WO2024066255A1 - 一种高压涡轮主动间隙控制装置及控制方法 - Google Patents

一种高压涡轮主动间隙控制装置及控制方法 Download PDF

Info

Publication number
WO2024066255A1
WO2024066255A1 PCT/CN2023/084268 CN2023084268W WO2024066255A1 WO 2024066255 A1 WO2024066255 A1 WO 2024066255A1 CN 2023084268 W CN2023084268 W CN 2023084268W WO 2024066255 A1 WO2024066255 A1 WO 2024066255A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure turbine
heat exchange
control device
clearance control
exchange tube
Prior art date
Application number
PCT/CN2023/084268
Other languages
English (en)
French (fr)
Inventor
王士奇
王则皓
陈婧如
Original Assignee
中国航空发动机研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国航空发动机研究院 filed Critical 中国航空发动机研究院
Publication of WO2024066255A1 publication Critical patent/WO2024066255A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/12Cooling

Definitions

  • the present disclosure relates to the technical field of active clearance control of aviation gas turbine engines, and in particular to a high-pressure turbine active clearance control device and a control method.
  • the engine is in different working conditions, such as speed, atmospheric temperature, turbine inlet temperature and pressure ratio, and the tip clearance of the engine rotor changes accordingly. These transient working points include takeoff, deceleration, re-acceleration and landing. A new engine needs to be designed with appropriate tip clearance to ensure that the rotor can rotate normally during startup.
  • the thermal load and mechanical load acting on the rotor and casing remain basically unchanged, and the expansion of the two reaches a balanced state. Therefore, the tip clearance remains basically unchanged.
  • a transient process such as deceleration or re-acceleration, another "minimum clearance point" may be generated.
  • Active turbine clearance control is a technology that dynamically controls the deformation of the turbine casing, thereby further controlling the tip clearance. Different from passive clearance control that only meets the minimum assembly clearance under the most stringent working conditions during design, active clearance control technology can dynamically control the tip clearance under various working conditions.
  • the currently commonly used active clearance control method is to bleed air from the fan or compressor, etc., and flow to the impact heat exchange pipeline of the turbine casing through the bleed air pipeline, and then flow out from the holes on the surface of the pipeline to form an impact jet to cool the flange edge or reinforcing rib of the turbine casing.
  • the outer ring of the turbine is driven to produce radial displacement at the same time, the deformation of the turbine casing in the radial direction is controlled, and then the gap between the turbine casing and the blade tip is controlled, so that the tip clearance reaches an ideal state throughout the flight process.
  • the active turbine clearance control method adjusts the blade tip clearance by adjusting the thermal deformation of the turbine casing. Since the engine operating conditions are constantly changing and thermal response takes a certain amount of time, the efficiency of impact heat exchange is improved, the thermal response speed is accelerated, and the radial thermal of the casing is adjusted more quickly. The amount of deformation is particularly important.
  • the traditional impingement heat exchange opening structure is to directly punch holes in the circumferential array of the impingement heat exchange tube as the outlet of the impingement jet.
  • the fluid impinges from the outlet to the linear position of the target area.
  • the jet area is only one point. After the fluid reaches the target area, it diffuses to the surroundings. Therefore, the impingement area is only one point in the linear direction of the jet outlet. Other positions in the circumference of the target area are only for heat exchange with the diffused fluid. Since the actual impingement heat exchange area of the impingement jet is small, the heat exchange efficiency of the target area is low and uneven, resulting in poor cooling effect and large consumption of cooling gas.
  • the thrust of the aircraft engine can be increased and its working energy consumption can be improved; if the heat exchange uniformity is improved, the thermal fatigue characteristics of the turbine casing wall can be improved, its effective life can be increased, and thus the engine cost can be reduced.
  • the present disclosure aims to provide a high-pressure turbine active clearance control device and a control method to improve heat exchange efficiency and heat exchange uniformity.
  • the present disclosure provides a high-pressure turbine active clearance control device, comprising a high-pressure turbine casing, an air collecting casing, an impact heat exchange tube and a fluid oscillator, wherein the air collecting casing is discretely distributed along the circumferential direction on the outer wall surface of the high-pressure turbine casing, the impact heat exchange tube is circumferentially distributed on the outer wall surface of the high-pressure turbine casing, and the impact heat exchange tube is connected to the air collecting casing, and the fluid oscillator is located in the impact heat exchange tube.
  • each of the impingement heat exchange tubes is provided with a row of annular ribs
  • the fluid oscillators are arranged in an array in the annular ribs
  • the internal flow channel plane of the fluid oscillators is consistent with the tangential direction of the rib surface at the position of the annular ribs.
  • the root of the annular rib is on the inner wall surface of the impact heat exchange tube, and the horizontal position of the root is close to the flange edge or reinforcing rib position of the high-pressure turbine casing, and the top does not contact the inner wall surface of the impact heat exchange tube.
  • each of the impingement heat exchange tubes is provided with a chamfered surface along one side edge of the inner ring, the chamfered surface is provided with slots evenly distributed along the circumference, a pair of symmetrical semicircular grooves are provided on the left and right sides of the slots, and the fluid oscillator is clamped and installed through the semicircular grooves.
  • the fluid oscillator is installed in the slot of the impact heat exchange tube, and the internal flow channel plane of the fluid oscillator is consistent with the tangential direction of the slot.
  • the slot is located close to the flange edge or reinforcing rib of the high-pressure turbine casing, and the opening surface of the slot is a beveled plane structure, which is perpendicular to the internal flow channel plane of the fluid oscillator.
  • the fluid oscillator is a two-piece structure welded together, including a cover plate and a bottom plate containing an internal flow channel, and a pair of symmetrical positioners corresponding to the semicircular grooves are provided on the left and right sides of the bottom of the bottom plate.
  • the internal flow channel of the fluid oscillator adopts two forms, one is a sweeping fluid oscillator flow channel without feedback structure, which contains two inlets, one outlet and a flow chamber; the other is a sweeping fluid oscillator flow channel with feedback structure, which contains one inlet, one outlet, two feedback channels and a flow chamber.
  • the fluid oscillator is installed in the impingement tube heat pipe, the inlet of the fluid oscillator is located inside the impingement heat exchange tube, and the outlet of the fluid oscillator is located on the outer surface of the impingement heat exchange tube.
  • the outlet of the fluid oscillator is in a fan-shaped structure
  • the angle of the fan-shaped structure is 30-50 degrees
  • the distance between the throat of the fan-shaped structure and the wall is 3 to 8 times the width of the throat.
  • the number of the gas collecting box is at least one.
  • the axial length of the air collecting box is 60% to 100% of the length of the high-pressure turbine casing.
  • the angle between the axial position of the air collecting box and the high-pressure turbine casing is 0° to 45°.
  • the air collecting box is a cavity structure, one end close to the inlet direction of the turbine main flow channel of the high-pressure turbine casing is an air inlet, and one end close to the outlet direction of the turbine main flow of the high-pressure turbine casing is closed.
  • the air outlet of the air collecting box is located on the bottom surface or the two side surfaces, and the air outlet is arranged along the axial direction to form an exhaust hole on the bottom surface or the two side surfaces.
  • the number of the impingement heat exchange tubes is 4-15 rows, and the number of the air outlets on the air collecting box corresponds to the number of the impingement heat exchange tubes.
  • each of the impact heat exchange tubes is connected to the air outlet of the air collecting box through a branch pipe, and the axial position of each of the impact heat exchange tubes is close to the flange edge and the reinforcing rib position of the high-pressure turbine casing.
  • each of the impingement heat exchange tubes is divided into 1 to 8 sections, the number of sections corresponds to the number of the gas collecting boxes, and each section of the impingement heat exchange tube is respectively connected to one of the gas collecting boxes.
  • the impingement heat exchange tube is in one section, it is continuous in the circumferential direction, and the circumferential coverage angle is 300° to 360°.
  • the present disclosure also provides a high-pressure turbine active clearance control method, including using the high-pressure turbine active clearance control device to introduce cooling air from an engine fan or compressor into the air collecting box through an air bleed pipe and a control valve, and then the airflow enters the air collecting box and enters each of the impact heat exchange tubes, and then flows out of the impact heat exchange tube through the fluid oscillator, forming an oscillating jet at the outlet of the fluid oscillator to impact the flange edge and reinforcing rib position of the high-pressure turbine casing.
  • a high-pressure turbine active clearance control device and control method provided by the present disclosure combines the internal flow channel of a fluid oscillator with an impact heat exchange tube, so that the cooling air used for active clearance control in the impact heat exchange tube forms a high-frequency swept jet from the fluid oscillator and then impacts and cools the flange edge and reinforcing ribs of the high-pressure turbine casing, and forms a stable swept oscillating jet on the surface of the flange edge and reinforcing rib of the high-pressure turbine casing to impact the cooling air, thereby increasing the uniformity of the temperature at the flange edge and reinforcing rib position of the high-pressure turbine casing, improving the utilization efficiency of the impact cooling air, and enhancing the active clearance control effect of the turbine.
  • FIG1 is a diagram showing the change in turbine blade tip clearance during flight takeoff and landing
  • FIG2 is an outline view of a high-pressure turbine active clearance control device
  • Fig. 3 is a front view of Fig. 2;
  • FIG4 is a side view of FIG2
  • FIG5 is a cross-sectional view of section A in FIG4 ;
  • FIG6 is a cross-sectional view of a fluid oscillator installed on an annular rib inside the impact heat exchange tube in FIG5;
  • FIG7 is a schematic diagram of the structure of a groove provided in the circumferential direction on the impingement heat exchange tube
  • FIG8 is a cross-sectional view of a fluid oscillator installed in a groove in FIG7;
  • FIG9 is a schematic diagram of the structure of the fluid oscillator base plate and the positioner
  • FIG10 is a schematic structural diagram of a fluid oscillator cover
  • FIG11 is a schematic diagram of the structure of a fluid oscillator flow channel having a feedback structure
  • FIG12 is a schematic diagram of the structure of a fluid oscillator flow channel of a fluid oscillator using a non-feedback structure
  • FIG13 is a diagram of a fluid oscillator without feedback and a jet deflection process at the outlet;
  • FIG14 is a diagram showing the shape of a sweep jet developed using a fluid oscillator with a water flow
  • FIG15 is a diagram showing the wall cooling effect of a direct impingement jet
  • FIG16 is a diagram showing the wall cooling effect of the swept impinging jet
  • a high-pressure turbine active clearance control device includes a high-pressure turbine casing 1, an air collecting casing 2, an impact heat exchange tube 3, and a fluid oscillator 4.
  • the air collecting casing 2 is discretely distributed on the outer wall surface of the high-pressure turbine casing 1 along the circumferential direction
  • the impact heat exchange tube 3 is circumferentially distributed on the outer wall surface of the high-pressure turbine casing 1
  • the impact heat exchange tube 3 is connected to the air collecting casing 2
  • the fluid oscillator 4 is located in the impact heat exchange tube 3.
  • the fluid oscillator 4 is combined with the impact heat exchange tube 3, so that the airflow for impact cooling and heat exchange flows through the fluid oscillator 4 and then impacts and cools the flange edge 7 and the reinforcing rib 8 of the high-pressure turbine casing 1.
  • the air collecting box 2 is discretely distributed along the radial direction and is located outside the outer wall of the high-pressure turbine casing 1.
  • the number is at least one. In this embodiment, the number of air collecting boxes is 2.
  • the air collecting boxes 2 are discretely distributed in the circumferential direction of the high-pressure turbine casing 1.
  • the axial length of the air collecting box 2 is 60% to 100% of the length of the high-pressure turbine casing 1.
  • the angle between the axial position of the air collecting box 2 and the high-pressure turbine casing 1 is 0° to 45°, and the radial distance between the side (bottom surface) close to the high-pressure turbine casing 1 and the surface of the high-pressure turbine casing 1 is 1mm-10mm.
  • the air collecting box 2 is a cavity with a wall thickness of 0.5mm-3mm. One end close to the inlet direction of the turbine main flow channel of the high-pressure turbine casing 1 is an air inlet, and one end close to the outlet direction of the turbine main flow channel of the high-pressure turbine casing 1 is closed.
  • the air outlet of the air collecting box 2 is located on the bottom surface or the two side surfaces. The air outlet is arranged along the axial direction, and an exhaust air hole is formed on the bottom surface or both sides.
  • the impact heat exchange tubes 3 surround the outer wall of the high-pressure turbine casing 1, and the number of the impact heat exchange tubes 3 is 4-15 rows.
  • the number of air outlets on the air collecting box 2 corresponds to the number of the impact heat exchange tubes 3.
  • the air outlet of the air collecting box 2 is located at the bottom surface, the air outlet is connected to the impact heat exchange tubes 3 by a branch pipe 5, that is, the inlet end of each impact heat exchange tube 3 is connected to the air outlet of the air collecting box 2 through the branch pipe 5, and the axial position of each impact heat exchange tube 3 is close to the flange edge 7 and the reinforcing rib 8 of the high-pressure turbine casing 1.
  • Each impact heat exchange tube 3 can be 1 to 8 sections, and the number of sections corresponds to the number of gas collecting boxes 2. Each section of the impact heat exchange tube 3 is connected to a gas collecting box 2. If the impact heat exchange tube 3 is one section, it is continuous in the circumferential direction, and the coverage angle in the circumferential direction is 300° to 360°. In this embodiment, two gas collecting boxes 2 are connected to two sections of impact heat exchange tubes 3 by branch pipes 5, and both ends of each section of the impact heat exchange tube 3 are blind ends.
  • the gas outlet of the gas collecting box 2 can also be located at the gas collecting box 2, the air outlet is connected to the inlet of the impact heat exchange tube 3, then one end of the impact heat exchange tube 3 is connected to the gas collecting box 2, and the other end is a blind end.
  • the impact heat exchange tubes 3 are arranged and distributed outside the high-pressure turbine casing 1, with a total of 4 rows.
  • the open ends of each row of impact heat exchange tubes 3 are connected to the air outlet of the air collecting box 2, and the axial position of each row of impact heat exchange tubes 3 is close to the flange edge 7 and the reinforcing rib 8 of the high-pressure turbine casing 1.
  • the wall thickness of the impact heat exchange tube 3 is 1mm
  • the flow cross-sectional area is 1200mm2 ⁇ 1800mm2
  • the ratio of the throat cross-sectional area to the flow cross-sectional area is 0.5mm-1.5mm.
  • the radial distance between the impact heat exchange tube 3 and the surface of the high-pressure turbine casing 1 is 0.5mm ⁇ 10mm, and the axial distance between the impact heat exchange tube 3 and the flange edge 7 or the reinforcing rib 8 of the high-pressure turbine casing 1 is 0.5mm ⁇ 10mm.
  • the fluid oscillator 4 is a two-piece structure, including a cover plate 41 and a bottom plate 42 containing an internal flow channel, and a pair of symmetrical positioners 43 corresponding to the semicircular groove 11 are provided on the left and right sides of the bottom of the bottom plate 42.
  • One end of the cover plate 41 is aligned with the inlet end face of the bottom plate 42, and the other end is aligned with the outlet end face of the bottom plate, and then welded into one piece.
  • the internal flow channel of the fluid oscillator 4 adopts two forms, one is a sweeping fluid oscillator flow channel without feedback structure, which contains two inlets, one outlet and a flow chamber; the other is a sweeping fluid oscillator flow channel with feedback structure, which contains one inlet, one outlet, two feedback channels and a flow chamber.
  • the fluid oscillator 4 is installed in the impact tube heat pipe 3 , the inlet of the fluid oscillator 4 is located inside the impact heat exchange tube 3 , and the outlet of the fluid oscillator 4 is located on the outer surface of the impact heat exchange tube 3 .
  • the outlet of the fluid oscillator 4 is a fan-shaped structure
  • the angle of the fan-shaped structure is 30-50 degrees
  • the distance between the throat of the fan-shaped structure and the wall is 3 to 8 times the width of the throat. If the angle of the fan-shaped structure is less than 30 degrees, or the distance between the throat of the fan-shaped structure and the impact wall is less than 3 times the width of the throat, the angle coverage of the fan-shaped structure is too small, and the impact heat exchange advantage compared to the straight hole cannot be fully utilized; if the angle of the fan-shaped structure is higher than 50 degrees, or the distance between the throat of the fan-shaped structure and the wall is greater than 8 times the width of the throat, the oscillation of the jet itself causes the mixing distance with the air to be too strong, and the jet intensity decays too quickly, and the heat exchange cannot be effectively enhanced.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • Each impingement heat exchange tube 3 is provided with a row of annular ribs 6.
  • the root of the annular rib 6 is on the inner wall of the impingement heat exchange tube 3, and the horizontal position of the root is close to the flange edge 7 or the reinforcing rib 8 of the high-pressure turbine casing 1.
  • the rib surface of the annular rib 6 is at an angle ⁇ to the horizontal direction, 0° ⁇ 90°, the top of the rib does not interfere with the inner wall of the impingement heat exchange tube 3, and is continuous or discontinuous in the circumferential direction.
  • the fluid oscillator 4 is arranged in an array on the annular rib 6.
  • the internal flow channel plane of the fluid oscillator 4 is consistent with the tangential direction of the rib surface of the annular rib 6 where it is located. Its inlet is at the top of the annular rib 6.
  • the internal flow channel penetrates the annular rib 6 and the impact heat exchange tube 3 where the root of the annular rib 6 is located, and the outlet is at the outer surface of the impact heat exchange tube 3.
  • the internal flow channel of the fluid oscillator 4 is evenly distributed in an array along the circumference on the annular rib 6, and the ratio of the cross-sectional area of the throat to the cross-sectional area of the annular rib 6 where the throat is located is 0.1:1 to 0.9:1.
  • the inlet of the fluid oscillator 4 forms a circumferential array of micropores at the top of the annular rib 6, and the outlet forms a circumferential array of micropores on the outer surface of the impact heat exchange tube 3.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • Each impact heat exchange tube 3 is provided with a beveled surface 9 at one side edge along the inner circle, and slots 10 are evenly distributed along the circumferential direction on the beveled surface 9.
  • a pair of symmetrical semicircular grooves 11 are provided on the left and right sides of the slot 10.
  • the fluid oscillator 4 is installed in the slot 10 of the impact heat exchange tube 3 by means of a positioner 43 and the semicircular groove 11 used in conjunction with each other.
  • the internal flow channel plane of the fluid oscillator 4 is consistent with the tangential direction of the slot 10, forming a beveled cut plane structure, which is convenient for installing the fluid oscillator.
  • the slot hole 10 is located close to the flange edge 7 or the reinforcing rib 8 of the high-pressure turbine casing 1 , and the opening surface of the slot hole 10 is an oblique cut plane structure, which is perpendicular to the internal flow channel plane of the fluid oscillator 4 .
  • the impingement heat exchange tube 3 and the fluid oscillator 4 are installed in combination.
  • the installation method is to first open a slot 10 on the impingement heat exchange tube 3, and then insert the fluid oscillator 4 into each slot 10, and ensure that the fluid oscillator 4 is fitted and connected to the groove of the slot 10 during installation.
  • the fluid oscillator 4 can be further fixed by welding after installation.
  • the fluid oscillator 4 is installed in the slot 10 of the impingement heat exchange tube 3, and is arranged in an array in the circumferential direction inside the impingement heat exchange tube 3, and the fluid oscillator 4
  • the internal flow channel plane is consistent with the opening direction of the installed slot hole 10, and the angle with the horizontal direction is ⁇ , 0° ⁇ 90°.
  • the ratio of the throat cross-sectional area of the fluid oscillator 4 to the surface area at the inlet position of the fluid oscillator 4 is 0.1:1-0.9:1.
  • the internal flow channel of the fluid oscillator 4 adopts a sweeping fluid oscillator flow channel with a feedback structure, specifically including a fan-shaped angle inlet 401, a fan-shaped angle outlet 402, a first feedback channel 403, a second feedback channel 404 and a flow chamber 405, assuming that the depths of the first feedback channel 403 and the second feedback channel 404 are both H, the equivalent diameter of the fan-shaped angle inlet 401 (the diameter of a circular pipe with the same flow rate) is 3 mm, the equivalent diameter of the flow channel throat is 1 mm to 1.5 mm, and the equivalent diameter of the fan-shaped angle outlet 402 is 1 mm to 1.5 mm.
  • the angle of the fan-shaped angle outlet 402 should be between 30 and 50 degrees. If it is too small, the coverage range is too small, and if it is too large, the jet dissipation is too large, reducing the impact heat exchange enhancement effect.
  • the first feedback channel 403 and the second feedback channel 404 pass through the impact heat exchange tube 3, and the fan-shaped angle outlet 402 is on the outer surface of the impact heat exchange tube 3.
  • the top flow channel is a contraction channel.
  • the ratio of its throat cross-sectional area T (for the equal-depth flow channel, that is, its flow channel width) and the cross-sectional area Pi of the top of the rib where the throat is located is less than 0.5, preferably 0.1-0.5, to ensure a smaller flow velocity change gradient and reduce flow loss.
  • the fluid oscillator 4 has two inlet jets through the first feedback channel 403 and the second feedback channel 404. After the two jets undergo a complex coupling and mixing process in the coupling cavity, an oscillating jet is formed at the only fan-shaped angle outlet 402. The jet self-excited deflection process driven by jet coupling is shown in FIG13.
  • the internal flow channel of the fluid oscillator 4 when adopts a sweeping fluid oscillator flow channel without a feedback structure, it specifically includes a first inlet 406, a second inlet 407, a fan-shaped angle outlet 408 and a flow chamber 409. Since it does not contain a feedback channel, under the action of the inlet and outlet pressure difference, a sweeping oscillating jet with a constant velocity and a continuously changing velocity direction is generated at the fan-shaped angle outlet 408.
  • the swept fluid oscillator is capable of making the fluid continue to flow along its flow direction under a stable inlet pressure, but oscillate at a certain frequency within a certain angle range to form a sweeping jet, as shown in FIG14.
  • the swept jet can effectively expand the impact range and improve the impact heat exchange efficiency.
  • FIG15 and FIG16 under the same impact distance conditions, the distribution of the Nusselt number heat transfer coefficient at the impact wall surface.
  • Combining the fluid oscillator 4 with the impact heat exchange tube 3 can make the impact heat exchange jet fluid effectively cover the flange edge 7 and the reinforcing rib 8 of the high-pressure turbine casing that needs to be thermally regulated, increase the impact heat exchange surface area, make the heat exchange more uniform, and improve the heat exchange efficiency.
  • the swept fluid oscillator 4 is relatively small in size and can be well combined with the flow path of the impact heat exchange tube 3, without increasing the complexity of the existing structure or reducing the reliability and safety of the existing gas turbine engine.
  • the present disclosure also provides a high-pressure turbine active clearance control method, including using a high-pressure turbine active clearance control device to introduce cooling air from an engine fan or compressor into the air collecting box 2 through an air bleed pipeline and a control valve, and then the airflow enters the air collecting box 2 and enters each impact heat exchange tube 3, and then flows out of the fluid oscillator 4 to impact the heat exchange tube 3, forming an oscillating jet at the outlet of the fluid oscillator 4, and impacting the flange edge 7 and the reinforcing rib 8 position of the high-pressure turbine casing 1.
  • the opening of the control valve controls the gas flow introduced into the gas collecting box 2, thereby changing the incoming flow to achieve a better control effect of the flow of the jet at the outlet of each impact heat exchange tube 3 and fluid oscillator 4 array.
  • Adding a fluid oscillator to the impact heat exchange tube can increase the heat exchange area of the flange edge and the reinforcing rib position of the high-pressure turbine casing, improve the heat exchange effect, and make the high-pressure turbine casing respond to thermal deformation faster.
  • this solution reduces the number of jet outlet holes required to achieve the same target clearance by 10%-50%, and reduces the required bleed air volume by 10% to 50%, effectively improving the efficiency of the active clearance control system, improving turbine efficiency, reducing fuel consumption, enhancing engine economy, reducing engine exhaust temperature, significantly increasing engine life, reducing NOx , CO and CO2 emissions, and improving market competitiveness;
  • the fluid oscillator is located inside the impact heat exchange tube, which provides a fluid channel position without adding an additional air bleed pipe, and does not reduce the reliability and safety of the existing engine.
  • the fluid oscillator is at a certain angle in the horizontal direction, so that the jet impact position can always be the root position of the high-pressure turbine casing flange edge and reinforcement rib that has the greatest impact on the deformation of the high-pressure turbine casing without adding a control device;
  • the fluid oscillator is small in size and can be well combined with the flow path of the impact heat exchange tube. It can be densely arranged in an array in the circumferential direction of the annular rib, effectively improving the coverage of the target area covered by the jet;
  • the jet of the fluid oscillator forms a certain angle with the surface of the high-pressure turbine casing.
  • the jet impacts the flange edge and the reinforcing rib position of the high-pressure turbine casing where the temperature change is large, driving the high-pressure turbine casing to produce radial displacement.
  • the gap between the rotor blade tip and the high-pressure turbine casing changes accordingly, so as to adjust the blade tip clearance under different working conditions to an ideal state, and can change the thermal deformation of the high-pressure turbine casing to the maximum extent within the same time, and better adjust the blade tip clearance;
  • the arrangement of the fluid oscillator array in the impact heat exchange tube can form a circumferential jet at the flange edge and the reinforcing rib position of the high-pressure turbine casing, which can make the circumferential deformation of the high-pressure turbine casing uniform when the temperature of the high-pressure turbine casing changes, maintain the circumferential roundness of the high-pressure turbine casing, and ensure the stability of the engine during operation;
  • a fluid oscillator array jet is used to impact the flange edge and reinforcement ribs of the high-pressure turbine casing.
  • the jet can form a back-and-forth undulating sweep at the oscillator outlet.
  • the impact area is the fluid sweep surface corresponding to the sweeping jet, which can increase the jet area of the impact heat exchange jet fluid and make the jet effectively cover the entire circumferential surface of the flange edge and reinforcement ribs of the high-pressure turbine casing. This can increase the impact heat exchange area of the area that needs thermal control and increase the heat exchange uniformity by 30% to 70%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

一种高压涡轮主动间隙控制装置,包括高压涡轮机匣(1)、集气匣(2)、冲击换热管(3)以及流体振荡器(4),集气匣(2)沿周向离散分布在高压涡轮机匣(1)的外壁面处,冲击换热管(3)环绕分布在高压涡轮机匣(1)的外壁面处,且冲击换热管(3)与集气匣(2)相连通,流体振荡器(4)位于冲击换热管(3)内。流体振荡器(4)与冲击换热管(3)相结合,使用于冲击冷却换热的气流流经流体振荡器(4)后再对高压涡轮机匣(1)的法兰边(7)及加强肋(8)位置进行冲击冷却。该装置提高冲击冷却气利用效率,提升涡轮主动间隙控制效果。还提供了一种控制方法。

Description

一种高压涡轮主动间隙控制装置及控制方法 技术领域
本公开涉及航空燃气涡轮发动机主动间隙控制的技术领域,尤其涉及一种高压涡轮主动间隙控制装置及控制方法。
背景技术
当前,随着飞机的技术发展越来越迅猛,市场竞争越来越激烈,不论是在军用还是民用领域,都对航空发动机在操作性、安全性、经济性、噪声与排放等方面提出了更高的要求。涡轮作为发动机的重要构件,其叶尖间隙对航空燃气涡轮发动机的性能有着极其显著的影响。研究证实,叶尖间隙增加1%会导致涡轮效率下降1.5%,进一步导致发动机性能降低。同时,高压涡轮间隙每减少0.254mm可以使得燃油消耗率降低1%,并且发动机排气温度降低10K,显著提高发动机寿命,减少NOx,CO以及CO2的排放。
在一个飞行起落中,发动机处于不同的工作状态,如转速、大气温度、涡轮进口温度和压比等,发动机转子的叶尖间隙也随之发生变化。这些瞬态工作点包括起飞、减速、再加速和着陆等。一种全新的发动机需要设计出适当的叶尖间隙,保证起动时转子能正常转动。
飞行起落内涡轮叶尖间隙变化情况如图1所示。在起飞点需要发动机达到最大状态,产生最大推力,在起飞过程中,转子的叶尖间隙急剧减小,并达到一个最小间隙点。在起动过程中,高温燃气对转子叶片和涡轮盘加热,同时转子受到增大的离心力作用,转子迅速膨胀;但是静止件包括涡轮外环和机匣膨胀的速度要慢得多,因此,叶尖间隙迅速减小,并且有可能导致转子和静子部件发生碰摩。在此之后,转子继续膨胀并最终达到稳定状态,机匣持续膨胀,使得叶尖间隙开 始增大。在巡航状态,作用在转子和机匣上的热负荷和机械载荷基本不变,二者的膨胀达到平衡状态,因此,叶尖间隙基本保持不变。与此类似,当发动机进入减速或者再加速等瞬态历程时,可能产生另一个“最小间隙点”。
涡轮转子叶片的叶尖和涡轮外环之间存在着一定的间隙,在转子叶片的压力面和吸力面较大压差的作用下,叶尖会产生一定量的燃气泄漏,使得涡轮及整机效率低下,对降低油耗也十分不利。另外,在飞机飞行过程中的不同状态下,由于高压涡轮机匣和涡轮叶片的径向变形量不一致,叶尖间隙也在不断变化,间隙过小可能会导致叶片和机匣内壁面发生碰磨,影响发动机的寿命和安全性。因而合理控制涡轮叶尖间隙能够显著提升涡轮效率,同时能够延长发动机的使用寿命。尤其是在民用航空发动机较长时间的巡航阶段,较小的间隙能够显著减少燃油消耗,节约成本,降低排放和噪声,大大提升发动机的经济性和市场竞争力。
因此,为了保障发动机的安全性,提升发动机的经济性,需要在发动机工作过程中控制叶尖间隙保持最小值,同时又保证在整个发动机飞行包线内叶尖和涡轮外环不会发生碰摩。
涡轮主动间隙控制是一种动态化控制涡轮机匣的变形量,从而进一步控制叶尖间隙的技术,区别于只在设计时满足最严苛工况下的最小装配间隙的被动间隙控制,主动间隙控制技术能够动态控制各个工况下的叶尖间隙。现在普遍使用的主动间隙控制方法是通过从风扇或压气机等处引气,通过引气管路流向涡轮机匣的冲击换热管路,再从管路表面的孔中流出,形成冲击射流冷却涡轮机匣的法兰边或加强肋,通过控制冷却气的流量和温度来的热膨胀量,同时带动涡轮外环产生径向位移,控制涡轮机匣在径向上的变形量,进而控制涡轮机匣和叶尖之间的间隙,使叶尖间隙在整个飞行过程中都达到理想的状态。
涡轮主动间隙控制方法使通过调控涡轮机匣的热变形量来调控叶尖间隙的,由于发动机的工况在不断变化,而热响应需要一定时间,因而提升冲击换热的效率,加快热响应速度,更快调节机匣径向的热 变形量尤为重要。
传统的冲击换热开孔结构为直接在冲击换热管周向阵列打孔作为冲击射流的出口,流体从出口处冲击至目标区域的直线位置,射流区域仅为一点,流体到达目标区域后向周围扩散,因而冲击区域仅为射流出口直线方向上的一点,目标区域周向上的其他位置都仅仅为与扩散后的流体进行换热,由于冲击射流的实际冲击换热区域小,因而目标区域的换热效率较低且不均匀,导致冷却效果差,所需的冷却气消耗量大。如果能够改善效率,降低消耗的冷却气量,则可以提高航空发动机的推力,改善其工作能耗;提高换热均匀性,则可以改善涡轮机匣壁面的热疲劳特性,增加其有效寿命,从而降低发动机成本。
发明内容
针对上述存在的至少一个技术问题,本公开的目的在于提供一种高压涡轮主动间隙控制装置及控制方法,用以提升换热效率,改善换热均匀度。
为实现上述目的,本公开提供了一种高压涡轮主动间隙控制装置,包括高压涡轮机匣、集气匣、冲击换热管以及流体振荡器,所述集气匣沿周向离散分布在所述高压涡轮机匣的外壁面处,所述冲击换热管环绕分布在所述高压涡轮机匣的外壁面处,且所述冲击换热管与所述集气匣相连通,所述流体振荡器位于所述冲击换热管内。
可选的,每个所述冲击换热管内设有一列环状肋,所述流体振荡器呈阵列设置于所述环状肋内,所述流体振荡器的内部流道平面与环状肋位置的肋表面切向方向一致。
可选的,所述环状肋的根部在所述冲击换热管的内壁面,且根部的水平位置靠近所述高压涡轮机匣的法兰边或者加强肋位置,顶部与所述冲击换热管的内壁面不接触。
可选的,每个所述冲击换热管沿内圈的一侧边缘处设置有斜切面,所述斜切面沿周向均匀分布开设有槽孔,所述槽孔的左右两侧设置有一对对称的半圆形凹槽,所述流体振荡器通过所述半圆形凹槽卡接安 装于所述冲击换热管的所述槽孔内,所述流体振荡器的内部流道平面与所述槽孔切向方向一致。
可选的,所述槽孔的位置靠近所述高压涡轮机匣的法兰边或者加强肋位置,且所述槽孔的开孔面为斜切口平面结构,所述斜切口平面结构与所述流体振荡器的内部流道平面垂直。
可选的,所述流体振荡器为焊接成一体的两片式结构,包括盖板和含有内部流道的底板,所述底板底部的左右两侧边设置有与所述半圆形凹槽相对应的一对对称的定位器。
可选的,所述流体振荡器的内部流道采用两种形式,一种为无反馈结构的扫掠式流体振荡器流道,其含有两个入口,一个出口和一个流动腔室;另一种为有反馈结构的扫掠式流体振荡器流道,其含有一个入口,一个出口,两个反馈通道和一个流动腔室。
可选的,所述流体振荡器安装于所述冲击管热管内,所述流体振荡器的入口位于所述冲击换热管的内部,其出口位于所述冲击换热管的外表面。
可选的,所述流体振荡器的出口呈扇形结构,扇形结构的角度为30-50度,扇形结构的喉道距离壁面的距离为喉道宽度的3~8倍。
可选的,所述集气匣的数量至少为一个。
可选的,所述集气匣轴向长度为所述高压涡轮机匣长度的60%~100%。
可选的,所述集气匣与所述高压涡轮机匣轴向位置的夹角为0°~45°。
可选的,所述集气匣为腔体结构,靠近所述高压涡轮机匣的涡轮主流道进口方向的一端为进气口,靠近所述高压涡轮机匣的涡轮主流出口方向的一端是封闭的。
可选的,所述集气匣的出气口位于底面或两侧面,所述出气口沿轴向排列,在底面或两侧面形成一排出气孔。
可选的,所述冲击换热管的数量为4-15排,所述集气匣上出气口的数量与所述冲击换热管的数量相对应。
可选的,每个所述冲击换热管的入口端均通过支管与所述集气匣的出气口相连接,且每个所述冲击换热管的轴向位置均靠近所述高压涡轮机匣的法兰边和加强肋位置。
可选的,每个所述冲击换热管分为1段~8段,其段数与所述集气匣的数量相对应,每段所述冲击换热管分别与一个所述集气匣相连通。
可选的,若所述冲击换热管为1段,则周向为连续的,在周向的覆盖角度为300°~360°。
为实现上述目的,本公开还提供了一种高压涡轮主动间隙控制方法,包括使用所述高压涡轮主动间隙控制装置,将来自于发动机风扇或压气机的冷却气通过引气管路和控制阀门后引入所述集气匣,气流进入所述集气匣后进入各个所述冲击换热管中,再由所述流体振荡器流出所述冲击换热管,在所述流体振荡器的出口处形成振荡射流,冲击所述高压涡轮机匣的法兰边及加强肋位置。
本公开的有益效果是:本公开提供的一种高压涡轮主动间隙控制装置及控制方法,将流体振荡器的内部流道与冲击换热管相结合,使冲击换热管内用于主动间隙控制的冷却气从流体振荡器中形成高频扫掠射流后冲击冷却高压涡轮机匣的法兰边及加强肋,在高压涡轮机匣的法兰边及加强肋表面形成稳定的扫掠振荡射流冲击冷却气,增大高压涡轮机匣法兰边及加强肋位置温度的均匀度,提高冲击冷却气利用效率,提升涡轮主动间隙控制效果。
附图说明
附图示出了本公开的示例性实施方式,并与其说明一起用于解释本公开的原理,其中包括了这些附图以提供对本公开的进一步理解,并且附图包括在本说明书中并构成本说明书的一部分。
图1是飞行起落内涡轮叶尖间隙变化的情况图;
图2是高压涡轮主动间隙控制装置的外形图;
图3是图2的正视图;
图4是图2的侧视图;
图5是图4中A部的剖视图;
图6是图5中冲击换热管内环状肋安装流体振荡器的截面图;
图7是冲击换热管上沿周向开设凹槽的结构示意图;
图8是图7中凹槽内安装流体振荡器的截面图;
图9是流体振荡器底板和定位器的结构示意图;
图10是流体振荡器盖板的结构示意图;
图11是流体振荡器采用有反馈结构的流体振荡器流道的结构示意图;
图12是流体振荡器采用无反馈结构的流体振荡器流道的结构示意图;
图13是流体振荡器的无反馈构型和出口射流偏转过程;
图14是使用流体振荡器用水流显影扫射流形状图;
图15是直射式冲击射流的壁面冷却效果图;
图16是扫掠式冲击射流的壁面冷却效果;
附图中的标记为:1、高压涡轮机匣;2、集气匣;3、冲击换热管;4、流体振荡器;5、支管;6、环状肋;7、法兰边;8、加强肋;9、斜切面,10、槽孔,11、半圆形凹槽;41、盖板,42底板,43、固定器;401、扇形角入口;402、扇形角出口;403、第一反馈通道;404、第二反馈通道;405、流动腔室;406、第一入口;407、第二入口;408、扇形角出口;409、流动腔室。
具体实施方式
下面结合附图和实施例对本公开作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅用于解释相关内容,而非对本公开的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本公开相关的部分。
需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本 公开。
参阅图2至图16,
一种高压涡轮主动间隙控制装置,包括高压涡轮机匣1、集气匣2、冲击换热管3以及流体振荡器4,集气匣2沿周向离散分布在高压涡轮机匣1的外壁面处,冲击换热管3环绕分布在高压涡轮机匣1的外壁面处,且冲击换热管3与集气匣2相连通,流体振荡器4位于冲击换热管3内。流体振荡器4与冲击换热管3相结合,使用于冲击冷却换热的气流流经流体振荡器4后再对高压涡轮机匣1的法兰边7及加强肋8位置进行冲击冷却。
集气匣2沿径向离散分布位于高压涡轮机匣1外壁面外,数量至少为一个,本实施例中,集气匣的数量为2个,集气匣2在高压涡轮机匣1的周向上离散分布,集气匣2轴向长度为高压涡轮机匣1长度的60%~100%。集气匣2与高压涡轮机匣1轴向位置的夹角为0°~45°,靠近高压涡轮机匣1的一面(底面)与高压涡轮机匣1表面的径向距离为1mm-10mm。集气匣2为壁厚0.5mm-3mm的腔体,靠近高压涡轮机匣1的涡轮主流道进口方向的一端为进气口,靠近高压涡轮机匣1的涡轮主流出口方向的一端是封闭的。集气匣2的出气口位于底面或两侧面,该出气口沿轴向排列,在底面或两侧形成一排出气孔。
冲击换热管3环绕在高压涡轮机匣1外壁面外,冲击换热管3的数量为4-15排,集气匣2上出气口的数量与冲击换热管3的数量相对应。集气匣2的出气口位于底面时,出气口以支管5连接冲击换热管3,即每个冲击换热管3的入口端均通过支管5与集气匣2的出气口相连接,且每个冲击换热管3的轴向位置均靠近高压涡轮机匣1的法兰边7和加强肋8位置。
每个冲击换热管3可以为1段~8段,其段数与集气匣2的数量相对应,每段冲击换热管3分别与一个集气匣2相连通。若冲击换热管3为一段,则周向为连续的,在周向的覆盖角度为300°~360°。本实施例中为两个集气匣2分别以支管5接两段冲击换热管3,每一段冲击换热管3的两端为盲端。集气匣2的出气口也可以位于集气匣 2的侧面,出气口连接冲击换热管3的入口,则冲击换热管3的一端连接集气匣2,另一端为盲端。
本实施例中,冲击换热管3排列分布在高压涡轮机匣1外,共有4排,每一排冲击换热管3的开口端都接在集气匣2的出气口,每一排冲击换热管3的轴向位置都靠近高压涡轮机匣1的法兰边7和加强肋8位置。冲击换热管3的壁厚1mm,流通截面积为1200mm2~1800mm2,喉道截面积和流通截面积比值。冲击换热管3的截面形状为方形,棱面圆角的弧长为0.5mm-1.5mm。冲击换热管3与高压涡轮机匣1表面径向距离为0.5mm~10mm,与高压涡轮机匣1的法兰边7或者加强肋8的轴向距离为0.5mm~10mm。
进一步的,如图9和图10所示,流体振荡器4为的两片式结构,包括盖板41和含有内部流道的底板42,底板42底部的左右两侧边设置有与半圆形凹槽11相对应的一对对称的定位器43。盖板41一端与底板42的入口端面对齐,另一端与底板的出口端面对齐,再焊接成一体。
其中,流体振荡器4的内部流道采用两种形式,一种为无反馈结构的扫掠式流体振荡器流道,其含有两个入口,一个出口和一个流动腔室;另一种为有反馈结构的扫掠式流体振荡器流道,其含有一个入口,一个出口,两个反馈通道和一个流动腔室。
流体振荡器4安装于冲击管热管3内,流体振荡器4的入口位于冲击换热管3的内部,其出口位于冲击换热管3的外表面。
特别强调,流体振荡器4的出口呈扇形结构,扇形结构的角度为30-50度,扇形结构的喉道距离壁面的距离为喉道宽度的3~8倍。扇形结构的角度若低于30度,或者扇形结构的喉道距离冲击壁面的距离低于喉道宽度的3倍,则扇形结构的角度覆盖的范围太小,无法充分发挥相比直孔的冲击换热优势;扇形结构的角度若高于50度,或者扇形结构的喉道距离壁面的距离大于喉道宽度的8倍,则射流本身的振荡导致与空气的掺混距离太强,射流强度衰减太快,无法有效增强换热。
实施例1:
每个冲击换热管3内设有一列环状肋6。环状肋6的根部在冲击换热管3的内壁面,根部的水平位置靠近高压涡轮机匣1的法兰边7或者加强肋8位置。环状肋6的肋表面与水平方向角度为θ,0°<θ<90°,肋顶部与冲击换热管3内壁不发生干涉,周向上是连续或间断的。
流体振荡器4呈阵列设置于环状肋6上,流体振荡器4的内部流道平面与所在环状肋6位置的肋表面切向方向一致,其入口在环状肋6的顶部,内部流道贯通环状肋6以及环状肋6根部所在的冲击换热管3,出口在冲击换热管3的外表面。流体振荡器4的内部流道在环状肋6上沿周向均匀阵列分布,喉道截面积和喉道所在位置的环状肋6的截面积比例为0.1:1~0.9:1。流体振荡器4的入口在环状肋6的顶部形成周向阵列的微孔,出口在冲击换热管3外表面形成周向阵列的微孔。
实施例2:
每个冲击换热管3沿内圈的一侧边缘处设置有斜切面9,在斜切面9上沿周向均匀分布开设有槽孔10,槽孔10的左右两侧设置有一对对称的半圆形凹槽11,流体振荡器4通过相配合使用的定位器43和半圆形凹槽11卡接安装于冲击换热管3的槽孔10内,流体振荡器4的内部流道平面与槽孔10切向方向一致,形成斜切口平面结构,便于安装流体振荡器。
槽孔10的位置靠近高压涡轮机匣1的法兰边7或者加强肋8位置,且槽孔10的开孔面为斜切口平面结构,斜切口平面结构与流体振荡器4的内部流道平面垂直。
冲击换热管3与流体振荡器4组合安装,安装方式为先在冲击换热管3上开槽孔10,再将流体振荡器4插入每个槽孔10内,同时确保安装时流体振荡器4配合卡接于槽孔10的槽道上,同时安装后可以通过焊接进一步固定流体振荡器4。流体振荡器4安装于冲击换热管3的槽孔10,周向呈阵列排布于冲击换热管3内,且流体振荡器4 的内部流道平面与所安装的槽孔10的开孔方向一致,与水平方向角度为θ,0°<θ<90°。流体振荡器4的喉道截面积和流体振荡器4入口位置的表面积比例为0.1:1~0.9:1。
如图11所示,当流体振荡器4的内部流道采用有反馈结构的扫掠式流体振荡器流道,具体包括扇形角入口401、扇形角出口402、第一反馈通道403、第二反馈通道404和流动腔室405,假设第一反馈通道403和第二反馈通道404的深度均为H,扇形角入口401的当量直径(与其流量相同的圆形管道的直径)为3mm,流道喉道的当量直径为1mm~1.5mm,扇形角出口402的当量直径为1mm~1.5mm。扇形角出口402的角度应在30~50度之间,太小则覆盖范围太小,太大则导致射流耗散太大,降低冲击换热增强效果。
第一反馈通道403和第二反馈通道404贯通冲击换热管3,扇形角出口402在冲击换热管3的外表面。顶部流道为收缩性通道,对于双反馈通道的流体振荡器,其喉道截面积T(对于等深度流道,即为其流道宽度)和喉道所在位置的肋顶部的截面积Pi之比(对于无反馈通道流体振荡器,其出口喉道截面积T与单个进口的截面积Pi之比)小于0.5,优选的为0.1~0.5,保证较小的流动速度变化梯度,减小流动损失。
流体振荡器4通过第一反馈通道403和第二反馈通道404具有两股进口射流,这两股射流在耦合腔内经过复杂的耦合掺混过程后,在唯一的扇形角出口402处形成振荡射流。由射流耦合作用驱动的射流自激偏转过程如图13所示。
如图12所示,当流体振荡器4的内部流道采用无反馈结构的扫掠式流体振荡器流道,具体包括第一入口406、第二入口407、扇形角出口408和流动腔室409。由于其不含有反馈通道,在进出口压差的作用下,在扇形角出口408产生速度大小不变,速度方向不断变化的扫掠型振荡射流。
有反馈结构的扫掠式流体振荡器的出口喉道O(或无反馈结构的扫掠式流体振荡器的出口喉道T)距离机匣表面的距离D为 1mm-10mm,且满足D=3~8T,T为流体振荡器的节流喉道宽度。
扫掠式流体振荡器是能够在稳定的进口压力下,使流体沿其流动方向继续流动但在一定的角度范围内以一定的频率摆动,形成扫射式的射流,如图14所示。与传统直射流相比,扫掠式射流能够有效扩大冲击范围,提高冲击换热效率,如图15和16所示,在相同的冲击距离条件下,其冲击壁面处的努赛尔数换热系数分布情况。将流体振荡器4与冲击换热管3相结合,能够使冲击换热射流流体有效覆盖需要进行热力调控的高压涡轮机匣的法兰边7及加强筋8,增大冲击换热表面面积,使换热更加均匀,并提高换热效率。而扫掠式流体振荡器4体积较小,能够与冲击换热管3流路进行较好的结合,且不增加现有结构复杂性、不降低现有燃气涡轮发动机可靠性和安全性。
本公开还提供了一种高压涡轮主动间隙控制方法,包括使用高压涡轮主动间隙控制装置,将来自于发动机风扇或压气机的冷却气通过引气管路和控制阀门后引入所述集气匣2,气流进入所述集气匣2后进入各个冲击换热管3中,再由流体振荡器4流出冲击换热管3,在流体振荡器4的出口处形成振荡射流,冲击高压涡轮机匣1的法兰边7及加强肋8位置。
在飞机不同的飞行工况下,控制阀门的开度控制引入集气匣2的气体流量,进而改变进入的流量,以达到较好控制每个冲击换热管3和流体振荡器4阵列出口处射流的流量的效果。
与现有技术相比的优点在于:
1、在冲击换热管内增加流体振荡器能够使高压涡轮机匣的法兰边和加强筋位置的换热面积增大,提升换热效果,使高压涡轮机匣热变形响应更快。与不使用流体振荡器,流体通过直孔射流冲击高压涡轮机匣表面相比,该方案达到相同目标间隙所需要的射流出口孔数减少10%-50%,所需引气量减少10%~50%,有效提升主动间隙控制系统的效率,提升涡轮效率,降低燃油消耗率,增强发动机的经济性,降低发动机排气温度,显著提高发动机寿命,减少NOx,CO以及CO2排放,提升市场竞争力;
2、流体振荡器位于冲击换热管内部,在提供流体通道位置的同时不额外增加引气管路,不降低现有发动机可靠性和安全性,流体振荡器水平方向呈一定角度,能够不增加控制装置的情况下,使射流冲击位置始终为对高压涡轮机匣变形量影响最大的高压涡轮机匣法兰边和加强肋的根部位置;
3、流体振荡器体积较小,能够与冲击换热管的流路进行较好地结合,在环形肋周向上能够进行密集的阵列排布,有效提升射流覆盖的目标区域覆盖范围;
4、流体振荡器射流与高压涡轮机匣表面呈一定角度,射流冲击高压涡轮机匣温度变化较大的法兰边及加强肋位置,带动高压涡轮机匣产生径向位移,转子叶尖及高压涡轮机匣之间的间隙随之改变,以调节不同工况下的叶尖间隙达到理想状态,能够在相同时间内最大限度改变高压涡轮机匣的热变形量,较好地调节叶尖间隙;
5、流体振荡器阵列于冲击换热管内的排布方式能够在高压涡轮机匣法兰边及加强肋位置形成周向射流,在高压涡轮机匣温度发生变化时能够使其周向变形均匀,保持高压涡轮机匣周向圆度,保证发动机工作时的稳定性;
6、采用流体振荡器阵列射流冲击高压涡轮机匣的法兰边和加强肋,射流能够在振荡器出口形成来回波动的扫射,冲击区域为扫射射流对应的流体扫射面,能够使冲击换热射流流体的射流区域增大,使射流有效覆盖高压涡轮机匣法兰边及加强筋的整个周向面域,这样能够增大需要进行热力调控区域的冲击换热面积,使换热均匀度增大30%~70%。
本领域的技术人员应当理解,上述实施方式仅仅是为了清楚地说明本公开,而并非是对本公开的范围进行限定。对于所属领域的技术人员而言,在上述公开的基础上还可以做出其它变化或变型,并且这些变化或变型仍处于本公开的范围内。

Claims (19)

  1. 一种高压涡轮主动间隙控制装置,其特征在于:包括高压涡轮机匣、集气匣、冲击换热管以及流体振荡器,所述集气匣沿周向离散分布在所述高压涡轮机匣的外壁面处,所述冲击换热管环绕分布在所述高压涡轮机匣的外壁面处,且所述冲击换热管与所述集气匣相连通,所述流体振荡器位于所述冲击换热管内。
  2. 根据权利要求1所述的高压涡轮主动间隙控制装置,其特征在于:每个所述冲击换热管内设有一列环状肋,所述流体振荡器呈阵列设置于所述环状肋内,所述流体振荡器的内部流道平面与环状肋位置的肋表面切向方向一致。
  3. 根据权利要求2所述的高压涡轮主动间隙控制装置,其特征在于:所述环状肋的根部在所述冲击换热管的内壁面,且根部的水平位置靠近所述高压涡轮机匣的法兰边或者加强肋位置,顶部与所述冲击换热管的内壁面不接触。
  4. 根据权利要求1所述的高压涡轮主动间隙控制装置,其特征在于:每个所述冲击换热管沿内圈的一侧边缘处设置有斜切面,所述斜切面沿周向均匀分布开设有槽孔,所述槽孔的左右两侧设置有一对对称的半圆形凹槽,所述流体振荡器通过所述半圆形凹槽卡接安装于所述冲击换热管的所述槽孔内,所述流体振荡器的内部流道平面与所述槽孔切向方向一致。
  5. 根据权利要求4所述的高压涡轮主动间隙控制装置,其特征在于:所述槽孔的位置靠近所述高压涡轮机匣的法兰边或者加强肋位置,且所述槽孔的开孔面为斜切口平面结构,所述斜切口平面结构与所述流体振荡器的内部流道平面垂直。
  6. 根据权利要求4所述的高压涡轮主动间隙控制装置,其特征在于:所述流体振荡器为焊接成一体的两片式结构,包括盖板和含有内部流道的底板,所述底板底部的左右两侧边设置有与所述半圆形凹槽相对应的一对对称的定位器。
  7. 根据权利要求6所述的高压涡轮主动间隙控制装置,其特征在于:所述流体振荡器的内部流道采用两种形式,一种为无反馈结构的扫掠式流体振荡器流道,其含有两个入口,一个出口和一个流动腔室;另一种为有反馈结构的扫掠式流体振荡器流道,其含有一个入口,一个出口,两个反馈通道和一个流动腔室。
  8. 根据权利要求7所述的高压涡轮主动间隙控制装置,其特征在于:所述流体振荡器安装于所述冲击管热管内,所述流体振荡器的入口位于所述冲击换热管的内部,其出口位于所述冲击换热管的外表面。
  9. 根据权利要求8所述的高压涡轮主动间隙控制装置,其特征在于:所述流体振荡器的出口呈扇形结构,扇形结构的角度为30-50度,扇形结构的喉道距离壁面的距离为喉道宽度的3~8倍。
  10. 根据权利要求1所述的高压涡轮主动间隙控制装置,其特征在于:所述集气匣的数量至少为一个。
  11. 根据权利要求1所述的高压涡轮主动间隙控制装置,其特征在于:所述集气匣轴向长度为所述高压涡轮机匣长度的60%~100%。
  12. 根据权利要求1所述的高压涡轮主动间隙控制装置,其特征在于:所述集气匣与所述高压涡轮机匣轴向位置的夹角为0°~45°。
  13. 根据权利要求1所述的高压涡轮主动间隙控制装置,其特征在于:所述集气匣为腔体结构,靠近所述高压涡轮机匣的涡轮主流道进口方向的一端为进气口,靠近所述高压涡轮机匣的涡轮主流出口方向的一端是封闭的。
  14. 根据权利要求13所述的高压涡轮主动间隙控制装置,其特征在于:所述集气匣的出气口位于底面或两侧面,所述出气口沿轴向排列,在底面或两侧面形成一排出气孔。
  15. 根据权利要求14所述的高压涡轮主动间隙控制装置,其特征在于:所述冲击换热管的数量为4-15排,所述集气匣上出气口的数量与所述冲击换热管的数量相对应。
  16. 根据权利要求15所述的高压涡轮主动间隙控制装置,其特 征在于:每个所述冲击换热管的入口端均通过支管与所述集气匣的出气口相连接,且每个所述冲击换热管的轴向位置均靠近所述高压涡轮机匣的法兰边和加强肋位置。
  17. 根据权利要求16所述的高压涡轮主动间隙控制装置,其特征在于:每个所述冲击换热管分为1段~8段,其段数与所述集气匣的数量相对应,每段所述冲击换热管分别与一个所述集气匣相连通。
  18. 根据权利要求17所述的高压涡轮主动间隙控制装置,其特征在于:若所述冲击换热管为1段,则周向为连续的,在周向的覆盖角度为300°~360°。
  19. 一种高压涡轮主动间隙控制方法,其特征在于:使用如权利要求1-18之一所述的高压涡轮主动间隙控制装置,将来自于发动机风扇或压气机的冷却气通过引气管路和控制阀门后引入所述集气匣,气流进入所述集气匣后进入各个所述冲击换热管中,再由所述流体振荡器流出所述冲击换热管,在所述流体振荡器的出口处形成振荡射流,冲击所述高压涡轮机匣的法兰边及加强肋位置。
PCT/CN2023/084268 2022-09-30 2023-03-28 一种高压涡轮主动间隙控制装置及控制方法 WO2024066255A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211216579.6 2022-09-30
CN202211216579.6A CN117846715A (zh) 2022-09-30 2022-09-30 一种高压涡轮主动间隙控制装置及控制方法

Publications (1)

Publication Number Publication Date
WO2024066255A1 true WO2024066255A1 (zh) 2024-04-04

Family

ID=90475811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084268 WO2024066255A1 (zh) 2022-09-30 2023-03-28 一种高压涡轮主动间隙控制装置及控制方法

Country Status (2)

Country Link
CN (1) CN117846715A (zh)
WO (1) WO2024066255A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB371208A (en) * 1930-07-08 1932-04-21 Escher Wyss Maschf Ag Improvements in or relating to steam or gas turbines
US20040118105A1 (en) * 2002-12-18 2004-06-24 Pratt & Whitney Canada Corp. Normally open reverse flow flapper valve
US20100247297A1 (en) * 2009-03-26 2010-09-30 Pratt & Whitney Canada Corp Active tip clearance control arrangement for gas turbine engine
CN205277511U (zh) * 2015-11-24 2016-06-01 中国燃气涡轮研究院 用于涡轮主动间隙控制的冷却结构
CN106382136A (zh) * 2016-11-18 2017-02-08 中国科学院工程热物理研究所 一种跨音速动叶叶顶间隙主动控制装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB371208A (en) * 1930-07-08 1932-04-21 Escher Wyss Maschf Ag Improvements in or relating to steam or gas turbines
US20040118105A1 (en) * 2002-12-18 2004-06-24 Pratt & Whitney Canada Corp. Normally open reverse flow flapper valve
US20100247297A1 (en) * 2009-03-26 2010-09-30 Pratt & Whitney Canada Corp Active tip clearance control arrangement for gas turbine engine
CN205277511U (zh) * 2015-11-24 2016-06-01 中国燃气涡轮研究院 用于涡轮主动间隙控制的冷却结构
CN106382136A (zh) * 2016-11-18 2017-02-08 中国科学院工程热物理研究所 一种跨音速动叶叶顶间隙主动控制装置

Also Published As

Publication number Publication date
CN117846715A (zh) 2024-04-09

Similar Documents

Publication Publication Date Title
US7269955B2 (en) Methods and apparatus for maintaining rotor assembly tip clearances
JP4185476B2 (ja) ガスタービン内のクリアランスを制御するための装置
JP2005337236A (ja) ガスタービンエンジンおよびその運転方法
US20150007581A1 (en) Shroud block segment for a gas turbine
US20130017060A1 (en) Tip clearance control for turbine blades
JP2005155626A (ja) タービンシュラウドの非対称冷却要素
JP2000291410A (ja) 優先冷却タービンシュラウド
CA2429425C (en) Combustor turbine successive dual cooling
JP2014234824A (ja) ディフューザ・ストラット・フェアリング
US20220127963A1 (en) Impingement jet cooling structure with wavy channel
WO2024066255A1 (zh) 一种高压涡轮主动间隙控制装置及控制方法
US11136917B2 (en) Airfoil for turbines, and turbine and gas turbine including the same
US11655716B2 (en) Cooling structure for trailing edge of turbine blade
JP5965606B2 (ja) ノズルを冷却するためのシステム及び方法
US20190078442A1 (en) Gas turbine blade
WO2020116155A1 (ja) タービン動翼、タービン及びチップクリアランス計測方法
CN117803455A (zh) 一种低压涡轮主动间隙控制装置及控制方法
US20200131932A1 (en) System and method for shroud cooling in a gas turbine engine
JPH08327064A (ja) ガスタービン燃焼器
CN220226989U (zh) 冷气分配装置、叶尖间隙控制系统和航空发动机
JP2012092831A (ja) ノズルを冷却するためのシステム及び方法
EP4108883A1 (en) Turbine blade and turbine
CN116202106B (zh) 一种气膜孔与掺混孔耦合设计的发动机燃烧室火焰筒结构
US11608754B2 (en) Turbine nozzle assembly and gas turbine including the same
KR102499370B1 (ko) 에어 포일 및 이를 포함하는 터빈

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23869514

Country of ref document: EP

Kind code of ref document: A1