WO2023087175A1 - Method, device and computer readable medium for communications - Google Patents

Method, device and computer readable medium for communications Download PDF

Info

Publication number
WO2023087175A1
WO2023087175A1 PCT/CN2021/131194 CN2021131194W WO2023087175A1 WO 2023087175 A1 WO2023087175 A1 WO 2023087175A1 CN 2021131194 W CN2021131194 W CN 2021131194W WO 2023087175 A1 WO2023087175 A1 WO 2023087175A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
candidate
bwp
sequence
configuration information
Prior art date
Application number
PCT/CN2021/131194
Other languages
French (fr)
Inventor
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2021/131194 priority Critical patent/WO2023087175A1/en
Publication of WO2023087175A1 publication Critical patent/WO2023087175A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0096Indication of changes in allocation
    • H04L5/0098Signalling of the activation or deactivation of component carriers, subcarriers or frequency bands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer readable media for communications.
  • Non-Terristrial Network may provide access to a terminal device by serving it through a satellite.
  • a beam footprint (or spot beam) created by a beam of the satellite may be handled as either “cell” or “beam” as defined in NR Release 15.
  • the available serving duration for each beam will be less than three seconds in some case. All terminal devices served by the beam should switch to a new serving beam when the serving time of current beam is over.
  • each of Bandwidth Part (BWP) switching and beam switching is done with a respective signaling specific to the terminal device. This will result in a large signaling overhead.
  • BWP Bandwidth Part
  • example embodiments of the present disclosure provide methods, devices and computer readable media for communications.
  • a method for communications comprises: receiving, from a network device, first configuration information about beam switching and BWP switching; and in response to trigger of at least one of the beam switching and the BWP switching, performing the beam switching and the BWP switching based on the first configuration information.
  • a method for communications comprises: determining first configuration information about beam switching and BWP switching; and transmitting the first configuration information to a terminal device.
  • a terminal device comprising a processor and a memory storing instructions.
  • the memory and the instructions are configured, with the processor, to cause the terminal device to perform the method according to the first aspect.
  • a network device comprising a processor and a memory storing instructions.
  • the memory and the instructions are configured, with the processor, to cause the network device to perform the method according to the second aspect.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor of a device, cause the device to perform the method according to the first aspect.
  • a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor of a device, cause the device to perform the method according to the second aspect.
  • Fig. 1 illustrates an example communication network in which implementations of the present disclosure can be implemented
  • Fig. 2 illustrates a signaling chart illustrating a process for beam switching and the BWP switching according to some example embodiments of the present disclosure
  • Figs. 3 and 4 illustrate an example of the association between candidate beams and candidate BWPs according to some example embodiments of the present disclosure, respectively;
  • Fig. 5 illustrates a flowchart of an example method in accordance with some embodiments of the present disclosure
  • Fig. 6 illustrates a flowchart of an example method in accordance with other embodiments of the present disclosure.
  • Fig. 7 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV)
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
  • network device refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a low power node such as a fe
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • AI Artificial intelligence
  • Machine learning capability it generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connection with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • test equipment e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator
  • the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’
  • the term ‘based on’ is to be read as ‘at least in part based on. ’
  • the term ‘some embodiments’ and ‘an embodiment’ are to be read as ‘at least some embodiments. ’
  • the term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’
  • the terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • Fig. 1 illustrates a schematic diagram of an example communication network 100 in which embodiments of the present disclosure can be implemented.
  • the communication network 100 may be implemented as an NTN.
  • the communication network 100 may include a terminal device 110, a network device 120, a gateway 130 and a satellite (or UAS platform) 140.
  • the NTN may use radio frequency (RF) resources on board the satellite (or UAS platform) 140.
  • the NTN may provide access to the terminal device 110 by serving it through the satellite 140.
  • RF radio frequency
  • the satellite (or UAS platform) 140 may implement either a transparent or a regenerative (with on board processing) payload.
  • the satellite (or UAS platform) 140 may typically generate several beams over a given service area bounded by its field of view.
  • the footprints of the beams are typically of elliptic shape.
  • the field of view of the satellites (or UAS platform) 140 depends on the on board antenna diagram and min elevation angle.
  • a beam footprint (or spot beam) created by a beam of the satellite 140 may be handled as either “cell” or “beam” as defined in NR Release 15.
  • the available serving duration for each beam will be less than 3 seconds. All terminal devices served by the beam should switch to a new serving beam when the serving time of current beam is over.
  • the beam footprint differs from the beam in NR Release 15 in that the beam footprint is in different locations without overlap or with only partial overlap.
  • the communication network 100 may include any suitable number of network devices and/or terminal devices adapted for implementing implementations of the present disclosure.
  • the communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , LTE, LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like.
  • GSM Global System for Mobile Communications
  • LTE LTE
  • LTE-Evolution LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GERAN GSM EDGE Radio Access Network
  • MTC Machine Type Communication
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G)
  • mapping satellite beams and physical cell indicator (PCI) for NTN.
  • PCI physical cell indicator
  • a first option there are multiple beams per PCI.
  • Layer 1 (L1) beam switching procedures for satellite service link switching (mainly for LEO satellite operation) is used.
  • Frequency reuse scheme is provided for NTN deployment using NR BWP concept for multiple beams per cell layout and using beam management (BM) for handling mobility of a terminal device within the same cell.
  • BM beam management
  • NR BWP is not directly associated with a beam.
  • TCI Transmission Configuration Indicator
  • Embodiments of the present disclosure provide a solution for beam switching and BWP switching so as to solve the above problems and one or more of other potential problems.
  • a terminal device receives, from a network device, first configuration information about beam switching and BWP switching.
  • the terminal device performs the beam switching and the BWP switching based on the first configuration information.
  • fast and frequent beam switching and beam switching may be implemented at the same time without large signaling overhead and long latency.
  • Fig. 2 shows a signaling chart illustrating a process 200 for beam switching and the BWP switching according to some example embodiments of the present disclosure.
  • the process 200 will be described with reference to Fig. 1.
  • the process 200 may involve the terminal device 110 and the network device 120 as illustrated in Fig. 1.
  • the process 200 has been described in the communication network 100 of Fig. 1, this process may be likewise applied to other communication scenarios.
  • the network device 120 determines (220) first configuration information about beam switching and BWP switching.
  • the terminal device 110 may transmit (210) location information about the terminal device 110 to the network device 120.
  • the terminal device 110 may transmit the location information through a Media Access Control Control Element (MAC CE) on Physical Uplink Control Channel (PUCCH) or piggybacked on Physical Uplink Shared Channel (PUSCH) .
  • MAC CE Media Access Control Control Element
  • PUCCH Physical Uplink Control Channel
  • PUSCH Physical Uplink Shared Channel
  • the terminal device 110 may transmit the location information based on a priority of the location information and a priority of a Hybrid Automatic Repeat Request (HARQ) feedback.
  • HARQ Hybrid Automatic Repeat Request
  • the terminal device 110 may transmit the location information on a first resource.
  • the first resource is prior to a second resource for mapping the HARQ feedback in time domain.
  • the terminal device 110 may transmit the location information on a third resource.
  • the third resource is subsequent to a fourth resource for transmitting the HARQ feedback in time domain.
  • the terminal device 110 may transmit the location information on a fifth resource for transmitting the HARQ feedback.
  • the network device 120 may determine the first configuration information at least based on the location information. For example, the network device 120 may determine the first configuration information based on the location information, ephemeris data of the satellite 140 and polarization information about candidate beams. In this way, enhancement of beam management may be considered or new beam switching procedure may be considered as the satellite moving trace can be predicted.
  • the network device 120 transmits (230) the first configuration information about beam switching and BWP switching to the terminal device 110.
  • the terminal device 110 In response to trigger of at least one of the beam switching and the BWP switching, the terminal device 110 performs (240) the beam switching and the BWP switching based on the first configuration information.
  • beam switching may result in BWP switching. Once the beam switching is triggered, the BWP switching is triggered at the same time.
  • At least one of candidate beams may be associated with at least one candidate BWP. Association between candidate beams and candidate BWPs may be pre-configured or predefined, which will be described in detail later.
  • the first configuration information may indicate a sequence of candidate beams and a sequence of timers. At least one of the candidate beams may be associated with at least one candidate BWP.
  • the sequence of candidate beams may comprise a sequence of TCI states.
  • Each of the TCI state may represent one of the candidate beams.
  • the sequence of TCI states may be ⁇ TCI state #2, TCI state #4, TCI state #6, TCI state #1 ⁇ .
  • each of the times may be associated with an order for the beam switching.
  • timer #1 may be used to indicate changing TCI state #2 to TCI state #4 and timer #2 may be used to indicate changing TCI state #4 to TCI state #6 and so on.
  • a duration of a timer may be equal to a service duration of a respective beam.
  • At least one of the beam switching and the BWP switching may be triggered based on the sequence of timers. For example, in response to an expiration of one of the timers, the terminal device 110 may switch from a serving beam to a candidate beam based on the sequence of candidate beams, and switch from an active BWP to a candidate BWP associated with the candidate beam.
  • the terminal device 110 may perform the UL BWP switching and DL BWP switching at the same time.
  • At least one of candidate beams is associated with at least one candidate BWP
  • at least one of the beam switching and the BWP switching may be triggered based on one of the following: reception of a predefined MAC CE, detection of predefined downlink control information (DCI) , or detection of a predefined reference signal (RS) .
  • DCI downlink control information
  • RS predefined reference signal
  • the DCI may be scrambled by a specific identity to the terminal device 110.
  • the RS may include but are not limited to Primary Synchronization Signal (PSS) , Secondary Synchronization Signal (SSS) , Demodulation Reference Signal (DMRS) , Phase Tracking Reference Signal (PTRS) and CSI-RS.
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • DMRS Demodulation Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CSI-RS CSI-RS.
  • the terminal device 110 may receive, from the network device 120, second configuration information about a plurality of sequences of candidate beams.
  • the plurality of sequences of candidate beams comprises the sequence of the candidate beams.
  • the first configuration information about the beam switching and the BWP switching may indicate that the sequence of candidate beams is activated.
  • the the first configuration information about the beam switching and the BWP switching may indicate that the sequence #2 is activated.
  • the terminal device 110 may receive the first configuration information about the beam switching and the BWP switching via an MAC CE. Further, upon detection of the predefined DCI or RS, the terminal device 110 may perform the beam switching and BWP switching.
  • the association between candidate beams and candidate BWPs may be pre-configured or predefined. In this way, once the beam switching is triggered, the terminal device 110 may perform the BWP switching based on the association. Thus, the bits in DCI for triggering the BWP switching can be reserved.
  • one BWP may be used for each satellite beam and one beam may be mapped to one BWP, as shown in Fig. 3.
  • the number of configured BWPs per terminal device may be larger than 4.
  • the beam may be identified from detected Synchronization Signal Block (SSB) or CSI-RS by the terminal device 110. Therefore, the association between candidate beams and candidate BWP may be set up by association between CSI-RS resource index and BWP.
  • SSB Synchronization Signal Block
  • each cell may be covered with multiple beams and each beam may be associated with a BWP.
  • neighbor beams are assigned with different BWP indices and a single BWP can be reused for not adjacent beams. This will be described with reference to Fig. 4.
  • FPF frequency reuse factor
  • the BWP should also be switched to the related BWP. For example, if the beam is switched from beam 1 to beam 3, the active BWP may also be switched from BWP 1 to BWP 3.
  • At least one of candidate beams may not be associated with at least one candidate BWP.
  • association between candidate beams and candidate BWPs may not be pre-configured or predefined.
  • information about a candidate beam or candidate BWP may be configured by the network device 120.
  • the first configuration information may indicate: a sequence of candidate beams, a sequence of timers, and a sequence of frequency offsets associated with candidate BWPs.
  • the frequency offsets may be predefined or configured as a fixed value.
  • At least one of the beam switching and the BWP switching may be triggered based on the sequence of timers. For example, in response to an expiration of one of the timers, the terminal device 110 may switch from a serving beam to a candidate beam based on the sequence of candidate beams, and switch from an active BWP to a candidate BWP based on an active BWP and the sequence of frequency offsets.
  • the first configuration information may indicate a sequence of candidate beams and a sequence of timers.
  • the terminal device 110 may receive, from the network device 120, an MAC CE or DCI that indicates a candidate BWP.
  • At least one of the beam switching and the BWP switching may be triggered based on the sequence of timers. For example, in response to an expiration of one of the timers, the terminal device 110 may switch from a serving beam to a candidate beam based on the sequence of candidate beams, and switch from an active BWP to the candidate BWP indicated in the MAC CE or DCI.
  • the first configuration information may indicate a sequence of candidate BWPs and a sequence of timers.
  • the terminal device 110 may receive, from the network device 120, an MAC CE or DCI that indicates a candidate beam.
  • At least one of the beam switching and the BWP switching may be triggered based on the sequence of timers. For example, in response to an expiration of one of the timers, the terminal device 110 may switch from a serving beam to the candidate beam indicated in the MAC CE or DCI, and switch from an active BWP to a candidate BWP based on the sequence of candidate BWPs.
  • DCI that is scrambled by a specific identity to the terminal device 110 may be used for triggering BWP switching or beam switching even no UL or DL data is scheduled.
  • the DCI format 1_1 or DCI format 1_2 may be used, or DCI format 1_x may be defined to indicate BWP switching or beam switching without PDSCH being scheduled, where x represent an integer.
  • the BWP switching or beam switching indication may comprise information about a candidate beam or candidate BWP, or a beam list or BWP list.
  • All bits of frequency domain resource assignment are set to 0 for resource allocation type 0 or set to 1 for resource allocation type 1 or set to 0 or 1 for dynamic switch resource allocation type.
  • DCI for a group of terminal devices may be used for indicating beam or BWP switching information for a group of terminal devices.
  • the group of terminal devices comprises the terminal device 110.
  • a group common DCI may be used to enable group-specific terminal device to perform beam switching. In this way, DCI signaling overhead may be reduced.
  • the terminal devices may transmit respective location information to the network device 120 through PUCCH or PUSCH as mentioned above.
  • the network device 120 may divide the terminal devices according to locations of the satellite 140 and the terminal devices.
  • the terminal devices located in the same geographic area can be divided to the same group for sharing information about a candidate beam or BWP.
  • the network device 120 may transmit the group common DCI to the group of terminal devices. How to indicate the information about a candidate beam or BWP will be described later. The information about a candidate beam or BWP is valid even no new data is scheduled. Upon receiving the group common DCI, the terminal devices in the same group share the same TCI state or BWP.
  • the information about a candidate beam or BWP may be carried by DCI format 2_x, where x represent an integer.
  • DCI format 2_0 may be reused for notifying the beam switching.
  • the existing bits such as the bits for COT duration, available RB set, and search space set group switching indication may be reused for carrying this information.
  • the information about a candidate beam or BWP may be one of the following: information about a candidate beam, such as a new TCI state, or a new BWP id; and beam switching list information for a time duration or a timer. If the time duration reaches, the beam switching and the BWP switching are performed according to the list.
  • the below revision may be added to TS 38.212 in section 7.3.1.3.1:
  • Beam switching flag 1 Beam switching flag 2 .
  • the beam switching flag 1 is used for indicating the beam #1 is to be switched to beam #2, or no matter what beam the existing beam is, the next beam is beam #2.
  • a common DCI scrambled with a new common Radio Network Temporary Identity may be used to switch beam or BWP.
  • RNTI Radio Network Temporary Identity
  • DCI format 2_2 is applicable for beam switching indication to a group of terminal devices.
  • the below description may be included in T38.213 section 11.3:
  • a terminal device For NTN, a terminal device may be provided
  • Beamswitching-RNTI for a DCI format 2_2 by Beamswitching-RNTI.
  • DCI format 2_2 is a beam switching command of N bits for a group of terminal devices.
  • DCI format 2_3 is applicable for beam switching indication to a group of terminal devices.
  • a field of configuration type in DCI format 2_3 may be used for the beam switching. The below description may be included in TS38.213 section 11.4:
  • DCI format 2_3 field includes a beam switching command for a group of terminal device for NTN.
  • a new DCI format (that is, a dedicated DCI) , such as DCI format 2_5, may be defined to carry this information.
  • the terminal device 110 is provided with beamswitching, the terminal device 110 is configured with a beamswitching-RNTI provided by a parameter beamswitching-RNTI for monitoring PDCCH conveying DCI format 2_5.
  • Fig. 5 illustrates a flowchart of an example method 500 in accordance with some embodiments of the present disclosure.
  • the method 500 can be implemented at a terminal device, such as the terminal device 110 as shown in Fig. 1.
  • the method 500 will be described with reference to Fig. 1 as performed by the terminal device 110 without loss of generality.
  • the terminal device 110 receives, from the network device 120, first configuration information about beam switching and BWP switching.
  • the terminal device 110 performs the beam switching and the BWP switching based on the first configuration information.
  • the first configuration information indicates: a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP, and a sequence of timers.
  • the terminal device 110 switches from a serving beam to a candidate beam based on the sequence of candidate beams, and switches from an active BWP to a candidate BWP associated with the candidate beam.
  • the first configuration information indicates a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP.
  • the terminal device 110 switches from a serving beam to a candidate beam based on the sequence of candidate beams and switch from an active BWP to a candidate BWP associated with the candidate beam: reception of an MAC CE, detection of predefined DCI, or detection of a predefined reference signal.
  • the terminal device 110 receives, from the network device 120, second configuration information about a plurality of sequences of candidate beams, the plurality of sequences of candidate beams comprising the sequence of the candidate beams.
  • the first configuration information about the beam switching and the BWP switching indicates that the sequence of candidate beams is activated.
  • the first configuration information indicates: a sequence of candidate beams, a sequence of timers, and a sequence of frequency offsets associated with candidate BWPs.
  • the terminal device 110 switches from a serving beam to a candidate beam based on the sequence of candidate beams, and switches from an active BWP to a candidate BWP based on an active BWP and the sequence of frequency offsets.
  • the first configuration information indicates: a sequence of candidate beams, and a sequence of timers.
  • the terminal device 110 receives, from the network device 120, an MAC CE or DCI that indicates a candidate BWP.
  • the terminal device 110 switches from a serving beam to a candidate beam based on the sequence of candidate beams, and switches from an active BWP to the candidate BWP.
  • the first configuration information indicates: a sequence of candidate BWPs, and a sequence of timers.
  • the terminal device 110 receives, from the network device 120, an MAC CE or DCI that indicates a candidate beam.
  • the terminal device 110 switches from a serving beam to the candidate beam, and switches from an active BWP to a candidate BWP based on the sequence of candidate BWPs.
  • the DCI indicates that no uplink or downlink data is scheduled.
  • the DCI is scrambled with an identity specific to a group of terminal devices.
  • the DCI comprises a command for beam switching and BWP switching for a group of terminal devices.
  • the DCI comprises dedicated DCI for beam switching and BWP switching for a group of terminal devices.
  • the terminal device 110 transmits location information about the terminal device 110 to the network device 120, the first configuration information being determined at least based on the location information.
  • a priority of the location information is higher than a priority of a Hybrid Automatic Repeat Request (HARQ) feedback.
  • the terminal device 110 transmits the location information on a first resource, the first resource being prior to a second resource for mapping the HARQ feedback in time domain.
  • HARQ Hybrid Automatic Repeat Request
  • a priority of the location information is equal to a priority of a HARQ feedback.
  • the terminal device 110 transmits the location information on a third resource, the third resource being subsequent to a fourth resource for transmitting the HARQ feedback in time domain.
  • the terminal device 110 determines that a HARQ feedback is disabled, the terminal device 110 transmits the location information on a fifth resource for transmitting the HARQ feedback.
  • Fig. 6 illustrates a flowchart of an example method 600 in accordance with some embodiments of the present disclosure.
  • the method 600 can be implemented at a network device, such as the network device 120 as shown in Fig. 1.
  • the method 600 will be described with reference to Fig. 1 as performed by the network device 120 without loss of generality.
  • the network device 120 determines first configuration information about beam switching and BWP switching.
  • the network device 120 transmits the first configuration information to the terminal device 110.
  • the first configuration information indicates: a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP, and a sequence of timers for trigger of at least one of the beam switching and the BWP switching.
  • the first configuration information indicates a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP.
  • the network device 120 transmits one of the following for trigger of at least one of the beam switching and the BWP switching: a predefined MAC CE, predefined DCI, or a predefined reference signal.
  • the network device 120 transmits, to the terminal device 110, second configuration information about a plurality of sequences of candidate beams, the plurality of sequences of candidate beams comprising the sequence of the candidate beams.
  • the first configuration information about the beam switching and the BWP switching indicates that the sequence of candidate beams is activated.
  • the first configuration information indicates: a sequence of candidate beams, a sequence of timers for trigger of at least one of the beam switching and the BWP switching, and a sequence of frequency offsets associated with candidate BWPs.
  • the first configuration information indicates: a sequence of candidate beams, and a sequence of timers for trigger of at least one of the beam switching and the BWP switching.
  • the network device 120 transmits a MAC CE or detection of DCI that indicates a candidate BWP.
  • the first configuration information indicates: a sequence of candidate BWPs, and a sequence of timers for trigger of at least one of the beam switching and the BWP switching.
  • the network device 120 transmits a MAC CE or detection of DCI that indicates a candidate beam.
  • the DCI indicates that no uplink or downlink data is scheduled.
  • the DCI is scrambled with an identity specific to a group of terminal devices.
  • the DCI comprises a command for beam switching and BWP switching for a group of terminal devices.
  • the DCI comprises dedicated DCI for beam switching and BWP switching for a group of terminal devices.
  • the network device 120 receives location information about the terminal device 110. In such embodiments, the network device 120 determines the first configuration information at least based on the location information.
  • a priority of the location information is higher than a priority of a HARQ feedback.
  • the network device 120 receives the location information on a first resource, the first resource being prior to a second resource for mapping the HARQ feedback in time domain.
  • a priority of the location information is equal to a priority of a HARQ feedback.
  • the network device 120 receives the location information on a third resource, the third resource being subsequent to a fourth resource for receiving the HARQ feedback in time domain.
  • the network device 120 determines that a HARQ feedback is disabled, the network device 120 receives the location information on a fifth resource for receiving the HARQ feedback.
  • Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing some embodiments of the present disclosure.
  • the device 700 can be considered as a further example embodiment of the terminal device 110 or the network device 120 as shown in Fig. 1. Accordingly, the device 700 can be implemented at or as at least a part of the terminal device 110 or the network device 120.
  • the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a suitable transmitter (TX) and receiver (RX) 740 coupled to the processor 710, and a communication interface coupled to the TX/RX 740.
  • the memory 720 stores at least a part of a program 730.
  • the TX/RX 740 is for bidirectional communications.
  • the TX/RX 740 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the gNB or eNB and a relay node (RN)
  • Uu interface for communication between the gNB or eNB and a terminal device.
  • the program 730 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 1 to 6.
  • the embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware.
  • the processor 710 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 710 and memory 720 may form processing means 750 adapted to implement various embodiments of the present disclosure.
  • the memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700.
  • the processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof.
  • one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium.
  • parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components.
  • FPGAs Field-programmable Gate Arrays
  • ASICs Application-specific Integrated Circuits
  • ASSPs Application-specific Standard Products
  • SOCs System-on-a-chip systems
  • CPLDs Complex Programmable Logic Devices
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 1 to 6.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Abstract

Embodiments of the present disclosure relate to methods, devices and computer readable media for communications. A method comprises receiving, from a network device, first configuration information about beam switching and bandwidth part (BWP) switching. The method further comprises in response to trigger of at least one of the beam switching and the BWP switching, performing the beam switching and the BWP switching based on the first configuration information.

Description

METHOD, DEVICE AND COMPUTER READABLE MEDIUM FOR COMMUNICATIONS TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer readable media for communications.
BACKGROUND
Non-Terristrial Network (NTN) may provide access to a terminal device by serving it through a satellite. A beam footprint (or spot beam) created by a beam of the satellite may be handled as either “cell” or “beam” as defined in NR Release 15. The available serving duration for each beam will be less than three seconds in some case. All terminal devices served by the beam should switch to a new serving beam when the serving time of current beam is over.
In New Radio (NR) , each of Bandwidth Part (BWP) switching and beam switching is done with a respective signaling specific to the terminal device. This will result in a large signaling overhead.
SUMMARY
In general, example embodiments of the present disclosure provide methods, devices and computer readable media for communications.
In a first aspect, there is provided a method for communications. The method comprises: receiving, from a network device, first configuration information about beam switching and BWP switching; and in response to trigger of at least one of the beam switching and the BWP switching, performing the beam switching and the BWP switching based on the first configuration information.
In a second aspect, there is provided a method for communications. The method comprises: determining first configuration information about beam switching and BWP switching; and transmitting the first configuration information to a terminal device.
In a third aspect, there is provided a terminal device. The terminal device comprises a processor and a memory storing instructions. The memory and the instructions are configured, with the processor, to cause the terminal device to perform the method according to the first aspect.
In a fourth aspect, there is provided a network device. The network device comprises a processor and a memory storing instructions. The memory and the instructions are configured, with the processor, to cause the network device to perform the method according to the second aspect.
In a fifth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor of a device, cause the device to perform the method according to the first aspect.
In a sixth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor of a device, cause the device to perform the method according to the second aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
Fig. 1 illustrates an example communication network in which implementations of the present disclosure can be implemented;
Fig. 2 illustrates a signaling chart illustrating a process for beam switching and the BWP switching according to some example embodiments of the present disclosure;
Figs. 3 and 4 illustrate an example of the association between candidate beams and candidate BWPs according to some example embodiments of the present disclosure, respectively;
Fig. 5 illustrates a flowchart of an example method in accordance with some  embodiments of the present disclosure;
Fig. 6 illustrates a flowchart of an example method in accordance with other embodiments of the present disclosure; and
Fig. 7 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on  high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
The term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
The terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connection with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The embodiments of the present disclosure may be performed in test equipment, e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator
As used herein, the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’ The term ‘based on’ is to be read as ‘at least in part based on. ’ The term ‘some embodiments’ and ‘an embodiment’ are to be read as ‘at least some embodiments. ’ The term ‘another embodiment’  is to be read as ‘at least one other embodiment. ’ The terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
Fig. 1 illustrates a schematic diagram of an example communication network 100 in which embodiments of the present disclosure can be implemented. In some embodiments, the communication network 100 may be implemented as an NTN. In such embodiments, as shown in Fig. 1, the communication network 100 may include a terminal device 110, a network device 120, a gateway 130 and a satellite (or UAS platform) 140. The NTN may use radio frequency (RF) resources on board the satellite (or UAS platform) 140. The NTN may provide access to the terminal device 110 by serving it through the satellite 140.
There is a feeder link or radio link between the gateway 130 and the satellite (or UAS platform) 140. There is a service link or radio link between the terminal device 110 and the satellite (or UAS platform) 140.
The satellite (or UAS platform) 140 may implement either a transparent or a regenerative (with on board processing) payload. The satellite (or UAS platform) 140 may typically generate several beams over a given service area bounded by its field of view. The footprints of the beams are typically of elliptic shape. The field of view of the satellites (or UAS platform) 140 depends on the on board antenna diagram and min elevation angle.
A beam footprint (or spot beam) created by a beam of the satellite 140 may be handled as either “cell” or “beam” as defined in NR Release 15. The available serving duration for each beam will be less than 3 seconds. All terminal devices served by the beam should switch to a new serving beam when the serving time of current beam is over. The beam footprint differs from the beam in NR Release 15 in that the beam footprint is in different locations without overlap or with only partial overlap.
It is to be understood that the number of devices in Fig. 1 is given for the purpose of illustration without suggesting any limitations to the present disclosure. The communication network 100 may include any suitable number of network devices and/or  terminal devices adapted for implementing implementations of the present disclosure.
The communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , LTE, LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
For NR NTN, there are two options for mapping satellite beams and physical cell indicator (PCI) for NTN. In a first option, there are multiple beams per PCI. Layer 1 (L1) beam switching procedures for satellite service link switching (mainly for LEO satellite operation) is used. Frequency reuse scheme is provided for NTN deployment using NR BWP concept for multiple beams per cell layout and using beam management (BM) for handling mobility of a terminal device within the same cell. Some enhancements for BWP and BM operation are needed for this option.
In a second option, there is one beam per PCI. One beam per cell or handover procedure is used as tradition. Physical layer behaviour would be straightforward although more higher layer procedures are required due to frequent handover especially for Low Earth Orbit (LEO) .
In view of the above, there is a problem of how to implement fast and frequent beam switching and beam switching. Current NR L1 measurement and report based beam management will result in a large signaling overhead and long latency for Channel State Information Reference Signal (CSI-RS) transmissions and corresponding L1-Reference Signal Received Power (RSRP) or L1-Signal to Interference Noise Ratio (SINR) reporting, which does not meet the requirement. In addition, satellite beam switching is frequent than the existing beam switching in NR.
There is a further problem of how to implement fast beam switching and BWP switching at the same time. NR BWP is not directly associated with a beam. Thus, when using Transmission Configuration Indicator (TCI) to change beam, it does not trigger NR  BWP switching.
Embodiments of the present disclosure provide a solution for beam switching and BWP switching so as to solve the above problems and one or more of other potential problems. According to the solution, a terminal device receives, from a network device, first configuration information about beam switching and BWP switching. In response to trigger of at least one of the beam switching and the BWP switching, the terminal device performs the beam switching and the BWP switching based on the first configuration information. In this way, fast and frequent beam switching and beam switching may be implemented at the same time without large signaling overhead and long latency. Principle and implementations of the present disclosure will be described in detail below with reference to Figs. 2 to 6.
Fig. 2 shows a signaling chart illustrating a process 200 for beam switching and the BWP switching according to some example embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to Fig. 1. The process 200 may involve the terminal device 110 and the network device 120 as illustrated in Fig. 1. Although the process 200 has been described in the communication network 100 of Fig. 1, this process may be likewise applied to other communication scenarios.
As shown in Fig. 2, the network device 120 determines (220) first configuration information about beam switching and BWP switching.
In some embodiments, optionally, in order to facilitate determination of the first configuration information, the terminal device 110 may transmit (210) location information about the terminal device 110 to the network device 120.
In some embodiments, the terminal device 110 may transmit the location information through a Media Access Control Control Element (MAC CE) on Physical Uplink Control Channel (PUCCH) or piggybacked on Physical Uplink Shared Channel (PUSCH) .
In embodiments where the location information is piggybacked on PUSCH, the terminal device 110 may transmit the location information based on a priority of the location information and a priority of a Hybrid Automatic Repeat Request (HARQ) feedback.
For example, if the priority of the location information is higher than the priority of the HARQ feedback, the terminal device 110 may transmit the location information on a first resource. The first resource is prior to a second resource for mapping the HARQ feedback in  time domain.
For a further example, if the priority of the location information is equal to the priority of the HARQ feedback, the terminal device 110 may transmit the location information on a third resource. The third resource is subsequent to a fourth resource for transmitting the HARQ feedback in time domain.
For a still further example, if the terminal device 110 determines that the HARQ feedback is disabled, the terminal device 110 may transmit the location information on a fifth resource for transmitting the HARQ feedback.
Upon receiving the location information about the terminal device 110, the network device 120 may determine the first configuration information at least based on the location information. For example, the network device 120 may determine the first configuration information based on the location information, ephemeris data of the satellite 140 and polarization information about candidate beams. In this way, enhancement of beam management may be considered or new beam switching procedure may be considered as the satellite moving trace can be predicted.
In turn, the network device 120 transmits (230) the first configuration information about beam switching and BWP switching to the terminal device 110.
In response to trigger of at least one of the beam switching and the BWP switching, the terminal device 110 performs (240) the beam switching and the BWP switching based on the first configuration information.
According to the embodiments of the present disclosure, beam switching may result in BWP switching. Once the beam switching is triggered, the BWP switching is triggered at the same time.
In some embodiments, optionally, in order to facilitate that beam switching and BWP switching are performed at the same time, at least one of candidate beams may be associated with at least one candidate BWP. Association between candidate beams and candidate BWPs may be pre-configured or predefined, which will be described in detail later.
In such embodiments, the first configuration information may indicate a sequence of candidate beams and a sequence of timers. At least one of the candidate beams may be associated with at least one candidate BWP.
In such embodiments, the sequence of candidate beams may comprise a sequence of TCI states. Each of the TCI state may represent one of the candidate beams. For example, the sequence of TCI states may be {TCI state #2, TCI state #4, TCI state #6, TCI state #1} .
In such embodiments, each of the times may be associated with an order for the beam switching. For example, timer #1 may be used to indicate changing TCI state #2 to TCI state #4 and timer #2 may be used to indicate changing TCI state #4 to TCI state #6 and so on. A duration of a timer may be equal to a service duration of a respective beam.
In such embodiments, at least one of the beam switching and the BWP switching may be triggered based on the sequence of timers. For example, in response to an expiration of one of the timers, the terminal device 110 may switch from a serving beam to a candidate beam based on the sequence of candidate beams, and switch from an active BWP to a candidate BWP associated with the candidate beam.
In such embodiments, the terminal device 110 may perform the UL BWP switching and DL BWP switching at the same time.
In embodiments where at least one of candidate beams is associated with at least one candidate BWP, alternatively, at least one of the beam switching and the BWP switching may be triggered based on one of the following: reception of a predefined MAC CE, detection of predefined downlink control information (DCI) , or detection of a predefined reference signal (RS) .
In such embodiments, the DCI may be scrambled by a specific identity to the terminal device 110. Examples of the RS may include but are not limited to Primary Synchronization Signal (PSS) , Secondary Synchronization Signal (SSS) , Demodulation Reference Signal (DMRS) , Phase Tracking Reference Signal (PTRS) and CSI-RS.
In some embodiments, optionally, the terminal device 110 may receive, from the network device 120, second configuration information about a plurality of sequences of candidate beams. The plurality of sequences of candidate beams comprises the sequence of the candidate beams. In such embodiments, the first configuration information about the beam switching and the BWP switching may indicate that the sequence of candidate beams is activated.
For example, the plurality of sequences of candidate beams comprises a plurality of sequences of TCI states, such as sequence #0= {TCI state #1, #3, #5, #6, #8…#16} , sequence #1= {TCI state #3, #4, #5, #7, #8…#18} , sequence #2= {TCI state #2, #8, #15, #16,  #18…#21} , sequence #3= {TCI state #5, #6, #9, #10, #16…#22} …sequence #7= {TCI state #2, #13, #15, #11, #19…#23} . The the first configuration information about the beam switching and the BWP switching may indicate that the sequence #2 is activated.
In such embodiments, the terminal device 110 may receive the first configuration information about the beam switching and the BWP switching via an MAC CE. Further, upon detection of the predefined DCI or RS, the terminal device 110 may perform the beam switching and BWP switching.
As mentioned above, the association between candidate beams and candidate BWPs may be pre-configured or predefined. In this way, once the beam switching is triggered, the terminal device 110 may perform the BWP switching based on the association. Thus, the bits in DCI for triggering the BWP switching can be reserved.
In some embodiments, one BWP may be used for each satellite beam and one beam may be mapped to one BWP, as shown in Fig. 3. In such embodiments, the number of configured BWPs per terminal device may be larger than 4.
In some embodiments, the beam may be identified from detected Synchronization Signal Block (SSB) or CSI-RS by the terminal device 110. Therefore, the association between candidate beams and candidate BWP may be set up by association between CSI-RS resource index and BWP.
In other embodiments, each cell may be covered with multiple beams and each beam may be associated with a BWP. To realize the frequency reuse, neighbor beams are assigned with different BWP indices and a single BWP can be reused for not adjacent beams. This will be described with reference to Fig. 4.
Fig. 4 illustrates an example of the association between candidate beams and candidate BWPs. As shown, one cell may be covered with eight beams. If polarization reuse may be not enabled, for frequency reuse factor (FRF) =4, BWP 1, BWP 2, BWP 3 and BWP 4 should not overlapped in frequency. beam 1 and beam (1+4) are associated with BWP 1, beam 2 and beam (2+4) are associated with BWP 2, beam 3 and beam (3+4) are associated with BWP 3, beam 4 and beam (4+4) are associated with BWP4.
Once the beam switching is performed, the BWP should also be switched to the related BWP. For example, if the beam is switched from beam 1 to beam 3, the active BWP may also be switched from BWP 1 to BWP 3.
In other embodiments, at least one of candidate beams may not be associated with at least one candidate BWP. Thus, association between candidate beams and candidate BWPs may not be pre-configured or predefined. In such embodiments, information about a candidate beam or candidate BWP may be configured by the network device 120.
In such embodiments, the first configuration information may indicate: a sequence of candidate beams, a sequence of timers, and a sequence of frequency offsets associated with candidate BWPs. Alternatively, the frequency offsets may be predefined or configured as a fixed value.
In such embodiments, at least one of the beam switching and the BWP switching may be triggered based on the sequence of timers. For example, in response to an expiration of one of the timers, the terminal device 110 may switch from a serving beam to a candidate beam based on the sequence of candidate beams, and switch from an active BWP to a candidate BWP based on an active BWP and the sequence of frequency offsets.
In embodiments where the association between candidate beams and candidate BWPs may not be pre-configured or predefined, the first configuration information may indicate a sequence of candidate beams and a sequence of timers. In addition, the terminal device 110 may receive, from the network device 120, an MAC CE or DCI that indicates a candidate BWP.
In such embodiments, at least one of the beam switching and the BWP switching may be triggered based on the sequence of timers. For example, in response to an expiration of one of the timers, the terminal device 110 may switch from a serving beam to a candidate beam based on the sequence of candidate beams, and switch from an active BWP to the candidate BWP indicated in the MAC CE or DCI.
In embodiments where the association between candidate beams and candidate BWPs may not be pre-configured or predefined, the first configuration information may indicate a sequence of candidate BWPs and a sequence of timers. In addition, the terminal device 110 may receive, from the network device 120, an MAC CE or DCI that indicates a candidate beam.
In such embodiments, at least one of the beam switching and the BWP switching may be triggered based on the sequence of timers. For example, in response to an expiration of one of the timers, the terminal device 110 may switch from a serving beam to the candidate beam indicated in the MAC CE or DCI, and switch from an active BWP to a candidate BWP  based on the sequence of candidate BWPs.
In some embodiments, DCI that is scrambled by a specific identity to the terminal device 110 may be used for triggering BWP switching or beam switching even no UL or DL data is scheduled.
In such embodiments, the DCI format 1_1 or DCI format 1_2 may be used, or DCI format 1_x may be defined to indicate BWP switching or beam switching without PDSCH being scheduled, where x represent an integer.
In such embodiments, below description may be added in TS 38.213. The BWP switching or beam switching indication may comprise information about a candidate beam or candidate BWP, or a beam list or BWP list.
All bits of frequency domain resource assignment are set to 0 for resource allocation type 0 or set to 1 for resource allocation type 1 or set to 0 or 1 for dynamic switch resource allocation type.
The following fields are used for BWP/beam switching indication:
- Modulation and coding scheme of transport block 1
- New data indicator of transport block 1
- Redundancy version of transport block 1
- HARQ process number
- Antenna port (s)
- DMRS sequence initialization.
In some embodiments, DCI for a group of terminal devices may be used for indicating beam or BWP switching information for a group of terminal devices. The group of terminal devices comprises the terminal device 110. In other words, a group common DCI may be used to enable group-specific terminal device to perform beam switching. In this way, DCI signaling overhead may be reduced.
In such embodiments, the terminal devices may transmit respective location information to the network device 120 through PUCCH or PUSCH as mentioned above. The network device 120 may divide the terminal devices according to locations of the satellite 140 and the terminal devices. The terminal devices located in the same geographic area can be divided to the same group for sharing information about a candidate beam or BWP.
In turn, the network device 120 may transmit the group common DCI to the group of terminal devices. How to indicate the information about a candidate beam or BWP will be described later. The information about a candidate beam or BWP is valid even no new data is scheduled. Upon receiving the group common DCI, the terminal devices in the same group share the same TCI state or BWP.
In some embodiments, the information about a candidate beam or BWP may be carried by DCI format 2_x, where x represent an integer.
In some embodiments, DCI format 2_0 may be reused for notifying the beam switching. The existing bits, such as the bits for COT duration, available RB set, and search space set group switching indication may be reused for carrying this information. The information about a candidate beam or BWP may be one of the following: information about a candidate beam, such as a new TCI state, or a new BWP id; and beam switching list information for a time duration or a timer. If the time duration reaches, the beam switching and the BWP switching are performed according to the list.
In some embodiments, the below revision may be added to TS 38.212 in section 7.3.1.3.1:
The following information is transmitted by means of the DCI format 2_0 with CRC scrambled by SFI-RNTI:
If the higher layer parameter BeamList is configured
Beam 1, Beam 2, …, Beam M.
Or if the higher layer parameter BeamswitchList is configured
Beam switching flag 1, Beam switching flag 2, …, Beam switching flag M.
For example, the beam switching flag 1 is used for indicating the beam #1 is to be switched to beam #2, or no matter what beam the existing beam is, the next beam is beam #2.
In some other embodiments, a common DCI scrambled with a new common Radio Network Temporary Identity (RNTI) may be used to switch beam or BWP.
In still other embodiments, DCI format 2_2 is applicable for beam switching indication to a group of terminal devices. In such embodiments, the below description may be included in T38.213 section 11.3:
For NTN, a terminal device may be provided
- a Beamswitching-RNTI for a DCI format 2_2 by Beamswitching-RNTI.
- a field in DCI format 2_2 is a beam switching command of N bits for a group of terminal devices.
In still other embodiments, DCI format 2_3 is applicable for beam switching indication to a group of terminal devices. In such embodiments, a field of configuration type in DCI format 2_3 may be used for the beam switching. The below description may be included in TS38.213 section 11.4:
For type C, DCI format 2_3 field includes a beam switching command for a group of terminal device for NTN.
In yet other embodiments, a new DCI format (that is, a dedicated DCI) , such as DCI format 2_5, may be defined to carry this information. If the terminal device 110 is provided with beamswitching, the terminal device 110 is configured with a beamswitching-RNTI provided by a parameter beamswitching-RNTI for monitoring PDCCH conveying DCI format 2_5.
Fig. 5 illustrates a flowchart of an example method 500 in accordance with some embodiments of the present disclosure. In some embodiments, the method 500 can be implemented at a terminal device, such as the terminal device 110 as shown in Fig. 1. For the purpose of discussion, the method 500 will be described with reference to Fig. 1 as performed by the terminal device 110 without loss of generality.
At block 510, the terminal device 110 receives, from the network device 120, first configuration information about beam switching and BWP switching.
At block 520, in response to trigger of at least one of the beam switching and the BWP switching, the terminal device 110 performs the beam switching and the BWP switching based on the first configuration information.
In some embodiments, the first configuration information indicates: a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP, and a sequence of timers. In response to an expiration of one of the timers, the terminal device 110 switches from a serving beam to a candidate beam based on the sequence of candidate beams, and switches from an active BWP to a candidate BWP associated with the candidate beam.
In some embodiments, the first configuration information indicates a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP. In response to one of the following, the terminal device 110 switches from a serving beam to a candidate beam based on the sequence of candidate beams and switch from an active BWP to a candidate BWP associated with the candidate beam: reception of an MAC CE, detection of predefined DCI, or detection of a predefined reference signal.
In some embodiments, additionally, the terminal device 110 receives, from the network device 120, second configuration information about a plurality of sequences of candidate beams, the plurality of sequences of candidate beams comprising the sequence of the candidate beams. In such embodiments, the first configuration information about the beam switching and the BWP switching indicates that the sequence of candidate beams is activated.
In some embodiments, the first configuration information indicates: a sequence of candidate beams, a sequence of timers, and a sequence of frequency offsets associated with candidate BWPs. In response to an expiration of one of the timers, the terminal device 110 switches from a serving beam to a candidate beam based on the sequence of candidate beams, and switches from an active BWP to a candidate BWP based on an active BWP and the sequence of frequency offsets.
In some embodiments, the first configuration information indicates: a sequence of candidate beams, and a sequence of timers. In such embodiments, the terminal device 110 receives, from the network device 120, an MAC CE or DCI that indicates a candidate BWP. In response to an expiration of one of the timers, the terminal device 110 switches from a serving beam to a candidate beam based on the sequence of candidate beams, and switches from an active BWP to the candidate BWP.
In some embodiments, the first configuration information indicates: a sequence of candidate BWPs, and a sequence of timers. In such embodiments, the terminal device 110 receives, from the network device 120, an MAC CE or DCI that indicates a candidate beam. In response to an expiration of one of the timers, the terminal device 110 switches from a serving beam to the candidate beam, and switches from an active BWP to a candidate BWP based on the sequence of candidate BWPs.
In some embodiments, the DCI indicates that no uplink or downlink data is scheduled.
In some embodiments, the DCI is scrambled with an identity specific to a group of terminal devices.
In some embodiments, the DCI comprises a command for beam switching and BWP switching for a group of terminal devices.
In some embodiments, the DCI comprises dedicated DCI for beam switching and BWP switching for a group of terminal devices.
In some embodiments, additionally, the terminal device 110 transmits location information about the terminal device 110 to the network device 120, the first configuration information being determined at least based on the location information.
In some embodiments, a priority of the location information is higher than a priority of a Hybrid Automatic Repeat Request (HARQ) feedback. In such embodiments, the terminal device 110 transmits the location information on a first resource, the first resource being prior to a second resource for mapping the HARQ feedback in time domain.
In some embodiments, a priority of the location information is equal to a priority of a HARQ feedback. In such embodiments, the terminal device 110 transmits the location information on a third resource, the third resource being subsequent to a fourth resource for transmitting the HARQ feedback in time domain.
In some embodiments, if the terminal device 110 determines that a HARQ feedback is disabled, the terminal device 110 transmits the location information on a fifth resource for transmitting the HARQ feedback.
Fig. 6 illustrates a flowchart of an example method 600 in accordance with some embodiments of the present disclosure. In some embodiments, the method 600 can be implemented at a network device, such as the network device 120 as shown in Fig. 1. For the purpose of discussion, the method 600 will be described with reference to Fig. 1 as performed by the network device 120 without loss of generality.
At block 610, the network device 120 determines first configuration information about beam switching and BWP switching.
At block 620, the network device 120 transmits the first configuration information to the terminal device 110.
In some embodiments, the first configuration information indicates: a sequence of candidate beams, at least one of the candidate beams being associated with at least one  candidate BWP, and a sequence of timers for trigger of at least one of the beam switching and the BWP switching.
In some embodiments, the first configuration information indicates a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP. In such embodiments, the network device 120 transmits one of the following for trigger of at least one of the beam switching and the BWP switching: a predefined MAC CE, predefined DCI, or a predefined reference signal.
In some embodiments, additionally, the network device 120 transmits, to the terminal device 110, second configuration information about a plurality of sequences of candidate beams, the plurality of sequences of candidate beams comprising the sequence of the candidate beams. In such embodiments, the first configuration information about the beam switching and the BWP switching indicates that the sequence of candidate beams is activated.
In some embodiments, the first configuration information indicates: a sequence of candidate beams, a sequence of timers for trigger of at least one of the beam switching and the BWP switching, and a sequence of frequency offsets associated with candidate BWPs.
In some embodiments, the first configuration information indicates: a sequence of candidate beams, and a sequence of timers for trigger of at least one of the beam switching and the BWP switching. In such embodiments, the network device 120 transmits a MAC CE or detection of DCI that indicates a candidate BWP.
In some embodiments, the first configuration information indicates: a sequence of candidate BWPs, and a sequence of timers for trigger of at least one of the beam switching and the BWP switching. In such embodiments, the network device 120 transmits a MAC CE or detection of DCI that indicates a candidate beam.
In some embodiments, the DCI indicates that no uplink or downlink data is scheduled.
In some embodiments, the DCI is scrambled with an identity specific to a group of terminal devices.
In some embodiments, the DCI comprises a command for beam switching and BWP switching for a group of terminal devices.
In some embodiments, the DCI comprises dedicated DCI for beam switching and  BWP switching for a group of terminal devices.
In some embodiments, additionally, the network device 120 receives location information about the terminal device 110. In such embodiments, the network device 120 determines the first configuration information at least based on the location information.
In some embodiments, a priority of the location information is higher than a priority of a HARQ feedback. In such embodiments, the network device 120 receives the location information on a first resource, the first resource being prior to a second resource for mapping the HARQ feedback in time domain.
In some embodiments, a priority of the location information is equal to a priority of a HARQ feedback. In such embodiments, the network device 120 receives the location information on a third resource, the third resource being subsequent to a fourth resource for receiving the HARQ feedback in time domain.
In some embodiments, if the network device 120 determines that a HARQ feedback is disabled, the network device 120 receives the location information on a fifth resource for receiving the HARQ feedback.
Fig. 7 is a simplified block diagram of a device 700 that is suitable for implementing some embodiments of the present disclosure. The device 700 can be considered as a further example embodiment of the terminal device 110 or the network device 120 as shown in Fig. 1. Accordingly, the device 700 can be implemented at or as at least a part of the terminal device 110 or the network device 120.
As shown, the device 700 includes a processor 710, a memory 720 coupled to the processor 710, a suitable transmitter (TX) and receiver (RX) 740 coupled to the processor 710, and a communication interface coupled to the TX/RX 740. The memory 720 stores at least a part of a program 730. The TX/RX 740 is for bidirectional communications. The TX/RX 740 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between gNBs or eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the gNB or eNB, Un interface for communication between the gNB or eNB and a relay node (RN) , or Uu interface for communication between the gNB or eNB and a terminal device.
The program 730 is assumed to include program instructions that, when executed by the associated processor 710, enable the device 700 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Figs. 1 to 6. The embodiments herein may be implemented by computer software executable by the processor 710 of the device 700, or by hardware, or by a combination of software and hardware. The processor 710 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 710 and memory 720 may form processing means 750 adapted to implement various embodiments of the present disclosure.
The memory 720 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 720 is shown in the device 700, there may be several physically distinct memory modules in the device 700. The processor 710 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 700 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The components included in the apparatuses and/or devices of the present disclosure may be implemented in various manners, including software, hardware, firmware, or any combination thereof. In one embodiment, one or more units may be implemented using software and/or firmware, for example, machine-executable instructions stored on the storage medium. In addition to or instead of machine-executable instructions, parts or all of the units in the apparatuses and/or devices may be implemented, at least in part, by one or more hardware logic components. For example, and without limitation, illustrative types of hardware logic components that can be used include Field-programmable Gate Arrays (FPGAs) , Application-specific Integrated Circuits (ASICs) , Application-specific Standard Products (ASSPs) , System-on-a-chip systems (SOCs) , Complex Programmable Logic Devices (CPLDs) , and the like.
Generally, various embodiments of the present disclosure may be implemented in  hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to any of Figs. 1 to 6. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical,  electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific embodiment details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (34)

  1. A communication method implemented at a terminal device, comprising:
    receiving, from a network device, first configuration information about beam switching and bandwidth part (BWP) switching; and
    in response to trigger of at least one of the beam switching and the BWP switching, performing the beam switching and the BWP switching based on the first configuration information.
  2. The method of claim 1, wherein the first configuration information indicates:
    a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP, and
    a sequence of timers; and
    performing the beam switching and the BWP switching comprises:
    in response to an expiration of one of the timers,
    switching from a serving beam to a candidate beam based on the sequence of candidate beams, and
    switching from an active BWP to a candidate BWP associated with the candidate beam.
  3. The method of claim 1, wherein the first configuration information indicates a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP; and
    performing the beam switching and the BWP switching comprises:
    in response to one of the following, switching from a serving beam to a candidate beam based on the sequence of candidate beams and switching from an active BWP to a candidate BWP associated with the candidate beam:
    reception of a predefined media access control control element (MAC CE) ,
    detection of predefined downlink control information (DCI) , or
    detection of a predefined reference signal.
  4. The method of claim 2 or 3, further comprising:
    receiving, from the network device, second configuration information about a  plurality of sequences of candidate beams, the plurality of sequences of candidate beams comprising the sequence of the candidate beams; and
    wherein the first configuration information about the beam switching and the BWP switching indicates that the sequence of candidate beams is activated.
  5. The method of claim 1, wherein the first configuration information indicates:
    a sequence of candidate beams,
    a sequence of timers, and
    a sequence of frequency offsets associated with candidate BWPs; and
    performing the beam switching and the BWP switching comprises:
    in response to an expiration of one of the timers,
    switching from a serving beam to a candidate beam based on the sequence of candidate beams, and
    switching from an active BWP to a candidate BWP based on an active BWP and the sequence of frequency offsets.
  6. The method of claim 1, wherein the first configuration information indicates:
    a sequence of candidate beams, and
    a sequence of timers;
    the method further comprises:
    receiving, from the network device, a media access control control element (MAC CE) or downlink control information (DCI) that indicates a candidate BWP; and
    performing the beam switching and the BWP switching comprises:
    in response to an expiration of one of the timers,
    switching from a serving beam to a candidate beam based on the sequence of candidate beams, and
    switching from an active BWP to the candidate BWP.
  7. The method of claim 1, wherein the first configuration information indicates:
    a sequence of candidate BWPs, and
    a sequence of timers;
    the method further comprises:
    receiving, from the network device, a media access control control element (MAC CE) or downlink control information (DCI) that indicates a candidate beam; and
    performing the beam switching and the BWP switching comprises:
    in response to an expiration of one of the timers,
    switching from a serving beam to the candidate beam, and
    switching from an active BWP to a candidate BWP based on the sequence of candidate BWPs.
  8. The method of any of claims 3, 6 and 7, wherein the DCI indicates that no uplink or downlink data is scheduled.
  9. The method of claim 6 or 7, wherein the DCI is scrambled with an identity specific to a group of terminal devices.
  10. The method of claim 6 or 7, wherein the DCI comprises a command for beam switching and BWP switching for a group of terminal devices.
  11. The method of claim 6 or 7, wherein the DCI comprises dedicated DCI for beam switching and BWP switching for a group of terminal devices.
  12. The method of claim 1, further comprising:
    transmitting location information about the terminal device to the network device, the first configuration information being determined at least based on the location information.
  13. The method of claim 12, wherein a priority of the location information is higher than a priority of a Hybrid Automatic Repeat Request (HARQ) feedback; and
    transmitting the location information comprises:
    transmitting the location information on a first resource, the first resource being prior to a second resource for mapping the HARQ feedback in time domain.
  14. The method of claim 12, wherein a priority of the location information is equal to a priority of a Hybrid Automatic Repeat Request (HARQ) feedback; and
    transmitting the location information comprises:
    transmitting the location information on a third resource, the third resource being subsequent to a fourth resource for transmitting the HARQ feedback in time domain.
  15. The method of claim 12, wherein transmitting the location information comprises:
    in accordance with a determination that a Hybrid Automatic Repeat Request (HARQ) feedback is disabled, transmitting the location information on a fifth resource for transmitting the HARQ feedback.
  16. A communication method implemented at a network device, comprising:
    determining first configuration information about beam switching and bandwidth part (BWP) switching; and
    transmitting the first configuration information to a terminal device.
  17. The method of claim 16, wherein the first configuration information indicates:
    a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP, and
    a sequence of timers for trigger of at least one of the beam switching and the BWP switching.
  18. The method of claim 16, wherein the first configuration information indicates a sequence of candidate beams, at least one of the candidate beams being associated with at least one candidate BWP; and
    the method further comprises transmitting one of the following for trigger of at least one of the beam switching and the BWP switching:
    a predefined media access control control element (MAC CE) ,
    predefined downlink control information (DCI) , or
    a predefined reference signal.
  19. The method of claim 17 or 18, further comprising:
    transmitting, to the terminal device, second configuration information about a plurality of sequences of candidate beams, the plurality of sequences of candidate beams comprising the sequence of the candidate beams; and
    wherein the first configuration information about the beam switching and the BWP switching indicates that the sequence of candidate beams is activated.
  20. The method of claim 16, wherein the first configuration information indicates:
    a sequence of candidate beams,
    a sequence of timers for trigger of at least one of the beam switching and the BWP switching, and
    a sequence of frequency offsets associated with candidate BWPs.
  21. The method of claim 16, wherein the first configuration information indicates:
    a sequence of candidate beams, and
    a sequence of timers for trigger of at least one of the beam switching and the BWP switching; and
    the method further comprises:
    transmitting a media access control control element (MAC CE) or detection of downlink control information (DCI) that indicates a candidate BWP.
  22. The method of claim 16, wherein the first configuration information indicates:
    a sequence of candidate BWPs, and
    a sequence of timers for trigger of at least one of the beam switching and the BWP switching; and
    the method further comprises:
    transmitting a media access control control element (MAC CE) or detection of downlink control information (DCI) that indicates a candidate beam.
  23. The method of any of claims 18, 21 and 22, wherein the DCI indicates that no uplink or downlink data is scheduled.
  24. The method of claim 21 or 22, wherein the DCI is scrambled with an identity specific to a group of terminal devices.
  25. The method of claim 21 or 22, wherein the DCI comprises a command for beam switching and BWP switching for a group of terminal devices.
  26. The method of claim 21 or 22, wherein the DCI comprises dedicated DCI for beam switching and BWP switching for a group of terminal devices.
  27. The method of claim 16, further comprising:
    receiving location information about the terminal device from the terminal device,
    wherein determining the first configuration information comprises:
    determining the first configuration information at least based on the location information.
  28. The method of claim 27, wherein a priority of the location information is higher than a priority of a Hybrid Automatic Repeat Request (HARQ) feedback; and
    receiving the location information comprises:
    receiving the location information on a first resource, the first resource being prior to a second resource for mapping the HARQ feedback in time domain.
  29. The method of claim 27, wherein a priority of the location information is equal to a priority of a Hybrid Automatic Repeat Request (HARQ) feedback; and
    receiving the location information comprises:
    receiving the location information on a third resource, the third resource being subsequent to a fourth resource for receiving the HARQ feedback in time domain.
  30. The method of claim 27, wherein receiving the location information comprises:
    in accordance with a determination that a Hybrid Automatic Repeat Request (HARQ) feedback is disabled, receiving the location information on a fifth resource for receiving the HARQ feedback.
  31. A terminal device, comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method according to any of claims 1-15.
  32. A network device, comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method according to any of claims 16-30.
  33. A computer readable medium having instructions stored thereon, the instructions,  when executed on at least one processor of a device, causing the device to carry out the method according to any of claims 1-15.
  34. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor of a device, causing the device to carry out the method according to any of claims 16-30.
PCT/CN2021/131194 2021-11-17 2021-11-17 Method, device and computer readable medium for communications WO2023087175A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131194 WO2023087175A1 (en) 2021-11-17 2021-11-17 Method, device and computer readable medium for communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/131194 WO2023087175A1 (en) 2021-11-17 2021-11-17 Method, device and computer readable medium for communications

Publications (1)

Publication Number Publication Date
WO2023087175A1 true WO2023087175A1 (en) 2023-05-25

Family

ID=86396169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/131194 WO2023087175A1 (en) 2021-11-17 2021-11-17 Method, device and computer readable medium for communications

Country Status (1)

Country Link
WO (1) WO2023087175A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190166555A1 (en) * 2017-11-24 2019-05-30 Fg Innovation Ip Company Limited Appratus and method for beam failure recovery in a wireless communication system
WO2020194248A1 (en) * 2019-03-28 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and apparatus for performing a handover procedure
CN111817835A (en) * 2020-06-02 2020-10-23 中国信息通信研究院 Beam switching indication method, device and system
CN112020875A (en) * 2018-04-14 2020-12-01 高通股份有限公司 Beam failure recovery in conjunction with switched BWP
WO2021026682A1 (en) * 2019-08-09 2021-02-18 Zte Corporation Transmission resource switching
CN112425240A (en) * 2020-09-30 2021-02-26 北京小米移动软件有限公司 Frequency domain resource switching method, device and computer readable storage medium

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190166555A1 (en) * 2017-11-24 2019-05-30 Fg Innovation Ip Company Limited Appratus and method for beam failure recovery in a wireless communication system
CN112020875A (en) * 2018-04-14 2020-12-01 高通股份有限公司 Beam failure recovery in conjunction with switched BWP
WO2020194248A1 (en) * 2019-03-28 2020-10-01 Lenovo (Singapore) Pte. Ltd. Method and apparatus for performing a handover procedure
WO2021026682A1 (en) * 2019-08-09 2021-02-18 Zte Corporation Transmission resource switching
CN111817835A (en) * 2020-06-02 2020-10-23 中国信息通信研究院 Beam switching indication method, device and system
CN112425240A (en) * 2020-09-30 2021-02-26 北京小米移动软件有限公司 Frequency domain resource switching method, device and computer readable storage medium

Similar Documents

Publication Publication Date Title
WO2023102846A1 (en) Method, device and computer readable medium for communications
WO2023087175A1 (en) Method, device and computer readable medium for communications
WO2024087233A1 (en) Method, device and computer storage medium of communication
WO2023123442A1 (en) Method, device and computer redable medium of communication
WO2023184273A1 (en) Method, device and computer storage medium of communication
WO2024031260A1 (en) Method, device and computer storage medium of communication
WO2023245428A1 (en) Method, device and computer storage medium of communication
WO2023123256A1 (en) Method, device and computer storage medium of communication
WO2023097657A1 (en) Method, device and computer storage medium of communication
WO2023159485A1 (en) Method, device and computer storage medium of communication
WO2024065756A1 (en) Method, device and computer storage medium of communication
WO2024065771A1 (en) Methods, devices and medium for communication
WO2024011469A1 (en) Methods for communication, terminal device, network device and computer readable medium
WO2023220963A1 (en) Method, device and computer storage medium of communication
WO2023168610A1 (en) Method, device and computer readable medium for manangement of cross link interference
WO2023133829A1 (en) Method, device and computer storage medium of communication
WO2023115568A1 (en) Method, device and computer storage medium for multi-trp communication
WO2023115349A1 (en) Methods, devices, and computer readable medium for communication
WO2023070397A1 (en) Method, device and computer readable medium for communication
WO2023178625A1 (en) Methods, devices and computer readable media for communications
WO2023220966A1 (en) Method, device and computer storage medium of communication
WO2023050187A1 (en) Method, device and computer storage medium of communication
WO2023050220A1 (en) Method, device and computer readable medium for communication
WO2024060246A1 (en) Method, device and computer storage medium of communication
WO2023178478A1 (en) Method, device and computer storage medium of communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964338

Country of ref document: EP

Kind code of ref document: A1