WO2024065897A1 - 小型轴流风扇 - Google Patents

小型轴流风扇 Download PDF

Info

Publication number
WO2024065897A1
WO2024065897A1 PCT/CN2022/125934 CN2022125934W WO2024065897A1 WO 2024065897 A1 WO2024065897 A1 WO 2024065897A1 CN 2022125934 W CN2022125934 W CN 2022125934W WO 2024065897 A1 WO2024065897 A1 WO 2024065897A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
hub
angle
flow fan
axial flow
Prior art date
Application number
PCT/CN2022/125934
Other languages
English (en)
French (fr)
Inventor
夏春秋
黄洪磊
Original Assignee
北京市九州风神科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京市九州风神科技股份有限公司 filed Critical 北京市九州风神科技股份有限公司
Publication of WO2024065897A1 publication Critical patent/WO2024065897A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/38Blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the field of heat dissipation of electronic equipment, in particular to a small axial flow fan of the electronic equipment.
  • the air volume and air pressure of existing fans are sufficient for heat dissipation, but the fan itself is noisy, or under the condition of equal heat dissipation performance, the high noise affects the user experience. It is difficult for fan products to take into account the relationship between noise and good heat dissipation performance at the same time.
  • the present invention can have better air volume and air pressure at the same decibel noise level to meet the heat dissipation needs of electronic components and enhance the user experience.
  • the object of the present invention is to provide a small axial flow fan which has a good effect of balancing noise reduction and good heat dissipation performance.
  • the present invention provides a small axial flow fan, comprising: a hub and a plurality of blades, wherein the plurality of blades are evenly distributed radially on the outer circumference of the hub, each blade comprises a leading edge, a trailing edge, a blade root and a blade tip, the leading edge and the trailing edge are arranged opposite to each other, and the fixed connection portion between the blade and the outer circumference of the hub is the blade root; a plurality of reference variable cylinders coaxial with each blade and the hub intersect to form a plurality of blade reference cross sections, the diameter D2 of the plurality of reference variable cylinders is a variable value between the hub diameter D1 and the maximum diameter D3 of the blade, and the ratio of the diameter D2 of the plurality of reference variable cylinders to the maximum diameter D3 of the blade is P; the axial projection chord length H1 of the blade root, the axial height N1, H1 is at a preset angle The blade tip is fixedly connected to the
  • M is between 0.3 and 0.6.
  • the angle A1 between the line L2 connecting the center point a of the axial projection of each blade reference cross section along the hub and the hub center O and the line L2 connecting the center point b of the blade root along the axial projection of the hub and the hub center O is between 27.81r° and 55.88r°.
  • the angle A2 between the intersection c of the axial projection of each blade reference cross-section along the hub and the axial projection of the leading edge along the hub, the line L3 connecting the hub center O and the tangent L4 of the leading edge at point c is between 38.69r° and 18.78r°.
  • the angle A3 between the intersection d of the axial projection of each blade reference cross-section along the hub and the axial projection of the trailing edge along the hub, the line L5 connecting the hub center O, and the tangent L6 of the trailing edge at point d is between 29.96r° and 43.93r°.
  • the junction between the blade tip and the leading edge and the trailing edge is a chamfered structure, and the angle between the two tangents at the end points of the leading edge arc segment of each blade is the leading edge angle, and the angle of the leading edge angle is 36.72°.
  • the angle between the two tangents at the end points of the trailing edge arc segment of each blade is the trailing edge angle, and the angle of the trailing edge angle is 122.41°.
  • the floating range of the leading edge angle and the trailing edge angle is between ⁇ 5°.
  • r is an error adjustment coefficient, and its range is r ⁇ 5°.
  • t is an error adjustment coefficient and its range is t ⁇ 3 mm.
  • the small axial flow fan of the present invention has the following beneficial effects: the curvature of the blade is curved along the direction of rotation and presents a certain curvature. Within the curvature range of the present design, A1, A2, and A3 ensure that the blowing airflow is concentrated in the columnar space directly in front of the air outlet, thereby increasing the air supply distance and wind pressure.
  • A1 can limit the curvature of the blade tip, thereby reducing the centrifugal force of the fluid in the blade boundary layer, which can effectively inhibit the blade tip stall, thereby reducing the energy loss at the blade tip and improving the blade air supply efficiency;
  • A2 effectively inhibits the vortex separation at the trailing edge of the blade, thereby reducing the blade noise;
  • A3 can eliminate the backflow problem existing at the leading edge of the impeller, absorb the low-energy fluid in the end wall area into the high-energy mainstream in the blade, and reduce the aggregation of low-energy fluid at the end, thereby reducing flow loss and flow blockage.
  • FIG1 is a schematic diagram of various parameters of a small axial flow fan according to an embodiment of the present invention.
  • FIG2 is a schematic diagram of parameters of a fan blade according to an embodiment of the present invention.
  • FIG3 is a partial enlarged view of point I in FIG2;
  • FIG4 is a schematic top view of parameters of a small axial flow fan according to an embodiment of the present invention.
  • FIG5 is a schematic cross-sectional top view of a small axial flow fan according to an embodiment of the present invention.
  • FIG6 is a schematic diagram of the front view of a small axial flow fan according to an embodiment of the present invention.
  • FIG7 is a schematic diagram of a top view of a small axial flow fan according to an embodiment of the present invention.
  • FIG8 is a top perspective schematic diagram of a small axial flow fan according to an embodiment of the present invention.
  • FIG9 is a bottom perspective schematic diagram of a small axial flow fan according to an embodiment of the present invention.
  • FIG. 10 is a comparison chart of various data of a small axial flow fan according to an embodiment of the present invention.
  • 10-hub 20-blade, 201-leading edge, 202-trailing edge, 203-blade root, 204-blade tip, S-reference variable cylinder, D1-hub diameter, D2-cylinder diameter, D3-blade maximum diameter, F-blade reference cross section, F1-first arc segment, F2-second arc segment, H1-axial projection chord length of blade root, N1-axial height of blade root, H2-axial projection chord length of blade tip, N2-axial height of blade tip, leading edge angle - ⁇ 1, trailing edge angle - ⁇ 2.
  • the reference variable cylinder S is set concentrically with the hub; D2: the radius of the cylinder S; D3: the maximum diameter of the fan blade; the center O of the hub; the hub diameter D1; a: the midpoint of the axial projection of the cross section formed by the intersection of the reference variable cylinder S and the blade; b: the midpoint of the axial projection of the cross section formed by the connection between the root of the blade and the hub; L1: the line connecting b and the center O of the hub; L2: the line connecting point a and the center O of the hub.
  • Net bending angle of blade A1 the angle between L1 and L2; C: the intersection point of cylinder S and the leading edge of blade; L3: the line connecting C and the center O of the hub; L4: the tangent line of the leading edge of blade at point C;
  • Leading edge bending angle A2 the angle between L3 and L4; d: the intersection point of the cylinder S and the trailing edge of the blade; L5: the line connecting D and the center O of the hub; L6: the tangent line of the trailing edge of the blade at point D;
  • Trailing edge guide bending angle A3 the angle between L5 and L6.
  • chord length of lower surface of blade lower arc line + left and right arcs/2;
  • Blade leading edge angle ⁇ 1 the angle between the two tangent lines at the end points of the arc segment at the leading edge of the blade
  • Blade trailing edge angle ⁇ 2 the angle between the two tangents at the end points of the arc segment on the trailing edge of the blade.
  • chord length of the blade root projected along the axial direction of the hub is H1, and the axial height of the blade root is N1.
  • the chord length of the blade tip projected along the axial direction of the hub is H2, and the axial height of the blade tip is N2.
  • a small axial flow fan includes: a hub and a plurality of blades, the plurality of blades are evenly distributed radially on the outer circumference of the hub, each blade includes a leading edge, a trailing edge, a blade root and a blade tip, the leading edge and the trailing edge are arranged opposite to each other, and the blade root is a fixed connection portion between the blade and the outer circumference of the hub; a plurality of reference variable cylinders coaxial with each blade and the hub intersect to form a plurality of blade reference cross sections, the diameter D2 of the plurality of reference variable cylinders is a variable value between the hub diameter D1 and the maximum diameter D3 of the blade, and the diameter D2 of the plurality of reference variable cylinders is a variable value between the diameter D1 of the hub and the maximum diameter D3 of the blade, and the diameter D2 of the plurality of reference variable cylinders is a variable value between the diameter D1 of the hub and the maximum diameter D3 of the blade, and the diameter D2 of the pluralit
  • the ratio of the maximum diameter D3 is P; the axial projection chord length H1 of the blade root, the axial height N1, H1 is fixedly connected to the hub at a preset angle, the axial projection chord length H2 of the blade tip, the axial height N2, the hub diameter D1, the diameter D2 of the reference variable cylinder, the hub ratio D1/D3 is a constant G, the chord length ratio H1/H2 is K, the axial height ratio N1/N2 is M, the chord length angle is ⁇ , and the blade root projection chord length H1 increases with the increase of the hub ratio; when G is between 0.32 and 0.42, K is between 0.33 and 0.39, and ⁇ is between 42.08r° and 64.31r°.
  • the two tangent angles at the end points of the leading edge arc segment of the blade, the leading edge angle ⁇ 1, and the two tangent angles at the end points of the trailing edge arc segment of the blade, the trailing edge angle ⁇ 2 are fixed in products of the same specification, and the axial projection chord length H2 of the blade tip is obtained from the dividing point between the arc segment of the leading edge angle ⁇ 1 and the trailing edge angle ⁇ 2 and the blade top arc.
  • the parameters of the fan obtained by intercepting different cylindrical surfaces are shown in the following table, taking the 14025 model nine-blade fan as an example:
  • the trailing edge of the blade root is close to the bottommost surface of the hub and smoothly extends from the blade root to the blade tip.
  • the thickness of the hub is between 16 and 23 mm.
  • the angle A1 between the line L2 connecting the center point a of the axial projection of each blade reference cross section along the hub and the hub center O and the line L2 connecting the center point b of the blade root along the axial projection of the hub and the hub center O is between 27.81r° and 55.88r°.
  • the angle A2 between the intersection c of the axial projection of each blade reference cross-section along the hub and the axial projection of the leading edge along the hub, the line L3 connecting the hub center O, and the tangent line L4 of the leading edge at point c is between 39.69r° and 48.78r°.
  • the angle A3 between the line L5 connecting the intersection d of the axial projection of each blade reference cross section along the hub and the axial projection of the trailing edge along the hub, the hub center O, and the tangent L6 of the trailing edge at point d is between 29.96r° and 43.93r°.
  • the blade root axial projection chord length H1 and the blade tip axial projection chord length H2 are shown in the following table:
  • the junction between the blade tip and the leading edge and the trailing edge is a rounded chamfer structure.
  • the angle between the two tangents at the end points of the leading edge arc segment of each blade is the leading edge angle, and the angle of the leading edge angle is 36.72°.
  • the angle between the two tangents at the end points of the trailing edge arc segment of each blade is the trailing edge angle, and the angle of the trailing edge angle is 122.41°.
  • the floating range of the leading edge angle and the trailing edge angle is between ⁇ 5°.
  • r is an error adjustment coefficient, and its range is r ⁇ 5°
  • t is an error adjustment coefficient, and its range is t ⁇ 3 mm.
  • the fan air volume and air pressure of the present invention are compared with those of the prior art.
  • the fan performance of the present design is better within the hub ratio range, and the PQ curve has air pressure P/mmAq and air volume Q/CFM (the 14025 curve in the upper right is the performance curve of this design).
  • the small axial flow fan of the present invention has the following beneficial effects:
  • the setting of the hub ratio G can make the fan maintain a certain air volume and pressure to meet the heat dissipation needs of electronic components; the limitation of the ratio K of the axial projection chord length of the blade root and the blade tip can make the fan have a balance between air supply volume and noise.
  • the curvature of the blade of the present invention is curved along the direction of rotation and presents a certain curvature. Within the curvature range, A1, A2, and A3 ensure that the blowing airflow is concentrated in the columnar space directly in front of the air outlet, while ensuring low noise and increasing the air supply distance and wind pressure.
  • A1 can limit the degree of bending and sweeping of the blade tip, and the centrifugal force of the fluid in the blade boundary layer can be reduced by this limitation, so that the blade tip stall can be effectively suppressed, thereby reducing the energy loss at the blade tip and improving the blade air supply efficiency;
  • A2 effectively suppresses the vortex separation at the trailing edge of the blade, thereby reducing the blade noise;
  • A3 can eliminate the backflow problem existing at the leading edge of the impeller, absorb the low-energy fluid in the end wall area into the high-energy mainstream in the blade, and reduce the aggregation of low-energy fluid at the end, thereby reducing flow loss and flow blockage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种小型轴流风扇,包括:轮毂(10)以及多个叶片(20),每个叶片(20)与轮毂(10)同轴的多个参考变量圆柱体S相贯形成多个扇叶参考横截面F,多个参考变量圆柱体直径D2为介于轮毂直径D1和叶片最大直径D3之间的变量值,多个参考变量圆柱体直径D2与叶片最大直径D3的比值为P;叶根的轴向投影弦长为H1,叶根的轴向高度为N1,H1以预设角度与轮毂(10)固定连接,叶尖的轴向投影弦长为H2,叶尖的轴向高度为N2,轮毂比D1/D3为常数G,弦长比H1/H2为K,轴向高度比N1/N2为M,弦长夹角为β,叶根的轴向投影弦长H1随着轮毂比的增大而增大;当G介于0.32~0.42之间时,M介于0.3~0.6之间,K介于0.33~0.39之间,β介于42.08r°~64.31r°之间。该小型轴流风扇能够同时兼顾降低噪音和具备良好散热性能。

Description

小型轴流风扇
本申请要求北京兴智翔达知识产权代理有限公司公司于2022年09月30日向中国专利局提交的、申请号为202222610517.5、发明名称为“小型轴流风扇”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明是关于电子设备散热领域,特别是关于一种电子设备的小型轴流风扇。
背景技术
风扇是作为目前主要的散热元器件,风扇产品应用广泛,现有风扇的风量和风压足够散热使用,但是风扇本身的噪音大,又或者是在同等散热性能的情况下,噪音较大影响到使用者的使用体验,风扇产品很难同时兼顾噪音与良好散热性能的之间的关系,本发明能够在同分贝噪音大小下,具有更好的风量风压可以满足电子元器件的散热需要提升用户的体验。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种小型轴流风扇,其在同时兼顾噪音与良好的散热性能之间具备很好的效果。
为实现上述目的,本发明提供了一种小型轴流风扇,包括:轮毂以及多个扇叶,多个扇叶呈放射状均匀分布在轮毂的外圆周上,每个扇叶包括前缘、 后缘、叶根及叶尖,前缘和后缘相对设置,扇叶与轮毂外周侧固定连接结合部为叶根;每个叶片与轮毂同轴的多个参考变量圆柱体相贯形成多个叶片参考横截面,多个参考变量圆柱体的直径D2为介于轮毂直径D1和扇叶的最大直径D3之间的变量值,多个参考变量圆柱体的直径D2与扇叶的最大直径D3的比值为P;叶根的轴向投影弦长H1,轴向高度N1,H1以预设角度与轮毂固定连接,叶尖的轴向投影弦长H2,轴向高度N2,轮毂直径D1、参考变量圆柱体的直径D2,轮毂比D1/D3为常数G,弦长比H1/H2为K,轴向高度比N1/N2为M,弦长夹角为β,叶根投影弦长H1随着轮毂比的增大而增大;当G介于0.32~0.42之间时,K介于0.33~0.39之间时,β介于42.08r°~64.31r°之间。
在一优选的实施方式中,M介于0.3~0.6之间。
在一优选的实施方式中,G=0.32,对应的K=0.36,β=64.31r°,G=0.33,对应的K=0.36,β=63.02r°,G=0.35,对应的K=0.33,β=57.77r°,G=0.36,对应的K=0.34,β=56.53r°,G=0.37,对应的K=0.35,β=51.54r°,G=0.38,对应的K=0.35,β=49.4r°,G=0.39,对应的K=0.36,β=47.42r°,G=0.40,对应的K=0.37,β=45.56r°,G=0.41,对应的K=0.38,β=43.8r°,G=0.42,对应的K=0.39,β=42.084r°。在一优选的实施方式中,扇叶的叶根处的后缘接近轮毂的最底面位置,且由叶根部平滑延伸至叶尖。在一优选的实施方式中,轮毂的厚度介于16~23mm之间。在一优选的实施方式中,每个参考横截面具有位于叶片的承压面的第一弧段F1和位于叶片的吸压面的第二弧段F2,第一弧段F1和第二弧段F2随着参考变量圆柱体的直径的不同而不同;当P=0.45时,F1=20.40tmm,F2=20.60tmm,当P=0.51时,F1=22.20tmm,F2=22.50tmm,当P=0.57时,F1=24.30tmm,F2=24.60tmm,当P=0.63时,F1=26.80tmm,F2=27.10tmm,当P=0.69时,F1=29.40tmm,F2=29.70tmm,当P=0.75时,F1=32.20tmm,F2=32.50tmm,当P=0.81时,F1=35.60tmm,F2=35.90tmm。
在一优选的实施方式中,每个叶片参考横截面沿轮毂的轴向投影的中心点a与轮毂中心O的连线L2和叶根沿轮毂的轴向投影的中心点b与轮毂中心O的连线L2之间的夹角A1介于27.81r°至55.88r°之间。
在一优选的实施方式中,当P=0.45时,A1=27.81r°,当P=0.51时,A1=36.01r°,当P=0.57时,A1=42.29r°,当P=0.63时,A1=47.29r°,当P=0.69时,A1=50.66r°,当P=0.75时,A1=55.16r°,当P=0.81时,A1=55.88r°。
在一优选的实施方式中,当P介于0.45~0.81之间时,每个叶片参考横截面沿轮毂的轴向投影跟前缘沿轮毂的轴向投影的交点c与轮毂中心O的连线L3和前缘在c点处的切线L4之间的夹角A2介于38.69r°至18.78r°之间。
在一优选的实施方式中,当P=0.45时,A2=48.78r°,当P=0.51时,A2=44.33r°,当P=0.57时,A2=40.55r°,当P=0.63时,A2=39.78r°,当P=0.69时,A2=38.69r°,当P=0.75时,A2=39.45r°,当P=0.81时,A2=41.54r°。
在一优选的实施方式中,每个叶片参考横截面沿轮毂的轴向投影跟后缘沿轮毂的轴向投影的交点d与轮毂中心O的连线L5和后缘在d点处的切线L6之间的夹角A3介于29.96r°至43.93r°之间。
在一优选的实施方式中,当P=0.45,A3=43.93r°,当P=0.51,A3=46.85r°,当P=0.57,A3=40.35r°,当P=0.63,A3=35.90r°,当P=0.69,A3=34.79r°,当P=0.75,A3=32.32r°,当P=0.81,A3=29.96r°。
在一优选的实施方式中,叶尖和前缘及后缘结合处为圆倒角结构,每个叶片的前缘圆弧段端点的两切线夹角为前缘角,前缘角的角度为36.72°,每个叶片的后缘圆弧段端点的两切线夹角为后缘角,后缘角的角度为122.41°,前缘角和后缘角的浮动范围介于±5°之间。
在一优选的实施方式中,r为误差调整系数,且范围值在r±5°。
在一优选的实施方式中,t为误差调整系数且范围值在t±3mm。
与现有技术相比,本发明的小型轴流风扇具有以下有益效果:叶片的弧度是沿着旋转方向有弯曲呈现一定弧度,本设计的弧度范围内A1、A2、A3保证吹风气流集中在出风口正前方的柱状空间内,增加送风距离与风压。其中A1能够对叶片的叶尖的弯曲度进行限定,进而减小叶片边界层内流体的离心力,这样能够有效地抑制叶片的叶顶失速,从而降低叶片的叶顶处能量的损失,提升叶片送风效率;A2有效地抑制叶片后缘处涡流脱离,从而降低叶片噪声;A3能够消除叶轮前缘存在的回流问题,将端壁区域的低能流体吸收到叶片中高能主流中,减弱了端部低能流体的聚集,从而减弱了流动损失和流动阻塞。
附图说明
图1是根据本发明一实施方式的小型轴流风扇的各项参数示意图;
图2是根据本发明一实施方式的扇叶的参数示意图;
图3是图2的I处的局部放大图;
图4是根据本发明一实施方式的小型轴流风扇的参数俯视示意图;
图5是根据本发明一实施方式的小型轴流风扇的俯视剖视示意图;
图6是根据本发明一实施方式的小型轴流风扇的主视结构示意图;
图7是根据本发明一实施方式的小型轴流风扇的俯视结构示意图;
图8是根据本发明一实施方式的小型轴流风扇的俯视立体示意图;
图9是根据本发明一实施方式的小型轴流风扇的仰视立体示意图;
图10是根据本发明一实施方式的小型轴流风扇的各项数据对比图表。
主要附图标记说明:
10-轮毂,20-叶片,201-前缘,202-后缘,203-叶根,204-叶尖,S-参考变量圆柱体,D1-轮毂直径,D2-圆柱体直径,D3-叶片最大直径,F-扇叶参考横截面,F1-第一弧段,F2-第二弧段,H1-叶根的轴向投影弦长,N1-叶根的轴向高度,H2-叶尖的轴向投影弦长,N2-叶尖的轴向高度,前 缘角-α1,后缘角-α2。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
除非另有其它明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其它元件或其它组成部分。
请参阅图1至图3:参考变量圆柱体S与轮毂同心设置;D2:圆柱体S的半径;D3:风扇叶片的最大直径;轮毂的中心O;轮毂直径D1;a:参考变量圆柱体S与叶片相交所形成的横截面的轴向投影的中点;b:叶片的叶根与轮毂衔接处形成的横截面轴向投影的中点;L1:b与轮毂中心O的连线;L2:a点和轮毂中心O的连线。
叶片净弯曲角A1:L1与L2之间的夹角;C:圆柱体S与叶片前缘的相交点;L3:C与轮毂的中心O连线;L4:叶片前缘在C点的切线;
前缘导边弯曲角A2:L3与L4之间的夹角;d:圆柱体S与叶片的后缘相交点;L5:D与轮毂的中心O的连线;L6:叶片后缘在D点的切线;
后缘导边弯曲角A3:L5与所述L6之间的夹角。
第一弧段F1:叶片的下表面弦长=下弧线+左右圆弧/2;
第二弧段F2:叶片上表面弦长=上弧线+左右圆弧/2;
前缘及后缘圆弧段的端点的切线形成的夹角:
叶片前缘角α1:扇叶前缘圆弧段端点的两切线夹角;
叶片后缘角α2:扇叶后缘圆弧段端点的两切线夹角。
叶根沿轮毂轴向投影弦长H1,叶根轴向高度N1,叶尖沿轮毂轴向投影弦长H2,叶尖轴向高度N2。
如图1至图9所示,根据本发明优选实施方式的一种小型轴流风扇,包括:轮毂以及多个扇叶,多个扇叶呈放射状均匀分布在轮毂的外圆周上,每个扇叶包括前缘、后缘、叶根及叶尖,前缘和后缘相对设置,扇叶与轮毂外周侧固定连接结合部为叶根;每个叶片与轮毂同轴的多个参考变量圆柱体相贯形成多个叶片参考横截面,多个参考变量圆柱体的直径D2为介于轮毂直径D1和扇叶的最大直径D3之间的变量值,多个参考变量圆柱体的直径D2与扇叶的最大直径D3的比值为P;叶根的轴向投影弦长H1,轴向高度N1,H1以预设角度与轮毂固定连接,叶尖的轴向投影弦长H2,轴向高度N2,轮毂直径D1、参考变量圆柱体的直径D2,轮毂比D1/D3为常数G,弦长比H1/H2为K,轴向高度比N1/N2为M,弦长夹角为β,叶根投影弦长H1随着轮毂比的增大而增大;当G介于0.32~0.42之间时,K介于0.33~0.39之间,β介于42.08r°~64.31r°之间。
在一些实施方式中,G=0.32,对应的K=0.36,β=64.31r°,G=0.33,对应的K=0.36,β=64.31r°,G=0.35,对应的K=0.33,β=57.77r°,G=0.36,对应的K=0.34,β=56.53r°,G=0.37,对应的K=0.35,β=51.54r°,G=0.38,对应的K=0.35,β=49.4r°,G=0.39,对应的K=0.36,β=47.42r°,G=0.40,对应的K=0.37,β=45.56r°,G=0.41,对应的K=0.38,β=43.8r°,G=0.42,对应的K=0.39,β=47.42r°。
请参阅图2和图3,在一些实施方式中,扇叶前缘圆弧段端点的两切线夹角叶片前缘角α1和扇叶后缘圆弧段端点的两切线夹角叶片后缘角α2在同一规格产品中都是固定的,而且叶尖的轴向投影弦长H2是从前缘角α1和后缘角α2的圆弧段与叶顶圆弧的分界点取得的。
在一些实施方式中,不同圆柱面截取风扇得到的参数以14025型号九叶风扇为例的参数表如下:
Figure PCTCN2022125934-appb-000001
Figure PCTCN2022125934-appb-000002
在一些实施方式中,扇叶的叶根处的后缘接近轮毂的最底面位置,且由叶根部平滑延伸至叶尖。轮毂的厚度介于16~23mm之间。
在一些实施方式中,每个参考横截面具有位于叶片的承压面的第一弧段F1和位于叶片的吸压面的第二弧段F2,第一弧段F1和第二弧段F2随着参考变量圆柱体的直径的不同而不同;当P=0.45时,F1=20.40tmm,F2=20.60tmm,当P=0.51时,F1=22.20tmm,F2=22.50tmm,当P=0.57时,F1=24.30tmm,F2=24.60tmm,当P=0.63时,F1=26.80tmm,F2=27.10tmm,当P=0.69时,F1=29.40tmm,F2=29.70tmm,当P=0.75时,F1=32.20tmm,F2=32.50tmm,当P=0.81时,F1=35.60tmm,F2=35.90tmm。
在一些实施方式中,每个叶片参考横截面沿轮毂的轴向投影的中心点a与轮毂中心O的连线L2和叶根沿轮毂的轴向投影的中心点b与轮毂中心O的连线L2之间的夹角A1介于27.81r°至55.88r°之间。
在一些实施方式中,当P=0.45时,A1=27.81r°,当P=0.51时,A1=33.02r°,当P=0.57时,A1=42.29r°,当P=0.63时,A1=47.29r°,当P=0.69时,A1=50.66r°,当P=0.75时,A1=55.16r°,当P=0.81时,A1=55.88r°。
在一些实施方式中,当P介于0.45~0.81之间时,每个叶片参考横截面沿 轮毂的轴向投影跟前缘沿轮毂的轴向投影的交点c与轮毂中心O的连线L3和前缘在c点处的切线L4之间的夹角A2介于39.69r°至48.78r°之间。
在一些实施方式中,当P=0.45时,A2=48.78r°,当P=0.51时,A2=47.81r°,当P=0.57时,A2=40.55r°,当P=0.63时,A2=39.78r°,当P=0.69时,A2=38.69r°,当P=0.75时,A2=39.45r°,当P=0.81时,A2=41.54r°。
在一些实施方式中,每个叶片参考横截面沿轮毂的轴向投影跟后缘沿轮毂的轴向投影的交点d与轮毂中心O的连线L5和后缘在d点处的切线L6之间的夹角A3介于29.96r°至43.93r°之间。
在一些实施方式中,当P=0.45,A3=43.93r°,当P=0.51,A3=48.55r°,当P=0.57,A3=40.35r°,当P=0.63,A3=35.90r°,当P=0.69,A3=34.79r°,当P=0.75,A3=32.32r°,当P=0.81,A3=29.96r°。
在一些实施方式中,不同轮毂比下的叶根轴向投影弦长H1和叶尖轴向投影弦长H2及弦长比H1/H2和夹角请参阅下表:
Figure PCTCN2022125934-appb-000003
由上表可以看出,随着D1/D3的增大,H1和K逐渐增大,β逐步减小。
请参阅图2和图3,在一些实施方式中,叶尖和前缘及后缘结合处为圆倒角结构,每个叶片的前缘圆弧段端点的两切线夹角为前缘角,前缘角的角度为36.72°,每个叶片的后缘圆弧段端点的两切线夹角为后缘角,后缘角的角度为122.41°,前缘角和后缘角的浮动范围介于±5°之间。
在一些实施方式中,r为误差调整系数,且范围值在r±5°,t为误差调整系数且范围值在t±3mm。
如图10所示,在同一噪音水平环境下,本发明与现有技术的风扇风量和风压对比,本设计的轮毂比范围内具有较好的风扇性能,PQ曲线风压P/mmAq,风量Q/CFM(右上部的14025曲线为本次设计的性能曲线)。
结合图10可以看出,在不同环境下即:对于高阻抗的结构系统,可以选择高风压的风扇,对于低阻抗的系统,则更适合选择高风量的散热风扇。本设计与其他现有的公开的风扇相比较,相同的风压下有更大的风量,相同的风量下具有更大的风压,所以可以充分对待散热部件散热。
综上所述,本发明的小型轴流风扇具有以下有益效果:
轮毂比G的设定可以使得风扇维持一定的风量风压适应电子元器件的散热需要;叶根与叶尖的轴向投影弦长的比例K的限定,可以使得风扇具有送风量与噪声的平衡。另外,本发明叶片的弧度是沿着旋转方向有弯曲呈现一定弧度,在该弧度范围内A1、A2、A3保证吹风气流集中在出风口正前方的柱状空间内,在保证低噪音的同时增加送风距离与风压。其中A1能够对叶片的叶顶的弯掠程度进行限定,通过该限定可以减小叶片边界层内流体的离心力,这样能够有效地抑制叶片的叶顶失速,从而降低叶片的叶顶处能量的损失,提升叶片送风效率;A2有效地抑制叶片后缘处涡流脱离,从而降低叶片噪声;A3能够消除叶轮前缘存在的回流问题,将端壁区域的低能流体吸收到叶片中高能主流中,减弱了端部低能流体的聚集,从而减弱了流动损失和流动阻塞。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述 教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (14)

  1. 一种小型轴流风扇,其特征在于,包括:
    轮毂以及多个扇叶,所述多个扇叶呈放射状均匀分布在所述轮毂的外圆周上,每个所述扇叶包括前缘、后缘、叶根及叶尖,所述前缘和所述后缘相对设置,所述扇叶与轮毂外周侧固定连接结合部为叶根;
    每个所述叶片与所述轮毂同轴的多个参考变量圆柱体相贯形成多个叶片参考横截面,所述多个参考变量圆柱体的直径D2为介于所述轮毂直径D1和所述扇叶的最大直径D3之间的变量值,所述多个参考变量圆柱体的直径D2与所述扇叶的最大直径D3的比值为P;
    所述叶根的轴向投影弦长H1,轴向高度N1,H1以预设角度与所述轮毂固定连接,所述叶尖的轴向投影弦长H2,轴向高度N2,轮毂直径D1、所述参考变量圆柱体的直径D2,轮毂比D1/D3为常数G,弦长比H1/H2为K,轴向高度比N1/N2为M,弦长夹角为β,叶根投影弦长H1随着轮毂比的增大而增大;
    当G介于0.32~0.42之间时,K介于0.33~0.39之间,β介于42.08r°~64.31r°之间。
  2. 如权利要求1所述的小型轴流风扇,其特征在于,轴向高度比N1/N2为M介于0.3~0.6之间。
  3. 如权利要求1所述的小型轴流风扇,其特征在于,
    G=0.32,对应的K=0.36,β=64.31r°,G=0.33,对应的K=0.33,β=63.02r°,
    G=0.35,对应的K=0.33,β=57.77r°,G=0.36,对应的K=0.34,β=56.53r°,
    G=0.37,对应的K=0.35,β=51.54r°,G=0.38,对应的K=0.35,β=49.4r°,
    G=0.39,对应的K=0.36,β=47.42r°,G=0.40,对应的K=0.37,β=45.56r°,
    G=0.41,对应的K=0.38,β=43.8r°,G=0.42,对应的K=0.39,β=42.08r°。
  4. 如权利要求1所述的小型轴流风扇,其特征在于,所述扇叶的叶根处的后缘接近所述轮毂的最底面位置,且由所述叶根部平滑延伸至所述叶尖。
  5. 如权利要求1所述的小型轴流风扇,其特征在于,所述轮毂的轴向高度介于16~23mm之间。
  6. 如权利要求1所述的小型轴流风扇,其特征在于,每个所述参考横截面具有位于所述叶片的承压面的第一弧段F1和位于所述叶片的吸压面的第二弧段F2,所述第一弧段F1和所述第二弧段F2随着所述参考变量圆柱体的直径的不同而不同;
    当P=0.45时,F1=20.40tmm,F2=20.60tmm,
    当P=0.51时,F1=22.20tmm,F2=22.50tmm,
    当P=0.57时,F1=24.30tmm,F2=24.60tmm,
    当P=0.63时,F1=26.80tmm,F2=27.10tmm,
    当P=0.69时,F1=29.40tmm,F2=29.70tmm,
    当P=0.75时,F1=32.20tmm,F2=32.50tmm,
    当P=0.81时,F1=35.60tmm,F2=35.90tmm。
  7. 如权利要求1所述的小型轴流风扇,其特征在于,每个所述叶片参考横截面沿所述轮毂的轴向投影的中心点a与所述轮毂中心O的连线L2和所述叶根沿所述轮毂的轴向投影的中心点b与所述轮毂中心O的连线L2之间的夹角A1介于27.81r°至55.88r°之间。
  8. 如权利要求6所述的小型轴流风扇,其特征在于,
    当P=0.45时,A1=27.81r°,
    当P=0.51时,A1=36.01r°,
    当P=0.57时,A1=42.29r°,
    当P=0.63时,A1=47.29r°,
    当P=0.69时,A1=50.66r°,
    当P=0.75时,A1=55.16r°,
    当P=0.81时,A1=55.88r°。
  9. 如权利要求6所述的小型轴流风扇,其特征在于,当P介于0.45~0.81之间时,每个所述叶片参考横截面沿所述轮毂的轴向投影跟所述前缘沿所述轮毂的轴向投影的交点c与所述轮毂中心O的连线L3和所述前缘在c点处的切线L4之间的夹角A2介于38.69r°至48.78r°之间。
  10. 如权利要求7所述的小型轴流风扇,其特征在于,
    当P=0.45时,A2=48.78r°,
    当P=0.51时,A2=44.33r°,
    当P=0.57时,A2=40.55r°,
    当P=0.63时,A2=39.78r°,
    当P=0.69时,A2=38.69r°,
    当P=0.75时,A2=39.45r°,
    当P=0.81时,A2=41.54r°。
  11. 如权利要求1所述的小型轴流风扇,其特征在于,所述每个所述叶片参考横截面沿所述轮毂的轴向投影跟所述后缘沿所述轮毂的轴向投影的交点d与所述轮毂中心O的连线L5和所述后缘在d点处的切线L6之间的夹角A3介于29.96r°至43.93r°之间。
  12. 如权利要求10所述的小型轴流风扇,其特征在于,
    当P=0.45,A3=43.93r°,
    当P=0.51,A3=46.85r°,
    当P=0.57,A3=40.35r°,
    当P=0.63,A3=35.90r°,
    当P=0.69,A3=34.79r°,
    当P=0.75,A3=32.32r°,
    当P=0.81,A3=29.96r°。
  13. 如权利要求1所述的小型轴流风扇,其特征在于,所述叶尖和所述前缘及后缘结合处为圆倒角结构,每个所述叶片的前缘圆弧段端点的两切线夹角为前缘角,所述前缘角的角度为36.72°,每个所述叶片的后缘圆弧段端点的两切线夹角为后缘角,所述后缘角的角度为122.41°,所述前缘角和所述后缘角的浮动范围介于±5°之间。
  14. 如权利要求1-13所述的小型轴流风扇,其特征在于,所述r为误差调整系数且范围值在r±5°,所述t为误差调整系数且范围值在t±3mm。
PCT/CN2022/125934 2022-09-30 2022-10-18 小型轴流风扇 WO2024065897A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222610517.5U CN218581885U (zh) 2022-09-30 2022-09-30 小型轴流风扇
CN202222610517.5 2022-09-30

Publications (1)

Publication Number Publication Date
WO2024065897A1 true WO2024065897A1 (zh) 2024-04-04

Family

ID=85367457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125934 WO2024065897A1 (zh) 2022-09-30 2022-10-18 小型轴流风扇

Country Status (2)

Country Link
CN (1) CN218581885U (zh)
WO (1) WO2024065897A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558123B1 (en) * 1998-03-23 2003-05-06 Spal S.R.L. Axial flow fan
WO2006016229A1 (en) * 2004-08-05 2006-02-16 Spal Automotive S.R.L. A high efficiency axial fan
EP1825148A1 (en) * 2004-07-06 2007-08-29 SPAL Automotive S.r.l. Axial fan
CN201771859U (zh) * 2010-09-03 2011-03-23 美的集团有限公司 一种电风扇风叶
CN202251084U (zh) * 2011-09-23 2012-05-30 美的集团有限公司 一种风扇风叶
CN106438470A (zh) * 2016-11-03 2017-02-22 合肥华凌股份有限公司 轴流风扇和制冷设备
CN112648234A (zh) * 2020-12-31 2021-04-13 珠海格力电器股份有限公司 轴流风叶及具有其的风机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6558123B1 (en) * 1998-03-23 2003-05-06 Spal S.R.L. Axial flow fan
EP1825148A1 (en) * 2004-07-06 2007-08-29 SPAL Automotive S.r.l. Axial fan
WO2006016229A1 (en) * 2004-08-05 2006-02-16 Spal Automotive S.R.L. A high efficiency axial fan
CN201771859U (zh) * 2010-09-03 2011-03-23 美的集团有限公司 一种电风扇风叶
CN202251084U (zh) * 2011-09-23 2012-05-30 美的集团有限公司 一种风扇风叶
CN106438470A (zh) * 2016-11-03 2017-02-22 合肥华凌股份有限公司 轴流风扇和制冷设备
CN112648234A (zh) * 2020-12-31 2021-04-13 珠海格力电器股份有限公司 轴流风叶及具有其的风机

Also Published As

Publication number Publication date
CN218581885U (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
CN102459917A (zh) 涡轮风扇及空调机
CN104728172B (zh) 离心蜗壳、具有其的离心风机和空调器
WO2018126745A1 (zh) 叶片、叶轮及风机
JP2015034503A (ja) 軸流ファン、及び、その軸流ファンを有する空気調和機
CN105041682B (zh) 蜗壳风机
CN112182792A (zh) 一种斜流/离心叶轮通用的子午流道设计方法
WO2019006971A1 (zh) 叶轮、风机和电机
WO2020134066A1 (zh) 风扇组件的造型方法
WO2024065897A1 (zh) 小型轴流风扇
CN211449177U (zh) 叶轮、混流风机以及空调器
TW200540338A (en) Housing structure for an axial-blowing heat-dissipating fan
CN108005953B (zh) 一种多翼离心风机叶片
CN211715409U (zh) 一种蜗壳风轮风道系统的结构
CN207935150U (zh) 一种叶轮、风机及吸油烟机
CN211737550U (zh) 后向离心截面降噪型离心风叶
WO2020125128A1 (zh) 轴流风叶、换气装置以及空调器
CN109185225A (zh) 风叶和风扇
CN209704915U (zh) 离心风叶、天井机及具有其的空调系统
CN211854246U (zh) 格栅、室外机和空调器
CN218581878U (zh) 风扇结构
CN209083670U (zh) 风叶和风扇
WO2020024401A1 (zh) 一种斜流风机
CN203627319U (zh) 离心蜗壳、具有其的离心风机和空调器
CN219139411U (zh) 小型风扇结构
CN108005954B (zh) 多翼离心风机叶片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960499

Country of ref document: EP

Kind code of ref document: A1