WO2024065861A1 - 炉管装置 - Google Patents

炉管装置 Download PDF

Info

Publication number
WO2024065861A1
WO2024065861A1 PCT/CN2022/123910 CN2022123910W WO2024065861A1 WO 2024065861 A1 WO2024065861 A1 WO 2024065861A1 CN 2022123910 W CN2022123910 W CN 2022123910W WO 2024065861 A1 WO2024065861 A1 WO 2024065861A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
temperature control
temperature
collecting
control section
Prior art date
Application number
PCT/CN2022/123910
Other languages
English (en)
French (fr)
Inventor
范宜灏
杨春健
Original Assignee
台湾积体电路制造股份有限公司
台积电(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台湾积体电路制造股份有限公司, 台积电(中国)有限公司 filed Critical 台湾积体电路制造股份有限公司
Publication of WO2024065861A1 publication Critical patent/WO2024065861A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/068Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere

Definitions

  • the present application relates to the field of semiconductor manufacturing, and in particular to a furnace tube device.
  • thermocouple temperature control method is usually used to adjust the temperature, that is, the thermocouple is set between the vacuum tube and the heating belt.
  • the present application provides a furnace tube device that can more accurately control the temperature of the connecting tube, thereby improving the operating efficiency and safety and reliability of the furnace tube device.
  • a furnace tube device including: a reaction container having a containing cavity, the reaction container including an inlet tube, a deposition chamber and an outlet tube, the inlet tube is used to guide a first substance and a second substance into the containing cavity, the first substance and the second substance react in the containing cavity to form a third substance and a reactant, the deposition chamber is used to hold the third substance, and the reactant is discharged from the outlet tube; a collecting container including a collecting tube and a driving tube, the collecting tube is used to collect at least part of the reactants, the driving tube is connected to a driving pump to drive the reactants from the reaction container to the collecting container; a temperature control component is connected between the outlet tube and the collecting tube, the temperature control component includes a connecting tube, a temperature control part, a first collecting part and a first controller, the temperature control part is coated on the connecting tube, the first collecting part is embedded in the temperature control part and is configured to collect first temperature information of the connecting tube, and the
  • the temperature control component also includes a second collecting unit and a second controller.
  • the second collecting unit is embedded in the temperature control unit and is configured to collect second temperature information of the connecting pipe.
  • the second controller is configured to send an alarm signal when the second temperature information is lower than a first predetermined value or exceeds a second predetermined value.
  • the temperature control part includes an insulating layer and a heating layer which are stacked, and the first collecting part and the second collecting part are embedded between the insulating layer and the heating layer.
  • the heating layer is arranged on a side of the temperature control part close to the connecting pipe, and the insulating layer is arranged on a side of the temperature control part away from the connecting pipe.
  • the temperature control part also includes a first surface layer and a second surface layer, the first surface layer is arranged on a side of the insulation layer away from the connecting tube, and the second surface layer is arranged on a side of the heating layer close to the connecting tube.
  • the connecting pipe includes a first bent pipe, a second vertical pipe, a third bent pipe and a fourth bent pipe which are arranged successively and connected in sequence.
  • the first bent pipe is connected to the outlet pipe, and the fourth bent pipe is connected to the collecting pipe.
  • the volume of the fourth bent tube is respectively greater than the volumes of the first bent tube, the second vertical tube, and the third bent tube.
  • the temperature control part includes a first temperature control section, a second temperature control section, a third temperature control section and a fourth temperature control section which are successively arranged and sequentially connected, the first temperature control section is covered on the first bending tube, the second temperature control section is covered on the second vertical tube, the third temperature control section is covered on the third bending tube, and the fourth temperature control section is covered on the fourth bending tube; the first temperature control section, the second temperature control section, the third temperature control section and the fourth temperature control section are respectively provided with a first collection section, a first controller, a second collection section and a second controller.
  • the furnace tube device further includes a plurality of connectors, and the first bent tube, the second vertical tube, the third bent tube and the fourth bent tube are respectively connected through the connectors.
  • the furnace tube device further includes a temperature regulating component, which is disposed on the collecting tube and configured to regulate the temperature of the reactants in the collecting tube.
  • the furnace tube device provided in the embodiment of the present application includes a reaction container, a collection container and a temperature control component.
  • the temperature control component includes a connecting tube, a temperature control part, a first collection part and a first controller.
  • the temperature control part is coated on the connecting tube, the first collection part is embedded in the temperature control part and is configured to collect the first temperature information of the connecting tube, and the first controller is configured to adjust the temperature of the temperature control part according to the first temperature information so that the temperature of the connecting tube is within a preset threshold range.
  • the first collection part By embedding the first collection part in the temperature control part, it can be prevented from shifting due to thermal deformation, and this setting does not require manual binding, which is conducive to improving the accuracy of the first temperature information of the connecting tube collected by the first collection part, so that the first controller can more accurately control the temperature of the connecting tube, improve the reliability of the connecting tube, thereby improving the collection efficiency of the collection container, and further improving the operation efficiency and safety reliability of the furnace tube device.
  • FIG1 is a partial structural schematic diagram of a furnace tube device according to an embodiment of the present application.
  • FIG2 is an exploded schematic diagram of a partial structure of a temperature control unit in the furnace tube device shown in FIG1 ;
  • FIG. 3 is an enlarged schematic diagram of the structure at point P in FIG. 1 .
  • 31-connecting tube 31a-first bending tube; 31b-second vertical tube; 31c-third bending tube; 31d-fourth bending tube;
  • 32-temperature control part 321-insulating layer; 322-heating layer; 323-first surface layer; 324-second surface layer; 32a-first temperature control section; 32b-second temperature control section; 32c-third temperature control section; 32d-fourth temperature control section;
  • furnace tube device according to the embodiment of the application is described in detail below with reference to FIGS. 1 to 3 .
  • a furnace tube device including a reaction container 10, a collection container 20 and a temperature control component.
  • the reaction container 10 has a accommodating chamber 10a.
  • the reaction container 10 includes an inlet pipe 11, a deposition chamber 12 and an outlet pipe 13.
  • the inlet pipe 11 is used to guide the first substance and the second substance into the accommodating chamber 10a.
  • the first substance and the second substance react in the accommodating chamber 10a to form a third substance and a reactant.
  • the deposition chamber 12 is used to hold the third substance, and the reactant is discharged from the outlet pipe 13.
  • the collection container 20 includes a collection pipe 21 and a drive pipe 22.
  • the collection pipe 21 is used to collect at least part of the reactants.
  • the drive pipe 22 is connected to a drive pump to drive the reactants from the reaction container 10 to the collection container 20.
  • the temperature control component is connected between the outlet pipe 13 and the collecting pipe 21.
  • the temperature control component includes a connecting pipe 31, a temperature control part 32, a first collecting part 33 and a first controller.
  • the temperature control part 32 covers the connecting pipe 31.
  • the first collecting part 33 is embedded in the temperature control part 32 and is configured to collect first temperature information of the connecting pipe 31.
  • the first controller is configured to adjust the temperature of the temperature control part 32 according to the first temperature information so that the temperature of the connecting pipe 31 is within a preset threshold range.
  • a furnace tube device provided in the present application can more accurately control the temperature of the connecting tube 31, improve the reliability of the connecting tube 31, thereby improving the collection efficiency of the collection container 20, and further improving the operating efficiency and safety reliability of the furnace tube device.
  • the first collecting part 33 is arranged in the temperature control part 32. Even if the temperature of the connecting tube 31 is high and causes the first collecting part 33 to heat up and deform, the first collecting part 33 will not be displaced, thereby ensuring the accuracy of the temperature information collected by it, and further ensuring that the first controller can more accurately control the temperature of the connecting tube 31 within the preset threshold range, so that the reactants in the pipeline will not be blocked.
  • the first controller can more accurately control the temperature of the connecting tube 31, ensure the stable operation of the reactants in the connecting tube 31, and improve the reliability of the connecting tube 31, thereby improving the collection efficiency of the collection container 20, and further improving the operation efficiency and safety reliability of the furnace tube device.
  • the first controller may be disposed on an outer surface of the temperature control portion 32 .
  • the first collecting part 33 may include a first detector and a first sensor.
  • the first detector is configured to collect first temperature information of the connecting tube 31 and transmit the first temperature information to the first sensor.
  • the first sensor can receive the first temperature information, convert the first temperature information into a first signal and transmit the first signal to the first controller.
  • the first controller can receive the first signal and adjust the temperature of the temperature control part 32 according to the first signal. Since the temperature control part 32 covers the connecting tube 31, the temperature of the connecting tube 31 is within a preset threshold range.
  • the first substance may be dichlorosilane (SiH 2 Cl 2 )
  • the second substance may be ammonia (NH 3 )
  • the third substance may be silicon nitride (Si 3 N 4 )
  • the reactants may include hydrogen chloride (HCL) and hydrogen (H 2 )
  • the silicon nitride is deposited in the deposition chamber 12 to be collected by the deposition chamber 12, and the hydrogen chloride and hydrogen are discharged from the outlet pipe 13.
  • HCL hydrogen chloride
  • H 2 hydrogen
  • the silicon nitride is deposited in the deposition chamber 12 to be collected by the deposition chamber 12, and the hydrogen chloride and hydrogen are discharged from the outlet pipe 13.
  • the reactants may include hydrogen chloride, hydrogen and ammonia.
  • the preset threshold range of the temperature of the connecting tube 31 is set above the melting point of hydrogen chloride to ensure the effectiveness of the reactants passing through the connecting tube 31.
  • the collecting container 20 includes a collecting tube 21 and a driving tube 22.
  • the temperature of the collecting tube 21 can be set below the melting point of silicon nitride so that it becomes a solid structure and gathers on the inner wall of the collecting tube 21 to facilitate collection.
  • Other gaseous reactants enter the driving tube 22 and are sucked in by the driving pump.
  • the temperature control component also includes a second collecting unit 34 and a second controller.
  • the second collecting unit 34 is embedded in the temperature control unit 32 and is configured to collect second temperature information of the connecting pipe 31.
  • the second controller is configured to send an alarm signal when the second temperature information is lower than a first predetermined value or exceeds a second predetermined value.
  • the operator can perform maintenance work in time according to the alarm signal to prevent the temperature of the connecting pipe 31 from becoming abnormal, which may cause the furnace tube device to fail to operate normally or even be damaged.
  • the first predetermined value and the second predetermined value may be the temperature of the connecting pipe 31 outside the preset threshold range and affecting the reliability of the connecting pipe 31.
  • the first predetermined value and the second predetermined value may be set according to actual conditions, and the present application does not limit this.
  • the first preset value is smaller than the minimum endpoint value within the preset threshold range, and the second preset value is larger than the maximum endpoint value within the preset threshold range.
  • the first controller stops adjusting the temperature of the temperature control unit 32.
  • This arrangement can prevent the first controller from continuing to adjust the temperature when the temperature of the connecting pipe 31 is abnormal, which is beneficial to improving the operating efficiency of the furnace tube device and ensuring the safety and reliability of the furnace tube device.
  • the first controller may be disposed on an outer surface of the temperature control portion 32 .
  • the values of the first temperature information and the second temperature information may be the same, or may be different.
  • the second collecting part 34 may include a second detector and a second sensor.
  • the second detector is configured to collect second temperature information of the connecting pipe 31 and transmit the second temperature information to the second sensor.
  • the first sensor can receive the second temperature information, convert the second temperature information into a second signal and transmit the second signal to the second controller.
  • the second controller receives the second signal and sends an alarm signal when the second signal is lower than a first predetermined value or exceeds a second predetermined value, which is beneficial to ensure the reliability of the temperature of the connecting pipe 31, thereby ensuring the operating efficiency and safety reliability of the furnace tube device.
  • the temperature control part 32 includes an insulating layer 321 and a heating layer 322 that are stacked, and the first collecting part 33 and the second collecting part 34 are embedded between the insulating layer 321 and the heating layer 322.
  • the first collecting part 33 and the second collecting part 34 can be fixedly connected between the insulating layer 321 and the heating layer 322 by sewing, which can prevent the first collecting part 33 and the second collecting part 34 from displacement, and help ensure the reliability of the first collecting part 33 and the second collecting part 34.
  • the first collecting part 33 and the second collecting part 34 can also be fixed between the insulating layer 321 and the heating layer 322 by connecting the connecting piece 40.
  • the heating layer 322 is disposed on a side of the temperature control portion 32 close to the connecting tube 31
  • the insulating layer 321 is disposed on a side of the temperature control portion 32 away from the connecting tube 31 .
  • This arrangement is helpful to improve the heat preservation effect of the temperature control part 32 on the connecting pipe 31 and the temperature transfer efficiency.
  • the insulating layer 321 can be made of glass fiber, which is beneficial to improving the thermal insulation effect, and has strong heat resistance and good corrosion resistance, which is beneficial to ensuring the thermal insulation effect of the temperature control part 32 on the connecting pipe 31.
  • the heating layer 322 can be made of heating wire, which is beneficial to improving the heating effect and service life, and is beneficial to improving the temperature efficiency of the temperature control part 32 on the connecting pipe 31, so that the temperature of the connecting pipe 31 can be better maintained within a preset threshold range.
  • the temperature control part 32 further includes a first surface layer 323 and a second surface layer 324 , the first surface layer 323 is arranged on a side of the insulating layer 321 away from the connecting tube 31 , and the second surface layer 324 is arranged on a side of the heating layer 322 close to the connecting tube 31 .
  • the effectiveness of the temperature control part 32 can be ensured, and the efficiency of the temperature change of the temperature control part 32 can be improved, thereby helping to improve the operating efficiency of the furnace tube device.
  • the first surface layer 323 may be made of polytetrafluoroethylene material. Of course, it may also be made of other materials, as long as it is ensured that the first surface layer 323 does not react with the external environment.
  • the second surface layer 324 may be made of polytetrafluoroethylene material. Of course, it may also be made of other materials, as long as it is ensured that the second surface layer 324 does not react with the connecting pipe 31 .
  • first surface layer 323 and the second surface layer 324 may be made of the same material, or of course, may be made of different materials.
  • the connecting pipe 31 includes a first bent pipe 31a, a second vertical pipe 31b, a third bent pipe 31c and a fourth bent pipe 31d that are successively arranged and sequentially connected.
  • the first bent pipe 31a is connected to the outlet pipe 13, and the fourth bent pipe 31d is connected to the collecting pipe 21.
  • the connecting pipe 31 is arranged in sections, which is beneficial to improving the transportation efficiency and reducing the processing difficulty.
  • the fourth bent tube 31d is connected to the collecting tube 21, and the preset threshold range of the temperature of the fourth bent tube 31d is set smaller than the preset threshold ranges of the first bent tube 31a, the second vertical tube 31b, and the third bent tube 31c, so as to play a transition role, which is beneficial for at least the reactants entering the collecting tube 21 to be able to become a solid structure faster, so as to improve the efficiency of collecting at least part of the reactants, thereby improving the operating efficiency of the furnace tube device.
  • the preset threshold ranges of the temperatures of the first curved tube 31a, the second vertical tube 31b, and the third curved tube 31c can be set to be the same. Of course, they can also be set to be different, as long as they are greater than the preset threshold range of the fourth curved tube 31d.
  • the connecting pipe 31 includes more than two sub-connecting pipes, and the more than two sub-connecting pipes are successively arranged and connected in sequence.
  • the number of sub-connecting pipes can be two, six, or eight, and the present application does not limit this.
  • the volume of the fourth bent tube 31d is respectively greater than the volumes of the first bent tube 31a, the second vertical tube 31b, and the third bent tube 31c.
  • the transition effect of the fourth bent tube 31d can be better improved, so that more reactants can reduce a certain temperature before entering the collecting tube 21, which is beneficial to improving the collection efficiency of the collecting tube 21 and further improving the operating efficiency of the furnace tube device.
  • the first bent tube 31a, the second vertical tube 31b, the third bent tube 31c and the fourth bent tube 31d have the same caliber size.
  • the volume of the fourth bent tube 31d is set to be the largest among all the segmented tubes. It can be understood that the length of the fourth bent tube 31d is the longest, so as to improve the collection efficiency of the collecting tube 21 and further improve the operating efficiency of the furnace tube device.
  • the temperature control part 32 includes a first temperature control section 32a, a second temperature control section 32b, a third temperature control section 32c and a fourth temperature control section 32d which are successively arranged and sequentially connected, the first temperature control section is covered on the first bending tube 31a, the second temperature control section 32b is covered on the second vertical tube 31b, the third temperature control section 32c is covered on the third bending tube 31c, and the fourth temperature control section 32d is covered on the fourth bending tube 31d.
  • the temperature control part 32 can also be set to multiple sections according to the segmented setting of the connecting pipe 31, which is conducive to improving assembly efficiency and reducing processing difficulty.
  • the temperature control part 32 may include more than two temperature control sections, and the more than two temperature control sections are successively arranged and connected in sequence.
  • the number of temperature control sections can be two, six, or eight, and this application does not limit this.
  • the first temperature control section 32a, the second temperature control section 32b, the third temperature control section 32c and the fourth temperature control section 32d are respectively provided with a first collection unit 33, a first controller, a second collection unit 34 and a second controller.
  • the temperatures of the first temperature control section 32a, the second temperature control section 32b, the third temperature control section 32c and the fourth temperature control section 32d can be adjusted respectively, thereby controlling the temperatures of the first bent tube 31a, the second vertical tube 31b, the third bent tube 31c and the fourth bent tube 31d respectively, which is beneficial to improving the temperature regulation efficiency, thereby improving the operating efficiency of the furnace tube device, saving time and cost.
  • the furnace tube device further includes a plurality of connectors 40 , and the first bent tube 31 a , the second vertical tube 31 b , the third bent tube 31 c , and the fourth bent tube 31 d are respectively connected through the connectors 40 .
  • This arrangement helps to improve assembly efficiency.
  • the connector 40 may be configured as a flange or a connecting hoop, which helps to ensure that no leakage occurs at the connection positions between the first bent tube 31a, the second vertical tube 31b, the third bent tube 31c and the fourth bent tube 31d, thereby ensuring reliability.
  • the furnace tube device further includes a temperature regulating component, which is disposed on the collecting tube 21 and is configured to regulate the temperature of the reactants in the collecting tube 21 .
  • This arrangement facilitates the solid structure of part of the reactants entering the collecting tube 21 to gather on the inner wall of the collecting tube 21 , thereby facilitating collection, so that part of the reactants in the gaseous structure enters the driving tube 22 and is sucked in by the passive pump.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Furnace Details (AREA)

Abstract

本申请涉及一种炉管装置,炉管装置包括反应容器、收集容器以及温控组件,温控组件包括连接管、温控部、第一采集部以及第一控制器,温控部包覆于连接管,第一采集部镶嵌于温控部内并被配置为采集连接管的第一温度信息,第一控制器被配置为根据第一温度信息调节温控部的温度,以使连接管的温度在预设阈值范围内。本申请实施例能够更精准的控制连接管的温度,从而提高炉管装置的运行效率及安全可靠性。

Description

炉管装置
相关申请的交叉引用
本申请要求享有于2022年09月26日提交的名称为“炉管装置”的中国专利申请202222552441.5的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及半导体制造领域,特别是涉及一种炉管装置。
背景技术
在现有的氮化硅炉管中,为了保证氮化硅炉管中真空管的温度稳定,通常采用外置热电偶控温方式调节温度,即将热电偶设置在真空管与加热带之间。
而此方式设置,会产生至少以下两个问题:1)外置热电偶因受热形变发生移位;2)外置热电偶需要人为绑定,导致其绑定位置的准确性降低。以上问题均会导致外置热电偶不能精准地检测真空管的温度,从而降低氮化硅炉管的运行效率。
申请内容
本申请提供一种炉管装置,能够更精准的控制连接管的温度,从而提高炉管装置的运行效率及安全可靠性。
根据本申请实施例提出了一种炉管装置,包括:反应容器,具有容纳腔,反应容器包括进管、沉积室以及出管,进管用于将第一物质以及第二物质引导进入容纳腔,第一物质与第二物质在容纳腔内反应形成第三物质与反应物,沉积室用于承装第三物质,反应物由出管排出;收集容器,包括收集管以及驱动管,收集管用于收集至少部分反应物,驱动管连接有驱动泵,以驱动反应物由反应容器向收集容器运行;温控组件,连通于出管与收集管之间,温控组件包括连接管、温控部、第一采集部以及第一控制器,温控部包覆于连接管,第一采集部镶嵌于温控部内并被配置为采集连 接管的第一温度信息,第一控制器被配置为根据第一温度信息调节温控部的温度,以使连接管的温度在预设阈值范围内。
根据本申请实施例的一个方面,温控组件还包括第二采集部以及第二控制器,第二采集部镶嵌于温控部内并被配置为采集连接管的第二温度信息,第二控制器被配置为根据第二温度信息低于第一预定值或者超出第二预定值时发出告警信号。
根据本申请实施例的一个方面,温控部包括层叠设置的绝缘层以及加热层,第一采集部以及第二采集部镶嵌于绝缘层与加热层之间。
根据本申请实施例的一个方面,加热层设置于温控部靠近连接管的一侧,绝缘层设置于温控部远离连接管的一侧。
根据本申请实施例的一个方面,温控部还包括第一表层以及第二表层,第一表层设置于绝缘层远离连接管的一侧,第二表层设置于加热层靠近连接管的一侧。
根据本申请实施例的一个方面,连接管包括相继设置并依次连通的第一弯折管、第二竖直管、第三弯折管以及第四弯折管,第一弯折管与出管连通,第四弯折管与收集管连通。
根据本申请实施例的一个方面,第四弯折管的体积分别大于第一弯折管、第二竖直管、第三弯折管的体积。
根据本申请实施例的一个方面,温控部包括相继设置并依次连接的第一温控段、第二温控段、第三温控段以及第四温控段,第一控温段包覆于第一弯折管,第二控温段包覆于第二竖直管,第三控温段包覆于第三弯折管,第四控温段包覆于第四弯折管;第一温控段、第二温控段、第三温控段以及第四温控段分别设置有第一采集部、第一控制器、第二采集部、第二控制器。
根据本申请实施例的一个方面,炉管装置还包括多个连接件,第一弯折管、第二竖直管、第三弯折管以及第四弯折管分别通过连接件连通。
根据本申请实施例的一个方面,炉管装置还包括调温件,调温件设置于收集管并被配置为调节收集管内的反应物的温度。
本申请实施例提供的炉管装置,包括反应容器、收集容器以及温控组 件。温控组件包括连接管、温控部、第一采集部以及第一控制器,温控部包覆于连接管,第一采集部镶嵌于温控部内并被配置为采集连接管的第一温度信息,第一控制器被配置为根据第一温度信息调节温控部的温度,以使连接管的温度在预设阈值范围内。通过将第一采集部镶嵌于温控部内,能够防止其因受热形变发生移位,并且此设置也无需人为进行绑定,利于提高第一采集部采集连接管的第一温度信息的精准性,使得第一控制器能够更精准的控制连接管的温度,提高连接管的可靠性,从而提高收集容器的收集效率,进一步提高炉管装置的运行效率及安全可靠性。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效果。
图1为本申请一个实施例的炉管装置的部分结构示意图;
图2为图1所示的炉管装置中温控部的部分结构爆炸示意图;
图3为图1中P处的放大结构示意图。
其中:
10-反应容器;10a-容纳腔;11-进管;12-沉积室;13-出管;
20-收集容器;21-收集管;22-驱动管;
31-连接管;31a-第一弯折管;31b-第二竖直管;31c-第三弯折管;31d-第四弯折管;
32-温控部;321-绝缘层;322-加热层;323-第一表层;324-第二表层;32a-第一温控段;32b-第二温控段;32c-第三温控段;32d-第四温控段;
33-第一采集部;34-第二采集部;40-连接件。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少 部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的炉管装置进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
为了更好地理解本申请,下面结合图1至图3根据申请实施例的炉管装置进行详细描述。
请参阅图1至图3,根据本申请实施例提出了一种炉管装置,包括反应容器10、收集容器20以及温控组件。反应容器10具有容纳腔10a,反应容器10包括进管11、沉积室12以及出管13,进管11用于将第一物质以及第二物质引导进入容纳腔10a,第一物质与第二物质在容纳腔10a内反应形成第三物质与反应物,沉积室12用于承装第三物质,反应物由出管13排出。收集容器20包括收集管21以及驱动管22,收集管21用于收集至少部分反应物,驱动管22连接有驱动泵,以驱动反应物由反应容器10向收集容器20运行。温控组件连通于出管13与收集管21之间,温控组件包括连接管31、温控部32、第一采集部33以及第一控制器,温控部32包覆连接管31,第一采集部33镶嵌于温控部32内并被配置为采集连接管31的第一温度信息,第一控制器被配置为根据第一温度信息调节温控部32的温度,以使连接管31的温度在预设阈值范围内。
本申请提供的一种炉管装置,能够更精准的控制连接管31的温度,提高连接管31的可靠性,从而提高收集容器20的收集效率,进一步提高炉管装置的运行效率及安全可靠性。
具体地,将第一采集部33设置于温控部32内,即使连接管31温度高导致第一采集部33升温发生形变,第一采集部33也不会发生位移,从而保证其采集的温度信息的精确性,进一步保证第一控制器能够更准确的将 连接管31的温度控制在预设阈值范围内,使管路内的反应物不会出现堵塞现象。并且,在装配第一采集部33的时候,也无需采用人工绑定的方式,避免因人为因素产生第一采集部33安装位置的不准确问题,提高了装配效率以及精确度,降低人工成本,并且,利于提高第一采集部33采集温度信息的精确性,使得第一控制器能够更精准的控制连接管31的温度,保证连接管31内反应物稳定运行,提高连接管31的可靠性,从而提高收集容器20的收集效率,进一步提高炉管装置的运行效率及安全可靠性。
可选地,第一控制器可设置于温控部32的外部表面上。
作为一种可选的实施例,第一采集部33可以包括第一检测器以及第一传感器,具体地,第一检测器被配置为采集连接管31的第一温度信息并将此第一温度信息传输至第一传感器,第一传感器能够接收第一温度信息,并将第一温度信息转化为第一信号且将第一信号传输至第一控制器,第一控制器能够接收第一信号并根据第一信号调节温控部32的温度,由于温控部32包覆连接管31设置,从而使连接管31的温度在预设阈值范围内。
示例性的,第一物质可以为二氯二氢硅(SiH 2Cl 2),第二物质可以为氨气(NH 3),第三物质可以为氮化硅(Si 3N 4),反应物可以包括氯化氢(HCL)与氢气(H 2),氮化硅沉积在沉积室12内以被沉积室12收集,氯化氢与氢气由出管13排出。通常会往容纳腔10a加入过量的氨气,使得第一物质与第二物质反应后还会剩余过量的氨气,氨气也需由出管13排出,因此,反应物可以包括氯化氢、氢气以及氨气。
由于氯化氢达到其熔点后会变成固态结构,会集聚在连接管31的内管壁上产生堵塞问题,因此,将连接管31的温度的预设阈值范围设置在氯化氢的熔点以上以保证连接管31内反应物通过的有效性。
收集容器20包括收集管21以及驱动管22,可以将收集管21的温度设置在氮化硅的熔点以下,使其变为固态结构聚集在收集管21的内壁上以利于收集,其他气态结构的反应物进入驱动管22被驱动泵吸入。
通过设置收集管21以及驱动管22,并将驱动泵设置在驱动管22上, 能够避免驱动泵直接与收集管21连接,避免固态结构进入驱动泵造成其堵塞甚至坏损。
在一些可选地实施例中,温控组件还包括第二采集部34以及第二控制器,第二采集部34镶嵌于温控部32内并被配置为采集连接管31的第二温度信息,第二控制器被配置为根据第二温度信息低于第一预定值或者超出第二预定值时发出告警信号。
通过此方式设置,操作人员能够根据告警信号及时地进行维护工作,防止连接管31的温度发生异常,导致炉管装置不能正常运行甚至发生损坏。
第一预定值与第二预定值可以是连接管31的温度在预设阈值范围之外且影响连接管31可靠性的温度,第一预定值与第二预定值可根据实际情况进行设定,本申请在此不作限定。
具体地,第一预设值小于预设阈值范围内的最小端点值,第二预设值大于预设阈值范围内的最大端点值。
可选地,当第二控制器发出告警信号时,第一控制器停止调节温控部32的温度,通过此方式设置,能够防止第一控制器在连接管31温度异常的情况下继续调节温度,利于提高炉管装置的运行效率,保证炉管装置的安全性及可靠性。
可选地,第一控制器可设置于温控部32的外部表面上。
可选地,第一温度信息与第二温度信息的值可以相同,当然,也可以不相同。
作为一种可选的实施例,第二采集部34可以包括第二检测器以及第二传感器,具体地,第二检测器被配置为采集连接管31的第二温度信息并将此第二温度信息传输至第二传感器,第一传感器能够接收第二温度信息,并将第二温度信息转化为第二信号且将第二信号传输至第二控制器,第二控制器接收第二信号并根据此第二信号低于第一预定值或者超出第二预定值时发出告警信号,利于保证连接管31的温度的可靠性,从而保证炉管装置的运行效率及安全可靠性。
请继续参阅图3,在一些可选地实施例中,温控部32包括层叠设置的 绝缘层321以及加热层322,第一采集部33以及第二采集部34镶嵌于绝缘层321与加热层322之间。
可选地,第一采集部33以及第二采集部34可以采用缝制的连接方式固定连接于绝缘层321与加热层322之间,能够防止第一采集部33以及第二采集部34发生位移,利于保证第一采集部33以及第二采集部34的可靠性。当然,第一采集部33以及第二采集部34还可以通过连接件40连接的方式固定在绝缘层321与加热层322之间。
在一些可选地实施例中,加热层322设置于温控部32靠近连接管31的一侧,绝缘层321设置于温控部32远离连接管31的一侧。
通过此方式设置,利于提高温控部32对连接管31的保温作用以及温度传递效率。
可选地,绝缘层321可以采用玻璃纤维制成,利于提高保温效果,且耐热性强、抗腐蚀性好,利于保证温控部32对连接管31的保温作用。
可选地,加热层322可以加热丝制成,利于提高发热效果以及使用寿命,利于提高温控部32对连接管31的温度效率作用,使连接管31的温度更好的保持在预设阈值范围内。
在一些可选地实施例中,温控部32还包括第一表层323以及第二表层324,第一表层323设置于绝缘层321远离连接管31的一侧,第二表层324设置于加热层322靠近连接管31的一侧。
通过此方式设置,能够保证温控部32的有效性,提高温控部32温度变化的效率,从而利于提高炉管装置的运行效率。
可选地,第一表层323可以由聚四氟乙烯材料制成,当然,还可以有其他材料制成,仅需保证第一表层323不与外界环境发生反应即可。
可选地,第二表层324可以由聚四氟乙烯材料制成,当然,还可以有其他材料制成,仅需保证第二表层324不与连接管31发生反应即可。
可选地,第一表层323与第二表层324可以由相同材料制成,当然,还可以采用不同材料制成。
请继续参阅图1至图3,在一些可选地实施例中,连接管31包括相继设置并依次连通的第一弯折管31a、第二竖直管31b、第三弯折管31c以及 第四弯折管31d,第一弯折管31a与出管13连通,第四弯折管31d与收集管21连通。
在本申请实施例中,将连接管31分段设置,利于提高运输效率以及降低加工难度。
由于收集管21内的温度要远低于连接管31,才能使反应物中的部分物质冷凝固化以便于收集,因此,将第四弯折管31d与收集管21连通,并将第四弯折管31d的温度的预设阈值范围设定的比第一弯折管31a、第二竖直管31b、第三弯折管31c的预设阈值范围都小,以起到过渡作用,利于进入收集管21内的至少反应物能够更快的变成固态结构,以提高收集至少部分反应物的效率,从而提高炉管装置的运行效率。
可选地,第一弯折管31a、第二竖直管31b、第三弯折管31c的温度的预设阈值范围可以设置为相同,当然,也可以设置为不同,仅需保证其大于第四弯折管31d的预设阈值范围即可。
以上仅是将连接管31分为四个部分作为举例说明,一些可选地实施例中,连接管31包括两个以上子接管,并且两个以上子接管相继设置并依次连通,子接管的数量可以为两个、六个、八个,本申请对此不作限定。
在一些可选地实施例中,第四弯折管31d的体积分别大于第一弯折管31a、第二竖直管31b、第三弯折管31c的体积。
通过此方式设置,能够更好地提高第四弯折管31d的过渡效果,使更多的反应物在进入收集管21之前先降低一定温暖,利于提高收集管21的收集效率,进一步提高炉管装置的运行效率。
具体地,第一弯折管31a、第二竖直管31b、第三弯折管31c以及第四弯折管31d的口径尺寸均相同,在其口径尺寸相同的基础上,将第四弯折管31d的体积设置为在所有分段管中最大,可以理解为,第四弯折管31d的长度尺寸最长,以提高收集管21的收集效率,进一步提高炉管装置的运行效率。
在一些可选地实施例中,温控部32包括相继设置并依次连接的第一温控段32a、第二温控段32b、第三温控段32c以及第四温控段32d,第一控温段包覆于第一弯折管31a,第二温控段32b包覆于第二竖直管31b,第 三温控段32c包覆于第三弯折管31c,四温控段32d包覆于第四弯折管31d。
在本申请实施例中,温控部32可以根据连接管31的分段设置同样也设置为多段,利于提高装配效率以及降低加工难度。
以上仅是将温控部32分为四个部分作为举例说明,在一些可选地实施例中,温控部32可以包括两个以上温控段,并且两个以上温控段相继设置并依次连通,温控段的数量可以为两个、六个、八个,本申请对此不作限定。
在一些可选地实施例中,第一温控段32a、第二温控段32b、第三温控段32c以及第四温控段32d分别设置有第一采集部33、第一控制器、第二采集部34、第二控制器。
通过此方式设置,能够分别调节第一温控段32a、第二温控段32b、第三温控段32c以及第四温控段32d的温度,从而分别控制第一弯折管31a、第二竖直管31b、第三弯折管31c以及第四弯折管31d的温度,利于提高温度调节效率,从而提高炉管装置的运行效率,节省时间以及成本。
在一些可选地实施例中,炉管装置还包括多个连接件40,第一弯折管31a、第二竖直管31b、第三弯折管31c以及第四弯折管31d分别通过连接件40连通。
通过此方式设置,利于提高装配效率。
可选地,连接件40可以设置为法兰、连接箍中的一者,利于保证第一弯折管31a、第二竖直管31b、第三弯折管31c以及第四弯折管31d之间的连接位置不会发生泄露,保证可靠性。
在一些可选地实施例中,炉管装置还包括调温件,调温件设置于收集管21并被配置为调节收集管21内的反应物的温度。
通过此方式设置,利于使进入收集管21的部分反应物呈固态结构以聚集在收集管21的内壁上,利于收集,以使呈气态结构的部分反应物进入驱动管22被被动泵吸入。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可 以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (10)

  1. 一种炉管装置,包括:
    反应容器,具有容纳腔,所述反应容器包括进管、沉积室以及出管,所述进管用于将第一物质以及第二物质引导进入所述容纳腔,所述第一物质与所述第二物质在所述容纳腔内反应形成第三物质与反应物,所述沉积室用于承装所述第三物质,所述反应物由所述出管排出;
    收集容器,包括收集管以及驱动管,所述收集管用于收集至少部分所述反应物,所述驱动管连接有驱动泵,以驱动所述反应物由所述反应容器向所述收集容器运行;
    温控组件,连通于所述出管与所述收集管之间,所述温控组件包括连接管、温控部、第一采集部以及第一控制器,所述温控部包覆于所述连接管,所述第一采集部镶嵌于所述温控部内并被配置为采集所述连接管的第一温度信息,所述第一控制器被配置为根据所述第一温度信息调节所述温控部的温度,以使所述连接管的温度在预设阈值范围内。
  2. 根据权利要求1所述的炉管装置,其中,所述温控组件还包括第二采集部以及第二控制器,所述第二采集部镶嵌于所述温控部内并被配置为采集所述连接管的第二温度信息,所述第二控制器被配置为根据所述第二温度信息低于第一预定值或者超出第二预定值时发出告警信号。
  3. 根据权利要求2所述的炉管装置,其中,所述温控部包括层叠设置的绝缘层以及加热层,所述第一采集部以及所述第二采集部镶嵌于所述绝缘层与所述加热层之间。
  4. 根据权利要求3所述的炉管装置,其中,所述加热层设置于所述温控部靠近所述连接管的一侧,所述绝缘层设置于所述温控部远离所述连接管的一侧。
  5. 根据权利要求4所述的炉管装置,其中,所述温控部还包括第一表层以及第二表层,所述第一表层设置于所述绝缘层远离所述连接管的一侧,所述第二表层设置于所述加热层靠近所述连接管的一侧。
  6. 根据权利要求2至5任意一项所述的炉管装置,其中,所述连接管 包括相继设置并依次连通的第一弯折管、第二竖直管、第三弯折管以及第四弯折管,所述第一弯折管与所述出管连通,所述第四弯折管与所述收集管连通。
  7. 根据权利要求6所述的炉管装置,其中,所述第四弯折管的体积分别大于所述第一弯折管、所述第二竖直管、所述第三弯折管的体积。
  8. 根据权利要求6所述的炉管装置,其中,所述温控部包括相继设置并依次连接的第一温控段、第二温控段、第三温控段以及第四温控段,所述第一控温段包覆于所述第一弯折管,所述第二控温段包覆于所述第二竖直管,所述第三控温段包覆于所述第三弯折管,所述第四控温段包覆于所述第四弯折管;
    所述第一温控段、所述第二温控段、所述第三温控段以及所述第四温控段分别设置有所述第一采集部、所述第一控制器、所述第二采集部以及所述第二控制器。
  9. 根据权利要求6所述的炉管装置,其中,所述炉管装置还包括多个连接件,所述第一弯折管、所述第二竖直管、所述第三弯折管以及所述第四弯折管分别通过所述连接件连通。
  10. 根据权利要求1所述的炉管装置,其中,所述炉管装置还包括调温件,所述调温件设置于所述收集管并被配置为调节所述收集管内的所述反应物的温度。
PCT/CN2022/123910 2022-09-26 2022-10-08 炉管装置 WO2024065861A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202222552441.5 2022-09-26
CN202222552441.5U CN219731053U (zh) 2022-09-26 2022-09-26 炉管装置

Publications (1)

Publication Number Publication Date
WO2024065861A1 true WO2024065861A1 (zh) 2024-04-04

Family

ID=88029422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123910 WO2024065861A1 (zh) 2022-09-26 2022-10-08 炉管装置

Country Status (2)

Country Link
CN (1) CN219731053U (zh)
WO (1) WO2024065861A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107198A (en) * 1998-03-26 2000-08-22 Vanguard International Semiconductor Corporation Ammonium chloride vaporizer cold trap
US6159298A (en) * 1997-12-27 2000-12-12 Tokyo Electron Limited Thermal processing system
CN1482059A (zh) * 2002-09-09 2004-03-17 张芬红 制备纳米氮化硅粉体的系统
CN101696929A (zh) * 2009-10-20 2010-04-21 中国科学院化学研究所 快速恒温微反应器
WO2014128045A1 (de) * 2013-02-21 2014-08-28 Aixtron Se Cvd-vorrichtung sowie verfahren zum reinigen einer prozesskammer einer cvd-vorrichtung
CN206594120U (zh) * 2017-03-15 2017-10-27 厦门宜柱科技有限公司 一种毛细管液相色谱柱控温装置
CN108660436A (zh) * 2018-05-18 2018-10-16 上海华虹宏力半导体制造有限公司 氮化硅反应炉的吹扫方法
CN109115419A (zh) * 2018-08-31 2019-01-01 上海华力微电子有限公司 炉管排气系统及其检漏方法
CN114471205A (zh) * 2022-02-18 2022-05-13 奇点函数(天津)环境科技有限公司 一种气体发生器及发生方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6159298A (en) * 1997-12-27 2000-12-12 Tokyo Electron Limited Thermal processing system
US6107198A (en) * 1998-03-26 2000-08-22 Vanguard International Semiconductor Corporation Ammonium chloride vaporizer cold trap
CN1482059A (zh) * 2002-09-09 2004-03-17 张芬红 制备纳米氮化硅粉体的系统
CN101696929A (zh) * 2009-10-20 2010-04-21 中国科学院化学研究所 快速恒温微反应器
WO2014128045A1 (de) * 2013-02-21 2014-08-28 Aixtron Se Cvd-vorrichtung sowie verfahren zum reinigen einer prozesskammer einer cvd-vorrichtung
CN206594120U (zh) * 2017-03-15 2017-10-27 厦门宜柱科技有限公司 一种毛细管液相色谱柱控温装置
CN108660436A (zh) * 2018-05-18 2018-10-16 上海华虹宏力半导体制造有限公司 氮化硅反应炉的吹扫方法
CN109115419A (zh) * 2018-08-31 2019-01-01 上海华力微电子有限公司 炉管排气系统及其检漏方法
CN114471205A (zh) * 2022-02-18 2022-05-13 奇点函数(天津)环境科技有限公司 一种气体发生器及发生方法

Also Published As

Publication number Publication date
CN219731053U (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
CN1241002C (zh) 改进的加热压力传感器总成
US6273180B1 (en) Heat exchanger for preheating an oxidizing gas
WO2024065861A1 (zh) 炉管装置
CN110538620B (zh) 反应腔室的压力控制系统及压力控制方法
CN210135992U (zh) 一种高温热处理炉红外测温系统
CN1496583A (zh) 热处理装置
KR100567006B1 (ko) 용적형펌프
CN217077864U (zh) 一种单晶炉用降功耗导气装置
CN215492194U (zh) 玻璃窑炉压力测量装置和玻璃窑炉压力调节系统
CN211530082U (zh) 一种燃料电池热平衡“气—气—气”三相热交换系统
CN113327875A (zh) 立式热处理设备
CN115233187B (zh) 气体处理装置和半导体工艺设备
CN115692239A (zh) 半导体热处理设备
CN113686012A (zh) 燃气热水器的温度控制方法及应用其的燃气热水器系统
CN117947410A (zh) 固态源余量检测装置及其检测方法
CN219002547U (zh) 除湿装置及手套箱
JPH0743226B2 (ja) 復水器冷却水流量制御装置
CN215876869U (zh) 消氢装置及其高温固体氧化物电解制氢系统
US20070141414A1 (en) Fuel cell having micro sensors
CN101762173A (zh) 一种将加热炉烟气余热引入低温炉的装置
CN115149030B (zh) 一种用于固体氧化物电堆测试的气体电加热装置
CN220371047U (zh) 生产炉
CN210481484U (zh) 一种镀锌炉高温摄像装置
CN214308123U (zh) 保温装置及高温炉
CN108300659A (zh) 细胞培养箱及其工作方法