WO2024066095A1 - Nicotine salt and atomized liquid thereof, vape cartridge and use - Google Patents

Nicotine salt and atomized liquid thereof, vape cartridge and use Download PDF

Info

Publication number
WO2024066095A1
WO2024066095A1 PCT/CN2022/142085 CN2022142085W WO2024066095A1 WO 2024066095 A1 WO2024066095 A1 WO 2024066095A1 CN 2022142085 W CN2022142085 W CN 2022142085W WO 2024066095 A1 WO2024066095 A1 WO 2024066095A1
Authority
WO
WIPO (PCT)
Prior art keywords
nicotine
molar ratio
acid
lactic acid
salt
Prior art date
Application number
PCT/CN2022/142085
Other languages
French (fr)
Chinese (zh)
Inventor
邹阳
邹军
刘梅森
吕浩
Original Assignee
深圳市真味生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市真味生物科技有限公司 filed Critical 深圳市真味生物科技有限公司
Publication of WO2024066095A1 publication Critical patent/WO2024066095A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24BMANUFACTURE OR PREPARATION OF TOBACCO FOR SMOKING OR CHEWING; TOBACCO; SNUFF
    • A24B15/00Chemical features or treatment of tobacco; Tobacco substitutes, e.g. in liquid form
    • A24B15/10Chemical features of tobacco products or tobacco substitutes
    • A24B15/16Chemical features of tobacco products or tobacco substitutes of tobacco substitutes
    • A24B15/167Chemical features of tobacco products or tobacco substitutes of tobacco substitutes in liquid or vaporisable form, e.g. liquid compositions for electronic cigarettes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/41Preparation of salts of carboxylic acids
    • C07C51/412Preparation of salts of carboxylic acids by conversion of the acids, their salts, esters or anhydrides with the same carboxylic acid part
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/01Saturated compounds having only one carboxyl group and containing hydroxy or O-metal groups
    • C07C59/08Lactic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/185Saturated compounds having only one carboxyl group and containing keto groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • the present application relates to the field of electronic cigarettes, and in particular to a nicotine salt and its atomizing liquid, a cigarette cartridge and uses.
  • Nicotine also known as nicotine, is an alkaloid found in Solanaceae plants (Solanum), and is also an important component of tobacco. Nicotine and its salt form are used in e-cigarette oil. As one of the substitutes for cigarettes, e-cigarettes are increasingly recognized by smokers, but nicotine is easily oxidized, which affects the taste of e-cigarette oil to a certain extent. At the same time, people inhale oxidative decomposition substances, which causes certain damage to organs. Nicotine benzoate salt is the most commonly used salt type on the market. Under the premise of achieving a certain taste, its stability risks are within the tolerance range for smokers. As more and more smokers use e-cigarettes instead of cigarettes, the importance of nicotine salt safety is further reflected, and smokers have higher requirements for taste. Therefore, safety and taste have become the directions explored by e-cigarette researchers.
  • nicotine benzoate salt cannot meet the requirements in terms of taste and stability at the same time. Therefore, it is urgent to select a new type of nicotine salt (nicotine salt) that can meet the needs of different flavors and tastes and achieve better stability.
  • the present invention provides nicotine salts with certain ratios, which can make the sweetness of the atomized liquid more prominent. Under the same sweetness requirement, less sweetener will be used, making it safer. In addition, within the ratio range, the sweetness of the same amount of sweetener is more stable, which enables R&D or production personnel to better control the amount of sweetener used. In addition, within the ratio range, the amount of nornicotine and nicotine nitrogen oxides can be reduced, that is, the nicotine salt system is more stable.
  • the present invention provides a nicotine salt preparation, wherein the nicotine salt is prepared from lactic acid and nicotine, and the molar ratio of lactic acid to nicotine is (1.1-2):1.
  • the nicotine salt preparation further includes ethyl butyrate, and the mass fraction of ethyl butyrate is 0%-5%.
  • the molar ratio of lactic acid to nicotine is (1.1-2):1; or (1.2-2):1; or (1.3-2):1; or (1.4-2):1; or (1.5-2):1; or (1.6-2):1; or (1.7-2):1; or (1.8-2):1; or (1.9-2):1; or 2:1; or (1.1-1.9):1; or (1.2-1.9):1; or (1.3-1.9):1; or (1.4-1.9):1; or (1.5-1.9):1; or (1.6-1.9):1; or (1.7-1.9):1; or (1.8-1.9):1; or 1.9:1; or (1.1-1.8):1; or (1.2-1.8):1; or (1.3-1.8):1; or (1.4-1.8):1; or (1.5-1.8):1; or (1.6-1.8):1; or (1.7-1.8):1; or 1.8:1; or (1.1-1.7):1; or (1.2-1.8):1; or (1.3
  • the nicotine salt formulation further comprises a solvent
  • the solvent is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
  • the nicotine salt formulation further comprises a solvent
  • the solvent is one or more combinations of water, 1,2-propylene glycol, 1,3-propylene glycol, and glycerol.
  • the present invention also provides an electronic atomization liquid, which contains the nicotine salt preparation described in the present invention.
  • the nicotine in the nicotine salt formulation has a concentration in the electronic atomizing liquid that is greater than 0% w/w and less than 10% w/w.
  • the electronic atomization liquid further includes one or more of a sweetener, a cooling agent, and a flavoring agent.
  • the present invention further provides an electronic cigarette cartridge, which includes the electronic atomization liquid described in the present invention.
  • the electronic cigarette cartridge further includes an atomizing element, and the atomizing element is a heating atomizing element or an ultrasonic atomizing element.
  • the electronic cigarette cartridge further comprises a heating element, which atomizes the electronic atomizing liquid by heating.
  • the electronic cigarette cartridge further includes an ultrasonic generating element for atomizing the electronic atomizing liquid through ultrasonic waves.
  • the present invention also provides a nicotine salt preparation, wherein the nicotine salt is prepared from an organic acid and nicotine, and the organic acid consists of levulinic acid and lactic acid.
  • the present invention provides a nicotine salt preparation, wherein the nicotine salt is prepared from an organic acid and nicotine, the organic acid consists of levulinic acid and lactic acid, the molar ratio of levulinic acid to lactic acid is from 12:1 to 1:1; the molar ratio of the organic acid to nicotine is from 0.6:1 to 2:1.
  • the nicotine salt preparation further includes ethyl butyrate, and the mass fraction of ethyl butyrate is 0%-5%.
  • the molar ratio of levulinic acid to lactic acid is (12-1):1, (11-1):1, (10-1):1, (9-1):1, (8-1):1, (7-1):1, (6-1):1, (5-1):1, (4-1):1, (3-1):1, (2-1):1 or 1:1;
  • the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2): 1. (0.9-2):1. (1-2):1. (1.1-2):1. (1.2-2):1. (1.3-2):1. (1.4-2):1. (1.5-2):1. (1.6-2):1. (1.7-2):1. (1.8-2):1. (1.9-2):1. 2:1. (0.6-1.9):1. (0.7-1.9):1.
  • the nicotine salt formulation further comprises a solvent
  • the solvent is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
  • the nicotine salt formulation further comprises a solvent
  • the solvent is one or more combinations of water, 1,2-propylene glycol, 1,3-propylene glycol, and glycerol.
  • the present invention also provides an electronic atomization liquid, which contains the nicotine salt preparation of the present invention.
  • the nicotine in the nicotine salt formulation has a concentration in the electronic atomizing liquid that is greater than 0% w/w and less than 10% w/w.
  • the electronic atomization liquid further includes one or more of a sweetener, a cooling agent, and a flavoring agent.
  • the present invention further provides an electronic cigarette cartridge, which includes the electronic atomization liquid described in the present invention.
  • the electronic cigarette cartridge further includes an atomizing element, and the atomizing element is a heating atomizing element or an ultrasonic atomizing element.
  • the electronic cigarette cartridge further comprises a heating element, which atomizes the electronic atomizing liquid by heating.
  • the electronic cigarette cartridge further includes an ultrasonic generating element for atomizing the electronic atomizing liquid through ultrasonic waves.
  • the present invention also provides a nicotine salt preparation, wherein the nicotine salt is prepared from levulinic acid and nicotine.
  • the present invention provides a nicotine salt preparation, wherein the nicotine salt is prepared from levulinic acid and nicotine, and the molar ratio of levulinic acid to nicotine is from 0.4:1 to 0.9:1.
  • the nicotine salt preparation further includes ethyl butyrate, and the mass fraction of ethyl butyrate is 0%-5%.
  • the molar ratio of levulinic acid to nicotine is (0.4-0.9):1; or (0.5-0.9):1; or (0.6-0.9):1; or (0.7-0.9):1; or (0.8-0.9):1; or 0.9:1; or (0.4-0.8):1; or (0.5-0.8):1; or (0.6-0.8):1; or (0.7-0.8):1; or 0.8:1; or (0.4-0.7):1; or (0.5-0.7):1; or (0.6-0.7):1; or 0.7:1; or (0.4-0.6):1; or (0.5-0.6):1; or 0.6:1; or (0.4-0.5):1; or 0.5:1; or 0.4:1.
  • the nicotine salt formulation further comprises a solvent
  • the solvent is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
  • the nicotine salt formulation further comprises a solvent
  • the solvent is one or more combinations of water, 1,2-propylene glycol, 1,3-propylene glycol, and glycerol.
  • the present invention also provides an electronic atomization liquid, which contains the nicotine salt preparation of the present invention.
  • the nicotine in the nicotine salt formulation has a concentration in the electronic atomizing liquid that is greater than 0% w/w and less than 10% w/w.
  • the electronic atomization liquid further includes one or more of a sweetener, a cooling agent, and a flavoring agent.
  • the present invention further provides an electronic cigarette cartridge, which includes the electronic atomization liquid described in the present invention.
  • the electronic cigarette cartridge also includes an atomization element, and the atomization element is a heating atomization element or an ultrasonic atomization element.
  • the electronic cigarette cartridge further comprises a heating element, which atomizes the electronic atomizing liquid by heating.
  • the electronic cigarette cartridge further includes an ultrasonic generating element for atomizing the electronic atomizing liquid through ultrasonic waves.
  • the present invention also provides the use of the nicotine salt of the present invention in the electronic atomization liquid with tobacco flavor, fruit flavor or flower flavor
  • the present invention also provides the use of the nicotine salt of the present invention in tobacco flavor electronic atomization liquid.
  • the present invention also provides the use of the nicotine salt of the present invention in fruit-flavored electronic atomization liquid.
  • the present invention also provides the use of the nicotine salt of the present invention in a floral scent electronic atomization liquid.
  • Nicotine also known as nicotine, is an alkaloid found in Solanaceae plants (Solanum), and is also an important component of tobacco. Nicotine and its salt form are used in e-cigarette oil. As one of the substitutes for cigarettes, e-cigarettes are increasingly recognized by smokers, but nicotine is easily oxidized, which affects the taste of e-cigarette oil to a certain extent. At the same time, people inhale oxidative decomposition substances, which causes certain damage to organs. Nicotine benzoate salt is the most commonly used salt type on the market. Under the premise of achieving a certain taste, its stability risks are within the tolerance range for smokers. As more and more smokers use e-cigarettes instead of cigarettes, the importance of nicotine salt safety is further reflected, and smokers have higher requirements for taste. Therefore, safety and taste have become the directions explored by e-cigarette researchers.
  • the inventors unexpectedly discovered that some acids, such as lactic acid, levulinic acid, or a mixture of lactic acid and levulinic acid, used in the preparation of nicotine salts with certain contents or proportions have different effects on the taste produced by atomization of electronic cigarette atomizer liquids with different flavors. It is speculated that due to the different chemical structures of different acids, the molecular forces between them and other ingredients in the nicotine liquid preparation are different, resulting in different atomization effects and coordination between the various components when the electronic cigarette is inhaled.
  • acids such as lactic acid, levulinic acid, or a mixture of lactic acid and levulinic acid
  • the inventors unexpectedly discovered that some acids, such as lactic acid, levulinic acid, or a mixture of lactic acid and levulinic acid, and nicotine salts prepared with certain contents or proportions have different effects on the sweetness produced by the atomization of the electronic cigarette atomizer liquid, that is, when the sweetener content is the same, the sweetness during atomization and inhalation is different.
  • This paper detects and studies multiple components such as sweeteners and solvents in the aerosol after atomization. It is speculated that due to the different chemical structures of different acids, such as different proportions used in the electronic cigarette atomizer liquid, it may have a certain effect on the formation of hydrogen bonds between solvent molecules, causing the atomization efficiency of the solvent to change.
  • the inventors unexpectedly discovered that some acids, such as lactic acid, levulinic acid, or a mixture of lactic acid and levulinic acid, have different effects on the stability of nicotine when using certain contents or proportions to prepare nicotine salts, specifically affecting the changes in some nicotine oxides or decomposition products that are more harmful to the human body. It is speculated that when they are salted with nicotine, they are not only proton donors, but also due to the influence of the structure or proportion of these acids, they form different stability combinations with nicotine, some of which make nicotine more stable and less prone to oxidation or decomposition. Specifically, it is helpful to control carcinogens in electronic cigarettes, such as nornicotine.
  • the inventors unexpectedly discovered that when lactic acid, levulinic acid or a mixed acid thereof is added to nicotine in certain proportions to prepare nicotine salt, there is a phenomenon that both stability and taste are satisfied at the same time; there is no correlation between taste and stability.
  • the inventors have discovered a nicotine salt preparation, wherein the nicotine salt is prepared from lactic acid and nicotine, wherein the molar ratio of lactic acid to nicotine is from 1.1:1 to 2:1, and there is a phenomenon that both stability and taste are satisfied.
  • Lactic acid has a structural formula (A), and its molecular structure 3D diagram is shown in Figure 1. It contains hydroxyl groups and belongs to ⁇ -hydroxy acid (AHA).
  • AHA ⁇ -hydroxy acid
  • Lactic acid is widely present in the human body, animals, plants, and microorganisms, and currently lactic acid is produced by biological fermentation, which has high safety.
  • the sweetness of the atomized liquid can be more prominent. Under the same sweetness requirement, less sweetener will be used, making it safer. In this ratio range, the sweetness of the same amount of sweetener is more stable, which enables R&D or production personnel to better control the amount of sweetener used. In addition, within the ratio range, the amount of nornicotine and nicotine nitrogen oxide can be reduced, which makes the nicotine salt system more stable.
  • the molar ratio of lactic acid to nicotine is (1.1-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.3-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.4-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.5-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.6-2):1; in some embodiments , the molar ratio of lactic acid to nicotine is (1.7-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.8-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.9-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is 2:1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1
  • the inventors have discovered a nicotine salt preparation, wherein the nicotine salt is prepared from levulinic acid and nicotine, wherein the molar ratio of levulinic acid to nicotine is from 0.4:1 to 0.9:1, and there is a phenomenon that both stability and taste are satisfied.
  • the molar ratio of levulinic acid to nicotine is from 0.4:1 to 0.9:1, it has a modifying effect on the tobacco-flavored electronic atomization liquid.
  • the amount of nicotine and nicotine nitrogen oxide can be reduced, that is, the nicotine salt system is more stable.
  • the molar ratio of levulinic acid to nicotine is (0.4-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.5-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.6-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.7-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.8-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.8-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.9 ...8-0.9):1.
  • the molar ratio of levulinic acid to nicotine is 0.9:1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.4-0.8):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.5-0.8):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.6-0.8):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.7-0.8):1; in some embodiments, the molar ratio of levulinic acid to nicotine is In some embodiments, the molar ratio of levulinic acid to nicotine is 0.8:1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.4-0.7):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.5-0.7):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.6-0.7):1;
  • the inventors have discovered a nicotine salt preparation, wherein the nicotine salt is prepared from an organic acid and nicotine, the organic acid consists of levulinic acid and lactic acid, the molar ratio of levulinic acid to lactic acid is from 12:1 to 1:1; the molar ratio of the organic acid to nicotine is from 0.6:1 to 2:1.
  • the sweetness of the atomized liquid can be more prominent. Under the same sweetness requirement, less sweetener will be used, making it safer.
  • the molar ratio of levulinic acid to lactic acid is (12-1):1, (11-1):1, (10-1):1, (9-1):1, (8-1):1, (7-1):1, (6-1):1, (5-1):1, (4-1):1, (3-1):1, (2-1):1 or 1:1.
  • the molar ratio of levulinic acid to lactic acid is 12:1, 11:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1 or 1:1.
  • the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1.9):1, 1.9:1, (0.6 -1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-2):1, (1
  • the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, or 2:1.
  • the molar ratio of levulinic acid to lactic acid is (12-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.
  • the molar ratio of levulinic acid to lactic acid is (11-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8 -2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8- 1.9:1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1) (0.6-
  • the molar ratio of levulinic acid to lactic acid is (10-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1.9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-
  • the molar ratio of levulinic acid to lactic acid is (9-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8- 2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1 .9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1
  • the molar ratio of levulinic acid to lactic acid is (8-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1. ...
  • the molar ratio of levulinic acid to lactic acid is (7-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8- 2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1 .9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.9):
  • the molar ratio of levulinic acid to lactic acid is (6-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, (2:1, (0.6-1 .9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1.9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, ( 0.9-1.8):1, (1-1.8):1, 1.9:1,
  • the molar ratio of levulinic acid to lactic acid is (5-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8- 2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1 .9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1
  • the molar ratio of levulinic acid to lactic acid is (4-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1 1. (1.2-1.9):1. (1.3-1.9):1. (1.4-1.9):1.
  • the molar ratio of levulinic acid to lactic acid is (3-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8- 2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1 .9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1
  • the molar ratio of levulinic acid to lactic acid is (2-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2): 1. (1.8-2):1. (1.9-2):1. 2:1. (0.6-1.9):1. (0.7-1.9):1. (0.8-1.9):1. (0.9-1.9):1. (1-1.9):1. (1.1-1.9):1. (1.2-1.9):1. (1.3-1.9):1. (1.4-1.9):1.
  • the molar ratio of levulinic acid to lactic acid is 1:1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1 ⁇ (1.9-2):1 ⁇ 2:1 ⁇ (0.6-1.9):1 ⁇ (0.7-1.9):1 ⁇ (0.8-1.9):1 ⁇ (0.9-1.9):1 ⁇ (1-1.9):1 ⁇ (1.1-1.9):1 ⁇ (1.2-1.9):1 ⁇ (1.3-1.9):1 ⁇ (1.4-1.9):1 ⁇ (1.5-1.9):1 ⁇ (1.6-1.9):1 ⁇ (1.7-1.9):1 ⁇ (1.8-1.9) :1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.6-1.8)
  • the molar ratio of levulinic acid to lactic acid is 12:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 11:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1.
  • the molar ratio of nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 10:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 9:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1 , 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some
  • the molar ratio of levulinic acid to lactic acid is 7:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 6:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1.
  • the molar ratio of levulinic acid to lactic acid is 5:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 5:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1.
  • the molar ratio of levulinic acid to lactic acid is 4:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 3:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the ethyl The molar ratio of levulinic acid to lactic acid is 2:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:
  • the nicotine salt preparation mentioned in the present invention further comprises a solvent, which is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
  • the solvent is not a necessary condition for the protonation of nicotine, but in some embodiments, the solvent can promote the protonation process.
  • the solvent is one or more combinations of water, 1,2-propylene glycol, 1,3-propylene glycol, and glycerol.
  • the solvent is one or more combinations of water and 1,2-propylene glycol.
  • the solvent is one or more combinations of 1,2-propylene glycol and glycerol.
  • the mass fraction of the solvent in the electronic atomization liquid is 20%-90%; in some embodiments, the mass fraction of the solvent in the electronic atomization liquid is 30%-80%. In some embodiments, the mass fraction of 1,2-propylene glycol in the electronic atomization liquid is 0%-30%; in some embodiments, the mass fraction of glycerol in the electronic atomization liquid is 30%-50%. In some embodiments, the mass fraction of 1,2-propylene glycol in the electronic atomization liquid is 20%-60%; in some embodiments, the mass fraction of glycerol in the electronic atomization liquid is 40%-80%.
  • the inventors have found that the electronic atomization liquid prepared using the nicotine salt preparation provided by the present invention has the advantages of nicotine salt.
  • the nicotine in the nicotine salt preparation has a concentration greater than 0% w/w and less than 10% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 9% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 8% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 7% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 6% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 5% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 1% w/w to 4% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 1% w/w to 3% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 1% w/w to 2% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 1% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 2% w/w to 5% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 2% w/w to 4% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 2% w/w to 3% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 2% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 3% w/w to 5% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 3% w/w to 4% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 3% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 4% w/w to 5% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 4% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 5% w/w in the electronic atomization liquid.
  • the nicotine in the nicotine salt preparation has a concentration of 6% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 7% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt formulation has a concentration of 8% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt formulation has a concentration of 9% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt formulation has a concentration of 10% w/w in the electronic atomization liquid.
  • the electronic atomization liquid further includes one or more of a sweetener, a cooling agent and a flavoring agent.
  • Sweeteners, cooling agents and flavoring agents are materials that can be used to create a desired taste or aroma in products for adult consumers, where permitted by local regulations. They can include extracts (e.g., licorice, hydrangea, Japanese white magnolia leaves, chamomile, fenugreek, cloves, menthol, Japanese mint, star anise, cinnamon, vanilla, holly, cherry, berry, peach, apple, Drambuie, bourbon, Scotch whiskey, whiskey, spearmint, mint, lavender, cardamom, celery, salicylic, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla essence, lemon oil, orange oil, cinnamon, caraway, brandy, jasmine, poplar Plum, ylang-ylang, sage, allspice, ginger, fennel, coriander, coffee or mint oil from any species of the genus Menthus), flavor enhancers, bitter receptor site blockers, sensory
  • the sweetener includes one or more of neotame, cyclamate, sucralose, alitame, aspartame, saccharin sodium, acesulfame potassium, ammonium glycyrrhizinate, thaumatin, stevioside, xylitol, maltose, stevioside, rhamnose, trehalose, erythritol, lactose and galactose.
  • the sweetener has a concentration of 0%-10% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-9% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-8% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-7% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-6% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-5% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-4% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-3% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-10%
  • the cooling agent includes one or more of peppermint oil, menthol, WS-23, L-menthone, menthyl acetate, menthyl lactate, WS-3, and menthone glycerol ketal.
  • the cooling agent has a concentration of 0%-10% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-9% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-8% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-7% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-6% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-5% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-4% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-3% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-2% w/w in the
  • the fragrance is selected from 1,4-cineole, 1,8-cineole, 2,3-pentanedione, 2-methylpyrazine, 2-methoxy-3-methylpyrazine, 2-ethyl-3-methylpyrazine, 2-acetylpyrazine, 3-carene, 5-methylfurfural, ⁇ -pinene, ⁇ -pinene, ⁇ -phellandrene, ⁇ -terpineol, myrcene, ⁇ -nonalactone, ⁇ -terpinene, butyric acid, ethyl butyrate, butyl butyryl lactylate, 1-p- One or more of ene-8-thiol, methyl dihydrojasmonate, 3,4-dimethoxybenzaldehyde, citral, triethyl citrate, ethyl nonanoate, triacetin, vanillin, jasmonate, ethyl vanillin, aceto
  • the flavor is a fruity flavor, a floral flavor, or a tobacco flavor.
  • the flavor has a concentration of 0%-50% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 0%-40% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 0%-30% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 0%-20% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 0%-10% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 10%-50% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 10%-40% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 10%-30% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 10%-20% w/w in the electronic atomization liquid.
  • the nicotine salt preparation or electronic atomization liquid contains ethyl butyrate (such as formula C).
  • Ethyl butyrate has a molecular weight of 116.158 and a boiling point of 122.4°C.
  • Ethyl butyrate can be used as a flavor ligand, but there is no evidence that it can adjust the particle size of the electronic atomization aerosol of the nicotine salt preparation (nicotine lactate salt, nicotine levulinate salt, lactic acid + levulinate compound nicotine salt) described in the present invention.
  • Adding ethyl butyrate to the nicotine salt preparation or electronic atomization liquid of the present invention reduces the concentration of small-size particles in the aerosol produced by the nicotine preparation or electronic atomization liquid of the present invention, reduces the amount of aerosol deposited in the alveoli, and improves the safety of the electronic cigarette atomization liquid.
  • the content of ethyl butyrate is about greater than 0% (w/w) and less than 5% (w/w); in some embodiments, the content of ethyl butyrate is about greater than 0.02% (w/w) and less than 2% (w/w); in some embodiments, the content of ethyl butyrate is about greater than 0.1% (w/w) and less than 1% (w/w); in some embodiments, the content of ethyl butyrate is about 0.2% (w/w), 0.3% (w/w) 0.4% (w/w), 0.5% (w/w), 0.6% (w/w) or 0.7% (w/w).
  • the present invention provides an electronic cigarette cartridge, which includes the electronic atomization liquid described in the present invention.
  • the electronic cigarette cartridge includes a heating element to atomize the electronic atomization liquid by heating.
  • the atomization core uses a cotton core; in some embodiments, the atomization core uses a ceramic core.
  • the electronic cigarette cartridge includes an ultrasonic generating element to atomize the electronic atomization liquid by ultrasonic waves.
  • the nicotine lactate salt atomized liquid of the present invention has a good smoking taste, has relatively pure smoke, and has good stability.
  • the nicotine levulinate salt atomized liquid of the present invention has a good smoking taste, has a comfortable sweet and sour feeling, and can better retain the tobacco aroma.
  • the levulinic acid + lactic acid composite salt of the present invention has a good smoking taste, is rich in special fruit acid flavor, and can highlight the sweetness and moistness.
  • the numerical range is expressed in the form of "n-m", that is, the range of numbers n to m.
  • the range “n-m” includes n, m and all numbers between n and m.
  • the range “n-m” includes m and all numbers between n and m; in some embodiments, the range “n-m” includes n and all numbers between n and m; in some embodiments, the range “n-m” includes all numbers between n and m.
  • the present invention uses the following method to test the content of neotame and 1,2-propylene glycol and glycerol.
  • the determination of neotame in food after the sample is diluted and extracted, it is filtered and tested by HPLC.
  • the external standard method is used for quantification.
  • the capacity recovery rate of neotame content in the electronic atomization liquid is between 95.07% and 104.94%, and the RSD is less than 5%.
  • the measurement results are all within the index range and can meet the actual detection requirements.
  • This method uses a gas chromatograph equipped with a hydrogen flame ionization detector to determine 1,2-propylene glycol and glycerol in the diluent, and the external standard method is used for quantification.
  • the 1-5 level standard solutions were chromatographed according to the gas chromatography conditions in 4.2, with an injection volume of 1 ⁇ L.
  • the peak area of the target compound and the peak area of the internal standard were used as the ordinates, and the concentration of the target compound and the concentration of the internal standard were used as the abscissas to establish a standard working curve.
  • the linear correlation coefficient R2 should be greater than 0.999.
  • a standard working solution of medium concentration should be added after every 20 samples are measured. If the measured value differs from the original value by more than 5%, the standard working curve should be re-made.
  • the target content w in the sample is expressed in mg/g and is calculated according to formula (1):
  • a quality control solution of medium concentration should be added after every 20 sample measurements. If the measured value differs from the original value by more than 5%, the entire standard working curve should be re-produced.
  • the absolute difference between two independent determination results obtained under repeatability conditions shall not exceed 5% of the arithmetic mean.
  • Mobile phase A Take 500 mL of water (1.1.3), add 0.5 mL of ammonia water (1.1.2), and prepare mobile phase A (0.1% ammonia solution).
  • Ion source electrospray ionization source (ESI+);
  • the standard working solution (1.3.3) is measured according to the instrument analysis conditions, and the standard working curve is established based on the peak area ratio and content of the target compound and the internal standard. After every 20 sample measurements, a medium-content standard working solution should be added. If the measured value differs from the original value by more than 5%, the standard working curve should be re-made.
  • the sample solution (2) was measured according to the instrument analysis conditions. Each sample was measured twice in parallel.
  • the content of the target substance in the nicotine preparation is calculated according to the following formula.
  • X is the content of the target substance in the atomized material, in milligrams per gram (ug/g);
  • V volume of sample solution, in milliliters (mL);
  • Figure 1 3D structure of lactic acid
  • the base liquid involved in this embodiment is a mixed solvent of 1,2-propylene glycol and glycerol, and the ratio thereof is 2:8 by weight.
  • the molar ratio of nicotine to levulinic acid is 1:0.4. 1.000 g of nicotine and 0.286 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 60°C (magnetic stirring, 400 RPM) for 0.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.714 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
  • the molar ratio of nicotine to levulinic acid is 1:0.5. 1.00 g of nicotine and 0.358 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.642 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
  • the molar ratio of nicotine to levulinic acid is 1:0.6. 1.00 g of nicotine and 0.430 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.570 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
  • the molar ratio of nicotine to levulinic acid is 1:0.7. 1.00 g of nicotine and 0.502 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.498 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
  • the molar ratio of nicotine to levulinic acid is 1:0.8. 1.00 g of nicotine and 0.573 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.427 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
  • the molar ratio of nicotine to levulinic acid is 1:0.9. 1.00 g of nicotine and 0.644 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 75°C (magnetic stirring, 400 RPM) for 1.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.356 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the base liquid involved in this embodiment is a mixed solvent of 1,2-propylene glycol and glycerol, and the ratio thereof is 2:8 by weight.
  • the molar ratio of nicotine to lactic acid is 1:1.1. 1.00 g of nicotine and 0.611 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.389 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to lactic acid is 1:1.2. 1.00 g of nicotine and 0.667 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 70°C (magnetic stirring, 400 RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.333 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to lactic acid is 1:1.3. 1.00 g of nicotine and 0.722 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 70°C (magnetic stirring, 400 RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.278 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to lactic acid is 1:1.4. 1.00 g of nicotine and 0.778 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.222 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to lactic acid is 1:1.5. 1.00 g of nicotine and 0.833 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 70°C (magnetic stirring, 400 RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.167 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to lactic acid is 1:1.6. 1.00 g of nicotine and 0.944 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.056 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to lactic acid is 1:1.7. 1.00 g of nicotine and 0.944 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.056 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to lactic acid is 1:1.8. 1.00 g of nicotine and 1.000 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours after sealing to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.000 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to lactic acid is 1:1.9. 1.00 g of nicotine and 1.055 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 97.945 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to lactic acid is 1:2. 1.00 g of nicotine and 1.111 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 75°C (magnetic stirring, 400 RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 97.889 g of the base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
  • Example 3 Preparation of levulinic acid + lactic acid composite nicotine salt and its preparation
  • the base liquid involved in this embodiment is a mixed solvent of 1,2-propylene glycol and glycerol, and the ratio thereof is 2:8 by weight.
  • the molar ratio of nicotine, levulinic acid and lactic acid is 1:0.5:0.5.
  • 1.000g of nicotine, 0.358g of levulinic acid and 0.278g of lactic acid in a molar ratio of 1:0.5:0.5 were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1 hour to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • 23.364g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine, levulinic acid and lactic acid is 1:0.6:0.5. 1.000 g of nicotine, 0.430 g of levulinic acid and 0.278 g of lactic acid were added to a 50 mL eggplant-shaped flask, sealed and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 1 hour to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.292 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine, levulinic acid and lactic acid is 1:0.7:0.4. 1.000g of nicotine, 0.503g of levulinic acid and 0.222g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1 hour to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.275g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine, levulinic acid and lactic acid is 1:0.8:0.2. 1.000g of nicotine, 0.574g of levulinic acid and 0.111g of lactic acid were added to a 50mL eggplant-shaped flask, and the mixture was stirred at 55°C (magnetic stirring, 400RPM) for 2 hours after sealing to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.315g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine, levulinic acid and lactic acid is 1:0.9:0.1. 1.000g of nicotine, 0.646g of levulinic acid and 0.056g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.298g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine, levulinic acid and lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid and 0.111g of lactic acid were added to a 50mL eggplant-shaped flask, and the mixture was stirred at 65°C (magnetic stirring, 400RPM) for 2 hours after sealing to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.173g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine, levulinic acid and lactic acid is 1:1.1:0.3. 1.000g of nicotine, 0.788g of levulinic acid and 0.167g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.045g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
  • the molar ratio of nicotine, levulinic acid and lactic acid is 1:1.2:0.2. 1.000g of nicotine, 0.859g of levulinic acid and 0.111g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 55°C (magnetic stirring, 400RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.030g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
  • the molar ratio of nicotine, levulinic acid and lactic acid is 1:1.2:0.3. 1.000g of nicotine, 0.859g of levulinic acid and 0.167g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 22.974g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to mixed acid is 1:0.6, and the molar ratio of levulinic acid to lactic acid is 12:1.
  • 1.000g of nicotine, 0.397g of levulinic acid and 0.026g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • 23.577g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to mixed acid is 1:0.7, and the molar ratio of levulinic acid to lactic acid is 11:1.
  • 1.000g of nicotine, 0.459g of levulinic acid and 0.032g of lactic acid were added to a 50mL eggplant-shaped flask, and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • the molar ratio of nicotine to mixed acid is 1:0.8, and the molar ratio of levulinic acid to lactic acid is 8:1.
  • 1.000g of nicotine, 0.509g of levulinic acid and 0.049g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • 23.442g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to mixed acid is 1:0.9, and the molar ratio of levulinic acid to lactic acid is 10:1.
  • 1.000g of nicotine, 0.586g of levulinic acid and 0.045g of lactic acid were added to a 50mL eggplant-shaped flask, and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • the molar ratio of nicotine to mixed acid is 1:1.3, and the molar ratio of levulinic acid to lactic acid is 7:1.
  • 1.000g of nicotine, 0.815g of levulinic acid and 0.090g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • the nicotine salt is cooled to room temperature (20°C-35°C)
  • 23.095g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to mixed acid is 1:1.6, and the molar ratio of levulinic acid to lactic acid is 3:1.
  • 1.000g of nicotine, 0.859g of levulinic acid and 0.222g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to mixed acid is 1:1.7, and the molar ratio of levulinic acid to lactic acid is 2:1.
  • 1.000g of nicotine, 0.812g of levulinic acid and 0.315g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to mixed acid is 1:1.8, and the molar ratio of levulinic acid to lactic acid is 8.5:1.
  • 1.000g of nicotine, 1.153g of levulinic acid and 0.105g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to mixed acid is 1:1.9, and the molar ratio of levulinic acid to lactic acid is 5.6:1.
  • 1.000g of nicotine, 1.154g of levulinic acid and 0.160g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • the nicotine salt is cooled to room temperature (20°C-35°C)
  • 22.686g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
  • the molar ratio of nicotine to mixed acid is 1:2, and the molar ratio of levulinic acid to lactic acid is 11.5:1.
  • 1.000g of nicotine, 1.318g of levulinic acid and 0.089g of lactic acid were added to a 50mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours to obtain nicotine salt.
  • 75°C magnetic stirring, 400RPM
  • the molar ratio of nicotine to levulinic acid is 1:0.8. 1.000g of nicotine and 0.573g of levulinic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.427g (25g glycerol, 13.327g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) can be obtained.
  • the molar ratio of nicotine to levulinic acid is 1:0.6. 1.000g of nicotine and 0.430g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was stirred at 65°C (magnetic stirring, 400RPM) for 2 hours after sealing to obtain nicotine levulinic acid salt.
  • the molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt.
  • the molar ratio of nicotine to lactic acid is 1:0.8. 1.000g nicotine and 0.444g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.556g (25g glycerol, 13.456g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
  • the molar ratio of nicotine to lactic acid is 1:1. 1.000g nicotine and 0.556g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.444g (25g glycerol, 13.344g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
  • the molar ratio of nicotine to lactic acid is 1:1.7. 1.000g nicotine and 0.944g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.056g (25g glycerol, 12.956g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
  • the molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.333g (25g glycerol, 13.233g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
  • Example 6 Levulinic acid + lactic acid composite nicotine salt atomization liquid
  • the molar ratio of nicotine to total acid is 1:0.8 (the molar ratio of nicotine, levulinic acid and lactic acid is 1:0.5:0.3). 1.000g of nicotine, 0.358g of levulinic acid and 0.167g of lactic acid are added to a 100mL eggplant-shaped flask, sealed and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt.
  • the molar ratio of nicotine to total acid is 1:1 (the molar ratio of nicotine, levulinic acid and lactic acid is 1:0.5:0.5). 1.000g of nicotine, 0.358g of levulinic acid and 0.278g of lactic acid are added to a 100mL eggplant-shaped flask, sealed and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt.
  • the molar ratio of nicotine to total acid is 1:1.7 (the molar ratio of nicotine, levulinic acid and lactic acid is 1:1.2:0.5). 1.000g of nicotine, 0.859g of levulinic acid and 0.278g of lactic acid are added to a 100mL eggplant-shaped flask, sealed and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt.
  • the molar ratio of nicotine to total acid is 1:1.2 (the molar ratio of nicotine, levulinic acid and lactic acid is 1:1:0.2). 1.000g of nicotine, 0.716g of levulinic acid and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, sealed and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid.
  • Example 7 Nicotine levulinate salt aerosol liquid (containing ethyl butyrate)
  • Example 7-1 Ethyl butyrate content 0.5%
  • the molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt.
  • Example 7-2 Ethyl butyrate content 1%
  • the molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt.
  • Example 7-3 Ethyl butyrate content 3%
  • the molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt.
  • Example 7-4 Ethyl butyrate content 5%
  • the molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt.
  • Example 8 Nicotine lactate salt atomized liquid (containing ethyl butyrate)
  • Example 8-1 Ethyl butyrate content 0.5%
  • the molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt.
  • Example 8-2 Ethyl butyrate content 1%
  • the molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt.
  • Example 8-3 Ethyl butyrate content 3%
  • the molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt.
  • Example 8-4 Ethyl butyrate content 5%
  • the molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt.
  • Example 9 Levulinic acid + lactic acid composite nicotine salt atomization liquid (containing ethyl butyrate)
  • Example 9-1 Ethyl butyrate content 0.5%
  • the molar ratio of nicotine to levulinic acid to lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid.
  • Example 9-2 Ethyl butyrate content 1%
  • the molar ratio of nicotine to levulinic acid to lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid.
  • ethyl butyrate 25g of glycerol, 12.573g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor
  • base liquid 25g of glycerol, 12.573g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor
  • Example 9-3 Ethyl butyrate content 3%
  • the molar ratio of nicotine to levulinic acid to lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid.
  • ethyl butyrate and 46.673g 25g of glycerol, 11.573g of 1,2-propylene glycol, 0.1g of neotame, and 10g of orange flavor
  • base liquid 25g of glycerol, 11.573g of 1,2-propylene glycol, 0.1g of neotame, and 10g of orange flavor
  • Example 9-4 Ethyl butyrate content 5%
  • the molar ratio of nicotine to levulinic acid to lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid.
  • ethyl butyrate and 45.673g 25g of glycerol, 10.573g of 1,2-propylene glycol, 0.1g of neotame, and 10g of orange flavor
  • base liquid 25g of glycerol, 10.573g of 1,2-propylene glycol, 0.1g of neotame, and 10g of orange flavor
  • the molar ratio of nicotine to benzoic acid is 1:0.8. 1.000g nicotine and 0.602g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.398g (25g glycerol, 13.298g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
  • the molar ratio of nicotine to benzoic acid is 1:1. 1.000g nicotine and 0.753g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.247g (25g glycerol, 13.147g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
  • the molar ratio of nicotine to benzoic acid is 1:1.7. 1.000g nicotine and 1.280g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 47.720g (25g glycerol, 12.62g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
  • the molar ratio of nicotine to benzoic acid is 1:1. 1.000g nicotine and 0.753g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt.
  • the molar ratio of nicotine to benzoic acid is 1:1. 1.000g nicotine and 0.753g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt.
  • the molar ratio of nicotine to total acid is 1:0.8 (the molar ratio of nicotine to benzoic acid, levulinic acid, and lactic acid is 1:0.5:0.1:0.2). 1.000g of nicotine, 0.377g of benzoic acid, 0.072g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and after sealing, the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt.
  • the molar ratio of nicotine to total acid is 1:1 (the molar ratio of nicotine to benzoic acid, levulinic acid, and lactic acid is 1:0.5:0.1:0.4). 1.000g of nicotine, 0.377g of benzoic acid, 0.072g of levulinic acid, and 0.222g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours after sealing to obtain a composite nicotine salt.
  • 65°C magnetic stirring, 400RPM
  • the molar ratio of nicotine to total acid is 1:1.7 (the molar ratio of nicotine to benzoic acid, levulinic acid, and lactic acid is 1:1.2:0.1:0.4).
  • 1.000g of nicotine, 0.904 benzoic acid, 0.072g of levulinic acid, and 0.222g of lactic acid are added to a 100mL eggplant-shaped flask, sealed, and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt.
  • the electronic cigarette cartridges used in the test examples 1 and 2 are cotton core and mesh core heating wire (mainly iron-chromium alloy), the test voltage is 4.14V (marked voltage 3.7V), and the test resistance is 1.4 ⁇ .
  • Test Example 1 Effect of nicotine salt on the aroma of tobacco flavor atomizer liquid
  • Example 4-1 Using the operating conditions of Example 4-1 (stirring for 2 h at 65° C., 400 RPM), benzoic acid and levulinic acid were respectively prepared into nicotine salts according to the stoichiometric ratios of nicotine to levulinic acid of 1:0.3, 1:0.4, 1:0.6, 1:0.9, 1:1, 1:1.2 and the stoichiometric ratio of nicotine to benzoic acid of 1:1; a tobacco flavor base liquid (comprising 1 g of Yunyan extract, 40 g of glycerol, and 59 g of 1,2-propylene glycol) was added to prepare an atomized liquid with a final nicotine content of 2% (w/w).
  • a tobacco flavor base liquid comprising 1 g of Yunyan extract, 40 g of glycerol, and 59 g of 1,2-propylene glycol
  • Tobacco aroma sensory evaluation standard The tobacco aroma of nicotine benzoate salt atomized liquid was used as a benchmark for comparison, as shown in Table 6:
  • Tobacco aroma evaluation method 30 smoking evaluation technical experts were selected, and they evaluated various indicators according to the sensory evaluation standards in Table 1.
  • the aroma of the atomized liquid is richer and more natural than that of nicotine benzoate atomized liquid, especially when the chemical ratio of levulinic acid to nicotine is 0.4-0.9, more especially when the chemical ratio of levulinic acid to nicotine is 0.4-0.6, and more especially when the chemical ratio of levulinic acid to nicotine is 0.6; but when the chemical ratio of levulinic acid to nicotine is greater than 1, it will affect the aroma of the smoke, especially when the chemical ratio of levulinic acid to nicotine is 1:1 and 1:1.2, the atomized liquid will have a sudden sour gas when inhaled, which seriously affects the perception of the aroma of the smoke.
  • benzoic acid vapor is highly irritating and can easily cause coughing after inhalation, which may affect the smoker's experience of the smoke, and is therefore not suitable for electronic cigarettes with a tobacco flavor.
  • the inventors found that a certain amount of levulinic acid can modify the tobacco flavor and bring a richer tobacco flavor experience to the smoker, but when levulinic acid reaches a certain level, its own fruity acid taste will suddenly emerge, thereby affecting or masking the aroma of tobacco.
  • Test Example 2 Effect of nicotine salt on the sweetness of atomized liquid
  • the present invention objectively describes whether different acid nicotine salts have an effect on sweetness and how the effect is by detecting the mass percentage concentration of neotame in the aerosol of the atomized liquid of Examples 5 (5-1, 5-2, 5-3), 6 (6-1, 6-2, 6-3) and Comparative Examples 1 (1-1, 1-2, 1-3) and 2 (2-1, 2-2, 2-3).
  • Test method By testing the amount of neotame and the amount of solvent, the mass percentage of neotame is calculated by the following formula.
  • Test results The amount of neotame and the amount of solvent (1,2-propylene glycol, glycerol) in 50 puffs were detected, as shown in Table 8;
  • This test evaluates the effect of different acid nicotine salts on sweetness by testing the atomization amount of neotame and solvent in the atomization liquid containing different acid nicotine salts. From the test results, it can be seen that lactic acid and/or levulinic acid nicotine salts have a synchronous effect on the atomization amount of neotame and solvent, resulting in a more neotame in the aerosol of the atomization liquid containing lactic acid and/or levulinic acid nicotine salts than the aerosol of the atomization liquid containing benzoic acid nicotine salts, and thus have a better sweetness.
  • Test Example 3 Effects of different acid nicotine salts on nornicotine
  • Nornicotine is harmful to human health and is the synthetic precursor of the potential carcinogen nitrosonornicotine (NNN).
  • NNN potential carcinogen nitrosonornicotine
  • Nornicotine is easily produced during the preparation and storage process, which not only deteriorates the quality of smoke, but also affects the safety of electronic atomization liquid. Therefore, in the preparation process of nicotine salt, the less nornicotine produced, the better.
  • Test method 2.025 g (purity of 99.95%) of nicotine and the corresponding stoichiometric acid (7 stoichiometric ratios of nicotine and benzoic acid were selected for testing, which were 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, and 1:2.5 respectively; 7 stoichiometric ratios of nicotine and lactic acid were selected for testing, which were 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, and 1:2.5 respectively) were added into an eggplant-shaped flask, and the mixture was sealed and stirred at 65° C.
  • the change in the amount of nornicotine the total amount of nornicotine in the nicotine salt - the total amount of nornicotine in the nicotine used.
  • Test Example 4 Effects of different acid nicotine salts on nicotine nitrogen oxides
  • Nicotine nitrogen oxides are one of the important indicators for detecting the degree of nicotine oxidation.
  • the increase of nicotine nitrogen oxides will not only reduce the nicotine content, but also have a negative impact on the safety of the product and the stability of the taste.
  • Test method 2.025g (purity 99.95%) nicotine and corresponding stoichiometric acid (select 8 stoichiometric ratios of nicotine and benzoic acid for testing, which are 1:0.3, 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, 1:2.5; select 8 stoichiometric ratios of nicotine and lactic acid for testing, which are 1:0.3, 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, 1:2.5; Eight stoichiometric ratios of nicotine and levulinic acid were selected for testing, namely 1:0.3, 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, and 1:2.5) were added to an eggplant-shaped flask.
  • the amount of nicotine nitrogen oxides produced by nicotine levulinic acid salt is kept at a relatively stable amount, and the amount is very small, which is far lower than that of nicotine benzoate salt.
  • the inventors speculate that one of the reasons why levulinic acid can make nicotine more stable is probably related to its own structure.
  • the structure of levulinic acid is a long chain. After providing protons to nicotine, it may be easier to wrap the nicotine molecules, thereby preventing oxygen ions from attacking the nicotine molecules and preventing them from being oxidized, which makes the nicotine salt system more stable.
  • the electronic cigarette cartridge used is a cotton core and a mesh core heating wire (mainly iron-chromium alloy), the test voltage is 4.14V (marked voltage 3.7V), and the test resistance is 1.4 ⁇ .
  • Nicotine benzoate salt atomized liquid Comparative Example 1-2
  • Nicotine lactate salt atomized liquid Example 5-4
  • Nicotine levulinate salt aerosol liquid Example 4-3
  • Nicotine levulinate salt aerosol liquid + 0.5% ethyl butyrate Example 7-1
  • the concentration of small-size particles in e-cigarette aerosol decreases, which greatly reduces the number of particles entering the alveoli for deposition and reduces the impact on the alveoli.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

A nicotine salt, which is prepared from lactic acid, levulinic acid or a combination of lactic acid and levulinic acid, and nicotine. The nicotine salt can make the sweet taste of an atomized liquid more prominent; under the same requirement for sweet taste, a less sweetening agent is used, and the safety is higher; and the sweet taste of the sweetening agent with the same amount is more stable within the proportion range, such that research and development personnel or production personnel can better control the use amount of the sweetening agent. In addition, the nicotine salt enables the amount of nornicotine and nicotine oxynitrides to be lower in certain proportion ranges, that is, the nicotine salt enables a nicotine salt system to be more stable. Moreover, further provided are an atomized liquid containing the nicotine salt and a vape cartridge.

Description

尼古丁盐及其雾化液、烟弹及用途Nicotine salt and its atomizing liquid, cigarette cartridge and use
本申请要求享有于2022年9月28日提交中国专利局、申请号为202211192853.0的中国专利申请的优先权,以上申请的全部内容通过引用结合在本文中。This application claims the priority of the Chinese patent application filed with the China Patent Office on September 28, 2022, with application number 202211192853.0. The entire contents of the above application are incorporated herein by reference.
技术领域Technical Field
本申请涉及电子烟领域,具体涉及一种尼古丁盐及其雾化液、烟弹及用途。The present application relates to the field of electronic cigarettes, and in particular to a nicotine salt and its atomizing liquid, a cigarette cartridge and uses.
背景技术Background technique
尼古丁,又名烟碱,是一种存在于茄科植物(茄属)中的生物碱,也是烟草的重要成分。尼古丁及其盐形式被应用于电子烟烟油中,电子烟作为卷烟替代品之一,越来越得到烟民的认可,但尼古丁易被氧化,一定程度上影响电子烟油的口感,同时人吸入氧化分解物质,对器官有一定的伤害。苯甲酸尼古丁盐是目前市面上使用最多的盐型,在为了达到一定口感的前提下,其稳定性隐患对于烟民来说在其容忍范围内。随着越来越多的烟民使用电子烟替代卷烟,尼古丁盐安全性的重要性进一步体现,且烟民对口感要求也更高,因此安全性和口感成为电子烟研究人员探索的方向。Nicotine, also known as nicotine, is an alkaloid found in Solanaceae plants (Solanum), and is also an important component of tobacco. Nicotine and its salt form are used in e-cigarette oil. As one of the substitutes for cigarettes, e-cigarettes are increasingly recognized by smokers, but nicotine is easily oxidized, which affects the taste of e-cigarette oil to a certain extent. At the same time, people inhale oxidative decomposition substances, which causes certain damage to organs. Nicotine benzoate salt is the most commonly used salt type on the market. Under the premise of achieving a certain taste, its stability risks are within the tolerance range for smokers. As more and more smokers use e-cigarettes instead of cigarettes, the importance of nicotine salt safety is further reflected, and smokers have higher requirements for taste. Therefore, safety and taste have become the directions explored by e-cigarette researchers.
目前苯甲酸尼古丁盐存在在口感上和稳定性上无法同时满足要求的现象,因此急需选择一种新型的尼古丁盐(烟碱盐)同时满足不同风味口感的需求以及达到较好的稳定性。Currently, nicotine benzoate salt cannot meet the requirements in terms of taste and stability at the same time. Therefore, it is urgent to select a new type of nicotine salt (nicotine salt) that can meet the needs of different flavors and tastes and achieve better stability.
发明内容Summary of the invention
为解决这些技术问题,本发明提供了具有某些比例的尼古丁盐,能够让雾化液的甜味更突出,在相同的甜味需求下,将使用更少的甜味剂,使得安全性更高,且在该比例范围内,相同量甜味剂的甜味感更稳定,能够使研发或生产人员更好的控制甜味剂的使用量。另外,在比例范围内,能够让降烟碱及烟碱氮氧化物的量更少,也就是让该烟碱盐体系更稳定。To solve these technical problems, the present invention provides nicotine salts with certain ratios, which can make the sweetness of the atomized liquid more prominent. Under the same sweetness requirement, less sweetener will be used, making it safer. In addition, within the ratio range, the sweetness of the same amount of sweetener is more stable, which enables R&D or production personnel to better control the amount of sweetener used. In addition, within the ratio range, the amount of nornicotine and nicotine nitrogen oxides can be reduced, that is, the nicotine salt system is more stable.
具体的,specific,
一方面,本发明提供了一种尼古丁盐制剂,其中尼古丁盐由乳酸与尼古丁制备得到,所述乳酸与尼古丁的摩尔比从(1.1-2):1。In one aspect, the present invention provides a nicotine salt preparation, wherein the nicotine salt is prepared from lactic acid and nicotine, and the molar ratio of lactic acid to nicotine is (1.1-2):1.
在一些实施例中,所述尼古丁盐制剂还包括丁酸乙酯,所述丁酸乙酯的质量分数为0%-5%。In some embodiments, the nicotine salt preparation further includes ethyl butyrate, and the mass fraction of ethyl butyrate is 0%-5%.
在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-2):1;或(1.2-2):1;或(1.3-2):1;或(1.4-2):1;或(1.5-2):1;或(1.6-2):1;或(1.7-2):1;或(1.8-2):1;或(1.9-2):1;或2:1;或(1.1-1.9):1;或(1.2-1.9):1;或(1.3-1.9):1;或(1.4-1.9):1;或(1.5-1.9):1;或(1.6-1.9):1;或(1.7-1.9):1;或(1.8-1.9):1;或1.9:1;或(1.1-1.8):1;或(1.2-1.8):1;或(1.3-1.8):1;或(1.4-1.8):1;或(1.5-1.8):1;或(1.6-1.8):1;或(1.7-1.8):1;或1.8:1;或(1.1-1.7):1;或(1.2-1.7):1;或(1.3-1.7):1;或(1.4-1.7):1;或(1.5-1.7):1;或(1.6-1.7):1;或1.7:1;或(1.1-1.6):1;或(1.2-1.6):1;或(1.3-1.6):1;或(1.4-1.6):1;或(1.5-1.6):1;或1.6:1;或(1.1-1.5):1;或(1.2-1.5):1;或(1.3-1.5):1;或(1.4-1.5):1;或1.5:1;或(1.1-1.4):1;或(1.2-1.4):1;或(1.3-1.4):1;或1.4:1;或(1.1-1.3):1;或(1.2-1.3):1;或1.3:1;或(1.1-1.2):1;或1.2:1;或1.1:1。In some embodiments, the molar ratio of lactic acid to nicotine is (1.1-2):1; or (1.2-2):1; or (1.3-2):1; or (1.4-2):1; or (1.5-2):1; or (1.6-2):1; or (1.7-2):1; or (1.8-2):1; or (1.9-2):1; or 2:1; or (1.1-1.9):1; or (1.2-1.9):1; or (1.3-1.9):1; or (1.4-1.9):1; or (1.5-1.9):1; or (1.6-1.9):1; or (1.7-1.9):1; or (1.8-1.9):1; or 1.9:1; or (1.1-1.8):1; or (1.2-1.8):1; or (1.3-1.8):1; or (1.4-1.8):1; or (1.5-1.8):1; or (1.6-1.8):1; or (1.7-1.8):1; or 1.8:1; or (1.1-1.7):1; or (1.2-1.7):1; or (1.3-1.7):1; or (1.4-1.7):1; or (1.5-1.7):1; or (1.6-1.7):1; or 1.7:1; or (1.1-1.6):1; or (1.2-1.6):1; or (1.3-1.6):1; or (1.4-1.6):1; or (1.5-1.6):1; or 1.6:1; or (1.1-1.5):1; or (1.2-1.5):1; or (1.3-1.5):1; or (1.4-1.5):1; or 1.5:1; or (1.1-1.4):1; or (1.2-1.4):1; or (1.3-1.4):1; or 1.4:1; or (1.1-1.3):1; or (1.2-1.3):1; or 1.3:1; or (1.1-1.2):1; or 1.2:1; or 1.1:1.
在一些实施例中,所述尼古丁盐制剂进一步包含溶剂,所述溶剂为水、乙醇、1,2-丙二醇、1,3-丙二醇、丙三醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,2,3-丁三醇、1,2,4-丁三醇中的一种或多种组合。In some embodiments, the nicotine salt formulation further comprises a solvent, and the solvent is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
在一些实施例中,所述尼古丁盐制剂进一步包含溶剂,所述溶剂为水、1,2-丙二醇、1,3-丙二醇、丙三醇中的一种或多种组合。In some embodiments, the nicotine salt formulation further comprises a solvent, and the solvent is one or more combinations of water, 1,2-propylene glycol, 1,3-propylene glycol, and glycerol.
另一方面,本发明还提供了一种电子雾化液,其含本发明所述的尼古丁盐制剂。On the other hand, the present invention also provides an electronic atomization liquid, which contains the nicotine salt preparation described in the present invention.
在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有大于0%w/w,小于10%w/w的浓度。In some embodiments, the nicotine in the nicotine salt formulation has a concentration in the electronic atomizing liquid that is greater than 0% w/w and less than 10% w/w.
在一些实施例中,所述电子雾化液进一步包括甜味剂、凉味剂和香料中的一种或多种。In some embodiments, the electronic atomization liquid further includes one or more of a sweetener, a cooling agent, and a flavoring agent.
另一方面,本发明还提供了一种电子烟烟弹,其包括本发明所述的电子雾化液。On the other hand, the present invention further provides an electronic cigarette cartridge, which includes the electronic atomization liquid described in the present invention.
在一些实施例中,所述电子烟烟弹还包括雾化元件,所述雾化元件为加热雾化元件或超声波雾化元件。In some embodiments, the electronic cigarette cartridge further includes an atomizing element, and the atomizing element is a heating atomizing element or an ultrasonic atomizing element.
在一些实施例中,电子烟烟弹还包括加热元件,通过加热雾化电子雾化液。In some embodiments, the electronic cigarette cartridge further comprises a heating element, which atomizes the electronic atomizing liquid by heating.
在一些实施例中,电子烟烟弹还包括超声波发生元件,通过超声波雾化电子雾化液。In some embodiments, the electronic cigarette cartridge further includes an ultrasonic generating element for atomizing the electronic atomizing liquid through ultrasonic waves.
为解决本发明所述的技术问题,本发明还提供了一种尼古丁盐制剂,其中尼古丁盐由有机酸与尼古丁制备得到,所述有机酸由乙酰丙酸和乳酸组成。In order to solve the technical problem described in the present invention, the present invention also provides a nicotine salt preparation, wherein the nicotine salt is prepared from an organic acid and nicotine, and the organic acid consists of levulinic acid and lactic acid.
具体的,specific,
一方面,本发明提供了一种尼古丁盐制剂,其中尼古丁盐由有机酸与尼古丁制备得到,所述有机酸由乙酰丙酸和乳酸组成,所述乙酰丙酸与乳酸摩尔比从12:1至1:1;所述有机酸与尼古丁的摩尔比从0.6:1至2:1。In one aspect, the present invention provides a nicotine salt preparation, wherein the nicotine salt is prepared from an organic acid and nicotine, the organic acid consists of levulinic acid and lactic acid, the molar ratio of levulinic acid to lactic acid is from 12:1 to 1:1; the molar ratio of the organic acid to nicotine is from 0.6:1 to 2:1.
在一些实施例中,所述尼古丁盐制剂还包括丁酸乙酯,所述丁酸乙酯的质量分数为0%-5%。In some embodiments, the nicotine salt preparation further includes ethyl butyrate, and the mass fraction of ethyl butyrate is 0%-5%.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(12-1):1、(11-1):1、(10-1):1、(9-1):1、(8-1):1、(7-1):1、(6-1):1、(5-1):1、(4-1):1、(3-1):1、(2-1):1或1:1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、 (1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (12-1):1, (11-1):1, (10-1):1, (9-1):1, (8-1):1, (7-1):1, (6-1):1, (5-1):1, (4-1):1, (3-1):1, (2-1):1 or 1:1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2): 1. (0.9-2):1. (1-2):1. (1.1-2):1. (1.2-2):1. (1.3-2):1. (1.4-2):1. (1.5-2):1. (1.6-2):1. (1.7-2):1. (1.8-2):1. (1.9-2):1. 2:1. (0.6-1.9):1. (0.7-1.9):1. (0.8-1.9):1. (0.9-1.9 ):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1.9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1 .8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1.7):1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1 .7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, (0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2 -1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5):1, (1.3-1.5):1, (1.4-1.5):1, 1. 5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1.4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3):1, (0.9-1.3):1, (1-1.3 ):1, (1.1-1.3):1, (1.2-1.3):1, 1.3:1, (0.6-1.2):1, (0.7-1.2):1, (0.8-1.2):1, (0.9-1.2):1, (1-1.2):1, (1.1-1.2):1, 1.2:1, (0.6-1.1):1, (0.7-1.1):1, (0.8-1.1):1, (0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述尼古丁盐制剂进一步包含溶剂,所述溶剂为水、乙醇、1,2-丙二醇、1,3-丙二醇、丙三醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,2,3-丁三醇、1,2,4-丁三醇中的一种或多种组合。In some embodiments, the nicotine salt formulation further comprises a solvent, and the solvent is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
在一些实施例中,所述尼古丁盐制剂进一步包含溶剂,所述溶剂为水、1,2-丙二醇、1,3-丙二醇、丙三醇中的一种或多种组合。In some embodiments, the nicotine salt formulation further comprises a solvent, and the solvent is one or more combinations of water, 1,2-propylene glycol, 1,3-propylene glycol, and glycerol.
另一方面,本发明还提供了一种电子雾化液,其含有包含本发明所述的尼古丁盐制剂。On the other hand, the present invention also provides an electronic atomization liquid, which contains the nicotine salt preparation of the present invention.
在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有大于0%w/w,小于10%w/w的浓度。In some embodiments, the nicotine in the nicotine salt formulation has a concentration in the electronic atomizing liquid that is greater than 0% w/w and less than 10% w/w.
在一些实施例中,所述电子雾化液进一步包括甜味剂、凉味剂和香料中的一种或多种。In some embodiments, the electronic atomization liquid further includes one or more of a sweetener, a cooling agent, and a flavoring agent.
另一方面,本发明还提供了一种电子烟烟弹,其包括本发明所述的电子雾化液。On the other hand, the present invention further provides an electronic cigarette cartridge, which includes the electronic atomization liquid described in the present invention.
在一些实施例中,所述电子烟烟弹还包括雾化元件,所述雾化元件为加热雾化元件或超声波雾化元件。In some embodiments, the electronic cigarette cartridge further includes an atomizing element, and the atomizing element is a heating atomizing element or an ultrasonic atomizing element.
在一些实施例中,电子烟烟弹还包括加热元件,通过加热雾化电子雾化液。In some embodiments, the electronic cigarette cartridge further comprises a heating element, which atomizes the electronic atomizing liquid by heating.
在一些实施例中,电子烟烟弹还包括超声波发生元件,通过超声波雾化电子雾化液。In some embodiments, the electronic cigarette cartridge further includes an ultrasonic generating element for atomizing the electronic atomizing liquid through ultrasonic waves.
为解决本发明所述的技术问题,本发明还提供了一种尼古丁盐制剂,其中尼古丁盐由乙酰丙酸与尼古丁制备得到。In order to solve the technical problem described in the present invention, the present invention also provides a nicotine salt preparation, wherein the nicotine salt is prepared from levulinic acid and nicotine.
具体的,specific,
一方面,本发明提供了一种尼古丁盐制剂,其中尼古丁盐由乙酰丙酸与尼古丁制备得到,所述乙酰丙酸与尼古丁的摩尔比从0.4:1至0.9:1。In one aspect, the present invention provides a nicotine salt preparation, wherein the nicotine salt is prepared from levulinic acid and nicotine, and the molar ratio of levulinic acid to nicotine is from 0.4:1 to 0.9:1.
在一些实施例中,所述尼古丁盐制剂还包括丁酸乙酯,所述丁酸乙酯的质量分数为0%-5%。In some embodiments, the nicotine salt preparation further includes ethyl butyrate, and the mass fraction of ethyl butyrate is 0%-5%.
在一些实施例中,其中所述乙酰丙酸与尼古丁的摩尔比为(0.4-0.9):1;或(0.5-0.9):1;或(0.6-0.9):1;或(0.7-0.9):1;或(0.8-0.9):1;或0.9:1;或(0.4-0.8):1;或(0.5-0.8):1;或(0.6-0.8):1;或(0.7-0.8):1;或0.8:1;或(0.4-0.7):1;或(0.5-0.7):1;或(0.6-0.7):1;或0.7:1;或(0.4-0.6):1;或(0.5-0.6):1;或0.6:1;或(0.4-0.5):1;或0.5:1;或0.4:1。In some embodiments, the molar ratio of levulinic acid to nicotine is (0.4-0.9):1; or (0.5-0.9):1; or (0.6-0.9):1; or (0.7-0.9):1; or (0.8-0.9):1; or 0.9:1; or (0.4-0.8):1; or (0.5-0.8):1; or (0.6-0.8):1; or (0.7-0.8):1; or 0.8:1; or (0.4-0.7):1; or (0.5-0.7):1; or (0.6-0.7):1; or 0.7:1; or (0.4-0.6):1; or (0.5-0.6):1; or 0.6:1; or (0.4-0.5):1; or 0.5:1; or 0.4:1.
在一些实施例中,所述尼古丁盐制剂进一步包含溶剂,所述溶剂为水、乙醇、1,2-丙二醇、1,3-丙二醇、丙三醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,2,3-丁三醇、1,2,4-丁三醇中的一种或多种组合。In some embodiments, the nicotine salt formulation further comprises a solvent, and the solvent is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
在一些实施例中,所述尼古丁盐制剂进一步包含溶剂,所述溶剂为水、1,2-丙二醇、1,3-丙二醇、丙三醇中的一种或多种组合。In some embodiments, the nicotine salt formulation further comprises a solvent, and the solvent is one or more combinations of water, 1,2-propylene glycol, 1,3-propylene glycol, and glycerol.
另一方面,本发明还提供了一种电子雾化液,其含有本发明所述的尼古丁盐制剂。On the other hand, the present invention also provides an electronic atomization liquid, which contains the nicotine salt preparation of the present invention.
在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有大于0%w/w,小于10%w/w的浓度。In some embodiments, the nicotine in the nicotine salt formulation has a concentration in the electronic atomizing liquid that is greater than 0% w/w and less than 10% w/w.
在一些实施例中,所述电子雾化液进一步包括甜味剂、凉味剂和香料中的一种或多种。In some embodiments, the electronic atomization liquid further includes one or more of a sweetener, a cooling agent, and a flavoring agent.
另一方面,本发明还提供了一种电子烟烟弹,其包括本发明所述的电子雾化液。On the other hand, the present invention further provides an electronic cigarette cartridge, which includes the electronic atomization liquid described in the present invention.
在一些实施例中,所述电子烟烟弹还包括雾化元件,所述雾化元件为加热雾化元件或超声波 雾化元件。In some embodiments, the electronic cigarette cartridge also includes an atomization element, and the atomization element is a heating atomization element or an ultrasonic atomization element.
在一些实施例中,电子烟烟弹还包括加热元件,通过加热雾化电子雾化液。In some embodiments, the electronic cigarette cartridge further comprises a heating element, which atomizes the electronic atomizing liquid by heating.
在一些实施例中,电子烟烟弹还包括超声波发生元件,通过超声波雾化电子雾化液。In some embodiments, the electronic cigarette cartridge further includes an ultrasonic generating element for atomizing the electronic atomizing liquid through ultrasonic waves.
另一方面,本发明还提供了本发明所述尼古丁盐在烟草香、水果香或花香电子雾化液中的用途On the other hand, the present invention also provides the use of the nicotine salt of the present invention in the electronic atomization liquid with tobacco flavor, fruit flavor or flower flavor
另一方面,本发明还提供了本发明所述尼古丁盐在烟草香电子雾化液中的用途。On the other hand, the present invention also provides the use of the nicotine salt of the present invention in tobacco flavor electronic atomization liquid.
另一方面,本发明还提供了本发明所述尼古丁盐在水果香电子雾化液中的用途。On the other hand, the present invention also provides the use of the nicotine salt of the present invention in fruit-flavored electronic atomization liquid.
另一方面,本发明还提供了本发明所述尼古丁盐在花香电子雾化液中的用途。On the other hand, the present invention also provides the use of the nicotine salt of the present invention in a floral scent electronic atomization liquid.
详细内容details
为了下面的详细描述的目的,应当理解,本申请可采用各种替代的变化和步骤顺序,除非明确规定相反。此外,除了在任何操作示例中,或者以其他方式指出的情况下,表示例如说明书和权利要求中使用的成分的量的所有数字应被理解为在所有情况下被术语“约”修饰。因此,除非相反指出,否则在以下说明书和所附权利要求中阐述的数值参数是根据本申请所要获得的期望性能而变化的近似值。至少并不是试图将等同原则的适用限制在权利要求的范围内,每个数值参数至少应该根据报告的有效数字的个数并通过应用普通舍入技术来解释。For the purpose of the following detailed description, it should be understood that the present application may adopt various alternative changes and step sequences, unless expressly provided to the contrary. In addition, except in any operating examples, or otherwise indicated, all numerals representing the amount of the components used in the specification and claims should be understood to be modified by the term "about" in all cases. Therefore, unless otherwise indicated, the numerical parameters set forth in the following specification and the appended claims are approximate values that vary according to the desired performance to be obtained by the present application. At least it is not intended to limit the application of the doctrine of equivalents within the scope of the claims, and each numerical parameter should at least be interpreted according to the number of reported significant figures and by applying ordinary rounding techniques.
尼古丁,又名烟碱,是一种存在于茄科植物(茄属)中的生物碱,也是烟草的重要成分。尼古丁及其盐形式被应用于电子烟烟油中,电子烟作为卷烟替代品之一,越来越得到烟民的认可,但尼古丁易被氧化,一定程度上影响电子烟油的口感,同时人吸入氧化分解物质,对器官有一定的伤害。苯甲酸尼古丁盐是目前市面上使用最多的盐型,在为了达到一定口感的前提下,其稳定性隐患对于烟民来说在其容忍范围内。随着越来越多的烟民使用电子烟替代卷烟,尼古丁盐安全性的重要性进一步体现,且烟民对口感要求也更高,因此安全性和口感成为电子烟研究人员探索的方向。Nicotine, also known as nicotine, is an alkaloid found in Solanaceae plants (Solanum), and is also an important component of tobacco. Nicotine and its salt form are used in e-cigarette oil. As one of the substitutes for cigarettes, e-cigarettes are increasingly recognized by smokers, but nicotine is easily oxidized, which affects the taste of e-cigarette oil to a certain extent. At the same time, people inhale oxidative decomposition substances, which causes certain damage to organs. Nicotine benzoate salt is the most commonly used salt type on the market. Under the premise of achieving a certain taste, its stability risks are within the tolerance range for smokers. As more and more smokers use e-cigarettes instead of cigarettes, the importance of nicotine salt safety is further reflected, and smokers have higher requirements for taste. Therefore, safety and taste have become the directions explored by e-cigarette researchers.
很多研究报导了尼古丁质子化后对尼古丁的吸收、尼古丁的刺激性的影响,从而影响了烟民体验,而本发明人发现,使尼古丁质子化程度相似的不同酸,采用某些含量或比例会带来口感和稳定性的差异。Many studies have reported the effects of protonated nicotine on nicotine absorption and nicotine irritation, thereby affecting smokers' experience. The inventors have found that different acids with similar nicotine protonation degrees can lead to differences in taste and stability when used in certain contents or proportions.
Figure PCTCN2022142085-appb-000001
Figure PCTCN2022142085-appb-000001
进一步的,本发明人意外的发现,一些酸,例如,乳酸、乙酰丙酸、或乳酸与乙酰丙酸的混合酸,采用某些含量或比例制备的尼古丁盐,对不同口味电子烟雾化液雾化产生的口感有不同的影响,推测因不同酸的化学结构不同,在尼古丁液体制剂中,与其他成分间的分子作用力不同,使得电子烟在抽吸时,雾化效果以及各个组分之间的协调作用不同导致。Furthermore, the inventors unexpectedly discovered that some acids, such as lactic acid, levulinic acid, or a mixture of lactic acid and levulinic acid, used in the preparation of nicotine salts with certain contents or proportions have different effects on the taste produced by atomization of electronic cigarette atomizer liquids with different flavors. It is speculated that due to the different chemical structures of different acids, the molecular forces between them and other ingredients in the nicotine liquid preparation are different, resulting in different atomization effects and coordination between the various components when the electronic cigarette is inhaled.
进一步的,本发明人意外发现,一些酸,例如,乳酸、乙酰丙酸、或乳酸与乙酰丙酸的混合酸,采用某些含量或比例制备的尼古丁盐,对电子烟雾化液的雾化产生甜味有不同的影响,即甜味剂含量相同的情况下,雾化抽吸时甜感不同,本文对雾化后气溶胶中的甜味剂、溶剂等多个成分进行了 检测研究,推测因不同酸的化学结构不同,如在电子烟雾化液中使用的比例不同,可能对溶剂分子间氢键的形成产生一定影响,使得溶剂的雾化效率变化。Furthermore, the inventors unexpectedly discovered that some acids, such as lactic acid, levulinic acid, or a mixture of lactic acid and levulinic acid, and nicotine salts prepared with certain contents or proportions have different effects on the sweetness produced by the atomization of the electronic cigarette atomizer liquid, that is, when the sweetener content is the same, the sweetness during atomization and inhalation is different. This paper detects and studies multiple components such as sweeteners and solvents in the aerosol after atomization. It is speculated that due to the different chemical structures of different acids, such as different proportions used in the electronic cigarette atomizer liquid, it may have a certain effect on the formation of hydrogen bonds between solvent molecules, causing the atomization efficiency of the solvent to change.
进一步的,本发明人意外发现,一些酸,例如,乳酸、乙酰丙酸、或乳酸与乙酰丙酸的混合酸,采用某些含量或比例在制备尼古丁盐时,对尼古丁的稳定性影响有差异,具体影响到一些对人体危害较大的尼古丁氧化物或分解物的变化,推测是其在和尼古丁成盐时,不仅是质子提供者,另外因这些酸的结构或比例的影响,与尼古丁形成了不同稳定性的联合,有些使得尼古丁更稳定,不易被氧化或分解。具体的,如有利于控制电子烟中的致癌物质,如降烟碱。Furthermore, the inventors unexpectedly discovered that some acids, such as lactic acid, levulinic acid, or a mixture of lactic acid and levulinic acid, have different effects on the stability of nicotine when using certain contents or proportions to prepare nicotine salts, specifically affecting the changes in some nicotine oxides or decomposition products that are more harmful to the human body. It is speculated that when they are salted with nicotine, they are not only proton donors, but also due to the influence of the structure or proportion of these acids, they form different stability combinations with nicotine, some of which make nicotine more stable and less prone to oxidation or decomposition. Specifically, it is helpful to control carcinogens in electronic cigarettes, such as nornicotine.
本发明人意外发现,乳酸、乙酰丙酸或他们的混合酸以某些比例加入尼古丁中制备尼古丁盐时,存在同时满足稳定性和口感的现象;口感和稳定性之间无相关性。The inventors unexpectedly discovered that when lactic acid, levulinic acid or a mixed acid thereof is added to nicotine in certain proportions to prepare nicotine salt, there is a phenomenon that both stability and taste are satisfied at the same time; there is no correlation between taste and stability.
一方面,本发明人发现一种尼古丁盐制剂,其中尼古丁盐由乳酸与尼古丁制备得到,所述乳酸与尼古丁的摩尔比从1.1:1至2:1,存在同时满足稳定性和口感的现象。On the one hand, the inventors have discovered a nicotine salt preparation, wherein the nicotine salt is prepared from lactic acid and nicotine, wherein the molar ratio of lactic acid to nicotine is from 1.1:1 to 2:1, and there is a phenomenon that both stability and taste are satisfied.
乳酸,具有结构式(A),其分子结构3D图如图1,含有羟基,属于α-羟酸(AHA)。乳酸的密度为1.209(g/mL,25℃),沸点为122℃(15mmHg),解离常数pKa=4.14(22.5℃)。乳酸广泛存在于人体、动物、植物、微生物中,且目前的乳酸都是采用生物发酵法生产,其具有较高安全性。Lactic acid has a structural formula (A), and its molecular structure 3D diagram is shown in Figure 1. It contains hydroxyl groups and belongs to α-hydroxy acid (AHA). The density of lactic acid is 1.209 (g/mL, 25°C), the boiling point is 122°C (15mmHg), and the dissociation constant pKa=4.14 (22.5°C). Lactic acid is widely present in the human body, animals, plants, and microorganisms, and currently lactic acid is produced by biological fermentation, which has high safety.
Figure PCTCN2022142085-appb-000002
Figure PCTCN2022142085-appb-000002
当乳酸与尼古丁的摩尔比从1.1:1至2:1,能够让雾化液的甜味更突出,在相同的甜味需求下,将使用更少的甜味剂,使得安全性更高,且在该比例范围内,相同量甜味剂的甜味感更稳定,能够使研发或生产人员更好的控制甜味剂的使用量。另外,在比例范围内,能够让降烟碱及烟碱氮氧化物的量更少,也就是让该烟碱盐体系更稳定。When the molar ratio of lactic acid to nicotine changes from 1.1:1 to 2:1, the sweetness of the atomized liquid can be more prominent. Under the same sweetness requirement, less sweetener will be used, making it safer. In this ratio range, the sweetness of the same amount of sweetener is more stable, which enables R&D or production personnel to better control the amount of sweetener used. In addition, within the ratio range, the amount of nornicotine and nicotine nitrogen oxide can be reduced, which makes the nicotine salt system more stable.
在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.2-2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.3-2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.4-2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.5-2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.6-2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.7-2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.8-2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.9-2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为2:1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-1.9):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.2-1.9):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.3-1.9):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.4-1.9):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.5-1.9):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.6-1.9):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.7-1.9):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.8-1.9):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为1.9:1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-1.8):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.2-1.8):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.3-1.8):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.4-1.8):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.5-1.8):1;在一些实施例中,所述乳酸与尼古 丁的摩尔比为(1.6-1.8):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.7-1.8):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为1.8:1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-1.7):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.2-1.7):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.3-1.7):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.4-1.7):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.5-1.7):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.6-1.7):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为1.7:1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-1.6):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.2-1.6):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.3-1.6):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.4-1.6):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.5-1.6):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为1.6:1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-1.5):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.2-1.5):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.3-1.5):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.4-1.5):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为1.5:1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-1.4):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.2-1.4):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.3-1.4):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为1.4:1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-1.3):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.2-1.3):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为1.3:1;在一些实施例中,所述乳酸与尼古丁的摩尔比为(1.1-1.2):1;在一些实施例中,所述乳酸与尼古丁的摩尔比为1.2:1;在一些实施例中,所述乳酸与尼古丁的摩尔比为1.1:1。In some embodiments, the molar ratio of lactic acid to nicotine is (1.1-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.3-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.4-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.5-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.6-2):1; in some embodiments , the molar ratio of lactic acid to nicotine is (1.7-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.8-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.9-2):1; in some embodiments, the molar ratio of lactic acid to nicotine is 2:1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is The molar ratio of lactic acid to nicotine is (1.3-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.4-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.5-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.6-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.7-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.8-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.9-2.0):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1-2.0):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-1.0):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.3-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.4-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.5-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.6-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.7-1.9):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.8-1.9):1 In some embodiments, the molar ratio of lactic acid to nicotine is 1.9:1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1-1.8):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-1.8):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.3-1.8):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.4-1.8):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.5-1.8):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.6-1.8):1; In some embodiments, the molar ratio of lactic acid to nicotine is (1.6-1.8):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.7-1.8):1; in some embodiments, the molar ratio of lactic acid to nicotine is 1.8:1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1-1.7):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-1.7):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.3-1.7):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.4-1.7):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.5-1.7) :1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.6-1.7):1; in some embodiments, the molar ratio of lactic acid to nicotine is 1.7:1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1-1.6):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-1.6):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.3-1.6):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.4-1.6):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.5-1.6):1; in some embodiments, the lactic acid In some embodiments, the molar ratio of lactic acid to nicotine is 1.6:1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1-1.5):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-1.5):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.3-1.5):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.4-1.5):1; in some embodiments, the molar ratio of lactic acid to nicotine is 1.5:1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1-1.4):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-1.4):1; In some embodiments, the molar ratio of lactic acid to nicotine is (1.3-1.4):1; in some embodiments, the molar ratio of lactic acid to nicotine is 1.4:1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1-1.3):1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.2-1.3):1; in some embodiments, the molar ratio of lactic acid to nicotine is 1.3:1; in some embodiments, the molar ratio of lactic acid to nicotine is (1.1-1.2):1; in some embodiments, the molar ratio of lactic acid to nicotine is 1.2:1; in some embodiments, the molar ratio of lactic acid to nicotine is 1.1:1.
一方面,本发明人发现一种尼古丁盐制剂,其中尼古丁盐由乙酰丙酸与尼古丁制备得到,所述乙酰丙酸与尼古丁的摩尔比从0.4:1至0.9:1,存在同时满足稳定性和口感的现象。On the one hand, the inventors have discovered a nicotine salt preparation, wherein the nicotine salt is prepared from levulinic acid and nicotine, wherein the molar ratio of levulinic acid to nicotine is from 0.4:1 to 0.9:1, and there is a phenomenon that both stability and taste are satisfied.
乙酰丙酸,具有结构式(B),其分子结构3D图如图2,为酮羧酸,具有一个酮羰基。乙酰丙酸的密度为1.134(g/mL,25℃),沸点为245-246℃,解离常数pKa=4.65(25℃)。棉子壳或玉米芯制糖醛后的残渣(糠醛渣)或废山芋渣用稀酸加压水解可制得乙酰丙酸。Levulinic acid has a structural formula (B), and its molecular structure 3D diagram is shown in Figure 2. It is a ketocarboxylic acid with a keto carbonyl group. The density of levulinic acid is 1.134 (g/mL, 25°C), the boiling point is 245-246°C, and the dissociation constant pKa=4.65 (25°C). Levulinic acid can be obtained by hydrolyzing the residue (furfural residue) after the production of aldehyde from cottonseed hulls or corn cobs or waste taro residues with dilute acid under pressure.
Figure PCTCN2022142085-appb-000003
Figure PCTCN2022142085-appb-000003
当乙酰丙酸与尼古丁的摩尔比从0.4:1至0.9:1,其对烟草风味的电子雾化液具有修饰作用。另外,在比例范围内,能够让降烟碱及烟碱氮氧化物的量更少,也就是让该烟碱盐体系更稳定。When the molar ratio of levulinic acid to nicotine is from 0.4:1 to 0.9:1, it has a modifying effect on the tobacco-flavored electronic atomization liquid. In addition, within the ratio range, the amount of nicotine and nicotine nitrogen oxide can be reduced, that is, the nicotine salt system is more stable.
在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.4-0.9):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.5-0.9):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.6-0.9):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.7-0.9):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.8-0.9):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为0.9:1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.4-0.8):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.5-0.8):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.6-0.8):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.7-0.8):1;在一些实施例中,所述乙酰丙酸 与尼古丁的摩尔比为0.8:1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.4-0.7):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.5-0.7):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.6-0.7):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为0.7:1;一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.4-0.6):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.5-0.6):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为0.6:1;一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为(0.4-0.5):1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为0.5:1;在一些实施例中,所述乙酰丙酸与尼古丁的摩尔比为0.4:1。In some embodiments, the molar ratio of levulinic acid to nicotine is (0.4-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.5-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.6-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.7-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.8-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.8-0.9):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.9 ...8-0.9):1. In the embodiment, the molar ratio of levulinic acid to nicotine is 0.9:1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.4-0.8):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.5-0.8):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.6-0.8):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.7-0.8):1; in some embodiments, the molar ratio of levulinic acid to nicotine is In some embodiments, the molar ratio of levulinic acid to nicotine is 0.8:1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.4-0.7):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.5-0.7):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.6-0.7):1; in some embodiments, the molar ratio of levulinic acid to nicotine is 0.7:1; in some embodiments, the molar ratio of levulinic acid to nicotine is In some embodiments, the molar ratio of levulinic acid to nicotine is (0.4-0.6):1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.5-0.6):1; in some embodiments, the molar ratio of levulinic acid to nicotine is 0.6:1; in some embodiments, the molar ratio of levulinic acid to nicotine is (0.4-0.5):1; in some embodiments, the molar ratio of levulinic acid to nicotine is 0.5:1; in some embodiments, the molar ratio of levulinic acid to nicotine is 0.4:1.
一方面,本发明人发现一种尼古丁盐制剂,其中尼古丁盐由有机酸与尼古丁制备得到,有机酸由乙酰丙酸和乳酸组成,所述乙酰丙酸与乳酸摩尔比从12:1至1:1;所述有机酸与尼古丁的摩尔比从0.6:1至2:1。On the one hand, the inventors have discovered a nicotine salt preparation, wherein the nicotine salt is prepared from an organic acid and nicotine, the organic acid consists of levulinic acid and lactic acid, the molar ratio of levulinic acid to lactic acid is from 12:1 to 1:1; the molar ratio of the organic acid to nicotine is from 0.6:1 to 2:1.
当所述乙酰丙酸与乳酸摩尔比从12:1至1:1;所述有机酸与尼古丁的摩尔比从0.6:1至2:1,能够让雾化液的甜味更突出,在相同的甜味需求下,将使用更少的甜味剂,使得安全性更高。When the molar ratio of levulinic acid to lactic acid is increased from 12:1 to 1:1, and the molar ratio of the organic acid to nicotine is increased from 0.6:1 to 2:1, the sweetness of the atomized liquid can be more prominent. Under the same sweetness requirement, less sweetener will be used, making it safer.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(12-1):1、(11-1):1、(10-1):1、(9-1):1、(8-1):1、(7-1):1、(6-1):1、(5-1):1、(4-1):1、(3-1):1、(2-1):1或1:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (12-1):1, (11-1):1, (10-1):1, (9-1):1, (8-1):1, (7-1):1, (6-1):1, (5-1):1, (4-1):1, (3-1):1, (2-1):1 or 1:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为12:1、11:1、10:1、9:1、8:1、7:1、6:1、5:1、4:1、3:1、2:1或1:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is 12:1, 11:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1 or 1:1.
在一些实施例中,所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1.9):1, 1.9:1, (0.6 -1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1.7):1, (0.7-1.7 ):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, (0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5):1, (1.3-1 .5):1, (1.4-1.5):1, 1.5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1.4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3):1, (0.9 -1.3):1, (1-1.3):1, (1.1-1.3):1, (1.2-1.3):1, 1.3:1, (0.6-1.2):1, (0.7-1.2):1, (0.8-1.2):1, (0.9-1.2):1, (1-1.2):1, (1.1-1.2):1, 1.2:1, (0.6-1.1):1, (0.7-1.1):1, (0.8-1.1):1, (0.9 -1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1。In some embodiments, the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1, or 2:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(12-1):1;所述有机酸与尼古丁的摩尔比为 (0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (12-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1. 9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1.9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8 ):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1.7):1, (0.7-1.7):1, (0.8-1.7) :1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, (0.9-1.6):1, (1-1.6):1, ( 1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5):1, (1.3-1.5):1, (1 .4-1.5):1, 1.5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1.4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3):1, (0.9-1.3) :1, (1-1.3):1, (1.1-1.3):1, (1.2-1.3):1, 1.3:1, (0.6-1.2):1, (0.7-1.2):1, (0.8-1.2):1, (0.9-1.2):1, (1-1.2):1, (1.1-1.2):1, 1.2:1, (0.6-1.1):1, (0.7-1.1):1, (0.8-1.1):1, (0.9-1 .1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(11-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (11-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8 -2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8- 1.9:1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1 .7):1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, ( 0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5) :1, (1.3-1.5):1, (1.4-1.5):1, 1.5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1.4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3): 1. (0.9-1.3):1. (1-1.3):1. (1.1-1.3):1. (1.2-1.3):1. 1.3:1. (0.6-1.2):1. (0.7-1.2):1. (0.8-1.2):1. (0.9-1.2):1. (1-1.2):1. (1.1-1.2):1. 1.2:1. (0.6-1.1):1. (0.7-1.1):1. (0.8-1.1):1. ( 0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(10-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、 (1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (10-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1.9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1.7):1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, ( 1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, (0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1. 5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7 -1.2:1, (0.8-1.2):1, (0.9-1.2):1, (1-1.2):1, (1.1-1.2):1, 1.2:1, (0.6-1.1):1, (0.7-1.1):1, (0.8-1.1):1, (0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(9-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (9-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8- 2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1 .9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1 .7):1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, ( 0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5) :1, (1.3-1.5):1, (1.4-1.5):1, 1.5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1.4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3): 1. (0.9-1.3):1. (1-1.3):1. (1.1-1.3):1. (1.2-1.3):1. 1.3:1. (0.6-1.2):1. (0.7-1.2):1. (0.8-1.2):1. (0.9-1.2):1. (1-1.2):1. (1.1-1.2):1. 1.2:1. (0.6-1.1):1. (0.7-1.1):1. (0.8-1.1):1. ( 0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(8-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、 (0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (8-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1. ... 2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、 (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, (0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6): 1. (1.4-1.6):1. (1.5-1.6):1. 1.6:1. (0.6-1.5):1. (0.7-1.5):1. (0.8-1.5):1. (0.9-1.5):1. (1-1.5):1. (1.1-1.5):1. (1.2-1.5):1. (1.3-1.5):1. (1.4-1.5):1. 1.5:1. (0.6-1.4):1. (0.7-1.4):1. (0.8-1.4):1. (0.9-1.4):1. (1-1.4):1. .1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3):1, (0.9-1.3):1, (1-1.3):1, (1.1-1.3):1, (1.2-1.3):1, 1.3:1, (0.6-1.2):1, (0.7-1.2):1, (0.8-1.2):1, (0.9-1.2):1, (1-1.2):1, (1.1-1.2):1, 1.2:1, (0.6-1.1):1, (0.7-1.1):1, (0.8-1.1):1, (0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(7-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (7-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8- 2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1 .9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1 .7):1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, ( 0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5) :1, (1.3-1.5):1, (1.4-1.5):1, 1.5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1.4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3): 1. (0.9-1.3):1. (1-1.3):1. (1.1-1.3):1. (1.2-1.3):1. 1.3:1. (0.6-1.2):1. (0.7-1.2):1. (0.8-1.2):1. (0.9-1.2):1. (1-1.2):1. (1.1-1.2):1. 1.2:1. (0.6-1.1):1. (0.7-1.1):1. (0.8-1.1):1. ( 0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(6-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、 (0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (6-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, (2:1, (0.6-1 .9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1.9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, ( 0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1.7):1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7): 1. (1.3-1.7):1. (1.4-1.7):1. (1.5-1.7):1. (1.6-1.7):1. 1.7:1. (0.6-1.6):1. (0.7-1.6):1. (0.8-1.6):1. (0.9-1.6):1. (1-1.6):1. (1.1-1.6):1. (1.2-1.6):1. (1.3-1.6):1. (1.4-1.6):1. (1.5-1.6):1. 1.6:1. (0.6-1.5):1. (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5):1, (1.3-1.5):1, (1.4-1.5):1, 1.5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1 .4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3):1, (0.9-1.3):1, (1-1.3):1, (1.1-1.3):1, (1.2-1.3):1, 1. 3:1, (0.6-1.2):1, (0.7-1.2):1, (0.8-1.2):1, (0.9-1.2):1, (1-1.2):1, (1.1-1.2):1, 1.2:1, (0.6-1.1):1, (0.7-1.1):1, (0.8-1.1):1, (0.9-1.1):1, (1-1.1):1, 1.1: 1. (0.6-1):1. (0.7-1):1. (0.8-1):1. (0.9-1):1. 1:1. (0.6-0.9):1. (0.7-0.9):1. (0.8-0.9):1. 0.9:1. (0.6-0.8):1. (0.7-0.8):1. 0.8:1. (0.6-0.7):1. 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(5-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (5-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8- 2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1 .9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1 .7):1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, ( 0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5) :1, (1.3-1.5):1, (1.4-1.5):1, 1.5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1.4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3): 1. (0.9-1.3):1. (1-1.3):1. (1.1-1.3):1. (1.2-1.3):1. 1.3:1. (0.6-1.2):1. (0.7-1.2):1. (0.8-1.2):1. (0.9-1.2):1. (1-1.2):1. (1.1-1.2):1. 1.2:1. (0.6-1.1):1. (0.7-1.1):1. (0.8-1.1):1. ( 0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(4-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、 (1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (4-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1 1. (1.2-1.9):1. (1.3-1.9):1. (1.4-1.9):1. (1.5-1.9):1. (1.6-1.9):1. (1.7-1.9):1. (1.8-1.9):1. 1.9:1. (0.6-1.8):1. (0.7-1.8):1. (0.8-1.8):1. (0.9-1.8):1. (1-1.8):1. (1.1-1.8):1. (1.2-1.8):1. (1.3-1.8):1. (1.4-1.8):1. (1.5-1.8):1. (1.6-1.8):1. (1.7-1.8):1. 1.8:1. (0.6-1.7):1. ( 0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, (0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1 .5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、 (1-1.3):1, (1.1-1.3):1, (1.2-1.3):1, 1.3:1, (0.6-1.2):1, (0.7-1.2):1, (0.8-1.2):1, (0.9-1.2):1, (1-1.2):1, (1.1-1.2):1, 1.2:1, (0.6-1.1):1, (0.7-1.1):1, (0.8-1.1):1, (0.9-1.1 ):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(3-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (3-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8- 2):1, (1.9-2):1, 2:1, (0.6-1.9):1, (0.7-1.9):1, (0.8-1.9):1, (0.9-1.9):1, (1-1.9):1, (1.1-1.9):1, (1.2-1.9):1, (1.3-1.9):1, (1.4-1.9):1, (1.5-1.9):1, (1.6-1.9):1, (1.7-1.9):1, (1.8-1 .9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1 .7):1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, ( 0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5) :1, (1.3-1.5):1, (1.4-1.5):1, 1.5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1.4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1.4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3): 1. (0.9-1.3):1. (1-1.3):1. (1.1-1.3):1. (1.2-1.3):1. 1.3:1. (0.6-1.2):1. (0.7-1.2):1. (0.8-1.2):1. (0.9-1.2):1. (1-1.2):1. (1.1-1.2):1. 1.2:1. (0.6-1.1):1. (0.7-1.1):1. (0.8-1.1):1. ( 0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为(2-1):1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、 0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is (2-1):1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2): 1. (1.8-2):1. (1.9-2):1. 2:1. (0.6-1.9):1. (0.7-1.9):1. (0.8-1.9):1. (0.9-1.9):1. (1-1.9):1. (1.1-1.9):1. (1.2-1.9):1. (1.3-1.9):1. (1.4-1.9):1. (1.5-1.9):1. (1.6-1.9):1. (1. 7-1.9):1, (1.8-1.9):1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1 .7-1.8):1, 1.8:1, (0.6-1.7):1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1. 6):1, (0.7-1.6):1, (0.8-1.6):1, (0.9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1 .5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5):1, (1.3-1.5):1, (1.4-1.5):1, 1.5:1, (0.6-1.4):1, (0.7-1.4):1, (0.8-1.4):1, (0.9-1.4):1, (1-1.4):1, (1.1-1.4):1, (1.2-1.4):1, (1.3-1. 4):1, 1.4:1, (0.6-1.3):1, (0.7-1.3):1, (0.8-1.3):1, (0.9-1.3):1, (1-1.3):1, (1.1-1.3):1, (1.2-1.3):1, 1.3:1, (0.6-1.2):1, (0.7-1.2):1, (0.8-1.2):1, (0.9-1.2):1, (1-1.2):1, (1 .1-1.2:1, 1.2:1, (0.6-1.1):1, (0.7-1.1):1, (0.8-1.1):1, (0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为1:1;所述有机酸与尼古丁的摩尔比为(0.6-2):1、(0.7-2):1、(0.8-2):1、(0.9-2):1、(1-2):1、(1.1-2):1、(1.2-2):1、(1.3-2):1、(1.4-2):1、(1.5-2):1、(1.6-2):1、(1.7-2):1、(1.8-2):1、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9):1、1.9:1、(0.6-1.8):1、(0.7-1.8):1、(0.8-1.8):1、(0.9-1.8):1、(1-1.8):1、(1.1-1.8):1、(1.2-1.8):1、(1.3-1.8):1、(1.4-1.8):1、(1.5-1.8):1、(1.6-1.8):1、(1.7-1.8):1、1.8:1、(0.6-1.7):1、(0.7-1.7):1、(0.8-1.7):1、(0.9-1.7):1、(1-1.7):1、(1.1-1.7):1、(1.2-1.7):1、(1.3-1.7):1、(1.4-1.7):1、(1.5-1.7):1、(1.6-1.7):1、1.7:1、(0.6-1.6):1、(0.7-1.6):1、(0.8-1.6):1、(0.9-1.6):1、(1-1.6):1、(1.1-1.6):1、(1.2-1.6):1、(1.3-1.6):1、(1.4-1.6):1、(1.5-1.6):1、1.6:1、(0.6-1.5):1、(0.7-1.5):1、(0.8-1.5):1、(0.9-1.5):1、(1-1.5):1、(1.1-1.5):1、(1.2-1.5):1、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1、(0.9-1.3):1、(1-1.3):1、(1.1-1.3):1、(1.2-1.3):1、1.3:1、(0.6-1.2):1、(0.7-1.2):1、(0.8-1.2):1、(0.9-1.2):1、(1-1.2):1、(1.1-1.2):1、1.2:1、(0.6-1.1):1、(0.7-1.1):1、(0.8-1.1):1、(0.9-1.1):1、(1-1.1):1、1.1:1、(0.6-1):1、(0.7-1):1、(0.8-1):1、(0.9-1):1、1:1、(0.6-0.9):1、(0.7-0.9):1、(0.8-0.9):1、0.9:1、(0.6-0.8):1、(0.7-0.8):1、0.8:1、(0.6-0.7):1、0.7:1或0.6:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is 1:1; the molar ratio of the organic acid to nicotine is (0.6-2):1, (0.7-2):1, (0.8-2):1, (0.9-2):1, (1-2):1, (1.1-2):1, (1.2-2):1, (1.3-2):1, (1.4-2):1, (1.5-2):1, (1.6-2):1, (1.7-2):1, (1.8-2):1 、(1.9-2):1、2:1、(0.6-1.9):1、(0.7-1.9):1、(0.8-1.9):1、(0.9-1.9):1、(1-1.9):1、(1.1-1.9):1、(1.2-1.9):1、(1.3-1.9):1、(1.4-1.9):1、(1.5-1.9):1、(1.6-1.9):1、(1.7-1.9):1、(1.8-1.9) :1, 1.9:1, (0.6-1.8):1, (0.7-1.8):1, (0.8-1.8):1, (0.9-1.8):1, (1-1.8):1, (1.1-1.8):1, (1.2-1.8):1, (1.3-1.8):1, (1.4-1.8):1, (1.5-1.8):1, (1.6-1.8):1, (1.7-1.8):1, 1.8:1, (0.6-1.7) :1, (0.7-1.7):1, (0.8-1.7):1, (0.9-1.7):1, (1-1.7):1, (1.1-1.7):1, (1.2-1.7):1, (1.3-1.7):1, (1.4-1.7):1, (1.5-1.7):1, (1.6-1.7):1, 1.7:1, (0.6-1.6):1, (0.7-1.6):1, (0.8-1.6):1, (0. 9-1.6):1, (1-1.6):1, (1.1-1.6):1, (1.2-1.6):1, (1.3-1.6):1, (1.4-1.6):1, (1.5-1.6):1, 1.6:1, (0.6-1.5):1, (0.7-1.5):1, (0.8-1.5):1, (0.9-1.5):1, (1-1.5):1, (1.1-1.5):1, (1.2-1.5):1 、(1.3-1.5):1、(1.4-1.5):1、1.5:1、(0.6-1.4):1、(0.7-1.4):1、(0.8-1.4):1、(0.9-1.4):1、(1-1.4):1、(1.1-1.4):1、(1.2-1.4):1、(1.3-1.4):1、1.4:1、(0.6-1.3):1、(0.7-1.3):1、(0.8-1.3):1 , (0.9-1.3):1, (1-1.3):1, (1.1-1.3):1, (1.2-1.3):1, 1.3:1, (0.6-1.2):1, (0.7-1.2):1, (0.8-1.2):1, (0.9-1.2):1, (1-1.2):1, (1.1-1.2):1, 1.2:1, (0.6-1.1):1, (0.7-1.1):1, (0.8-1.1):1, ( 0.9-1.1):1, (1-1.1):1, 1.1:1, (0.6-1):1, (0.7-1):1, (0.8-1):1, (0.9-1):1, 1:1, (0.6-0.9):1, (0.7-0.9):1, (0.8-0.9):1, 0.9:1, (0.6-0.8):1, (0.7-0.8):1, 0.8:1, (0.6-0.7):1, 0.7:1 or 0.6:1.
在一些实施例中,所述乙酰丙酸与乳酸摩尔比为12:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为11:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为10:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为9:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为8:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为7:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为6:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为5:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为4:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为3:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙 酰丙酸与乳酸摩尔比为2:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1;在一些实施例中,所述乙酰丙酸与乳酸摩尔比为1:1,所述有机酸与尼古丁的摩尔比为0.6:1、0.7:1、0.8:1、0.9:1、1:1、1.1:1、1.2:1、1.3:1、1.4:1、1.5:1、1.6:1、1.7:1、1.8:1、1.9:1或2:1。In some embodiments, the molar ratio of levulinic acid to lactic acid is 12:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 11:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1. The molar ratio of nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 10:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 9:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1 , 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 8:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1 ... In the embodiment, the molar ratio of levulinic acid to lactic acid is 7:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 6:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1. The molar ratio of levulinic acid to lactic acid is 5:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 5:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1. :1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 4:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 3:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the ethyl The molar ratio of levulinic acid to lactic acid is 2:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1; in some embodiments, the molar ratio of levulinic acid to lactic acid is 1:1, and the molar ratio of the organic acid to nicotine is 0.6:1, 0.7:1, 0.8:1, 0.9:1, 1:1, 1.1:1, 1.2:1, 1.3:1, 1.4:1, 1.5:1, 1.6:1, 1.7:1, 1.8:1, 1.9:1 or 2:1.
另一方面,在本发明提到的尼古丁盐制剂中,进一步包含溶剂,所述溶剂为水、乙醇、1,2-丙二醇、1,3-丙二醇、丙三醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,2,3-丁三醇、1,2,4-丁三醇中的一种或多种组合。溶剂并不是尼古丁质子化必要条件,但在一些实施例中,溶剂能够促进质子化进程。在一些实施例中所述溶剂为水、1,2-丙二醇、1,3-丙二醇、丙三醇中的一种或多种组合。在一些实施例中所述溶剂为水、1,2-丙二醇中的一种或多种组合。在一些实施例中所述溶剂为1,2-丙二醇、丙三醇中的一种或多种组合。On the other hand, the nicotine salt preparation mentioned in the present invention further comprises a solvent, which is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol. The solvent is not a necessary condition for the protonation of nicotine, but in some embodiments, the solvent can promote the protonation process. In some embodiments, the solvent is one or more combinations of water, 1,2-propylene glycol, 1,3-propylene glycol, and glycerol. In some embodiments, the solvent is one or more combinations of water and 1,2-propylene glycol. In some embodiments, the solvent is one or more combinations of 1,2-propylene glycol and glycerol.
在一些实施例中,所述溶剂在所述电子雾化液中的质量分数为20%-90%;在一些实施例中,所述溶剂在所述电子雾化液中的质量分数为30%-80%。在一些实施例中,1,2-丙二醇在所述电子雾化液中的质量分数为0%-30%;在一些实施例中,丙三醇在所述电子雾化液中的质量分数为30%-50%。在一些实施例中,1,2-丙二醇在所述电子雾化液中的质量分数为20%-60%;在一些实施例中,丙三醇在所述电子雾化液中的质量分数为40%-80%。In some embodiments, the mass fraction of the solvent in the electronic atomization liquid is 20%-90%; in some embodiments, the mass fraction of the solvent in the electronic atomization liquid is 30%-80%. In some embodiments, the mass fraction of 1,2-propylene glycol in the electronic atomization liquid is 0%-30%; in some embodiments, the mass fraction of glycerol in the electronic atomization liquid is 30%-50%. In some embodiments, the mass fraction of 1,2-propylene glycol in the electronic atomization liquid is 20%-60%; in some embodiments, the mass fraction of glycerol in the electronic atomization liquid is 40%-80%.
另一方面,本发明人发现采用本发明提供的尼古丁盐制剂制备得到的电子雾化液具备尼古丁盐的优点。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有大于0%w/w,小于10%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有1%w/w至9%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有1%w/w至8%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有1%w/w至7%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有1%w/w至6%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有1%w/w至5%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有1%w/w至4%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有1%w/w至3%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有1%w/w至2%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有1%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有2%w/w至5%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有2%w/w至4%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有2%w/w至3%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有2%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有3%w/w至5%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有3%w/w至4%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有3%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有4%w/w至5%w/w的浓度。所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有4%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有5%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有6% w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有7%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有8%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有9%w/w的浓度。在一些实施例中,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有10%w/w的浓度。On the other hand, the inventors have found that the electronic atomization liquid prepared using the nicotine salt preparation provided by the present invention has the advantages of nicotine salt. In some embodiments, the nicotine in the nicotine salt preparation has a concentration greater than 0% w/w and less than 10% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 9% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 8% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 7% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 6% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 1% w/w to 5% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 1% w/w to 4% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 1% w/w to 3% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 1% w/w to 2% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 1% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 2% w/w to 5% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 2% w/w to 4% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 2% w/w to 3% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 2% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 3% w/w to 5% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 3% w/w to 4% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 3% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 4% w/w to 5% w/w in the electronic atomization liquid. The nicotine in the nicotine salt preparation has a concentration of 4% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 5% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 6% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt preparation has a concentration of 7% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt formulation has a concentration of 8% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt formulation has a concentration of 9% w/w in the electronic atomization liquid. In some embodiments, the nicotine in the nicotine salt formulation has a concentration of 10% w/w in the electronic atomization liquid.
另一方面,所述电子雾化液进一步包括甜味剂、凉味剂和香料中的一种或多种。On the other hand, the electronic atomization liquid further includes one or more of a sweetener, a cooling agent and a flavoring agent.
甜味剂、凉味剂和香料是指在当地法规允许的情况下可用于在成人消费者的产品中生成所期望的味道或香味的材料。它们可以包括提取物(例如,甘草、绣球花、日本白皮木兰叶、甘菊、胡芦巴、丁香、薄荷醇、日本薄荷、八角、肉桂、香草、冬青、樱桃、浆果、桃、苹果、杜林标(Drambuie)、波本、苏格兰威士忌、威士忌、留兰香、薄荷、薰衣草、豆蔻、芹菜、水杨、肉豆蔻、檀香、佛手柑、天竺葵、蜂蜜香精、玫瑰油、香草香精、柠檬油、橙油、肉桂、香芹籽、白兰地、茉莉、杨梅、依兰、鼠尾草、多香果、姜、茴香、芫荽、咖啡或来自薄荷属任何物种的薄荷油)、风味增强剂、苦味受体位点阻断剂、感觉受体位点激活剂或刺激剂、糖和/或糖替代物(例如,纽甜、三氯蔗糖、乙酰磺胺酸钾、阿斯巴甜、糖精、环己烷氨基磺酸盐、乳糖、蔗糖、葡萄糖、果糖、山梨糖醇或甘露醇)、以及其他添加剂(如木炭、叶绿素、矿物质、植物制品、或口气清新剂)。它们可以是仿制品、合成的或天然的成分或它们的混合物。它们可以为任何合适的形式,例如油、液体或粉末。甜味剂、凉味剂和香料的用量以一般符合国家标准为准。Sweeteners, cooling agents and flavoring agents are materials that can be used to create a desired taste or aroma in products for adult consumers, where permitted by local regulations. They can include extracts (e.g., licorice, hydrangea, Japanese white magnolia leaves, chamomile, fenugreek, cloves, menthol, Japanese mint, star anise, cinnamon, vanilla, holly, cherry, berry, peach, apple, Drambuie, bourbon, Scotch whiskey, whiskey, spearmint, mint, lavender, cardamom, celery, salicylic, nutmeg, sandalwood, bergamot, geranium, honey essence, rose oil, vanilla essence, lemon oil, orange oil, cinnamon, caraway, brandy, jasmine, poplar Plum, ylang-ylang, sage, allspice, ginger, fennel, coriander, coffee or mint oil from any species of the genus Menthus), flavor enhancers, bitter receptor site blockers, sensory receptor site activators or stimulants, sugar and/or sugar substitutes (e.g., neotame, sucralose, acesulfame potassium, aspartame, saccharin, cyclamate, lactose, sucrose, glucose, fructose, sorbitol or mannitol), and other additives (such as charcoal, chlorophyll, minerals, plant products, or breath fresheners). They can be imitations, synthetic or natural ingredients or mixtures thereof. They can be in any suitable form, such as oil, liquid or powder. The amount of sweeteners, cooling agents and spices used shall generally comply with national standards.
在一些实施例中,所述甜味剂包括纽甜、甜蜜素、三氯蔗糖、阿力甜、阿斯巴甜、糖精钠、安赛蜜、甘草酸铵、索马甜、甜菊糖、木糖醇、麦芽糖、甜菊糖、鼠李糖、海藻糖、赤藓糖醇、乳糖和半乳糖一种或多种。In some embodiments, the sweetener includes one or more of neotame, cyclamate, sucralose, alitame, aspartame, saccharin sodium, acesulfame potassium, ammonium glycyrrhizinate, thaumatin, stevioside, xylitol, maltose, stevioside, rhamnose, trehalose, erythritol, lactose and galactose.
在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-10%w/w的浓度;在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-9%w/w的浓度;在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-8%w/w的浓度;在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-7%w/w的浓度;在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-6%w/w的浓度;在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-5%w/w的浓度;在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-4%w/w的浓度;在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-3%w/w的浓度;在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-2%w/w的浓度;在一些实施例中,所述甜味剂在所述电子雾化液中具有0%-1%w/w的浓度。In some embodiments, the sweetener has a concentration of 0%-10% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-9% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-8% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-7% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-6% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-5% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-4% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-3% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-2% w/w in the electronic atomization liquid; in some embodiments, the sweetener has a concentration of 0%-1% w/w in the electronic atomization liquid.
在一些实施例中,所述凉味剂包括薄荷油、薄荷醇、WS-23、L-薄荷酮、乙酸薄荷酯、乳酸薄荷酯、WS-3、薄荷酮甘油缩酮中一种或多种。In some embodiments, the cooling agent includes one or more of peppermint oil, menthol, WS-23, L-menthone, menthyl acetate, menthyl lactate, WS-3, and menthone glycerol ketal.
在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-10%w/w的浓度;在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-9%w/w的浓度;在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-8%w/w的浓度;在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-7%w/w的浓度;在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-6%w/w的浓度;在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-5%w/w的浓度;在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-4%w/w的浓度;在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-3%w/w的浓度;在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-2%w/w的浓度; 在一些实施例中,所述凉味剂在所述电子雾化液中具有0%-1%w/w的浓度。In some embodiments, the cooling agent has a concentration of 0%-10% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-9% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-8% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-7% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-6% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-5% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-4% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-3% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-2% w/w in the electronic atomization liquid; in some embodiments, the cooling agent has a concentration of 0%-1% w/w in the electronic atomization liquid.
在一些实施例中,所述香精选自1,4-桉叶素、1,8-桉叶素、2,3-戊二酮、2-甲基吡嗪、2-甲氧基-3-甲基吡嗪、2-乙基-3-甲基吡嗪、2-乙酰基吡嗪、3-蒈烯、5-甲基糠醛、α-蒎烯、β-蒎烯、α-水芹烯、α-松油醇、月桂烯、γ-壬内酯、γ-松油烯、丁酸、丁酸乙酯、丁酰乳酸丁酯、1-对-
Figure PCTCN2022142085-appb-000004
烯-8-硫醇、二氢茉莉酮酸甲酯、3,4-二甲氧基苯甲醛、柠檬醛、柠檬酸三乙酯、壬酸乙酯、三乙酸甘油酯、香兰素、洋茉莉醛、乙基香兰素、乙偶姻、乙酸2-甲基丁酯、乙酸乙酯、乙酸异戊酯、异戊醛中的一种或多种。
In some embodiments, the fragrance is selected from 1,4-cineole, 1,8-cineole, 2,3-pentanedione, 2-methylpyrazine, 2-methoxy-3-methylpyrazine, 2-ethyl-3-methylpyrazine, 2-acetylpyrazine, 3-carene, 5-methylfurfural, α-pinene, β-pinene, α-phellandrene, α-terpineol, myrcene, γ-nonalactone, γ-terpinene, butyric acid, ethyl butyrate, butyl butyryl lactylate, 1-p-
Figure PCTCN2022142085-appb-000004
One or more of ene-8-thiol, methyl dihydrojasmonate, 3,4-dimethoxybenzaldehyde, citral, triethyl citrate, ethyl nonanoate, triacetin, vanillin, jasmonate, ethyl vanillin, acetoin, 2-methylbutyl acetate, ethyl acetate, isopentyl acetate, and isovaleraldehyde.
在一些实施例中,所述香精为果香味香精、花香味香精或烟草味香料。In some embodiments, the flavor is a fruity flavor, a floral flavor, or a tobacco flavor.
在一些实施例中,所述香精在所述电子雾化液中具有0%-50%w/w的浓度;在一些实施例中,所述香精在所述电子雾化液中具有0%-40%w/w的浓度;在一些实施例中,所述香精在所述电子雾化液中具有0%-30%w/w的浓度;在一些实施例中,所述香精在所述电子雾化液中具有0%-20%w/w的浓度;在一些实施例中,所述香精在所述电子雾化液中具有0%-10%w/w的浓度;在一些实施例中,所述香精在所述电子雾化液中具有10%-50%w/w的浓度;在一些实施例中,所述香精在所述电子雾化液中具有10%-40%w/w的浓度;在一些实施例中,所述香精在所述电子雾化液中具有10%-30%w/w的浓度;在一些实施例中,所述香精在所述电子雾化液中具有10%-20%w/w的浓度。In some embodiments, the flavor has a concentration of 0%-50% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 0%-40% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 0%-30% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 0%-20% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 0%-10% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 10%-50% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 10%-40% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 10%-30% w/w in the electronic atomization liquid; in some embodiments, the flavor has a concentration of 10%-20% w/w in the electronic atomization liquid.
在本发明的一些实施例中,所述尼古丁盐制剂或电子雾化液含有丁酸乙酯(如式C)。丁酸乙酯分子量116.158;沸点122.4℃。丁酸乙酯可以作为香料配体使用,但没有证据表明其能够调整本发明所述的尼古丁盐制剂(乳酸烟碱盐、乙酰丙酸烟碱盐、乳酸+乙酰丙酸复合烟碱盐)电子雾化气溶胶粒径的报道。In some embodiments of the present invention, the nicotine salt preparation or electronic atomization liquid contains ethyl butyrate (such as formula C). Ethyl butyrate has a molecular weight of 116.158 and a boiling point of 122.4°C. Ethyl butyrate can be used as a flavor ligand, but there is no evidence that it can adjust the particle size of the electronic atomization aerosol of the nicotine salt preparation (nicotine lactate salt, nicotine levulinate salt, lactic acid + levulinate compound nicotine salt) described in the present invention.
Figure PCTCN2022142085-appb-000005
Figure PCTCN2022142085-appb-000005
在本发明所述的尼古丁盐制剂或电子雾化液中添加丁酸乙酯,使得本发明所述的尼古丁制剂或电子雾化液生产的气溶胶中小粒径颗粒浓度减少,降低了气溶胶沉积在肺泡量,提高了电子烟雾化液的安全性。在一些实施例中,所述丁酸乙酯的含量约大于0%(w/w)小于5%(w/w);在一些实施例中,所述丁酸乙酯的含量约大于0.02%(w/w)小于2%(w/w);在一些实施例中,所述丁酸乙酯的含量约大于0.1%(w/w)小于1%(w/w);在一些实施例中,所述丁酸乙酯的含量约为0.2%(w/w)、0.3%(w/w)0.4%(w/w)、0.5%(w/w)、0.6%(w/w)或0.7%(w/w)。Adding ethyl butyrate to the nicotine salt preparation or electronic atomization liquid of the present invention reduces the concentration of small-size particles in the aerosol produced by the nicotine preparation or electronic atomization liquid of the present invention, reduces the amount of aerosol deposited in the alveoli, and improves the safety of the electronic cigarette atomization liquid. In some embodiments, the content of ethyl butyrate is about greater than 0% (w/w) and less than 5% (w/w); in some embodiments, the content of ethyl butyrate is about greater than 0.02% (w/w) and less than 2% (w/w); in some embodiments, the content of ethyl butyrate is about greater than 0.1% (w/w) and less than 1% (w/w); in some embodiments, the content of ethyl butyrate is about 0.2% (w/w), 0.3% (w/w) 0.4% (w/w), 0.5% (w/w), 0.6% (w/w) or 0.7% (w/w).
另一方面,本发明提供了一种电子烟烟弹,其包括本发明所述的电子雾化液。On the other hand, the present invention provides an electronic cigarette cartridge, which includes the electronic atomization liquid described in the present invention.
在一些实施例中,所述电子烟烟弹包括加热元件,通过加热雾化电子雾化液。雾化芯在一些实施例中采用棉芯;雾化芯在一些实施例中采用陶瓷芯。在一些实施例中,所述电子烟烟弹包括超声波发生元件,通过超声波雾化电子雾化液。In some embodiments, the electronic cigarette cartridge includes a heating element to atomize the electronic atomization liquid by heating. In some embodiments, the atomization core uses a cotton core; in some embodiments, the atomization core uses a ceramic core. In some embodiments, the electronic cigarette cartridge includes an ultrasonic generating element to atomize the electronic atomization liquid by ultrasonic waves.
本发明所述的乳酸烟碱盐雾化液具有较好的抽吸口感,有较纯净的烟气,稳定性好。本发明所述乙酰丙酸烟碱盐雾化液具有较好的抽吸口感,有舒适酸甜感,能较好的保留烟香。本发明所述乙 酰丙酸+乳酸复合盐具有较好的抽吸口感,富有特殊的果酸风味,可突出甜感,润感。The nicotine lactate salt atomized liquid of the present invention has a good smoking taste, has relatively pure smoke, and has good stability. The nicotine levulinate salt atomized liquid of the present invention has a good smoking taste, has a comfortable sweet and sour feeling, and can better retain the tobacco aroma. The levulinic acid + lactic acid composite salt of the present invention has a good smoking taste, is rich in special fruit acid flavor, and can highlight the sweetness and moistness.
在本发明中,采用“n-m”的方式表示数值范围,即表示数字n到m的范围,在一些实施例中范围“n-m”包括n,m及n与m之间的所有数。在另一些实施例中范围“n-m”包括m及n与m之间的所有数;在一些实施例中范围“n-m”包括n及n与m之间的所有数;在一些实施例中范围“n-m”包括n与m之间的所有数。In the present invention, the numerical range is expressed in the form of "n-m", that is, the range of numbers n to m. In some embodiments, the range "n-m" includes n, m and all numbers between n and m. In other embodiments, the range "n-m" includes m and all numbers between n and m; in some embodiments, the range "n-m" includes n and all numbers between n and m; in some embodiments, the range "n-m" includes all numbers between n and m.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "example", "specific example", or "some examples" etc. means that the specific features, structures, materials or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present invention. In this specification, the schematic representations of the above terms do not necessarily refer to the same embodiment or example. Moreover, the specific features, structures, materials or characteristics described may be combined in any one or more embodiments or examples in a suitable manner. In addition, those skilled in the art may combine and combine the different embodiments or examples described in this specification and the features of the different embodiments or examples, without contradiction.
除非另有说明或者上下文中有明显的冲突,本文所使用的冠词“一”、“一个(种)”和“所述”旨在包括“至少一个”或“一个或多个”。因此,本文所使用的这些冠词是指一个或多于一个(即至少一个)宾语的冠词。例如,“一组分”指一个或多个组分,即可能有多于一个的组分被考虑在所述实施方案的实施方式中采用或使用。Unless otherwise specified or there is a clear conflict in context, the articles "a", "an", and "the" as used herein are intended to include "at least one" or "one or more". Therefore, these articles as used herein refer to articles that refer to one or more than one (i.e., at least one) of the objects. For example, "a component" refers to one or more components, i.e., there may be more than one component contemplated for use or use in the implementation of the described embodiment.
除非另有说明或者上下文中有明显的冲突,本发明采用以下的方法对纽甜及1,2丙二醇,丙三醇的含量进行测试。Unless otherwise stated or there is an obvious conflict in the context, the present invention uses the following method to test the content of neotame and 1,2-propylene glycol and glycerol.
气溶胶中纽甜含量的测试方法:Testing method for neotame content in aerosol:
1.样品的采集1. Sample Collection
参照T/CECC 001-2021附录C.5-C.7的流程抽吸,抽50口,抽吸完成后将滤膜转移到50mL离心管中,取10mL纽甜提取液(2.1.2)定容,超声15min,摇匀后过滤0.22um滤膜,待上机分析。Refer to the process of Appendix C.5-C.7 of T/CECC 001-2021 for suction, draw 50 times, and after suction, transfer the filter membrane to a 50mL centrifuge tube, take 10mL of neotame extract (2.1.2) to make up to volume, ultrasonicate for 15min, shake well, filter through 0.22um filter membrane, and wait for analysis.
2.样品的测量2. Sample Measurement
按照国标GB 5009.247-2016食品中纽甜的测定:将样品稀释提取后,过滤后采用HPLC测试,外标法定量,电子雾化液中纽甜含量的能力回收率在95.07%~104.94%之间,RSD小于5%,测定结果均在指标范围内,并能够满足实际检测要求。According to the national standard GB 5009.247-2016, the determination of neotame in food: after the sample is diluted and extracted, it is filtered and tested by HPLC. The external standard method is used for quantification. The capacity recovery rate of neotame content in the electronic atomization liquid is between 95.07% and 104.94%, and the RSD is less than 5%. The measurement results are all within the index range and can meet the actual detection requirements.
GC-FID法测定气溶胶中1,2-丙二醇、丙三醇的含量:Determination of 1,2-propylene glycol and glycerol content in aerosol by GC-FID method:
1.原理1. Principle
本方法使用配有氢火焰离子化检测器的气相色谱仪测定稀释液中1,2-丙二醇和丙三醇,外标法定量。This method uses a gas chromatograph equipped with a hydrogen flame ionization detector to determine 1,2-propylene glycol and glycerol in the diluent, and the external standard method is used for quantification.
2.仪器与设备2. Instruments and Equipment
2.1气相色谱仪:岛津GC-2030;。2.1 Gas chromatograph: Shimadzu GC-2030;.
2.2毛细管色谱柱:DB-WAX,30m×0.25mm×0.25μm;2.2 Capillary column: DB-WAX, 30m×0.25mm×0.25μm;
2.3电子天平(称量精度0.0001g);2.3 Electronic balance (weighing accuracy 0.0001g);
2.4一般玻璃器皿。2.4 General glassware.
3.试剂和消耗品3. Reagents and consumables
3.1甲醇    ------色谱纯;3.1 Methanol ------ chromatographic grade;
3.2 1,2-丙二醇    ------纯度≥99.5%应存放于干燥器中;3.2 1,2-Propanediol ------Purity ≥ 99.5% should be stored in a desiccator;
3.3丙三醇    ------纯度≥99.5%应存放于干燥器中;3.3 Propylene glycol    ------Purity ≥ 99.5% should be stored in a desiccator;
4.分析步骤4. Analysis steps
4.1溶液配制4.1 Solution preparation
4.1.1标准储备液4.1.1 Standard stock solution
分别称取(3.2)1,2-丙二醇、(3.3)丙三醇各1g,一并置于50ml容量瓶中,使用(3.1)甲醇定容,得到浓度为20mg/ml的、1,2-丙二醇与丙三醇的标准储备液置于2-8℃的条件下密封保存,有效期为3个月。取用时应平衡至室温。Weigh 1g of (3.2) 1,2-propylene glycol and (3.3) propylene glycol respectively, place them together in a 50ml volumetric flask, and use (3.1) methanol to make up to volume to obtain a standard stock solution of 1,2-propylene glycol and propylene glycol with a concentration of 20mg/ml. Store in a sealed container at 2-8℃, and the shelf life is 3 months. It should be equilibrated to room temperature before use.
4.1.2标准工作溶液配制4.1.2 Preparation of standard working solution
取5个10mL的容量瓶,精密移取0.05ml、0.25ml、0.5ml、1ml、2.5ml标准溶液(4.1.1)置于10ml量瓶中,然后使用(3.1)甲醇定容,得到5级标准工作溶液,现配现用,详见表1;Take five 10mL volumetric flasks, accurately pipette 0.05ml, 0.25ml, 0.5ml, 1ml, and 2.5ml of the standard solution (4.1.1) into a 10mL volumetric flask, and then use (3.1) methanol to make up to volume to obtain the 5-level standard working solution, which is prepared and used immediately. See Table 1 for details;
表1:标准工作溶液的配制Table 1: Preparation of standard working solutions
级别 level STD 1STD 1 STD 2 STD 2 STD 3STD 3 STD 4STD 4 STD 5 STD 5
移液体积(mL)Pipet volume (mL) 0.050.05 0.250.25 0.50.5 11 2.52.5
1,2-丙二醇(mg/ml)1,2-Propanediol (mg/ml) 0.10.1 0.50.5 11 22 55
丙三醇(mg/ml)Glycerol (mg/ml) 0.10.1 0.50.5 11 22 55
4.2气相色谱仪条件,详见表2:4.2 Gas chromatograph conditions, see Table 2 for details:
表2:气相色谱条件Table 2: Gas chromatography conditions
Figure PCTCN2022142085-appb-000006
Figure PCTCN2022142085-appb-000006
4.3工作曲线绘制4.3 Working curve drawing
对1~5级标准溶液按照4.2气相色谱条件进行色谱测定,进样量为1μL。以目标化合物的峰面积与内标峰面积为纵坐标,目标化合物浓度与内标浓度为横坐标,建立标准工作曲线,线性相关系数R 2应大于0.999。 The 1-5 level standard solutions were chromatographed according to the gas chromatography conditions in 4.2, with an injection volume of 1 μL. The peak area of the target compound and the peak area of the internal standard were used as the ordinates, and the concentration of the target compound and the concentration of the internal standard were used as the abscissas to establish a standard working curve. The linear correlation coefficient R2 should be greater than 0.999.
每20个试样测定后应加入一个中等浓度的标准工作溶液,如果测得值与原值相差超过5%,则应重新进行标准工作曲线的制作。A standard working solution of medium concentration should be added after every 20 samples are measured. If the measured value differs from the original value by more than 5%, the standard working curve should be re-made.
4.4样品分析4.4 Sample analysis
4.4.1样品的采集4.4.1 Sample collection
参照T/CECC 001-2021附录C.5-C.7抽吸完成后,抽吸50口,取出捕有雾化气体的滤片,用一张新的44mm滤片把捕集器内壁擦净,一并放入50mL具塞锥形瓶或带螺口瓶中,准确加入20mL甲醇溶液,振荡萃取20min,静置待用。Refer to Appendix C.5-C.7 of T/CECC 001-2021. After the suction is completed, suction 50 times, take out the filter disc that captures the atomized gas, wipe the inner wall of the collector with a new 44mm filter disc, put them into a 50mL stoppered conical flask or a screw-mouth bottle, accurately add 20mL of methanol solution, oscillate and extract for 20 minutes, and let it stand for use.
4.4.2空白试验4.4.2 Blank test
在不添加样品的情况下重复4.4.1的操作,进行空白试验。一般每测试10个样品时需要做一次空白试验。Repeat the steps in 4.4.1 without adding any sample to conduct a blank test. Generally, a blank test is required every 10 samples tested.
4.4.3样品测定4.4.3 Sample determination
用气相色谱仪(2.1)按照(4.2)测试条件进行测试试验样品及空白样品,若试验样品的浓度超出标准工作曲线的范围,则应调整稀释倍数后进行再次测定。Use gas chromatograph (2.1) to test the test sample and blank sample according to the test conditions (4.2). If the concentration of the test sample exceeds the range of the standard working curve, the dilution factor should be adjusted and the test should be repeated.
5.结果计算与表述5. Calculation and presentation of results
5.1目标化合物含量计算5.1 Calculation of target compound content
样品中目标的含量w以mg/g计,按式(1)计算:The target content w in the sample is expressed in mg/g and is calculated according to formula (1):
Figure PCTCN2022142085-appb-000007
Figure PCTCN2022142085-appb-000007
式中:Where:
w—目标化合物含量,mg/gw—content of target compound, mg/g
V—定容体积,mLV—fixed volume, mL
C 1—仪器测试结果,mg/mL C 1 —Instrument test result, mg/mL
C 0—空白测试结果,mg/mL C 0 — Blank test result, mg/mL
d—稀释倍数d—dilution factor
M—样品的称样量,gM—sample weight, g
6.质量保证与控制6. Quality Assurance and Control
6.1质控溶液6.1 Quality Control Solution
配制与3级标准曲线相同的溶液浓度作为质控溶液,每天进行样品检测前对质控溶液进行测定,确保回收率在93%-105%,若回收率超出限定值,则需要重新配制标准曲线溶液。Prepare a solution with the same concentration as the level 3 standard curve as the quality control solution. Measure the quality control solution before sample testing every day to ensure that the recovery rate is between 93% and 105%. If the recovery rate exceeds the limit, the standard curve solution needs to be re-prepared.
若当天待测样品超过20个时,每进行20次样品测定后,应加入一个中等浓度的质控溶液,如果测得的值与原值相差超过5%,则应重新进行整个标准工作曲线的制作。If there are more than 20 samples to be tested on the same day, a quality control solution of medium concentration should be added after every 20 sample measurements. If the measured value differs from the original value by more than 5%, the entire standard working curve should be re-produced.
6.2重复性6.2 Repeatability
在重复性条件下获得的两次独立测定结果的绝对差值不超过算术平均值的5%。The absolute difference between two independent determination results obtained under repeatability conditions shall not exceed 5% of the arithmetic mean.
除非另有说明或者上下文中有明显的冲突,本发明采用LC-MSMS法测定尼古丁制剂中的降烟碱和尼古丁氮氧化合物的含量(外标法定量):Unless otherwise stated or there is an obvious conflict in the context, the present invention uses LC-MSMS method to determine the content of nornicotine and nicotine nitrogen oxide compounds in nicotine preparations (external standard method quantitative):
1.试剂和标准溶液··1. Reagents and Standard Solutions
1.1所用试剂:1.1 Reagents used:
1.1.1.乙腈(色谱纯)1.1.1. Acetonitrile (chromatographic grade)
1.1.2.氨水(色谱纯)1.1.2. Ammonia (chromatographic grade)
1.1.3.超纯水1.1.3. Ultrapure water
1.1.4.标准品:降烟碱、尼古丁氮氧化物1.1.4. Standard products: nornicotine, nicotine nitrogen oxide
1.1.5水相滤膜:0.22um1.1.5 Water phase filter membrane: 0.22um
1.2试剂配置1.2 Reagent configuration
1.2.1流动相A:量取500mL水(1.1.3),加入0.5mL氨水(1.1.2),的流动相A(0.1%氨水溶液)。1.2.1 Mobile phase A: Take 500 mL of water (1.1.3), add 0.5 mL of ammonia water (1.1.2), and prepare mobile phase A (0.1% ammonia solution).
1.2.2流动相B:乙腈(1.1.1)。1.2.2 Mobile phase B: acetonitrile (1.1.1).
1.3标准溶液配制1.3 Preparation of standard solution
1.3.1单标储备液:将标准品(1.1.4)溶解于乙腈(1.1.1),配制成单一标准储备液,一般为10mg/mL。-18℃储存,有效期为6个月;1.3.1 Single standard stock solution: Dissolve the standard substance (1.1.4) in acetonitrile (1.1.1) to prepare a single standard stock solution, generally 10 mg/mL. Store at -18℃, valid for 6 months;
1.3.2混合标准储备液:准确移取各单一标准储备液(1.3.1),用乙腈(1.1.1)配制成混合标准储备液,一般为0.1mg/mL。4℃储存,有效期3个月;1.3.2 Mixed standard stock solution: Accurately pipette each single standard stock solution (1.3.1) and prepare a mixed standard stock solution with acetonitrile (1.1.1), generally 0.1 mg/mL. Store at 4°C, valid for 3 months;
1.3.3标准工作溶液。移取不同体积的混合标准储备液(1.3.2)于10mL容量瓶,用水(1.1.3)定容至刻度,制备至少6个标准工作溶液。质量浓度范围宜为0.001~0.2ug/mL。(现配现用)1.3.3 Standard working solution. Pipette different volumes of mixed standard stock solution (1.3.2) into a 10mL volumetric flask, dilute to the mark with water (1.1.3), and prepare at least 6 standard working solutions. The mass concentration range should be 0.001 to 0.2ug/mL. (Prepare and use immediately)
2.样品的处理2. Sample Processing
称取0.40g尼古丁制剂于10mL容量瓶,用水溶液(1.1.3)定容,超声5min,采用水相滤膜(1.1.5)过滤,用水溶液稀释2000倍于色谱瓶中待测。Weigh 0.40 g of nicotine preparation into a 10 mL volumetric flask, make up to volume with the aqueous solution (1.1.3), sonicate for 5 min, filter using an aqueous filter membrane (1.1.5), dilute 2000 times with the aqueous solution and place in a chromatographic flask for testing.
3.仪器条件参数3. Instrument condition parameters
3.2仪器条件3.2 Instrument conditions
3.2.1液相色谱条件3.2.1 Liquid chromatography conditions
色谱柱:BEHC18column:(1.7μm,100×2.1mm)或等效柱;Chromatographic column: BEHC18 column: (1.7 μm, 100 × 2.1 mm) or equivalent column;
---------流动相A(2.2.1):0.1%氨水溶液;---------Mobile phase A (2.2.1): 0.1% ammonia solution;
流动相B(2.2.2):乙腈;Mobile phase B (2.2.2): acetonitrile;
---------柱温箱:40℃;---------Column oven: 40℃;
---------柱流量:0.4mL/min;---------Column flow rate: 0.4mL/min;
---------进样体积:5.0μL;---------Injection volume: 5.0μL;
---------运行时间:8.0min;---------Running time: 8.0min;
---------洗脱梯度:梯度洗脱见表3。---------Elution gradient: Gradient elution see Table 3.
表3 洗脱梯度Table 3 Elution gradient
时间time 流速(ml/min)Flow rate (ml/min) %A%A %B%B 曲线curve
起始Starting 0.4000.400 97.097.0 3.03.0 起始Starting
0.50.5 0.4000.400 97.097.0 3.03.0 66
1.001.00 0.4000.400 75.075.0 25.025.0 66
5.005.00 0.4000.400 50.050.0 50.050.0 66
5.105.10 0.4000.400 10.010.0 90.090.0 66
6.006.00 0.4000.400 10.010.0 90.090.0 66
6.106.10 0.4000.400 97.097.0 3.03.0 66
8.008.00 0.4000.400 97.097.0 3.03.0 66
3.2.2质谱条件3.2.2 Mass spectrometry conditions
——离子源:电喷雾离子源(ESI+);——Ion source: electrospray ionization source (ESI+);
——电离模式:正离子模式;——Ionization mode: positive ion mode;
——电喷雾电压:1.5KV;——Electrospray voltage: 1.5KV;
——离子源温度,脱溶剂温度:150℃,350℃;——Ion source temperature, desolvation temperature: 150℃, 350℃;
——脱溶剂气:650L/h;——Desolventization gas: 650L/h;
——锥孔气:50L/h;——Conical hole gas: 50L/h;
——扫描方式:多反应监测(MRM),——Scanning mode: multiple reaction monitoring (MRM),
目标化合物及内标物的保留时间和MRM参数如表4所示。The retention times and MRM parameters of the target compounds and internal standards are shown in Table 4.
表4 目标化合物及内标物的保留时间和MRM参数Table 4 Retention time and MRM parameters of target compounds and internal standards
Figure PCTCN2022142085-appb-000008
Figure PCTCN2022142085-appb-000008
4.标准工作曲线制作4. Standard working curve preparation
按照仪器分析条件对标准工作溶液(1.3.3)进行测定,以目标化合物和内标物的峰面积比值与含量建立标准工作曲线。每进行20次样品测定后,应加入一个中等含量的标准工作溶液,如果测得值与原值相差超过5%,则应重新制作标准工作曲线。The standard working solution (1.3.3) is measured according to the instrument analysis conditions, and the standard working curve is established based on the peak area ratio and content of the target compound and the internal standard. After every 20 sample measurements, a medium-content standard working solution should be added. If the measured value differs from the original value by more than 5%, the standard working curve should be re-made.
5.样品测定5. Sample determination
按照仪器分析条件测定样品溶液(2)。每个样品平行测定两次。The sample solution (2) was measured according to the instrument analysis conditions. Each sample was measured twice in parallel.
6.结果计算与表述6. Calculation and presentation of results
尼古丁制剂中目标物的含量按下式计算。The content of the target substance in the nicotine preparation is calculated according to the following formula.
Figure PCTCN2022142085-appb-000009
Figure PCTCN2022142085-appb-000009
式中:X——雾化物中目标物的含量,单位为毫克每克(ug/g);Where: X is the content of the target substance in the atomized material, in milligrams per gram (ug/g);
C——样品溶液中目标物的浓度,单位为毫克每毫升(ug/mL);C——Concentration of target substance in sample solution, in milligrams per milliliter (ug/mL);
V——样品溶液的体积,单位为毫升(mL);V——volume of sample solution, in milliliters (mL);
d——稀释因子;d——dilution factor;
m——雾化物质量,单位为克(g)。m——mass of atomized material, in grams (g).
以两次平行测定结果的算术平均值为最终测定结果。The arithmetic mean of the two parallel determination results was taken as the final determination result.
7.回收率、检出限和定量限7. Recovery, detection limit and quantification limit
本方法的回收率、检出限和定量限见表5。The recovery, detection limit and quantification limit of this method are shown in Table 5.
表5 方法的回收率、检出限和定量限Table 5 Recovery, detection limit and quantification limit of the method
序号Serial number 化合物Compound 回收率%Recovery rate% 检出限ug/gDetection limit ug/g 定量限ug/gLimit of quantification ug/g
11 尼古丁氮氧化物Nicotine Nitrogen Oxide 96.3-10396.3-103 1010 3030
22 降烟碱Nornicotine 89.3-108.689.3-108.6 1010 3030
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1:乳酸结构3D图Figure 1: 3D structure of lactic acid
图2:乙酰丙酸结构3D图Figure 2: 3D structure of levulinic acid
图3:不同烟碱盐对纽甜的雾化效果的影响Figure 3: Effects of different nicotine salts on the atomization effect of neotame
图4:苯甲酸烟碱盐与乳酸烟碱盐的降烟碱变化量比较图Figure 4: Comparison of nicotine reduction changes in nicotine benzoate salt and nicotine lactate salt
图5:苯甲酸烟碱盐与乳酸烟碱盐的氮氧化物变化量比较图Figure 5: Comparison of the changes in nitrogen oxides of nicotine benzoate salt and nicotine lactate salt
图6:苯甲酸烟碱盐与乙酰丙酸烟碱盐的氮氧化物变化量比较图Figure 6: Comparison of the changes in nitrogen oxides of nicotine benzoate and nicotine levulinate
图7:不同含量丁酸乙酯对苯甲酸烟碱盐雾化液气溶胶的粒子数浓度的影响Figure 7: Effect of different ethyl butyrate contents on the particle number concentration of nicotine benzoate salt aerosol
图8:不同含量丁酸乙酯对乳酸烟碱盐雾化液气溶胶的粒子数浓度的影响Figure 8: Effects of different ethyl butyrate contents on the particle number concentration of nicotine lactate salt aerosol
图9:不同含量丁酸乙酯对乙酰丙酸烟碱盐雾化液气溶胶的粒子数浓度的影响Figure 9: Effect of different contents of ethyl butyrate on the particle number concentration of nicotine levulinate salt aerosol
图10:不同含量丁酸乙酯对乙酰丙酸+乳酸复合烟碱盐雾化液气溶胶的粒子数浓度的影响Figure 10: Effects of different ethyl butyrate contents on the particle number concentration of levulinic acid + lactic acid composite nicotine salt aerosol
具体实施方式Detailed ways
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。The exemplary embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although the exemplary embodiments of the present disclosure are shown in the accompanying drawings, it should be understood that the present disclosure can be implemented in various forms and should not be limited by the embodiments described herein. On the contrary, these embodiments are provided to enable a more thorough understanding of the present disclosure and to fully convey the scope of the present disclosure to those skilled in the art.
烟碱盐及其制剂的制备:Preparation of nicotine salts and their preparations:
实施例1:乙酰丙酸烟碱盐及其制剂的制备Example 1: Preparation of Nicotine Levulinate Salt and Its Preparation
本实施例涉及的基液为1,2-丙二醇和甘油的混合溶剂,其比例为按重量计2:8比率。The base liquid involved in this embodiment is a mixed solvent of 1,2-propylene glycol and glycerol, and the ratio thereof is 2:8 by weight.
为了制备具有2%(w/w)的最终烟碱含量的乙酰丙酸烟碱盐雾化液,将下列工序应用于各个烟碱盐雾化液中。To prepare nicotine levulinate salt aerosol liquids having a final nicotine content of 2% (w/w), the following procedure was applied to each nicotine salt aerosol liquid.
实施例1-1Example 1-1
尼古丁和乙酰丙酸的摩尔比为1:0.4。将1.000g尼古丁和0.286g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在60℃下搅拌(磁力搅拌,400RPM)持续0.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.714g基液搅拌混合物10分钟,直至达成视觉上均质的溶液制备得到尼古丁盐制剂。The molar ratio of nicotine to levulinic acid is 1:0.4. 1.000 g of nicotine and 0.286 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 60°C (magnetic stirring, 400 RPM) for 0.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.714 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
实施例1-2Example 1-2
尼古丁和乙酰丙酸的摩尔比为1:0.5。将1.00g尼古丁和0.358g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.642g基液搅拌混合物10分钟,直至达成视觉上均质的溶液制备得到尼古丁盐制剂。The molar ratio of nicotine to levulinic acid is 1:0.5. 1.00 g of nicotine and 0.358 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.642 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
实施例1-3Examples 1-3
尼古丁和乙酰丙酸的摩尔比为1:0.6。将1.00g尼古丁和0.430g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐 冷至室温(20℃-35℃)后,向瓶中加入48.570g基液搅拌混合物10分钟,直至达成视觉上均质的溶液制备得到尼古丁盐制剂。The molar ratio of nicotine to levulinic acid is 1:0.6. 1.00 g of nicotine and 0.430 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.570 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
实施例1-4Examples 1-4
尼古丁和乙酰丙酸的摩尔比为1:0.7。将1.00g尼古丁和0.502g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.498g基液搅拌混合物10分钟,直至达成视觉上均质的溶液制备得到尼古丁盐制剂。The molar ratio of nicotine to levulinic acid is 1:0.7. 1.00 g of nicotine and 0.502 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.498 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
实施例1-5Examples 1-5
尼古丁和乙酰丙酸的摩尔比为1:0.8。将1.00g尼古丁和0.573g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.427g基液搅拌混合物10分钟,直至达成视觉上均质的溶液制备得到尼古丁盐制剂。The molar ratio of nicotine to levulinic acid is 1:0.8. 1.00 g of nicotine and 0.573 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.427 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to prepare a nicotine salt preparation.
实施例1-6Examples 1-6
尼古丁和乙酰丙酸的摩尔比为1:0.9。将1.00g尼古丁和0.644g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.356g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to levulinic acid is 1:0.9. 1.00 g of nicotine and 0.644 g of levulinic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 75°C (magnetic stirring, 400 RPM) for 1.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.356 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例2:乳酸烟碱盐及其制剂的制备Example 2: Preparation of nicotine lactate salt and its preparation
本实施例涉及的基液为1,2-丙二醇和甘油的混合溶剂,其比例为按重量计2:8比率。The base liquid involved in this embodiment is a mixed solvent of 1,2-propylene glycol and glycerol, and the ratio thereof is 2:8 by weight.
为了制备具有1%(w/w)的最终烟碱含量的乳酸烟碱盐雾化液,将下列工序应用于各个烟碱盐雾化液中。To prepare nicotine lactate salt aerosol liquids having a final nicotine content of 1% (w/w), the following procedure was applied to each nicotine salt aerosol liquid.
实施例2-1Example 2-1
尼古丁和乳酸的摩尔比为1:1.1。将1.00g尼古丁和0.611g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入98.389g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:1.1. 1.00 g of nicotine and 0.611 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.389 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
实施例2-2Example 2-2
尼古丁和乳酸的摩尔比为1:1.2。将1.00g尼古丁和0.667g乳酸加入100mL茄形烧瓶中,密封后将混合物在70℃下搅拌(磁力搅拌,400RPM)持续2.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入98.333g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:1.2. 1.00 g of nicotine and 0.667 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 70°C (magnetic stirring, 400 RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.333 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例2-3Example 2-3
尼古丁和乳酸的摩尔比为1:1.3。将1.00g尼古丁和0.722g乳酸加入100mL茄形烧瓶中,密封后将混合物在70℃下搅拌(磁力搅拌,400RPM)持续2.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入98.278g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:1.3. 1.00 g of nicotine and 0.722 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 70°C (magnetic stirring, 400 RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.278 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
实施例2-4Embodiment 2-4
尼古丁和乳酸的摩尔比为1:1.4。将1.00g尼古丁和0.778g乳酸加入100mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入98.222g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:1.4. 1.00 g of nicotine and 0.778 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.222 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
实施例2-5Embodiment 2-5
尼古丁和乳酸的摩尔比为1:1.5。将1.00g尼古丁和0.833g乳酸加入100mL茄形烧瓶中,密封后将混合物在70℃下搅拌(磁力搅拌,400RPM)持续2.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入98.167g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:1.5. 1.00 g of nicotine and 0.833 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 70°C (magnetic stirring, 400 RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.167 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
实施例2-6Embodiment 2-6
尼古丁和乳酸的摩尔比为1:1.6。将1.00g尼古丁和0.944g乳酸加入100mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入98.056g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:1.6. 1.00 g of nicotine and 0.944 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.056 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例2-7Embodiment 2-7
尼古丁和乳酸的摩尔比为1:1.7。将1.00g尼古丁和0.944g乳酸加入100mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入98.056g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:1.7. 1.00 g of nicotine and 0.944 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.056 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例2-8Embodiment 2-8
尼古丁和乳酸的摩尔比为1:1.8。将1.00g尼古丁和1.000g乳酸加入100mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入98.000g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:1.8. 1.00 g of nicotine and 1.000 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours after sealing to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 98.000 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例2-9Embodiment 2-9
尼古丁和乳酸的摩尔比为1:1.9。将1.00g尼古丁和1.055g乳酸加入100mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入97.945g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:1.9. 1.00 g of nicotine and 1.055 g of lactic acid were added to a 100 mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 97.945 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例2-10Example 2-10
尼古丁和乳酸的摩尔比为1:2。将1.00g尼古丁和1.111g乳酸加入100mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续2.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入97.889g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to lactic acid is 1:2. 1.00 g of nicotine and 1.111 g of lactic acid were added to a 100 mL eggplant-shaped flask, and the mixture was sealed and stirred at 75°C (magnetic stirring, 400 RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 97.889 g of the base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
实施例3:乙酰丙酸+乳酸复合烟碱盐及其制剂的制备Example 3: Preparation of levulinic acid + lactic acid composite nicotine salt and its preparation
本实施例涉及的基液为1,2-丙二醇和甘油的混合溶剂,其比例为按重量计2:8比率。The base liquid involved in this embodiment is a mixed solvent of 1,2-propylene glycol and glycerol, and the ratio thereof is 2:8 by weight.
为了制备具有4%(w/w)的最终烟碱含量的复合烟碱盐雾化液,将下列工序应用于各个烟碱盐雾化液中。To prepare a composite nicotine salt aerosol liquid having a final nicotine content of 4% (w/w), the following procedure was applied to each nicotine salt aerosol liquid.
实施例3-1Example 3-1
尼古丁、乙酰丙酸和乳酸的摩尔比为1:0.5:0.5。将1.000g尼古丁,0.358g乙酰丙酸和0.278g乳酸的摩尔比为,加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.364g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine, levulinic acid and lactic acid is 1:0.5:0.5. 1.000g of nicotine, 0.358g of levulinic acid and 0.278g of lactic acid in a molar ratio of 1:0.5:0.5 were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1 hour to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.364g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例3-2Example 3-2
尼古丁、乙酰丙酸和乳酸的摩尔比为1:0.6:0.5。将1.000g尼古丁,0.430g乙酰丙酸和0.278g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.292g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine, levulinic acid and lactic acid is 1:0.6:0.5. 1.000 g of nicotine, 0.430 g of levulinic acid and 0.278 g of lactic acid were added to a 50 mL eggplant-shaped flask, sealed and the mixture was stirred at 75°C (magnetic stirring, 400 RPM) for 1 hour to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.292 g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例3-3Example 3-3
尼古丁、乙酰丙酸和乳酸的摩尔比为1:0.7:0.4。将1.000g尼古丁,0.503g乙酰丙酸和0.222g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.275g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine, levulinic acid and lactic acid is 1:0.7:0.4. 1.000g of nicotine, 0.503g of levulinic acid and 0.222g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1 hour to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.275g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例3-4Embodiment 3-4
尼古丁、乙酰丙酸和乳酸的摩尔比为1:0.8:0.2。将1.000g尼古丁,0.574g乙酰丙酸和0.111g乳酸加入50mL茄形烧瓶中,密封后将混合物在55℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.315g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine, levulinic acid and lactic acid is 1:0.8:0.2. 1.000g of nicotine, 0.574g of levulinic acid and 0.111g of lactic acid were added to a 50mL eggplant-shaped flask, and the mixture was stirred at 55°C (magnetic stirring, 400RPM) for 2 hours after sealing to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.315g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例3-5Embodiment 3-5
尼古丁、乙酰丙酸和乳酸的摩尔比为1:0.9:0.1。将1.000g尼古丁,0.646g乙酰丙酸和0.056g乳酸加入50mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.298g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine, levulinic acid and lactic acid is 1:0.9:0.1. 1.000g of nicotine, 0.646g of levulinic acid and 0.056g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.298g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例3-6Embodiment 3-6
尼古丁、乙酰丙酸和乳酸的摩尔比为1:1:0.2。将1.000g尼古丁,0.716g乙酰丙酸和0.111g乳酸加入50mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.173g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine, levulinic acid and lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid and 0.111g of lactic acid were added to a 50mL eggplant-shaped flask, and the mixture was stirred at 65°C (magnetic stirring, 400RPM) for 2 hours after sealing to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.173g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例3-7Embodiment 3-7
尼古丁、乙酰丙酸和乳酸的摩尔比为1:1.1:0.3。将1.000g尼古丁,0.788g乙酰丙酸和0.167g乳酸加入50mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.045g基液搅拌混合物10分钟, 直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine, levulinic acid and lactic acid is 1:1.1:0.3. 1.000g of nicotine, 0.788g of levulinic acid and 0.167g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.045g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
实施例3-8Embodiment 3-8
尼古丁、乙酰丙酸和乳酸的摩尔比为1:1.2:0.2。将1.000g尼古丁,0.859g乙酰丙酸和0.111g乳酸加入50mL茄形烧瓶中,密封后将混合物在55℃下搅拌(磁力搅拌,400RPM)持续2.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.030g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine, levulinic acid and lactic acid is 1:1.2:0.2. 1.000g of nicotine, 0.859g of levulinic acid and 0.111g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 55°C (magnetic stirring, 400RPM) for 2.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.030g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was obtained to obtain a nicotine salt preparation.
实施例3-9Embodiment 3-9
尼古丁、乙酰丙酸和乳酸的摩尔比为1:1.2:0.3。将1.000g尼古丁,0.859g乙酰丙酸和0.167g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入22.974g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine, levulinic acid and lactic acid is 1:1.2:0.3. 1.000g of nicotine, 0.859g of levulinic acid and 0.167g of lactic acid were added to a 50mL eggplant-shaped flask, sealed and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 22.974g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例3-10Embodiment 3-10
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:0.6,乙酰丙酸和乳酸的摩尔比为12:1。将1.000g尼古丁,0.397g乙酰丙酸和0.026g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.577g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:0.6, and the molar ratio of levulinic acid to lactic acid is 12:1. 1.000g of nicotine, 0.397g of levulinic acid and 0.026g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 23.577g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
实施例3-11Example 3-11
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:0.7,乙酰丙酸和乳酸的摩尔比为11:1。将1.000g尼古丁,0.459g乙酰丙酸和0.032g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.509g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:0.7, and the molar ratio of levulinic acid to lactic acid is 11:1. 1.000g of nicotine, 0.459g of levulinic acid and 0.032g of lactic acid were added to a 50mL eggplant-shaped flask, and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.509g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例3-12Example 3-12
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:0.8,乙酰丙酸和乳酸的摩尔比为8:1。将1.000g尼古丁,0.509g乙酰丙酸和0.049g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.442g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:0.8, and the molar ratio of levulinic acid to lactic acid is 8:1. 1.000g of nicotine, 0.509g of levulinic acid and 0.049g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 23.442g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
实施例3-13Example 3-13
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:0.9,乙酰丙酸和乳酸的摩尔比为10:1。将1.000g尼古丁,0.586g乙酰丙酸和0.045g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.369g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:0.9, and the molar ratio of levulinic acid to lactic acid is 10:1. 1.000g of nicotine, 0.586g of levulinic acid and 0.045g of lactic acid were added to a 50mL eggplant-shaped flask, and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 23.369g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
实施例3-14Example 3-14
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:1.3,乙酰丙酸和乳酸的摩尔比为7:1。将1.000g尼古丁,0.815g乙酰丙酸和0.090g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入23.095g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:1.3, and the molar ratio of levulinic acid to lactic acid is 7:1. 1.000g of nicotine, 0.815g of levulinic acid and 0.090g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 23.095g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
实施例3-15Example 3-15
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:1.6,乙酰丙酸和乳酸的摩尔比为3:1。将1.000g尼古丁,0.859g乙酰丙酸和0.222g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入22.919g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:1.6, and the molar ratio of levulinic acid to lactic acid is 3:1. 1.000g of nicotine, 0.859g of levulinic acid and 0.222g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 22.919g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
实施例3-16Example 3-16
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:1.7,乙酰丙酸和乳酸的摩尔比为2:1。将1.000g尼古丁,0.812g乙酰丙酸和0.315g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入22.873g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:1.7, and the molar ratio of levulinic acid to lactic acid is 2:1. 1.000g of nicotine, 0.812g of levulinic acid and 0.315g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 22.873g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
实施例3-17Example 3-17
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:1.8,乙酰丙酸和乳酸的摩尔比为8.5:1。将1.000g尼古丁,1.153g乙酰丙酸和0.105g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入22.742g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:1.8, and the molar ratio of levulinic acid to lactic acid is 8.5:1. 1.000g of nicotine, 1.153g of levulinic acid and 0.105g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 22.742g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
实施例3-18Example 3-18
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:1.9,乙酰丙酸和乳酸的摩尔比为5.6:1。将1.000g尼古丁,1.154g乙酰丙酸和0.160g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入22.686g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:1.9, and the molar ratio of levulinic acid to lactic acid is 5.6:1. 1.000g of nicotine, 1.154g of levulinic acid and 0.160g of lactic acid are added to a 50mL eggplant-shaped flask, and the mixture is stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours after sealing to obtain nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 22.686g of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved to obtain a nicotine salt preparation.
实施例3-19Example 3-19
尼古丁与混合酸(乙酰丙酸和乳酸)的摩尔比为1:2,乙酰丙酸和乳酸的摩尔比为11.5:1。将1.000g尼古丁,1.318g乙酰丙酸和0.089g乳酸加入50mL茄形烧瓶中,密封后将混合物在75℃下搅拌(磁力搅拌,400RPM)持续1.5小时,得到烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入22.593g基液搅拌混合物10分钟,直至达成视觉上均质的溶液得到尼古丁盐制剂。The molar ratio of nicotine to mixed acid (levulinic acid and lactic acid) is 1:2, and the molar ratio of levulinic acid to lactic acid is 11.5:1. 1.000g of nicotine, 1.318g of levulinic acid and 0.089g of lactic acid were added to a 50mL eggplant-shaped flask, sealed, and the mixture was stirred at 75°C (magnetic stirring, 400RPM) for 1.5 hours to obtain nicotine salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 22.593g of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved to obtain a nicotine salt preparation.
烟碱盐雾化液的制备Preparation of nicotine salt aerosol solution
实施例4:乙酰丙酸烟碱盐雾化液Example 4: Nicotine levulinate salt aerosol liquid
实施例4-1Example 4-1
尼古丁和乙酰丙酸的摩尔比为1:0.8。将1.000g尼古丁,0.573g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.427g(甘油25g,1,2-丙二醇13.327g,纽甜0.1g,橙子香精10g)基液搅拌·混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid is 1:0.8. 1.000g of nicotine and 0.573g of levulinic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.427g (25g glycerol, 13.327g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) can be obtained.
实施例4-2Example 4-2
尼古丁和乙酰丙酸的摩尔比为1:0.6。将1.000g尼古丁,0.430g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.57g(甘油25g,1,2-丙二醇13.47g,纽甜0.1g, 橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid is 1:0.6. 1.000g of nicotine and 0.430g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was stirred at 65°C (magnetic stirring, 400RPM) for 2 hours after sealing to obtain nicotine levulinic acid salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 48.57g (25g of glycerol, 13.47g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) of base liquid was added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved, and an atomized liquid with a nicotine content of 2% (w/w) was obtained.
实施例4-3Example 4-3
尼古丁和乙酰丙酸的摩尔比为1:0.4。将1.000g尼古丁,0.286g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.714g(甘油25g,1,2-丙二醇13.614g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.714g (25g of glycerol, 13.614g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) can be obtained.
实施例5:乳酸烟碱盐雾化液Example 5: Nicotine lactate salt atomized liquid
实施例5-1Example 5-1
尼古丁和乳酸的摩尔比为1:0.8。将1.000g尼古丁,0.444g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乳酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.556g(甘油25g,1,2-丙二醇13.456g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to lactic acid is 1:0.8. 1.000g nicotine and 0.444g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.556g (25g glycerol, 13.456g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例5-2Example 5-2
尼古丁和乳酸的摩尔比为1:1。将1.000g尼古丁,0.556g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乳酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.444g(甘油25g,1,2-丙二醇13.344g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to lactic acid is 1:1. 1.000g nicotine and 0.556g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.444g (25g glycerol, 13.344g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例5-3Example 5-3
尼古丁和乳酸的摩尔比为1:1.7。将1.000g尼古丁,0.944g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乳酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.056g(甘油25g,1,2-丙二醇12.956g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to lactic acid is 1:1.7. 1.000g nicotine and 0.944g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.056g (25g glycerol, 12.956g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例5-4Example 5-4
尼古丁与乳酸的摩尔比为1:1.2。将1.000g尼古丁,0.667g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乳酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.333g(甘油25g,1,2-丙二醇13.233g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.333g (25g glycerol, 13.233g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例6:乙酰丙酸+乳酸复合烟碱盐雾化液Example 6: Levulinic acid + lactic acid composite nicotine salt atomization liquid
实施例6-1Example 6-1
尼古丁与总酸的摩尔比为1:0.8(尼古丁、乙酰丙酸和乳酸的摩尔比为1:0.5:0.3)。将1.000g尼古丁,0.358g乙酰丙酸和0.167g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.475g(甘油25g,1,2-丙二醇13.375g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟, 直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to total acid is 1:0.8 (the molar ratio of nicotine, levulinic acid and lactic acid is 1:0.5:0.3). 1.000g of nicotine, 0.358g of levulinic acid and 0.167g of lactic acid are added to a 100mL eggplant-shaped flask, sealed and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.475g (25g of glycerol, 13.375g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例6-2Example 6-2
尼古丁与总酸的摩尔比为1:1(尼古丁、乙酰丙酸和乳酸的摩尔比为1:0.5:0.5)。将1.000g尼古丁,0.358g乙酰丙酸和0.278g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.364g(甘油25g,1,2-丙二醇12.264g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to total acid is 1:1 (the molar ratio of nicotine, levulinic acid and lactic acid is 1:0.5:0.5). 1.000g of nicotine, 0.358g of levulinic acid and 0.278g of lactic acid are added to a 100mL eggplant-shaped flask, sealed and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.364g (25g of glycerol, 12.264g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例6-3Example 6-3
尼古丁与总酸的摩尔比为1:1.7(尼古丁、乙酰丙酸和乳酸的摩尔比为1:1.2:0.5)。将1.000g尼古丁,0.859g乙酰丙酸和0.278g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入47.863g(甘油25g,1,2-丙二醇12.763g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to total acid is 1:1.7 (the molar ratio of nicotine, levulinic acid and lactic acid is 1:1.2:0.5). 1.000g of nicotine, 0.859g of levulinic acid and 0.278g of lactic acid are added to a 100mL eggplant-shaped flask, sealed and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 47.863g (25g of glycerol, 12.763g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例6-4Example 6-4
尼古丁与总酸的摩尔比为1:1.2(尼古丁、乙酰丙酸与乳酸的摩尔比为1:1:0.2)。将1.000g尼古丁,0.716g乙酰丙酸,0.111g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸+乳酸复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.173g(甘油25g,1,2-丙二醇13.073g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to total acid is 1:1.2 (the molar ratio of nicotine, levulinic acid and lactic acid is 1:1:0.2). 1.000g of nicotine, 0.716g of levulinic acid and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, sealed and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.173g (25g of glycerol, 13.073g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) of base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例7:乙酰丙酸烟碱盐雾化液(含丁酸乙酯)Example 7: Nicotine levulinate salt aerosol liquid (containing ethyl butyrate)
实施例7-1:丁酸乙酯含量0.5%Example 7-1: Ethyl butyrate content 0.5%
尼古丁和乙酰丙酸的摩尔比为1:0.4。将1.000g尼古丁,0.286g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入0.25g丁酸乙酯,48.464g(甘油25g,1,2-丙二醇13.364g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 0.25g of ethyl butyrate and 48.464g (25g of glycerol, 13.364g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) base liquid were added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved, and an atomized liquid with a nicotine content of 2% (w/w) was obtained.
实施例7-2:丁酸乙酯含量1%Example 7-2: Ethyl butyrate content 1%
尼古丁和乙酰丙酸的摩尔比为1:0.4。将1.000g尼古丁,0.286g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入0.5g丁酸乙酯,48.214g(甘油25g,1,2-丙二醇13.114g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 0.5g of ethyl butyrate and 48.214g (25g of glycerol, 13.114g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) base liquid were added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved, and an atomized liquid with a nicotine content of 2% (w/w) was obtained.
实施例7-3:丁酸乙酯含量3%Example 7-3: Ethyl butyrate content 3%
尼古丁和乙酰丙酸的摩尔比为1:0.4。将1.000g尼古丁,0.286g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入1.5g丁酸乙酯,47.214g(甘油25g,1,2-丙二醇 12.114g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 1.5g of ethyl butyrate and 47.214g (25g of glycerol, 12.114g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) base liquid were added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved, and an atomized liquid with a nicotine content of 2% (w/w) was obtained.
实施例7-4:丁酸乙酯含量5%Example 7-4: Ethyl butyrate content 5%
尼古丁和乙酰丙酸的摩尔比为1:0.4。将1.000g尼古丁,0.286g乙酰丙酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入2.5g丁酸乙酯,46.214g(甘油25g,1,2-丙二醇11.114g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid is 1:0.4. 1.000g of nicotine and 0.286g of levulinic acid were added to a 100mL eggplant-shaped flask, and the mixture was sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine levulinic acid salt. After the nicotine salt was cooled to room temperature (20°C-35°C), 2.5g of ethyl butyrate and 46.214g (25g of glycerol, 11.114g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) base liquid were added to the bottle and the mixture was stirred for 10 minutes until a visually homogeneous solution was achieved, and an atomized liquid with a nicotine content of 2% (w/w) was obtained.
实施例8:乳酸烟碱盐雾化液(含丁酸乙酯)Example 8: Nicotine lactate salt atomized liquid (containing ethyl butyrate)
实施例8-1:丁酸乙酯含量0.5%Example 8-1: Ethyl butyrate content 0.5%
尼古丁与乳酸的摩尔比为1:1.2。将1.000g尼古丁,0.667g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乳酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入0.25g丁酸乙酯,48.083g(甘油25g,1,2-丙二醇12.983g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 0.25g ethyl butyrate and 48.083g (25g glycerol, 12.983g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) can be obtained.
实施例8-2:丁酸乙酯含量1%Example 8-2: Ethyl butyrate content 1%
尼古丁与乳酸的摩尔比为1:1.2。将1.000g尼古丁,0.667g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乳酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入0.5g丁酸乙酯,47.833g(甘油25g,1,2-丙二醇12.733g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 0.5g ethyl butyrate and 47.833g (25g glycerol, 12.733g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例8-3:丁酸乙酯含量3%Example 8-3: Ethyl butyrate content 3%
尼古丁与乳酸的摩尔比为1:1.2。将1.000g尼古丁,0.667g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乳酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入1.5g丁酸乙酯,46.833g(甘油25g,1,2-丙二醇11.733g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 1.5g ethyl butyrate and 46.833g (25g glycerol, 11.733g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例8-4:丁酸乙酯含量5%Example 8-4: Ethyl butyrate content 5%
尼古丁与乳酸的摩尔比为1:1.2。将1.000g尼古丁,0.667g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乳酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入2.5g丁酸乙酯,45.833g(甘油25g,1,2-丙二醇10.733g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to lactic acid is 1:1.2. 1.000g nicotine and 0.667g lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine lactate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 2.5g ethyl butyrate and 45.833g (25g glycerol, 10.733g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) can be obtained.
实施例9:乙酰丙酸+乳酸复合烟碱盐雾化液(含丁酸乙酯)Example 9: Levulinic acid + lactic acid composite nicotine salt atomization liquid (containing ethyl butyrate)
实施例9-1:丁酸乙酯含量0.5%Example 9-1: Ethyl butyrate content 0.5%
尼古丁与乙酰丙酸与乳酸的摩尔比为1:1:0.2。将1.000g尼古丁,0.716g乙酰丙酸,0.111g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸+乳酸复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入0.25g丁酸乙酯,47.923g(甘油25g,1,2-丙二醇12.823g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid to lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid. After the nicotine salt is cooled to room temperature (20°C-35°C), 0.25g of ethyl butyrate and 47.923g (25g of glycerol, 12.823g of 1,2-propylene glycol, 0.1g of neotame, and 10g of orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例9-2:丁酸乙酯含量1%Example 9-2: Ethyl butyrate content 1%
尼古丁与乙酰丙酸与乳酸的摩尔比为1:1:0.2。将1.000g尼古丁,0.716g乙酰丙酸,0.111g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸+乳酸复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入0.5g丁酸乙酯,47.673g(甘油25g,1,2-丙二醇12.573g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid to lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid. After the nicotine salt is cooled to room temperature (20°C-35°C), 0.5g of ethyl butyrate, 47.673g (25g of glycerol, 12.573g of 1,2-propylene glycol, 0.1g of neotame, 10g of orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例9-3:丁酸乙酯含量3%Example 9-3: Ethyl butyrate content 3%
尼古丁与乙酰丙酸与乳酸的摩尔比为1:1:0.2。将1.000g尼古丁,0.716g乙酰丙酸,0.111g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸+乳酸复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入1.5g丁酸乙酯,46.673g(甘油25g,1,2-丙二醇11.573g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid to lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid. After the nicotine salt is cooled to room temperature (20°C-35°C), 1.5g of ethyl butyrate and 46.673g (25g of glycerol, 11.573g of 1,2-propylene glycol, 0.1g of neotame, and 10g of orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
实施例9-4:丁酸乙酯含量5%Example 9-4: Ethyl butyrate content 5%
尼古丁与乙酰丙酸与乳酸的摩尔比为1:1:0.2。将1.000g尼古丁,0.716g乙酰丙酸,0.111g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到乙酰丙酸+乳酸复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入2.5g丁酸乙酯,45.673g(甘油25g,1,2-丙二醇10.573g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to levulinic acid to lactic acid is 1:1:0.2. 1.000g of nicotine, 0.716g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt of levulinic acid + lactic acid. After the nicotine salt is cooled to room temperature (20°C-35°C), 2.5g of ethyl butyrate and 45.673g (25g of glycerol, 10.573g of 1,2-propylene glycol, 0.1g of neotame, and 10g of orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
对比例1:苯甲酸烟碱盐雾化液Comparative Example 1: Nicotine benzoate salt atomized liquid
对比例1-1Comparative Example 1-1
尼古丁与苯甲酸的摩尔比为1:0.8。将1.000g尼古丁,0.602g苯甲酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到苯甲酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.398g(甘油25g,1,2-丙二醇13.298g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to benzoic acid is 1:0.8. 1.000g nicotine and 0.602g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.398g (25g glycerol, 13.298g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
对比例1-2Comparative Example 1-2
尼古丁与苯甲酸的摩尔比为1:1。将1.000g尼古丁,0.753g苯甲酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到苯甲酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.247g(甘油25g,1,2-丙二醇13.147g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to benzoic acid is 1:1. 1.000g nicotine and 0.753g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.247g (25g glycerol, 13.147g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
对比例1-3Comparative Examples 1-3
尼古丁与苯甲酸的摩尔比为1:1.7。将1.000g尼古丁,1.280g苯甲酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到苯甲酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入47.720g(甘油25g,1,2-丙二醇12.62g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to benzoic acid is 1:1.7. 1.000g nicotine and 1.280g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 47.720g (25g glycerol, 12.62g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
对比例1-4(含丁酸乙酯0.5%)Comparative Example 1-4 (containing 0.5% ethyl butyrate)
尼古丁与苯甲酸的摩尔比为1:1。将1.000g尼古丁,0.753g苯甲酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到苯甲酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入0.25g丁酸乙酯,47.997g(甘油25g,1,2-丙二醇12.897g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to benzoic acid is 1:1. 1.000g nicotine and 0.753g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 0.25g ethyl butyrate and 47.997g (25g glycerol, 12.897g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) can be obtained.
对比例1-5(含丁酸乙酯5%)Comparative Example 1-5 (containing 5% ethyl butyrate)
尼古丁与苯甲酸的摩尔比为1:1。将1.000g尼古丁,0.753g苯甲酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到苯甲酸烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入2.5g丁酸乙酯,45.747g(甘油25g,1,2-丙二醇10.647g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to benzoic acid is 1:1. 1.000g nicotine and 0.753g benzoic acid are added to a 100mL eggplant-shaped flask, and the mixture is sealed and stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain nicotine benzoate salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 2.5g ethyl butyrate and 45.747g (25g glycerol, 10.647g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) can be obtained.
对比例2:苯甲酸-乙酰丙酸-乳酸烟碱盐雾化液Comparative Example 2: Benzoic acid-levulinic acid-lactic acid nicotine salt atomization liquid
对比例2-1Comparative Example 2-1
尼古丁与总酸的摩尔比为1:0.8(尼古丁与苯甲酸、乙酰丙酸、乳酸的摩尔比为1:0.5:0.1:0.2)。将1.000g尼古丁,0.377g苯甲酸,0.072g乙酰丙酸和0.111g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.440g(甘油25g,1,2-丙二醇13.340g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to total acid is 1:0.8 (the molar ratio of nicotine to benzoic acid, levulinic acid, and lactic acid is 1:0.5:0.1:0.2). 1.000g of nicotine, 0.377g of benzoic acid, 0.072g of levulinic acid, and 0.111g of lactic acid are added to a 100mL eggplant-shaped flask, and after sealing, the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.440g (25g of glycerol, 13.340g of 1,2-propylene glycol, 0.1g of neotame, and 10g of orange flavor) of base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) can be obtained.
对比例2-2Comparative Example 2-2
尼古丁与总酸的摩尔比为1:1(尼古丁与苯甲酸、乙酰丙酸、乳酸的摩尔比为1:0.5:0.1:0.4)。将1.000g尼古丁,0.377g苯甲酸,0.072g乙酰丙酸和0.222g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入48.329g(甘油25g,1,2-丙二醇13.229g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to total acid is 1:1 (the molar ratio of nicotine to benzoic acid, levulinic acid, and lactic acid is 1:0.5:0.1:0.4). 1.000g of nicotine, 0.377g of benzoic acid, 0.072g of levulinic acid, and 0.222g of lactic acid are added to a 100mL eggplant-shaped flask, and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours after sealing to obtain a composite nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 48.329g (25g of glycerol, 13.229g of 1,2-propylene glycol, 0.1g of neotame, and 10g of orange flavor) of base liquid are added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) can be obtained.
对比例2-3Comparative Examples 2-3
尼古丁与总酸的摩尔比为1:1.7(尼古丁与苯甲酸、乙酰丙酸、乳酸的摩尔比为1:1.2:0.1: 0.4)。将1.000g尼古丁,0.904个苯甲酸,0.072g乙酰丙酸和0.222g乳酸加入100mL茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,得到复合烟碱盐。在烟碱盐冷至室温(20℃-35℃)后,向瓶中加入47.802g(甘油25g,1,2-丙二醇12.702g,纽甜0.1g,橙子香精10g)基液搅拌混合物10分钟,直至达成视觉上均质的溶液,可得烟碱含量为2%(w/w)的雾化液。The molar ratio of nicotine to total acid is 1:1.7 (the molar ratio of nicotine to benzoic acid, levulinic acid, and lactic acid is 1:1.2:0.1:0.4). 1.000g of nicotine, 0.904 benzoic acid, 0.072g of levulinic acid, and 0.222g of lactic acid are added to a 100mL eggplant-shaped flask, sealed, and the mixture is stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to obtain a composite nicotine salt. After the nicotine salt is cooled to room temperature (20°C-35°C), 47.802g (25g glycerol, 12.702g 1,2-propylene glycol, 0.1g neotame, 10g orange flavor) base liquid is added to the bottle and the mixture is stirred for 10 minutes until a visually homogeneous solution is achieved, and an atomized liquid with a nicotine content of 2% (w/w) is obtained.
感官测试评价实验:Sensory test evaluation experiment:
所述测试例1和2使用的电子烟烟弹为棉芯和网芯发热丝(主要为铁铬合金),测试电压4.14V(标示电压3.7V),测试电阻1.4Ω。The electronic cigarette cartridges used in the test examples 1 and 2 are cotton core and mesh core heating wire (mainly iron-chromium alloy), the test voltage is 4.14V (marked voltage 3.7V), and the test resistance is 1.4Ω.
测试例1:烟碱盐对于烟香味雾化液抽吸香气的影响Test Example 1: Effect of nicotine salt on the aroma of tobacco flavor atomizer liquid
采用实施例4-1的操作条件(65℃下搅拌2h,400RPM),将苯甲酸、乙酰丙酸按照烟碱与乙酰丙酸的化学计量比为1:0.3,1:0.4,1:0.6,1:0.9,1:1,1:1.2和烟碱与苯甲酸的化学计量比为1:1分别配置成烟碱盐;以最终烟碱的含量为2%(w/w)加入烟草风味基液(包含1g云烟浸膏,40g甘油,59g1,2-丙二醇)制成雾化液。Using the operating conditions of Example 4-1 (stirring for 2 h at 65° C., 400 RPM), benzoic acid and levulinic acid were respectively prepared into nicotine salts according to the stoichiometric ratios of nicotine to levulinic acid of 1:0.3, 1:0.4, 1:0.6, 1:0.9, 1:1, 1:1.2 and the stoichiometric ratio of nicotine to benzoic acid of 1:1; a tobacco flavor base liquid (comprising 1 g of Yunyan extract, 40 g of glycerol, and 59 g of 1,2-propylene glycol) was added to prepare an atomized liquid with a final nicotine content of 2% (w/w).
烟香感官评价标准:以苯甲酸烟碱盐雾化液的烟香程度为基准进行对比,如表6所示:Tobacco aroma sensory evaluation standard: The tobacco aroma of nicotine benzoate salt atomized liquid was used as a benchmark for comparison, as shown in Table 6:
表6 烟香感官评价标准Table 6 Sensory evaluation criteria for tobacco aroma
Figure PCTCN2022142085-appb-000010
Figure PCTCN2022142085-appb-000010
烟香评价方法:选择30位评吸技术专家,评吸技术专家按照表1的感官评价标准对各项指标在进行评吸。Tobacco aroma evaluation method: 30 smoking evaluation technical experts were selected, and they evaluated various indicators according to the sensory evaluation standards in Table 1.
烟香评价结果统计:所有评吸技术专家的评吸结果均有效,将各项评吸专家的单项评吸结果求算术平均值,结果保留至一位小数,得到总分如表7。Statistics of tobacco flavor evaluation results: The evaluation results of all smoking evaluation technical experts are valid. The arithmetic mean of the individual evaluation results of each smoking evaluation expert is calculated, and the result is rounded to one decimal place to obtain the total score as shown in Table 7.
表7 烟香评价结果Table 7 Tobacco aroma evaluation results
Figure PCTCN2022142085-appb-000011
Figure PCTCN2022142085-appb-000011
结论:根据评价结果可得,当乙酰丙酸的化学计量与尼古丁相比,小于1时,雾化液的烟香比苯甲酸烟碱雾化液刚浓郁自然,特别是在乙酰丙酸的化学计量与尼古丁相比为0.4-0.9,更特别是在乙酰丙酸的化学计量与尼古丁相比为0.4-0.6,更特别是在乙酰丙酸的化学计量与尼古丁相比为0.6;但乙酰丙酸的化学计量与尼古丁相比,大于1时,会影响烟香,特别是在乙酰丙酸的化学计量与尼古丁在1:1和1:1.2时,雾化液在抽吸时会有突兀的酸气,严重影响了烟香的感受。Conclusion: According to the evaluation results, when the chemical ratio of levulinic acid to nicotine is less than 1, the aroma of the atomized liquid is richer and more natural than that of nicotine benzoate atomized liquid, especially when the chemical ratio of levulinic acid to nicotine is 0.4-0.9, more especially when the chemical ratio of levulinic acid to nicotine is 0.4-0.6, and more especially when the chemical ratio of levulinic acid to nicotine is 0.6; but when the chemical ratio of levulinic acid to nicotine is greater than 1, it will affect the aroma of the smoke, especially when the chemical ratio of levulinic acid to nicotine is 1:1 and 1:1.2, the atomized liquid will have a sudden sour gas when inhaled, which seriously affects the perception of the aroma of the smoke.
本发明人推测,苯甲酸蒸气有很强的刺激性,吸入后易引起咳嗽,可能会影响抽吸者对烟气的 体验,从而并不适合烟香口味的电子烟用;另,本发明人发现一定量的乙酰丙酸内可以修饰烟香,给抽吸者带来更丰富的烟香体验,但乙酰丙酸达到一定程度时,其自身的果酸味就会突发出来,从而影响或掩盖烟草的香气。The inventors speculate that benzoic acid vapor is highly irritating and can easily cause coughing after inhalation, which may affect the smoker's experience of the smoke, and is therefore not suitable for electronic cigarettes with a tobacco flavor. In addition, the inventors found that a certain amount of levulinic acid can modify the tobacco flavor and bring a richer tobacco flavor experience to the smoker, but when levulinic acid reaches a certain level, its own fruity acid taste will suddenly emerge, thereby affecting or masking the aroma of tobacco.
测试例2:烟碱盐对雾化液抽吸甜度的影响Test Example 2: Effect of nicotine salt on the sweetness of atomized liquid
本发明通过检测实施例5(5-1、5-2、5-3)、6(6-1、6-2、6-3),对比例1(1-1、1-2、1-3)、2(2-1、2-2、2-3)雾化液气溶胶中纽甜质量百分浓度来客观描述不同酸烟碱盐对甜度是否有影响,以及影响如何。The present invention objectively describes whether different acid nicotine salts have an effect on sweetness and how the effect is by detecting the mass percentage concentration of neotame in the aerosol of the atomized liquid of Examples 5 (5-1, 5-2, 5-3), 6 (6-1, 6-2, 6-3) and Comparative Examples 1 (1-1, 1-2, 1-3) and 2 (2-1, 2-2, 2-3).
测试方法:通过测试出纽甜的量及溶剂的量,通过下列公式计算纽甜的质量百分数。Test method: By testing the amount of neotame and the amount of solvent, the mass percentage of neotame is calculated by the following formula.
Figure PCTCN2022142085-appb-000012
Figure PCTCN2022142085-appb-000012
测试仪器:test instrument:
测试结果:检测抽吸50口中纽甜的量及溶剂(1,2-丙二醇、甘油)的量,如表8;Test results: The amount of neotame and the amount of solvent (1,2-propylene glycol, glycerol) in 50 puffs were detected, as shown in Table 8;
表8 纽甜、溶剂(1,2-丙二醇、甘油)的量Table 8 Amount of neotame and solvent (1,2-propylene glycol, glycerol)
Figure PCTCN2022142085-appb-000013
Figure PCTCN2022142085-appb-000013
以苯甲酸烟碱盐雾化液气溶胶中纽甜的质量分数为基础,计算其他盐气溶胶中纽甜的质量百分数变化情况如表9,对比图如图3。Based on the mass fraction of neotame in the nicotine benzoate salt aerosol, the mass percentage changes of neotame in other salt aerosols are calculated as shown in Table 9, and the comparison chart is shown in Figure 3.
表9 与苯甲酸烟碱盐雾化液气溶胶中纽甜对比变化量Table 9 Comparison of neotame content in nicotine benzoate salt aerosol
Figure PCTCN2022142085-appb-000014
Figure PCTCN2022142085-appb-000014
Figure PCTCN2022142085-appb-000015
Figure PCTCN2022142085-appb-000015
本测试通过测试含不同酸烟碱盐的雾化液中的纽甜和溶剂的雾化量来评估不同酸烟碱盐对甜感的影响。由测试结果可以看出,乳酸和/或乙酰丙酸尼古丁盐通过对纽甜和溶剂雾化量的同步影响,导致含有乳酸和/或乙酰丙酸尼古丁盐的雾化液气溶胶中比含有苯甲酸类尼古丁盐的雾化液气溶胶中含有更多的纽甜,因而具有更好的甜感。This test evaluates the effect of different acid nicotine salts on sweetness by testing the atomization amount of neotame and solvent in the atomization liquid containing different acid nicotine salts. From the test results, it can be seen that lactic acid and/or levulinic acid nicotine salts have a synchronous effect on the atomization amount of neotame and solvent, resulting in a more neotame in the aerosol of the atomization liquid containing lactic acid and/or levulinic acid nicotine salts than the aerosol of the atomization liquid containing benzoic acid nicotine salts, and thus have a better sweetness.
稳定性测试评价实验:Stability test evaluation experiment:
测试例3:不同酸烟碱盐对降烟碱的影响Test Example 3: Effects of different acid nicotine salts on nornicotine
降烟碱对人体健康产生危害,是潜在致癌物质亚硝基降烟碱(nitrosonornicotine,NNN)的合成前体。降烟碱极易在调制和贮藏过程中产生,不但使烟气质量变劣,同时影响电子雾化液的安全性。所以在烟碱盐的制备过程中,产生的降烟碱越少越好。Nornicotine is harmful to human health and is the synthetic precursor of the potential carcinogen nitrosonornicotine (NNN). Nornicotine is easily produced during the preparation and storage process, which not only deteriorates the quality of smoke, but also affects the safety of electronic atomization liquid. Therefore, in the preparation process of nicotine salt, the less nornicotine produced, the better.
测试方法:分别将2.025g(纯度为99.95%)尼古丁和对应化学计量的酸(选择7个化学计量比的尼古丁和苯甲酸测试,分别为1:0.4,1:0.6,1:1,1:1.2,1:1.6,1:2,1:2.5;选择7个化学计量比的尼古丁和乳酸测试,分别为1:0.4,1:0.6,1:1,1:1.2,1:1.6,1:2,1:2.5)加入茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,定量检测降烟碱总量的变化,“降烟碱的变化量=烟碱盐中降烟碱的总量-所用烟碱中降烟碱的总量”。Test method: 2.025 g (purity of 99.95%) of nicotine and the corresponding stoichiometric acid (7 stoichiometric ratios of nicotine and benzoic acid were selected for testing, which were 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, and 1:2.5 respectively; 7 stoichiometric ratios of nicotine and lactic acid were selected for testing, which were 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, and 1:2.5 respectively) were added into an eggplant-shaped flask, and the mixture was sealed and stirred at 65° C. (magnetic stirring, 400 RPM) for 2 hours to quantitatively detect the change in the total amount of nornicotine, "the change in the amount of nornicotine = the total amount of nornicotine in the nicotine salt - the total amount of nornicotine in the nicotine used".
测试结果:如图4。Test results: as shown in Figure 4.
从结果可以看出,在酸使用量0.4-2当量的区间内,使用乳酸与烟碱共热,产生的降烟碱都比苯甲酸少;不可预料的是,当酸量大于1.1左右当量时,随着酸量增加,“降烟碱的量”减少的速率变大,降幅大于使用苯甲酸的降幅。结果显示,在0.4-1当量区间的少量乳酸的乳酸盐比1-2当量区间的过量苯甲酸的苯甲酸盐也稳定,本发明人推测,乳酸盐体系除了提供烟碱质子化所需的质子外,本身还会使这种烟碱质子化形式和烟碱本身更加稳定,降低了在尼古丁盐制备过程中分解成降烟碱的可能性。From the results, it can be seen that in the range of 0.4-2 equivalents of acid, the use of lactic acid and nicotine co-heating produces less nornicotine than benzoic acid; unexpectedly, when the acid amount is greater than about 1.1 equivalents, as the acid amount increases, the rate of decrease of the "nornicotine amount" becomes larger, and the decrease is greater than the decrease when using benzoic acid. The results show that the lactate of a small amount of lactic acid in the range of 0.4-1 equivalents is also more stable than the benzoate of excess benzoic acid in the range of 1-2 equivalents. The inventors speculate that in addition to providing the protons required for nicotine protonation, the lactate system itself also makes this protonated form of nicotine and nicotine itself more stable, reducing the possibility of decomposition into nornicotine during the preparation of nicotine salts.
测试例4:不同酸烟碱盐对烟碱氮氧化物的影响Test Example 4: Effects of different acid nicotine salts on nicotine nitrogen oxides
烟碱氮氧化合物是检测烟碱氧化程度的重要指标之一。烟碱氮氧化合物的增多不仅会降低烟碱的含量,同时对产品的安全性,口味的稳定性有不好的影响。Nicotine nitrogen oxides are one of the important indicators for detecting the degree of nicotine oxidation. The increase of nicotine nitrogen oxides will not only reduce the nicotine content, but also have a negative impact on the safety of the product and the stability of the taste.
测试方法:分别将2.025g(纯度为99.95%)尼古丁和对应化学计量的酸(选择8个化学计量比的尼古丁和苯甲酸测试,分别为1:0.3,1:0.4,1:0.6,1:1,1:1.2,1:1.6,1:2,1:2.5;选择8个化学计量比的尼古丁和乳酸测试,分别为1:0.3,1:0.4,1:0.6,1:1,1:1.2,1:1.6,1:2,1:2.5;选择8个化学计量比的尼古丁和乙酰丙酸测试,分别为1:0.3,1:0.4,1:0.6,1:1,1:1.2,1:1.6,1:2,1:2.5)加入茄形烧瓶中,密封后将混合物在65℃下搅拌(磁力搅拌,400RPM)持续2小时,定量检测烟碱氮氧化合物总量的变化,“烟碱氮氧化合物的变化量=烟碱盐中烟碱氮氧化合物的总量-所用烟碱中烟碱氮氧化合物的总量”。Test method: 2.025g (purity 99.95%) nicotine and corresponding stoichiometric acid (select 8 stoichiometric ratios of nicotine and benzoic acid for testing, which are 1:0.3, 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, 1:2.5; select 8 stoichiometric ratios of nicotine and lactic acid for testing, which are 1:0.3, 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, 1:2.5; Eight stoichiometric ratios of nicotine and levulinic acid were selected for testing, namely 1:0.3, 1:0.4, 1:0.6, 1:1, 1:1.2, 1:1.6, 1:2, and 1:2.5) were added to an eggplant-shaped flask. After sealing, the mixture was stirred at 65°C (magnetic stirring, 400RPM) for 2 hours to quantitatively detect the change in the total amount of nicotine nitrogen oxides, "change in nicotine nitrogen oxides = total amount of nicotine nitrogen oxides in nicotine salt - total amount of nicotine nitrogen oxides in the nicotine used".
测试结果:结果如图5和图6。Test results: The results are shown in Figures 5 and 6.
从图5结果可以看出,在酸使用量在0.4-2当量的区间内,使用乳酸与烟碱共热,产生的烟碱氮氧化合物都比苯甲酸少;不可预料的是,当酸量大于1.1左右当量时,随着酸量增加,“降烟碱的量”减少的速率变大,降幅大于使用苯甲酸的降幅。结果显示,在0.4-1当量区间的少量乳酸的 乳酸盐比1-2当量区间的过量苯甲酸的苯甲酸盐也稳定,本发明人推测,乳酸盐体系除了提供烟碱质子化所需的质子外,本身还可能使这种烟碱质子化形式和烟碱本身更加稳定,降低了在尼古丁盐制备过程中氧化成氮氧化合物的可能性。As can be seen from the results in Figure 5, when the acid usage is in the range of 0.4-2 equivalents, the nicotine nitrogen oxides produced by co-heating lactic acid and nicotine are less than those produced by benzoic acid; unexpectedly, when the acid usage is greater than about 1.1 equivalents, as the acid usage increases, the rate of decrease in the "nicotine reduction amount" becomes greater, and the decrease is greater than that of using benzoic acid. The results show that the lactate of a small amount of lactic acid in the range of 0.4-1 equivalents is also more stable than the benzoate of an excess of benzoic acid in the range of 1-2 equivalents. The inventors speculate that in addition to providing the protons required for nicotine protonation, the lactate system itself may also make this nicotine protonated form and nicotine itself more stable, reducing the possibility of oxidation to nitrogen oxides during the preparation of nicotine salts.
从图6结果可以看出,乙酰丙酸烟碱盐产生的烟碱氮氧化合物保持在一个相对稳定的量,并且量很少,远远低于苯甲酸烟碱盐,本发明人推测,乙酰丙酸能使烟碱更稳定的原因之一应该是和其自身的结构有关,乙酰丙酸的结构为长链状,在为烟碱提供质子后,其可能更容易包裹住烟碱分子,从而可能会阻碍氧离子进攻烟碱分子,避免其被氧化,这使得烟碱盐体系更加稳定。From the results in FIG. 6 , it can be seen that the amount of nicotine nitrogen oxides produced by nicotine levulinic acid salt is kept at a relatively stable amount, and the amount is very small, which is far lower than that of nicotine benzoate salt. The inventors speculate that one of the reasons why levulinic acid can make nicotine more stable is probably related to its own structure. The structure of levulinic acid is a long chain. After providing protons to nicotine, it may be easier to wrap the nicotine molecules, thereby preventing oxygen ions from attacking the nicotine molecules and preventing them from being oxidized, which makes the nicotine salt system more stable.
电子烟气溶胶粒径测试Electronic cigarette aerosol particle size test
测试例5:丁酸乙酯对气溶胶粒径的影响分析Test Example 5: Analysis of the Effect of Ethyl Butyrate on Aerosol Particle Size
使用的仪器:Instruments used:
1、(东莞飞弘)电子雾化器抽烟机(精密型)1. (Dongguan Feihong) Electronic atomizer smoke machine (precision type)
2、(PALAS)DC 10000(稀释系统)2. (PALAS) DC 10000 (dilution system)
3、(PALAS)U-SMPS/DEMC control unit(通用扫描迁移率粒度仪)3. (PALAS) U-SMPS/DEMC control unit (Universal scanning mobility particle size analyzer)
4、(PALAS)DEMC 2000 Column(集成X射线电离的差分电迁移率分类器)4. (PALAS) DEMC 2000 Column (Differential Electron Mobility Classifier with Integrated X-ray Ionization)
5、(PALAS)UF-CPC 50(凝结粒子计数器)5. (PALAS) UF-CPC 50 (Condensation Particle Counter)
6、使用的电子烟烟弹为棉芯和网芯发热丝(主要为铁铬合金),测试电压4.14V(标示电压3.7V),测试电阻1.4Ω。6. The electronic cigarette cartridge used is a cotton core and a mesh core heating wire (mainly iron-chromium alloy), the test voltage is 4.14V (marked voltage 3.7V), and the test resistance is 1.4Ω.
7、电子雾化器抽烟机参数如表10:7. The parameters of the electronic atomizer smoking machine are shown in Table 10:
表10 电子雾化器抽烟机参数Table 10 Electronic atomizer smoke machine parameters
Figure PCTCN2022142085-appb-000016
Figure PCTCN2022142085-appb-000016
测试方法:Test Methods:
1、将雾化液样品分别取6mL注入2支烟弹中,对实施例(4-3、5-4、6-4、7-1、7-2、7-3、7-4、8-1、8-2、8-3、8-4、9-1、9-2、9-3、9-4)及对比例(1-2、1-4、1-5)进行测试:1. Take 6 mL of the atomized liquid sample and inject it into 2 cigarette cartridges respectively, and test the examples (4-3, 5-4, 6-4, 7-1, 7-2, 7-3, 7-4, 8-1, 8-2, 8-3, 8-4, 9-1, 9-2, 9-3, 9-4) and comparative examples (1-2, 1-4, 1-5):
I组:Group I:
苯甲酸烟碱盐雾化液:对比例1-2Nicotine benzoate salt atomized liquid: Comparative Example 1-2
苯甲酸烟碱盐雾化液+0.5%丁酸乙酯:对比例1-4Nicotine benzoate salt atomized liquid + 0.5% ethyl butyrate: Comparative Examples 1-4
苯甲酸烟碱盐雾化液+5%丁酸乙酯:对比例1-5Nicotine benzoate salt atomized liquid + 5% ethyl butyrate: Comparative Examples 1-5
II组:Group II:
乳酸烟碱盐雾化液:实施例5-4Nicotine lactate salt atomized liquid: Example 5-4
乳酸烟碱盐雾化液+0.5%丁酸乙酯:实施例8-1Nicotine lactate salt atomized liquid + 0.5% ethyl butyrate: Example 8-1
乳酸烟碱盐雾化液+1%丁酸乙酯:实施例8-2Nicotine lactate salt atomized liquid + 1% ethyl butyrate: Example 8-2
乳酸烟碱盐雾化液+3%丁酸乙酯:实施例8-3Nicotine lactate salt atomized liquid + 3% ethyl butyrate: Example 8-3
乳酸烟碱盐雾化液+5%丁酸乙酯:实施例8-4Nicotine lactate salt atomized liquid + 5% ethyl butyrate: Example 8-4
III组:Group III:
乙酰丙酸烟碱盐雾化液:实施例4-3Nicotine levulinate salt aerosol liquid: Example 4-3
乙酰丙酸烟碱盐雾化液+0.5%丁酸乙酯:实施例7-1Nicotine levulinate salt aerosol liquid + 0.5% ethyl butyrate: Example 7-1
乙酰丙酸烟碱盐雾化液+1%丁酸乙酯:实施例7-2Nicotine levulinate salt atomized liquid + 1% ethyl butyrate: Example 7-2
乙酰丙酸烟碱盐雾化液+3%丁酸乙酯:实施例7-3Nicotine levulinate salt atomized liquid + 3% ethyl butyrate: Example 7-3
乙酰丙酸烟碱盐雾化液+5%丁酸乙酯:实施例7-4Nicotine levulinate salt atomized liquid + 5% ethyl butyrate: Example 7-4
IV组:Group IV:
乙酰丙酸+乳酸复合烟碱盐雾化液:实施例6-4Levulinic acid + lactic acid composite nicotine salt atomized liquid: Example 6-4
乙酰丙酸+乳酸复合烟碱盐雾化液+0.5%丁酸乙酯:实施例9-1Levulinic acid + lactic acid composite nicotine salt atomization liquid + 0.5% ethyl butyrate: Example 9-1
乙酰丙酸+乳酸复合烟碱盐雾化液+1%丁酸乙酯:实施例9-2Levulinic acid + lactic acid composite nicotine salt atomization liquid + 1% ethyl butyrate: Example 9-2
乙酰丙酸+乳酸复合烟碱盐雾化液+3%丁酸乙酯:实施例9-3Levulinic acid + lactic acid composite nicotine salt atomization liquid + 3% ethyl butyrate: Example 9-3
乙酰丙酸+乳酸复合烟碱盐雾化液+5%丁酸乙酯:实施例9-4Levulinic acid + lactic acid composite nicotine salt atomization liquid + 5% ethyl butyrate: Example 9-4
2、测试每组样品的气溶胶分布(测试3次),选出稳定的,重复性好的结果进行对比,选取小粒径气溶胶(0.01μm-0.06μm)的粒子数浓度进行对比,对比结果表11,图7(I组),图8(II组),图9(III组),图10(IV组):2. Test the aerosol distribution of each group of samples (test 3 times), select stable and repeatable results for comparison, and select the particle number concentration of small-particle aerosol (0.01μm-0.06μm) for comparison. The comparison results are shown in Table 11, Figure 7 (Group I), Figure 8 (Group II), Figure 9 (Group III), and Figure 10 (Group IV):
表11 电子烟气溶胶的粒子数浓度测试结果Table 11 Particle number concentration test results of electronic cigarette aerosol
Figure PCTCN2022142085-appb-000017
Figure PCTCN2022142085-appb-000017
根据表11可以清晰的看出在小粒径气溶胶(0.01μm-0.06μm)的范围内,苯甲酸烟碱盐雾化液 与其加入0.5%,或1%,或3%,或5%的丁酸乙酯样品粒子数浓度也几乎没有差别;According to Table 11, it can be clearly seen that within the range of small particle size aerosol (0.01 μm-0.06 μm), there is almost no difference in the particle number concentration between the nicotine benzoate salt aerosol liquid and the sample with 0.5%, 1%, 3%, or 5% ethyl butyrate added thereto;
出乎意料的是,在乙酰丙酸烟碱盐雾化液,乳酸烟碱盐雾化液和乙酰丙酸+乳酸复合烟碱盐雾化液的样品中发生了巨大的变化,加入0.5%丁酸乙酯后,样品粒子数浓度减少的总量分别为9760P/cm 3,15418P/cm 3,8229P/cm 3。并且只有在乙酰丙酸烟碱盐雾化液,乳酸烟碱盐雾化液和乙酰丙酸+乳酸复合烟碱盐雾化液中,随着丁酸乙酯量的增多,样品粒子数浓度减少量也大范围增多。 Unexpectedly, a huge change occurred in the samples of nicotine levulinate salt aerosol liquid, nicotine lactate salt aerosol liquid and nicotine levulinate + lactate compound salt aerosol liquid. After adding 0.5% ethyl butyrate, the total amount of sample particle number concentration reduction was 9760P/cm 3 , 15418P/cm 3 , and 8229P/cm 3 , respectively. And only in the nicotine levulinate salt aerosol liquid, nicotine lactate salt aerosol liquid and nicotine levulinate + lactate compound salt aerosol liquid, with the increase of ethyl butyrate, the amount of sample particle number concentration reduction also increased greatly.
说明乙酰丙酸烟碱盐雾化液,乳酸烟碱盐雾化液和乙酰丙酸+乳酸复合烟碱盐雾化液与0.5%,或1%,或3%,或5%丁酸乙酯共同作用下会大大减少雾化出的小粒径气溶胶。It is shown that the small-particle aerosol produced by atomization of nicotine levulinate salt, nicotine lactate salt and nicotine levulinate + lactic acid composite salt can be greatly reduced when the atomized nicotine levulinate salt atomization liquid is combined with 0.5%, 1%, 3% or 5% ethyl butyrate.
电子烟气溶胶的小粒径颗粒浓度变少,大大减少了进入沉积肺泡的粒子,降低了对肺泡的影响。The concentration of small-size particles in e-cigarette aerosol decreases, which greatly reduces the number of particles entering the alveoli for deposition and reduces the impact on the alveoli.
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。This specific embodiment is merely an explanation of the present application and is not a limitation of the present application. After reading this specification, those skilled in the art may make modifications to the present embodiment without any creative contribution as needed. However, as long as it is within the scope of the claims of the present application, it shall be protected by the patent law.

Claims (25)

  1. 一种尼古丁盐制剂,其中尼古丁盐由乳酸与尼古丁制备得到,所述乳酸与尼古丁的摩尔比为(1.1-2):1。A nicotine salt preparation, wherein the nicotine salt is prepared from lactic acid and nicotine, and the molar ratio of the lactic acid to nicotine is (1.1-2):1.
  2. 根据权利要求1所述的尼古丁盐制剂,还包括丁酸乙酯,所述丁酸乙酯的质量分数为0%-5%。The nicotine salt preparation according to claim 1, further comprising ethyl butyrate, wherein the mass fraction of ethyl butyrate is 0%-5%.
  3. 根据权利要求1所述的尼古丁盐制剂,所述尼古丁盐制剂进一步包含溶剂,所述溶剂为水、乙醇、1,2-丙二醇、1,3-丙二醇、丙三醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,2,3-丁三醇、1,2,4-丁三醇中的一种或多种组合。The nicotine salt preparation according to claim 1, further comprising a solvent, wherein the solvent is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
  4. 一种电子雾化液,其含有权利要求1-3任一项所述的尼古丁盐制剂。An electronic atomization liquid, comprising the nicotine salt preparation according to any one of claims 1 to 3.
  5. 根据权利要求4所述的电子雾化液,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有大于0%w/w,小于10%w/w的浓度。According to the electronic atomization liquid of claim 4, the nicotine in the nicotine salt preparation has a concentration greater than 0% w/w and less than 10% w/w in the electronic atomization liquid.
  6. 根据权利要求4所述的电子雾化液,所述电子雾化液进一步包括甜味剂、凉味剂和香料中的一种或多种。The electronic atomization liquid according to claim 4, further comprising one or more of a sweetener, a cooling agent and a flavoring agent.
  7. 一种电子烟烟弹,其包括权利要求4-6任一项所述的电子雾化液。An electronic cigarette cartridge, comprising the electronic atomization liquid according to any one of claims 4 to 6.
  8. 根据权利要求7所述的电子烟烟弹,其还包括雾化元件,所述雾化元件为加热雾化元件或超声波雾化元件。The electronic cigarette cartridge according to claim 7 further comprises an atomizing element, and the atomizing element is a heating atomizing element or an ultrasonic atomizing element.
  9. 一种尼古丁盐制剂,其中尼古丁盐由有机酸与尼古丁制备得到,所述有机酸由乙酰丙酸和乳酸组成,所述乙酰丙酸与乳酸摩尔比从12:1至1:1;所述有机酸与尼古丁的摩尔比从0.6:1至2:1。A nicotine salt preparation, wherein the nicotine salt is prepared from an organic acid and nicotine, the organic acid consists of levulinic acid and lactic acid, the molar ratio of the levulinic acid to the lactic acid is from 12:1 to 1:1; the molar ratio of the organic acid to nicotine is from 0.6:1 to 2:1.
  10. 根据权利要求9所述的尼古丁盐制剂,还包括丁酸乙酯,所述丁酸乙酯的质量分数为0%-5%。The nicotine salt preparation according to claim 9, further comprising ethyl butyrate, wherein the mass fraction of ethyl butyrate is 0%-5%.
  11. 根据权利要求9所述的尼古丁盐制剂,所述尼古丁盐制剂进一步包含溶剂,所述溶剂为水、乙醇、1,2-丙二醇、1,3-丙二醇、丙三醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,2,3-丁三醇、1,2,4-丁三醇中的一种或多种组合。The nicotine salt preparation according to claim 9, further comprising a solvent, wherein the solvent is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
  12. 一种电子雾化液,其含有权利要求9-11任一项所述的尼古丁盐制剂。An electronic atomization liquid, comprising the nicotine salt preparation according to any one of claims 9 to 11.
  13. 根据权利要求12所述的电子雾化液,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有大于0%w/w,小于10%w/w的浓度。According to the electronic atomization liquid of claim 12, the nicotine in the nicotine salt preparation has a concentration greater than 0% w/w and less than 10% w/w in the electronic atomization liquid.
  14. 根据权利要求12所述的电子雾化液,所述电子雾化液进一步包括甜味剂、凉味剂和香料中的一种或多种。The electronic atomization liquid according to claim 12, further comprising one or more of a sweetener, a cooling agent and a flavoring agent.
  15. 一种电子烟烟弹,其包括权利要求12-14任一项所述的电子雾化液。An electronic cigarette cartridge, comprising the electronic atomization liquid according to any one of claims 12 to 14.
  16. 根据权利要求15所述的电子烟烟弹,其还包括雾化元件,所述雾化元件为加热雾化元件或超声波雾化元件。The electronic cigarette cartridge according to claim 15 further comprises an atomizing element, wherein the atomizing element is a heating atomizing element or an ultrasonic atomizing element.
  17. 一种尼古丁盐制剂,其中尼古丁盐由乙酰丙酸与尼古丁制备得到,所述乙酰丙酸与尼古丁的摩尔比从0.4:1至0.9:1。A nicotine salt preparation, wherein the nicotine salt is prepared from levulinic acid and nicotine, and the molar ratio of levulinic acid to nicotine is from 0.4:1 to 0.9:1.
  18. 根据权利要求17所述的尼古丁盐制剂,还包括丁酸乙酯,所述丁酸乙酯的质量分数为0%-5%。The nicotine salt preparation according to claim 17, further comprising ethyl butyrate, wherein the mass fraction of ethyl butyrate is 0%-5%.
  19. 根据权利要求17所述的尼古丁盐制剂,所述尼古丁盐制剂进一步包含溶剂,所述溶剂为水、乙醇、1,2-丙二醇、1,3-丙二醇、丙三醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,2,3-丁三醇、1,2,4-丁三醇中的一种或多种组合。The nicotine salt preparation according to claim 17, further comprising a solvent, wherein the solvent is one or more combinations of water, ethanol, 1,2-propylene glycol, 1,3-propylene glycol, glycerol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, 1,2,3-butylene triol, and 1,2,4-butylene triol.
  20. 一种电子雾化液,其含有权利要求17-19任一项所述的尼古丁盐制剂。An electronic atomization liquid comprising the nicotine salt preparation according to any one of claims 17 to 19.
  21. 根据权利要求20所述的电子雾化液,所述尼古丁盐制剂中的尼古丁在所述电子雾化液中具有大于0%w/w,小于10%w/w的浓度。According to the electronic atomization liquid of claim 20, the nicotine in the nicotine salt preparation has a concentration greater than 0% w/w and less than 10% w/w in the electronic atomization liquid.
  22. 根据权利要求20所述的电子雾化液,所述电子雾化液进一步包括甜味剂、凉味剂和香料中的一种或多种。According to the electronic atomization liquid of claim 20, the electronic atomization liquid further comprises one or more of a sweetener, a cooling agent and a flavoring agent.
  23. 一种电子烟烟弹,其包括权利要求20-22任一项所述的电子雾化液。An electronic cigarette cartridge comprising the electronic atomization liquid according to any one of claims 20 to 22.
  24. 根据权利要求23所述的电子烟烟弹,其还包括雾化元件,所述雾化元件为加热雾化元件或超声波雾化元件。The electronic cigarette cartridge according to claim 23 further comprises an atomizing element, wherein the atomizing element is a heating atomizing element or an ultrasonic atomizing element.
  25. 权利要求1-3、9-11、17-19任一项尼古丁盐制剂在烟草香、水果香或花香电子雾化液中的用途。Use of the nicotine salt preparation of any one of claims 1-3, 9-11, 17-19 in electronic atomization liquid with tobacco flavor, fruit flavor or flower flavor.
PCT/CN2022/142085 2022-09-28 2022-12-26 Nicotine salt and atomized liquid thereof, vape cartridge and use WO2024066095A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211192853 2022-09-28
CN202211192853.0 2022-09-28

Publications (1)

Publication Number Publication Date
WO2024066095A1 true WO2024066095A1 (en) 2024-04-04

Family

ID=86813798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142085 WO2024066095A1 (en) 2022-09-28 2022-12-26 Nicotine salt and atomized liquid thereof, vape cartridge and use

Country Status (2)

Country Link
CN (1) CN116268525A (en)
WO (1) WO2024066095A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104382223A (en) * 2014-10-22 2015-03-04 浙江中烟工业有限责任公司 Solvent suitable for preparation of fruity nicotine liquid, and nicotine liquid and electronic cigarette prepared by solvent
CN110250557A (en) * 2019-07-10 2019-09-20 四川领歌智谷科技有限公司 A kind of fragrant liquor electronic cigarette tobacco tar and preparation method thereof
CN110786538A (en) * 2019-09-03 2020-02-14 深圳昱朋科技有限公司 Nicotine formulation, preparation method thereof and electronic cigarette oil
CN111772225A (en) * 2020-07-08 2020-10-16 深圳市卓力能电子有限公司 Nicotine salt atomized liquid and preparation method thereof
WO2022152529A1 (en) * 2021-01-12 2022-07-21 Ventus Medical Limited Aerosolizable nicotine-containing formulations
US20220232890A1 (en) * 2019-10-24 2022-07-28 Nerudia Limited Smoking substitute system
CN114983001A (en) * 2021-03-02 2022-09-02 深圳雾灵科技有限公司 Additive for tobacco products, preparation method and application thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104382223A (en) * 2014-10-22 2015-03-04 浙江中烟工业有限责任公司 Solvent suitable for preparation of fruity nicotine liquid, and nicotine liquid and electronic cigarette prepared by solvent
CN110250557A (en) * 2019-07-10 2019-09-20 四川领歌智谷科技有限公司 A kind of fragrant liquor electronic cigarette tobacco tar and preparation method thereof
CN110786538A (en) * 2019-09-03 2020-02-14 深圳昱朋科技有限公司 Nicotine formulation, preparation method thereof and electronic cigarette oil
US20220232890A1 (en) * 2019-10-24 2022-07-28 Nerudia Limited Smoking substitute system
CN111772225A (en) * 2020-07-08 2020-10-16 深圳市卓力能电子有限公司 Nicotine salt atomized liquid and preparation method thereof
WO2022152529A1 (en) * 2021-01-12 2022-07-21 Ventus Medical Limited Aerosolizable nicotine-containing formulations
CN114983001A (en) * 2021-03-02 2022-09-02 深圳雾灵科技有限公司 Additive for tobacco products, preparation method and application thereof

Also Published As

Publication number Publication date
CN116268525A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
Lindinger et al. Proton-transfer-reaction mass spectrometry (PTR–MS): on-line monitoring of volatile organic compounds at pptv levels
US6428624B1 (en) Method of providing flavorful and aromatic compounds
KR20170065639A (en) Solution comprising nicotine in unprotonated from and protonated form
CN110946315A (en) Electronic cigarette liquid
CN113038842B (en) Aerosol formulation
CN111165884A (en) Electronic cigarette liquid without or with little glycerin
UA127838C2 (en) Aerosolisable formulation
WO2024066095A1 (en) Nicotine salt and atomized liquid thereof, vape cartridge and use
CN113812665B (en) Electronic cigarette atomized liquid containing betelnut citrate salt and preparation method thereof
Lu et al. Progress in quantification of nicotine content and form distribution in electronic cigarette liquids and aerosols
CN111109647A (en) Flavor composition and electronic cigarette liquid containing same
CN110495631B (en) Electronic cigarette liquid
WO2022121450A1 (en) E-liquid and atomization device containing same
JP2021523690A (en) Evaporable formulation
CN111296884A (en) Electronic cigarette liquid
CN113558279A (en) Electronic cigarette liquid and atomization device containing same
CN111296883A (en) Electronic cigarette liquid
CN107817195A (en) Particle size distribution measuring method of the electronic cigarette solution additive in flue gas aerosol
CN114745973B (en) Composition comprising less than 50% by weight of 1, 3-propanediol of an electronic vaping liquid composition
CN116548654B (en) Tobacco essence capable of reducing smoke stimulation and preparation method and application thereof
CN114009825B (en) Electronic atomized liquid and atomization device comprising same
CN111296882A (en) Electronic cigarette liquid
WO2021102654A1 (en) Electronic cigarette liquid
WO2021102652A1 (en) E-liquid
CN116120989B (en) Spice with sweet fruit flavor and compound flavor and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960690

Country of ref document: EP

Kind code of ref document: A1