WO2024065756A1 - Method, device and computer storage medium of communication - Google Patents

Method, device and computer storage medium of communication Download PDF

Info

Publication number
WO2024065756A1
WO2024065756A1 PCT/CN2022/123466 CN2022123466W WO2024065756A1 WO 2024065756 A1 WO2024065756 A1 WO 2024065756A1 CN 2022123466 W CN2022123466 W CN 2022123466W WO 2024065756 A1 WO2024065756 A1 WO 2024065756A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
bwps
terminal device
srs
list
Prior art date
Application number
PCT/CN2022/123466
Other languages
French (fr)
Inventor
Lin Liang
Gang Wang
Original Assignee
Nec Corporation
Gang Wang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation, Gang Wang filed Critical Nec Corporation
Priority to PCT/CN2022/123466 priority Critical patent/WO2024065756A1/en
Publication of WO2024065756A1 publication Critical patent/WO2024065756A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media of communication for an application layer measurement in idle and inactive states.
  • RedCap reduced capability user equipment
  • UE user equipment
  • NR new radio
  • SRS sounding reference signal
  • embodiments of the present disclosure provide methods, devices and computer storage media for communication.
  • a method performed by a terminal device comprises: receiving, at a terminal device and from a network device, a configuration indicating a first list of bandwidth parts (BWPs) ; and performing a BWP switching between BWPs in the first list of BWPs based on a pattern.
  • BWPs bandwidth parts
  • a method performed by a network device comprises: transmitting, at a network device and to a terminal device, a configuration indicating a first list of bandwidth parts (BWPs) .
  • BWPs bandwidth parts
  • a terminal device comprising a processing unit; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the terminal device to perform acts comprising: receiving, from a network device, a configuration indicating a first list of bandwidth parts (BWPs) ; and performing a BWP switching between BWPs in the first list of BWPs based on a pattern.
  • BWPs bandwidth parts
  • a network device comprising a processing unit; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the network device to perform acts comprising: transmitting, at a network device and to a terminal device, a configuration indicating a first list of bandwidth parts (BWPs) .
  • BWPs bandwidth parts
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the first or second aspect.
  • FIG. 1 is a schematic diagram of a communication environment in which embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates a signaling flow for communications according to some embodiments of the present disclosure
  • FIG. 3 illustrates a schematic diagram of a BWP configuration according to some example embodiments of the present disclosure
  • FIG. 4A and FIG. 4B illustrate schematic diagrams of a BWP configurations according to some example embodiments of the present disclosure, respectively;
  • FIG. 5 illustrates a signaling flow for communications according to some embodiments of the present disclosure
  • FIG. 6 illustrates a schematic diagram of a BWP configuration according to some example embodiments of the present disclosure
  • FIG. 7 is a flowchart of an example method in accordance with an embodiment of the present disclosure.
  • FIG. 8 is a flowchart of an example method in accordance with an embodiment of the present disclosure.
  • FIG. 9 is a flowchart of an example method in accordance with an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of an example method in accordance with an embodiment of the present disclosure.
  • FIG. 11 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV)
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporate one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
  • network device refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a low power node such as a fe
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • AI Artificial intelligence
  • Machine learning capability it generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz to 7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connection with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • test equipment e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device or the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’
  • the term ‘based on’ is to be read as ‘at least in part based on. ’
  • the term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’
  • the term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’
  • the terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • bandwidth part may refer to a contiguous set of resource blocks on a given carrier. These RBs are selected from a contiguous subset of the common resource blocks for a given numerology (u) .
  • Each BWP defined for a numerology can have following three different parameters: subcarrier spacing, symbol duration and cyclic prefix (CP) length.
  • BWP switching used herein means activating a de-activated BWP and de-activating an active BWP.
  • active BWP used herein can refer to a UE specific bandwidth part that can be used to BWP performs data transmission.
  • the active BWP may be the first BWP where the terminal device starts data transfer after radio resource control (RRC) configuration/reconfiguration.
  • the active BWP may be different from a default BWP.
  • sounding reference signal (SRS) ” used herein may refer to a reference signal that are transmitted on an uplink and allows the network to estimate a quality of a channel at different frequencies.
  • SRS resource used herein may refer to a location of SRS in time and frequency domain in the resource grid.
  • RedCap UE used herein can refer to a UE which has UE complexity reduction features.
  • the complexity reduction features may comprise one or more of: (1) reduced maximum UE bandwidth, for example, a maximum bandwidth of an frequency range (FR) 1 RedCap UE during and after initial access is 20 MHz and a maximum bandwidth of FR 2 RedCap UE during and after initial access is 100 MHz; (2) a reduced minimum number of receiving (Rx) branches; (3) a maximum number of downlink (DL) multi-input-multi-output (MIMO) layers; (4) a relaxed maximum modulation order; (5) a duplex operation.
  • the term “slot” used herein refers to a scheduling unit. One slot comprises a predetermined number of symbols.
  • the slot used herein may refer to a normal slot which comprises a predetermined number of symbols and also refer to a sub-slot which comprises fewer symbols than the predetermined number of symbols.
  • the term “frequency hopping” used herein means to transmit the reference signal bits in different frequency subbands.
  • RedCap UEs may support NR positioning functionality.
  • the core and performance requirements have not been specified for the positioning related measurements performed by RedCap UEs, and no evaluation was performed to see how the reduced capabilities of RedCap UEs might impact eventual position accuracy.
  • sounding reference signal SRS
  • Frequency hopping may be a candidate enhancement to enlarge an effective bandwidth for positioning.
  • a frequency hopping of a reference signal for positioning can extend the bandwidth of the reference signal for positioning.
  • the effective bandwidth of reference signal for positioning can be enlarged.
  • the channel condition between each hop should not change much. In a typical scenario (e.g., low mobility and line of sight (LOS) links) , this condition might be fulfilled.
  • LOS line of sight
  • RF radio frequency
  • Embodiments of the present disclosure provide a solution on SRS hopping.
  • a network device transmits a configuration indicating a list of BWPs to a terminal device.
  • the terminal device performs a BWP switching between BWPs in the list of BWPs based on a pattern.
  • the terminal device performs the BWP switching without an indication from the network device or an event trigger.
  • the BWP switching can be used for SRS frequency hopping, thereby achieving better positioning accuracy.
  • the network device receives a first uplink transmission in a first BWP of the list of BWPs and receives a second uplink transmission in a second BWP of the list of BWPs according to the configuration.
  • the terminal device receives, from the network device, a configuration indicating a bandwidth part (BWP) associated to sounding reference signal (SRS) positioning.
  • BWP bandwidth part
  • SRS sounding reference signal
  • the configuration further indicating adjacent SRS occasions in time domain having an overlapped resource in frequency domain.
  • the terminal device performs a SRS frequency hopping based on a set of SRS occasions within the BWP.
  • the network device receives a first SRS in a first SRS occasion of the set of SRS occasions and receives a second SRS in a second SRS occasion of the set of SRS occasions.
  • FIG. 1 illustrates a schematic diagram of an example communication network 100 in which some embodiments of the present disclosure can be implemented.
  • the communication network 100 may include a terminal device 110 and a network device 120.
  • the network device 120 may provide a cell 121 to serve one or more terminal devices.
  • the terminal device 110 is located in the cell 121 and is served by the network device 120.
  • the communication network 100 may include any suitable number of network devices and/or terminal devices and/or cells adapted for implementing implementations of the present disclosure.
  • the terminal device 110 and the network device 120 may communicate with each other via a channel such as a wireless communication channel on an air interface (e.g., Uu interface) .
  • the wireless communication channel may comprise a physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , a physical random-access channel (PRACH) , a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) and a physical broadcast channel (PBCH) .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • PRACH physical random-access channel
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • PBCH physical broadcast channel
  • any other suitable channels are also feasible.
  • the communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , New Radio (NR) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like.
  • GSM Global System for Mobile Communications
  • LTE Long Term Evolution
  • LTE-Evolution LTE-Advanced
  • NR New Radio
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GERAN GSM EDGE Radio Access Network
  • MTC Machine Type Communication
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • FIG. 2 shows a signaling chart illustrating process 200 among the terminal device and the network device according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 200 will be described with reference to FIG. 1. For example, the process 200 may involve the terminal device 110 and the network device 120.
  • the network device 120 transmits 2010 a configuration indicating a first list of BWPs to the terminal device 110.
  • the configuration may indicate a plurality of BWPs.
  • the first list of BWPs may comprise any suitable number of BWPs.
  • the first list of BWPs may comprise 4 BWPs.
  • the configuration may indicate a default BWP in the first list of BWPs. Referring to FIG. 3 which shows a schematic diagram 300 of the configuration, the configuration may indicate the BWPs 310-1, 310-2, 310-3 and 310-4. It is noted that the number of BWPs shown in FIG. 3 is only an example not limitation.
  • a bandwidth of each BWP in the first list of BWPs may be within a radio frequency bandwidth of the terminal device 110. For example, if the maximum bandwidth of the terminal device 110 is 20MHz, the bandwidth of each BWP in the first list may not be larger than 20 MHz. Alternatively, if the maximum bandwidth of the terminal device is 100 MHz, the bandwidth of each BWP in the first list may not be larger than 100 MHz. In some embodiments, each BWP in the first list may have the same bandwidth. Alternatively, one or more BWPs in the first list may have a different bandwidth. For example, as shown in FIG.
  • the bandwidths of the BWPs 310-1, 310-2, 310-3 and 310-4 may not be larger than the bandwidth of the terminal device 110, respectively. In this way, configuring bandwidth of a BWP less than UE RF bandwidth can reuse the conventional implementation as much as possible to reduce implementation complexity.
  • the configuration may further indicate a relation between a specific BWP in the first list of BWPs and a BWP switching occasion where the specific BWP is active.
  • m-th BWP in the additional list is active, where m may be an integer.
  • the configuration may indicate the relation between the BWP 310-1 and the BWP switching occasion 330-1 within which the BWP 310-1 is active.
  • the terminal device 110 may activate the BWP 310-1 within the BWP switching occasion 330-1.
  • the configuration may indicate the relation between the BWP 310-2 and the BWP switching occasion 330-2, the relation between the BWP 310-3 and the BWP switching occasion 330-3, and the relation between the BWP 310-4 and the BWP switching occasion 330-4.
  • the configuration may further indicate one or more of: a periodicity of occasions for the BWP switching, a slot for the occasions for the BWP switching, or an offset for the occasions for the BWP switching.
  • the terminal device 110 may determine a time position of BWP switching occasions based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced. For example, if the configuration indicates the periodicity, the slot and the offset of the BWP switching occasion 330-1, the terminal device 110 may determine the time positions of other BWP switching occasions.
  • the offset may comprise a number of symbols. Alternatively, the offset may comprise a number of slots.
  • the configuration may indicate one BWP with SRS configuration and number of offsets for other BWP (s) .
  • the other BWP (s) may have the same SRS configuration as that BWP.
  • the BWP switching occasion or starting position of the other BWP (s) may be determined based on the BWP switching occasion for that BWP and the offset. In this way, the configuration overhead may be further reduced.
  • the configuration may indicate the BWP 310-1 with the SRS resource 320-1 and the number of offsets.
  • the terminal device 110 may determine the BWP switching occasions for the BWPs 310-2, 310-3 and 310-4 based on the BWP switching occasion 330-1 for the BWP 310-1 and the offsets.
  • the BWPs 310-2, 310-3 and 310-4 may have the same SRS configuration as the BWP 310-1.
  • the configuration may further indicate that a SRS resource is configured for each BWP in the first list of BWPs.
  • the SRS resource 320-1 may be configured for the BWP 310-1
  • the SRS resource 320-2 may be configured for the BWP 310-2
  • the SRS resource 320-3 may be configured for the BWP 310-3
  • the SRS resource 320-4 may be configured for the BWP 310-4.
  • implementation complexity may be reduced.
  • the SRS resource may be associated to one BWP of the first list of BWPs.
  • the configuration may further indicate a first switching gap for the BWP switching.
  • the configuration may indicate the switching gap 340-1 for the BWP switching between the BWPs 310-1 and 310-2.
  • the configuration may also indicate the switching gaps 340-2 and 340-3 as shown in FIG. 3.
  • the switching gaps 340-1, 340-2 and 340-3 may be the same.
  • the switching gaps 340-1, 340-2 and 340-3 may be different.
  • the configuration may further indicate a second switching gap for switching between the first list of BWPs and a second list of BWPs.
  • the terminal device 110 may be configured with a second list of BWPs.
  • the terminal device 110 may be configured with a second plurality of BWPs.
  • the terminal device 110 may be configured with the first list of BWPs and the second list of BWPs (for example, BWP 410-1) .
  • Some other BWPs in the second list of BWPs are omitted in FIG. 4A for clarity purpose. It is noted that the numbers of BWPs in the first list and the second list shown in FIG. 4A are only examples not limitations.
  • the configuration may indicate the switching gap 420 between the first list of BWPs and the second list of BWPs.
  • the terminal device 110 may disable 2050 the second switching gap based on UE capability of the terminal device 110. For example, if an active BWP (for example, for a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission) in the second list is within or include the first BWP, the switching time/gap may not be needed depending on UE capability for switching between the active BWP and the BWP in the first list of BWPs. Only as an example, as shown in FIG. 4B, the second list of BWPs may the BWP 410-2 which is the active BWP. Since the BWP 410-2 is within the first list of BWPs, the second switching gap may be disabled.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the above mentioned second list of BWPs may comprise at set of BWPs that are configured for one or more of: a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission.
  • the second list of BWPs may comprise any suitable number of BWPs.
  • the second list of BWPs may comprise 4 BWPs.
  • the configuration may indicate a default BWP in the second list of BWPs.
  • the second list of BWPs may be used/reused as the first list of BWPs.
  • the terminal device 110 performs 2020 a BWP switching between BWPs in the first list of BWPS based on a pattern.
  • the pattern may be preconfigured or predetermined. That is, the terminal device 110 may perform an autonomous BWP switching.
  • the pattern may be configured at the terminal device 110 during manufacturing.
  • the pattern may be transmitted to the terminal device 110 previously.
  • the terminal device 110 may perform the BWP switching without a dynamic indication from the network device 110 or an event trigger within the terminal device 110.
  • the dynamic indication may comprise one or more of: downlink control information (DCI) or a medium access control control element (MAC CE) .
  • DCI downlink control information
  • MAC CE medium access control control element
  • the event trigger may comprise one or more of: a trigger for random access channel (RACH) or a timer expiry within the terminal device 110.
  • RACH random access channel
  • the terminal device 110 may activate the BWP 310-1 within the BWP switching occasion 330-1 and activate the BWP 310-3 within the BWP switching occasions 330-3. In this way, autonomous BWP switching can be used for SRS frequency hopping, thereby achieving better position accuracy.
  • the terminal device 110 may perform 2030 at least one uplink transmission based on a BWP switching within the pattern. For example, as shown in FIG. 3, if the terminal device 110 activates the BWP 310-1 based on the pattern, the terminal device 110 may transmit the SRS to the network device 120 on the SRS resource 320-1 within the BWP switching occasion 330-1. Similarly, if the terminal device 110 activates the BWP 310-3 based on the pattern, the terminal device 110 may transmit the SRS to the network device 120 on the SRS resource 320-3 within the BWP switching occasion 330-3.
  • the network device 120 may transmit 2040 a first indication to the terminal device 110.
  • the first indication may indicate that the BWP switching is disabled or stopped.
  • the terminal device 110 may disable or stop the BWP switching based on the first indication.
  • the first indication may be transmitted in DCI.
  • the first indication may be transmitted in MAC CE. For example, as shown in FIG. 3, if the terminal device 110 receives the first indication before the switching occasion 330-4, the terminal device 110 may not activate the BWP 320-4 during the switching occasion 330-4.
  • the autonomous BWP switching can be used for SRS frequency hopping, thereby achieving better positioning accuracy due to wider total bandwidth.
  • configuring bandwidth of a BWP less than UE RF bandwidth can reuse conventional implementation as much as possible to reduce implementation complexity. Additionally, RRC configuration overhead may be further reduced.
  • FIG. 5 shows a signaling chart illustrating process 500 among the terminal device and the network device according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 500 will be described with reference to FIG. 1. For example, the process 500 may involve the terminal device 110 and the network device 120.
  • the network device 120 transmits 5010 a configuration indicating a BWP associated to/specific to SRS positioning to the terminal device 110.
  • a configuration indicating a BWP associated to/specific to SRS positioning to the terminal device 110.
  • FIG. 6 which shows a schematic diagram 600 of the configuration, the terminal device 110 may be configured with the BWP 610.
  • the configuration may further indicate adjacent SRS occasions in time domain having an overlapped resource in frequency domain.
  • each adjacent occasion in time may have the overlapped resources in frequency.
  • the terminal device 110 may be configured with the SRS occasions 620-1, 620-2, 620-3 and 620-4.
  • the BWP may not be smaller than a RF bandwidth of the terminal device 110.
  • the bandwidth of the BWP may not be smaller than 20 MHz.
  • the bandwidth of the BWP may not be smaller than 100 MHz.
  • the bandwidth of the BWP 610 may not be smaller than the bandwidth of the terminal device 110. In this way, configuring only one large BWP for redcap UE SRS transmission for positioning can reduce frequent BWP switching times.
  • the configuration may further indicate one or more of: a periodicity of a set of SRS occasions, a slot for the occasions for the set of SRS occasions, or an offset for the set of SRS occasions.
  • the terminal device 110 may determine a time position of each SRS occasion based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced. For example, if the configuration indicates the periodicity, the slot and the offset of the SRS occasion 620-1, the terminal device 110 may determine the time positions of other SRS occasions.
  • the configuration may further indicate that a SRS resource is configured for the BWP.
  • a SRS resource is configured for the BWP.
  • the SRS resources associated with the SRS occasions 620-1, 620-2, 620-3 and 620-4 may be configured for the BWP 610. In this case, implementation complexity may be reduced.
  • the configuration may further indicate a gap for the radio frequency (RF) tunning that is applied for the SRS frequency hopping.
  • the configuration may indicate the RF tunning gap 640-1 between the SRS frequency hopping in the SRS occasions 620-1 and 620-2.
  • the configuration may also indicate the RF tunning gaps 640-2 and 640-3 as shown in FIG. 6.
  • the RF tunning gaps 640-1, 640-2 and 640-3 may be the same.
  • the RF tunning gaps 640-1, 640-2 and 640-3 may be different.
  • the gap for RF tunning may be applied for each frequency hop except repetition on the same frequency position.
  • the terminal device 110 performs 5020 a SRS frequency hopping based on the set of SRS occasions within the BWP.
  • the terminal device 110 may perform the SRS frequency hopping based on the SRS occasions 620-1, 620-2, 620-3 and 620-4 within the BWP610.
  • the terminal device 110 may transmit a first SRS in the SRS occasion 620-1.
  • the terminal device 110 may transmit a second SRS in the SRS occasion 620-2.
  • the network device may receive a first SRS in a first SRS occasion of the set of SRS occasions and may receive a second SRS in a second SRS occasion of the set of SRS occasions.
  • a BWP not smaller than the bandwidth of the terminal device may be configured. In this way, times of BWP switching can be reduced.
  • adjacent SRS occasions in time domain may have an overlapped resource in frequency domain. In this way, the phase compensation performance may be improved.
  • FIG. 7 shows a flowchart of an example method 700 in accordance with an embodiment of the present disclosure.
  • the method 700 can be implemented at any suitable terminal devices. Only for the purpose of illustrations, the method 700 can be implemented at a terminal device 110 as shown in FIG. 1.
  • the terminal device 110 receives a configuration indicating a first list of BWPs from the network device 120.
  • the configuration may indicate a plurality of BWPs.
  • the first list of BWPs may comprise any suitable number of BWPs.
  • the first list of BWPs may comprise 4 BWPs.
  • the configuration may indicate a default BWP in the first list of BWPs.
  • a bandwidth of each BWP in the first list of BWPs may be within a radio frequency bandwidth of the terminal device 110. For example, if the maximum bandwidth of the terminal device 110 is 20MHz, the bandwidth of each BWP in the first list may not be larger than 20 MHz. Alternatively, if the maximum bandwidth of the terminal device is 100 MHz, the bandwidth of each BWP in the first list may not be larger than 100 MHz. In some embodiments, each BWP in the first list may have the same bandwidth. Alternatively, one or more BWPs in the first list may have a different bandwidth. In this way, configuring bandwidth of a BWP less than UE RF bandwidth can reuse the conventional implementation as much as possible to reduce implementation complexity.
  • the configuration may further indicate a relation between a specific BWP in the first list of BWPs and a BWP switching occasion where the specific BWP is active.
  • a specific BWP in the first list of BWPs and a BWP switching occasion where the specific BWP is active.
  • m-th BWP in the additional list is active, where m may be an integer.
  • the configuration may further indicate one or more of: a periodicity of occasions for the BWP switching, a slot for the occasions for the BWP switching, or an offset for the occasions for the BWP switching.
  • the terminal device 110 may determine a time position of BWP switching occasions based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced.
  • the configuration may indicate one BWP with SRS configuration and number of offsets for other BWP (s) .
  • the other BWP (s) may have the same SRS configuration as that BWP.
  • the BWP switching occasion or starting position of the other BWP (s) may be determined based on the BWP switching occasion for that BWP and the offset. In this way, the configuration overhead may be further reduced.
  • the configuration may further indicate that a SRS resource is configured for each BWP in the first list of BWPs. In this case, implementation complexity may be reduced.
  • the configuration may further indicate a first switching gap for the BWP switching. In some embodiments, the configuration may further indicate a second switching gap for switching between the first list of BWPs and a second list of BWPs. In some embodiments, the terminal device 110 may be configured with a second list of BWPs.
  • the second switching gap may be disabled based on UE capability of the terminal device 110. For example, if an active BWP (for example, for a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission) in the second list is within or include the first BWP, the switching time/gap may not be needed depending on UE capability for switching between the active BWP and the BWP in the first list of BWPs.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the above mentioned second list of BWPs may comprise at set of BWPs that are configured for one or more of: a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission.
  • the second list of BWPs may comprise any suitable number of BWPs.
  • the second list of BWPs may comprise 4 BWPs.
  • the configuration may indicate a default BWP in the second list of BWPs.
  • the second list of BWPs may be used/reused as the first list of BWPs.
  • the terminal device 110 performs a BWP switching between BWPs in the first list of BWPS based on a pattern.
  • the pattern may be preconfigured or predetermined. That is, the terminal device 110 may perform an autonomous BWP switching.
  • the pattern may be configured at the terminal device 110 during manufacturing. Alternatively, the pattern may be transmitted to the terminal device 110 previously.
  • the terminal device 110 may perform the BWP switching without a dynamic indication from the network device 110 or an event trigger within the terminal device 110.
  • the dynamic indication may comprise one or more of: downlink control information (DCI) or a medium access control control element (MAC CE) .
  • the event trigger may comprise one or more of: a trigger for random access channel (RACH) or a timer expiry within the terminal device 110.
  • the terminal device 110 may perform at least one uplink transmission based on a BWP switching within the pattern.
  • the terminal device 110 may receive a first indication from the network device 120.
  • the first indication may indicate that the BWP switching is disabled or stopped. In this case, in some embodiments, the terminal device 110 may disable or stop the BWP switching based on the first indication.
  • the first indication may be transmitted in DCI. Alternatively, the first indication may be transmitted in MAC CE.
  • FIG. 8 shows a flowchart of an example method 800 in accordance with an embodiment of the present disclosure.
  • the method 800 can be implemented at any suitable terminal devices. Only for the purpose of illustrations, the method 800 can be implemented at a network device 120 as shown in FIG. 1.
  • the network device 120 transmits a configuration indicating a first list of BWPs to the terminal device 110.
  • the configuration may indicate a plurality of BWPs.
  • the first list of BWPs may comprise any suitable number of BWPs.
  • the first list of BWPs may comprise 4 BWPs.
  • the configuration may indicate a default BWP in the first list of BWPs.
  • a bandwidth of each BWP in the first list of BWPs may be within a radio frequency bandwidth of the terminal device 110. For example, if the maximum bandwidth of the terminal device 110 is 20MHz, the bandwidth of each BWP in the first list may not be larger than 20 MHz. Alternatively, if the maximum bandwidth of the terminal device is 100 MHz, the bandwidth of each BWP in the first list may not be larger than 100 MHz. In some embodiments, each BWP in the first list may have the same bandwidth. Alternatively, one or more BWPs in the first list may have a different bandwidth. In this way, configuring bandwidth of a BWP less than UE RF bandwidth can reuse the conventional implementation as much as possible to reduce implementation complexity.
  • the configuration may further indicate a relation between a specific BWP in the first list of BWPs and a BWP switching occasion where the specific BWP is active.
  • a specific BWP in the first list of BWPs and a BWP switching occasion where the specific BWP is active.
  • m-th BWP in the additional list is active, where m may be an integer.
  • the configuration may further indicate one or more of: a periodicity of occasions for the BWP switching, a slot for the occasions for the BWP switching, or an offset for the occasions for the BWP switching.
  • the terminal device 110 may determine a time position of BWP switching occasions based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced.
  • the configuration may indicate one BWP with SRS configuration and number of offsets for other BWP (s) .
  • the other BWP (s) may have the same SRS configuration as that BWP.
  • the BWP switching occasion or starting position of the other BWP (s) may be determined based on the BWP switching occasion for that BWP and the offset. In this way, the configuration overhead may be further reduced.
  • the configuration may further indicate that a SRS resource is configured for each BWP in the first list of BWPs. In this case, implementation complexity may be reduced.
  • the configuration may further indicate a first switching gap for the BWP switching. In some embodiments, the configuration may further indicate a second switching gap for switching between the first list of BWPs and a second list of BWPs. In some embodiments, the terminal device 110 may be configured with a second list of BWPs. For example, the terminal device 110 may be configured with a second plurality of BWPs.
  • the second switching gap may be disabled based on UE capability of the terminal device 110. For example, if an active BWP (for example, for a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission) in the second list is within or include the first BWP, the switching time/gap may not be needed depending on UE capability for switching between the active BWP and the BWP in the first list of BWPs.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the above mentioned second list of BWPs may comprise at set of BWPs that are configured for one or more of: a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission.
  • the second list of BWPs may comprise any suitable number of BWPs.
  • the second list of BWPs may comprise 4 BWPs.
  • the configuration may indicate a default BWP in the second list of BWPs.
  • the second list of BWPs may be used/reused as the first list of BWPs.
  • the network device may receive at least one uplink transmission based on a BWP switching within the pattern.
  • the network device 120 may transmit a first indication to the terminal device 110. The first indication may indicate that the BWP switching is disabled or stopped.
  • FIG. 9 shows a flowchart of an example method 900 in accordance with an embodiment of the present disclosure.
  • the method 900 can be implemented at any suitable terminal devices. Only for the purpose of illustrations, the method 900 can be implemented at a terminal device 110 as shown in FIG. 1.
  • the terminal device 110 receives a configuration indicating a BWP associated to SRS positioning from the network device 120.
  • the configuration may further indicate adjacent SRS occasions in time domain having an overlapped resource in frequency domain. For example, for SRS frequency hopping with frequency position larger than 2 and overlap resources are configured/applied, each adjacent occasion in time may have the overlapped resources in frequency. In this way, phase compensation can be performed by the terminal device 110 based on the adjacent SRS occasions.
  • the BWP may not be smaller than a RF bandwidth of the terminal device 110.
  • the bandwidth of the BWP may not be smaller than 20 MHz.
  • the bandwidth of the BWP may not be smaller than 100 MHz.
  • the configuration may further indicate one or more of: a periodicity of a set of SRS occasions, a slot for the occasions for the set of SRS occasions, or an offset for the set of SRS occasions.
  • the terminal device 110 may determine a time position of each SRS occasion based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced. For example, if the configuration indicates the periodicity, the slot and the offset of the SRS occasion 620-1, the terminal device 110 may determine the time positions of other SRS occasions.
  • the configuration may further indicate that a SRS resource is configured for the BWP. In this case, implementation complexity may be reduced.
  • the configuration may further indicate a gap for the radio frequency (RF) tunning that is applied for the SRS frequency hopping.
  • the gap for RF tunning may be applied for each frequency hop except repetition on the same frequency position.
  • the terminal device 110 performs a SRS frequency hopping based on the set of SRS occasions within the BWP. For example, the terminal device 110 may transmit a first SRS in a first SRS occasion. The terminal device 110 may transmit a second SRS in a second SRS occasion.
  • FIG. 10 shows a flowchart of an example method 1000 in accordance with an embodiment of the present disclosure.
  • the method 1000 can be implemented at any suitable terminal devices. Only for the purpose of illustrations, the method 1000 can be implemented at a network device 120 as shown in FIG. 1.
  • the network device 120 transmits a configuration indicating a BWP associated to SRS positioning to the terminal device 110.
  • the configuration may further indicate adjacent SRS occasions in time domain having an overlapped resource in frequency domain. For example, for SRS frequency hopping with frequency position larger than 2 and overlap resources are configured/applied, each adjacent occasion in time may have the overlapped resources in frequency. In this way, phase compensation can be performed by the terminal device 110 based on the adjacent SRS occasions.
  • the BWP may not be smaller than a RF bandwidth of the terminal device 110.
  • the bandwidth of the BWP may not be smaller than 20 MHz.
  • the bandwidth of the BWP may not be smaller than 100 MHz.
  • the configuration may further indicate one or more of: a periodicity of a set of SRS occasions, a slot for the occasions for the set of SRS occasions, or an offset for the set of SRS occasions.
  • the terminal device 110 may determine a time position of each SRS occasion based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced. For example, if the configuration indicates the periodicity, the slot and the offset of the SRS occasion 620-1, the terminal device 110 may determine the time positions of other SRS occasions.
  • the configuration may further indicate that a SRS resource is configured for the BWP. In this case, implementation complexity may be reduced.
  • the configuration may further indicate a gap for the radio frequency (RF) tunning that is applied for the SRS frequency hopping.
  • the gap for RF tunning may be applied for each frequency hop except repetition on the same frequency position.
  • the network device 120 may receive a SRS based on the SRS frequency hopping based on the set of SRS occasions within the BWP. For example, the network device may receive a first SRS in a first SRS occasion of the set of SRS occasions and may receive a second SRS in a second SRS occasion of the set of SRS occasions.
  • FIG. 11 is a simplified block diagram of a device 1100 that is suitable for implementing embodiments of the present disclosure.
  • the device 1100 can be considered as a further example implementation of the terminal device 110 or the network device 120 as shown in FIG. 1. Accordingly, the device 1100 can be implemented at or as at least a part of the terminal device 110 or the network device 120.
  • the device 1100 includes a processor 1110, a memory 1120 coupled to the processor 1110, a suitable transmitter (TX) /receiver (RX) 1140 coupled to the processor 1110, and a communication interface coupled to the TX/RX 1140.
  • the memory 1110 stores at least a part of a program 1130.
  • the TX/RX 1140 is for bidirectional communications.
  • the TX/RX 1140 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2/Xn interface for bidirectional communications between eNBs/gNBs, S1/NG interface for communication between a Mobility Management Entity (MME) /Access and Mobility Management Function (AMF) /SGW/UPF and the eNB/gNB, Un interface for communication between the eNB/gNB and a relay node (RN) , or Uu interface for communication between the eNB/gNB and a terminal device.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • RN relay node
  • Uu interface for communication between the eNB/gNB and a terminal device.
  • the program 1130 is assumed to include program instructions that, when executed by the associated processor 1110, enable the device 1100 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1 to 11.
  • the embodiments herein may be implemented by computer software executable by the processor 1110 of the device 1100, or by hardware, or by a combination of software and hardware.
  • the processor 1110 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 1110 and memory 1120 may form processing means 1150 adapted to implement various embodiments of the present disclosure.
  • the memory 1120 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1120 is shown in the device 1100, there may be several physically distinct memory modules in the device 1100.
  • the processor 1110 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1100 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • a terminal device comprises a circuitry configured to perform: receiving, from a network device, a configuration indicating a first list of bandwidth parts (BWPs) ; and performing a BWP switching between BWPs in the first list of BWPs based on a pattern.
  • the circuitry may be configured to perform the above methods.
  • the terminal device comprises a circuitry configured to perform: receiving, from the network device, a first indication, wherein the first indication indicates that the BWP switching is disabled or stopped.
  • the circuitry may be configured to perform the above methods.
  • a network device comprises a circuitry configured to: transmitting, to a terminal device, a configuration indicating a first list of bandwidth parts (BWPs) .
  • the circuitry may be configured to perform the above methods.
  • a network device comprises a circuitry configured to perform: transmitting, to a terminal device, a configuration indicating a bandwidth part (BWP) associated to sounding reference signal (SRS) positioning.
  • the circuitry may be configured to perform the above methods.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • a device of communication comprises: a processor configured to cause the device to perform any of the methods above.
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform any of the methods above.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGs. 1 to 10.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to methods, devices, and computer readable medium for communication. According to embodiments of the present disclosure, a network device transmits a configuration indicating a list of BWPs to a terminal device. The terminal device performs a B WP switching between BWPs in the list of BWPs based on a pattern. In other words, the terminal device performs the BWP switching without an indication from the network device or an event trigger. In this way, the BWP switching can be used for SRS frequency hopping, thereby achieving better positioning accuracy.

Description

METHOD, DEVICE AND COMPUTER STORAGE MEDIUM OF COMMUNICATION TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media of communication for an application layer measurement in idle and inactive states.
BACKGROUND
Several technologies have been proposed to improve communication performances. For example, reduced capability (RedCap) user equipment (UE) has been proposed. The RedCap UE may be with reduced bandwidth support and reduced complexity including reduced number of receive chains. Such UEs may support new radio (NR) positioning functionality. For RedCap UE positioning, sounding reference signal (SRS) may be sent in a limited bandwidth, and it may have an impact on the positioning accuracy.
SUMMARY
In general, embodiments of the present disclosure provide methods, devices and computer storage media for communication.
In a first aspect, there is provided a method performed by a terminal device. The method comprises: receiving, at a terminal device and from a network device, a configuration indicating a first list of bandwidth parts (BWPs) ; and performing a BWP switching between BWPs in the first list of BWPs based on a pattern.
In a second aspect, there is provided a method performed by a network device. The method comprises: transmitting, at a network device and to a terminal device, a configuration indicating a first list of bandwidth parts (BWPs) .
In a third aspect, there is provided a terminal device. The terminal device comprises a processing unit; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the terminal device to perform acts comprising: receiving, from a network device, a configuration indicating a first list of bandwidth parts (BWPs) ; and performing a BWP switching between  BWPs in the first list of BWPs based on a pattern.
In a fourth aspect, there is provided a network device. The network device comprises a processing unit; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the network device to perform acts comprising: transmitting, at a network device and to a terminal device, a configuration indicating a first list of bandwidth parts (BWPs) .
In a fifth aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the first or second aspect.
Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
FIG. 1 is a schematic diagram of a communication environment in which embodiments of the present disclosure can be implemented;
FIG. 2 illustrates a signaling flow for communications according to some embodiments of the present disclosure;
FIG. 3 illustrates a schematic diagram of a BWP configuration according to some example embodiments of the present disclosure;
FIG. 4A and FIG. 4B illustrate schematic diagrams of a BWP configurations according to some example embodiments of the present disclosure, respectively;
FIG. 5 illustrates a signaling flow for communications according to some embodiments of the present disclosure;
FIG. 6 illustrates a schematic diagram of a BWP configuration according to some example embodiments of the present disclosure;
FIG. 7 is a flowchart of an example method in accordance with an embodiment of the present disclosure;
FIG. 8 is a flowchart of an example method in accordance with an embodiment of the present disclosure;
FIG. 9 is a flowchart of an example method in accordance with an embodiment of the present disclosure;
FIG. 10 is a flowchart of an example method in accordance with an embodiment of the present disclosure; and
FIG. 11 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented  Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporate one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
The term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
The terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz to 7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connection with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The embodiments of the present disclosure may be performed in test equipment, e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
In some embodiments, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first  network device and the second network device may use different radio access technologies (RATs) . In some embodiments, the first network device may be a first RAT device and the second network device may be a second RAT device. In some embodiments, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first network device or the second network device. In some embodiments, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In some embodiments, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
As used herein, the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’ The term ‘based on’ is to be read as ‘at least in part based on. ’ The term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’ The term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’ The terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
In the context of the present application, the term “bandwidth part (BWP) ” may refer to a contiguous set of resource blocks on a given carrier. These RBs are selected from a contiguous subset of the common resource blocks for a given numerology (u) . Each BWP defined for a numerology can have following three different parameters: subcarrier spacing, symbol duration and cyclic prefix (CP) length. The term “BWP switching” used herein means activating a de-activated BWP and de-activating an active BWP. The term “active BWP” used herein can refer to a UE specific bandwidth part that can be used to BWP  performs data transmission. The active BWP may be the first BWP where the terminal device starts data transfer after radio resource control (RRC) configuration/reconfiguration. The active BWP may be different from a default BWP. The term “sounding reference signal (SRS) ” used herein may refer to a reference signal that are transmitted on an uplink and allows the network to estimate a quality of a channel at different frequencies. The term “SRS resource” used herein may refer to a location of SRS in time and frequency domain in the resource grid. The term “RedCap UE” used herein can refer to a UE which has UE complexity reduction features. The complexity reduction features may comprise one or more of: (1) reduced maximum UE bandwidth, for example, a maximum bandwidth of an frequency range (FR) 1 RedCap UE during and after initial access is 20 MHz and a maximum bandwidth of FR 2 RedCap UE during and after initial access is 100 MHz; (2) a reduced minimum number of receiving (Rx) branches; (3) a maximum number of downlink (DL) multi-input-multi-output (MIMO) layers; (4) a relaxed maximum modulation order; (5) a duplex operation. The term “slot” used herein refers to a scheduling unit. One slot comprises a predetermined number of symbols. The slot used herein may refer to a normal slot which comprises a predetermined number of symbols and also refer to a sub-slot which comprises fewer symbols than the predetermined number of symbols. The term “frequency hopping” used herein means to transmit the reference signal bits in different frequency subbands.
As mentioned above, RedCap UEs may support NR positioning functionality. However, there is a gap in that the core and performance requirements have not been specified for the positioning related measurements performed by RedCap UEs, and no evaluation was performed to see how the reduced capabilities of RedCap UEs might impact eventual position accuracy. For RedCap UE positioning, sounding reference signal (SRS) may be sent in a limited bandwidth, and it may have an impact on the positioning accuracy. Frequency hopping may be a candidate enhancement to enlarge an effective bandwidth for positioning.
Moreover, a frequency hopping of a reference signal for positioning can extend the bandwidth of the reference signal for positioning. By concatenating multiple hops of reference signal for positioning, the effective bandwidth of reference signal for positioning can be enlarged. It is noted that, the channel condition between each hop should not change much. In a typical scenario (e.g., low mobility and line of sight (LOS) links) , this condition might be fulfilled. It is also noted that, for each hop, because the radio frequency (RF) chain (of a RedCap UE) needs be tuned to another center frequency, a random phase between each  hop will be introduced. Before concatenating these hops, this phase impact needs be mitigated.
Embodiments of the present disclosure provide a solution on SRS hopping. According to embodiments of the present disclosure, a network device transmits a configuration indicating a list of BWPs to a terminal device. The terminal device performs a BWP switching between BWPs in the list of BWPs based on a pattern. In other words, the terminal device performs the BWP switching without an indication from the network device or an event trigger. In this way, the BWP switching can be used for SRS frequency hopping, thereby achieving better positioning accuracy. Furthermore, the network device receives a first uplink transmission in a first BWP of the list of BWPs and receives a second uplink transmission in a second BWP of the list of BWPs according to the configuration. According to some embodiments, the terminal device receives, from the network device, a configuration indicating a bandwidth part (BWP) associated to sounding reference signal (SRS) positioning. The configuration further indicating adjacent SRS occasions in time domain having an overlapped resource in frequency domain. The terminal device performs a SRS frequency hopping based on a set of SRS occasions within the BWP. Moreover, the network device receives a first SRS in a first SRS occasion of the set of SRS occasions and receives a second SRS in a second SRS occasion of the set of SRS occasions.
Principles and implementations of the present disclosure will be described in detail below with reference to the figures.
EXAMPLE OF COMMUNICATION NETWORK
FIG. 1 illustrates a schematic diagram of an example communication network 100 in which some embodiments of the present disclosure can be implemented. As shown in FIG. 1, the communication network 100 may include a terminal device 110 and a network device 120. The network device 120 may provide a cell 121 to serve one or more terminal devices. In this example, the terminal device 110 is located in the cell 121 and is served by the network device 120.
It is to be understood that the number of devices and cells in FIG. 1 is given for the purpose of illustration without suggesting any limitations to the present disclosure. The communication network 100 may include any suitable number of network devices and/or terminal devices and/or cells adapted for implementing implementations of the present disclosure.
In some embodiments, the terminal device 110 and the network device 120 may communicate with each other via a channel such as a wireless communication channel on an air interface (e.g., Uu interface) . The wireless communication channel may comprise a physical uplink control channel (PUCCH) , a physical uplink shared channel (PUSCH) , a physical random-access channel (PRACH) , a physical downlink control channel (PDCCH) , a physical downlink shared channel (PDSCH) and a physical broadcast channel (PBCH) . Of course, any other suitable channels are also feasible.
The communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , New Radio (NR) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like. The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
Embodiments of the present disclosure will be described in detail below. Reference is first made to FIG. 2, which shows a signaling chart illustrating process 200 among the terminal device and the network device according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 200 will be described with reference to FIG. 1. For example, the process 200 may involve the terminal device 110 and the network device 120.
The network device 120 transmits 2010 a configuration indicating a first list of BWPs to the terminal device 110. For example, the configuration may indicate a plurality of BWPs. The first list of BWPs may comprise any suitable number of BWPs. For example, the first list of BWPs may comprise 4 BWPs. In some embodiments, the configuration may indicate a default BWP in the first list of BWPs. Referring to FIG. 3 which shows a schematic diagram 300 of the configuration, the configuration may indicate the BWPs 310-1, 310-2, 310-3 and 310-4. It is noted that the number of BWPs shown in FIG. 3 is only an example not limitation.
In some embodiments, a bandwidth of each BWP in the first list of BWPs may be within a radio frequency bandwidth of the terminal device 110. For example, if the maximum bandwidth of the terminal device 110 is 20MHz, the bandwidth of each BWP in the first list may not be larger than 20 MHz. Alternatively, if the maximum bandwidth of the terminal device is 100 MHz, the bandwidth of each BWP in the first list may not be larger than 100 MHz. In some embodiments, each BWP in the first list may have the same bandwidth. Alternatively, one or more BWPs in the first list may have a different bandwidth. For example, as shown in FIG. 3, the bandwidths of the BWPs 310-1, 310-2, 310-3 and 310-4 may not be larger than the bandwidth of the terminal device 110, respectively. In this way, configuring bandwidth of a BWP less than UE RF bandwidth can reuse the conventional implementation as much as possible to reduce implementation complexity.
In some example embodiments, the configuration may further indicate a relation between a specific BWP in the first list of BWPs and a BWP switching occasion where the specific BWP is active. In other words, for the m-th BWP switching occasion, m-th BWP in the additional list is active, where m may be an integer. By way of example, as shown in FIG. 3, the configuration may indicate the relation between the BWP 310-1 and the BWP switching occasion 330-1 within which the BWP 310-1 is active. In this case, the terminal device 110 may activate the BWP 310-1 within the BWP switching occasion 330-1. Moreover, the configuration may indicate the relation between the BWP 310-2 and the BWP switching occasion 330-2, the relation between the BWP 310-3 and the BWP switching occasion 330-3, and the relation between the BWP 310-4 and the BWP switching occasion 330-4.
In some embodiments, the configuration may further indicate one or more of: a periodicity of occasions for the BWP switching, a slot for the occasions for the BWP switching, or an offset for the occasions for the BWP switching. In this case, the terminal device 110 may determine a time position of BWP switching occasions based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced. For example, if the configuration indicates the periodicity, the slot and the offset of the BWP switching occasion 330-1, the terminal device 110 may determine the time positions of other BWP switching occasions. In some embodiments, the offset may comprise a number of symbols. Alternatively, the offset may comprise a number of slots. In some other embodiments, the configuration may indicate one BWP with SRS configuration and number of offsets for other BWP (s) . In this case, the other BWP (s) may have the same SRS  configuration as that BWP. The BWP switching occasion or starting position of the other BWP (s) may be determined based on the BWP switching occasion for that BWP and the offset. In this way, the configuration overhead may be further reduced. For example, as shown in FIG. 3, the configuration may indicate the BWP 310-1 with the SRS resource 320-1 and the number of offsets. The terminal device 110 may determine the BWP switching occasions for the BWPs 310-2, 310-3 and 310-4 based on the BWP switching occasion 330-1 for the BWP 310-1 and the offsets. The BWPs 310-2, 310-3 and 310-4 may have the same SRS configuration as the BWP 310-1.
In some embodiments, the configuration may further indicate that a SRS resource is configured for each BWP in the first list of BWPs. For example, as shown in FIG. 3, the SRS resource 320-1 may be configured for the BWP 310-1, the SRS resource 320-2 may be configured for the BWP 310-2, the SRS resource 320-3 may be configured for the BWP 310-3, and the SRS resource 320-4 may be configured for the BWP 310-4. In this case, implementation complexity may be reduced. In one embodiment, the SRS resource may be associated to one BWP of the first list of BWPs.
In other embodiments, the configuration may further indicate a first switching gap for the BWP switching. For example, as shown in FIG. 3, the configuration may indicate the switching gap 340-1 for the BWP switching between the BWPs 310-1 and 310-2. Moreover, the configuration may also indicate the switching gaps 340-2 and 340-3 as shown in FIG. 3. In some embodiments, the switching gaps 340-1, 340-2 and 340-3 may be the same. Alternatively, the switching gaps 340-1, 340-2 and 340-3 may be different.
In some embodiments, the configuration may further indicate a second switching gap for switching between the first list of BWPs and a second list of BWPs. In some embodiments, the terminal device 110 may be configured with a second list of BWPs. For example, the terminal device 110 may be configured with a second plurality of BWPs. Referring to FIG. 4A, the terminal device 110 may be configured with the first list of BWPs and the second list of BWPs (for example, BWP 410-1) . Some other BWPs in the second list of BWPs are omitted in FIG. 4A for clarity purpose. It is noted that the numbers of BWPs in the first list and the second list shown in FIG. 4A are only examples not limitations. As shown in FIG. 4A, the configuration may indicate the switching gap 420 between the first list of BWPs and the second list of BWPs.
In some embodiments, if an active BWP in the second list of BWPs is within the  first list of BWPs, the terminal device 110 may disable 2050 the second switching gap based on UE capability of the terminal device 110. For example, if an active BWP (for example, for a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission) in the second list is within or include the first BWP, the switching time/gap may not be needed depending on UE capability for switching between the active BWP and the BWP in the first list of BWPs. Only as an example, as shown in FIG. 4B, the second list of BWPs may the BWP 410-2 which is the active BWP. Since the BWP 410-2 is within the first list of BWPs, the second switching gap may be disabled.
In some embodiments, the above mentioned second list of BWPs may comprise at set of BWPs that are configured for one or more of: a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission. The second list of BWPs may comprise any suitable number of BWPs. For example, the second list of BWPs may comprise 4 BWPs. In some embodiments, the configuration may indicate a default BWP in the second list of BWPs. In some embodiments, the second list of BWPs may be used/reused as the first list of BWPs.
Referring back to FIG. 2, the terminal device 110 performs 2020 a BWP switching between BWPs in the first list of BWPS based on a pattern. In some embodiments, the pattern may be preconfigured or predetermined. That is, the terminal device 110 may perform an autonomous BWP switching. For example, the pattern may be configured at the terminal device 110 during manufacturing. Alternatively, the pattern may be transmitted to the terminal device 110 previously. In other words, the terminal device 110 may perform the BWP switching without a dynamic indication from the network device 110 or an event trigger within the terminal device 110. The dynamic indication may comprise one or more of: downlink control information (DCI) or a medium access control control element (MAC CE) . The event trigger may comprise one or more of: a trigger for random access channel (RACH) or a timer expiry within the terminal device 110. For example, as shown in FIG. 3, if the pattern indicates the BWPs 310-1 and 310-3, the terminal device 110 may activate the BWP 310-1 within the BWP switching occasion 330-1 and activate the BWP 310-3 within the BWP switching occasions 330-3. In this way, autonomous BWP switching can be used for SRS frequency hopping, thereby achieving better position accuracy.
In some embodiments, the terminal device 110 may perform 2030 at least one uplink transmission based on a BWP switching within the pattern. For example, as shown in FIG.  3, if the terminal device 110 activates the BWP 310-1 based on the pattern, the terminal device 110 may transmit the SRS to the network device 120 on the SRS resource 320-1 within the BWP switching occasion 330-1. Similarly, if the terminal device 110 activates the BWP 310-3 based on the pattern, the terminal device 110 may transmit the SRS to the network device 120 on the SRS resource 320-3 within the BWP switching occasion 330-3.
In some embodiments, the network device 120 may transmit 2040 a first indication to the terminal device 110. The first indication may indicate that the BWP switching is disabled or stopped. In this case, in some embodiments, the terminal device 110 may disable or stop the BWP switching based on the first indication. In some embodiments, the first indication may be transmitted in DCI. Alternatively, the first indication may be transmitted in MAC CE. For example, as shown in FIG. 3, if the terminal device 110 receives the first indication before the switching occasion 330-4, the terminal device 110 may not activate the BWP 320-4 during the switching occasion 330-4.
According to embodiments described with reference to FIG. 2, the autonomous BWP switching can be used for SRS frequency hopping, thereby achieving better positioning accuracy due to wider total bandwidth. Moreover, configuring bandwidth of a BWP less than UE RF bandwidth can reuse conventional implementation as much as possible to reduce implementation complexity. Additionally, RRC configuration overhead may be further reduced.
Embodiments of the present disclosure will be described in detail below. Reference is first made to FIG. 5, which shows a signaling chart illustrating process 500 among the terminal device and the network device according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 500 will be described with reference to FIG. 1. For example, the process 500 may involve the terminal device 110 and the network device 120.
The network device 120 transmits 5010 a configuration indicating a BWP associated to/specific to SRS positioning to the terminal device 110. Referring to FIG. 6 which shows a schematic diagram 600 of the configuration, the terminal device 110 may be configured with the BWP 610.
In some embodiments, the configuration may further indicate adjacent SRS occasions in time domain having an overlapped resource in frequency domain. For example, for SRS frequency hopping with frequency position larger than 2 and overlap resources are  configured/applied, each adjacent occasion in time may have the overlapped resources in frequency. By way of example, as shown in FIG. 6, the terminal device 110 may be configured with the SRS occasions 620-1, 620-2, 620-3 and 620-4. There may be overlapped resources 630-1 between two adjacent SRS occasions 620-1 and 620-2, overlapped resources 630-2 between two adjacent SRS occasions 620-2 and 620-3, and overlapped resources 630-3 between two adjacent SRS occasions 620-3 and 620-4. In this way, phase compensation can be performed by the terminal device 110 based on the adjacent SRS occasions.
According to conventional SRS frequency hopping is trying to sense the wide bandwidth as quickly as possible. Combination on different frequency part on one hand is not needed and on the other hand UE may maintain the same phase due to the wide RF bandwidth. Thus, there is a large gap between each adjacent hop. While for redcap UE with narrow RF bandwidth, phase rotation may be introduced for each hop and overlapped part are needed for combination processing. If a large gap is used between adjacent hop, on one hand early processing when only part of transmission, for example, 1st and 2nd hopping, are not possible due to no overlapped part between 1st and 2nd hopping to do phase compensation, on the other hand that phase compensation performance may not be good if the overlapped hopping occasion have larger time separation. Unlike the conventional SRS frequency hopping, according to embodiments of the present disclosure, adjacent SRS occasions in time domain may have an overlapped resource in frequency domain. In this way, the phase compensation performance can be improved.
In some embodiments, the BWP may not be smaller than a RF bandwidth of the terminal device 110. For example, if the maximum bandwidth of the terminal device 110 is 20MHz, the bandwidth of the BWP may not be smaller than 20 MHz. Alternatively, if the maximum bandwidth of the terminal device is 100 MHz, the bandwidth of the BWP may not be smaller than 100 MHz. For example, as shown in FIG. 6, the bandwidth of the BWP 610 may not be smaller than the bandwidth of the terminal device 110. In this way, configuring only one large BWP for redcap UE SRS transmission for positioning can reduce frequent BWP switching times.
In some embodiments, the configuration may further indicate one or more of: a periodicity of a set of SRS occasions, a slot for the occasions for the set of SRS occasions, or an offset for the set of SRS occasions. In this case, the terminal device 110 may determine a time position of each SRS occasion based on the periodicity, the slot and the offset. In  this way, the configuration overhead may be reduced. For example, if the configuration indicates the periodicity, the slot and the offset of the SRS occasion 620-1, the terminal device 110 may determine the time positions of other SRS occasions.
In some embodiments, the configuration may further indicate that a SRS resource is configured for the BWP. For example, as shown in FIG. 6, the SRS resources associated with the SRS occasions 620-1, 620-2, 620-3 and 620-4 may be configured for the BWP 610. In this case, implementation complexity may be reduced.
In other embodiments, the configuration may further indicate a gap for the radio frequency (RF) tunning that is applied for the SRS frequency hopping. For example, as shown in FIG. 6, the configuration may indicate the RF tunning gap 640-1 between the SRS frequency hopping in the SRS occasions 620-1 and 620-2. Moreover, the configuration may also indicate the RF tunning gaps 640-2 and 640-3 as shown in FIG. 6. In some embodiments, the RF tunning gaps 640-1, 640-2 and 640-3 may be the same. Alternatively, the RF tunning gaps 640-1, 640-2 and 640-3 may be different. The gap for RF tunning may be applied for each frequency hop except repetition on the same frequency position.
Referring back to FIG. 5, the terminal device 110 performs 5020 a SRS frequency hopping based on the set of SRS occasions within the BWP. For example, as shown in FIG. 6, the terminal device 110 may perform the SRS frequency hopping based on the SRS occasions 620-1, 620-2, 620-3 and 620-4 within the BWP610. For example, the terminal device 110 may transmit a first SRS in the SRS occasion 620-1. The terminal device 110 may transmit a second SRS in the SRS occasion 620-2. In this case, the network device may receive a first SRS in a first SRS occasion of the set of SRS occasions and may receive a second SRS in a second SRS occasion of the set of SRS occasions. Additionally, one example of SRS frequency hopping may be P (n) = M + (n mod M) *D, where P (n) is the frequency position for the n-th hop, M is the configured static frequency position determined by RRC and D is the configured gap for each hop. If D is less than SRS transmission bandwidth, it may have overlapped resources for each hop.
According to embodiments described with reference to FIG. 5, a BWP not smaller than the bandwidth of the terminal device may be configured. In this way, times of BWP switching can be reduced. In addition, adjacent SRS occasions in time domain may have an overlapped resource in frequency domain. In this way, the phase compensation performance may be improved.
FIG. 7 shows a flowchart of an example method 700 in accordance with an embodiment of the present disclosure. The method 700 can be implemented at any suitable terminal devices. Only for the purpose of illustrations, the method 700 can be implemented at a terminal device 110 as shown in FIG. 1.
At block 710, the terminal device 110 receives a configuration indicating a first list of BWPs from the network device 120. For example, the configuration may indicate a plurality of BWPs. The first list of BWPs may comprise any suitable number of BWPs. For example, the first list of BWPs may comprise 4 BWPs. In some embodiments, the configuration may indicate a default BWP in the first list of BWPs.
In some embodiments, a bandwidth of each BWP in the first list of BWPs may be within a radio frequency bandwidth of the terminal device 110. For example, if the maximum bandwidth of the terminal device 110 is 20MHz, the bandwidth of each BWP in the first list may not be larger than 20 MHz. Alternatively, if the maximum bandwidth of the terminal device is 100 MHz, the bandwidth of each BWP in the first list may not be larger than 100 MHz. In some embodiments, each BWP in the first list may have the same bandwidth. Alternatively, one or more BWPs in the first list may have a different bandwidth. In this way, configuring bandwidth of a BWP less than UE RF bandwidth can reuse the conventional implementation as much as possible to reduce implementation complexity.
In some example embodiments, the configuration may further indicate a relation between a specific BWP in the first list of BWPs and a BWP switching occasion where the specific BWP is active. In other words, for the m-th BWP switching occasion, m-th BWP in the additional list is active, where m may be an integer.
In some embodiments, the configuration may further indicate one or more of: a periodicity of occasions for the BWP switching, a slot for the occasions for the BWP switching, or an offset for the occasions for the BWP switching. In this case, the terminal device 110 may determine a time position of BWP switching occasions based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced. In some other embodiments, the configuration may indicate one BWP with SRS configuration and number of offsets for other BWP (s) . In this case, the other BWP (s) may have the same SRS configuration as that BWP. The BWP switching occasion or starting position of the other BWP (s) may be determined based on the BWP switching occasion for that BWP and the offset. In this way, the configuration overhead may be further reduced.
In some embodiments, the configuration may further indicate that a SRS resource is configured for each BWP in the first list of BWPs. In this case, implementation complexity may be reduced.
In other embodiments, the configuration may further indicate a first switching gap for the BWP switching. In some embodiments, the configuration may further indicate a second switching gap for switching between the first list of BWPs and a second list of BWPs. In some embodiments, the terminal device 110 may be configured with a second list of BWPs.
In some embodiments, if an active BWP in the second list of BWPs is within the first list of BWPs, the second switching gap may be disabled based on UE capability of the terminal device 110. For example, if an active BWP (for example, for a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission) in the second list is within or include the first BWP, the switching time/gap may not be needed depending on UE capability for switching between the active BWP and the BWP in the first list of BWPs.
In some embodiments, the above mentioned second list of BWPs may comprise at set of BWPs that are configured for one or more of: a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission. The second list of BWPs may comprise any suitable number of BWPs. For example, the second list of BWPs may comprise 4 BWPs. In some embodiments, the configuration may indicate a default BWP in the second list of BWPs. In some embodiments, the second list of BWPs may be used/reused as the first list of BWPs.
At block 720, the terminal device 110 performs a BWP switching between BWPs in the first list of BWPS based on a pattern. In some embodiments, the pattern may be preconfigured or predetermined. That is, the terminal device 110 may perform an autonomous BWP switching. For example, the pattern may be configured at the terminal device 110 during manufacturing. Alternatively, the pattern may be transmitted to the terminal device 110 previously. In other words, the terminal device 110 may perform the BWP switching without a dynamic indication from the network device 110 or an event trigger within the terminal device 110. The dynamic indication may comprise one or more of: downlink control information (DCI) or a medium access control control element (MAC CE) . The event trigger may comprise one or more of: a trigger for random access channel (RACH) or a timer expiry within the terminal device 110.
In some embodiments, the terminal device 110 may perform at least one uplink transmission based on a BWP switching within the pattern. In some embodiments, the terminal device 110 may receive a first indication from the network device 120. The first indication may indicate that the BWP switching is disabled or stopped. In this case, in some embodiments, the terminal device 110 may disable or stop the BWP switching based on the first indication. In some embodiments, the first indication may be transmitted in DCI. Alternatively, the first indication may be transmitted in MAC CE.
FIG. 8 shows a flowchart of an example method 800 in accordance with an embodiment of the present disclosure. The method 800 can be implemented at any suitable terminal devices. Only for the purpose of illustrations, the method 800 can be implemented at a network device 120 as shown in FIG. 1.
At block 810, the network device 120 transmits a configuration indicating a first list of BWPs to the terminal device 110. For example, the configuration may indicate a plurality of BWPs. The first list of BWPs may comprise any suitable number of BWPs. For example, the first list of BWPs may comprise 4 BWPs. In some embodiments, the configuration may indicate a default BWP in the first list of BWPs.
In some embodiments, a bandwidth of each BWP in the first list of BWPs may be within a radio frequency bandwidth of the terminal device 110. For example, if the maximum bandwidth of the terminal device 110 is 20MHz, the bandwidth of each BWP in the first list may not be larger than 20 MHz. Alternatively, if the maximum bandwidth of the terminal device is 100 MHz, the bandwidth of each BWP in the first list may not be larger than 100 MHz. In some embodiments, each BWP in the first list may have the same bandwidth. Alternatively, one or more BWPs in the first list may have a different bandwidth. In this way, configuring bandwidth of a BWP less than UE RF bandwidth can reuse the conventional implementation as much as possible to reduce implementation complexity.
In some example embodiments, the configuration may further indicate a relation between a specific BWP in the first list of BWPs and a BWP switching occasion where the specific BWP is active. In other words, for the m-th BWP switching occasion, m-th BWP in the additional list is active, where m may be an integer.
In some embodiments, the configuration may further indicate one or more of: a periodicity of occasions for the BWP switching, a slot for the occasions for the BWP switching, or an offset for the occasions for the BWP switching. In this case, the terminal  device 110 may determine a time position of BWP switching occasions based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced. In some other embodiments, the configuration may indicate one BWP with SRS configuration and number of offsets for other BWP (s) . In this case, the other BWP (s) may have the same SRS configuration as that BWP. The BWP switching occasion or starting position of the other BWP (s) may be determined based on the BWP switching occasion for that BWP and the offset. In this way, the configuration overhead may be further reduced.
In some embodiments, the configuration may further indicate that a SRS resource is configured for each BWP in the first list of BWPs. In this case, implementation complexity may be reduced.
In other embodiments, the configuration may further indicate a first switching gap for the BWP switching. In some embodiments, the configuration may further indicate a second switching gap for switching between the first list of BWPs and a second list of BWPs. In some embodiments, the terminal device 110 may be configured with a second list of BWPs. For example, the terminal device 110 may be configured with a second plurality of BWPs.
In some embodiments, if an active BWP in the second list of BWPs is within the first list of BWPs, the second switching gap may be disabled based on UE capability of the terminal device 110. For example, if an active BWP (for example, for a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission) in the second list is within or include the first BWP, the switching time/gap may not be needed depending on UE capability for switching between the active BWP and the BWP in the first list of BWPs.
In some embodiments, the above mentioned second list of BWPs may comprise at set of BWPs that are configured for one or more of: a physical uplink shared channel (PUSCH) transmission, a physical uplink control channel (PUCCH) transmission, or a SRS transmission. The second list of BWPs may comprise any suitable number of BWPs. For example, the second list of BWPs may comprise 4 BWPs. In some embodiments, the configuration may indicate a default BWP in the second list of BWPs. In some embodiments, the second list of BWPs may be used/reused as the first list of BWPs.
In some embodiments, at block 820, the network device may receive at least one uplink transmission based on a BWP switching within the pattern. In some embodiments, the network device 120 may transmit a first indication to the terminal device 110. The first  indication may indicate that the BWP switching is disabled or stopped.
FIG. 9 shows a flowchart of an example method 900 in accordance with an embodiment of the present disclosure. The method 900 can be implemented at any suitable terminal devices. Only for the purpose of illustrations, the method 900 can be implemented at a terminal device 110 as shown in FIG. 1.
At block 910, the terminal device 110 receives a configuration indicating a BWP associated to SRS positioning from the network device 120. In some embodiments, the configuration may further indicate adjacent SRS occasions in time domain having an overlapped resource in frequency domain. For example, for SRS frequency hopping with frequency position larger than 2 and overlap resources are configured/applied, each adjacent occasion in time may have the overlapped resources in frequency. In this way, phase compensation can be performed by the terminal device 110 based on the adjacent SRS occasions.
According to conventional SRS frequency hopping is trying to sense the wide bandwidth as quickly as possible. Combination on different frequency part on one hand is not needed and on the other hand UE may maintain the same phase due to the wide RF bandwidth. Thus, there is a large gap between each adjacent hop. While for redcap UE with narrow RF bandwidth, phase rotation may be introduced for each hop and overlapped part are needed for combination processing. If a large gap is used between adjacent hop, on one hand early processing when only part of transmission, for example, 1st and 2nd hopping, are not possible due to no overlapped part between 1st and 2nd hopping to do phase compensation, on the other hand that phase compensation performance may not be good if the overlapped hopping occasion have larger time separation. Unlike the conventional SRS frequency hopping, according to embodiments of the present disclosure, adjacent SRS occasions in time domain may have an overlapped resource in frequency domain. In this way, the phase compensation performance can be improved.
In some embodiments, the BWP may not be smaller than a RF bandwidth of the terminal device 110. For example, if the maximum bandwidth of the terminal device 110 is 20MHz, the bandwidth of the BWP may not be smaller than 20 MHz. Alternatively, if the maximum bandwidth of the terminal device is 100 MHz, the bandwidth of the BWP may not be smaller than 100 MHz.
In some embodiments, the configuration may further indicate one or more of: a  periodicity of a set of SRS occasions, a slot for the occasions for the set of SRS occasions, or an offset for the set of SRS occasions. In this case, the terminal device 110 may determine a time position of each SRS occasion based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced. For example, if the configuration indicates the periodicity, the slot and the offset of the SRS occasion 620-1, the terminal device 110 may determine the time positions of other SRS occasions.
In some embodiments, the configuration may further indicate that a SRS resource is configured for the BWP. In this case, implementation complexity may be reduced.
In other embodiments, the configuration may further indicate a gap for the radio frequency (RF) tunning that is applied for the SRS frequency hopping. The gap for RF tunning may be applied for each frequency hop except repetition on the same frequency position.
In some embodiments, at block 920, the terminal device 110 performs a SRS frequency hopping based on the set of SRS occasions within the BWP. For example, the terminal device 110 may transmit a first SRS in a first SRS occasion. The terminal device 110 may transmit a second SRS in a second SRS occasion. Additionally, one example of SRS frequency hopping may be P (n) = M + (n mod M) *D, where P (n) is the frequency position for the n-th hop, M is the configured static frequency position determined by RRC and D is the configured gap for each hop. If D is less than SRS transmission bandwidth, it may have overlapped resources for each hop.
FIG. 10 shows a flowchart of an example method 1000 in accordance with an embodiment of the present disclosure. The method 1000 can be implemented at any suitable terminal devices. Only for the purpose of illustrations, the method 1000 can be implemented at a network device 120 as shown in FIG. 1.
At block 1010, the network device 120 transmits a configuration indicating a BWP associated to SRS positioning to the terminal device 110. In some embodiments, the configuration may further indicate adjacent SRS occasions in time domain having an overlapped resource in frequency domain. For example, for SRS frequency hopping with frequency position larger than 2 and overlap resources are configured/applied, each adjacent occasion in time may have the overlapped resources in frequency. In this way, phase compensation can be performed by the terminal device 110 based on the adjacent SRS occasions.
According to conventional SRS frequency hopping is trying to sense the wide bandwidth as quickly as possible. Combination on different frequency part on one hand is not needed and on the other hand UE may maintain the same phase due to the wide RF bandwidth. Thus, there is a large gap between each adjacent hop. While for redcap UE with narrow RF bandwidth, phase rotation may be introduced for each hop and overlapped part are needed for combination processing. If a large gap is used between adjacent hop, on one hand early processing when only part of transmission, for example, 1st and 2nd hopping, are not possible due to no overlapped part between 1st and 2nd hopping to do phase compensation, on the other hand that phase compensation performance may not be good if the overlapped hopping occasion have larger time separation. Unlike the conventional SRS frequency hopping, according to embodiments of the present disclosure, adjacent SRS occasions in time domain may have an overlapped resource in frequency domain. In this way, the phase compensation performance can be improved.
In some embodiments, the BWP may not be smaller than a RF bandwidth of the terminal device 110. For example, if the maximum bandwidth of the terminal device 110 is 20MHz, the bandwidth of the BWP may not be smaller than 20 MHz. Alternatively, if the maximum bandwidth of the terminal device is 100 MHz, the bandwidth of the BWP may not be smaller than 100 MHz.
In some embodiments, the configuration may further indicate one or more of: a periodicity of a set of SRS occasions, a slot for the occasions for the set of SRS occasions, or an offset for the set of SRS occasions. In this case, the terminal device 110 may determine a time position of each SRS occasion based on the periodicity, the slot and the offset. In this way, the configuration overhead may be reduced. For example, if the configuration indicates the periodicity, the slot and the offset of the SRS occasion 620-1, the terminal device 110 may determine the time positions of other SRS occasions.
In some embodiments, the configuration may further indicate that a SRS resource is configured for the BWP. In this case, implementation complexity may be reduced.
In other embodiments, the configuration may further indicate a gap for the radio frequency (RF) tunning that is applied for the SRS frequency hopping. The gap for RF tunning may be applied for each frequency hop except repetition on the same frequency position.
In some embodiments, at block 1020, the network device 120 may receive a SRS  based on the SRS frequency hopping based on the set of SRS occasions within the BWP. For example, the network device may receive a first SRS in a first SRS occasion of the set of SRS occasions and may receive a second SRS in a second SRS occasion of the set of SRS occasions.
FIG. 11 is a simplified block diagram of a device 1100 that is suitable for implementing embodiments of the present disclosure. The device 1100 can be considered as a further example implementation of the terminal device 110 or the network device 120 as shown in FIG. 1. Accordingly, the device 1100 can be implemented at or as at least a part of the terminal device 110 or the network device 120.
As shown, the device 1100 includes a processor 1110, a memory 1120 coupled to the processor 1110, a suitable transmitter (TX) /receiver (RX) 1140 coupled to the processor 1110, and a communication interface coupled to the TX/RX 1140. The memory 1110 stores at least a part of a program 1130. The TX/RX 1140 is for bidirectional communications. The TX/RX 1140 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2/Xn interface for bidirectional communications between eNBs/gNBs, S1/NG interface for communication between a Mobility Management Entity (MME) /Access and Mobility Management Function (AMF) /SGW/UPF and the eNB/gNB, Un interface for communication between the eNB/gNB and a relay node (RN) , or Uu interface for communication between the eNB/gNB and a terminal device.
The program 1130 is assumed to include program instructions that, when executed by the associated processor 1110, enable the device 1100 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1 to 11. The embodiments herein may be implemented by computer software executable by the processor 1110 of the device 1100, or by hardware, or by a combination of software and hardware. The processor 1110 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 1110 and memory 1120 may form processing means 1150 adapted to implement various embodiments of the present disclosure.
The memory 1120 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory  computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1120 is shown in the device 1100, there may be several physically distinct memory modules in the device 1100. The processor 1110 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1100 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
In some embodiments, a terminal device comprises a circuitry configured to perform: receiving, from a network device, a configuration indicating a first list of bandwidth parts (BWPs) ; and performing a BWP switching between BWPs in the first list of BWPs based on a pattern. In some embodiments, the circuitry may be configured to perform the above methods.
In some embodiments, the terminal device comprises a circuitry configured to perform: receiving, from the network device, a first indication, wherein the first indication indicates that the BWP switching is disabled or stopped. In some embodiments, the circuitry may be configured to perform the above methods.
In some embodiments, a network device comprises a circuitry configured to: transmitting, to a terminal device, a configuration indicating a first list of bandwidth parts (BWPs) . In some embodiments, the circuitry may be configured to perform the above methods.
In some embodiments, a network device comprises a circuitry configured to perform: transmitting, to a terminal device, a configuration indicating a bandwidth part (BWP) associated to sounding reference signal (SRS) positioning. In some embodiments, the circuitry may be configured to perform the above methods.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a  terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
In summary, embodiments of the present disclosure provide the following solutions.
In another one, a device of communication comprises: a processor configured to cause the device to perform any of the methods above.
In another solution, a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform any of the methods above.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGs. 1 to 10. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program  modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (20)

  1. A communication method, comprising;
    receiving, at a terminal device and from a network device, a configuration indicating a first list of bandwidth parts (BWPs) ; and
    performing a BWP switching between BWPs in the first list of BWPs based on a pattern.
  2. The method of claim 1, wherein the BWP switching is performed without a dynamic indication from the network device or an event trigger within the terminal device.
  3. The method of claim 1, wherein a bandwidth of each BWP in the first list of BWPs is within a radio frequency bandwidth of the terminal device.
  4. The method of claim 1, wherein the configuration further indicates a relation between a specific BWP in the first list of BWPs and a BWP switching occasion where the specific BWP is active.
  5. The method of claim 1, wherein the configuration further indicates at least one of:
    a periodicity of occasions for the BWP switching,
    a slot for the occasions for the BWP switching, or
    an offset for the occasions for the BWP switching.
  6. The method of claim 1, wherein the configuration further indicates that a sounding reference signal (SRS) resource is configured for each BWP in the first list of BWPs.
  7. The method of claim 1, wherein the configuration further indicates a first switching gap for the BWP switching.
  8. The method of claim 1, wherein the configuration further indicates a second switching gap for switching between the first list of BWPs and a second list of BWPs.
  9. The method of claim 8, wherein if an active BWP in the second list of BWPs is within the first list of BWPs, the second switching gap is disabled based on user equipment (UE) capability of the terminal device.
  10. The method of claim 8 or 9, , the second list of BWPs comprises a set of BWPs that are configured for at least one of:
    a physical uplink shared channel,
    a physical uplink control channel, or
    a SRS transmission.
  11. The method of claim 1, further comprising:
    receiving, from the network device, a first indication, wherein the first indication indicates that the BWP switching is disabled or stopped.
  12. The method of any of claims 1-11, wherein the terminal device is a Redcap terminal device.
  13. A communication method, comprises:
    receiving, at a terminal device and from a network device, a configuration indicating a bandwidth part (BWP) associated to sounding reference signal (SRS) positioning; and
    performing a SRS frequency hopping based on a set of SRS occasions within the BWP, the configuration further indicating adjacent SRS occasions in time domain having an overlapped resource in frequency domain.
  14. The method of claim 13, wherein the BWP is not smaller than a radio frequency (RF) bandwidth of the terminal device.
  15. The method of claim 13, wherein the configuration also indicates at least one of:
    a periodicity of the set of SRS occasions,
    a slot for the set of SRS occasions, or
    an offset for the set of SRS occasions.
  16. The method of claim 13, wherein the configuration also indicates a SRS resource configured for the BWP.
  17. The method of claim 13, wherein the configuration also indicates a gap for radio frequency tunning that is applied for the SRS frequency hopping.
  18. The method of any of claims 13-17, wherein the terminal device is a reduced capability terminal device.
  19. A terminal device comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform acts comprising the method according to any of claims 1-12 or any of claims 13-18.
  20. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of claims 1-12 or any of claims 13-18.
PCT/CN2022/123466 2022-09-30 2022-09-30 Method, device and computer storage medium of communication WO2024065756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123466 WO2024065756A1 (en) 2022-09-30 2022-09-30 Method, device and computer storage medium of communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123466 WO2024065756A1 (en) 2022-09-30 2022-09-30 Method, device and computer storage medium of communication

Publications (1)

Publication Number Publication Date
WO2024065756A1 true WO2024065756A1 (en) 2024-04-04

Family

ID=90475733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123466 WO2024065756A1 (en) 2022-09-30 2022-09-30 Method, device and computer storage medium of communication

Country Status (1)

Country Link
WO (1) WO2024065756A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586708A (en) * 2019-02-15 2020-08-25 中兴通讯股份有限公司 Method, device and system for transmitting sounding reference signal
US20210392614A1 (en) * 2020-06-15 2021-12-16 Qualcomm Incorporated Paging operation with narrow bandwidth part frequency hopping
US20220167338A1 (en) * 2019-08-09 2022-05-26 Zte Corporation Transmission resource switching
CN114651453A (en) * 2020-01-15 2022-06-21 Oppo广东移动通信有限公司 Service transmission method and device, terminal equipment and network equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111586708A (en) * 2019-02-15 2020-08-25 中兴通讯股份有限公司 Method, device and system for transmitting sounding reference signal
US20220167338A1 (en) * 2019-08-09 2022-05-26 Zte Corporation Transmission resource switching
CN114651453A (en) * 2020-01-15 2022-06-21 Oppo广东移动通信有限公司 Service transmission method and device, terminal equipment and network equipment
US20210392614A1 (en) * 2020-06-15 2021-12-16 Qualcomm Incorporated Paging operation with narrow bandwidth part frequency hopping

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "UL SRS design for beam management and CSI acquisition", 3GPP DRAFT; R1-1715474, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Nagoya, Japan; 20170918 - 20170921, 8 September 2017 (2017-09-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051328936 *
MEDIATEK INC.: "BWP switch test case design", 3GPP DRAFT; R4-1812527 BWP SWITCHING TEST CASE DESIGN, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG4, no. Chengdu, China; 20181008 - 20181012, 28 September 2018 (2018-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051581250 *

Similar Documents

Publication Publication Date Title
WO2024065756A1 (en) Method, device and computer storage medium of communication
WO2023050220A1 (en) Method, device and computer readable medium for communication
WO2024040539A1 (en) Methods, devices, and computer readable medium for communication
WO2023184273A1 (en) Method, device and computer storage medium of communication
WO2023141999A1 (en) Method, device and computer storage medium of communication
WO2023102841A1 (en) Method, device and computer storage medium of communication
WO2023087175A1 (en) Method, device and computer readable medium for communications
WO2024031260A1 (en) Method, device and computer storage medium of communication
WO2023070352A1 (en) Method, device and computer storage medium of communication
WO2024044907A1 (en) Methods, devices, and computer readable medium for communication
WO2023178478A1 (en) Method, device and computer storage medium of communication
WO2024050844A1 (en) Method, device and computer storage medium of communication
WO2023168603A1 (en) Method, device and computer storage medium of communication
WO2024087233A1 (en) Method, device and computer storage medium of communication
WO2023137721A1 (en) Methods, devices, and computer readable medium for communication
WO2023142000A1 (en) Methods, devices and computer storage media for communication
WO2023070397A1 (en) Method, device and computer readable medium for communication
WO2023245669A1 (en) Method, device and computer storage medium of communication
WO2024060246A1 (en) Method, device and computer storage medium of communication
WO2023173341A1 (en) Methods, devices, and computer readable medium for communication
WO2023240484A1 (en) Method, device and computer storage medium of communication
WO2023097657A1 (en) Method, device and computer storage medium of communication
WO2023197175A1 (en) Method, device and computer readable medium for communications
WO2023141941A1 (en) Methods, devices, and computer readable medium for communication
WO2023178625A1 (en) Methods, devices and computer readable media for communications