WO2024065917A1 - 可重构混合机翼垂直起降飞行器 - Google Patents

可重构混合机翼垂直起降飞行器 Download PDF

Info

Publication number
WO2024065917A1
WO2024065917A1 PCT/CN2022/127365 CN2022127365W WO2024065917A1 WO 2024065917 A1 WO2024065917 A1 WO 2024065917A1 CN 2022127365 W CN2022127365 W CN 2022127365W WO 2024065917 A1 WO2024065917 A1 WO 2024065917A1
Authority
WO
WIPO (PCT)
Prior art keywords
wing
fuselage
vertical take
aircraft
rotor
Prior art date
Application number
PCT/CN2022/127365
Other languages
English (en)
French (fr)
Inventor
张育林
范丽
项军华
何云瀚
文广为
邱炜
Original Assignee
浙江天骥博特智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天骥博特智能科技有限公司 filed Critical 浙江天骥博特智能科技有限公司
Publication of WO2024065917A1 publication Critical patent/WO2024065917A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/02Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis vertical when grounded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/56Folding or collapsing to reduce overall dimensions of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/12Canard-type aircraft

Definitions

  • the present invention relates to the field of aircraft, and in particular to an aircraft with an H-configuration and rotary wings for realizing vertical take-off and landing.
  • manned aircraft have been widely developed and applied in the military and civilian fields of countries around the world.
  • Common manned aircraft mainly include fixed-wing aircraft and rotary-wing aircraft.
  • Fixed-wing aircraft have long range and high speed; rotary-wing aircraft are flexible, stable and highly controllable in take-off and landing.
  • vertical take-off and landing fixed-wing aircraft that combine fixed-wing and rotary-wing have also appeared one after another.
  • the existing vertical take-off and landing fixed-wing aircraft has a large wingspan, so the volume occupied during transportation and take-off and landing is large; the existing vertical take-off and landing fixed-wing aircraft generally use the method of changing the relative thrust direction or using two propulsion systems to achieve the attitude adjustment process of vertical to horizontal flight, which will cause hidden dangers such as high system complexity, weight redundancy, and reduced reliability of the tilting mechanism. Once an accident such as engine failure occurs in the existing vertical take-off and landing aircraft, it will be difficult to land safely in an emergency.
  • the present invention aims to solve the technical problems existing in the prior art and proposes a reconfigurable hybrid wing vertical take-off and landing aircraft, which is a vertical take-off and landing folding tail-seat aircraft with overall tilting, and can solve the problems of existing vertical take-off and landing fixed-wing aircraft occupying a large space during transportation and take-off and landing, and the complex tilting structure and difficulty in emergency landing.
  • a reconfigurable hybrid wing vertical take-off and landing aircraft is a tail-seat aircraft, including a fuselage, wings, canards and a door; a wing is arranged on each side of the fuselage, a pair of horizontal canards are arranged on both sides of the front of the fuselage, and a door is opened on the fuselage.
  • Two rotor modules are symmetrically arranged on the upper and lower sides of the wing on one side of the fuselage, and two rotor modules are symmetrically arranged on the upper and lower sides of the wing on the other side of the fuselage, so as to form an H-shaped fuselage layout.
  • the rotor module includes a mounting frame, a power column and a propeller; the bottom of the mounting frame is fixed on the wing surface, the power column is installed on the top of the mounting frame and the central axis of the power column is parallel to the central axis of the fuselage, the propeller is installed at the front end of the power column, and the propeller drive device is installed inside the power column.
  • the end of the power column extends to the outside of the tail and is located on the same vertical plane, forming a four-legged tail seat as a landing support point; a shock absorber is installed at the end of the power column.
  • the driving device is a matching electric motor or an internal combustion engine, installed in the power column, and each driving device is respectively connected to a rotor module to provide driving force.
  • the rotor module located on the lower side of the wing rotates (e.g., pivots), and its relative position to the rotor module on the upper side of the wing changes, for example: directly below a rotor module located on the upper side of each wing (i.e., an H configuration), or in the same horizontal position as the wing, i.e., on the outside of a rotor module located on the upper side of each wing.
  • the rotor modules under each wing are folded up, and the four modules are distributed above and below the wing in an H-shaped configuration directly below the rotor modules on the upper side of each wing.
  • the rotor modules set on the lower side of each wing rotate and unfold, reconstructing into the rotor modules at the wing tips, becoming a large horizontal wing with wing tip propellers.
  • the propellers of the upper rotor modules can be retracted, and only the wing tip rotors are used as power.
  • it also includes a rotating mechanism arranged between the mounting frame on the lower side of each wing and the wing, driving the rotor module on the lower side of each wing to rotate.
  • the aircraft also includes a control system and a power system.
  • control system is connected to the drive devices of the rotor modules respectively, and adjusts the speed and power of each rotor module to achieve flight attitude control.
  • a power system is installed in the fuselage, the power system provides power to the four rotor modules respectively, and the power system is connected to the drive devices respectively;
  • the power system includes a battery, a battery management module and an electrical device, which are respectively connected to the motor end of the drive device to provide power.
  • the battery is a storage battery or a fuel cell.
  • the canard at the front of the fuselage can improve the flight attitude of the fuselage and provide a certain amount of lift.
  • the canard is equipped with an adjustable control surface, and the deflection of the control surface can adjust the attitude of the aircraft.
  • the present invention uses four rotor modules as take-off power.
  • the rotor modules When stationary, the rotor modules form an H configuration, and the four shock absorbing devices at the tail are grounded; when taking off, the four rotor modules provide power, and the power generated is controlled to take off vertically, without a runway.
  • the wings are shorter than those of ordinary fixed-wing aircraft, and the aircraft occupies a small volume; after being in the air, the control system adjusts the speed and power of each motor to achieve the conversion of the flight attitude, and gradually tilts the fuselage until the wings, i.e., the fixed-wing, reach a level flight state, the propellers of the upper two rotor modules stop and are retracted, and the lower two rotor modules rotate to be on the same horizontal plane as the main wing, forming an extended fixed wing with the main wing body, the aircraft adopts a single propulsion system, and the redundancy is low; the aspect ratio is increased, the induced drag of the aircraft is reduced, the lift-to-drag ratio is improved, and the energy utilization effect is improved; the vertical area of the aircraft is reduced, thereby reducing the disadvantage of the H-configuration aircraft's heading over-stability; in the event of an emergency such as an engine failure, the aircraft can rely on the fixed wing to glide and land until a stable and safe forced landing is
  • FIG1 is a perspective view of a reconfigurable hybrid wing vertical take-off and landing aircraft at rest in an embodiment of the present invention
  • FIG2 is a side view of an aircraft in a vertical flight state according to an embodiment of the present invention.
  • FIG3 is a top view of the aircraft in a vertical flight state according to an embodiment of the present invention.
  • FIG4 is a schematic diagram of the deployment of the rotor support below the aircraft according to an embodiment of the present invention.
  • FIG5 is a front view of the aircraft in a horizontal flight state according to an embodiment of the present invention.
  • FIG. 6 is a side view of the aircraft in a horizontal flight state according to an embodiment of the present invention.
  • a tail-seat aircraft capable of vertical take-off and landing with overall tilting includes a fuselage 100, a rotor module, a control system, a cockpit, and a power system.
  • a wing 110 is installed on each side of the fuselage 100, and a pair of horizontal canards 120 are installed on both sides of the front of the fuselage 100.
  • the canards are provided with adjustable control surfaces. The deflection of the control surfaces can adjust the attitude of the aircraft, solving the problem of difficult layout of the pitch control surfaces.
  • a door 130 is provided on the fuselage 100.
  • Two rotor modules are symmetrically arranged on the upper and lower sides of each wing 110.
  • the rotor module located on the upper side of the wing 110 is fixed and perpendicular to the wing, and the rotor module located on the lower side of the wing 110 is connected to a rotating mechanism (not shown).
  • each rotor module includes a mounting frame, a power column 220 and a propeller 230.
  • the bottom of the upper mounting frame 210 of the rotor module located on the upper side of the wing 110 is fixed on the wing 110.
  • the rotating mechanism is arranged between the lower mounting frame 250 and the wing 110, driving the lower mounting frame 250 to rotate, the power column 220 is mounted on the upper mounting frame 210 and the lower mounting frame 250, and is parallel to the central axis of the fuselage 100, the propeller 230 is mounted at the front end of the power column 220, and the motor is installed in the power column 220.
  • the propeller is driven by a motor, and each motor is connected to a propeller to provide driving force.
  • the control system is respectively connected to four motors to adjust the speed power of each motor to realize the conversion of the flight attitude.
  • the power system is installed in the fuselage 100, and the power system is respectively connected to the power supply end of the four motors to provide power.
  • the power system includes a battery, a battery management module and electrical equipment.
  • the fuselage 100 is facing upward, and the four rotor modules are distributed in an H-configuration above and below the wing 110.
  • the lower mounting frame 250 is slowly unfolded to a horizontal position, forming an extended fixed wing with the wing 110, and at the same time, the two propellers 230 of the rotor module above the wing 110 are retracted, and only the rotor module at the wing tip of the extended fixed wing is used as power.
  • the ends of the four power columns 220 extend outside the tail and are located on the same vertical plane to serve as landing support points.
  • a shock absorbing device 240 is provided at the end of the power column 220 so that the aircraft can land smoothly.
  • Common tail-seat aircraft generally require multiple support mechanisms, which are generally drag surfaces when the aircraft is flying level.
  • the aircraft of this embodiment uses a rotating mechanism to convert the support mechanism (i.e., the rotor module on the lower side of the wing) from a drag surface to a lift surface, thereby increasing the aspect ratio of the wing, reducing induced drag, and increasing the lift-to-drag ratio.
  • the rotating mechanism converts the vertical stabilizer surface of the rotor module on the lower side of the wing into a lift surface, which increases the wing area of the aircraft during horizontal flight, reduces the disadvantage of excessive heading stability of the H-configuration tail-seat aircraft, and increases the lift-to-drag ratio.
  • a tail-seat aircraft requires that the propulsion system be symmetrically distributed relative to the center of gravity. Shutting down any engine will make the thrust asymmetrical relative to the center of gravity.
  • the power required for vertical takeoff is generally much greater than the power for level flight, so some engines need to be shut down.
  • the configuration of the aircraft of this embodiment allows the propulsion system to be symmetrically distributed relative to the center of gravity when shutting down individual propulsion mechanisms.
  • the rotating mechanism enables the tail-seat aircraft to take off and land horizontally, and also enables the tail-seat aircraft to achieve the function of gliding and forced landing when the propulsion system fails, greatly improving the safety performance of the tail-seat aircraft.
  • the rotary aircraft of this embodiment solves the problem that fixed-wing aircraft occupy a large space during storage, transportation, take-off and landing.

Abstract

一种可重构混合机翼垂直起降飞行器,包括机身、机翼、鸭翼和舱门,机身的两侧分别设置有一个机翼,在机身一侧机翼的上侧和下侧分别对称设置2件旋翼模组,在机身另一侧机翼的上侧和下侧分别对称设置2件旋翼模组,以此形成H构型的机身布局。设置在机翼下侧的旋翼模组转动至与主机翼在同一平面上,与机翼上侧的旋翼模组的相对位置发生改变,实现了整机构型的重构。本发明通过机翼下侧的旋翼模组发生转动,将机翼下侧旋翼模组垂直面转化成升力面,增大了飞机水平飞行时主机翼的展弦比,增加了升阻比;降低了飞机垂向面积导致H构型尾座式飞机航向过稳定的缺点;使得尾座式飞机具有滑翔迫降功能。

Description

可重构混合机翼垂直起降飞行器 技术领域
本发明涉及飞行器领域,尤其是涉及一种采用H构型,具有旋转翼的飞行器,实现垂直起降。
背景技术
随着技术的不断发展,载人飞行器在世界各国的军事和民用领域都得到了广泛的发展和应用,常见的载人飞行器主要有固定翼飞行器和旋翼飞行器。固定翼飞行器航程长,速度快;旋翼飞行器起降灵活、稳定、可控性强。近年来也陆续出现将固定翼与旋翼相结合的垂直起降固定翼飞行器。
现有的垂直起降固定翼飞行器由于机翼翼展较大,运输与起飞降落阶段所占体积较大;现有的垂直起降固定翼飞行器在实现垂直转平飞的姿态调整过程中一般都使用了改变相对推力方向或者采用两套推进系统的方式,这会造成系统复杂性高、重量冗余、倾转机构可靠性降低等隐患。现有的垂直起降飞行器一旦出现发动机失效等事故将难以安全紧急降落。
发明内容
本发明旨在解决现有技术中存在的技术问题,提出一种可重构混合机翼垂直起降飞行器,系整体倾转的垂直起降折叠尾座式飞行器,能够解决现有的垂直起降固定翼飞行器在运输与起飞降落时占用空间较大的问题,倾转结构复杂、紧急降落困难等问题。。
所采用的技术方案如下:
一种可重构混合机翼垂直起降飞行器,系尾座式飞行器,包括机身、机翼、鸭翼和舱门;机身的两侧分别设置有一个机翼,机身前部的两侧设置有一对水平鸭翼,机身上开设有舱门。在机身一侧机翼的上侧和下侧分别对称设置2件旋翼模组,在机身另一侧机翼的上侧和下侧分别对称设置2件旋翼模组,以此形成H构型的机身布局。
旋翼模组包括安装架、动力柱和螺旋桨;安装架的底部固定在机翼表面上,动力柱安装在安装架的顶部且动力柱中轴线与机身的中轴线平行,螺旋桨安装 在动力柱的前端,螺旋桨的驱动器件安装在动力柱内。动力柱的末端延伸至机尾外且位于同一垂直面上,形成四足尾座,作为着陆支撑点;动力柱的末端安装有减震装置。
驱动器件为匹配电机或内燃机的任一种,安装在动力柱内,每个驱动器件分别连接一个旋翼模组以用于提供驱动力。
在飞行器起飞、降落和飞行期间,设置在机翼下侧的旋翼模组发生转动(如:枢轴转动),与机翼上侧的旋翼模组的相对位置发生改变,比如:位于各侧机翼上侧的1件旋翼模组的正下方(即H构型),或与机翼同处于水平位置,即位于各侧机翼上侧的1件旋翼模组的外侧。
具体的,在起降时,各侧机翼下方旋翼模组折起,位于各侧机翼上侧的1件旋翼模组的正下方,四个模组形成H型构型分布在机翼上下。在空中平飞时,设置在各侧机翼下侧的1件旋翼模组发生转动而展开,重构为翼尖的旋翼模组,成为具有翼尖螺旋桨的水平大机翼。上方旋翼模组的螺旋桨可收起,只由翼尖旋翼作动力。
进一步,还包括转动机构设置于各侧机翼下侧的安装架与机翼之间,带动各侧机翼下侧的旋翼模组转动。
飞行器还包括控制系统和动力系统。
进一步的,控制系统分别连接旋翼模组的驱动器件,调整各旋翼模组的转速功率以实现飞行姿态的控制。
进一步的,动力系统安装在机身内,动力系统分别为四个旋翼模组提供动力,动力系统分别连接驱动器件;
进一步的,动力系统包括电池、电池管理模组和电器设备,分别连接驱动器件的电机端来提供动力。电池为蓄电池或燃料电池中的一种。
进一步的,机身前部鸭翼可改善机体飞行姿态,并提供一定的升力。鸭翼上带有可调控制面,控制面偏转可调整飞行器姿态。
本发明通过四个旋翼模组作为起飞动力,静止时旋翼模组组成H构型,尾部的四个减震装置落地;起飞时四个旋翼模组提供动力,控制产生的动力垂直 起飞,无需跑道,机翼相对于普通固定翼飞行器更短,飞行器占用体积小;凌空后控制系统调整各个电机的转速功率来实现飞行姿态的转换,逐渐倾转机身直至达到机翼即固定翼的平飞状态,上方二个旋翼模组的螺旋桨停转收起,下方二个旋翼模组旋转至与主机翼在同一水平面上,与主机翼主体形成加长固定翼,飞行器采用单一推进系统,冗余度低;展弦比增大,飞行器诱导阻力降低,升阻比提高,能源利用效果提高;降低了飞机垂向面积从而降低了H构型飞机航向过稳定的缺点;一旦发生发动机故障等突发情况,飞行器可依靠固定翼滑行降落,直至稳定安全迫降;降低了H构型飞机包络体积。
附图说明
图1为本发明实施例中可重构混合机翼垂直起降飞行器静止时的立体图;
图2为本发明实施例中垂直飞行状态下飞行器的侧视图;
图3为本发明实施例中垂直飞行状态下飞行器的俯视图;
图4为本发明实施例中飞行器下方旋翼支架展开示意图;
图5为本发明实施例中水平飞行状态下飞行器的正视图;
图6为本发明实施例中水平飞行状态下飞行器的侧视图。
具体实施方式
以下详细描述本发明的技术方案。本发明实施例仅供说明具体结构,该结构的规模不受实施例的限制。
如图1至图6所示,一种尾座式飞行器,能实施整体倾转的垂直起降,包括机身100、旋翼模组、控制系统、座舱和动力系统。其中,机身100的两侧分别安装一个机翼110,机身100前部的两侧安装了一对水平鸭翼120,鸭翼上带有可调控制面,控制面偏转可调整飞行器姿态,解决了俯仰控制面布局难的问题。
机身100上开设有舱门130。各个机翼110上侧和下侧分别对称设置2件旋翼模组。位于机翼110上侧的旋翼模组固定且垂直于机翼,位于机翼 110下侧的旋翼模组与转动机构(未示出)连接。
其中,参照图1、图2和图4,各个旋翼模组包括安装架、动力柱220和螺旋桨230。位于机翼110上侧的旋翼模组的上安装架210的底部固定在机翼110上。转动机构设置于下安装架250与机翼110间,带动下安装架250转动,动力柱220安装在上安装架210和下安装架250,且与机身100的中轴线平行,螺旋桨230安装在动力柱220的前端,电机安装在动力柱220内。螺旋桨使用电机驱动,每个电机分别连接一个螺旋桨以用于提供驱动力。控制系统分别连接四个电机以用于调整各电机的转速功率实现飞行姿态的转换。动力系统安装在机身100内,动力系统分别连接四个电机的电源端来提供动力,动力系统包括电池、电池管理模组和电器设备。
其中,参照图2至图6,飞行器垂直起降过程中机身100的是朝向上方的,四个旋翼模组呈H构型分布在机翼110上下。转成平飞后,下安装架250缓慢展开至水平,与机翼110组成加长固定翼,同时机翼110上方旋翼模组的2个螺旋桨230收起,只用加长固定翼翼尖的旋翼模组作动力。
降落时,参照图1和图2,四个动力柱220的末端延伸至机尾外且位于同一垂直面上以用于作为着陆支撑点。动力柱220的末端设置有减震装置240以便飞机能够平稳着陆。
常见的尾座式飞机一般需要多个支撑机构,支撑机构一般在飞行器平飞的时候属于阻力面。本实施例的飞行器采用转动机构实现了将支撑机构(即机翼下侧旋翼模组)从阻力面转换成升力面,增加了机翼的展弦比,降低了诱导阻力,增加了升阻比。
转动机构将机翼下侧旋翼模组垂直安定面转化成升力面,增大了飞机水平飞行时机翼面积,降低了H构型尾座式飞机航向过稳定的缺点,增加了升阻比。
尾座式飞行器要求推进系统相对于重心对称式分布,关停任意一个发动机将使得推力相对重心不对称,对于尾座式飞行器一般垂起时所需的动力远大于平飞时的动力,所以需要关停部分发动机。本实施例的飞行器的 构型可使得在关停个别推进机构时保持推进系统相对于重心对称分布。
此外,转动机构使得尾座式飞行器具有水平起飞降落的能力,也可以使得尾座式飞行器在推进系统失效时实现滑翔迫降的功能,大幅提高了尾座式飞行器的安全性能。
本实施例的转动式飞行器解决了固定翼飞机在储存、运输以及起飞降落时占用场地大的问题。

Claims (10)

  1. 一种可重构混合机翼垂直起降飞行器,包括机身、机翼、鸭翼和舱门,机身的两侧分别设置有一个机翼,其特征是四组旋翼模组,各个所述的旋翼模组均包括安装架、动力柱和螺旋桨;
    在机身一侧机翼的上侧和下侧分别对称设置2件旋翼模组,在机身另一侧机翼的上侧和下侧分别对称设置2件旋翼模组,以此形成H构型的机身布局;
    设置在机翼下侧的所述的旋翼模组发生转动,与机翼上侧的旋翼模组的相对位置发生改变。
  2. 根据权利要求1所述的可重构混合机翼垂直起降飞行器,其特征是四个动力柱的末端延伸至机尾外且位于同一垂直面上,形成四足尾座,作为着陆支撑点。
  3. 根据权利要求1所述的可重构混合机翼垂直起降飞行器,其特征是各个动力柱的末端安装有减震装置。
  4. 根据权利要求1所述的可重构混合机翼垂直起降飞行器,其特征是还包括转动机构设置于各侧机翼下侧的安装架与机翼之间,带动各侧机翼下侧的旋翼模组转动。
  5. 根据权利要求1所述的可重构混合机翼垂直起降飞行器,其特征是在起降时,各侧机翼下方旋翼模组位于各侧机翼上侧的旋翼模组的正下方,四个模组形成H型构型。
  6. 根据权利要求1所述的可重构混合机翼垂直起降飞行器,其特征是在空中平飞时,设置在机翼下侧的旋翼模组发生转动而展开,重构为翼尖的旋翼模组,成为具有翼尖螺旋桨的水平大机翼。
  7. 根据权利要求1所述的可重构混合机翼垂直起降飞行器,其特征是还包括控制系统和动力系统。
  8. 根据权利要求7所述的可重构混合机翼垂直起降飞行器,其特征是所述的控制系统分别连接旋翼模组的驱动器件,调整各旋翼模组的转速功率以实现飞行姿态的控制。
  9. 根据权利要求7所述的可重构混合机翼垂直起降飞行器,其特征是所 述的动力系统安装在所述机身内,与各个驱动器件分别连接,并为四组旋翼模组提供动力。
  10. 根据权利要求1所述的可重构混合机翼垂直起降飞行器,其特征是所述机身前部的两侧设置有一对水平鸭翼,鸭翼上带有可调控制面,控制面偏转可调整飞行器姿态。
PCT/CN2022/127365 2022-09-27 2022-10-25 可重构混合机翼垂直起降飞行器 WO2024065917A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211184614.0A CN115416848A (zh) 2022-09-27 2022-09-27 可重构混合机翼垂直起降飞行器
CN202211184614.0 2022-09-27

Publications (1)

Publication Number Publication Date
WO2024065917A1 true WO2024065917A1 (zh) 2024-04-04

Family

ID=84205281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127365 WO2024065917A1 (zh) 2022-09-27 2022-10-25 可重构混合机翼垂直起降飞行器

Country Status (2)

Country Link
CN (1) CN115416848A (zh)
WO (1) WO2024065917A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162173A (ja) * 2010-02-13 2011-08-25 Am Creation:Kk 垂直離着陸飛行機
CN108327906A (zh) * 2018-01-31 2018-07-27 北京临近空间飞行器系统工程研究所 一种变体飞行器
CN108698690A (zh) * 2015-12-07 2018-10-23 Aai公司 具有提供有效的竖直起飞和着陆能力的翼板组件的uav
CN110053759A (zh) * 2019-05-10 2019-07-26 成都纵横大鹏无人机科技有限公司 一种变体机翼垂直起降无人机
CN110271663A (zh) * 2019-04-30 2019-09-24 重庆大学 两侧分离式四旋翼与飞翼布局复合型无人机及其控制方法
CN110844063A (zh) * 2019-12-17 2020-02-28 缪顺文 一种变形飞行器
CN213323678U (zh) * 2020-08-19 2021-06-01 中国航空工业集团公司西安飞行自动控制研究所 一种动力分配型式的可垂直起降无人飞行器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011162173A (ja) * 2010-02-13 2011-08-25 Am Creation:Kk 垂直離着陸飛行機
CN108698690A (zh) * 2015-12-07 2018-10-23 Aai公司 具有提供有效的竖直起飞和着陆能力的翼板组件的uav
CN108327906A (zh) * 2018-01-31 2018-07-27 北京临近空间飞行器系统工程研究所 一种变体飞行器
CN110271663A (zh) * 2019-04-30 2019-09-24 重庆大学 两侧分离式四旋翼与飞翼布局复合型无人机及其控制方法
CN110053759A (zh) * 2019-05-10 2019-07-26 成都纵横大鹏无人机科技有限公司 一种变体机翼垂直起降无人机
CN110844063A (zh) * 2019-12-17 2020-02-28 缪顺文 一种变形飞行器
CN213323678U (zh) * 2020-08-19 2021-06-01 中国航空工业集团公司西安飞行自动控制研究所 一种动力分配型式的可垂直起降无人飞行器

Also Published As

Publication number Publication date
CN115416848A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
US10538321B2 (en) Tri-rotor aircraft capable of vertical takeoff and landing and transitioning to forward flight
CN109849604B (zh) 折叠旋翼三栖飞机
CN214190098U (zh) 一种垂直起降飞行器
RU2635431C1 (ru) Конвертоплан
CN108639328A (zh) 一种新型尾座式轴对称多螺旋桨垂直起降无人机
US10689105B2 (en) Passenger-carrying rotorcraft with fixed-wings for generating lift
US11407506B2 (en) Airplane with tandem roto-stabilizers
US20220363376A1 (en) Free Wing Multirotor Transitional S/VTOL Aircraft
CN110282117A (zh) 一种具备机翼折叠收纳功能的城市垂直起降飞机
CN113277066A (zh) 可伸缩机翼、包含其的飞行器及飞行器控制方法
US20220177115A1 (en) High-lift device
CN112060847A (zh) 一种城市空中飞行汽车
CN111762314A (zh) 一种可垂直起降的旋翼航空器
WO2024065917A1 (zh) 可重构混合机翼垂直起降飞行器
CN216994842U (zh) 一种垂直起降飞行器
CN116080900A (zh) 一种垂直起降飞行器和垂直起降飞行器的控制方法
CN111086625B (zh) 双涵道可变座舱尾座式垂直起降载人固定翼飞行器
CN212861854U (zh) 一种复合式自旋翼飞行器
CN113415406A (zh) 机翼间距调节模块、包含其的飞行器及飞行器控制方法
RU197287U1 (ru) Авиабайк
CN216994843U (zh) 一种垂直起降飞行器
CN218751364U (zh) 一种纵列式双旋翼倾转构型高速飞行器
CN219192548U (zh) 一种v尾单推电动垂直起降复合翼飞行器
RU222496U1 (ru) Беспилотный летательный аппарат вертикального взлета и посадки
CN217170961U (zh) 一种新型无人机