该高品位矿料层和中等品位矿料层为目标矿料层实施一次采全高的混采作业,上方和下方的中等品位矿料层开采后分别形成顶板和底板,顶板形成后,通过向矿壁侧拉移支架对裸露的顶板进行随机支护,同一工作面上同时设置两台采矿机,两台采矿机分别从工作面的中部和较高的端头斜切进刀,并分别向工作面的较低的端头和中部下行同时开采,且两采矿机并行;能明显提高开采效率,降低开采成本。

Description

地下铝土大倾角中厚矿层双采矿机开采方法 技术领域
本发明涉及一种中厚铝土矿层的开采方法,适用于大倾角工作面、高品位矿料层较厚且在整个开采面中占比较多的情况。
背景技术
地下铝土矿中有大量铝土岩等硬质物料需要开采,由于物料硬度高,需要的截割力大,截割头损耗也快,因此截割难度大,而且截割形成的硬岩块还容易对采矿机的行走系统造成阻碍甚至憋卡,对采矿机的牵引系统影响很大,因此采矿机的移动速度通常比煤矿采煤机要慢得多,相应地产量也要小很多,生产成本高。
发明内容
本发明的目的是提供一种地下铝土大倾角中厚矿层双采矿机开采方法,开采效率高,经济性好。
本发明的主要技术方案有:
一种地下铝土大倾角中厚矿层双采矿机开采方法,布设工作面时将高品位矿料层留设于矿壁高度方向的中部,矿壁的高品位矿料层的上方和下方均为中等品位矿料层,以所述高品位矿料层和中等品位矿料层为目标矿料层实施一次采全高的混采作业,上方和下方的中等品位矿料层开采后分别形成顶板和底板,顶板形成后,通过向矿壁侧拉移支架对裸露的顶板进行随机支护,同一工作面上同时设置两台采矿机,两台采矿机分别从工作面的中部和较高的端头斜切进刀,并分别向工作面的较低的端头和中部下行同时开采,且两采矿机并行。
两台采矿机均配套大功率摇臂、中等直径滚筒,滚筒直径的两倍应不小于矿壁的高度。
两台采矿机的规格和配置优选为相同。
所述地下铝土大倾角中厚矿层双采矿机开采方法可以包括如下步骤:
S1.采矿机C1停靠在工作面的中点D和高端之间,采矿机C2停靠在高端,此时两采矿机的停靠位置是初始位置;
S2.推移装置将输送机向矿壁推移一个截深的距离,推移长度是自低端起到与采矿机C1相距一个斜切距离处,采矿机C2停止等待;
S3.采矿机C1向低端行走一个停机距离加一个斜切距离,此时采矿机C1在一个循环中首次斜切进入矿壁;然后推移装置继续推移输送机;采矿机C2继续停止等待;
S4.采矿机C1向低端行走的同时割矿装矿,并将顶板和底板割平,支架紧随采矿机C1的行走方向的后方对顶板进行随机支护;采矿机C2停止等待;推移装置继续推移输送机, 推移的终点与采矿机C2相距一个斜切距离;
S5.采矿机C1继续下行同时割矿装矿,并将顶板和底板割平,支架紧随采矿机C1的行走方向的后方对顶板进行随机支护;采矿机C2下行一个停机距离加一个斜切距离后停止,此时采矿机C2斜切进入矿壁;
S6.采矿机C1继续下行同时割矿装矿,并将顶板和底板割平,支架紧随采矿机C1的行走方向的后方对顶板进行随机支护;采矿机C2下行同时割矿装矿,并将顶板和底板割平,直至割透矿壁,支架紧随采矿机C2的行走方向的后方对顶板进行随机支护;推移装置继续推移输送机直至B端;B端指工作面较高位置侧端头;
S7.采矿机C1继续下行到达低端后停止;采矿机C2空刀上行;
S8.采矿机C1上行割除低端的底部台阶;采矿机C2继续上行,并在离高端一个停机距离加一个斜切距离范围内割矿;
S9.采矿机C1空刀上行;推移装置将采矿机C1行走方向的后方自低端起的一段输送机向矿壁推移一个截深的距离,推移的终点与采矿机C1之间保持一个斜切距离;采矿机C2下行割除高端的底部台阶;
S10.采矿机C1继续空刀上行直至初始位置时停止,推移装置继续推移输送机,推移的终点与采矿机C1之间保持一个斜切距离;采矿机C2上行返回高端即初始位置停止;返回步骤S3继续下一循环。
步骤S3中,采矿机C1在一个循环中首次斜切进入矿壁后的位置优选靠近工作面中点D。
工作面的长度的上限值优选为不小于100m。
本发明的有益效果是:
采用两台采矿机在同一工作面进行联合开采,在支架与输送机不变的条件下大大提高了单面的产能,经济效益大大提高。
由于产能增加,工作面设备的利用率提高,工作面有条件大幅加长,例如由原来的100m加长到100m-1000m甚至更长,相当于不止一个原有工作面的长度,使得工作面之间巷道的数量明显减少,因此大大节省了巷道掘进量所带来的工程成本。
利用本发明的方法通过一次采全高的方式,对中等品位等级和高品位等级的矿料进行混采,对低品位等级的矿料不做开采,可获得最高的开采效率和最好的经济性。
由于中、高品位矿料层的总厚度足够大,可以满足采矿机的通行需要,因此无需截割位于顶、底部的低品位矿料层以及岩石层,不仅可以通过一次采全高的方式提高开采效率, 降低开采成本,还避免了因截割硬度较高的岩石等废料造成的采矿机损耗,提高采矿机的工作可靠性。这里想表达的是与薄矿层的区别,非常薄的矿层开采,有的是在采出好矿料后,还需要割除一部分顶底的低品位矿料,目的是保证装备能够有足够的空间通行(若采用小功率开采设备,截割能力等又不能满足开采,带来适应性与可靠性的问题)。而对于本案里强调的足够厚的矿层,就不需要再去开采低品位矿料了。
两采矿机分别从工作面的中部和一个端头两处同时进刀,相比在相互毗邻的两处同时进刀,可有效避免因设备紧邻作业存在的相互影响的安全风险。
由于是沿倾角下行时进行主要的开采作业,可以利用重力作用,减少牵引力消耗,降低设备损耗。
附图说明
图1为本发明的矿料开采过程示意图;
图2为两采矿机并行开采时的工作面装备侧向示意图;
图3为矿壁截割状态示意图(截割开始前两采矿机均处于初始位置);
图4为矿壁截割状态示意图(采矿机C1下行开采结束、采矿机C2处于下行开采过程中);
图5为矿壁截割状态示意图(采矿机C1空刀上行、采矿机C2上行并在离高端一个停机距离加一个斜切距离范围内割矿);
图6为矿壁截割状态示意图(采矿机C1、C2开采完成后上行回到各自的初始位置)。
附图说明:
C1.采矿机;C2.采矿机;S.输送机;K.中、高品位矿料;F.废料;Lt.停机距离;Lx.斜切距离;T.推移装置;Z.支架;D.工作面中点;
牵引至该位置;自该位置开始牵引;‖:停止牵引;牵引(箭头方向指示牵引方向);采矿机在局部区域内来回割矿,平整顶底板与装载。
具体实施方式
本发明公开了一种地下铝土大倾角中厚矿层双采矿机开采方法,是一种机械化开采方法,适用于高品位矿料层厚度较厚的工作面。如图1、2所示,需要用到的主要工作面装备包括采矿机、输送机S、支架Z和推移装置T。
输送机是多个槽组成并且槽间两两连接形成的从工作面一端平行铺向另一端的设备(各槽内上下框中分别设置由链连接的刮板,通过端头动力驱动链条,总体上形成循环的运动链,通过刮板带动物料输送至端部)。支架是连接每个槽的独立设备,对应也有多个,虽 然支架间没有连接,但为了更好的防止架间顶板漏矸等情况,每个支架在对接处设置可伸缩的护板。
因此,多个支架(共同形成整个面内的保护)与多个输送机槽(将物料连续输送至端头,由另一端部输送机运出)是同时应用于两台采矿机的,对它们进行保护。
另外,支架通过支护阻力,推移输送机,逐段形成S弯曲,直至端部推平直。当单个或几个支架降下一定高度后,由于没有支护力的摩擦阻力,则由与输送槽连接的油缸作用,通过活塞杆缩入的方式,将支架向前拉。通过这种迈步式推拉作业,实现输送机(槽)与支架的前移。
首先,布设工作面时应将高品位矿料层留设于矿壁高度方向的中部,矿壁的高品位矿料层的上方和下方均为中等品位矿料层。以所述高品位矿料层和中等品位矿料层为目标矿料层实施一次采全高的混采作业。上方和下方的中等品位矿料层开采后分别形成顶板和底板。顶板形成后,通过向矿壁侧拉移支架Z对裸露的顶板进行随机支护。由于中、高品位矿料层的总厚度足够大,可以满足采矿机通行需要,因此位于上方中等品位矿料层以上、下方中等品位矿料层以下的低品位矿料层以及岩石层不做开采,不仅可以通过一次采全高的方式提高开采效率,降低开采成本,还可避免因截割硬度较高的岩石等废料造成的采矿机损耗,提高采矿机的工作可靠性。中、高品位矿料K是可用矿料,低品位矿料和岩石均属于废料F。同一工作面上同时设置两台采矿机C1和C2,两台采矿机分别从工作面的中部和较高的端头斜切进刀,并分别向工作面的较低的端头和中部下行同时开采,且两采矿机并行。
本发明结合采矿机牵引速度相对支架拉移和输送机推移的速度要低得多的特点,提出了一工作面双台采矿机联合作业的高效开采方式,通过增加一台采矿机及相应配套件的小成本投入,即可实现接近原来两倍或更高的产能,明显提高了经济效益。
通过经济性核算,在中等品位矿料随同高品位矿料混采不影响最终矿料品位的前提下,通过一次采全高的方式开采,经济性最好,效率最高。
两台采矿机均配套大功率摇臂、中等直径滚筒,滚筒直径的两倍应不小于矿壁的高度。
两台采矿机的规格和配置均相同,以方便管理。
所述地下铝土大倾角中厚矿层双采矿机开采方法可以包括如下步骤:
S1.整个工作面为大倾角工作面,工作面的两端分别记作低端和高端(本实施例中可分别对应图示工作面的左端和右端)。采矿机C1停靠在工作面的中点D和高端之间,采矿机C2停靠在高端,此时两采矿机的停靠位置是初始位置。此时矿壁上中、高品位矿料层的分布如图3所示。采矿机停止状态下本身占据一段距离Lt,称此距离为停机距离。
S2.推移装置T将输送机向矿壁推移一个截深的距离,推移长度是自低端起到与采矿机C1相距一个斜切距离(是指采矿机斜切进刀时沿矿壁行走的距离,记作Lx)处。推移后输送机在一个循环中首次形成一个S形弯曲,该S形弯曲为采矿机C1在一个循环中首次斜切进入矿壁作轨道上的准备。采矿机C2停止等待。
S3.采矿机C1向低端行走一个停机距离加一个斜切距离,此时采矿机C1在一个循环中首次斜切进入矿壁,开始第一刀。然后推移装置T继续推移输送机(所谓继续推移输送机是指以此前推移的终点作为本次推移的起点,且保持与此前相同的从工作面一端向另一端的单向推移顺序将输送机向矿壁推移一个截深的距离)。采矿机C2继续停止等待。
S4.采矿机C1向低端行走(即下行)的同时割矿装矿,并将顶板和底板割平,支架紧随采矿机C1的行走方向的后方对顶板进行随机支护,该步骤中采矿机C1开始一个循环中的第一刀开采;采矿机C2停止等待;推移装置继续推移输送机,推移的终点与采矿机C2相距一个斜切距离Lx。
S5.采矿机C1继续下行同时割矿装矿,并将顶板和底板割平,支架紧随采矿机C1的行走方向的后方对顶板进行随机支护;采矿机C2下行一个停机距离加一个斜切距离后停止,此时采矿机C2斜切进入矿壁。
S6.采矿机C1继续下行同时割矿装矿,并将顶板和底板割平,支架紧随采矿机C1的行走方向的后方对顶板进行随机支护;采矿机C2下行同时割矿装矿,并将顶板和底板割平,直至割透矿壁,支架紧随采矿机C2的行走方向的后方对顶板进行随机支护;推移装置继续推移输送机直至B端,即将后续输送机推直,消除所述S形弯曲。矿壁状态如图4所示。B端指工作面较高位置侧端头。附图未对此进行标示。
由于割矿作业主要是在采矿机沿倾角下行时进行的,可以充分利用重力作用,减少牵引力的消耗,从而降低采矿机的牵引系统损耗。
S7.采矿机C1继续下行到达低端后停止;采矿机C2空刀上行。
S8.采矿机C1上行割除低端的底部台阶,至此采矿机C1的开采完成;采矿机C2继续上行,并在离高端一个停机距离加一个斜切距离范围内割矿。矿壁状态如图5所示。
S9.采矿机C1空刀上行;推移装置将采矿机C1行走方向的后方自低端起的一段输送机向矿壁推移一个截深的距离,推移的终点与采矿机C1之间保持一个斜切距离;采矿机C2下行割除高端的底部台阶。
S10.采矿机C1继续空刀上行直至初始位置时停止,推移装置继续推移输送机,推移的终点与采矿机C1之间保持一个斜切距离;采矿机C2上行返回高端即初始位置停止。此时 矿壁开采情况如图6所示。返回步骤S3继续下一循环。
说明:“下一循环”指的是在当前同一个工作面中,由于一个截深的矿料开采完毕,两台采矿机分别回到前一个循环的相同位置(相对工作面),因此可以进行与前一个循环相同的作业步骤。
步骤S3中,采矿机C1在一个循环中首次斜切进入矿壁后的位置优选靠近工作面中点D,以使两采矿机的开采长度尽可能接近,保证两台采矿机同步开采,尽量减少因不同步导致的任何一台采矿机的额外等待时间。
所述工作面的矿壁的长度的上限值优选为不小于100m,例如100-1000m,甚至更长,相比原来的100m可以大大减少矿壁间巷道的数量,因此大大节省巷道掘进量所对应的工程成本。
本实施例针对的是具有较高硬度的矿石采矿,例如铝土矿石,而采煤从原理上一样也可以采用一工作面双机的开采方法,但由于采煤面煤层硬度较低,采煤机可以比较快的牵引速度运行,配合快速拉架、推溜,实现快速开采(拉移速度跟的上牵引速度),因此,采煤面不需要采用一工作面双机的方法,就能实现高效开采(反过来说,在采煤面,如果采用一面双机,由于采煤机间需要通过同一输送机输送及进刀工艺,由于拉移速度无法远超过牵引速度,反而会制约整个面的开采效率)。
而本案采矿机对于中高硬度物料开采(如铝土矿石),一般牵引速度较低,开采效率较低,考虑到拉移速度远远没有发挥出来,因此可以采用一面双机方式,利用快速拉移,双/多台设备低速牵引的截割方式,提高单个面的总体开采效率。
本实施例中提及的“一次采全高”指的是利用双滚筒(一上一下:上滚筒沿顶板采,下滚筒沿底板采)实现工作面整个有效高度的全部开采,即一次通行就可开采全部高度的矿。
对于地下铝土矿形成过程看,其分布相比煤层分布要复杂的多。虽然总体上与煤层相似,有厚的也有薄的矿层。虽然厚矿层开采时,有足够大的高度空间,理论上采用高能力的装备是可以实现的,但是由于矿石硬度大、若工作面倾角较大,截割力与牵引力都需要非常大,带来的截割、牵引滑移磨损损耗是非常严重的,目前还没有这样的设备。对于厚矿层,只要在装备上能提升性能来想办法的,预计难度还不是太大。
但是铝土矿层的分布特点决定,不仅硬,而且还具有厚薄分布不均这一突出的特性,尤其是同一个面的不同走向段,或者不同面间,甚至在一个面的不同位置厚薄差异很大。对于厚矿层可采用高能力大型设备开采,但对于薄层矿分布(甚至是没有矿成分,只有高硬石头),很难实现同一设备去开采厚薄同采的方式,这种情况就无法使用与煤矿相似的综采技 术去开采,这是目前地下铝土开采的最大的采矿方法问题(由于地质条件复杂性,有的矿段是不好实现综采的:否则带来设备损伤、截齿等过大的配件损耗,即开采没有经济性)。
本案中对于较大倾角铝土矿层工作面,充分根据角度的特点,采用下行割矿上行空刀的单向开采的方式,利用采矿机自身重力的优势(只要一定的牵引出力即可下行采矿),能够缓解滑移磨损。同时,从装备上,采用较大空间设置极大的截割能力的大扭矩矮重型采矿机的设计思路,提高对薄矿层尽可能得适应性,宽采高能力又兼顾了厚矿层的开采。从而从装备与开采方法上较好的解决了地质条件复杂的问题。

Claims (6)

  1. 一种地下铝土大倾角中厚矿层双采矿机开采方法,其特征在于:布设工作面时将高品位矿料层留设于矿壁高度方向的中部,矿壁的高品位矿料层的上方和下方均为中等品位矿料层,以所述高品位矿料层和中等品位矿料层为目标矿料层实施一次采全高的混采作业,上方和下方的中等品位矿料层开采后分别形成顶板和底板,顶板形成后,通过向矿壁侧拉移支架对裸露的顶板进行随机支护,同一工作面上同时设置两台采矿机,两台采矿机分别从工作面的中部和较高的端头斜切进刀,并分别向工作面的较低的端头和中部下行同时开采,且两采矿机并行。
  2. 如权利要求1所述的地下铝土大倾角中厚矿层双采矿机开采方法,其特征在于:两台采矿机均配套大功率摇臂、中等直径滚筒,滚筒直径的两倍应不小于矿壁的高度。
  3. 如权利要求2所述的地下铝土大倾角中厚矿层双采矿机开采方法,其特征在于:两台采矿机的规格和配置均相同。
  4. 如权利要求1、2或3所述的地下铝土大倾角中厚矿层双采矿机开采方法,其特征在于:包括如下步骤:
    S1.采矿机C1停靠在工作面的中点D和高端之间,采矿机C2停靠在高端,此时两采矿机的停靠位置是初始位置;
    S2.推移装置将输送机向矿壁推移一个截深的距离,推移长度是自低端起到与采矿机C1相距一个斜切距离处,采矿机C2停止等待;
    S3.采矿机C1向低端行走一个停机距离加一个斜切距离,此时采矿机C1在一个循环中首次斜切进入矿壁;然后推移装置继续推移输送机;采矿机C2继续停止等待;
    S4.采矿机C1向低端行走的同时割矿装矿,并将顶板和底板割平,支架紧随采矿机C1的行走方向的后方对顶板进行随机支护;采矿机C2停止等待;推移装置继续推移输送机,推移的终点与采矿机C2相距一个斜切距离;
    S5.采矿机C1继续下行同时割矿装矿,并将顶板和底板割平,支架紧随采矿机C1的行走方向的后方对顶板进行随机支护;采矿机C2下行一个停机距离加一个斜切距离后停止,此时采矿机C2斜切进入矿壁;
    S6.采矿机C1继续下行同时割矿装矿,并将顶板和底板割平,支架紧随采矿机C1的行走方向的后方对顶板进行随机支护;采矿机C2下行同时割矿装矿,并将顶板和底板割平,直至割透矿壁,支架紧随采矿机C2的行走方向的后方对顶板进行随机支护;推移装置继续推移输送机直至B端;B端指工作面较高位置侧端头;
    S7.采矿机C1继续下行到达低端后停止;采矿机C2空刀上行;
    S8.采矿机C1上行割除低端的底部台阶;采矿机C2继续上行,并在离高端一个停机距离加一个斜切距离范围内割矿;
    S9.采矿机C1空刀上行;推移装置将采矿机C1行走方向的后方自低端起的一段输送机向矿壁推移一个截深的距离,推移的终点与采矿机C1之间保持一个斜切距离;采矿机C2下行割除高端的底部台阶;
    S10.采矿机C1继续空刀上行直至初始位置时停止,推移装置继续推移输送机,推移的终点与采矿机C1之间保持一个斜切距离;采矿机C2上行返回高端即初始位置停止;返回步骤S3继续下一循环。
  5. 如权利要求4所述的地下铝土大倾角中厚矿层双采矿机开采方法,其特征在于:步骤S3中,采矿机C1在一个循环中首次斜切进入矿壁后的位置靠近工作面中点D。
  6. 如权利要求1、2、3、4或5所述的地下铝土大倾角中厚矿层双采矿机开采方法,其特征在于:工作面的长度的上限值不小于100m。
PCT/CN2023/102558 2022-09-26 2023-06-27 地下铝土大倾角中厚矿层双采矿机开采方法 WO2024066529A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2023258380A AU2023258380A1 (en) 2022-09-26 2023-06-27 Method for mining underground bauxite large inclined angle medium-thick ore bed with dual mining machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211177523.4 2022-09-26
CN202211177523.4A CN115478858A (zh) 2022-09-26 2022-09-26 地下铝土大倾角中厚矿层双采矿机开采方法

Publications (1)

Publication Number Publication Date
WO2024066529A1 true WO2024066529A1 (zh) 2024-04-04

Family

ID=84393666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102558 WO2024066529A1 (zh) 2022-09-26 2023-06-27 地下铝土大倾角中厚矿层双采矿机开采方法

Country Status (3)

Country Link
CN (1) CN115478858A (zh)
AU (1) AU2023258380A1 (zh)
WO (1) WO2024066529A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115478858A (zh) * 2022-09-26 2022-12-16 天地上海采掘装备科技有限公司 地下铝土大倾角中厚矿层双采矿机开采方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL271506A1 (en) * 1988-03-28 1988-12-22 Gorniczo Hutniczy Miedzi Two-layer method for mining thick or very thick copper ore deposits
CN108716400A (zh) * 2018-08-13 2018-10-30 天地科技股份有限公司上海分公司 具有多截割头的自行走式露天采矿机
CN108843323A (zh) * 2018-08-13 2018-11-20 天地科技股份有限公司上海分公司 露天采矿机
CN109403978A (zh) * 2019-01-04 2019-03-01 天地科技股份有限公司上海分公司 坚硬矿料井下机械化连续开采方法
CN111622762A (zh) * 2020-06-08 2020-09-04 天地科技股份有限公司上海分公司 双滚筒采矿机开采工艺
CN115478858A (zh) * 2022-09-26 2022-12-16 天地上海采掘装备科技有限公司 地下铝土大倾角中厚矿层双采矿机开采方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL271506A1 (en) * 1988-03-28 1988-12-22 Gorniczo Hutniczy Miedzi Two-layer method for mining thick or very thick copper ore deposits
CN108716400A (zh) * 2018-08-13 2018-10-30 天地科技股份有限公司上海分公司 具有多截割头的自行走式露天采矿机
CN108843323A (zh) * 2018-08-13 2018-11-20 天地科技股份有限公司上海分公司 露天采矿机
CN109403978A (zh) * 2019-01-04 2019-03-01 天地科技股份有限公司上海分公司 坚硬矿料井下机械化连续开采方法
CN111622762A (zh) * 2020-06-08 2020-09-04 天地科技股份有限公司上海分公司 双滚筒采矿机开采工艺
CN115478858A (zh) * 2022-09-26 2022-12-16 天地上海采掘装备科技有限公司 地下铝土大倾角中厚矿层双采矿机开采方法

Also Published As

Publication number Publication date
CN115478858A (zh) 2022-12-16
AU2023258380A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
CN104612693B (zh) 一种露天矿连续式采煤工艺方法
WO2024066529A1 (zh) 地下铝土大倾角中厚矿层双采矿机开采方法
CN104500069B (zh) 一种特厚煤层边角煤的连续采煤机放顶煤开采工艺
CN103527195A (zh) 一种厚夹矸煤层分采分运矸石回填采空区方法
CN101387201A (zh) 具有改进的边缘成形的输送机槽
CN108756875A (zh) 一种内排露天煤矿中厚煤层连续开采装置及方法
CN105003268A (zh) 急倾斜煤层走向推进伪俯斜综采
CN201460884U (zh) 急倾斜煤层采煤机
CN203158840U (zh) 一种移动破碎装车机
RU2398107C2 (ru) Очистной механизированный комплекс с добычей ископаемого крупными блоками и доставкой эскалаторами
CN101029494A (zh) 巷道用矿石铲装机
CN110578518A (zh) 一种适用于薄煤层综采工作面的垂直进刀式开采工艺
CN103204386B (zh) 一种移动破碎装车机
CN201599055U (zh) 井下用煤炭装载输送复合装置
CN110566199A (zh) 向下开采式采煤机及配套装置
CN102777184A (zh) 矿山的开采系统和方法
CN102410016B (zh) 矩形全断面连采机
CN113586056A (zh) 一种长壁式薄煤层和中厚煤层高效开采方法
CN104564076A (zh) 一种露天矿用履带行走式双滚筒采煤机
CN111622762B (zh) 双滚筒采矿机开采工艺
CN210564526U (zh) 向下开采式采煤机及三机配套采煤装置
CN210460661U (zh) 大区块化露天矿连续开采系统
CN110439563B (zh) 大区块化露天矿连续开采工艺
CN106014411A (zh) 深部煤层切-裂-采一体化回采工艺
CN115478855A (zh) 及时支护的矿料掏采方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023258380

Country of ref document: AU

Date of ref document: 20230627

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869777

Country of ref document: EP

Kind code of ref document: A1