WO2024066485A1 - 3d打印耗材检测装置及3d打印设备 - Google Patents
3d打印耗材检测装置及3d打印设备 Download PDFInfo
- Publication number
- WO2024066485A1 WO2024066485A1 PCT/CN2023/100204 CN2023100204W WO2024066485A1 WO 2024066485 A1 WO2024066485 A1 WO 2024066485A1 CN 2023100204 W CN2023100204 W CN 2023100204W WO 2024066485 A1 WO2024066485 A1 WO 2024066485A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wall
- detection device
- shell
- pole magnet
- printing consumables
- Prior art date
Links
- 238000007639 printing Methods 0.000 title description 5
- 230000005405 multipole Effects 0.000 claims abstract description 67
- 238000010146 3D printing Methods 0.000 claims abstract description 62
- 238000001514 detection method Methods 0.000 claims description 52
- 239000000463 material Substances 0.000 claims description 24
- 238000009434 installation Methods 0.000 claims description 22
- 230000002093 peripheral effect Effects 0.000 claims description 11
- 238000000034 method Methods 0.000 abstract description 5
- 230000002159 abnormal effect Effects 0.000 abstract description 3
- 230000037361 pathway Effects 0.000 abstract 2
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 230000006835 compression Effects 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 4
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 4
- 206010034972 Photosensitivity reaction Diseases 0.000 description 4
- 230000036211 photosensitivity Effects 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 3
- 229920006362 Teflon® Polymers 0.000 description 3
- 210000000078 claw Anatomy 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
Definitions
- the present application relates to the field of 3D printing, and more specifically, to a 3D printing consumables detection device and a 3D printing device.
- FDM fused deposition modeling
- the present application aims to provide a 3D printing consumables detection device for detecting some abnormal feeding conditions during FDM-3D printing.
- an embodiment of the present application provides a 3D printing consumables detection device, which includes:
- a shell member defining a passage for allowing consumables to pass therethrough;
- a multi-pole magnet is rotatably disposed on the housing
- a pressing module cooperates with the multi-pole magnet and is capable of pressing the multi-pole magnet toward the consumables passing through the channel;
- the sensor is arranged in the shell and can sense the rotation state of the multi-pole magnet, and the rotation state is used to judge the feeding state of the consumables.
- the pressing module will hold the multi-pole magnet Pressing tightly against the consumables passing through the channel, when the consumables move along the channel to be discharged, the consumables in different feeding states will cause the multi-pole magnet to have different rotation states.
- the sensor senses the rotation state of the multi-pole magnet and can be used to judge the feeding state of the consumables.
- the shell has a first wall.
- the first wall corresponds to the multipolar magnet, and the pressing module can drive the multipolar magnet to press the consumable against the first wall, so that when the consumable moves along the channel, the consumable drives the multipolar magnet to rotate through friction.
- the shell has a second wall, and the channel is defined between the first wall and the second wall; the second wall is provided with a notch, and the multi-pole magnet is located at the corresponding notch.
- the second wall includes a first section and a second section spaced apart along the channel direction, the first section has a first arc surface, the second section has a second arc surface, and the notch is defined between the first arc surface and the second arc surface, wherein the first arc surface and the second arc surface correspond to the outer peripheral surface of the multi-pole magnet respectively.
- the shell is provided with a rotating mounting member, and the multi-pole magnet is rotatably matched with the rotating mounting member.
- the multi-pole magnet is annular and has a center hole and an outer peripheral surface; the multi-pole magnet is rotatably matched to the rotating mounting member with the center hole, and the hole diameter of the center hole is larger than the diameter of the rotating mounting member.
- the pressing module is disposed on a side of the multi-pole magnet away from the channel.
- the clamping module includes an elastic member and a push member, the elastic member radially presses the multipolar magnet through the push member; the push member presses the outer circumference of the multipolar magnet and can slide relative to the outer circumference of the multipolar magnet.
- the 3D printing consumables detection device also includes a photoelectric sensor, which includes a signal transmitting part and a signal receiving part, and the signal transmitting part and the signal receiving part are arranged on both sides of the channel at intervals, for sensing whether there are consumables between the signal transmitting part and the signal receiving part.
- a photoelectric sensor which includes a signal transmitting part and a signal receiving part, and the signal transmitting part and the signal receiving part are arranged on both sides of the channel at intervals, for sensing whether there are consumables between the signal transmitting part and the signal receiving part.
- the extension direction of the elastic member and the abutting member passes through the rotation center point of the multi-pole magnet and is perpendicular to the extension direction of the channel.
- the shell defines an internal space and has a shielding wall located in the internal space; the shielding wall encloses an installation space located in the internal space; the channel penetrates the shielding wall and passes through the installation space.
- the signal transmitting part and the signal receiving part are respectively located on both sides of the channel of the installation space.
- the shell includes a bottom shell and a cover, wherein the cover is covered on the bottom shell to enclose an internal space; and the shielding wall is arranged on the bottom shell.
- the 3D printing consumables detection device further includes a circuit board, which is installed between the bottom shell and the cover.
- the photoelectric sensor is installed on a side surface of the circuit board facing the bottom shell and extends into the installation space toward one side of the bottom shell.
- the bottom shell includes an annular wall and a bottom wall, wherein the bottom wall closes an opening at one end of the annular wall to form an open box-shaped structure; and the cover is cooperatively connected to the other end opening of the annular wall.
- the annular wall is provided with a side opening
- the shielding wall is in a U-shape facing the side opening
- the two sides of the U-shape are respectively connected to the two sides of the side opening.
- An interface component capable of receiving data transmitted by the photoelectric sensor or supplying power to the photoelectric sensor is provided on the circuit board, and the interface component is located in the installation space and corresponds to the side opening.
- the cover includes a top wall and an extension wall, wherein the extension wall is vertically connected to the top wall, extends into the side opening and presses the interface member onto the bottom shell, and the extension wall and the interface member together close the side opening.
- the shielding wall extends to a side close to the bottom wall and is connected to the bottom wall, and the circuit board covers a side of the shielding wall close to the cover.
- an embodiment of the present application further provides a 3D printing device, which includes the aforementioned 3D printing consumables detection device.
- the 3D printing consumables detection device in the embodiment of the present application has a simple structure and can conveniently determine the feeding status of the consumables.
- the 3D printing device provided in the present application is equipped with the 3D printing consumables detection device, so that the feeding status of the consumables can be conveniently monitored.
- FIG1 is a three-dimensional view of a 3D printing consumables detection device in an embodiment of the present application (the consumables are additionally shown in the figure);
- FIG2 is a cross-sectional view of the 3D printing consumables detection device of FIG1 (the consumables are additionally shown in the figure);
- FIG3 is an expanded view of the 3D printing consumables detection device of FIG1 (the consumables are additionally shown in the figure);
- FIG4 is a schematic diagram of a partial structure of the 3D printing consumables detection device in FIG1 (the consumables are additionally shown in the figure);
- FIG. 5 is a schematic diagram of the structure of a 3D printing device in an embodiment of the present application.
- the embodiment of the present application provides a 3D printing consumables detection device, including a shell, a multi-pole magnet, a clamping module and a sensor.
- the shell defines a channel for allowing consumables to pass through.
- the multi-pole magnet is rotatably arranged.
- the clamping module cooperates with the multi-pole magnet and can press the multi-pole magnet toward the consumables passing through the channel.
- the sensor can sense the rotation state of the multi-pole magnet, and the rotation state is used to determine the feeding state of the consumables.
- the pressing module presses the multi-pole magnet against the consumables passing through the channel.
- the consumables move along the channel to be discharged, the consumables in different feeding states will cause the multi-pole magnet to have different rotation states.
- the sensor senses the rotation state of the multi-pole magnet and can be used to determine the feeding state of the detection consumables.
- the consumables when the consumables are discharged normally, the consumables will drive the multipolar magnet to rotate at a corresponding speed through friction with the multipolar magnet; when the consumables are blocked and cannot be discharged normally or the discharge speed slows down, the rotation speed of the multipolar magnet will decrease or even stop completely.
- the senor senses the number of rotations of the multi-polar magnet, and the discharge amount of the consumables can be calculated based on the number of rotations.
- the discharge amount can be used to confirm, for example, the remaining amount of consumables, etc., to facilitate operations such as replacing or replenishing consumables.
- the rotation state of the multi-pole magnet (such as rotation speed, number of rotations, etc.) sensed by the sensor can be used to determine the feeding state of the consumables (such as discharge speed, whether there is a blockage, the amount of consumables used, etc.), so that the system or operator can perform corresponding processing.
- This embodiment provides a 3D printing consumables detection device 10 , including a shell 11 , a multi-pole magnet 12 , a pressing module 13 , a sensor 14 , a circuit board 15 and a photoelectric sensor 33 .
- the shell 11 encloses an internal space Q1 .
- the shell 11 is also provided with a channel S1 for allowing the consumables 80 to pass through, and the channel S1 extends along the first direction Y1 and passes through the internal space Q1 .
- the shell 11 is generally a shell-shaped structure, having a hollow shell 16, and the shell 16 encloses an internal space Q1 for installing other structures.
- a channel wall 17 for defining the channel S1 is provided in the shell 16.
- the channel wall 17 can be integrally formed with the shell 16 or connected to the shell 16 by means of a clamping connection, a screw connection, etc., which is not limited here.
- the shell 11 can be configured to be composed of a bottom shell 18 and a cover 19 that are detachably connected, such as by screws to achieve locking, so as to facilitate disassembly, assembly and maintenance of the internal structure.
- the aforementioned outer shell 16 is composed of an outer wall structure with an opening of the bottom shell 18 and the cover 19, and the channel wall 17 can be integrally formed in the outer wall structure of the bottom shell 18, and the cover 19 covers the opening of the bottom shell 18.
- the structure of the shell 11 is only an example.
- the shell 11 does not need to be a hollow shell structure, that is, it does not need to enclose the internal space Q1.
- the shell 11 only needs to ensure that it can enclose the channel S1 through which the consumables 80 pass.
- the shell 11 has a first wall 21.
- the first wall 21 can be a wall structure in the internal space Q1 of the shell 11, and can be integrally arranged on the bottom shell 18.
- the first wall 21 corresponds to the multipolar magnet 12, and the pressing module 13 can drive the multipolar magnet 12 to press the consumable 80 against the first wall 21, so that when the consumable 80 moves along the channel S1, the consumable 80 drives the multipolar magnet 12 to rotate by friction.
- the friction coefficient between the first wall 21 and the consumable 80 can be set to be smaller.
- the shell 11 also has a second wall 22, which can be a wall structure in the internal space Q1 of the shell 11, and can be integrally arranged on the bottom shell 18.
- the channel S1 is defined between the first wall 21 and the second wall 22.
- the first wall 21 and the second wall 22 can constitute the aforementioned channel wall 17, and can enclose a circumferentially closed annular space on the bottom shell 18 as at least one section of the channel S1 for the consumable 80 to pass through.
- the second wall 22 is provided with a notch K1, and the multi-pole magnet 12 is located at the corresponding notch K1.
- the second wall 22 includes a first section 23 and a second section 24 spaced apart along the extension direction of the channel S1, the first section 23 has a first arc surface P1, the second section 24 has a second arc surface P2, and the notch K1 is defined between the first arc surface P1 and the second arc surface P2.
- the first arc surface P1 and the second arc surface P2 correspond to the outer peripheral surface P3 of the multi-pole magnet 12, respectively.
- the shell 11 may also be formed into the channel S1 for allowing the consumables 80 to pass through in other ways, such as providing a circular tubular structure in the outer shell 16 and using the inner hole of the circular tubular structure as the channel S1, etc., which is not limited here.
- the 3D printing consumables detection device further includes a quick-release claw 37 and a Teflon tube 38 .
- the Teflon tube 38 is connected to the shell 11 via the quick-release claw 37 and corresponds to the communication channel S1 for passing the consumables 80 .
- a rotating mounting member 25 is provided in the internal space Q1 for rotatably mounting the multi-pole magnet 12.
- the rotating mounting member 25 may be a cylindrical pin structure, and the multi-pole magnet 12 is directly and rotatably mounted on the outer periphery of the rotating mounting member 25.
- the multi-pole magnet 12 may also be rotated by One or more intermediate parts (such as bearings or annular rotating sleeves, etc.) are rotationally matched with the rotating mounting part 25 of the cylindrical pin structure, and it is only necessary to be able to realize the rotational installation of the multi-pole magnet 12.
- the multi-pole magnet 12 is rotatably mounted, for example, rotatably mounted on the aforementioned rotatable mounting member 25.
- the multi-pole magnet 12 can also be rotatably mounted on the housing 11 in other ways, which will not be described here.
- the multi-pole magnet 12 is annular and has a center hole K2 and an outer peripheral surface P3.
- the multi-pole magnet 12 is rotatably matched with the rotating mounting member 25 with the center hole K2, and the aperture of the center hole K2 is larger than the diameter of the rotating mounting member 25. In this way, the multi-pole magnet 12 can rotate around the rotating mounting member 25 while having a certain degree of freedom of radial displacement, so as to achieve radial displacement under the action of external force to compress the consumables 80, which will be described in detail below.
- the multi-pole magnet 12 can also achieve radial displacement freedom through other settings.
- the rotating mounting member 25 can be arranged on the shell member 11 so that it can move relative to the shell member 11 in the direction in which the multi-pole magnet 12 needs to move.
- the multi-pole magnet 12 can rotate relative to the rotating mounting member 25 and can also move relative to the shell member 11 in the radial direction with the rotating mounting member 25.
- This setting form can be to open a long groove on the shell member 11 as a hole for the rotating mounting member 25 to rotate, so that the rotating mounting member 25 can move along the length direction of the long groove while rotating.
- the multi-pole magnet 12 includes N-pole portions 26 and S-pole portions 27 alternately arranged along the circumferential direction.
- the multi-pole magnet 12 shown in the figure includes two N-pole portions 26 and two S-pole portions 27 alternately arranged.
- the multi-pole magnet 12 can also be multi-polarized by other methods.
- the multi-pole magnet 12 is located on one side of the channel S1 along the second direction Y2.
- the first direction Y1 is the vertical direction in FIG. 2
- the second direction Y2 is the horizontal direction in FIG. 2, which is perpendicular to the first direction Y1.
- the second direction Y2 can also be set to obliquely intersect with the first direction Y1.
- the clamping module 13 cooperates with the multipolar magnet 12, and is capable of pressing the multipolar magnet 12 toward the consumables 80 passing through the channel S1.
- the clamping module 13 is disposed in the internal space Q1 on the shell 11, and is located on the side of the multipolar magnet 12 away from the channel S1 (the side of the second direction Y2), and is used to apply an elastic force toward the channel S1 to the multipolar magnet 12.
- the clamping module 13 includes an elastic member 28 and a push member 29, one end of the elastic member 28 pushes against the shell 11, and the other end radially presses the push member 29 against the outer peripheral surface P3 of the multipolar magnet 12, and there is a relative sliding fit between the push member 29 and the outer peripheral surface P3 of the multipolar magnet 12, so that the clamping module 13 applies radial pressure to the multipolar magnet 12.
- the force will not block the rotation of the multipolar magnet 12.
- the contact surface between the push piece 29 and the multipolar magnet 12 can be set to have a smaller friction coefficient.
- the shape of the push surface of the push piece 29 can be set as needed.
- the shape of the outer peripheral surface P3 of the multipolar magnet 12 is set to fit the shape of the outer peripheral surface P3 of the multipolar magnet 12, such as being set to an arc surface with a diameter equal to or slightly larger than the multipolar magnet 12. It can be set to a spherical arc surface or a hyperbolic arc surface.
- the contact between the push piece 29 and the multipolar magnet 12 can be point contact, line contact or surface contact, which is not limited here.
- the contact surface of the push piece 29 or the multipolar magnet 12 can also be provided with a wear-resistant coating or a wear-resistant structural layer to reduce or delay wear.
- a lubrication system can also be provided to lubricate the contact surface between the two, reduce wear or reduce frictional heat generation that affects the performance of the multipolar magnet 12 or the overall performance of the device.
- the shell 11 is provided with two spaced limiting walls 30, and a guide groove C1 is defined between the two limiting walls 30, and the two limiting walls 30 extend to connect to the outer shell 16 respectively.
- the elastic member 28 is a compression spring
- the abutting member 29 includes a first column section 31 and a second column section 32 connected axially, and the diameter of the second column section 32 is smaller than the first column section 31.
- the elastic member 28 (compression spring) is accommodated in the guide groove C1, and one end abuts against an outer wall of the outer shell 16; the second column section 32 of the abutting member 29 is matched in the elastic member 28 (compression spring), and one end of the first column section 31 abuts against the elastic member 28 (compression spring), and the other end abuts against the multi-pole magnet 12.
- the elastic member 28 and at least part of the abutting member 29 are located in the guide groove C1, and are guided by the limiting wall 30. Through the guidance of the limiting wall 30, it can be ensured that the elastic member 28 (compression spring) and the abutting member 29 can be extended and retracted in the defined guide groove C1.
- the sensor 14 can sense the rotation state of the multipolar magnet 12, and the rotation state is used to determine the feeding state of the consumables 80.
- the sensor 14 can be a Hall switch or other rotation detection sensor 14, which is not limited here.
- the sensor 14 can be arranged in the internal space Q1.
- the sensor 14 corresponds to the outer periphery of the multipolar magnet 12.
- the angle formed by the two sensors 14 and the center of the multipolar magnet 12 is 90 degrees, and the aforementioned pressing module 13 is located between the two sensors 14.
- the pressing module 13 presses the multi-pole magnet 12 against the consumables 80 passing through the channel S1.
- the consumables 80 are moved along the channel S1 to be discharged, the consumables 80 in different feeding states will cause the multi-pole magnet 12 to have different rotation states.
- the sensor 14 senses the rotation state of the multi-pole magnet 12, which can be used to determine the feeding state of the consumables 80.
- the consumable 80 when the consumable 80 is discharged normally, the consumable 80 will be rubbed against the multi-pole magnet 12.
- the multipolar magnet 12 is driven to rotate at a corresponding speed; when the consumables 80 are blocked and cannot be discharged normally or the discharge speed slows down, the rotation speed of the multipolar magnet 12 decreases accordingly or even stops completely.
- the senor 14 senses the number of rotations of the multipolar magnet 12, and the discharge amount of the consumable 80 can be calculated based on the number of rotations.
- the discharge amount can be used to confirm, for example, the remaining amount of consumable 80, so as to facilitate operations such as replenishing the consumable 80.
- the rotation state of the multi-pole magnet 12 (such as rotation speed, number of rotations, etc.) sensed by the sensor 14 can be used to determine the feeding state of the consumable 80 (such as discharge speed, whether there is a blockage, the amount of consumable 80 used, etc.), so that the system or operator can perform corresponding processing.
- the photoelectric sensor 33 and the circuit board 15 are respectively disposed in the inner space Q1 of the housing 11 .
- the photoelectric sensor 33 includes a signal transmitting part 34 and a signal receiving part 35, which are arranged at intervals on both sides of the channel S1, and are used to sense whether there is a consumable 80 between the signal transmitting part 34 and the signal receiving part 35.
- a consumable 80 at a position between the signal transmitting part 34 and the signal receiving part 35 corresponding to the channel S1, the light signal emitted by the signal transmitting part 34 will be partially or completely blocked by the consumable 80.
- the nature of the light signal received by the signal receiving part 35 is different from the light signal received by the signal receiving part 35 when the consumable 80 is broken (that is, no consumable 80 passes between the signal transmitting part 34 and the signal receiving part 35). Through the difference in the signal, it can be judged whether there is a broken situation.
- the aforementioned implementation method of using the sensor 14 to detect the rotation of the multi-polar magnet 12 to determine whether the consumables 80 are blocked and the discharge state such as the discharge amount or the remaining amount of material can be used alone, or can be used together with the scheme of using the photoelectric sensor 33 to determine whether the material is broken, and can be set specifically as needed.
- the setting position of the photoelectric sensor 33 and the setting position of the multi-polar magnet 12 can be set at intervals in the extension direction of the channel S1.
- the shell 11 further has a shielding wall 40 located in the internal space Q1.
- the shielding wall 40 encloses an installation space Q2 located in the internal space Q1.
- the channel S1 penetrates the shielding wall 40 and passes through the installation space Q2.
- the signal transmitting part 34 and the signal receiving part 35 are arranged in the installation space and located on both sides of the channel S1 at intervals from each other, and are used to sense the feeding state of the consumable 80.
- the shielding wall 40 can play the role of dividing the space. It encloses an installation space Q2 in the internal space Q1 for installing the photoelectric sensor 33 to increase the ambient light shielding effect at the photoelectric sensor 33 and improve the reliability of the detection of the photoelectric sensor 33.
- the shielding wall 40 can also The shell 11 can be supported in the thickness direction, thereby improving the structural strength of the shell 11 .
- the shielding wall 40 may be provided on the bottom shell 18 .
- the circuit board 15 is installed between the bottom shell 18 and the cover 19, for example, fixedly installed between the bottom shell 18 and the cover 19 by means of locking screws 36.
- the photoelectric sensor 33 is installed on a side surface of the circuit board 15 facing the bottom shell 18, and extends into the installation space Q2 toward the side of the bottom shell 18. Through the positioning and matching of the circuit board 15 and the shell 11, the photoelectric sensor 33 can be correspondingly extended into the installation space Q2, so as to conveniently sense the consumables 80 passing through the installation space Q2 from the channel S1.
- the bottom shell 18 includes an annular wall 41 and a bottom wall 42, the bottom wall 42 closes one end opening of the annular wall 41 to form an open box-shaped structure; the cover 19 is connected to the other end opening of the annular wall 41.
- the annular wall 41 is provided with a side opening K3, the shielding wall 40 is in a U shape facing the side opening K3, and the two sides of the U shape are respectively connected to the two sides of the side opening K3.
- the circuit board 15 is provided with an interface member 43 capable of receiving data transmitted by the photoelectric sensor 33 or supplying power to the photoelectric sensor 33, and the interface member 43 is located in the installation space Q2 and corresponds to the side opening K3.
- the cover 19 includes a top wall 44 and an extension wall 45, the extension wall 45 is vertically connected to the top wall 44, the extension wall 45 extends into the side opening K3 and presses the interface member 43 to the bottom shell 18, and the extension wall 45 and the interface member 43 jointly close the side opening K3.
- the extension wall 45 of the cover 19 simultaneously positions the pressing structure and the structure of shielding the side opening K3, so that the number of structures required to realize the function is reduced, which is conducive to the simplification of the structure and the simplification of the installation.
- the shielding wall 40 extends to connect to the bottom wall 42 on one side thereof, and the circuit board 15 covers the shielding wall 40 on one side thereof, which is close to the cover 19. In this way, light shielding can be achieved at both ends of the shielding wall 40.
- the photoelectric sensor 33 When the 3D printing consumables detection device 10 in the embodiment of the present application is used, when the consumables 80 pass through the photoelectric sensor 33, it will cause a change in the photosensitivity value.
- the photoelectric sensor 33 outputs an analog signal. By determining the difference between the analog signal when there is no material and when there is material, and comparing the difference with the set threshold, it can be determined whether there is material. Specifically, when the material is out of stock, the photosensitivity value will rise, and when it exceeds the threshold, it can be determined that there is no material.
- the photoelectric sensor 33 is arranged in the installation space Q2 and is blocked by the shielding wall 40, which can reduce the influence of external light on the detection accuracy, thereby achieving stable detection of material outages.
- the aforementioned sensor 14 and/or photoelectric sensor 33 can be integrated on the circuit board 15.
- the circuit board 15 has a device for receiving and processing the sensor 14 and/or the photoelectric sensor 33.
- the circuit unit for the signal of the sensor 33 can also supply power to the sensor 14 and/or the photoelectric sensor 33.
- the specific circuit and data processing structure can be implemented using existing known technologies and will not be described in detail here.
- the circuit board 15 may not be provided, and the signal of the sensor 14 and/or the photoelectric sensor 33 may be led out to an external circuit or central processing unit or system.
- the 3D printing consumables detection device 10 of this embodiment when in use, the 3D printing consumables 80 passes through the passage S1 and first contacts the multipolar magnet 12.
- the multipolar magnet 12 is subjected to the force transmitted from the elastic member 28 to the abutting member 29, so that the multipolar magnet 12 is tightly attached to the consumables 80.
- the consumables 80 are fed downward, since the multipolar magnet 12 is rotatably arranged on the rotating mounting member 25, the multipolar magnet 12 will rotate under the drive of the consumables 80.
- the magnetic poles N and S of the multipolar magnet 12 are alternately distributed.
- the sensor 14 When the multipolar magnet 12 rotates, the sensor 14 will detect the change of the magnetic poles of the multipolar magnet 12, thereby determining whether the consumables 80 move downward. When material blocking occurs during printing, the consumables 80 will not move downward, so it will not drive the multipolar magnet 12 to rotate, and the sensor 14 will not detect the change of the magnetic poles of the multipolar magnet 12; it can be set that if this state continues for a set time, it is determined that material blocking occurs.
- the sensor 14 detects the change in the magnetic poles of the multipolar magnet 12 and counts them. The product of the circumference of the multipolar magnet 12 and the number of rotations is calculated to obtain the total feeding length of the consumable 80. After obtaining the length, the amount of consumable 80 used is obtained based on the wire diameter and density, and then the remaining amount of consumable 80 is obtained.
- the photoelectric sensor 33 is used to detect whether the material is broken. When the consumable material 80 passes through the photoelectric sensor 33, it will cause a change in the photosensitivity. Optionally, the photoelectric sensor 33 outputs an analog signal. By determining the difference between the analog signal when there is no material and when there is material, and comparing the difference with the set threshold, it can be determined whether there is material. Specifically, when the material is broken, the photosensitivity will rise, and when it exceeds the threshold, it can be determined that there is no material. In order to avoid the influence of external light on the detection accuracy, the area of the photoelectric sensor 33 can be designed to be closed to ensure that no external light enters to interfere with the detection, thereby achieving stable detection of broken materials.
- the 3D printing consumables detection device 10 in the embodiment of the present application can conveniently detect the discharge status of the 3D printing consumables 80, and is convenient for manually or automatically handling the situations of material blockage, material breakage or material exhaustion that may occur during the 3D printing process as needed, and has industrial applicability.
- this embodiment further provides a 3D printing device 100 , which includes the aforementioned 3D printing consumables detection device 10 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Dry Development In Electrophotography (AREA)
Abstract
本申请涉及3D打印领域,用于检测FDM型3D打印过程中的一些异常供料状态,一方面提供3D打印耗材检测装置,包括壳件、多极磁体、压紧模组和传感器;另一方面提供包括上述3D打印耗材检测装置的3D打印设备。壳件限定通道,用于容许耗材通过。多极磁体可转动地设置于所述壳件。压紧模组与所述多极磁体相配合,并能够将所述多极磁体压向经过所述通道的耗材。传感器配置于所述壳件,并能够感测所述多极磁体的转动状态,所述转动状态用于判断所述耗材的供料状态。本申请的有益效果是能够判断检测耗材的供料状态。
Description
本申请要求在2022年09月30日提交中国专利局、申请号为202222655161.7、申请名称为“3D打印耗材检测装置及3D打印设备”的中国专利的优先权,以及在2022年09月30日提交中国专利局、申请号为202222655077.5、申请名称为“3D打印耗材检测装置”的中国专利的优先权,其全部内容通过引用结合在本申请中。
本申请涉及3D打印领域,具体而言,涉及3D打印耗材检测装置及3D打印设备。
在熔融沉积成型(Fused Deposition Modeling,FDM)3D打印机中,打印机需要将打印耗材挤出后加热熔化,以成型在成型平台上。在使用中,可能出现堵料或物料用完等异常供料状况,影响正常打印。
发明内容
本申请旨在提供3D打印耗材检测装置,用于检测FDM-3D打印过程中的一些异常供料状态。
第一方面,本申请的实施例提供一种3D打印耗材检测装置,其包括:
壳件,限定通道,用于容许耗材通过;
多极磁体,可转动地设置于壳件;
压紧模组,与多极磁体相配合,并能够将多极磁体压向经过通道的耗材;以及,
传感器,配置在壳件中,能够感测多极磁体的转动状态,转动状态用于判断耗材的供料状态。
本申请实施例中的3D打印耗材检测装置使用时,压紧模组将多极磁体
压紧于经过通道的耗材,在耗材沿通道移动出料时,不同供料状态时的耗材将使多极磁体具有不同的转动状态。传感器感测到多极磁体的转动状态,可用于判断检测耗材的供料状态。
在一种可能的实施方式中,壳件具有第一壁。第一壁和多极磁体对应,压紧模组能够带动多极磁体将耗材压紧于第一壁,以使在耗材沿通道移动时,耗材通过摩擦带动多极磁体转动。
在一种可能的实施方式中,壳件具有第二壁,通道限定于第一壁和第二壁之间;第二壁设有缺口,多极磁体位于对应缺口处。
在一种可能的实施方式中,第二壁包括沿通道方向间隔的第一段和第二段,第一段具有第一弧面,第二段具有第二弧面,缺口限定于第一弧面和第二弧面之间。其中,第一弧面和第二弧面分别对应多极磁体的外周面。
在一种可能的实施方式中,壳件设有转动安装件。多极磁体可转动地配合于转动安装件。
在一种可能的实施方式中,多极磁体呈圆环形,具有中心孔和外周面;多极磁体以中心孔可转动地配合于转动安装件,并且中心孔的孔径大于转动安装件的直径。
在一种可能的实施方式中,压紧模组设于多极磁体远离通道的一侧。
在一种可能的实施方式中,压紧模组包括弹性件和抵顶件,弹性件通过抵顶件径向抵压多极磁体;抵顶件抵压多极磁体的外周面,并能够与多极磁体的外周面发生相对滑动。
在一种可能的实施方式中,3D打印耗材检测装置还包括光电传感器,光电传感器包括信号发射部和信号接收部,信号发射部和信号接收部相互间隔地设置于通道两侧,用于感测信号发射部和信号接收部之间是否存在耗材。
在一种可能的实施方式中,弹性件和抵顶件的延伸方向通过多极磁体的转动中心点,且垂直于通道的延伸方向。
在一种可能的实施方式中,壳件限定内部空间,并具有位于内部空间的遮挡壁;遮挡壁围成位于内部空间中的安装空间;通道贯穿遮挡壁并经过安装空间。信号发射部和信号接收部分别位于安装空间在通道的两侧。
在一种可能的实施方式中,壳件包括底壳和盖件,盖件盖合于底壳以围成内部空间;遮挡壁设置于底壳。
在一种可能的实施方式中,3D打印耗材检测装置还包括电路板,电路板安装于底壳和盖件之间。光电传感器安装于电路板朝向底壳的一侧板面上,并向底壳一侧伸入至安装空间。
在一种可能的实施方式中,底壳包括环壁和底壁,底壁封闭环壁的一端开口,以形成一开口盒状结构;盖件配合连接于环壁的另一端开口。
在一种可能的实施方式中,环壁开设有侧口,遮挡壁呈朝向侧口的U形,且U形的两侧分别连接于侧口的两侧。电路板上设有能够接收光电传感器传输的数据或向光电传感器供电的接口件,接口件位于安装空间并对应于侧口处。
在一种可能的实施方式中,盖件包括顶壁和延伸壁,延伸壁垂直地连接于顶壁,延伸壁伸入侧口并将接口件压合于底壳,且延伸壁和接口件共同封闭侧口。
在一种可能的实施方式中,遮挡壁靠近底壁一侧延伸至连接于底壁,电路板盖合遮挡壁靠近盖件一侧。
第二方面,本申请的实施例还提供一种3D打印设备,其包括前述的3D打印耗材检测装置。
综上,本申请实施例中的3D打印耗材检测装置结构简单,并能够方便地判断检测耗材的供料状态。本申请提供的3D打印设备具备该3D打印耗材检测装置,因而能够方便地监控耗材的供料状态。
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请实施例中的3D打印耗材检测装置的三维视图(图中额外示出了耗材);
图2为图1的3D打印耗材检测装置的剖视图(图中额外示出了耗材);
图3为图1的3D打印耗材检测装置的展开视图(图中额外示出了耗材);
图4为图1中的3D打印耗材检测装置的部分结构的示意图(图中额外示出了耗材);
图5为本申请实施例中的3D打印设备的结构示意图。
主要元件符号说明:
3D打印耗材检测装置 10
壳件 11
多极磁体 12
压紧模组 13
传感器 14
电路板 15
外壳 16
通道壁 17
底壳 18
盖件 19
第一壁 21
第二壁 22
第一段 23
第二段 24
转动安装件 25
N极部 26
S极部 27
弹性件 28
抵顶件 29
限位壁 30
第一柱段 31
第二柱段 32
光电传感器 33
信号发射部 34
信号接收部 35
锁紧螺钉 36
快拆卡爪 37
特氟龙管 38
遮挡壁 40
环壁 41
底壁 42
接口件 43
顶壁 44
延伸壁 45
耗材 80
导槽 C1
缺口 K1
中心孔 K2
侧口 K3
第一弧面 P1
第二弧面 P2
外周面 P3
内部空间 Q1
安装空间 Q2
通道 S1
第一方向 Y1
第二方向 Y2
3D打印设备 100
3D打印耗材检测装置 10
壳件 11
多极磁体 12
压紧模组 13
传感器 14
电路板 15
外壳 16
通道壁 17
底壳 18
盖件 19
第一壁 21
第二壁 22
第一段 23
第二段 24
转动安装件 25
N极部 26
S极部 27
弹性件 28
抵顶件 29
限位壁 30
第一柱段 31
第二柱段 32
光电传感器 33
信号发射部 34
信号接收部 35
锁紧螺钉 36
快拆卡爪 37
特氟龙管 38
遮挡壁 40
环壁 41
底壁 42
接口件 43
顶壁 44
延伸壁 45
耗材 80
导槽 C1
缺口 K1
中心孔 K2
侧口 K3
第一弧面 P1
第二弧面 P2
外周面 P3
内部空间 Q1
安装空间 Q2
通道 S1
第一方向 Y1
第二方向 Y2
3D打印设备 100
下文所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。当一个元件被认为是“设置于”另一个元件,它可以是直接设置在另一个元件上或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
除非另有定义,本文所使用的所有的技术和科学术语与属于本领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
实施例
本申请实施例提供3D打印耗材检测装置,包括壳件、多极磁体、压紧模组和传感器。壳件限定通道,用于容许耗材通过。多极磁体可转动地设置。压紧模组与多极磁体相配合,并能够将多极磁体压向经过通道的耗材。传感器能够感测多极磁体的转动状态,转动状态用于判断耗材的供料状态。
本申请实施例中的3D打印耗材检测装置使用时,压紧模组将多极磁体压紧于经过通道的耗材,在耗材沿通道移动出料时,不同供料状态时的耗材将使多极磁体具有不同的转动状态。传感器感测到多极磁体的转动状态,可用于判断检测耗材的供料状态。
例如,在耗材正常出料时,耗材将通过与多极磁体的摩擦而带动多极磁体以相应的速度转动;在耗材发生堵料而无法正常出料或出料速度变慢时,多极磁体的转动速度将下降甚至完全停止。
又例如,传感器感测得到多极磁体的转动圈数,通过该转动圈数可计算出耗材的出料量,出料量可以用于确认例如剩余耗材量等,便于指导耗材更换或补充等操作。
因此,可以通过传感器感测到的多极磁体的转动状态(如转动速度、转动圈数等),进而可以用于判断耗材的供料状态(如出料速度、是否堵料、已用耗材量等),便于系统或操作人员进行相应的处理。
下面结合图1-图4进行说明。
本实施例提出一种3D打印耗材检测装置10,包括壳件11、多极磁体12、压紧模组13、传感器14、电路板15及光电传感器33。
其中,壳件11围成内部空间Q1。壳件11还设有用于容许耗材80通过的通道S1,通道S1沿第一方向Y1延伸,并经过内部空间Q1。
例如图示的,壳件11大致为一壳状结构,具有一中空的外壳16,外壳16围成内部空间Q1,用于安装其他结构。外壳16内设有用于界定通道S1的通道壁17。通道壁17可以和外壳16一体成型或通过卡接、螺钉连接等方式和外壳16连接在一起,在此不做限定。
壳件11可以设置为由一底壳18和一盖件19可拆卸地连接而成,如通过螺钉实现锁紧,以方便内部结构的拆装维修等。前述的外壳16由底壳18的带开口的外部围壁结构和盖件19组成,通道壁17可以一体成型在底壳18的外部围壁结构内,盖件19盖合于底壳18的开口。
当然,上述壳件11的结构仅为示例,在其他实施例中,壳件11无需设置为中空的壳状结构,即无需围成前述内部空间Q1。总的来说,壳件11只需保证能够围成耗材80通过的通道S1即可。
本实施例中,可选地,壳件11具有第一壁21。第一壁21可以为壳件11的内部空间Q1内的一个壁结构,可以一体设置在底壳18上。第一壁21和多极磁体12对应,压紧模组13能够带动多极磁体12将耗材80压紧于第一壁21,以使在耗材80沿通道S1移动时,耗材80通过摩擦带动多极磁体12转动。本实施例中,第一壁21和耗材80之间的摩擦系数可设置得较小。壳件11还具有第二壁22,第二壁22可以为壳件11的内部空间Q1内的一个壁结构,可以一体设置在底壳18上。通道S1限定于第一壁21和第二壁22之间。第一壁21和第二壁22可以构成前述通道壁17,可以在底壳18上围成一周向封闭的环形空间,作为通道S1的至少一段,供耗材80通过。第二壁22设有缺口K1,多极磁体12位于对应缺口K1处。可选地,第二壁22包括沿通道S1的延伸方向间隔的第一段23和第二段24,第一段23具有第一弧面P1,第二段24具有第二弧面P2,缺口K1限定于第一弧面P1和第二弧面P2之间。其中,第一弧面P1和第二弧面P2分别对应多极磁体12的外周面P3。
壳件11还可以采用其他方式围成前述容许耗材80通过的通道S1,例如在外壳16内设置一圆管状结构,圆管状结构的内孔作为该通道S1等,在此不做限定。
可选地,3D打印耗材检测装置还包括快拆卡爪37和特氟龙管38,特氟龙管38通过快拆卡爪37连接于壳件11,并对应连通通道S1,用于通过耗材80。
本实施例中,内部空间Q1内设有转动安装件25,用于转动安装多极磁体12。转动安装件25可以为一圆柱销结构,多极磁体12直接可转动地套设于转动安装件25的外周;在其他实施例中,多极磁体12还可以通过
一个或多个中间件(例如轴承或圆环形的转动套等)转动配合于该圆柱销结构的转动安装件25,只需能够实现多极磁体12的转动安装即可。
本实施例中,多极磁体12可转动地设置,例如可转动地安装于前述的转动安装件25。在未设置前述转动安装件25时,多极磁体12也可采用其他方式可转动地安装于壳件11,在此不赘述。
如图中示出的,多极磁体12呈圆环形,并具有中心孔K2和外周面P3。多极磁体12以中心孔K2可转动地配合于转动安装件25,并且中心孔K2的孔径大于转动安装件25的直径。如此,多极磁体12在能够绕转动安装件25转动的同时,具有一定的径向位移自由度,以便在外力的作用下实现径向位移,来压紧耗材80,具体将在下文描述。
当然,在其他实施例中,多极磁体12也可以通过其他设置形式来实现径向位移的自由。例如,使转动安装件25可相对壳件11沿多极磁体12所需移动的方向移动地设置于壳件11,如此,多极磁体12在可以相对转动安装件25转动的同时,还能够随转动安装件25一起相对壳件11沿径向移动。这种设置形式可以是在壳件11上开设长槽作为转动安装件25转动配合的孔,使得转动安装件25在转动的同时能够沿长槽的长度方向移动。
本实施例中,多极磁体12包括沿周向交替设置的N极部26及S极部27,例如图示的多极磁体12包括交替设置的两个N极部26和两个S极部27。在其他实施例中,多极磁体12还可以是通过其他方式来实现多极。
本实施例中,多极磁体12位于通道S1沿第二方向Y2的一侧。非限制性地,第一方向Y1为图2中的竖向,第二方向Y2为图2中的横向,垂直于第一方向Y1。在其他实施例中,第二方向Y2也可以设置得与第一方向Y1倾斜相交。
压紧模组13与多极磁体12相配合,并能够将多极磁体12压向经过通道S1的耗材80。本实施例中,压紧模组13设于壳件11上的内部空间Q1中,并位于多极磁体12远离通道S1的一侧(第二方向Y2一侧),用于对多极磁体12施加朝向通道S1的弹性力。可选地,压紧模组13包括弹性件28和抵顶件29,弹性件28一端抵顶于壳件11、另一端沿径向将抵顶件29抵压于多极磁体12的外周面P3,且抵顶件29与多极磁体12的外周面P3之间为相对滑动配合,如此,压紧模组13在对多极磁体12施加径向抵压
力的同时不会阻挡多极磁体12的转动。为降低磨损,抵顶件29和多极磁体12的接触表面可设置得具有较小的摩擦系数。抵顶件29的抵顶面的形状可以根据需要设置。例如设置为适配多极磁体12外周面P3的形状,如设置为直径等于或略大于多极磁体12的弧面。可以设置为球弧面、双曲弧面。抵顶件29和多极磁体12之间的接触可以为点接触、线接触或面接触,在此不做限定。抵顶件29或多极磁体12的接触表面还可以设置耐磨涂层或耐磨结构层,用于降低或延缓磨损。在其他实施例中,还可设置润滑系统,用于对两者之间的接触面实现润滑,降低摩损或减小摩擦产热影响多极磁体12的性能或装置的整体性能。
可选地,壳件11设有两间隔的限位壁30,两限位壁30之间限定导槽C1,两限位壁30分别延伸至连接于外壳16。弹性件28为压缩弹簧,抵顶件29为包括轴向连接的第一柱段31和第二柱段32,第二柱段32的直径小于第一柱段31。弹性件28(压缩弹簧)容置于导槽C1中,且一端抵顶于外壳16的一外壁上;抵顶件29的第二柱段32配合于弹性件28(压缩弹簧)内,第一柱段31一端抵顶弹性件28(压缩弹簧)、另一端抵顶多极磁体12。可选地,弹性件28和至少部分的抵顶件29位于导槽C1内,受限位壁30引导。通过限位壁30的引导,能够确保弹性件28(压缩弹簧)和抵顶件29在限定的导槽C1内伸缩。
传感器14能够感测多极磁体12的转动状态,转动状态用于判断耗材80的供料状态。本实施例中,传感器14可以采用霍尔开关,或其他转动检测传感器14,在此不做限定。
对于围成内部空间Q1的壳件11,传感器14可以设置于内部空间Q1。传感器14对应于多极磁体12的外周。例如图示的,传感器14有两个,两个传感器14与多极磁体12的中心形成的夹角呈90°,前述压紧模组13位于两传感器14之间的位置。
本申请实施例中的3D打印耗材检测装置10使用时,压紧模组13将多极磁体12压紧于经过通道S1的耗材80,在耗材80沿通道S1移动出料时,不同供料状态时的耗材80将使多极磁体12具有不同的转动状态。传感器14感测到多极磁体12的转动状态,可用于判断检测耗材80的供料状态。
例如,在耗材80正常出料时,耗材80将通过与多极磁体12的摩擦而
带动多极磁体12以相应的速度转动;在耗材80发生堵料而无法正常出料或出料速度变慢时,多极磁体12的转动速度相应下降甚至完全停止。
又例如,传感器14感测得到多极磁体12的转动圈数,通过该转动圈数可计算出耗材80的出料量,出料量可以用于确认例如剩余耗材80量等,便于指导耗材80补充等操作。
因此,可以通过传感器14感测到的多极磁体12的转动状态(如转动速度、转动圈数等),进而可以用于判断耗材80的供料状态(如出料速度、是否堵料、已用耗材80量等),便于系统或操作人员进行相应的处理。
再次参见图1-图4,本实施例中,光电传感器33和电路板15分别设置在壳件11的内部空间Q1中。
光电传感器33包括信号发射部34和信号接收部35,信号发射部34和信号接收部35相互间隔地设置于通道S1两侧,用于感测信号发射部34和信号接收部35之间是否存在耗材80。在通道S1对应信号发射部34和信号接收部35之间的位置存在耗材80时,信号发射部34发射的光信号将被耗材80部分阻挡或完全阻挡,此时信号接收部35接收到的光信号的性质与耗材80断料(即无耗材80通过信号发射部34和信号接收部35之间)时信号接收部35接收到的光信号不同。通过该信号的不同,可以判断是否存在断料情况。
本实施例中,前述通过传感器14检测多极磁体12的转动来判断耗材80是否堵料及出料量或剩余料量等出料状态的实施方式可以单独应用,也可以结合该通过光电传感器33判断是否断料的方案一起使用,具体可以根据需要进行设置。对于两者一起使用的情形,光电传感器33的设置位置和多极磁体12的设置位置可以在通道S1的延伸方向上间隔设置。
本实施例中,可选地,壳件11还具有位于内部空间Q1的遮挡壁40。遮挡壁40围成位于内部空间Q1中的安装空间Q2。通道S1贯穿遮挡壁40并经过安装空间Q2。信号发射部34和信号接收部35相互间隔地设置于安装空间中并位于通道S1两侧,用于感测耗材80的供料状态。
遮挡壁40一方面可以起到分隔空间的作用,其在内部空间Q1中围成一安装空间Q2,用于安装光电传感器33,以增大光电传感器33处的环境光屏蔽效果,提高光电传感器33检测的可靠性;另一方面,遮挡壁40还
能够在厚度方向支撑壳件11,提高壳件11的结构强度。
对于壳件11分体设置为底壳18和盖件19的情形,遮挡壁40可以设置于底壳18。
本实施例中,电路板15安装于底壳18和盖件19之间,例如通过锁紧螺钉36固定地安装于底壳18和盖件19之间。光电传感器33安装于电路板15朝向底壳18的一侧板面上,并向底壳18一侧伸入至安装空间Q2。通过电路板15和壳件11的定位配合,即可使光电传感器33对应伸入安装空间Q2中,方便感应由通道S1经过安装空间Q2的耗材80。
可选地,底壳18包括环壁41和底壁42,底壁42封闭环壁41的一端开口,以形成一开口盒状结构;盖件19配合连接于环壁41的另一端开口。环壁41开设有侧口K3,遮挡壁40呈朝向侧口K3的U形,且U形的两侧分别连接于侧口K3的两侧。电路板15上设有能够接收光电传感器33传输的数据或向光电传感器33供电的接口件43,接口件43位于安装空间Q2并对应于侧口K3处。
本实施例中,盖件19包括顶壁44和延伸壁45,延伸壁45垂直地连接于顶壁44,延伸壁45伸入侧口K3并将接口件43压合于底壳18,且延伸壁45和接口件43共同封闭侧口K3。盖件19的延伸壁45同时位置压合结构和遮挡侧口K3的结构,使实现功能需要的结构数量减少,利于结构简单化和简化安装配合。
本实施例中,遮挡壁40靠近底壁42一侧延伸至连接于底壁42,电路板15盖合遮挡壁40靠近盖件19一侧。如此,可实现遮挡壁40两端的遮光。
本申请实施例中的3D打印耗材检测装置10使用时,当耗材80通过光电传感器33时会引起感光值的变化。可选地,光电传感器33输出的是模拟量信号,通过判定模拟量信号的在无料时和有料时的差值,对比差值与设定的阈值,即可进行判断是否有料。具体地,当断料时,感光值会上升,超出阈值时即可判断缺料。并且,本实施例中光电传感器33设在安装空间Q2中,被遮挡壁40遮挡,能够降低外部光线对检测精度的影响,从而实现稳定检测断料。本实施例中,前述的传感器14和/或光电传感器33可以集成在电路板15上。电路板15上具有用于接收和处理传感器14和/或光电
传感器33的信号的电路单元,并能够对传感器14和/或光电传感器33供电,具体的电路及数据处理结构可以采用现有已知技术进行,在此不赘述。
在其他实施例中,可以不设置电路板15,而是将传感器14和/或光电传感器33的信号引出至一外接的电路或中央处理单元或系统。
在本实施例的3D打印耗材检测装置10的一些具体实施方式在使用时,3D打印耗材80穿过经过通道S1,首先与多极磁体12接触,多极磁体12受到弹性件28传递给抵顶件29的力,使得多极磁体12紧紧贴住耗材80,当耗材80向下进料时,由于多极磁体12转动设置在转动安装件25上,因此多极磁体12会在耗材80的带动下旋转。多极磁体12的磁极N和磁极S交替分布,当多极磁体12旋转时,传感器14会检测到多极磁体12的磁极变化,从而实现判断耗材80是否向下运动。打印过程中当发生堵料时,耗材80不会向下运动,因此不会带动多极磁体12转动,传感器14检测不到多极磁体12的磁极变化;可设定若该状态持续设定时间,则判定发生堵料。
在需要计算耗材80用量或剩余量时,通过传感器14检测多极磁体12的磁极变化并进行计数,计算多极磁体12的周长和转动圈数的乘积,即可得到耗材80的进料总长度,得到长度后根据线材直径和密度得到使用的耗材80量,进而得到耗材80剩余量。
通过光电传感器33检测是否出现断料。当耗材80通过光电传感器33时会引起感光值的变化。可选地,光电传感器33输出的是模拟量信号,通过判定模拟量信号的在无料时和有料时的差值,对比差值与设定的阈值,即可进行判断是否有料。具体地,当断料时,感光值会上升,超出阈值时即可判断缺料。为了避免外部光线对检测精度的影响,可对光电传感器33的区域进行封闭设计,确保无外部光线进入干扰检测,从而实现稳定检测断料。
本申请实施例中的3D打印耗材检测装置10能够方便地检测3D打印耗材80的出料状态,方便根据需要人工或自动处理3D打印过程中可能出现的堵料、断料或料用完的情况,具有工业实用性。
参见图5,本实施例还提供一种3D打印设备100,其包括前述的3D打印耗材检测装置10。
以上实施方式仅用以说明本申请的技术方案而非限制,尽管参照以上
较佳实施方式对本申请进行了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或等同替换都不应脱离本申请技术方案的精神和范围。
Claims (17)
- 一种3D打印耗材检测装置,其特征在于,包括:壳件,限定通道,用于容许耗材通过;多极磁体,可转动地设置于所述壳件;压紧模组,与所述多极磁体相配合,并能够将所述多极磁体压向经过所述通道的耗材;以及,传感器,配置在所述壳件中,能够感测所述多极磁体的转动状态,所述转动状态用于判断所述耗材的供料状态。
- 根据权利要求1所述的3D打印耗材检测装置,其特征在于:所述壳件具有第一壁;所述第一壁和所述多极磁体对应,所述压紧模组能够带动所述多极磁体将所述耗材压紧于所述第一壁,以使在所述耗材沿所述通道移动时,所述耗材通过摩擦带动所述多极磁体转动。
- 根据权利要求2所述的3D打印耗材检测装置,其特征在于:所述壳件具有第二壁,所述通道限定于所述第一壁和所述第二壁之间;所述第二壁设有缺口,所述多极磁体位于对应所述缺口处。
- 根据权利要求3所述的3D打印耗材检测装置,其特征在于:所述第二壁包括沿所述通道方向间隔的第一段和第二段,所述第一段具有第一弧面,所述第二段具有第二弧面,所述缺口限定于所述第一弧面和所述第二弧面之间;其中,所述第一弧面和所述第二弧面分别对应所述多极磁体的外周面。
- 根据权利要求1所述的3D打印耗材检测装置,其特征在于:所述壳件设有转动安装件;所述多极磁体可转动地配合于所述转动安装件。
- 根据权利要求5所述的3D打印耗材检测装置,其特征在于:所述多极磁体呈圆环形,具有中心孔和外周面;所述多极磁体以所述中心孔可转动地配合于所述转动安装件,并且所述中心孔的孔径大于所述转动安装件的直径。
- 根据权利要求1所述的3D打印耗材检测装置,其特征在于:所述压紧模组设于所述多极磁体远离所述通道的一侧。
- 根据权利要求1所述的3D打印耗材检测装置,其特征在于:所述压紧模组包括弹性件和抵顶件,所述弹性件通过所述抵顶件径向抵压所述多极磁体;所述抵顶件抵压所述多极磁体的外周面,并能够与所述多极磁体的外周面发生相对滑动。
- 根据权利要求1所述的3D打印耗材检测装置,其特征在于:所述3D打印耗材检测装置还包括光电传感器,所述光电传感器包括信号发射部和信号接收部,所述信号发射部和信号接收部相互间隔地设置于所述通道两侧,用于感测所述信号发射部和信号接收部之间是否存在所述耗材。
- 根据权利要求9所述的3D打印耗材检测装置,其特征在于:所述壳件限定内部空间,并具有位于内部空间的遮挡壁;所述遮挡壁围成位于所述内部空间中的安装空间;所述通道贯穿所述遮挡壁并经过所述安装空间;所述信号发射部和所述信号接收部分别位于所述安装空间在所述通道的两侧。
- 根据权利要求10所述的3D打印耗材检测装置,其特征在于:所述壳件包括底壳和盖件,所述盖件盖合于所述底壳以围成所述内部空间;所述遮挡壁设置于所述底壳。
- 根据权利要求11所述的3D打印耗材检测装置,其特征在于:所述3D打印耗材检测装置还包括电路板,所述电路板安装于所述底壳和所述盖件之间;所述光电传感器安装于所述电路板朝向所述底壳的一侧板面上,并向所述底壳一侧伸入至安装空间。
- 根据权利要求12所述的3D打印耗材检测装置,其特征在于:所述底壳包括环壁和底壁,所述底壁封闭所述环壁的一端开口,以形成一开口盒状结构;所述盖件配合连接于所述环壁的另一端开口。
- 根据权利要求13所述的3D打印耗材检测装置,其特征在于:所述环壁开设有侧口,所述遮挡壁呈朝向所述侧口的U形,且U形的两侧分别连接于侧口的两侧;所述电路板上设有能够接收所述光电传感器传输的数据或向所述光电传感器供电的接口件,所述接口件位于所述安装空间并对应于所述侧口处。
- 根据权利要求14所述的3D打印耗材检测装置,其特征在于:所述盖件包括顶壁和延伸壁,所述延伸壁垂直地连接于所述顶壁,所述延伸壁伸入所述侧口并将所述接口件压合于所述底壳,且所述延伸壁和所述接口件共同封闭所述侧口。
- 根据权利要求15所述的3D打印耗材检测装置,其特征在于:所述遮挡壁靠近所述底壁一侧延伸至连接于所述底壁,所述电路板盖合所述遮挡壁靠近所述盖件一侧。
- 一种3D打印设备,其特征在于,包括:权利要求1-16任一项所述的3D打印耗材检测装置。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202222655161.7U CN218701337U (zh) | 2022-09-30 | 2022-09-30 | 3d打印耗材检测装置及3d打印设备 |
CN202222655161.7 | 2022-09-30 | ||
CN202222655077.5 | 2022-09-30 | ||
CN202222655077.5U CN218701336U (zh) | 2022-09-30 | 2022-09-30 | 3d打印耗材检测装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024066485A1 true WO2024066485A1 (zh) | 2024-04-04 |
Family
ID=90475911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/100204 WO2024066485A1 (zh) | 2022-09-30 | 2023-06-14 | 3d打印耗材检测装置及3d打印设备 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024066485A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208133617U (zh) * | 2018-04-25 | 2018-11-23 | 中国地质大学(北京) | 基于fdm的不同线径耗材断料卡料检测系统 |
CN208180276U (zh) * | 2018-04-03 | 2018-12-04 | 深圳森工科技有限公司 | 检测装置及3d打印机 |
CN113635557A (zh) * | 2021-09-09 | 2021-11-12 | 深圳市创想三维科技股份有限公司 | 一种断料检测装置、3d打印机及断料检测方法 |
WO2022105034A1 (zh) * | 2020-11-20 | 2022-05-27 | 深圳市创想三维科技有限公司 | 3d打印机及其进料检测装置 |
CN216708377U (zh) * | 2021-11-23 | 2022-06-10 | 深圳市创想三维科技股份有限公司 | 3d打印机堵料检测装置 |
CN216733033U (zh) * | 2022-01-20 | 2022-06-14 | 深圳市智能派科技有限公司 | 一种3d打印机的堵料和缺料检测装置 |
CN218701336U (zh) * | 2022-09-30 | 2023-03-24 | 深圳市创想三维科技股份有限公司 | 3d打印耗材检测装置 |
CN218701337U (zh) * | 2022-09-30 | 2023-03-24 | 深圳市创想三维科技股份有限公司 | 3d打印耗材检测装置及3d打印设备 |
-
2023
- 2023-06-14 WO PCT/CN2023/100204 patent/WO2024066485A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN208180276U (zh) * | 2018-04-03 | 2018-12-04 | 深圳森工科技有限公司 | 检测装置及3d打印机 |
CN208133617U (zh) * | 2018-04-25 | 2018-11-23 | 中国地质大学(北京) | 基于fdm的不同线径耗材断料卡料检测系统 |
WO2022105034A1 (zh) * | 2020-11-20 | 2022-05-27 | 深圳市创想三维科技有限公司 | 3d打印机及其进料检测装置 |
CN113635557A (zh) * | 2021-09-09 | 2021-11-12 | 深圳市创想三维科技股份有限公司 | 一种断料检测装置、3d打印机及断料检测方法 |
CN216708377U (zh) * | 2021-11-23 | 2022-06-10 | 深圳市创想三维科技股份有限公司 | 3d打印机堵料检测装置 |
CN216733033U (zh) * | 2022-01-20 | 2022-06-14 | 深圳市智能派科技有限公司 | 一种3d打印机的堵料和缺料检测装置 |
CN218701336U (zh) * | 2022-09-30 | 2023-03-24 | 深圳市创想三维科技股份有限公司 | 3d打印耗材检测装置 |
CN218701337U (zh) * | 2022-09-30 | 2023-03-24 | 深圳市创想三维科技股份有限公司 | 3d打印耗材检测装置及3d打印设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008521378A (ja) | 検出機構を有する回転/直線駆動装置 | |
WO2024066485A1 (zh) | 3d打印耗材检测装置及3d打印设备 | |
CN218701337U (zh) | 3d打印耗材检测装置及3d打印设备 | |
US20210087736A1 (en) | Top load drum washing machine and positioning device thereof | |
WO2023201969A1 (zh) | 隔圈组件及轴承组件 | |
CN218701336U (zh) | 3d打印耗材检测装置 | |
US20160221087A1 (en) | Drill Chuck, Drilling Needle and Drilling Needle-Drill Chuck Assembly | |
CN212367511U (zh) | 一种可旋转控制的耳机 | |
EP3534220B1 (en) | Developing cartridge | |
CN209765275U (zh) | 一种显影盒 | |
US9404724B2 (en) | Digital displacement measuring instrument | |
US9816899B2 (en) | Communication system for a tyre service machine and measuring unit for being used with such communication system | |
US9114956B2 (en) | Elevator modification work apparatus | |
US11048203B2 (en) | Developing cartridge including engaging member movable with helical gear and engageable with gear cover | |
KR20190079834A (ko) | 축방향력의 측정이 가능한 나사 구동장치 | |
CN114178833A (zh) | 螺丝锁拆机构及具有其的螺丝机 | |
KR20080003610A (ko) | 머시닝 센터 주축의 공구 유·무 감지장치 | |
JP2017145837A (ja) | 検知装置および検知方法 | |
KR101349331B1 (ko) | 자성유체 실링장치 및 이를 이용한 진공 처리 장치 | |
JP3439889B2 (ja) | ワンウェイクラッチのロック遅れ角度検出装置 | |
CN112015074A (zh) | 一种显影盒 | |
KR20040049613A (ko) | 화상형성기의 현상카트리지 인식장치 | |
TWI752778B (zh) | 加工軸運轉狀態偵測裝置 | |
JP3570688B2 (ja) | 工具異常検出装置 | |
JPH07237110A (ja) | ワイヤソー用ワイヤガイド装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23869734 Country of ref document: EP Kind code of ref document: A1 |