WO2024066028A1 - 一种基于观测值外推的卫星定位方法和装置 - Google Patents

一种基于观测值外推的卫星定位方法和装置 Download PDF

Info

Publication number
WO2024066028A1
WO2024066028A1 PCT/CN2022/136309 CN2022136309W WO2024066028A1 WO 2024066028 A1 WO2024066028 A1 WO 2024066028A1 CN 2022136309 W CN2022136309 W CN 2022136309W WO 2024066028 A1 WO2024066028 A1 WO 2024066028A1
Authority
WO
WIPO (PCT)
Prior art keywords
satellite
epoch
observation
observation value
mobile station
Prior art date
Application number
PCT/CN2022/136309
Other languages
English (en)
French (fr)
Inventor
孙宾姿
陶永康
林俊
Original Assignee
广东汇天航空航天科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东汇天航空航天科技有限公司 filed Critical 广东汇天航空航天科技有限公司
Publication of WO2024066028A1 publication Critical patent/WO2024066028A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/37Hardware or software details of the signal processing chain

Definitions

  • the present application relates to the field of satellite positioning technology, and in particular to a satellite positioning method based on observation value extrapolation and a satellite positioning device based on observation value extrapolation.
  • the carrier phase differential technology real time kinematic, RTK navigation and positioning technology needs to synchronize the observation data of the base station and the mobile station when performing differential positioning.
  • the observation data of the base station is transmitted through the communication link, which has a time delay, which will cause the mobile station to be unable to solve the current position information in real time.
  • the broadcast frequency of the base station is generally 1Hz, which cannot achieve high-frequency positioning.
  • the synchronization problem is solved by using time synchronization method and position interpolation method.
  • Time synchronization method RTK positioning is performed only when the base station and mobile station data are synchronized. Since the base station data is transmitted through the communication link, there are delays and data leakage. If RTK positioning is performed after time synchronization, the positioning result is the positioning result of the previous moment, which does not match the current actual movement position, and there are delays, uneven time of positioning results, and frame leakage.
  • Position interpolation method The first position interpolation method is based on GNSS velocity. After time synchronization, the RTK positioning result is obtained. The velocity result is used to temporally extrapolate the positioning result to obtain a real-time GNSS positioning result. However, the positioning accuracy will decrease, which is closely related to the velocity accuracy.
  • the second position interpolation method is based on the epoch carrier difference method. Although this method can provide real-time GNSS positioning, it will increase the computing power of the real-time operating system (RTOS) platform.
  • RTOS real-time operating system
  • embodiments of the present application are proposed to provide a satellite positioning method based on observation value extrapolation and a satellite positioning device based on observation value extrapolation that overcome the above problems or at least partially solve the above problems.
  • the embodiment of the present application discloses a satellite positioning method based on observation value extrapolation, including:
  • the extrapolation of satellite observation values is calculated based on the satellite observation values of the base station at the i-th epoch and the satellite observation values of the mobile station at the i+1-th epoch.
  • the satellite observation value of the reference station at the i+1th epoch is calculated based on the extrapolated amount of the satellite observation value and the satellite observation value of the reference station at the i-th epoch;
  • a differential model is constructed based on the satellite observation values of the base station at the i+1th epoch and the satellite observation values of the mobile station at the i+1th epoch, and the estimated positioning result of the mobile station at the i+1th epoch is calculated.
  • the satellite observation values include pseudorange observation values and carrier observation values; obtaining the satellite observation values of the i-th epoch of the reference station and the satellite observation values of the i+1-th epoch of the mobile station includes:
  • the observation data of the first satellite observed by the reference station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch are respectively input into the pseudorange observation equation, and the pseudorange observation value of the i-th epoch of the reference station and the pseudorange observation value of the i+1-th epoch of the mobile station are calculated;
  • the observation data of the first satellite observed at the i-th epoch by the base station and the observation data of the first satellite observed at the i+1-th epoch by the mobile station are respectively input into the carrier observation equation, and the carrier observation value of the i-th epoch by the base station and the carrier observation value of the i+1-th epoch by the mobile station are calculated.
  • the base station and the rover are each provided with a receiver
  • the carrier observation equation is:
  • the superscript s represents the first satellite, and the subscripts r and j represent the receiver and frequency respectively;
  • represents the true satellite-to-earth distance
  • c represents the speed of light
  • dt r , dt s represent the receiver clock error and satellite clock error respectively;
  • T the tropospheric error
  • I represents the ionospheric error on the L1 frequency
  • ⁇ j represents the ionospheric influence coefficient of frequency j relative to L1;
  • d r,j They represent the channel delay at the frequency j pseudorange receiver and the channel delay at the satellite end respectively;
  • ⁇ r,j They represent the channel delay at the receiver end and the channel delay at the satellite end of the carrier of frequency j respectively;
  • ⁇ j represents the wavelength of the carrier at frequency j
  • the satellite observation value extrapolation is calculated based on the satellite observation value of the reference station at the i-th epoch and the satellite observation value of the mobile station at the i+1-th epoch, including:
  • the pseudorange observation value of the mobile station at the i+1th epoch is subtracted from the pseudorange observation value of the reference station at the ith epoch to obtain the extrapolated pseudorange observation value;
  • the carrier observation value extrapolation is obtained by subtracting the carrier observation value of the i+1th epoch of the mobile station from the carrier observation value of the i-th epoch of the reference station.
  • the satellite observation value of the reference station at the i+1 epoch is calculated based on the extrapolated amount of the satellite observation value and the satellite observation value of the reference station at the i epoch, including:
  • the extrapolated amount of the observation value is added to the original satellite observation value of the reference station, and the satellite observation value of the reference station at the i+1 epoch is corrected to obtain the corrected satellite observation value of the reference station at the i+1 epoch.
  • a differential model is constructed based on the satellite observation value of the reference station at the i+1th epoch and the satellite observation value of the mobile station at the i+1th epoch, and an estimated positioning result of the mobile station at the i+1th epoch is calculated, including:
  • the estimated positioning result of the i+1th mobile station is calculated.
  • the first single-difference observation model includes a first pseudorange single-difference observation model and a first carrier single-difference observation model, and the estimated positioning result of the mobile station at the i+1 epoch is calculated according to the first single-difference observation model and the double-difference observation model, including:
  • the optimal ambiguity fixation solution and the ambiguity fixation solution combination are input into the double-difference observation model to obtain the position fixation solution of the mobile station at the i+1th epoch.
  • the embodiment of the present application also discloses a satellite positioning device based on observation value extrapolation, including:
  • An acquisition module is used to acquire the satellite observation value of the i-th epoch of the base station and the satellite observation value of the i+1-th epoch of the mobile station;
  • the first calculation module is used to calculate the satellite observation value extrapolation according to the satellite observation value of the i-th epoch of the reference station and the satellite observation value of the i+1-th epoch of the mobile station;
  • the second calculation module is used to calculate the satellite observation value of the reference station at the i+1 epoch according to the extrapolated amount of the satellite observation value and the satellite observation value of the i epoch of the reference station;
  • the third calculation module is used to build a differential model based on the satellite observation value of the base station at the i+1th epoch and the satellite observation value of the mobile station at the i+1th epoch, and calculate the estimated positioning result of the mobile station at the i+1th epoch.
  • the satellite observation values include pseudorange observation values and carrier observation values;
  • the acquisition module includes:
  • the acquisition submodule is used to acquire the observation data of the first satellite observed by the base station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch;
  • the first calculation submodule is used to input the observation data of the first satellite observed by the reference station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch into the pseudorange observation equation, and calculate the pseudorange observation value of the i-th epoch of the reference station and the pseudorange observation value of the i+1-th epoch of the mobile station;
  • the second calculation submodule is used to input the observation data of the first satellite observed by the base station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch into the carrier observation equation respectively, and calculate the carrier observation value of the i-th epoch of the base station and the carrier observation value of the i+1-th epoch of the mobile station.
  • the base station and the rover are each provided with a receiver
  • the carrier observation equation is:
  • the superscript s represents the first satellite, and the subscripts r and j represent the receiver and frequency respectively;
  • represents the true satellite-to-earth distance
  • c represents the speed of light
  • dt r , dt s represent the receiver clock error and satellite clock error respectively;
  • T the tropospheric error
  • I represents the ionospheric error on the L1 frequency
  • ⁇ j represents the ionospheric influence coefficient of frequency j relative to L1;
  • d r,j They represent the channel delay at the frequency j pseudorange receiver and the channel delay at the satellite end respectively;
  • ⁇ r,j They represent the channel delay at the receiver end and the channel delay at the satellite end of the carrier of frequency j respectively;
  • ⁇ j represents the wavelength of the carrier at frequency j
  • the first computing module includes:
  • the third calculation submodule is used to obtain an extrapolated amount of pseudorange observation value by subtracting the pseudorange observation value of the i-th epoch of the reference station from the pseudorange observation value of the i+1-th epoch of the mobile station;
  • the fourth calculation submodule is used to obtain the carrier observation value extrapolation by subtracting the carrier observation value of the i-th epoch of the reference station from the carrier observation value of the i+1-th epoch of the mobile station.
  • the second computing module includes:
  • the correction submodule is used to add the extrapolated amount of the observation value to the original satellite observation value of the reference station, correct the satellite observation value of the i+1th epoch of the reference station, and obtain the corrected satellite observation value of the i+1th epoch of the reference station.
  • the third computing module includes:
  • a first construction submodule is used to construct a first single-difference observation model of the first satellite based on the satellite observation value of the reference station at the i+1 epoch and the satellite observation value of the mobile station at the i+1 epoch;
  • the second construction submodule is used to obtain the satellite observation value of the second satellite observed by the reference station at the i+1 epoch and the satellite observation value of the second satellite observed by the mobile station at the i+1 epoch, and to construct a second single-difference observation model of the second satellite according to the satellite observation value of the second satellite observed by the reference station at the i+1 epoch and the satellite observation value of the second satellite observed by the mobile station at the i+1 epoch;
  • a third construction submodule is used to construct a double difference observation model according to the first single difference observation model and the second single difference observation model; wherein the altitude angle of the second satellite is greater than the altitude angle of the first satellite;
  • the fifth calculation submodule is used to calculate the estimated positioning result of the i+1th mobile station according to the first single-difference observation model, the second single-difference observation model and the double-difference observation model.
  • the fifth computing submodule includes:
  • a training unit used for training the first pseudorange single-difference observation model and the first carrier single-difference observation model to obtain a plurality of pseudorange single-difference observation values and a plurality of carrier single-difference observation values;
  • An estimation unit used for inputting a plurality of pseudorange single-difference observation values and a plurality of carrier single-difference observation values into a Kalman filter algorithm model, and estimating a single-difference ambiguity floating-point solution and a position floating-point solution of the first satellite;
  • a determination unit converting the single-difference ambiguity floating-point solution into a double-difference ambiguity floating-point solution, and determining an optimal ambiguity fixed solution combination from a plurality of double-difference ambiguity floating-point solutions;
  • the calculation unit is used for inputting the optimal ambiguity fixation solution ambiguity fixation solution combination into the double difference observation model to obtain the position fixation solution of the mobile station at the i+1 epoch.
  • An embodiment of the present application also provides an electronic device, including: a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • the computer program is executed by the processor, the steps of the satellite positioning method based on observation value extrapolation as described above are implemented.
  • An embodiment of the present application also provides a computer-readable storage medium, characterized in that a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the satellite positioning method based on observation value extrapolation as described above are implemented.
  • the satellite observation value of the i-th epoch of the base station and the satellite observation value of the i+1-th epoch of the mobile station are obtained; the satellite observation value extrapolation is calculated based on the satellite observation value of the i-th epoch of the base station and the satellite observation value of the i+1-th epoch of the mobile station; the satellite observation value of the i+1-th epoch of the base station is calculated based on the satellite observation value extrapolation and the satellite observation value of the i-th epoch of the base station; a differential model is constructed based on the satellite observation value of the i+1-th epoch of the base station and the satellite observation value of the i+1-th epoch of the mobile station, and the estimated positioning result of the i+1-th epoch of the mobile station is calculated.
  • the observation time of the base station and the mobile station is synchronized, so that the mobile station can solve the current position information in real time, which not only does not need to change the existing RTK algorithm, but also does not need to increase computing power, but also ensures the continuity of obtaining the base station observation data, and ensures that the mobile station can provide continuous, real-time and high-update rate high-precision positioning results.
  • FIG1 is a flowchart of a satellite positioning method based on observation value extrapolation provided in an embodiment of the present application
  • FIG2 is a flow chart of an RTK positioning method provided in an embodiment of the present application.
  • FIG3 is a structural block diagram of a satellite positioning device based on observation value extrapolation provided in an embodiment of the present application.
  • Age of differential is the time difference between the base station and the mobile station.
  • the base station information at the current moment may not be received due to time delay, network failure, etc.
  • the base station data may be lost in the middle, or the base station data cannot completely cover the mobile station. There is a time difference between the base station data and the mobile station data, and the mobile station cannot calculate the current position information in real time, resulting in inaccurate positioning of the mobile station.
  • the method of solving the synchronization problem by time synchronization method outputs the positioning result of the historical time. After time synchronization, positioning is performed again, and there is a problem that the positioning result does not match the actual motion position; the method of solving the synchronization problem by position extrapolation method is to use the method of velocity extrapolation or epoch difference to extrapolate the positioning result of the i-th epoch to the positioning result of the i+1-th epoch, relying on velocity accuracy and increasing the computing power of the RTOS platform.
  • this application proposes a satellite positioning method based on observation value extrapolation.
  • One of the core concepts of the embodiments of the present application is to achieve synchronization of the observation time of the base station and the mobile station by extrapolating the observation data of the base station and adding the extrapolated amount to the observation value of the base station at the current moment, so that the mobile station can solve the position information of the current moment in real time, solve the problem of data communication link propagation delay, and there is no need to adjust the algorithm process of RTK positioning, thereby ensuring that the positioning system can provide low-latency, high-update rate RTK precise position information in high-speed application scenarios.
  • the method may specifically include the following steps:
  • Step 101 obtaining the satellite observation value of the i-th epoch of the reference station and the satellite observation value of the i+1-th epoch of the mobile station.
  • the mobile station can connect to the base station server through the network communication module to obtain the original pseudo-range and carrier observation values of each satellite of the base station.
  • the base station can collect satellite data and transmit its observation values and station coordinate information to the mobile station through the data link.
  • the mobile station can obtain the positioning result by performing real-time carrier phase differential processing on the collected satellite data and the received data link.
  • Epoch is the measurement time interval or data frequency. For example, if a measurement is being performed and recorded every five seconds, the epoch is five seconds.
  • the base station at the i-th epoch and the rover at the i+1-th epoch may observe the same satellite.
  • the satellite observation values include pseudorange observation values and carrier observation values; obtaining the satellite observation values of the i-th epoch of the base station and the satellite observation values of the i+1-th epoch of the mobile station includes: obtaining the observation data of the first satellite observed by the base station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch; inputting the observation data of the first satellite observed by the base station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch into the pseudorange observation equation respectively, and calculating the pseudorange observation value of the i-th epoch of the base station and the pseudorange observation value of the i+1-th epoch of the mobile station; inputting the observation data of the first satellite observed by the base station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch of
  • the basic satellite signals used for GNSS navigation and positioning are pseudorange observations and carrier observations.
  • Pseudorange observations compare the satellite signals at the satellite end and the receiver end, obtain the time it takes for the signal to propagate from the satellite to the receiver, and multiply it by the speed of light to obtain the distance between the satellite and the receiver.
  • Carrier phase observations compare the phase difference between the satellite end and the receiver end and the integer count part of the phase to obtain the distance between the satellite and the receiver.
  • the base station and the rover are each provided with a receiver
  • the carrier observation equation is:
  • the superscript s represents the first satellite, and the subscripts r and j represent the receiver and frequency respectively;
  • represents the actual satellite-to-ground distance, and the unit can be m;
  • c represents the speed of light
  • dt r , dt s respectively represent the receiver clock error and satellite clock error, the unit can be s;
  • T represents the tropospheric error, the unit can be m;
  • O represents the orbit error, the unit can be m;
  • I represents the ionospheric error at L1 frequency, the unit can be m;
  • ⁇ j represents the ionospheric influence coefficient of frequency j relative to L1;
  • d r,j They represent the channel delay at the frequency j pseudorange receiver and the channel delay at the satellite, in seconds;
  • ⁇ r,j They represent the channel delay at the receiver end of the frequency j carrier and the channel delay at the satellite end, in seconds;
  • the unit can be m;
  • the unit can be cycle
  • ⁇ j represents the carrier wavelength of frequency j, and the unit can be m;
  • the reference station at the i-th epoch and the mobile station at the i+1-th epoch observe the same satellite.
  • the observation data of the first satellite observed by the reference station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch can be input into the pseudorange observation equation and the carrier observation equation respectively:
  • the pseudorange observation value of the i-th epoch of the reference station is obtained and the pseudorange observation value of the mobile station at the i+1th epoch And the carrier observation value of the i-th epoch at the reference station and the carrier observation value of the mobile station at the i+1th epoch
  • the pseudorange multipath Carrier Multipath Pseudorange noise Carrier Noise Initial oscillation signal at the receiver Satellite initial oscillation signal Integer ambiguity The value of has nothing to do with the epoch at different times and is not affected by the epoch.
  • Step 102 calculating the extrapolated amount of satellite observation value based on the satellite observation value of the reference station at the i-th epoch and the satellite observation value of the mobile station at the i+1-th epoch.
  • the pseudorange observation value of the mobile station at the i+1th epoch is subtracted from the pseudorange observation value of the reference station at the i-th epoch to obtain the pseudorange observation value extrapolation;
  • the carrier observation value of the mobile station at the i+1th epoch is subtracted from the carrier observation value of the reference station at the i-th epoch to obtain the carrier observation value extrapolation.
  • the calculation may be performed as follows:
  • the distance between the receiver in the reference station and the receiver in the mobile station may not exceed 10 km, and there is a certain spatial correlation.
  • the channel delays of the receiver end and the satellite end of the i+1th epoch and the ith epoch are approximately equal, so they can be eliminated by subtraction, thereby eliminating the influence of the channel delay.
  • the receiver clock difference of the i+1th epoch and the ith epoch changes little, and the receiver clock difference of the two epochs can be ignored, that is, in the calculation process of the pseudorange observation value extrapolation and the carrier observation value extrapolation, the value of (dt r,i+1 -dt r,i ) can be 0.
  • the satellite clock error at the i+1th epoch is the satellite clock error at the i+1th epoch.
  • the satellite clock error of the i-th epoch is the same for different receivers, that is, in the calculation process of the extrapolation of pseudorange observation value and carrier observation value, The value of can be 0. Therefore, the influence of satellite clock error can be eliminated.
  • It can be calculated using the coordinates of the base station and the coordinates of the first satellite at the i+1th epoch (i.e., the observation result of the first satellite observed by the mobile station at the i+1th epoch). It can be calculated using the coordinates of the reference station and the coordinates of the first satellite at the i-th epoch (ie, the observation result of the reference station observing the first satellite at the i-th epoch).
  • Step 103 calculating the satellite observation value of the reference station at the (i+1) epoch based on the extrapolated amount of the satellite observation value and the satellite observation value of the reference station at the i epoch.
  • the extrapolated amount of observation value is added to the original satellite observation value of the reference station, and the satellite observation value of the reference station at the i+1 epoch is corrected to obtain the corrected satellite observation value of the reference station at the i+1 epoch.
  • the satellite pseudorange and carrier observation values of the i-th epoch of the reference station at the current moment can be extrapolated, thereby achieving the time synchronization of the observation data of the reference station and the mobile station.
  • the satellite observation data can be processed, such as performing satellite observation data elimination, gross error detection, clock jump detection and cycle slip detection operations in sequence, to ensure the quality of satellite observation values and ensure high-precision differential positioning.
  • Step 104 constructing a differential model based on the satellite observation value of the reference station at the i+1th epoch and the satellite observation value of the mobile station at the i+1th epoch, and calculating the estimated positioning result of the mobile station at the i+1th epoch.
  • a differential model can be constructed based on the satellite observation values of the i+1th epoch extrapolated by the base station and the satellite observation values of the i+1th epoch of the mobile station, and the satellite positioning result of the i+1th epoch of the mobile station is calculated by the differential model.
  • a first single-difference observation model of the first satellite is constructed based on the satellite observation values of the base station at the i+1th epoch and the satellite observation values of the mobile station at the i+1th epoch; the satellite observation values of the second satellite observed by the base station at the i+1th epoch and the satellite observation values of the second satellite observed by the mobile station at the i+1th epoch are obtained, and a second single-difference observation model of the second satellite is constructed based on the satellite observation values of the second satellite observed by the base station at the i+1th epoch and the satellite observation values of the second satellite observed by the mobile station at the i+1th epoch; a double-difference observation model is constructed based on the first single-difference observation model and the second single-difference observation model; wherein the altitude angle of the second satellite is greater than the altitude angle of the first satellite; and an estimated positioning result of the mobile station at the i+1th epoch
  • single difference generally refers to the difference between the same observation values of the same satellite at the same time period by different receivers.
  • q represent the base station
  • r represent the mobile station.
  • the two stations observe satellite s at the same time, and the simplified pseudorange and carrier single difference observation equations can be obtained as follows:
  • the satellite clock error of the same satellite is the same, so the single difference can eliminate the influence of the satellite clock error.
  • the single difference can also weaken the influence of errors such as satellite orbit error, ionospheric delay and tropospheric delay.
  • the double difference observation model generally means that on the basis of the single difference observation model, the single difference between satellites t and s can be further differentiated between satellites, and the double difference observation expression can be obtained:
  • the double difference observation value usually selects the satellite with the longest observation time and the largest satellite elevation angle in the field of view as the reference satellite, and the single difference observation equations of the remaining satellites are sequentially subtracted from the reference satellite to obtain the double difference observation equation.
  • the integer ambiguity Only the integer part remains. Therefore, in RTK positioning, the ambiguity of the double difference observation value maintains the integer characteristic, and the integer ambiguity can be fixed to improve the positioning accuracy.
  • a first pseudorange single-difference observation model and a first carrier single-difference observation model are trained to obtain a plurality of pseudorange single-difference observation values and a plurality of carrier single-difference observation values; the plurality of pseudorange single-difference observation values and the plurality of carrier single-difference observation values are input into a Kalman filter algorithm model to estimate a single-difference ambiguity floating-point solution and a position floating-point solution of the first satellite; the single-difference ambiguity floating-point solution is converted into a double-difference ambiguity floating-point solution, and an optimal ambiguity fixed solution combination is determined from the plurality of double-difference ambiguity floating-point solutions; the optimal ambiguity fixed solution ambiguity fixed solution combination is input into the double-difference observation model to obtain a position fixed solution of the mobile station at the i+1 epoch.
  • the first single-difference observation model may be trained to obtain multiple single-difference observation values.
  • the multiple single-difference observation values may be input into the Kalman filter algorithm model, and the ambiguity floating point solution is performed, and then the ambiguity fixed solution is performed, and then the position fixed solution is performed. At this point, the RTK positioning solution at a moment is completed, and the estimated positioning result is obtained.
  • the embodiment of the present application preferably adopts the single-difference mode RTK positioning mathematical expression based on Kalman filtering, which is more convenient and flexible than the double-difference mode.
  • a RTK positioning flowchart is provided in an embodiment of the present application.
  • Step 1 Observation value extrapolation: After obtaining the observation data of the base station and the rover, the observation value extrapolation method can be used to synchronize the base station data time with the rover data time.
  • Step 2 Data preprocessing: Organize the satellite observation data, perform satellite observation data elimination, gross error detection, clock jump detection, and cycle slip detection operations in sequence to ensure the quality of satellite observation values and high-precision differential positioning.
  • Step 3 Construction of differential model. Select satellites that are synchronously observed by the base station and the mobile station to form pseudorange and carrier single difference observations; select satellites with higher elevation angles as base satellites to form pseudorange and carrier double difference observations.
  • Step 4 Ambiguity floating point solution calculation. Use the Kalman filter algorithm to estimate the single difference ambiguity floating point solution and position floating point solution of each synchronous satellite.
  • the specific implementation is as follows:
  • the state parameter x dimension of this method is always consistent, and there is no need to consider the parameter reorganization caused by the increase or decrease of ambiguity parameters caused by satellite rise and fall, cycle slip, etc., which increases the flexibility of Kalman filtering and is more conducive to the implementation of the program.
  • Step 5 Calculation of ambiguity fixed solution.
  • the single difference ambiguity floating point solution of satellite s (the first satellite) can be converted into a double difference ambiguity floating point solution through the double difference conversion matrix.
  • LAMBDA least squares ambiguity reduction correlation adjustment
  • the double difference conversion matrix can be used to convert the single difference observation value of satellite s (the first satellite) into a double difference observation value.
  • the satellite t with a higher elevation angle is selected as the reference satellite to form a double difference conversion matrix D.
  • Kalman filtering can be used to obtain the real number solution of the single difference ambiguity parameter x and the corresponding variance matrix.
  • the least squares ambiguity reduction correlation adjustment method can be used to fix the ambiguity of the real number solution and.
  • the double difference ambiguity floating point solution after conversion is [2.5, 3.5].
  • the fixed solution can be [2, 3], [2, 4], [3, 3], [3, 4] and other 4 groups of solutions.
  • the LAMBDA search algorithm can be used to obtain the optimal ambiguity fixed solution combination of [2, 4].
  • Step 6 Position fix solution calculation.
  • the obtained ambiguity fix solution can be input into the carrier observation equation to calculate the estimated positioning result.
  • the ambiguity fixed solution may be subjected to an ambiguity reliability check, and if it passes, the position fixed solution is updated, and if it fails, the position floating point solution is output. At this point, the RTK positioning solution for a moment is completed.
  • the satellite observation value of the i-th epoch of the base station and the satellite observation value of the i+1-th epoch of the mobile station are obtained; the satellite observation value extrapolation is calculated based on the satellite observation value of the i-th epoch of the base station and the satellite observation value of the i+1-th epoch of the mobile station; the satellite observation value of the i+1-th epoch of the base station is calculated based on the satellite observation value extrapolation and the satellite observation value of the i-th epoch of the base station; a differential model is constructed based on the satellite observation value of the i+1-th epoch of the base station and the satellite observation value of the i+1-th epoch of the mobile station, and the estimated positioning result of the i+1-th epoch of the mobile station is calculated.
  • the mobile station can solve the current position information in real time, which not only does not need to change the existing RTK algorithm, but also does not need to increase computing power, and also ensures the continuity of obtaining the base station observation data, and ensures that the mobile station can provide continuous, real-time and high-update rate high-precision positioning results.
  • the acquisition module 301 is used to acquire the satellite observation value of the i-th epoch of the reference station and the satellite observation value of the i+1-th epoch of the mobile station;
  • the first calculation module 302 is used to calculate the satellite observation value extrapolation according to the satellite observation value of the i-th epoch of the reference station and the satellite observation value of the i+1-th epoch of the mobile station;
  • the second calculation module 303 is used to calculate the satellite observation value of the reference station at the i+1 epoch according to the extrapolated amount of the satellite observation value and the satellite observation value of the i epoch of the reference station;
  • the third calculation module 304 is used to construct a differential model based on the satellite observation value of the reference station at the i+1th epoch and the satellite observation value of the mobile station at the i+1th epoch, and calculate the estimated positioning result of the mobile station at the i+1th epoch.
  • the satellite observation values include pseudorange observation values and carrier observation values; the acquisition module 301 includes:
  • the acquisition submodule is used to acquire the observation data of the first satellite observed by the base station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch;
  • the first calculation submodule is used to input the observation data of the first satellite observed by the reference station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch into the pseudorange observation equation, and calculate the pseudorange observation value of the i-th epoch of the reference station and the pseudorange observation value of the i+1-th epoch of the mobile station;
  • the second calculation submodule is used to input the observation data of the first satellite observed by the base station at the i-th epoch and the observation data of the first satellite observed by the mobile station at the i+1-th epoch into the carrier observation equation respectively, and calculate the carrier observation value of the i-th epoch of the base station and the carrier observation value of the i+1-th epoch of the mobile station.
  • the base station and the rover are each provided with a receiver
  • the carrier observation equation is:
  • the superscript s represents the first satellite, and the subscripts r and j represent the receiver and frequency respectively;
  • represents the actual satellite-to-ground distance, in meters
  • c represents the speed of light
  • dt r , dt s respectively represent the receiver clock error and satellite clock error, the unit is s;
  • T represents the tropospheric error, in m
  • O represents the orbit error, in meters
  • I represents the ionospheric error at L1 frequency, in m
  • ⁇ j represents the ionospheric influence coefficient of frequency j relative to L1;
  • d r,j They represent the channel delay at the frequency j pseudorange receiver and the channel delay at the satellite, in seconds;
  • ⁇ r,j They represent the channel delay at the receiver end of the frequency j carrier and the channel delay at the satellite end, in seconds;
  • ⁇ j represents the wavelength of the carrier at frequency j, in m
  • the first calculation module 302 includes:
  • the third calculation submodule is used to obtain an extrapolated amount of pseudorange observation value by subtracting the pseudorange observation value of the i-th epoch of the reference station from the pseudorange observation value of the i+1-th epoch of the mobile station;
  • the fourth calculation submodule is used to obtain the carrier observation value extrapolation by subtracting the carrier observation value of the i-th epoch of the reference station from the carrier observation value of the i+1-th epoch of the mobile station.
  • the second calculation module 303 includes:
  • the correction submodule is used to add the extrapolated amount of the observation value to the original satellite observation value of the reference station, correct the satellite observation value of the i+1th epoch of the reference station, and obtain the corrected satellite observation value of the i+1th epoch of the reference station.
  • the third calculation module 304 includes:
  • a first construction submodule is used to construct a first single-difference observation model of the first satellite based on the satellite observation value of the reference station at the i+1 epoch and the satellite observation value of the mobile station at the i+1 epoch;
  • the second construction submodule is used to obtain the satellite observation value of the second satellite observed by the reference station at the i+1 epoch and the satellite observation value of the second satellite observed by the mobile station at the i+1 epoch, and to construct a second single-difference observation model of the second satellite according to the satellite observation value of the second satellite observed by the reference station at the i+1 epoch and the satellite observation value of the second satellite observed by the mobile station at the i+1 epoch;
  • a third construction submodule is used to construct a double difference observation model according to the first single difference observation model and the second single difference observation model; wherein the altitude angle of the second satellite is greater than the altitude angle of the first satellite;
  • the fifth calculation submodule is used to calculate the estimated positioning result of the i+1th mobile station according to the first single-difference observation model, the second single-difference observation model and the double-difference observation model.
  • the fifth computing submodule includes:
  • a training unit used for training the first pseudorange single-difference observation model and the first carrier single-difference observation model to obtain a plurality of pseudorange single-difference observation values and a plurality of carrier single-difference observation values;
  • An estimation unit used for inputting a plurality of pseudorange single-difference observation values and a plurality of carrier single-difference observation values into a Kalman filter algorithm model, and estimating a single-difference ambiguity floating-point solution and a position floating-point solution of the first satellite;
  • a determination unit converting the single-difference ambiguity floating-point solution into a double-difference ambiguity floating-point solution, and determining an optimal ambiguity fixed solution combination from a plurality of double-difference ambiguity floating-point solutions;
  • the calculation unit is used for inputting the optimal ambiguity fixation solution ambiguity fixation solution combination into the double difference observation model to obtain the position fixation solution of the mobile station at the i+1 epoch.
  • the description is relatively simple, and the relevant parts can be referred to the partial description of the method embodiment.
  • the present application also provides an electronic device, including:
  • It includes a processor, a memory, and a computer program stored in the memory and capable of running on the processor.
  • the computer program is executed by the processor, the various processes of the above-mentioned satellite positioning method embodiment based on observation value extrapolation are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • An embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored.
  • the computer program is executed by a processor, the various processes of the above-mentioned satellite positioning method embodiment based on observation value extrapolation are implemented, and the same technical effect can be achieved. To avoid repetition, it will not be repeated here.
  • the embodiments of the present application can be provided as methods, devices, or computer program products. Therefore, the present application can adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application can adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program code.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor, or other programmable data processing terminal device to generate a machine, so that the instructions executed by the processor of the computer or other programmable data processing terminal device generate a device for implementing the functions specified in one process or multiple processes in the flowchart and/or one box or multiple boxes in the block diagram.
  • These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing terminal device to operate in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing terminal device so that a series of operating steps are executed on the computer or other programmable terminal device to produce computer-implemented processing, so that the instructions executed on the computer or other programmable terminal device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种基于观测值外推的卫星定位方法和装置,该方法包括: 获取基准站第i历元和流动站第i+1 历元的卫星观测值(101);根据第i历元和流动站第i+1历元的卫星观测值,计算卫星观测值外推量(102);根据卫星观测值外推量和第i历元的卫星观测值,计算第i+1历元的卫星观测值(103);根据基准站第i+1历元和流动站第i+1历元的卫星观测值构建差分模型,计算流动站第i+1历元的预估定位结果(104)。通过将基准站观测值外推,将外推量增加到原始基准站观测值上,实现基准站与移动站观测时间的同步,使得流动站可以实时解算当前时刻的位置信息,不仅无需变动已有的RTK算法实现,还保障了流动站可提供连续的、实时的和高更新率的高精度定位结果。

Description

一种基于观测值外推的卫星定位方法和装置
本申请要求在2022年09月29日提交中国专利局、申请号202211203492.5、发明名称为“一种基于观测值外推的卫星定位方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及卫星定位技术领域,特别是涉及一种基于观测值外推的卫星定位方法和一种基于观测值外推的卫星定位装置。
背景技术
随着全球导航卫星系统(Global Navigation Satellite System,GNSS)在飞机精密进近、自动驾驶、驾校自动监考等领域的应用,为了满足高更新率和高精度位置输出的要求,基准站观测数据的差分数据龄期问题亟待解决。载波相位差分技术(real time kinematic,RTK)导航定位技术进行差分定位解算时需要同步基准站和流动站的观测数据,而基准站的观测数据通过通信链路传输,存在时延,会导致流动站不能实时解算当前时刻的位置信息,并且基准站的播发频率一般为1Hz,无法实现高频率定位。
现有的RTK定位技术中,通过时间同步法、位置内插法来解决同步问题。
时间同步法:当基准站和流动站数据时间同步时才进行RTK定位。由于基准站数据通过通信链路传输,存在延时和漏数据情况,若时间同步后进行RTK定位,其定位结果是上一时刻的定位结果,与当前实际运动的位置不匹配,存在延误问题,并且存在定位结果的时间不均匀,以及漏帧现象。
位置内插法:第一种位置内插法是基于GNSS速度,在时间同步后得到RTK定位结果,使用速度结果对定位结果进行时间上的外推,得到实时的GNSS定位结果,但定位精度会下降,和速度精度关联较大;第二种位置内插法是基于历元间载波差分法,该方法虽然可以提供实时的GNSS定位,但会增加实时操作系统(Real-time operating system,RTOS)平台的算力。
发明内容
鉴于上述问题,提出了本申请实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种基于观测值外推的卫星定位方法和一种基于观测值外推的卫星定位装置。
为了解决上述问题,本申请实施例公开了一种基于观测值外推的卫星定位方法,包括:
获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值;
根据基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值,计算得到卫星观测值外推量;
根据卫星观测值外推量和基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观测值;
根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到流动站第i+1个历元的预估定位结果。
在一些实施例中,卫星观测值包括伪距观测值和载波观测值;获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值,包括:
获取基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据;
将基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据分别输入伪距观测方程,计算得到基准站第i个历元的伪距观测值和流动站第i+1个历元的伪距观测值;
将基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据分别输入载波观测方程,计算得到基准站第i个历元的载波观测值和流动站第i+1个历元的载波观测值。
在一些实施例中,基准站和流动站分别设置有接收机;
伪距观测方程为:
Figure PCTCN2022136309-appb-000001
载波观测方程为:
Figure PCTCN2022136309-appb-000002
其中,上标s表示第一卫星,下标r,j分别表示接收机和频率;
ρ表示为真实的卫地距;
c表示光速;
dt r,dt s,分别表示接收机钟差和卫星钟差;
T表示对流层误差;
O表示轨道误差;
I表示L1频率上的电离层误差;
μ j表示频率j相对L1的电离层影响系数;
d r,j
Figure PCTCN2022136309-appb-000003
分别表示频率j伪距接收机端的通道时延和卫星端的通道时延;
δ r,j
Figure PCTCN2022136309-appb-000004
分别表示频率j载波接收机端的通道时延和卫星端的通道时延;
Figure PCTCN2022136309-appb-000005
分别表示频率j伪距和载波多路径;
Figure PCTCN2022136309-appb-000006
表示频率j伪距噪声;
Figure PCTCN2022136309-appb-000007
表示频率j载波噪声;
λ j表示频率j载波波长;
Figure PCTCN2022136309-appb-000008
分别表示接收机端初始振荡信号和卫星端初始振荡信号;
Figure PCTCN2022136309-appb-000009
表示频率j载波整周模糊度。
在一些实施例中,根据基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值,计算得到卫星观测值外推量,包括:
将流动站第i+1个历元的伪距观测值减去基准站第i个历元的伪距观测值得到伪距观测值外推量;
将流动站第i+1个历元的载波观测值减去基准站第i个历元的载波观测值得到载波观测值外推量。
在一些实施例中,根据卫星观测值外推量和基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观测值,包括:
将观测值外推量加到基准站的原始卫星观测值上,对基准站第i+1个历元的卫星观测值进行修正,得到修正后的基准站第i+1个历元的卫星观测值。
在一些实施例中,根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到流动站第i+1个历元的预估定位结果,包括:
根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值,构建第一卫星的第一单差观测模型;
获取基准站第i+1个历元观测第二卫星的卫星观测值和流动站第i+1个历元观测第二卫星的卫星观测值,并根据基准站第i+1个历元观测第二卫星的卫星观测值和流动站第i+1个历元观测第二卫星的卫星观测值,构建第二卫星的第二单差观测模型;
根据第一单差观测模型和第二单差观测模型,构建双差观测模型;其中,第二卫星的高度角大于第一卫星的高度角;
根据第一单差观测模型、第二单差观测模型和双差观测模型,计算得到流动站第i+1个的预估定位结果。
在一些实施例中,第一单差观测模型包括第一伪距单差观测模型和第一载波单差观测模型,根据第一单差观测模型、双差观测模型,计算得到流动站第i+1个历元的预估定位结果,包括:
对第一伪距单差观测模型和第一载波单差观测模型进行训练,得到多个伪距单差观测值和多个载波单差观测值;
将多个伪距单差观测值和多个载波单差观测值输入卡尔曼滤波算法模型,估算第一卫星的单差模糊度浮点解和位置浮点解;
将单差模糊度浮点解转换成双差模糊度浮点解,并从多个双差模糊度浮点解中确定最优的模糊度固定解组合;
将最优的模糊度固定解模糊度固定解组合输入双差观测模型,得到流动站第i+1个历元的位置固定解。
本申请实施例还公开了一种基于观测值外推的卫星定位装置,包括:
获取模块,用于获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值;
第一计算模块,用于根据基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值,计算得到卫星观测值外推量;
第二计算模块,用于根据卫星观测值外推量和基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观测值;
第三计算模块,用于根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到流动站第i+1个历元的预估定位结果。
在一些实施例中,卫星观测值包括伪距观测值和载波观测值;获取模块,包括:
获取子模块,用于获取基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据;
第一计算子模块,用于将基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据分别输入伪距观测方程,计算得到基准站第i个历元的伪距观测值和流动站第i+1个历元的伪距观测值;
第二计算子模块,用于将基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据分别输入载波观测方程,计算得到基准站第i个历元的载波观测值和流动站第i+1个历元的载波观测值。
在一些实施例中,基准站和流动站分别设置有接收机;
伪距观测方程为:
Figure PCTCN2022136309-appb-000010
载波观测方程为:
Figure PCTCN2022136309-appb-000011
其中,上标s表示第一卫星,下标r,j分别表示接收机和频率;
ρ表示为真实的卫地距;
c表示光速;
dt r,dt s,分别表示接收机钟差和卫星钟差;
T表示对流层误差;
O表示轨道误差;
I表示L1频率上的电离层误差;
μ j表示频率j相对L1的电离层影响系数;
d r,j
Figure PCTCN2022136309-appb-000012
分别表示频率j伪距接收机端的通道时延和卫星端的通道时延;
δ r,j
Figure PCTCN2022136309-appb-000013
分别表示频率j载波接收机端的通道时延和卫星端的通道时延;
Figure PCTCN2022136309-appb-000014
分别表示频率j伪距和载波多路径;
Figure PCTCN2022136309-appb-000015
表示频率j伪距噪声;
Figure PCTCN2022136309-appb-000016
表示频率j载波噪声;
λ j表示频率j载波波长;
Figure PCTCN2022136309-appb-000017
分别表示接收机端初始振荡信号和卫星端初始振荡信号;
Figure PCTCN2022136309-appb-000018
表示频率j载波整周模糊度。
在一些实施例中,第一计算模块,包括:
第三计算子模块,用于将流动站第i+1个历元的伪距观测值减去基准站第i个历元的伪距观测值得到伪距观测值外推量;
第四计算子模块,用于将流动站第i+1个历元的载波观测值减去基准站第i个历元的载波观测值得到载波观测值外推量。
在一些实施例中,第二计算模块,包括:
修正子模块,用于将观测值外推量加到基准站的原始卫星观测值上,对基准站第i+1个历元的卫星观测值进行修正,得到修正后的基准站第i+1个历元的卫星观测值。
在一些实施例中,第三计算模块,包括:
第一构建子模块,用于根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值,构建第一卫星的第一单差观测模型;
第二构建子模块,用于获取基准站第i+1个历元观测第二卫星的卫星观测值和流动站第i+1个历元观测第二卫星的卫星观测值,并根据基准站第i+1个历元观测第二卫星的卫星观测值和流动站第i+1个历元观测第二卫星的卫星观测值,构建第二卫星的第二单差观测模型;
第三构建子模块,用于根据第一单差观测模型和第二单差观测模型,构建双差观测模型;其中,第二卫星的高度角大于第一卫星的高度角;
第五计算子模块,用于根据第一单差观测模型、第二单差观测模型和双差观测模型,计算得到流动站第i+1个的预估定位结果。
在一些实施例中,第五计算子模块,包括:
训练单元,用于对第一伪距单差观测模型和第一载波单差观测模型进行训练,得到多个伪距单差观测值和多个载波单差观测值;
估算单元,用于将多个伪距单差观测值和多个载波单差观测值输入卡尔曼滤波算法模型,估算第一卫星的单差模糊度浮点解和位置浮点解;
确定单元,将单差模糊度浮点解转换成双差模糊度浮点解,并从多个双差模糊度浮点解中确定最优的模糊度固定解组合;
计算单元,用于将最优的模糊度固定解模糊度固定解组合输入双差观测模型,得到流动站第i+1个历元的位置固定解。
本申请实施例还提供了一种电子设备,包括:处理器、存储器及存储在存储器上并能够在处理器上运行的计算机程序,计算机程序被处理器执行时实现如上述的基于观测值外推的卫星定位方法的步骤。
本申请实施例还提供了一种计算机可读存储介质,其特征在于,计算机可读存储介质上存储计算机程序,计算机程序被处理器执行时实现如上述的基于观测值外推的卫星定位方法的步骤。
本申请实施例包括以下优点:
在本申请实施例中,获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值;根据基准站第i个历元的卫星观测值和流动站第i+1 个历元的卫星观测值,计算得到卫星观测值外推量;根据卫星观测值外推量和基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观测值;根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到流动站第i+1个历元的预估定位结果。通过将基准站观测值外推,将外推量增加到原始基准站观测值上,实现基准站与流动站观测时间的同步,使得流动站可以实时解算当前时刻的位置信息,不仅无需变动已有的RTK算法实现,无需增加算力,还保证了获取基准站观测数据的连续性,保障了流动站可提供连续的、实时的和高更新率的高精度定位结果。
附图说明
图1是本申请实施例提供的一种基于观测值外推的卫星定位方法的步骤流程图;
图2是本申请实施例提供的一种RTK定位流程图;
图3是本申请实施例提供的一种基于观测值外推的卫星定位装置的结构框图。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明。
差分龄期(Age of differential)即基站和移动站之间的时间差。在实时定位中,可能由于时间延迟、网络故障等原因未能接收到当前时刻的基站信息,在后处理中,基站数据可能中间有丢失,或者基站数据不能完全覆盖流动站。基站数据和流动站数据有时间差,流动站不能实时解算当前时刻的位置信息,导致流动站定位不精准。
现有技术中,通过时间同步法解决同步问题的方式,输出的是历史时间的定位结果,时间同步后再进行定位,存在定位结果和实际运动位置不匹配的问题;通过位置外推法解决同步问题的方式,是利用速度外推或者历元间差分的方法,把第i个历元的定位结果外推到第i+1个历元的定位结果,依赖速度精度,增加RTOS平台的算力。为了解决RTK定位技术中基准站数 据传输时延和更新频率问题,本申请提出了一种基于观测值外推的卫星定位方法。
本申请实施例的核心构思之一在于,通过将基准站观测数据外推,将外推量增加到基准站当前时刻的观测值上,实现基准站与流动站观测时间的同步,使得流动站可以实时解算当前时刻的位置信息,解决数据通信链路传播时延问题,无需调整RTK定位的算法流程,保证定位系统在高速应用场景,可以提供低时延、高更新率的RTK精密位置信息。
本申请以GNSS导航定位为例进行说明。
参照图1,示出了本申请实施例提供的一种基于观测值外推的卫星定位方法的步骤流程图,方法具体可以包括如下步骤:
步骤101,获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值。
在本申请实施例中,流动站可以通过网络通讯模块,连接基准站服务器,获取基准站各卫星的原始伪距和载波观测值。在RTK作业模式下,基准站可以采集卫星数据,并通过数据链将其观测值和站点坐标信息传送给流动站,流动站可以通过对所采集到的卫星数据和接收到的数据链进行实时载波相位差分处理,得出定位结果。
历元(Epoch)为测量时间间隔或数据频度。例如:某正在进行的测量工作每五秒钟测量并记录一次,则历元为五秒钟。
在一些实施例中,基准站第i个历元和流动站第i+1个历元可以观测到同一颗卫星。
在一些实施例中,卫星观测值包括伪距观测值和载波观测值;获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值,包括:获取基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据;将基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据分别输入伪距观测方程,计算得到基准站第i个历元的伪距观测值和流动站第i+1个历元的伪距观测值;将基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星 的观测数据分别输入载波观测方程,计算得到基准站第i个历元的载波观测值和流动站第i+1个历元的载波观测值。
在本申请实施例中,GNSS导航定位时,使用的基本卫星信号是伪距观测值和载波观测值。伪距观测值是比对卫星端和接收机端的卫星信号,获得信号从卫星传播到接收机的时间,乘以光速得到卫星和接收机的距离。载波相位观测值则是比较卫星端和接收机端的相位差及相位的整数计数部分,得到卫星和接收机的距离。
在一些实施例中,基准站和流动站分别设置有接收机;
伪距观测方程为:
Figure PCTCN2022136309-appb-000019
载波观测方程为:
Figure PCTCN2022136309-appb-000020
其中,上标s表示第一卫星,下标r,j分别表示接收机和频率;
ρ表示为真实的卫地距,单位可以为m;
c表示光速;
dt r,dt s,分别表示接收机钟差和卫星钟差,单位可以为s;
T表示对流层误差,单位可以为m;
O表示轨道误差,单位可以为m;
I表示L1频率上的电离层误差,单位可以为m;
μ j表示频率j相对L1的电离层影响系数;
d r,j
Figure PCTCN2022136309-appb-000021
分别表示频率j伪距接收机端的通道时延和卫星端的通道时延,单位为s;
δ r,j
Figure PCTCN2022136309-appb-000022
分别表示频率j载波接收机端的通道时延和卫星端的通道时延,单位为s;
Figure PCTCN2022136309-appb-000023
分别表示频率j伪距和载波多路径,单位可以为m;
Figure PCTCN2022136309-appb-000024
表示频率j伪距噪声,单位可以为m;
Figure PCTCN2022136309-appb-000025
表示频率j载波噪声,单位可以为cycle;
λ j表示频率j载波波长,单位可以为m;
Figure PCTCN2022136309-appb-000026
分别表示接收机端初始振荡信号和卫星端初始振荡信号;
Figure PCTCN2022136309-appb-000027
表示频率j载波整周模糊度。
在一些实施例中,可以按照上述伪距观测值的数学方程和载波观测值的数学方程,设基准站第i个历元和流动站第i+1个历元观测到同一颗卫星,在获取基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据后,可以将基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据分别输入伪距观测方程以及载波观测方程:
输入伪距观测方程:
Figure PCTCN2022136309-appb-000028
Figure PCTCN2022136309-appb-000029
输入载波观测方程:
Figure PCTCN2022136309-appb-000030
Figure PCTCN2022136309-appb-000031
从而得到基准站第i个历元的伪距观测值
Figure PCTCN2022136309-appb-000032
和流动站第i+1个历元的伪距观测值
Figure PCTCN2022136309-appb-000033
以及基准站第i个历元的载波观测值
Figure PCTCN2022136309-appb-000034
和流动站第i+1个历元的载波观测值
Figure PCTCN2022136309-appb-000035
其中,对流层误差T、轨道误差O、L1频率上的电离层误差I、相对L1的电离层影响系数μ、伪距多路径
Figure PCTCN2022136309-appb-000036
载波多路径
Figure PCTCN2022136309-appb-000037
伪距噪声
Figure PCTCN2022136309-appb-000038
载波 噪声
Figure PCTCN2022136309-appb-000039
接收机端初始振荡信号
Figure PCTCN2022136309-appb-000040
卫星端初始振荡信号
Figure PCTCN2022136309-appb-000041
整周模糊度
Figure PCTCN2022136309-appb-000042
的数值与不同时刻历元无关,不受历元影响。
步骤102,根据基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值,计算得到卫星观测值外推量。
在一些实施例中,将流动站第i+1个历元的伪距观测值减去基准站第i个历元的伪距观测值得到伪距观测值外推量;将流动站第i+1个历元的载波观测值减去基准站第i个历元的载波观测值得到载波观测值外推量。
在一些实施例中,可以按照如下方式进行计算:
Figure PCTCN2022136309-appb-000043
Figure PCTCN2022136309-appb-000044
于是得:
Figure PCTCN2022136309-appb-000045
Figure PCTCN2022136309-appb-000046
Figure PCTCN2022136309-appb-000047
为伪距观测值外推量,
Figure PCTCN2022136309-appb-000048
为载波观测值外推量。
在一些实施例中,基准站中的接收机和移动站中的接收机之间的距离可以不超过10km,具有一定的空间相关性,第i+1个历元和第i个历元的接收机端和卫星端的通道时延近似相等,因此相减可以消除,进而消除了通道时延的影响。同样的,因为基准站中的接收机和移动站中的接收机之间的距离较近,第i+1个历元和第i个历元的的接收机钟差,变化较小,两个历元的接收机钟差可以忽略不计,也即在伪距观测值外推量和载波观测值外推量的计算过程中,(dt r,i+1-dt r,i)的值可以为0。
在一些实施例中,
Figure PCTCN2022136309-appb-000049
是第i+1个历元的卫星钟差,
Figure PCTCN2022136309-appb-000050
第i个历元的卫星钟差,对于不同接收机,同一颗卫星的卫星钟差相同,也即在伪距观测值外推量和载波观测值外推量的计算过程中,
Figure PCTCN2022136309-appb-000051
的值可以为0。因此,可以消去卫星钟差的影响。
在一些实施例中,
Figure PCTCN2022136309-appb-000052
可以利用基准站的坐标和第一卫星在第i+1个历 元的坐标(即流动站第i+1个历元观测第一卫星的观测结果)计算,
Figure PCTCN2022136309-appb-000053
可以利用基准站的坐标和第一卫星在第i个历元的坐标(即基准站第i个历元观测第一卫星的观测结果)计算。
步骤103,根据卫星观测值外推量和基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观测值。
在一些实施例中,将观测值外推量加到基准站的原始卫星观测值上,对基准站第i+1个历元的卫星观测值进行修正,得到修正后的基准站第i+1个历元的卫星观测值。
在一些实施例中,
Figure PCTCN2022136309-appb-000054
Figure PCTCN2022136309-appb-000055
通过上述步骤可以将当前时刻基准站的第i个历元的卫星伪距和载波观测值进行外推,实现了基准站和流动站的观测数据时间同步。
另外,可以在基准站和流动站的观测数据时间同步后,对卫星观测数据进行处理,如依次进行卫星观测数据剔除、粗差探测、钟跳探测和周跳探测操作,保障卫星观测值质量,确保高精度差分定位。
步骤104,根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到流动站第i+1个历元的预估定位结果。
在本申请实施例中,可以根据基准站外推的第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,通过差分模型计算得到流动站第i+1个历元的卫星定位结果。
在一些实施例中,根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值,构建第一卫星的第一单差观测模型;获取基准站第i+1个历元观测第二卫星的卫星观测值和流动站第i+1个历元观测第二卫星的卫星观测值,并根据基准站第i+1个历元观测第二卫星的卫星观测值和流动站第i+1个历元观测第二卫星的卫星观测值,构建第二卫星的第二单差观测模 型;根据第一单差观测模型和第二单差观测模型,构建双差观测模型;其中,第二卫星的高度角大于第一卫星的高度角;根据第一单差观测模型、第二单差观测模型和双差观测模型,计算得到流动站第i+1个历元的预估定位结果。
在一些实施例中:
(1)单差观测模型
在RTK定位中,单差一般是指不同接收机同一颗卫星同一时段的同一种观测值之间求差。例如,设q表示基准站,r表示流动站,两个测站同时对卫星s进行观测,可以得到简化的伪距和载波单差观测方程为:
Figure PCTCN2022136309-appb-000056
Figure PCTCN2022136309-appb-000057
对于不同接收机,同一颗卫星的卫星钟差相同,因此单差可以消去卫星钟差的影响。同时两台接收机之间具有一定的空间相关性,单差也可以削弱卫星轨道误差、电离层延迟和对流层延迟等误差的影响。
(2)双差观测模型
设第一卫星为卫星s,第二卫星为卫星t,卫星t观测高度角大于卫星s,将卫星t作为基准星。在RTK定位中,双差观测模型一般是指,在单差观测模型的基础上,可以对卫星t,s站间单差进一步进行星间差分,可得双差观测表达式:
Figure PCTCN2022136309-appb-000058
Figure PCTCN2022136309-appb-000059
对于同一台接收机,不同卫星的接收机钟差相同,因此双差组合消去了接收机钟差的影响。在实际工作中,双差观测值通常选择视场中观测时间长,卫星高度角大的那颗卫星作为基准星,其余各卫星的单差观测方程依次和基准星的作差,得到双差观测方程。在载波双差观测方程中,整周模糊度
Figure PCTCN2022136309-appb-000060
只剩下整数部分,因此RTK定位中,双差观测值的模糊度保持整数特性,可 以进行整周模糊度的固定,提高定位精度。
在一些实施例中,对第一伪距单差观测模型和第一载波单差观测模型进行训练,得到多个伪距单差观测值和多个载波单差观测值;将多个伪距单差观测值和多个载波单差观测值输入卡尔曼滤波算法模型,估算第一卫星的单差模糊度浮点解和位置浮点解;将单差模糊度浮点解转换成双差模糊度浮点解,并从多个双差模糊度浮点解中确定最优的模糊度固定解组合;将最优的模糊度固定解模糊度固定解组合输入双差观测模型,得到流动站第i+1个历元的位置固定解。
在一些实施例中,在构建第一单差观测模型后,可以首先对第一单差观测模型进行训练,得到多个单差观测值。可以将多个单差观测值输入卡尔曼滤波算法模型,进行模糊度浮点解解算,再进行模糊度固定解解算,再进行位置固定解解算,至此,一个时刻的RTK定位解算结束,得到预估定位结果。
在RTK连续观测中,卫星的升降、周跳的产生将导致估计参数x维度不断变化,这增加了程序实现的难度:若采用最小二乘估计器,需要重组法方程,若采用卡尔曼滤波,状态量的传递比较复杂。因此,本申请实施例优选采用基于卡尔曼滤波的单差模式RTK定位数学表达式,相比双差模式,更方便灵活。
例如,如图2所示,为本申请实施例提供的一种RTK定位流程图。
步骤1:观测值外推。在获取基准站和流动站观测数据后,可以使用观测值外推方法将基准站数据时间和流动站数据时间同步。
步骤2:数据预处理。对卫星观测数据进行整理,依次进行卫星观测数据剔除、粗差探测、钟跳探测和周跳探测操作,保障卫星观测值质量,确保高精度差分定位。
步骤3:差分模型构建。选择基准站和流动站同步观测的卫星,组成伪距和载波单差观测值;选择高度角较高的卫星作为基准星,组成伪距和载波双差观测值。
步骤4:模糊度浮点解解算。使用卡尔曼(Kalman)滤波算法,估计各 同步卫星的单差模糊度浮点解和位置浮点解,具体实现如下:
线性化后的测量方程
Figure PCTCN2022136309-appb-000061
设计矩阵
Figure PCTCN2022136309-appb-000062
状态参数
x=(r b 1 b 2 b 3)
其中,
Figure PCTCN2022136309-appb-000063
为伪距单差观测值,
Figure PCTCN2022136309-appb-000064
为载波单差观测方程,g=(g 1 g 2 … g n)为所有卫星方向向量r=(x y z)为坐标向量,b f=(ΔN 1 ΔN 2 … ΔN n)为f频率上所有卫星单差模糊度向量;D表示双差转换矩阵;x表示(x,y,z)坐标向量和单差模糊度状态参数;H表示系数矩阵;e 3表示3阶单位矩阵;I n表示对角线等于1,非对角线是0的单位阵;bf表示频率f上的所有卫星的单差模糊度,f=1,2,3。
该方法状态参数x维度始终一致,不用考虑因卫星升降、周跳的等产生的模糊度参数增多或减少导致的参数重组,增加卡尔曼滤波的灵活性,更有利于程序的实现。
步骤5:模糊度固定解解算。可以基于选择的基准星t(第二卫星)的单差模糊度,通过双差转换矩阵,将卫星s(第一卫星)的单差模糊度浮点解转换成双差模糊度浮点解。再使用最小二乘模糊度降相关平差法(Least-square Ambiguity Decorrelation Adjustment,LAMBDA)的搜索算法, 得到最优的模糊度固定解组合。同时,可以基于选择的基准星t(第二卫星)的单差观测值,利用双差转换矩阵,将卫星s(第一卫星)的单差观测值转换为双差观测值。具体实现如下:
选择高度角较高卫星t作为基准星,组成双差转换矩阵D。可以用卡尔曼滤波进行滤波,得到单差模糊度参数x的实数解和相应的方差阵。
双差转换矩阵
Figure PCTCN2022136309-appb-000065
为了得到固定解,需要对
Figure PCTCN2022136309-appb-000066
Figure PCTCN2022136309-appb-000067
进行转换:
Figure PCTCN2022136309-appb-000068
Figure PCTCN2022136309-appb-000069
此时,单差模糊度
Figure PCTCN2022136309-appb-000070
便转换成了双差模糊度
Figure PCTCN2022136309-appb-000071
最后可以再采用采用最小二乘模糊度降相关平差法对实数解和进行模糊度固定。例如,转换后的双差模糊度浮点解为[2.5,3.5],在进行双差模糊度固定时,固定解可以取[2,3]、[2,4]、[3,3]、[3,4]等4组解,可以采用LAMBDA搜索算法,得到最优的模糊度固定解组合为[2,4]。
步骤6:位置固定解解算。可以将得到的模糊度固定解输入载波观测方程,计算得到预估的定位结果。
在一些实施例中,可以将模糊度固定解进行模糊度可靠性检验,若通过,则更新位置固定解,若不通过,则输出位置浮点解。至此,一个时刻的RTK定位解算结束。
在本申请实施例中,获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值;根据基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值,计算得到卫星观测值外推量;根据卫星观测值外推量和基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观 测值;根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到流动站第i+1个历元的预估定位结果。通过将基准站观测值外推,将外推量增加到原始基准站观测值上,实现基准站与流动站观测时间的同步,使得流动站可以实时解算当前时刻的位置信息,不仅无需变动已有的RTK算法实现,无需增加算力,还保证了获取基准站观测数据的连续性,保障了流动站可提供连续的、实时的和高更新率的高精度定位结果。
需要说明的是,对于方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请实施例并不受所描述的动作顺序的限制,因为依据本申请实施例,某些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作并不一定是本申请实施例所必须的。
参照图3,示出了本申请实施例提供的一种基于观测值外推的卫星定位装置的结构框图,具体可以包括如下模块:
获取模块301,用于获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值;
第一计算模块302,用于根据基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值,计算得到卫星观测值外推量;
第二计算模块303,用于根据卫星观测值外推量和基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观测值;
第三计算模块304,用于根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到流动站第i+1个历元的预估定位结果。
在一些实施例中,卫星观测值包括伪距观测值和载波观测值;获取模块301,包括:
获取子模块,用于获取基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据;
第一计算子模块,用于将基准站第i个历元观测第一卫星的观测数据和 流动站第i+1个历元观测第一卫星的观测数据分别输入伪距观测方程,计算得到基准站第i个历元的伪距观测值和流动站第i+1个历元的伪距观测值;
第二计算子模块,用于将基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测第一卫星的观测数据分别输入载波观测方程,计算得到基准站第i个历元的载波观测值和流动站第i+1个历元的载波观测值。
在一些实施例中,基准站和流动站分别设置有接收机;
伪距观测方程为:
Figure PCTCN2022136309-appb-000072
载波观测方程为:
Figure PCTCN2022136309-appb-000073
其中,上标s表示第一卫星,下标r,j分别表示接收机和频率;
ρ表示为真实的卫地距,单位为m;
c表示光速;
dt r,dt s,分别表示接收机钟差和卫星钟差,单位为s;
T表示对流层误差,单位为m;
O表示轨道误差,单位为m;
I表示L1频率上的电离层误差,单位为m;
μ j表示频率j相对L1的电离层影响系数;
d r,j
Figure PCTCN2022136309-appb-000074
分别表示频率j伪距接收机端的通道时延和卫星端的通道时延,单位为s;
δ r,j
Figure PCTCN2022136309-appb-000075
分别表示频率j载波接收机端的通道时延和卫星端的通道时延,单位为s;
Figure PCTCN2022136309-appb-000076
分别表示频率j伪距和载波多路径,单位为m;
Figure PCTCN2022136309-appb-000077
表示频率j伪距噪声,单位为m;
Figure PCTCN2022136309-appb-000078
表示频率j载波噪声,单位为cycle;
λ j表示频率j载波波长,单位为m;
Figure PCTCN2022136309-appb-000079
分别表示接收机端初始振荡信号和卫星端初始振荡信号;
Figure PCTCN2022136309-appb-000080
表示频率j载波整周模糊度。
在一些实施例中,第一计算模块302,包括:
第三计算子模块,用于将流动站第i+1个历元的伪距观测值减去基准站第i个历元的伪距观测值得到伪距观测值外推量;
第四计算子模块,用于将流动站第i+1个历元的载波观测值减去基准站第i个历元的载波观测值得到载波观测值外推量。
在一些实施例中,第二计算模块303,包括:
修正子模块,用于将观测值外推量加到基准站的原始卫星观测值上,对基准站第i+1个历元的卫星观测值进行修正,得到修正后的基准站第i+1个历元的卫星观测值。
在一些实施例中,第三计算模块304,包括:
第一构建子模块,用于根据基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值,构建第一卫星的第一单差观测模型;
第二构建子模块,用于获取基准站第i+1个历元观测第二卫星的卫星观测值和流动站第i+1个历元观测第二卫星的卫星观测值,并根据基准站第i+1个历元观测第二卫星的卫星观测值和流动站第i+1个历元观测第二卫星的卫星观测值,构建第二卫星的第二单差观测模型;
第三构建子模块,用于根据第一单差观测模型和第二单差观测模型,构建双差观测模型;其中,第二卫星的高度角大于第一卫星的高度角;
第五计算子模块,用于根据第一单差观测模型、第二单差观测模型和双差观测模型,计算得到流动站第i+1个的预估定位结果。
在一些实施例中,第五计算子模块,包括:
训练单元,用于对第一伪距单差观测模型和第一载波单差观测模型进行训练,得到多个伪距单差观测值和多个载波单差观测值;
估算单元,用于将多个伪距单差观测值和多个载波单差观测值输入卡尔曼滤波算法模型,估算第一卫星的单差模糊度浮点解和位置浮点解;
确定单元,将单差模糊度浮点解转换成双差模糊度浮点解,并从多个双差模糊度浮点解中确定最优的模糊度固定解组合;
计算单元,用于将最优的模糊度固定解模糊度固定解组合输入双差观测模型,得到流动站第i+1个历元的位置固定解。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请实施例还提供了一种电子设备,包括:
包括处理器、存储器及存储在存储器上并能够在处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述基于观测值外推的卫星定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储计算机程序,计算机程序被处理器执行时实现上述基于观测值外推的卫星定位方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本说明书中的各个实施例均采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令 实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种基于观测值外推的卫星定位方法和一种基于观测值外推的卫星定位装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种基于观测值外推的卫星定位方法,其特征在于,包括:
    获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值;
    根据所述基准站第i个历元的卫星观测值和所述流动站第i+1个历元的卫星观测值,计算得到卫星观测值外推量;
    根据所述卫星观测值外推量和所述基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观测值;
    根据所述基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到所述流动站第i+1个历元的预估定位结果。
  2. 根据权利要求1所述的方法,其特征在于,所述卫星观测值包括伪距观测值和载波观测值;所述获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值,包括:
    获取基准站第i个历元观测第一卫星的观测数据和流动站第i+1个历元观测所述第一卫星的观测数据;
    将所述基准站第i个历元观测第一卫星的观测数据和所述流动站第i+1个历元观测所述第一卫星的观测数据分别输入伪距观测方程,计算得到所述基准站第i个历元的伪距观测值和所述流动站第i+1个历元的伪距观测值;
    将所述基准站第i个历元观测第一卫星的观测数据和所述流动站第i+1个历元观测所述第一卫星的观测数据分别输入载波观测方程,计算得到所述基准站第i个历元的载波观测值和所述流动站第i+1个历元的载波观测值。
  3. 根据权利要求2所述的方法,其特征在于,所述基准站和所述流动站分别设置有接收机;
    所述伪距观测方程为:
    Figure PCTCN2022136309-appb-100001
    所述载波观测方程为:
    Figure PCTCN2022136309-appb-100002
    其中,上标s表示所述第一卫星,下标r,j分别表示所述接收机和频率;
    ρ表示为真实的卫地距;
    c表示光速;
    dt r,dt s,分别表示接收机钟差和卫星钟差;
    T表示对流层误差;
    O表示轨道误差;
    I表示L1频率上的电离层误差;
    μ j表示频率j相对L1的电离层影响系数;
    d r,j
    Figure PCTCN2022136309-appb-100003
    分别表示频率j伪距接收机端的通道时延和卫星端的通道时延;
    δ r,j
    Figure PCTCN2022136309-appb-100004
    分别表示频率j载波接收机端的通道时延和卫星端的通道时延,单位为s;
    Figure PCTCN2022136309-appb-100005
    分别表示频率j伪距和载波多路径;
    Figure PCTCN2022136309-appb-100006
    表示频率j伪距噪声;
    Figure PCTCN2022136309-appb-100007
    表示频率j载波噪声;
    λ j表示频率j载波波长;
    Figure PCTCN2022136309-appb-100008
    分别表示接收机端初始振荡信号和卫星端初始振荡信号;
    Figure PCTCN2022136309-appb-100009
    表示频率j载波整周模糊度。
  4. 根据权利要求2所述的方法,其特征在于,所述根据所述基准站第i个历元的卫星观测值和所述流动站第i+1个历元的卫星观测值,计算得到卫星观测值外推量,包括:
    将所述流动站第i+1个历元的伪距观测值减去所述基准站第i个历元的伪距观测值得到所述伪距观测值外推量;
    将所述流动站第i+1个历元的载波观测值减去所述基准站第i个历元的载波观测值得到所述载波观测值外推量。
  5. 根据权利要求1所述的方法,其特征在于,所述根据所述卫星观测 值外推量和所述基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观测值,包括:
    将所述观测值外推量加到基准站的原始卫星观测值上,对所述基准站第i+1个历元的卫星观测值进行修正,得到修正后的基准站第i+1个历元的卫星观测值。
  6. 根据权利要求2所述的方法,其特征在于,所述根据所述基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到所述流动站第i+1个历元的预估定位结果,包括:
    根据所述基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值,构建所述第一卫星的第一单差观测模型;
    获取所述基准站第i+1个历元观测第二卫星的卫星观测值和所述流动站第i+1个历元观测第二卫星的卫星观测值,并根据所述基准站第i+1个历元观测第二卫星的卫星观测值和所述流动站第i+1个历元观测第二卫星的卫星观测值,构建所述第二卫星的第二单差观测模型;
    根据所述第一单差观测模型和所述第二单差观测模型,构建双差观测模型;其中,所述第二卫星的高度角大于所述第一卫星的高度角;
    根据所述第一单差观测模型、所述第二单差观测模型和所述双差观测模型,计算得到所述流动站第i+1个的预估定位结果。
  7. 根据权利要求6所述的方法,其特征在于,所述第一单差观测模型包括第一伪距单差观测模型和第一载波单差观测模型,所述根据所述第一单差观测模型、所述双差观测模型,计算得到所述流动站第i+1个历元的预估定位结果,包括:
    对所述第一伪距单差观测模型和所述第一载波单差观测模型进行训练,得到多个伪距单差观测值和多个载波单差观测值;
    将所述多个伪距单差观测值和所述多个载波单差观测值输入卡尔曼滤波算法模型,估算所述第一卫星的单差模糊度浮点解和位置浮点解;
    将单差模糊度浮点解转换成双差模糊度浮点解,并从多个双差模糊度浮点解中确定最优的模糊度固定解组合;
    将所述最优的模糊度固定解模糊度固定解组合输入双差观测模型,得到所述流动站第i+1个历元的位置固定解。
  8. 一种于观测值外推的卫星定位装置,其特征在于,包括:
    获取模块,用于获取基准站第i个历元的卫星观测值和流动站第i+1个历元的卫星观测值;
    第一计算模块,用于根据所述基准站第i个历元的卫星观测值和所述流动站第i+1个历元的卫星观测值,计算得到卫星观测值外推量;
    第二计算模块,用于根据所述卫星观测值外推量和所述基准站第i个历元的卫星观测值,计算得到基准站第i+1个历元的卫星观测值;
    第三计算模块,用于根据所述基准站第i+1个历元的卫星观测值和流动站第i+1个历元的卫星观测值构建差分模型,计算得到所述流动站第i+1个历元的预估定位结果。
  9. 一种电子设备,其特征在于,包括:处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1-7中任一项所述的基于观测值外推的卫星定位方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述的基于观测值外推的卫星定位方法的步骤。
PCT/CN2022/136309 2022-09-29 2022-12-02 一种基于观测值外推的卫星定位方法和装置 WO2024066028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211203492.5 2022-09-29
CN202211203492.5A CN115372999A (zh) 2022-09-29 2022-09-29 一种基于观测值外推的卫星定位方法和装置

Publications (1)

Publication Number Publication Date
WO2024066028A1 true WO2024066028A1 (zh) 2024-04-04

Family

ID=84073282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/136309 WO2024066028A1 (zh) 2022-09-29 2022-12-02 一种基于观测值外推的卫星定位方法和装置

Country Status (2)

Country Link
CN (1) CN115372999A (zh)
WO (1) WO2024066028A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118011445A (zh) * 2024-04-08 2024-05-10 高速铁路建造技术国家工程研究中心 一种多gnss天线的模糊度固定方法及系统
CN118091718A (zh) * 2024-04-17 2024-05-28 中国科学院国家授时中心 通过低轨卫星下行导航信号改善ut1解算精度的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115372999A (zh) * 2022-09-29 2022-11-22 广东汇天航空航天科技有限公司 一种基于观测值外推的卫星定位方法和装置
CN115856973B (zh) * 2023-02-21 2023-06-02 广州导远电子科技有限公司 Gnss解算方法、装置、定位系统、电子设备及存储介质
CN117270004B (zh) * 2023-11-22 2024-01-26 中交路桥科技有限公司 基于卫星定位的工程测绘方法、设备、系统及介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100214161A1 (en) * 2009-02-22 2010-08-26 Trimble Navigation Limited GNSS moving base positioning
CN106291639A (zh) * 2016-08-31 2017-01-04 和芯星通科技(北京)有限公司 一种gnss接收机实现定位的方法及装置
CN108061911A (zh) * 2018-01-16 2018-05-22 东南大学 一种glonass载波单差残差估计方法
CN108845340A (zh) * 2018-06-01 2018-11-20 浙江亚特电器有限公司 基于gnss-rtk的定位方法
CN113671546A (zh) * 2021-08-18 2021-11-19 上海华测导航技术股份有限公司 基于载波观测值历元间双差分的高精度相对运动矢量算法
CN114384573A (zh) * 2021-12-08 2022-04-22 广州市中海达测绘仪器有限公司 基于精密产品的单站位移计算方法、电子设备、存储介质和程序产品
CN115372999A (zh) * 2022-09-29 2022-11-22 广东汇天航空航天科技有限公司 一种基于观测值外推的卫星定位方法和装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100214161A1 (en) * 2009-02-22 2010-08-26 Trimble Navigation Limited GNSS moving base positioning
CN106291639A (zh) * 2016-08-31 2017-01-04 和芯星通科技(北京)有限公司 一种gnss接收机实现定位的方法及装置
CN108061911A (zh) * 2018-01-16 2018-05-22 东南大学 一种glonass载波单差残差估计方法
CN108845340A (zh) * 2018-06-01 2018-11-20 浙江亚特电器有限公司 基于gnss-rtk的定位方法
CN113671546A (zh) * 2021-08-18 2021-11-19 上海华测导航技术股份有限公司 基于载波观测值历元间双差分的高精度相对运动矢量算法
CN114384573A (zh) * 2021-12-08 2022-04-22 广州市中海达测绘仪器有限公司 基于精密产品的单站位移计算方法、电子设备、存储介质和程序产品
CN115372999A (zh) * 2022-09-29 2022-11-22 广东汇天航空航天科技有限公司 一种基于观测值外推的卫星定位方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118011445A (zh) * 2024-04-08 2024-05-10 高速铁路建造技术国家工程研究中心 一种多gnss天线的模糊度固定方法及系统
CN118091718A (zh) * 2024-04-17 2024-05-28 中国科学院国家授时中心 通过低轨卫星下行导航信号改善ut1解算精度的方法

Also Published As

Publication number Publication date
CN115372999A (zh) 2022-11-22

Similar Documents

Publication Publication Date Title
WO2024066028A1 (zh) 一种基于观测值外推的卫星定位方法和装置
CN108931915B (zh) 利用导航卫星的授时方法和装置、计算机可读存储介质
KR102547522B1 (ko) 쾌속 정밀 측위 방법 및 시스템
CN106646538B (zh) 一种基于单差滤波的变形监测gnss信号多路径改正方法
WO2022156481A1 (zh) 星历预报方法和装置
CN108120994B (zh) 一种基于星载gnss的geo卫星实时定轨方法
CA2662912C (en) Method for using three gps frequencies to resolve whole-cycle carrier-phase ambiguities
CN107728171B (zh) 基于粒子滤波的gnss相位系统间偏差实时追踪和精密估计方法
WO2022156480A1 (zh) 钟差预报方法和装置
CN109991633A (zh) 一种低轨卫星实时定轨方法
CN110646822B (zh) 一种基于惯导辅助的整周模糊度Kalman滤波算法
CN1930488A (zh) 当两个频率之一上的测量数据不可用时用于在短期内进行后备双频导航的方法
CN103542854A (zh) 基于星载处理器的自主定轨方法
CN110940332B (zh) 考虑航天器轨道动态效应的脉冲星信号相位延迟估计方法
CN109061694A (zh) 一种基于gnss钟差固定的低轨导航增强定位方法及系统
CN117890936B (zh) 一种低轨卫星在轨实时星间时间传递方法和系统
CN117388881A (zh) 一种低轨卫星的星载原子钟向UTC(k)的溯源方法及系统
CN115307643A (zh) 一种双应答器辅助的sins/usbl组合导航方法
CN116047555A (zh) 一种基于北斗PPP-B2b的定位方法及系统
CN116106953B (zh) 一种gnss相对定位半参数估计的时间差分载波相位增强方法
CN112230254B (zh) 一种gps载波相位多径误差的校正方法及装置
Wang et al. Uncertainty estimation of atmospheric corrections in large-scale reference networks for PPP-RTK
CN116540280B (zh) 多频卫星导航数据状态域改正信息综合处理方法和系统
CN111736183B (zh) 一种联合bds2/bds3的精密单点定位方法和装置
WO2023065840A1 (zh) 模糊度固定方法及其系统、存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960623

Country of ref document: EP

Kind code of ref document: A1