WO2024066040A1 - 一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用 - Google Patents

一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用 Download PDF

Info

Publication number
WO2024066040A1
WO2024066040A1 PCT/CN2022/137052 CN2022137052W WO2024066040A1 WO 2024066040 A1 WO2024066040 A1 WO 2024066040A1 CN 2022137052 W CN2022137052 W CN 2022137052W WO 2024066040 A1 WO2024066040 A1 WO 2024066040A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc oxide
phosphate
zinc
coating
nanorod
Prior art date
Application number
PCT/CN2022/137052
Other languages
English (en)
French (fr)
Inventor
高昂
赵飞龙
王怀雨
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2024066040A1 publication Critical patent/WO2024066040A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • A61L27/425Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix of phosphorus containing material, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1241Metallic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1295Process of deposition of the inorganic material with after-treatment of the deposited inorganic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/404Biocides, antimicrobial agents, antiseptic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/06Coatings containing a mixture of two or more compounds

Definitions

  • the invention relates to the technical field of medical materials, and in particular to a zinc oxide/zinc phosphate nanorod composite antibacterial coating and a preparation method and application thereof.
  • biomedical metal materials titanium and titanium alloys have been widely used in artificial joints, dental implants, orthopedic prostheses and other fields; biomedical polymer materials polyetheretherketone are also widely used in intervertebral fusion and craniofacial injury repair.
  • biomedical polymer materials polyetheretherketone are also widely used in intervertebral fusion and craniofacial injury repair.
  • postoperative infection greatly affects the effect of surgery, and postoperative infection of some implants is often catastrophic.
  • postoperative infection of implants in artificial joint replacement surgery requires secondary surgical debridement, which brings serious physiological, mental and economic burdens to patients.
  • Postoperative infection is generally caused by bacteria that adhere to and colonize on the surface of medical materials.
  • preparing an antibacterial coating on the surface of medical materials can greatly reduce the occurrence of postoperative infection.
  • its biological toxicity needs to be considered at the same time, so that the antibacterial coating has excellent anti-infection properties while not delaying or even hindering the repair process of the tissue.
  • the present invention provides a zinc oxide/zinc phosphate nanorod composite antibacterial coating and a preparation method and application thereof.
  • the first aspect of the present invention provides a method for preparing a zinc oxide/zinc phosphate nanorod composite antibacterial coating, which comprises first preparing a zinc oxide nanorod coating on the surface of a medical material; and then converting the zinc oxide in the zinc oxide nanorod coating into zinc phosphate by a water bath treatment in a phosphate or hydrogen phosphate solution, thereby preparing a zinc oxide/zinc phosphate nanorod composite antibacterial coating with a nano-morphology.
  • the method specifically comprises the following steps: step 1, preparing a zinc oxide seed layer on the surface of the medical material, and then forming a zinc oxide nanorod coating on the zinc oxide seed layer by hydrothermal treatment to obtain a medical material loaded with the zinc oxide nanorod coating; step 2, immersing the medical material loaded with the zinc oxide nanorod coating in a phosphate or hydrogen phosphate solution for phosphorylation, and controlling the conversion ratio of zinc oxide to zinc phosphate by adjusting the reaction conditions to obtain a zinc oxide/zinc phosphate nanorod composite antibacterial coating.
  • the reaction conditions of step 2 are: controlling the pH value of the reaction system to 8.0-10.0, the temperature to 20° C.-100° C., and the reaction time to 1 h-24 h.
  • the reaction conditions of step 2 are: controlling the pH value of the reaction system to 8.0, the temperature to 60° C., and the reaction time to 2 h.
  • the phosphate or hydrogen phosphate solution is a mixture of one or more of potassium phosphate, sodium phosphate, dipotassium hydrogen phosphate, disodium hydrogen phosphate, potassium dihydrogen phosphate or sodium dihydrogen phosphate. That is, the phosphate or hydrogen phosphate solution includes but is not limited to potassium salt, and may also be phosphates or hydrogen phosphates of other metal elements.
  • the concentration of the phosphate or hydrogen phosphate solution is 0.01 mol/L-0.5 mol/L.
  • the concentration of the phosphate or hydrogen phosphate solution is 0.1 mol/L.
  • the step one specifically includes the following steps: preparing a mixed solution: dissolving zinc acetate (Zn(CH 3 COO) 2 •2H 2 O) and ethanolamine in ethanol, and stirring at room temperature for 5 h to form a mixed solution; wherein the concentrations of the zinc acetate, ethanolamine and ethanol are all 0.05 mol/L; performing a spin coating process: fixing the sample on a spin coater, taking 60 ml of the mixed solution and dripping it on the surface of the sample, and then placing the sample in an oven at 120° C. for 10 min; preparing a sample to form a zinc oxide seed layer: after repeating the spin coating process three times, transferring the sample to a muffle furnace and treating it at 500° C.
  • preparing a mixed solution dissolving zinc acetate (Zn(CH 3 COO) 2 •2H 2 O) and ethanolamine in ethanol, and stirring at room temperature for 5 h to form a mixed solution; wherein the concentrations of the zinc acetate,
  • preparing a zinc oxide nanorod coating placing the sample to form a zinc oxide seed layer in a hydrothermal reactor, and heating the sample in a mixture containing 0.025 mol/L zinc nitrate (Zn(NO 3 ) 2 •6H 2 O) and 0.025
  • the zinc oxide nanorod coating is obtained by treating the sample in an aqueous solution of 1 mol/L hexamethylenetetramine at 90°C for 5 h.
  • the sample is a medical material or a medical implant material.
  • the second aspect of the present invention provides a zinc oxide/zinc phosphate nanorod composite antibacterial coating, such as the zinc oxide/zinc phosphate nanorod composite antibacterial coating prepared by the above-mentioned method for preparing the zinc oxide/zinc phosphate nanorod composite antibacterial coating.
  • the third aspect of the present invention also provides the use of the zinc oxide/zinc phosphate nanorod composite antibacterial coating in the field of medical materials, especially in the field of medical implant materials.
  • the technical solution provided by the present invention has at least the following advantages:
  • the present invention provides a zinc oxide/zinc phosphate nanorod composite antibacterial coating and a preparation method and application thereof.
  • the preparation method first prepares a zinc oxide nanorod coating on the surface of a medical material, and then performs a water bath treatment in a phosphate or hydrogen phosphate solution to convert the zinc oxide part in the zinc oxide nanorod coating into zinc phosphate with a lower degradation rate.
  • the conversion ratio of zinc phosphate can be adjusted by adjusting the parameters of the water bath treatment, thereby adjusting the overall degradation rate of the coating.
  • the coating can be uniformly and efficiently prepared on the surface of a medical material with a complex shape, and the process is simple, low-cost, and suitable for batch and industrial production.
  • the prepared zinc oxide/zinc phosphate composite coating with nano-morphology not only has good anti-infection ability, but also greatly reduces the biological toxicity of the original zinc oxide nanorod coating. Among them, by controlling the appropriate zinc phosphate conversion ratio, the appropriate amount of zinc ions released during the degradation process can be achieved, thereby achieving the purpose of promoting tissue healing.
  • the zinc oxide/zinc phosphate composite coating is used as an antibacterial coating in the medical field to obtain medical materials with dual functions of anti-infection and healing promotion, which can reduce the occurrence of post-implantation infection, especially on the surface of orthopedic hard tissue implant materials, such as metal-based titanium and titanium alloys, medical stainless steel, etc. At the same time, the coating gives the surface of medical materials anti-infection ability without biological toxicity and can promote tissue repair.
  • FIG1a is a scanning electron microscope photograph of the surface of the Ti-ZnO sample in Example 1;
  • FIG1b is a scanning electron microscope photograph of the surface of the Ti-ZnP0.5 sample in Example 1;
  • FIG1c is a scanning electron microscope photograph of the surface of the Ti-ZnP1 sample in Example 1;
  • FIG1d is a scanning electron microscope photograph of the surface of the Ti-ZnP2 sample in Example 1;
  • FIG1e is a scanning electron microscope photograph of the surface of the Ti-ZnP3 sample in Example 1;
  • FIG2 is a scanning electron microscope photograph of a sample obtained after treating the Ti-ZnO sample in an aqueous solution containing 0.1 M potassium dihydrogen phosphate (K 2 HPO 4 ⁇ 3H 2 O) at 60° C., 70° C. and 80° C. for 2 h in Example 2;
  • K 2 HPO 4 ⁇ 3H 2 O potassium dihydrogen phosphate
  • FIG3a is a transmission electron microscope photograph of the surface of the Ti-ZnO sample in Example 3.
  • FIG3 b is a transmission electron microscope photograph of the surface of the Ti-ZnP1 sample in Example 3.
  • FIG3c is a transmission electron microscope photograph of the surface of the Ti-ZnP2 sample in Example 3.
  • FIG4a is an X-ray diffraction analysis of each group of samples in Example 4.
  • FIG4 b is a full spectrum of X-ray photoelectron spectroscopy of each group of samples in Example 4.
  • FIG4c is the atomic percentage of the surface elements of each group of treated samples in Example 4.
  • FIG4d is the hydrophilicity and hydrophobicity of the surface of each group of treated samples in Example 4.
  • FIG5 is a scanning electron microscope photograph of the surfaces of each group of samples in Example 5 after a scratch test
  • Fig. 6 is the release trend of zinc ions after each group of samples in Example 6 were immersed in Hank's buffer for 30 days;
  • FIG7 is a scanning electron microscope photograph of the sample surface of each group of samples in Example 7 at various time points after being immersed in Hank's buffer for 30 minutes;
  • FIG8 is a graph showing the proliferation of bone marrow mesenchymal stem cells after culture on the surface of each group of samples in Example 8;
  • FIG9a is the alkaline phosphatase activity of bone marrow mesenchymal stem cells after they were induced to differentiate into osteoblasts on the surface of each group of samples in Example 9;
  • FIG9b is a diagram showing the collagen secretion of bone marrow mesenchymal stem cells after they were induced to differentiate into osteoblasts on the surface of each group of samples in Example 9;
  • FIG9c is a diagram showing the mineralization of the extracellular matrix after bone marrow mesenchymal stem cells were induced to differentiate into osteoblasts on the surface of each group of samples in Example 9;
  • FIG10a is a photograph showing the survival of Staphylococcus aureus and Escherichia coli cultured on the surface of each group of samples detected by the plate coating method in Example 10;
  • FIG. 10 b shows the antibacterial rates of the surfaces of each group of samples against Staphylococcus aureus and Escherichia coli calculated in Example 10.
  • the inventors found that the zinc oxide nanorod coating has the advantages of simple preparation process, low cost, and suitable for preparation on large-area complex surfaces. More importantly, the zinc oxide nanorod coating has broad-spectrum antibacterial activity and is expected to be widely used as an antibacterial coating in the field of medical materials. It is generally believed that the broad-spectrum antibacterial properties of zinc oxide nanorod arrays come from three aspects: 1) the bactericidal effect of zinc ions released by coating degradation; 2) the destructive effect of reactive oxygen free radicals (ROS) generated by zinc oxide itself as a semiconductor material on the cell membrane, cytoplasm and genetic material of bacteria; 3) the physical puncture effect of nanorod morphology on the cell wall of bacteria.
  • ROS reactive oxygen free radicals
  • the inventors have found that by phosphorylating the zinc oxide nanorod coating prepared on the surface of the material and converting it partially into zinc phosphate, the degradation rate of the coating can be reduced while maintaining its nanorod morphology and excellent antibacterial properties.
  • the zinc ions released at a suitable degradation rate will not only not cause biological toxicity, but also promote the repair function of tissue cells.
  • the present invention provides a method for preparing a zinc oxide/zinc phosphate composite coating with nanorod morphology on the surface of a medical material.
  • the coating has good anti-infection performance, does not produce biological toxicity, and can promote tissue repair.
  • the feasibility of the present invention is demonstrated by using pure titanium, a metal-based medical orthopedic implant material, as a substrate and constructing a zinc oxide/zinc phosphate nanorod composite coating on its surface.
  • Zinc acetate (Zn(CH 3 COO) 2 •2H 2 O) and ethanolamine were dissolved in ethanol to a concentration of 0.05 M and stirred at room temperature for 5 hours.
  • Ti was fixed on a spin coater and 60 ml of the above solution was dripped onto the Ti surface.
  • the sample was placed in an oven and treated at 120°C for 10 min. After the above treatment was repeated three times, the sample was transferred to a muffle furnace and treated at 500°C for 30 min to form a ZnO "seed layer" on the Ti surface.
  • the sample was then placed in a hydrothermal autoclave and treated at 90°C for 5 h in an aqueous solution containing 0.025 M zinc nitrate (Zn(NO 3 ) 2 •6H 2 O) and 0.025 M hexamethylenetetramine to obtain a zinc oxide nanorod coating.
  • the obtained sample is labeled Ti-ZnO.
  • M is "mol/L”.
  • Ti-ZnO Further treatment of Ti-ZnO in an aqueous solution containing 0.1 M potassium dihydrogen phosphate (K 2 HPO 4 ⁇ 3H 2 O) at 60°C for several hours can partially convert the zinc oxide nanorod arrays into zinc phosphate.
  • the obtained samples are labeled Ti-ZnP0.5, Ti-ZnP1, Ti-ZnP2, and Ti-ZnP3, where the numbers represent the number of hours of treatment.
  • FIGS. 1a-e are SEM images of zinc oxide nanorod coating, Ti-ZnP0.5, Ti-ZnP1, Ti-ZnP2, and Ti-ZnP3, respectively. It can be seen from the figure that when the reaction time is 0.5 h, the surface morphology is basically unchanged compared to the zinc oxide nanorod coating. After 1 h of reaction, the bottom of the nanorods began to transform into a block, and this change was more obvious after 2 h and 3 h.
  • Example 2 After the Ti-ZnO in Example 1 was treated in an aqueous solution containing 0.1 M potassium dihydrogen phosphate (K 2 HPO 4 ⁇ 3H 2 O) at 60°C, 70°C and 80°C for 2 h, the surface morphology of different samples was observed using a scanning electron microscope (SEM) ( Figure 2). It can be seen from the figure that as the temperature increases, the trend of the bottom of the nanorods converting into a block becomes more obvious, indicating that the increase in temperature is more conducive to the conversion of zinc oxide to zinc phosphate.
  • SEM scanning electron microscope
  • Figures 3a-c are TEM images of the zinc oxide nanorod coating, Ti-ZnP1, and Ti-ZnP2, respectively. As shown in Figure 3a, the interplanar spacing of 1.92 nm corresponds to the zinc oxide crystals. In the samples with a reaction time of 1 h ( Figure 3b) and 2 h ( Figure 3c), the crystal structures of zinc oxide and zinc phosphate can be observed simultaneously. This indicates that after being treated in a hydrogen phosphate solution, part of the zinc oxide in the zinc oxide nanorod coating was converted into zinc phosphate.
  • the crystal structure of the coating was analyzed by X-ray diffraction (XRD). As shown in Figure 4a, the coating on the surface of Ti-ZnP1 and Ti-ZnP2 samples contains both zinc oxide and zinc phosphate crystals.
  • the sample surface was scanned by X-ray photoelectron spectroscopy (XPS) wide field, and the XPS full spectrum shown in Figure 4b was obtained.
  • the intensity of the characteristic peak represents the content of the element on the surface. Comparing the spectra of different groups of samples, it can be seen that the characteristic peaks of phosphorus are added on the surface of Ti-ZnP1 and Ti-ZnP2 samples.
  • Figure 4c is the atomic percentage of each element on the surface of the material obtained by XPS analysis.
  • the surface of Ti and Ti-ZnO samples basically does not contain phosphorus, while the phosphorus content on the surface of Ti-ZnP1 and Ti-ZnP2 samples is greatly increased, indicating that the hydrothermal treatment in hydrogen phosphate can successfully convert zinc oxide into zinc phosphate.
  • Figure 4d shows the static water contact angle results of each group of samples.
  • the horizontal axis is the sample name, and the vertical axis is the degree of the contact angle.
  • the contact angle of the untreated Ti sample is about 60°; after the zinc oxide nanorod coating is prepared on the Ti surface, the contact angle is reduced to about 22°; after the zinc oxide is partially converted into zinc phosphate, the contact angle is further reduced.
  • the scratch test was used to detect the bonding strength between the formed coating and the substrate. After a scratch was formed on the sample surface, the coating shedding on both sides of the scratch was observed using SEM. As shown in Figure 5, there was no cracking or large-scale shedding at the scratch edges of the three samples, indicating that the coating prepared by the present invention had good bonding strength with the substrate.
  • each group of samples was immersed in Hank’s buffer and stored at 37°C to detect the release of zinc ions under physiological conditions simulating the body. As shown in Figure 6, each group of samples can continuously release zinc ions within the 30-day test period. Among them, the Ti-ZnO sample has the fastest release rate, followed by the Ti-ZnP1 sample, and the Ti-ZnP2 sample has the slowest release rate of zinc ions. This shows that converting part of zinc oxide into zinc phosphate can significantly reduce the release rate of zinc ions.
  • Figure 8 shows the cell proliferation obtained by using the CCK-8 detection kit after the cells were cultured on the sample surface for 1 day, 3 days, and 5 days.
  • the horizontal axis is the number of days of cell culture, and the vertical axis is the absorbance of the corresponding hole of the detection kit at a wavelength of 450 nm. The higher the absorbance, the faster the proliferation. It can be seen from the results that the cells cultured on the Ti surface can proliferate normally with the increase of culture time, while the cells on the Ti-ZnO surface completely lose their activity after 1 day of culture due to the strong cytotoxicity of zinc oxide.
  • the Ti-ZnP1 sample reduces the toxicity of the Ti-ZnO sample, it still inhibits cell activity to a certain extent compared with Ti.
  • the cells on the surface of the Ti-ZnP2 sample are basically the same as those on the Ti surface.
  • Bone marrow mesenchymal stem cells on the surface of each group of samples were cultured in osteoinduction medium for 3 days, 7 days and 14 days to differentiate into osteoblasts, and then the activity of alkaline phosphatase (ALP), a marker enzyme in the early stage of osteoblast formation (Figure 9a), the collagen secreted by cells (Figure 9b), and the mineralization of the extracellular matrix (Figure 9c) were detected.
  • ALP alkaline phosphatase
  • Figure 9a a marker enzyme in the early stage of osteoblast formation
  • Figure 9b the collagen secreted by cells
  • Figure 9c the mineralization of the extracellular matrix
  • Staphylococcus aureus and Escherichia coli were cultured on the surface of each group of samples to detect the antibacterial properties of the sample surface.
  • the Ti surface has no antibacterial effect, and the ZnO surface has the best antibacterial effect, which can kill almost all bacteria on the surface.
  • the antibacterial effect of Ti-ZnP1 and Ti-ZnP2 surfaces is slightly worse, the calculated antibacterial rate is also above 90%. The above results prove that Ti-ZnP1 and Ti-ZnP2 samples have excellent anti-infection ability.

Abstract

一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用。该制备方法包括先在医用材料表面制备氧化锌纳米棒涂层;再通过在磷酸盐或磷酸氢盐溶液中水浴处理的方法将所述氧化锌纳米棒涂层中的氧化锌转换成磷酸锌,从而制得具有纳米形貌的氧化锌/磷酸锌纳米棒复合抗菌涂层。该制备方法首先在医用材料表面制备氧化锌纳米棒涂层,然后在磷酸盐或磷酸氢盐溶液中水浴处理将氧化锌纳米棒涂层中的氧化锌部分转换成降解速率更低的磷酸锌。通过调控水浴处理的参数可以调控磷酸锌的转换比例,从而调控涂层的整体降解速率。该涂层可以均匀、高效地制备于形状复杂的医用材料表面,其工艺过程简单、成本低廉、适用于批量及工业化生产。

Description

一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用 技术领域
本发明涉及医用材料领域技术领域,具体涉及一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用。
背景技术
随着生物材料产业的发展,临床上医用材料在人体组织损伤修复方面有着广泛的应用。例如生物医用金属材料钛及钛合金已经广泛应用于人工关节、牙科植入体、骨科假体等领域;生物医用高分子材料聚醚醚酮也在椎间融合器、颅面损伤修复方面有着广泛的应用。然而在实际临床应用中,医用材料仍面对着细菌感染这个亟需解决的问题。术后感染的发生在很大程度上影响着手术的效果,而某些植入体术后感染往往是灾难性的。例如人工关节置换手术的植入体术后感染需要二次手术清创处理,给患者带来严重的生理、精神和经济负担。术后感染一般是由粘附并定殖于医用材料表面的细菌引起的。因此在医用材料表面制备抗菌涂层,能够极大程度上减少术后感染的发生。另外,在材料表面引入抗菌涂层时需要同时对其生物学毒性进行考量,使抗菌涂层具有优异抗感染性能的同时不能延缓甚至阻碍组织的修复进程。
因此,在医用材料表面制备同时兼具抗感染和促组织愈合能力的涂层对于医用材料领域具有重要意义。
技术问题
为解决上述技术问题,本发明提供一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用。
技术解决方案
为实现上述目的,本发明采用的技术方案如下:
本发明第一方面提供一种氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法,该方法包括先在医用材料表面制备氧化锌纳米棒涂层;再通过在磷酸盐或磷酸氢盐溶液中水浴处理的方法将所述氧化锌纳米棒涂层中的氧化锌转换成磷酸锌,从而制得具有纳米形貌的氧化锌/磷酸锌纳米棒复合抗菌涂层。
优选的,该方法具体包括以下步骤:步骤一、在医用材料表面制备氧化锌种子层,然后通过水热处理在所述氧化锌种子层上形成氧化锌纳米棒涂层,获得负载有氧化锌纳米棒涂层的医用材料;步骤二、将所述负载有氧化锌纳米棒涂层的医用材料浸入至磷酸盐或磷酸氢盐溶液中进行磷酸化处理,通过调控反应条件控制氧化锌向磷酸锌的转换比例,获得氧化锌/磷酸锌纳米棒复合抗菌涂层。
优选的,所述步骤二的反应条件为:控制反应体系的pH值为8.0-10.0,温度为20℃-100℃,反应时间为1 h-24 h。
优选的,所述步骤二的反应条件为:控制反应体系的pH值为8.0,温度为60℃,反应时间为2 h。
优选的,所述磷酸盐或磷酸氢盐溶液为磷酸钾、磷酸钠、磷酸氢二钾、磷酸氢二钠、磷酸二氢钾或磷酸二氢钠中的一种或多种混合。即,所述磷酸盐或磷酸氢盐溶液包括且不限于钾盐,也可以是其他金属元素的磷酸盐或磷酸氢盐。
优选的,所述磷酸盐或磷酸氢盐溶液的浓度为0.01 mol/L-0.5 mol/L。
优选的,所述磷酸盐或磷酸氢盐溶液的浓度为0.1 mol/L。
优选的,所述步骤一具体包括以下步骤,配制混合溶液:将醋酸锌(Zn(CH 3COO) 2•2H 2O)与乙醇胺(ethanolamine)溶解于乙醇中,并且室温搅拌5 h,形成混合溶液;其中,所述醋酸锌、乙醇胺和乙醇的浓度均为0.05mol/L;进行旋涂处理:将样品固定于旋涂仪,并取60 ml以上所述混合溶液滴加于所述样品的表面后,将所述样品至于烘箱中于120℃处理10 min;制备形成氧化锌种子层的样品:将所述旋涂处理重复三次后,将所述样品转移至马弗炉中于500℃处理30 min,从而在样品表面形成氧化锌种子层;制备氧化锌纳米棒涂层:将形成氧化锌种子层的样品放入水热釜中,在含有0.025 mol/L硝酸锌(Zn(NO 3) 2 •6H 2O)和0.025 mol/L六亚甲基四胺(hexamethylenetetramine)的水溶液中于90℃处理5 h,获得所述氧化锌纳米棒涂层。其中,所述的样品为医用材料、医用植入材料。
本发明第二方面提供一种氧化锌/磷酸锌纳米棒复合抗菌涂层,如上述的氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法所制得的氧化锌/磷酸锌纳米棒复合抗菌涂层。
本发明第三方面也提供如上述的氧化锌/磷酸锌纳米棒复合抗菌涂层在医用材料领域的应用,尤其适用于医用植入材料领域。
有益效果
相较于现有技术,本发明提供的技术方案至少具有以下优点:
本发明提供一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用。该制备方法首先在医用材料表面制备氧化锌纳米棒涂层,然后在磷酸盐或磷酸氢盐溶液中水浴处理将氧化锌纳米棒涂层中的氧化锌部分转换成降解速率更低的磷酸锌。通过调控水浴处理的参数可以调控磷酸锌的转换比例,从而调控涂层的整体降解速率。该涂层可以均匀、高效地制备于形状复杂的医用材料表面,其工艺过程简单、成本低廉、适用于批量及工业化生产。
制得的具有纳米形貌的氧化锌/磷酸锌复合涂层不但具有良好的抗感染能力,而且大大降低了原有氧化锌纳米棒涂层的生物学毒性。其中,通过控制合适的磷酸锌转换比例,可以达到在降解过程中释放的适量锌离子,从而实现促进组织愈合的目的。
将该氧化锌/磷酸锌复合涂层作为抗菌涂层应用在医用领域,可以获得兼具抗感染和促愈合双重功能的医用材料,可以减少植入后感染情况的发生,特别是骨科硬组织植入材料表面,例如金属基的钛及钛合金、医用不锈钢等。与此同时,该涂层赋予医用材料表面抗感染能力的同时,没有生物学毒性,并且可以促进组织修复。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,除非有特别申明,附图中的图不构成比例限制。
图1a是实施例1中Ti-ZnO样品表面的扫描电子显微镜照片;
图1b是实施例1中Ti-ZnP0.5样品表面的扫描电子显微镜照片;
图1c是实施例1中Ti-ZnP1样品表面的扫描电子显微镜照片;
图1d是实施例1中Ti-ZnP2样品表面的扫描电子显微镜照片;
图1e是实施例1中Ti-ZnP3样品表面的扫描电子显微镜照片;
图2是实施例2中将Ti-ZnO样品在含有0.1 M磷酸氢二钾(K 2HPO 4·3H 2O)的水溶液中于60℃、70℃和80℃处理2h后所获得样品的扫描电子显微镜照片;
图3a是实施例3中Ti-ZnO样品表面的透射电子显微镜照片;
图3b是实施例3中Ti-ZnP1样品表面的透射电子显微镜照片;
图3c是实施例3中Ti-ZnP2样品表面的透射电子显微镜照片;
图4a是实施例4中各组样品的X射线衍射分析;
图4b是实施例4中各组样品的X射线光电子能谱全谱谱图;
图4c是实施例4中各组处理样品表面元素的原子百分比;
图4d是实施例4中各组处理样品表面的亲疏水性;
图5是实施例5中各组样品表面经过划痕实验后的扫描电子显微镜照片;
图6是实施例6中各组样品在Hank’s缓冲液中浸泡30天后锌离子的释放趋势;
图7是实施例7中各组样品在Hank’s缓冲液中浸泡30中各时间点样品表面的扫描电子显微镜照片;
图8是实施例8中骨髓间充质干细胞在各组样品表面培养后的增殖情况;
图9a是实施例9中骨髓间充质干细胞在各组样品表面向成骨细胞诱导分化后碱性磷酸酶的活性;
图9b是实施例9中骨髓间充质干细胞在各组样品表面向成骨细胞诱导分化后细胞的胶原分泌情况;
图9c是实施例9中骨髓间充质干细胞在各组样品表面向成骨细胞诱导分化后细胞外基质的矿化情况;
图10a是实施例10中通过平板涂布法检测在各组样品表面培养的金黄色葡萄球菌和大肠杆菌的存活情况照片;
图10b是实施例10中计算得到的各组样品表面对于金黄色葡萄球菌和大肠杆菌的抗菌率。
本发明的实施方式
为了解决现有技术中存在的问题,发明人发现氧化锌纳米棒涂层具有制备工艺简单、成本低廉、适合制备在大面积复杂表面等优势。更重要的是,氧化锌纳米棒涂层具有广谱抗菌活性,有望在医用材料领域作为抗菌涂层得到广泛应用。一般认为,氧化锌纳米棒阵列的广谱抗菌性能来自于三方面:1)涂层降解释放的锌离子的杀菌作用;2)氧化锌本身作为半导体材料产生的活性氧自由基(ROS)对于细菌的细胞膜、细胞质以及遗传物质的破坏作用;3)纳米棒形貌对细菌的细胞壁的物理穿刺作用。然而氧化锌纳米棒涂层在生理条件下降解速率过快,降解过程中突释出大量的锌离子,并且与氧化锌产生的ROS的综合作用下对组织细胞也会产生较强的毒性。因此,为改善氧化锌纳米棒涂层的抗菌应用前景,有必要对其降解速率进行调节,从而在维持其良好的抗菌性能的前提下使其同样具有良好的促组织修复功能。
发明人经过研究发现,通过对材料表面制备的氧化锌纳米棒涂层进行磷酸化处理,将其部分转换成磷酸锌,可以在维持其纳米棒状形貌和优异抗菌性能的前提下,降低涂层的降解速率。合适的降解速率下释放出的锌离子不但不会引发生物学毒性,而且能够促进组织细胞的修复功能。
基于此,本发明提供一种在医用材料表面制备具有纳米棒形貌的氧化锌/磷酸锌复合涂层的方法。该涂层既拥有良好的抗感染性能,又不会产生生物学毒性并且能够促进组织修复。
下面结合具体实施方式对本发明进行详细说明。
下面以金属基医用骨科植入材料纯钛作为基底,在其表面构建氧化锌/磷酸锌纳米棒复合涂层来证明本发明的可行性。
实施例1
将直径14 mm、厚2 mm的医用级纯钛片材经2000目砂纸打磨后,依次用丙酮、酒精、去离子水超声清洗干净。该预处理后样品标记为Ti。
将醋酸锌(Zn(CH 3COO) 2•2H 2O)与乙醇胺(ethanolamine)溶解于乙醇中,使其浓度都为0.05 M并且室温搅拌5小时。将Ti固定于旋涂仪并取60 ml以上溶液滴加于Ti表面后,将样品至于烘箱中于120℃处理10 min。以上处理重复三次后,样品转移至马弗炉中于500℃处理30 min,从而在Ti表面形成ZnO“种子层”。然后将样品放入水热釜中,在含有0.025 M硝酸锌(Zn(NO 3) 2 •6H 2O)和0.025M六亚甲基四胺(hexamethylenetetramine)的水溶液中于90℃处理5 h,从而获得氧化锌纳米棒涂层。所获得样品标记为Ti-ZnO。其中,“M”为“mol/L”。
进一步将Ti-ZnO在含有0.1 M磷酸氢二钾(K 2HPO 4·3H 2O)的水溶液中于60℃处理若干小时后,可将氧化锌纳米棒阵列部分转换成磷酸锌。所获得样品分别标记为Ti-ZnP0.5、Ti-ZnP1、Ti-ZnP2、和Ti-ZnP3,其中数字表示处理的小时数。
使用扫描电子显微镜(SEM)观察不同样品的表面形貌。图1a-e分别为氧化锌纳米棒涂层、Ti-ZnP0.5、Ti-ZnP1、Ti-ZnP2、和Ti-ZnP3的SEM图片。由图可见当反应0.5 h时,表面形貌相比于氧化锌纳米棒涂层基本没有变化。反应1 h后纳米棒底部开始转化成块状,而此变化在2 h和3 h后更加明显。
实施例2
将实施例1中的Ti-ZnO在含有0.1 M磷酸氢二钾(K 2HPO 4·3H 2O)的水溶液中于60℃、70℃和80℃处理2 h后,使用扫描电子显微镜(SEM)观察不同样品的表面形貌(图2)。由图可见随着温度的升高,纳米棒底部转换成块状的趋势更加明显,说明温度的升高更有利于氧化锌向磷酸锌的转换。
实施例3
使用透射电子显微镜(TEM)观察各组样品表面。图3a-c分别为氧化锌纳米棒涂层、Ti-ZnP1和Ti-ZnP2的TEM图片。由图3a可见,1.92 nm的晶面间距对应于氧化锌晶体。而在反应1 h的样品(图3b)和2 h的样品(图3c)中,可以同时观察到氧化锌和磷酸锌的晶体结构。说明在经过在磷酸氢盐溶液中处理后,氧化锌纳米棒涂层中的部分氧化锌转换成了磷酸锌。
实施例4
使用X射线衍射(XRD)分析涂层的晶体结构。由图4a可知Ti-ZnP1和Ti-ZnP2样品表面的涂层同时存在着氧化锌和磷酸锌两种晶型。
对样品表面进行X射线光电子能谱(XPS)宽场扫描,得到图4b所示的XPS全谱谱图。其中特征峰的强度代表了表面该元素含量的高低。对比不同组样品的图谱可知,Ti-ZnP1和Ti-ZnP2样品表面增加了磷元素的特征峰。图4c为由XPS结果分析得到的材料表面各个元素的原子百分比,可见Ti和Ti-ZnO样品表面基本不含磷元素,而Ti-ZnP1和Ti-ZnP2样品表面的磷元素含量大大增加,说明在磷酸氢盐中的水热处理能够将氧化锌成功转化成磷酸锌。
采用静态水接触角测试仪测试材料表面润湿性。图4d是各组样品的静态水接触角结果。横坐标为样品名称,纵坐标为接触角的度数。由图4d可知,未经处理的Ti样品的接触角为60°左右;在Ti表面制备了氧化锌纳米棒涂层后,接触角降低至22°左右;将氧化锌部分转换成磷酸锌后,接触角进一步降低。
实施例5
采用划痕实验检测所形成的涂层与基底之间的结合力。在样品表面形成划痕后,使用SEM观察划痕两侧涂层的脱落情况。由图5可见,三种样品划痕边缘都未出现崩裂和大面积脱落的情况,说明本发明所制备的涂层与基底之间具有良好的结合力。
实施例6
将各组样品浸没入Hank’s缓冲液中,保存于37℃,检测样品在模拟体内的生理条件下的锌离子的释放情况。由图6可知,各组样品在30天的检测周期内都可以持续释放出锌离子。其中Ti-ZnO样品的释放速度最快,Ti-ZnP1样品次之,Ti-ZnP2样品释放锌离子的速度最慢。说明将氧化锌部分转换成磷酸锌后,能够显著降低锌离子的释放速率。
实施例7
将实施例6中所述保存于Hank’s缓冲液中不同时间的样品取出,使用SEM观察样品的表面形貌。如图7所示,Ti-ZnO样品在溶液中浸泡5天后,表面的纳米棒状结构就开始崩塌;浸泡20天后,棒状结构完全消失,并形成孔洞状的腐蚀坑。而Ti-ZnP1和Ti-ZnP2样品在浸泡的30天过程中,表面形貌只有轻微改变。以上结果与实施例6中的结果吻合,说明将氧化锌部分转换成磷酸锌后,能够很大程度上减缓表面涂层的降解速率。
实施例8
将人来源的骨髓间充质干细胞接种并培养于各组样品表面。图8为细胞在样品表面培养1天、3天、5天后使用CCK-8检测试剂盒获得的细胞的增殖情况。其中横坐标为细胞培养天数,纵坐标为检测试剂盒对应孔在450 nm波长下的吸光度。吸光度越高表明增殖越快。由结果可见,培养在Ti表面的细胞能够随培养时间的增加正常增殖,而Ti-ZnO表面由于氧化锌较强的细胞毒性,其表面的细胞在培养1天以后即完全丧失活性。Ti-ZnP1样品虽降低了Ti-ZnO样品的毒性但与Ti相比仍一定程度上抑制了细胞活性。而Ti-ZnP2样品表面的细胞与Ti表面的细胞基本相同。以上结果说明随着氧化锌纳米棒涂层中的部分氧化锌转换成了降解速度更慢的磷酸锌,大大降低了材料的生物毒性,并且随着反应时间的延长,磷酸锌的转换比例增加,涂层的细胞毒性也更低。
实施例9
使用骨诱导培养基培养各组样品表面的骨髓间充质干细胞3天、7天和14天,使其向成骨细胞分化,然后检测成骨细胞形成早期的标志性酶碱性磷酸酶(ALP)的活性(图9a)、细胞分泌的胶原的情况(图9b),以及细胞外基质的矿化(图9c)情况。结果中横坐标为细胞诱导天数,图9a纵坐标为ALP的活性,并且其活性使用细胞内总蛋白含量做归一化处理;图9b-c纵坐标为检测试剂盒对应孔在570 nm波长下的吸光度,吸光度越高表明细胞外基质矿化程度越高。由结果可知Ti-ZnO样品由于细胞毒性较强,成骨细胞难以在其表面正常生长,更难以向成骨细胞分化;Ti-ZnP1表面培养的细胞具有一定的成骨细胞分化趋势;Ti-ZnP2样品表面培养的细胞ALP活性最高,在诱导21天后胶原分泌最多且细胞外基质的矿化程度最高。以上结果证明Ti-ZnP2能够促进骨髓间充质干细胞向成骨分化。
实施例10
在各组样品表面培养细菌培养金黄色葡萄球菌和大肠杆菌来检测样品表面的抗菌性能。由图10a可见,Ti表面无抗菌效果,ZnO表面抗菌效果最好,几乎可以杀灭表面的所有细菌。Ti-ZnP1和Ti-ZnP2表面的抗菌效果虽稍差,但是经计算抗菌率也在90%以上。以上结果证明Ti-ZnP1和Ti-ZnP2样品具有优异的抗感染能力。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各自更动与修改,因此本申请的保护范围应当以权利要求限定的范围为准。

Claims (10)

  1. 一种氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法,其特征在于,该方法包括先在医用材料表面制备氧化锌纳米棒涂层;再通过在磷酸盐或磷酸氢盐溶液中水浴处理的方法将所述氧化锌纳米棒涂层中的氧化锌转换成磷酸锌,从而制得具有纳米形貌的氧化锌/磷酸锌纳米棒复合抗菌涂层。
  2. 根据权利要求1所述的氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法,其特征在于,该方法具体包括以下步骤:
    步骤一、在医用材料表面制备氧化锌种子层,然后通过水热处理在所述氧化锌种子层上形成氧化锌纳米棒涂层,获得负载有氧化锌纳米棒涂层的医用材料;
    步骤二、将所述负载有氧化锌纳米棒涂层的医用材料浸入至磷酸盐或磷酸氢盐溶液中进行磷酸化处理,通过调控反应条件控制氧化锌向磷酸锌的转换比例,获得氧化锌/磷酸锌纳米棒复合抗菌涂层。
  3. 根据权利要求2所述的氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法,其特征在于,所述步骤二的反应条件为:控制反应体系的pH值为8.0-10.0,温度为20℃-100℃,反应时间为1 h-24 h。
  4. 根据权利要求3所述的氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法,其特征在于,所述步骤二的反应条件为:控制反应体系的pH值为8.0,温度为60℃,反应时间为2 h。
  5. 根据权利要求2所述的氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法,其特征在于,所述磷酸盐或磷酸氢盐溶液为磷酸钾、磷酸钠、磷酸氢二钾、磷酸氢二钠、磷酸二氢钾或磷酸二氢钠中的一种或多种混合。
  6. 根据权利要求2所述的氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法,其特征在于,所述磷酸盐或磷酸氢盐溶液的浓度为0.01 mol/L-0.5 mol/L。
  7. 根据权利要求6所述的氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法,其特征在于,所述磷酸盐或磷酸氢盐溶液的浓度为0.1 mol/L。
  8. 根据权利要求1所述的氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法,其特征在于,所述步骤一具体包括以下步骤,
    配制混合溶液:将醋酸锌与乙醇胺溶解于乙醇中,并且室温搅拌5 h,形成混合溶液;其中,所述醋酸锌、乙醇胺和乙醇的浓度均为0.05 mol/L;
    进行旋涂处理:将样品固定于旋涂仪,并取60 ml以上所述混合溶液滴加于所述样品的表面后,将所述样品至于烘箱中于120℃处理10 min;
    制备形成氧化锌种子层的样品:将所述旋涂处理重复三次后,将所述样品转移至马弗炉中于500℃处理30 min,从而在样品表面形成氧化锌种子层;
    制备氧化锌纳米棒涂层:将形成氧化锌种子层的样品放入水热釜中,在含有0.025 mol/L硝酸锌和0.025 mol/L六亚甲基四胺的水溶液中于90℃处理5 h,获得所述氧化锌纳米棒涂层。
  9. 一种氧化锌/磷酸锌纳米棒复合抗菌涂层,其特征在于,如权利要求1至8中任一项所述的氧化锌/磷酸锌纳米棒复合抗菌涂层的制备方法所制得的氧化锌/磷酸锌纳米棒复合抗菌涂层。
  10. 如权利要求9所述的氧化锌/磷酸锌纳米棒复合抗菌涂层在医用材料领域的应用。
PCT/CN2022/137052 2022-09-28 2022-12-06 一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用 WO2024066040A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211191672.6 2022-09-28
CN202211191672.6A CN115501392B (zh) 2022-09-28 2022-09-28 一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2024066040A1 true WO2024066040A1 (zh) 2024-04-04

Family

ID=84505636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137052 WO2024066040A1 (zh) 2022-09-28 2022-12-06 一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN115501392B (zh)
WO (1) WO2024066040A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116446173B (zh) * 2023-04-20 2023-10-03 泰兴市思辰物流科技有限公司 一种汽车零部件保护用抗菌绒布面料及其制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505086A2 (en) * 1991-03-19 1992-09-23 Cookson Laminox Limited Method for the treatment of lamellar or plate-like materials
CN102793948A (zh) * 2012-08-22 2012-11-28 浙江大学 医用金属表面的生物医用磷酸钙/氧化锌纳米棒阵列复合涂层及其制备方法
CN105259096A (zh) * 2015-10-19 2016-01-20 武汉顺可达生物科技有限公司 磷酸锌纳米基底及其制备方法和在循环肿瘤细胞捕获与释放中的应用
CN113117145A (zh) * 2020-01-13 2021-07-16 中国科学院上海硅酸盐研究所 一种用于植入体表面的抗菌涂层及其制备方法
CN113797396A (zh) * 2021-10-08 2021-12-17 温州医科大学附属口腔医院 用于可降解骨支架的多孔锌生物复合涂层的制备方法
CN114686916A (zh) * 2022-03-07 2022-07-01 深圳先进技术研究院 一种氧化锌纳米棒阵列光阳极及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106563176B (zh) * 2016-10-14 2019-04-30 湖北大学 一种基于原子层沉积的氧化锌/碳纳米管纳米抗菌涂层的制备方法
CN112226767B (zh) * 2020-09-29 2021-12-28 西安交通大学 一种羟基磷灰石纳米棒生物涂层及其制备方法
IT202100000848A1 (it) * 2021-01-19 2022-07-19 Univ Degli Studi Roma La Sapienza Rivestimento antimicrobico multistrato rimovibile resistente all’acqua per superfici da contatto e suo metodo di preparazione

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0505086A2 (en) * 1991-03-19 1992-09-23 Cookson Laminox Limited Method for the treatment of lamellar or plate-like materials
CN102793948A (zh) * 2012-08-22 2012-11-28 浙江大学 医用金属表面的生物医用磷酸钙/氧化锌纳米棒阵列复合涂层及其制备方法
CN105259096A (zh) * 2015-10-19 2016-01-20 武汉顺可达生物科技有限公司 磷酸锌纳米基底及其制备方法和在循环肿瘤细胞捕获与释放中的应用
CN113117145A (zh) * 2020-01-13 2021-07-16 中国科学院上海硅酸盐研究所 一种用于植入体表面的抗菌涂层及其制备方法
CN113797396A (zh) * 2021-10-08 2021-12-17 温州医科大学附属口腔医院 用于可降解骨支架的多孔锌生物复合涂层的制备方法
CN114686916A (zh) * 2022-03-07 2022-07-01 深圳先进技术研究院 一种氧化锌纳米棒阵列光阳极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG LIAN;YANG HAO.: "Preparation of ZnO Nanorod Array Coating and Its Antibacterial Property", WUHAN GONGCHENG DAXUE XUEBAO = JOURNAL OF WUHAN INSTITUTE OF TECHNOLOGY, vol. 38, no. 03, 30 June 2016 (2016-06-30), pages 236 - 239, XP009553458, ISSN: 1674-2869 *

Also Published As

Publication number Publication date
CN115501392A (zh) 2022-12-23
CN115501392B (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN102341132B (zh) 外科手术植入物和制造方法
CN107661544B (zh) 抗菌促成骨复合功能多孔骨科植入物及其制备方法
KR101461159B1 (ko) 약물 전달층을 포함하는 임플란트의 제조방법 및 이를 포함하는 생체이식용 임플란트 조성물
CN112076348B (zh) 一种医用金属表面抗感染-促进骨整合的涂层、制备方法及应用
WO2016202100A1 (zh) 一种聚醚醚酮/纳米羟基磷灰石牙种植体及其制作方法
CN109440153A (zh) CuHA/GO/多巴胺复合涂层的微波-电化学制备方法
WO2024066040A1 (zh) 一种氧化锌/磷酸锌纳米棒复合抗菌涂层及其制备方法和应用
Zhang et al. Chitosan regulated electrochemistry for dense hydroxyapatite/MgO nanocomposite coating with antibiosis and osteogenesis on titanium alloy
CN107829123B (zh) 一种表面双层涂层的铝合金及其制备方法和应用
CN113082290B (zh) 一种具有生物活性和抗菌性能的氧化锌涂层-羟基磷灰石涂层、制备方法及用途
CN111733436A (zh) 一种银碘表面修饰的钛合金植入物及其制备方法
Du et al. A multifunctional hybrid inorganic-organic coating fabricated on magnesium alloy surface with antiplatelet adhesion and antibacterial activities
CN106637121B (zh) 一种医用钛基金属材料及其制造方法
CN101791433A (zh) 纯钛或钛合金表面分子筛抗菌涂层及其制备方法
Sandrini et al. Apatite formation and cellular response of a novel bioactive titanium
CN107648674B (zh) 具有抗菌及促进骨整合功能的金属植入物及其制备方法
CN113018510B (zh) 一种对钛基植入物进行表面改性的方法以及钛基植入物表面复合涂层
CN108273134A (zh) 一种抗菌镁基生物涂层的制备方法
CN115501387A (zh) 一种可缓释微量元素与外泌体的钛植入体及其制备方法
CN113403846A (zh) 一种具有仿生矿化和抗菌功能的聚乳酸纳米纤维复合膜及其制备方法和应用
CN108619571B (zh) 表面载金属离子的Ca-P涂层的镁合金材料及其制备方法和应用
CN109589449B (zh) 一种表面掺铷钛材料及其制备方法和应用
Jongwannasiri et al. Diamond-like carbon (DLC)-coated titanium surface inhibits bacterial growth and modulates human alveolar bone cell responses in vitro
CN113151828B (zh) 一种钛合金表面具有成骨和抗菌功能的生物涂层及其制备方法和应用
Murugan et al. NOVEL GRAPHENE-BASED REINFORCED HYDROXYAPATITE COMPOSITE COATINGS ON TITANIUM WITH ENHANCED ANTI-BACTERIAL, ANTI-CORROSIVE AND BIOCOMPATIBLE PROPERTIES FOR IMPROVED ORTHOPEDIC APPLICATIONS.