WO2023141941A1 - Methods, devices, and computer readable medium for communication - Google Patents

Methods, devices, and computer readable medium for communication Download PDF

Info

Publication number
WO2023141941A1
WO2023141941A1 PCT/CN2022/074586 CN2022074586W WO2023141941A1 WO 2023141941 A1 WO2023141941 A1 WO 2023141941A1 CN 2022074586 W CN2022074586 W CN 2022074586W WO 2023141941 A1 WO2023141941 A1 WO 2023141941A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwp
target
configuration
bwp set
terminal device
Prior art date
Application number
PCT/CN2022/074586
Other languages
French (fr)
Inventor
Gang Wang
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2022/074586 priority Critical patent/WO2023141941A1/en
Publication of WO2023141941A1 publication Critical patent/WO2023141941A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices, and computer readable medium for communication.
  • example embodiments of the present disclosure provide a solution for communication.
  • a method for communication comprises receiving, at a terminal device and from a network device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; determining, from the configuration of BWP, a target BWP set and a target energy configuration associated with the target BWP set; and performing a communication with the network device based on the target BWP set and the target energy configuration.
  • BWP bandwidth part
  • a method for communication comprises transmitting, at a network device and to a terminal device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; and performing a communication with the terminal device based on a target BWP set and a target energy configuration associated with the target BWP set, wherein the target BWP set and the target energy configuration are determined from the one or more BWP sets and the one or more energy configurations.
  • BWP bandwidth part
  • a terminal device comprising a processing unit; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the terminal device to perform acts comprising: receiving, from a network device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; determining, from the configuration of BWP, a target BWP set and a target energy configuration associated with the target BWP set; and performing a communication with the network device based on the target BWP set and the target energy configuration.
  • BWP bandwidth part
  • a network device comprising a processing unit; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the network device to perform acts comprising: transmitting, to a terminal device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; and performing a communication with the terminal device based on a target BWP set and a target energy configuration associated with the target BWP set, wherein the target BWP set and the target energy configuration are determined from the one or more BWP sets and the one or more energy configurations.
  • BWP bandwidth part
  • a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the first or second aspect.
  • Fig. 1 is a schematic diagram of a communication environment in which embodiments of the present disclosure can be implemented
  • Fig. 2 illustrates a signaling flow for communications according to some embodiments of the present disclosure
  • Fig. 3 illustrates a schematic diagram of BWPs according to some embodiments of the present disclosure
  • Fig. 4 illustrates a schematic diagram of bandwidths according to some embodiments of the present disclosure
  • Fig. 5 illustrates a schematic diagram of BWP set switching according to some embodiments of the present disclosure
  • Fig. 6 illustrates a schematic diagram of BWP set switching according to some embodiments of the present disclosure
  • Fig. 7 illustrates a schematic diagram of BWP set switching according to some embodiments of the present disclosure
  • Fig. 8 is a flowchart of an example method in accordance with an embodiment of the present disclosure.
  • Fig. 9 is a flowchart of an example method in accordance with an embodiment of the present disclosure.
  • Fig. 10 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV)
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporate one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • AI Artificial intelligence
  • Machine learning capability it generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Terahertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connection with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • network device refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a low power node such as a fe
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • Communications discussed herein may use conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for Mobile Communications (GSM) and the like.
  • NR New Radio Access
  • LTE Long Term Evolution
  • LTE-Evolution LTE-Advanced
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile Communications
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.85G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , and the sixth (6G) communication protocols.
  • the techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies.
  • the embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
  • circuitry used herein may refer to hardware circuits and/or combinations of hardware circuits and software.
  • the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware.
  • the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions.
  • the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation.
  • the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
  • values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • a new study item of network energy saving also needs to be considered, which focuses on the energy saving at network device side.
  • the network device may temporarily stop its transmission/reception, or de-activate a portion of its antenna ports, or reduce its channel bandwidth (by changing the bandwidth part (BWP) or switching-off some carrier components (CCs) ) .
  • BWP bandwidth part
  • CCs carrier components
  • the coverage and traffic continuity should be considered. For example, if the network device decides to switch-off some of its antenna ports (i.e., by switching off some radio frequency (RF) chains) to save energy, the transmission power will be reduced.
  • RF radio frequency
  • the network device may need to reduce its bandwidth when it switches off some RF chains. For example, if the transmitting (TX) antenna number changes from 4 to 2 (consequently, the transmission power will be reduced by half) , the network device can simultaneously reduce its channel bandwidth from 200MHz to 100MHz, then the PSD (i.e., energy per resource element, EPRE) can keep the same, then the coverage will have no significant loss. Therefore, the network device antenna on-off and the BWP switching may be performed simultaneously.
  • TX transmitting
  • the PSD energy per resource element
  • the terminal device can be configured with one or more BWPs.
  • a Bandwidth Part is a contiguous set of physical resource blocks (PRBs) on a given carrier. These RBs are selected from a contiguous subset of the common resource blocks for a given numerology.
  • the terminal device can be configured with maximum 4 BWPs for downlink and uplink but at a given point of time only one BWP is active for downlink and one for uplink.
  • a BWP indicator field can be used to indicate a BWP from a set of BWPs (i.e., the at most four downlink (DL) BWPs or uplink (UL) BWPs) .
  • a max multi-input multi-output (MIMO) layer of physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) for a UE can be a cell specific parameter or a BWP specific parameter.
  • the per-DL-BWP configuration of maximum number of DL MIMO layers can be supported.
  • the network device may indicate UE to deactivate some of the antenna ports by the BWP indicator filed in DCI, in order to save power.
  • a network device which decided to switch off a portion of its antenna port to save energy, in order to avoid coverage loss, it may simultaneously reduce its channel bandwidth.
  • the UEs which have a BWP configuration larger than the reduced channel bandwidth may need to switch to an available BWP.
  • there may be no available BWP in the set of BWP configuration e.g., all the BWPs in the BWP set are larger than the reduced channel bandwidth
  • other parameters may also changes, e.g., the max number of MIMO layers, the original set of BWP may not match such parameter changes.
  • the network device may reconfigure the set of BWPs by radio resource control (RRC) signaling and then indicate the new BWP by DCI.
  • RRC radio resource control
  • a network device transmits a configuration of BWP.
  • the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets.
  • the terminal device determines a target BWP set and a target energy configuration associated with the target BWP set from the configuration of BWP.
  • the terminal device applies the target energy configuration and performs a communication with the network device on the target BWP set. In this way, the energy configuration can be switched smoothly, thereby traffic continuity can be better supported.
  • Fig. 1 illustrates a schematic diagram of a communication system in which embodiments of the present disclosure can be implemented.
  • the communication system 100 which is a part of a communication network, comprises a terminal device 110-1, a terminal device 110-2, ..., a terminal device 110-N, which can be collectively referred to as “terminal device (s) 110. ”
  • the number N can be any suitable integer number.
  • the terminal devices 110 can communicate with each other via sidelink.
  • the communication system 100 further comprises a network device.
  • the network device 120 and the terminal devices 110 can communicate data and control information to each other.
  • the numbers of terminal devices shown in Fig. 1 are given for the purpose of illustration without suggesting any limitations.
  • Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • s cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future.
  • IEEE Institute for Electrical and Electronics Engineers
  • the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
  • CDMA Code Divided Multiple Address
  • FDMA Frequency Divided Multiple Address
  • TDMA Time Divided Multiple Address
  • FDD Frequency Divided Duplexer
  • TDD Time Divided Duplexer
  • MIMO Multiple-Input Multiple-Output
  • OFDMA Orthogonal Frequency Divided Multiple Access
  • Embodiments of the present disclosure can be applied to any suitable scenarios.
  • embodiments of the present disclosure can be implemented at reduced capability NR devices.
  • embodiments of the present disclosure can be implemented in one of the followings: NR multiple-input and multiple-output (MIMO) , NR sidelink enhancements, NR systems with frequency above 52.6GHz, an extending NR operation up to 71GHz, narrow band-Internet of Thing (NB-IOT) /enhanced Machine Type Communication (eMTC) over non-terrestrial networks (NTN) , NTN, UE power saving enhancements, NR coverage enhancement, NB-IoT and LTE-MTC, Integrated Access and Backhaul (IAB) , NR Multicast and Broadcast Services, or enhancements on Multi-Radio Dual-Connectivity.
  • MIMO multiple-input and multiple-output
  • NR sidelink enhancements NR systems with frequency above 52.6GHz, an extending NR operation up to 71GHz
  • NB-IOT narrow band-Internet of
  • slot refers to a dynamic scheduling unit. One slot comprises a predetermined number of symbols.
  • the term “downlink (DL) sub-slot” may refer to a virtual sub-slot constructed based on uplink (UL) sub-slot.
  • the DL sub-slot may comprise fewer symbols than one DL slot.
  • the slot used herein may refer to a normal slot which comprises a predetermined number of symbols and also refer to a sub-slot which comprises fewer symbols than the predetermined number of symbols.
  • Fig. 2 shows a signaling chart illustrating process 200 between the terminal device and the network device according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 200 will be described with reference to Fig. 1.
  • the process 200 may involve the terminal device 110-1and the network device 120 in Fig. 1.
  • the terminal device 110-1 can be configured with one or more BWPs. In some embodiments, the terminal device 110-1 can be configured with one or more DL BWPs. Alternatively or in addition, the terminal device 110-1 can be configured with one or more UL BWPs. In other embodiments, the terminal device 110-1 can be configured with a common BWP or a BWP pair for both DL and UL.
  • the network device 120 may transmit configuration information indicating indexes of the one or more BWPs to the terminal device 110-1.
  • each BWP defined for a numerology can have following three different parameters: subcarrier spacing, symbol duration and cyclic prefix length.
  • each DL BWP may comprise at least one control resource set (CORESET) with UE Specific Search Space (USS) .
  • at least one of the configured DL BWPs may comprise one CORESET with common search space (CSS) .
  • the terminal device 110-1 shall not transmit PUSCH or PUCCH outside an active bandwidth part.
  • the term “initial BWP” used herein can refer to a BWP which is used to perform an initial access process.
  • the term “active BWP” used herein can refer to a UE specific/dedicated BWP.
  • the active BWP is the BWP which the terminal device uses for data transfer when the RRC connection is established.
  • the term “default BWP” used herein can refer to a UE specific BWP which configured during RRC reconfiguration. If the default BWP is not configured, the initial BWP can be referred as the default BWP. For example, as shown in Fig.
  • the configuration information may comprise the configurations of the BWP310, BWP320, BWP330 and BWP340.
  • the BWP310 can be the initial BWP
  • the BWP320 can be the active BWP
  • the BWP340 can be the default BWP. It should be noted that Fig. 3 is only an example not a limitation.
  • the network device 120 transmits 2010 a configuration of BWP to the terminal device 110-1.
  • the configuration information can be transmitted via RRC signaling.
  • the configuration information can be transmitted via medium access control (MAC) signaling.
  • the configuration information may be transmitted via physical layer (PHY) signaling.
  • the configuration of BWP indicates one or more BWP sets.
  • the configuration of BWP can comprise a BWP set identity of each of the one or more BWP sets.
  • the BWP set can comprise one BWP.
  • the BWP set can comprise a plurality of BWPs. Only as an example, referring to Fig. 3, the BWP set may comprise one or more of the BWP310, BWP320, BWP330 and BWP340.
  • the one or more BWPs in the BWP set can be UL BWP or DL BWP.
  • the one or more BWPs in the BWP set can be a common BWP or BWP pair for both DL and UL.
  • a BWP can be comprised in multiple BWP sets.
  • the first BWP set can comprise the BWP 310 and the BWP 320 and the second BWP set can comprise the BWP 310 and the BWP 330.
  • the BWP 310 can belong to both the first BWP set and the second BWP set.
  • the configuration of BWP further indicates one or more energy configurations associated with the one or more BWP sets.
  • a BWP set can be associated with an energy configuration.
  • the energy configuration can comprise a configuration of an energy saving level.
  • the energy configuration can comprise an energy saving configuration identity.
  • the energy saving level can indicate to what extend the energy at the network device is saved. For example, if the energy saving level in a first energy configuration associated with a first BWP set is higher than the energy saving level in a second energy configuration associated with a second BWP set, it means that compared with applying the second energy configuration, more energy can be saved when applying the first energy configuration.
  • the energy configuration can comprise a configuration of maximum bandwidth.
  • the energy configuration can comprise a configuration of network device channel bandwidth. Referring to Fig. 4, the first energy configuration associated with the first BWP set may indicate the maximum bandwidth 410, the second energy configuration associated with the second BWP set may indicate the maximum bandwidth 420, and the third energy configuration associated with the third BWP set may indicate the maximum bandwidth 430.
  • the energy configuration can comprise a configuration of a power level.
  • the energy configuration may indicate EPRE of a synchronization signal/physical broadcast channel block (SSB) .
  • the energy configuration may indicate a power ratio or a power offset of channel state information reference signal (CS-RS) to SSB. It should be noted that the energy configuration may other parameters related to the power level.
  • the energy configuration can comprise a configuration of maximum MIMO layer.
  • the configuration of maximum MIMO layer can be applied in in DL.
  • the configuration of maximum MIMO layer can be applied in UL.
  • the configuration of maximum MIMO layer can be a cell specific maximum MIMO layer.
  • the configuration of maximum MIMO layer may be common for all BWPs in the corresponding BWP set.
  • the energy configuration may also comprise a configuration of SSB.
  • the configuration of SSB may indicate a time or frequency resource of a SSB.
  • the energy configuration can comprise a configuration of random access channel (RACH) .
  • RACH random access channel
  • the configuration of RACH may comprise RACH occasion configuration.
  • the configuration of RACH can comprise one or more of: BWP bandwidth size frequency location, and CORESET.
  • the terminal device 110-1 determines 2030 a target BWP set and a target energy configuration associated with the target BWP set from the configuration of BWP.
  • the network device 120 may transmit 2020 DCI to the terminal device 110-1.
  • the target BWP set and the target energy configuration can be determined (2030) based on the received DCI.
  • the terminal device 110-1 may determine the target BWP set and the target energy configuration based on RRC configuration. In some embodiment, if the target BWP set is same as an active BWP set, the terminal device 110-1 does not perform BWP set switching.
  • the terminal device 110-1 may switch 2040 to the target BWP set.
  • the terminal device 110-1 may not perform the transmission or reception with the network device 120 within a duration for performing the BWP set switching.
  • the terminal device 110-1 may perform the transmission or reception on the initial BWP within the duration for performing the BWP set switching.
  • the duration for performing the BWP set switching can be determined based on UE capability.
  • the duration for performing the BWP set switching can be determined based on the network device configuration.
  • the duration for performing the BWP set switching can be indicated by the received DCI.
  • the target BWP set and the target energy configuration can be determined (2030) based on the received DCI.
  • the DCI can be group common DCI.
  • the DCI can be in a DCI format 2-X, where X is an integer or a letter.
  • the group common DCI can indicate a BWP set identity of the target BWP set.
  • the group common DCI can indicate an identity of the target energy configuration.
  • the group common DCI can indicate a target energy saving level.
  • the terminal device 110-1 may select the target BWP set and the target energy configuration from the one or more BWP sets and the one or more energy configurations based on the group common DCI.
  • the terminal device 110-1 may switch to a predetermined BWP in the target BWP set. For example, the terminal device 110-1 may switch to a BWP with a lowest BWP identity within the target BWP set.
  • the terminal device 110-1 can be currently operate on the BWP set 511 and the terminal device 110-2 can be currently operate on the BWP set 521.
  • the network device 120 may transmit the group common DCI 530 to the terminal device 110-1 and the terminal device 110-2.
  • the terminal device 110-1 and the terminal device 110-2 can determine their target BWP sets based on the group common DCI 530 and the configuration of BWP.
  • the terminal device 110-1 can determine the target BWP set 512 which is from the active BWP 511, which means that the terminal device 110-1 needs to switch to the BWP set 512.
  • the terminal device 110-2 can determine the target BWP set 522 which is from the active BWP 521, which means that the terminal device 110-2 needs to switch to the BWP set 522. As shown in Fig. 5, the terminal device 110-1 and the terminal device 110-2 can perform the BWP set switching within the duration 540. After the BWP set switching, the network device 120 may perform the transmission and/or reception with the terminal devices 110-1 and 110-2. In this way, the network device 120 can easily control the BWP set switching time among multiple terminal devices.
  • the DCI can be UE specific DCI.
  • the network device 120 may indicate the target BWP set based on the DCI format 1-1/1-2 (i.e., the DL scheduling DCI) or DCI format 0-1/0-2 (i.e., the UL scheduling DCI) .
  • the terminal device 110-1 can ignore a resource allocation in the UE specific DCI. In other words, if the UE specific DCI is used to indicate BWP set switching, the UE specific DCI does not schedule a PDSCH or a PUSCH.
  • the BWP indicator field in the UE specific DCI can be used to indicate the target BWP set.
  • the UE specific DCI can comprise one or more bits in a BWP indicator field indicating the target BWP set.
  • the first/last 1 or 2 bit in the BWP indicator field can be used to indicate the BWP set identity, and the remaining bits can be used to indicate the BWP identity in the BWP set.
  • the BWP identity can be only valid in a BWP set.
  • the BWP identity can be unique in all BWP sets. In other words, any two BWP identities are different even they belong to different BWP sets.
  • N bits for the BWP indicator field can be used to indicate at most (2 ⁇ N) BWP identities, however, the (2 ⁇ N) BWP identities may be associated with multiple BWP sets.
  • the terminal device 110-1 may determine the target BWP set based on the BWP identity indicated by the UE specific DCI.
  • the UE specific DCI can comprise a field indication for the BWP indicator field.
  • a field indication can be introduced in the BWP indicator field.
  • the BWP indicator field can be used to indicate a BWP within a BWP set.
  • the BWP indicator field can be used to indicate a BWP set.
  • the field indication can be an explicit field in DCI.
  • the field indication can be an implicit indication based on particular value of the other field (for example, the resource allocation, hybrid automatic repeat request (HARQ) process number and the like) in the UE specific DCI.
  • HARQ hybrid automatic repeat request
  • a new field can be introduced in the UE specific DCI.
  • the bit-width of the newly introduced field can be log2 (M) , where M is the number of BWP sets or energy saving configurations.
  • the UE specific DCI can comprise a BWP set switching field for indicating the target BWP set.
  • the UE specific DCI can comprise a BWP set indication field for indicating the target BWP set.
  • the UE specific DCI can comprise an energy configuration switching field for indicating the target energy configuration.
  • the UE specific DCI can comprise an energy configuration indication field for indicating the target energy configuration.
  • the target BWP set may be different from the active BWP set and the UE specific DCI can indicate a target BWP in the target BWP set.
  • the terminal device 110-1 can switch to the target BWP.
  • the terminal device 110-1 can switch to a predetermined BWP in the target BWP set or switch to an initial BWP.
  • the predetermined BWP can be configured by the network device 120.
  • the predetermined BWP can be the BWP with a particular BWP identity, for example, with the lowest or highest BWP identity within the target BWP set.
  • Fig. 6 shows that the BWP set switching is based on the UE specific DCI.
  • the terminal device 110-1 can be currently operate on the BWP set 611 and the terminal device 110-2 can be currently operate on the BWP set 621.
  • the network device 120 may transmit the DCI 631 which is specific to the terminal device 110-1.
  • the terminal device 110-1 can determine their target BWP sets based on the DCI 631 and the configuration of BWP.
  • the terminal device 110-1 can determine the target BWP set 612 which is from the active BWP 611, which means that the terminal device 110-1 needs to switch to the BWP set 612.
  • the terminal device 110-1 switches to the BWP set 612.
  • the network device 120 may transmit the DCI 632 which is specific to the terminal device 110-2.
  • the terminal device 110-1 can determine their target BWP sets based on the DCI 632 and the configuration of BWP.
  • the terminal device 110-1 can determine the target BWP set 622 which is from the active BWP 621, which means that the terminal device 110-2 needs to switch to the BWP set 622.
  • the terminal device 110-2 switches to the BWP set 622.
  • the terminal device 110-1 may perform the BWP set earlier than the terminal device 110-2. In this case, the network device 120 does not schedule the terminal device 110-1 before its BWP set switching is completed. In this way, the network device 120 can easily control the BWP set switching time among multiple terminal devices.
  • the terminal device 110-1 may determine the target BWP set and the target energy configuration based on RRC configuration. For example, if the terminal device 110-1 does not support DCI based BWP set switching, the network device 120 may indicate the BWP set switching by RRC configuration. In some embodiments, after the terminal device 110-1 receives a RRC configuration/reconfiguration of BWP set or energy saving configuration which is different from the currently used one, the terminal device 110-1 may perform the BWP set switching. Alternatively, the terminal device 110-1 may start a first timer which is configured by the network device 120. In this case, the terminal device 110-1 may switch from the active BWP set to the target BWP set upon an expiration or a stop of the first timer.
  • the terminal device 110-1 may still use the current BWP set when the first timer is running (i.e., not expire or not be stopped) .
  • the terminal device 110-1 may start the BWP set switching when the first timer expires or is stopped.
  • the terminal device 110-1 may finish the BWP set switching when the first timer expires or is stopped.
  • the stop of the first timer may be indicated by the network device 120.
  • the stop of the first timer may be triggered by a certain condition.
  • the value of first timer may be configured by the RRC signaling which indicates the BWP set switching.
  • the value of the first timer may also be configured via DCI or medium access control control element (MAC CE) .
  • the network device 120 may configure different terminal devices with different values of the first timer, in order to enable terminal devices performing BWP set switching at a same/similar time.
  • the first timer may be triggered to start by a MAC-CE, or a DCI.
  • the network device 120 may indicate the terminal device 110-1 a target time instant.
  • the terminal device 110-1 may switch from the active BWP set to the target BWP set at the target time instant.
  • the terminal device 110-1 may start the BWP set switching at the target time instant.
  • the terminal device 110-1 may finish the BWP set switching at the target time instant.
  • the target time may be the starting time or the ending time of one of the followings: a system frame number (SFN) , a subframe, a slot or a symbol.
  • SFN system frame number
  • the target time instant can be indicated via RRC signaling.
  • the target time instant can be indicated via DCI.
  • the target time instant can be indicated via a MAC CE.
  • the target time instant can be indicated in the configuration of BWP.
  • the terminal device 110-1 may start a second timer. In this case, if the second timer is stopped or expired, the terminal device 110-1 may switch from the target BWP set to a predetermined BWP set. Alternatively, the terminal device 110-1 may switch back to the active BWP set after the second timer is stopped or expired. In other embodiments, upon the stop or expiration of the second timer, the terminal device 110-1 may switch to the initial BWP.
  • the second timer can be indicated via RRC signaling. Alternatively, the second timer can be indicated via DCI. In other embodiments, the second timer can be indicated via a MAC CE. The second timer can be indicated in the configuration of BWP.
  • Fig. 7 shows that the BWP set switching is based on the RRC configuration.
  • the terminal device 110-1 can be currently operate on the BWP set 711.
  • the network device 120 may transmit the RRC configuration 720 to the terminal device 110-1.
  • the terminal device 110-1 can determine the target BWP set 712 which is different from the active BWP 711 based on the RRC configuration 720, which means that the terminal device 110-1 needs to switch to the BWP set 712.
  • the terminal device 110-1 can start the timer 730.
  • the terminal device 110-1 can still use the BWP set 711 when the timer 730 is running.
  • the transmission and/or reception can still be on the BWP 711 during the running time of the timer 730.
  • the terminal device 110-1 can finish the switching to the target BWP set 712.
  • the terminal device 110-1 may also start the timer 740 after switching to the target BWP set 712.
  • the transmission and/or reception can be on the BWP 712 during the running time of the timer 740.
  • the terminal device 110-1 can switch back to the BWP set 711.
  • the terminal device 110-1 performs 2050 a communication with the network device 120 based on the target BWP set and the target energy configuration.
  • the terminal device 110-1 can apply the target energy configuration if the terminal device 110-1 performs the communication based on the target BWP set.
  • the terminal device 110-1 if the terminal device 110-1 switches to the predetermined BWP in the target BWP set, the terminal device 110-1 can perform the communication with the network device on the predetermined BWP.
  • the terminal device 110-1 switches to the target BWP indicated by the DCI, the terminal device 110-1 can perform the communication with the network device on the target BWP.
  • the terminal device can be configured with multiple BWP sets and multiple energy configurations associated with the multiple BWP sets.
  • the terminal device can switch to a BWP set for communications with the network device and apply the energy configuration associate with the BWP set.
  • the energy saving configuration can be switched smoothly especially at the UE side, therefore traffic continuity can be better supported.
  • embodiments of the present disclosure achieve utilizing and enhancing the BWP switching mechanism to enable energy saving mode switching. For example, it is easy to control the switching time among multiple UEs, compared to RRC reconfiguration based method.
  • Fig. 8 shows a flowchart of an example method 800 in accordance with an embodiment of the present disclosure.
  • the method 800 can be implemented at any suitable devices. Only for the purpose of illustrations, the method 800 can be implemented at a terminal device 110-1 as shown in Fig. 1.
  • the terminal device 110-1 can be configured with one or more BWPs. In some embodiments, the terminal device 110-1 can be configured with one or more DL BWPs. Alternatively or in addition, the terminal device 110-1 can be configured with one or more UL BWPs. In other embodiments, the terminal device 110-1 can be configured with a common BWP or a BWP pair for both DL and UL.
  • the terminal device 110-1 may receive configuration information indicating indexes of the one or more BWPs from the network device 120.
  • each BWP defined for a numerology can have following three different parameters: subcarrier spacing, symbol duration and cyclic prefix length.
  • each DL BWP may comprise at least one CORESET with UE USS.
  • at least one of the configured DL BWPs may comprise one CORESET with CSS.
  • the terminal device 110-1 shall not transmit PUSCH or PUCCH outside an active bandwidth part. There is an initial active BWP for the terminal device 110-1 during the initial access until the terminal device 110-1 during is explicitly configured with BWPs during or after RRC connection establishment.
  • initial BWP used herein can refer to a BWP which is used to perform an initial access process.
  • active BWP used herein can refer to a UE specific/dedicated BWP.
  • the active BWP is the BWP which the terminal device uses for data transfer when the RRC connection is established.
  • default BWP used herein can refer to a UE specific BWP which configured during RRC reconfiguration. If the default BWP is not configured, the initial BWP can be referred as the default BWP.
  • the terminal device 110-1 receives a configuration of BWP from the network device 120.
  • the configuration information can be transmitted via RRC signaling.
  • the configuration information can be transmitted via MAC signaling.
  • the configuration information may be transmitted via PHY signaling.
  • the configuration of BWP indicates one or more BWP sets.
  • the configuration of BWP can comprise a BWP set identity of each of the one or more BWP sets.
  • the BWP set can comprise one BWP.
  • the BWP set can comprise a plurality of BWPs.
  • the one or more BWPs in the BWP set can be UL BWP or DL BWP.
  • the one or more BWPs in the BWP set can be a common BWP or BWP pair for both DL and UL.
  • a BWP can be comprised in multiple BWP sets.
  • the configuration of BWP further indicates one or more energy configurations associated with the one or more BWP sets.
  • a BWP set can be associated with an energy configuration.
  • the energy configuration can comprise a configuration of an energy saving level.
  • the energy configuration can comprise an energy saving configuration identity.
  • the energy saving level can indicate to what extend the energy at the network device is saved. For example, if the energy saving level in a first energy configuration associated with a first BWP set is higher than the energy saving level in a second energy configuration associated with a second BWP set, it means that compared with applying the second energy configuration, more energy can be saved when applying the first energy configuration.
  • the energy configuration can comprise a configuration of maximum bandwidth.
  • the energy configuration can comprise a configuration of network device channel bandwidth.
  • the energy configuration can comprise a configuration of a power level.
  • the energy configuration may indicate EPRE of a SSB.
  • the energy configuration may indicate a power ratio or a power offset of CS-RS to SSB. It should be noted that the energy configuration may other parameters related to the power level.
  • the energy configuration can comprise a configuration of maximum MIMO layer.
  • the configuration of maximum MIMO layer can be applied in in DL.
  • the configuration of maximum MIMO layer can be applied in UL.
  • the configuration of maximum MIMO layer can be a cell specific maximum MIMO layer.
  • the configuration of maximum MIMO layer may be common for all BWPs in the corresponding BWP set.
  • the energy configuration may also comprise a configuration of a SSB.
  • the configuration of SSB may indicate a time or frequency resource of a SSB.
  • the energy configuration can comprise a configuration of RACH.
  • the configuration of RACH may comprise RACH occasion configuration.
  • the configuration of RACH can comprise one or more of: BWP bandwidth size frequency location, and CORESET.
  • the terminal device 110-1 determines a target BWP set and a target energy configuration associated with the target BWP set from the configuration of BWP.
  • the terminal device 110-1 may transmit receive DCI from the network device 120.
  • the target BWP set and the target energy configuration can be determined based on the received DCI.
  • the terminal device 110-1 may determine the target BWP set and the target energy configuration based on RRC configuration.
  • the terminal device 110-1 if the target BWP set is same as an active BWP set, the terminal device 110-1 does not perform BWP set switching.
  • the target BWP set is different from the active BWP set, the terminal device 110-1 may switch to the target BWP set.
  • the terminal device 110-1 may not perform the transmission or reception with the network device 120 within a duration for performing the BWP set switching.
  • the terminal device 110-1 may perform the transmission or reception on the initial BWP within the duration for performing the BWP set switching.
  • the duration for performing the BWP set switching can be determined based on UE capability.
  • the duration for performing the BWP set switching can be determined based on the network device configuration.
  • the duration for performing the BWP set switching can be indicated by the received DCI.
  • the target BWP set and the target energy configuration can be determined based on the received DCI.
  • the DCI can be group common DCI.
  • the DCI can be in a DCI format 2-X, where X is an integer or a letter.
  • the group common DCI can indicate a BWP set identity of the target BWP set.
  • the group common DCI can indicate an identity of the target energy configuration.
  • the group common DCI can indicate a target energy saving level.
  • the terminal device 110-1 may select the target BWP set and the target energy configuration from the one or more BWP sets and the one or more energy configurations based on the group common DCI.
  • the terminal device 110-1 may switch to a predetermined BWP in the target BWP set. For example, the terminal device 110-1 may switch to a BWP with a lowest BWP identity within the target BWP set.
  • the DCI can be UE specific DCI.
  • the network device 120 may indicate the target BWP set based on the DCI format 1-1/1-2 (i.e., the DL scheduling DCI) or DCI format 0-1/0-2 (i.e., the UL scheduling DCI) .
  • the terminal device 110-1 can ignore a resource allocation in the UE specific DCI. In other words, if the UE specific DCI is used to indicate BWP set switching, the UE specific DCI does not schedule a PDSCH or a PUSCH.
  • the BWP indicator field in the UE specific DCI can be used to indicate the target BWP set.
  • the UE specific DCI can comprise one or more bits in a BWP indicator field indicating the target BWP set.
  • the first/last 1 or 2 bit in the BWP indicator field can be used to indicate the BWP set identity, and the remaining bits can be used to indicate the BWP identity in the BWP set.
  • the BWP identity can be only valid in a BWP set.
  • the BWP identity can be unique in all BWP sets. In other words, any two BWP identities are different even they belong to different BWP sets.
  • N bits for the BWP indicator field can be used to indicate at most (2 ⁇ N) BWP identities, however, the (2 ⁇ N) BWP identities may be associated with multiple BWP sets.
  • the terminal device 110-1 may determine the target BWP set based on the BWP identity indicated by the UE specific DCI.
  • the UE specific DCI can comprise a field indication for the BWP indicator field.
  • a field indication can be introduced in the BWP indicator field.
  • the BWP indicator field can be used to indicate a BWP within a BWP set.
  • the BWP indicator field can be used to indicate a BWP set.
  • the field indication can be an explicit field in DCI.
  • the field indication can be an implicit indication based on particular value of the other field (for example, the resource allocation, hybrid automatic repeat request (HARQ) process number and the like) in the UE specific DCI.
  • HARQ hybrid automatic repeat request
  • a new field can be introduced in the UE specific DCI.
  • the bit-width of the newly introduced field can be log2 (M) , where M is the number of BWP sets or energy saving configurations.
  • the UE specific DCI can comprise a BWP set switching field for indicating the target BWP set.
  • the UE specific DCI can comprise a BWP set indication field for indicating the target BWP set.
  • the UE specific DCI can comprise an energy configuration switching field for indicating the target energy configuration.
  • the UE specific DCI can comprise an energy configuration indication field for indicating the target energy configuration.
  • the target BWP set may be different from the active BWP set and the UE specific DCI can indicate a target BWP in the target BWP set.
  • the terminal device 110-1 can switch to the target BWP.
  • the terminal device 110-1 can switch to a predetermined BWP in the target BWP set or switch to an initial BWP.
  • the predetermined BWP can be configured by the network device 120.
  • the predetermined BWP can be the BWP with a particular BWP identity, for example, with the lowest or highest BWP identity within the target BWP set.
  • the terminal device 110-1 may determine the target BWP set and the target energy configuration based on RRC configuration. For example, if the terminal device 110-1 does not support DCI based BWP set switching, the network device 120 may indicate the BWP set switching by RRC configuration. In some embodiments, after the terminal device 110-1 receives a RRC configuration/reconfiguration of BWP set or energy saving configuration which is different from the currently used one, the terminal device 110-1 may perform the BWP set switching. Alternatively, the terminal device 110-1 may start a first timer which is configured by the network device 120. In this case, the terminal device 110-1 may switch from the active BWP set to the target BWP set upon expiration or a stop of the first timer.
  • the terminal device 110-1 may still use the current BWP set when the first timer is running (i.e., not expire or not be stopped) .
  • the terminal device 110-1 may start the BWP set switching when the first timer expires or is stopped.
  • the terminal device 110-1 may finish the BWP set switching when the first timer expires or is stopped.
  • the stop of the first timer may be indicated by the network device 120.
  • the stop of the first timer may be triggered by a certain condition.
  • the value of first timer may be configured by the RRC signaling which indicates the BWP set switching.
  • the value of the first timer may also be configured via DCI or MAC CE.
  • the network device 120 may configure different terminal devices with different values of the first timer, in order to enable terminal devices performing BWP set switching at a same/similar time.
  • the first timer may be triggered to start by a MAC-CE, or a DCI.
  • the network device 120 may indicate the terminal device 110-1 a target time instant.
  • the terminal device 110-1 may switch from the active BWP set to the target BWP set at the target time instant.
  • the terminal device 110-1 may start the BWP set switching at the target time instant.
  • the terminal device 110-1 may finish the BWP set switching at the target time instant.
  • the target time may be the starting time or the ending time of one of the followings: a SFN, a subframe, a slot or a symbol.
  • the target time instant can be indicated via RRC signaling.
  • the target time instant can be indicated via DCI.
  • the target time instant can be indicated via a MAC CE.
  • the target time instant can be indicated in the configuration of BWP.
  • the terminal device 110-1 may start a second timer. In this case, if the second timer is stopped or expired, the terminal device 110-1 may switch from the target BWP set to a predetermined BWP set. Alternatively, the terminal device 110-1 may switch back to the active BWP set after the second timer is stopped or expired. In other embodiments, upon the stop or expiration of the second timer, the terminal device 110-1 may switch to the initial BWP.
  • the second timer can be indicated via RRC signaling. Alternatively, the second timer can be indicated via DCI. In other embodiments, the second timer can be indicated via a MAC CE. The second timer can be indicated in the configuration of BWP.
  • the terminal device 110-1 performs a communication with the network device 120 based on the target BWP set and the target energy configuration.
  • the terminal device 110-1 can apply the target energy configuration if the terminal device 110-1 performs the communication based on the target BWP set.
  • the terminal device 110-1 if the terminal device 110-1 switches to the predetermined BWP in the target BWP set, the terminal device 110-1 can perform the communication with the network device on the predetermined BWP.
  • the terminal device 110-1 switches to the target BWP indicated by the DCI, the terminal device 110-1 can perform the communication with the network device on the target BWP.
  • Fig. 9 shows a flowchart of an example method 900 in accordance with an embodiment of the present disclosure.
  • the method 900 can be implemented at any suitable devices. Only for the purpose of illustrations, the method 900 can be implemented at a network device 120 as shown in Fig. 1.
  • the network device 120 may transmit configuration information indicating indexes of the one or more BWPs to the terminal device 110-1.
  • each BWP defined for a numerology can have following three different parameters: subcarrier spacing, symbol duration and cyclic prefix length.
  • each DL BWP may comprise at least one CORESET with UE Specific USS.
  • at least one of the configured DL BWPs may comprise one CORESET with CSS.
  • the network device 120 transmits a configuration of BWP to the terminal device 110-1.
  • the configuration information can be transmitted via RRC signaling.
  • the configuration information can be transmitted via MAC signaling.
  • the configuration information may be transmitted via PHY signaling.
  • the configuration of BWP indicates one or more BWP sets.
  • the configuration of BWP can comprise a BWP set identity of each of the one or more BWP sets.
  • the BWP set can comprise one BWP.
  • the BWP set can comprise a plurality of BWPs.
  • the one or more BWPs in the BWP set can be UL BWP or DL BWP.
  • the one or more BWPs in the BWP set can be a common BWP or BWP pair for both DL and UL.
  • a BWP can be comprised in multiple BWP sets. In other words, the BWP 310 can belong to both the first BWP set and the second BWP set.
  • the configuration of BWP further indicates one or more energy configurations associated with the one or more BWP sets.
  • a BWP set can be associated with an energy configuration.
  • the energy configuration can comprise a configuration of an energy saving level.
  • the energy configuration can comprise an energy saving configuration identity.
  • the energy saving level can indicate to what extend the energy at the network device is saved. For example, if the energy saving level in a first energy configuration associated with a first BWP set is higher than the energy saving level in a second energy configuration associated with a second BWP set, it means that compared with applying the second energy configuration, more energy can be saved when applying the first energy configuration.
  • the energy configuration can comprise a configuration of maximum bandwidth.
  • the energy configuration can comprise a configuration of network device channel bandwidth.
  • the energy configuration can comprise a configuration of a power level.
  • the energy configuration may indicate EPRE of a SSB.
  • the energy configuration may indicate a power ratio or a power offset of CS-RS to SSB. It should be noted that the energy configuration may other parameters related to the power level.
  • the energy configuration can comprise a configuration of maximum MIMO layer.
  • the configuration of maximum MIMO layer can be applied in in DL.
  • the configuration of maximum MIMO layer can be applied in UL.
  • the configuration of maximum MIMO layer can be a cell specific maximum MIMO layer.
  • the configuration of maximum MIMO layer may be common for all BWPs in the corresponding BWP set.
  • the energy configuration may also comprise a configuration of SSB.
  • the configuration of SSB may indicate a time or frequency resource of a SSB.
  • the energy configuration can comprise a configuration of random access channel (RACH) .
  • RACH random access channel
  • the configuration of RACH may comprise RACH occasion configuration.
  • the configuration of RACH can comprise one or more of: BWP bandwidth size frequency location, and CORESET.
  • the network device 120 may transmit 2020 DCI to the terminal device 110-1.
  • the target BWP set and the target energy configuration can be determined based on the received DCI.
  • the DCI can be group common DCI.
  • the DCI can be in a DCI format 2-X, where X is an integer or a letter.
  • the group common DCI can indicate a BWP set identity of the target BWP set.
  • the group common DCI can indicate an identity of the target energy configuration.
  • the group common DCI can indicate a target energy saving level.
  • the DCI can be UE specific DCI.
  • the network device 120 may indicate the target BWP set based on the DCI format 1-1/1-2 (i.e., the DL scheduling DCI) or DCI format 0-1/0-2 (i.e., the UL scheduling DCI) .
  • the terminal device 110-1 can ignore a resource allocation in the UE specific DCI. In other words, if the UE specific DCI is used to indicate BWP set switching, the UE specific DCI does not schedule a PDSCH or a PUSCH.
  • the BWP indicator field in the UE specific DCI can be used to indicate the target BWP set.
  • the UE specific DCI can comprise one or more bits in a BWP indicator field indicating the target BWP set.
  • the first/last 1 or 2 bit in the BWP indicator field can be used to indicate the BWP set identity, and the remaining bits can be used to indicate the BWP identity in the BWP set.
  • the BWP identity can be only valid in a BWP set.
  • the BWP identity can be unique in all BWP sets. In other words, any two BWP identities are different even they belong to different BWP sets.
  • N bits for the BWP indicator field can be used to indicate at most (2 ⁇ N) BWP identities, however, the (2 ⁇ N) BWP identities may be associated with multiple BWP sets.
  • the terminal device 110-1 may determine the target BWP set based on the BWP identity indicated by the UE specific DCI.
  • the UE specific DCI can comprise a field indication for the BWP indicator field.
  • a field indication can be introduced in the BWP indicator field.
  • the BWP indicator field can be used to indicate a BWP within a BWP set.
  • the BWP indicator field can be used to indicate a BWP set.
  • the field indication can be an explicit field in DCI.
  • the field indication can be an implicit indication based on particular value of the other field (for example, the resource allocation, hybrid automatic repeat request (HARQ) process number and the like) in the UE specific DCI.
  • HARQ hybrid automatic repeat request
  • a new field can be introduced in the UE specific DCI.
  • the bit-width of the newly introduced field can be log2 (M) , where M is the number of BWP sets or energy saving configurations.
  • the UE specific DCI can comprise a BWP set switching field for indicating the target BWP set.
  • the UE specific DCI can comprise a BWP set indication field for indicating the target BWP set.
  • the UE specific DCI can comprise an energy configuration switching field for indicating the target energy configuration.
  • the UE specific DCI can comprise an energy configuration indication field for indicating the target energy configuration.
  • target BWP set and the target energy configuration can be determined based on RRC configuration.
  • the network device 120 may indicate the BWP set switching by RRC configuration.
  • the network device 120 may transmit a configuration of a first timer.
  • the terminal device may switch to the target BWP set upon an expiration or a stop of the first timer.
  • the stop of the first timer may be indicated by the network device 120.
  • the stop of the first timer may be triggered by a certain condition.
  • the configuration of first timer may be configured by the RRC signaling which indicates the BWP set switching.
  • the configuration of the first timer may also be configured via DCI or MAC CE.
  • the network device 120 may configure different terminal devices with different values of the first timer, in order to enable terminal devices performing BWP set switching at a same/similar time.
  • the first timer may be triggered by a MAC-CE, or a DCI transmitted by the network device 120.
  • the network device 120 may indicate the terminal device 110-1 a target time instant.
  • the terminal device 110-1 may switch from the active BWP set to the target BWP set at the target time instant.
  • the target time may be the starting time or the ending time of one of the followings: a system frame number (SFN) , a subframe, a slot or a symbol.
  • SFN system frame number
  • the target time instant can be indicated via RRC signaling.
  • the target time instant can be indicated via DCI.
  • the target time instant can be indicated via a MAC CE.
  • the target time instant can be indicated in the configuration of BWP.
  • the network device 120 may transmit a configuration of a second timer.
  • the terminal device may switch from the target BWP set to one of: a predetermined BWP set, the active BWP set, or an initial BWP after an expiration or a stop of the second timer.
  • the configuration of the second timer can be transmitted via RRC signaling.
  • the configuration of the second timer can be transmitted via DCI.
  • the configuration of the second timer can be transmitted via a MAC CE.
  • the second timer can be indicated in the configuration of BWP.
  • the network device 120 performs a communication with the terminal device 110-1 based on the target BWP set and the target energy configuration. In some embodiments, if the terminal device 110-1 switches to the predetermined BWP in the target BWP set, the network device 120 can perform the communication with the terminal device 110-1 on the predetermined BWP. Alternatively, if the terminal device 110-1 switches to the target BWP indicated by the DCI, the network device 120 can perform the communication with the terminal device 110-1on the target BWP.
  • a terminal device comprises circuitry configured to receive, from a network device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; determine, from the configuration of BWP, a target BWP set and a target energy configuration associated with the target BWP set; and perform a communication with the network device based on the target BWP set and the target energy configuration.
  • BWP bandwidth part
  • each of the one or more BWP sets comprises one or more BWPs
  • the configuration of BWP comprises a BWP set identity of each of the one or more BWP sets
  • the configuration of BWP further comprises an identity of each of the one or more energy configurations.
  • each of the one or more energy configurations comprises at least one of: a configuration of an energy saving level, an energy saving configuration identity, a configuration of maximum bandwidth, a configuration of network device channel bandwidth, a configuration of a power level, a configuration of maximum multi input multi output (MIMO) layer, a configuration of synchronization signal/physical broadcast channel block (SSB) or random access channel (RACH) .
  • a configuration of an energy saving level an energy saving configuration identity
  • MIMO maximum multi input multi output
  • RACH random access channel
  • the terminal device comprises circuitry configured to receive, from the network device, group common downlink control information (DCI) , wherein the group common DCI indicates at least one of: a BWP set identity of the target BWP set, an identity of the target energy configuration, or a target energy saving level.
  • the terminal device comprises circuitry configured to determine the target BWP set and the target energy configuration by: selecting, based on the group common DCI, the target BWP set and the target energy configuration from the one or more BWP sets and the one or more energy configurations.
  • DCI group common downlink control information
  • the terminal device comprises circuitry configured to in accordance with a determination that the target BWP set is different from an active BWP set, switch to a predetermined BWP in the target BWP set. In some embodiments, the terminal device comprises circuitry configured to perform the communication with the network device by: performing the communication with the network device on the predetermined BWP.
  • the predetermined BWP is with a lowest BWP identity within the target BWP set.
  • the terminal device comprises circuitry configured to receive, from the network device, user equipment (UE) specific downlink control information (DCI) , wherein the UE specific DCI comprises one of: one or more bits in a BWP indicator field indicating the target BWP set, a field indication for the target BWP set in the BWP indicator field, or a BWP set switching field for indicating the target BWP set, a BWP set indication field for indicating the target BWP set, an energy configuration switching field for indicating the target energy configuration, or an energy configuration indication field for indicating the target energy configuration.
  • UE user equipment
  • DCI downlink control information
  • the terminal device comprises circuitry configured to in accordance with a determination that the target BWP set is different from an active BWP set and the UE specific DCI further indicates a target BWP in the target BWP set, switch to the target BWP. In some embodiments, the terminal device comprises circuitry configured to perform the communication with the network device by: performing the communication with the network device on the target BWP.
  • the terminal device comprises circuitry configured to in accordance with a determination that the target BWP set is different from an active BWP set and the target BWP is absent in the UE specific DCI, switch to a predetermined BWP in the target BWP set or an initial BWP. In some embodiments, the terminal device comprises circuitry configured to perform the communication with the network device by performing the communication with the network device on the predetermined BWP or the initial BWP.
  • the terminal device comprises circuitry configured to cause a resource allocation in the UE specific DCI to be ignored.
  • the terminal device comprises circuitry configured to cause a transmission or reception with the network device to be stopped within a duration for performing BWP set switching.
  • the terminal device comprises circuitry configured to perform a transmission or reception with the network device based on an initial BWP within a duration for performing BWP set switching.
  • the terminal device comprises circuitry configured to start a first timer which is configured by the network device; and switch from an active BWP set to the target BWP set upon an expiration or a stop of the first timer.
  • the first timer is triggered based on a medium access control control element (MAC CE) or downlink control information from the network device.
  • MAC CE medium access control control element
  • the terminal device comprises circuitry configured to switch from an active BWP set to the target BWP set at a target time instant which is indicated by the network device.
  • the terminal device comprises circuitry configured to start a second timer after switching from an active BWP set to the target BWP set; and in accordance with a determination of an expiration or a stop of the second timer, switch from the target BWP set to one of: a predetermined BWP set, the active BWP set, or an initial BWP.
  • a network device comprises circuitry configured to transmit, at a network device and to a terminal device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; and perform a communication with the terminal device based on a target BWP set and a target energy configuration associated with the target BWP set, wherein the target BWP set and the target energy configuration are determined from the one or more BWP sets and the one or more energy configurations.
  • BWP bandwidth part
  • each of the one or more BWP sets comprises one or more BWPs
  • the configuration of BWP comprises a BWP set identity of each of the one or more BWP sets
  • the configuration of BWP further comprises an identity of each of the one or more energy configurations.
  • each of the one or more energy configurations comprises at least one of: a configuration of an energy saving level, an energy saving configuration identity, a configuration of maximum bandwidth, a configuration of network device channel bandwidth, a configuration of a power level, a configuration of maximum multi input multi output (MIMO) layer, a configuration of synchronization signal/physical broadcast channel block (SSB) or random access channel (RACH) .
  • a configuration of an energy saving level an energy saving configuration identity
  • MIMO maximum multi input multi output
  • RACH random access channel
  • the network device comprises circuitry configured to transmit, to the terminal device, group common downlink control information (DCI) , wherein the group common DCI indicates at least one of: a BWP set identity of the target BWP set, an identity of the target energy configuration, or a target energy saving level.
  • DCI group common downlink control information
  • the network device comprises circuitry configured to perform the communication by: in accordance with a determination that the target BWP set is different from an active BWP set, performing the communication with the terminal device on a predetermined BWP.
  • the predetermined BWP is with a lowest BWP identity within the target BWP set.
  • the network device comprises circuitry configured to transmit, to the terminal device, user equipment (UE) specific downlink control information (DCI) , wherein the UE specific DCI comprises one of: one or more bits in a BWP indicator field indicating the target BWP set, a field indication for the target BWP set in the BWP indicator field, or a BWP set switching field for indicating the target BWP set, a BWP set indication field for indicating the target BWP set, an energy configuration switching field for indicating the target energy configuration, or an energy configuration indication field for indicating the target energy configuration.
  • UE user equipment
  • DCI downlink control information
  • the network device comprises circuitry configured to perform the communication by: in accordance with a determination that the target BWP set is different from an active BWP set and the UE specific DCI further indicates a target BWP in the target BWP set, performing the communication with the terminal device on the target BWP.
  • the network device comprises circuitry configured to perform the communication by: in accordance with a determination that the target BWP set is different from an active BWP set and the target BWP is absent in the UE specific DCI, performing the communication with the terminal device on the predetermined BWP or the initial BWP.
  • the network device comprises circuitry configured to transmit, to the terminal device, a configuration of a first timer, wherein the terminal device switches to the target BWP set upon an expiration or a stop of the first timer.
  • the network device comprises circuitry configured to transmit a medium access control control element (MAC CE) or downlink control information to the terminal device for triggering the first timer.
  • MAC CE medium access control control element
  • the network device comprises circuitry configured to transmit, to the terminal device, an indication of a target time instant, wherein the terminal device switches to the target BWP set at the target time instant.
  • the network device comprises circuitry configured to transmit, to the terminal device, a configuration of a second timer, wherein the terminal device switches from the target BWP set to one of: a predetermined BWP set, the active BWP set, or an initial BWP after an expiration or a stop of the second timer.
  • Fig. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure.
  • the device 1000 can be considered as a further example implementation of the terminal device 110-1 or the network device 120 as shown in Fig. 1. Accordingly, the device 1000 can be implemented at or as at least a part of the terminal device 110-1 or the network device 120.
  • the device 1000 includes a processor 1010, a memory 1020 coupled to the processor 1010, a suitable transmitter (TX) and receiver (RX) 1040 coupled to the processor 1010, and a communication interface coupled to the TX/RX 1040.
  • the memory 1020 stores at least a part of a program 1030.
  • the TX/RX 1040 is for bidirectional communications.
  • the TX/RX 1040 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
  • MME Mobility Management Entity
  • S-GW Serving Gateway
  • Un interface for communication between the eNB and a relay node (RN)
  • Uu interface for communication between the eNB and a terminal device.
  • the program 1030 is assumed to include program instructions that, when executed by the associated processor 1010, enable the device 1000 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Fig. 2 to 9.
  • the embodiments herein may be implemented by computer software executable by the processor 1010 of the device 1200, or by hardware, or by a combination of software and hardware.
  • the processor 1010 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 1010 and memory 1020 may form processing means 1050 adapted to implement various embodiments of the present disclosure.
  • the memory 1020 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1020 is shown in the device 1200, there may be several physically distinct memory modules in the device 2700.
  • the processor 1010 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1200 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Figs. 2 to 10.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eX
  • UE user equipment
  • the ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM.
  • SIM Subscriber Identity Module
  • the term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
  • network device refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
  • NodeB Node B
  • eNodeB or eNB evolved NodeB
  • gNB next generation NodeB
  • TRP transmission reception point
  • RRU remote radio unit
  • RH radio head
  • RRH remote radio head
  • IAB node a low power node such
  • the terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • AI Artificial intelligence
  • Machine learning capability it generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
  • the terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum.
  • the terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario.
  • MR-DC Multi-Radio Dual Connectivity
  • the terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
  • the network device may have the function of network energy saving, Self-Organising Networks (SON) /Minimization of Drive Tests (MDT) .
  • the terminal may have the function of power saving.
  • test equipment e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
  • the embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.

Abstract

Embodiments of the present disclosure relate to methods, devices, and computer readable medium for communication. According to embodiments of the present disclosure, a network device transmits a configuration of bandwidth part (BWP). The configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets. The terminal device determines a target BWP set and a target energy configuration associated with the target BWP set from the configuration of BWP. The terminal device applies the target energy configuration and performs a communication with the network device on the target BWP set. In this way, the energy configuration can be switched smoothly, thereby traffic continuity can be better supported. Moreover, it is easy to control all UEs switch the BWP at the same/similar time.

Description

METHODS, DEVICES, AND COMPUTER READABLE MEDIUM FOR COMMUNICATION TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices, and computer readable medium for communication.
BACKGROUND
Several technologies have been proposed to improve communication performances. For example, in previous releases of new radio (NR) , power saving at user equipment (UE) side has been intensively studied and specified. Moreover, a new study item of network energy saving also needs to be considered, which focuses on the energy saving at network device side.
SUMMARY
In general, example embodiments of the present disclosure provide a solution for communication.
In a first aspect, there is provided a method for communication. The method comprises receiving, at a terminal device and from a network device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; determining, from the configuration of BWP, a target BWP set and a target energy configuration associated with the target BWP set; and performing a communication with the network device based on the target BWP set and the target energy configuration.
In a second aspect, there is provided a method for communication. The method comprises transmitting, at a network device and to a terminal device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; and performing a communication with the terminal device based on a target BWP set and a target energy configuration associated with the target BWP set, wherein the target BWP set  and the target energy configuration are determined from the one or more BWP sets and the one or more energy configurations.
In a third aspect, there is provided a terminal device. The terminal device comprises a processing unit; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the terminal device to perform acts comprising: receiving, from a network device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; determining, from the configuration of BWP, a target BWP set and a target energy configuration associated with the target BWP set; and performing a communication with the network device based on the target BWP set and the target energy configuration.
In a fourth aspect, there is provided a network device. The network device comprises a processing unit; and a memory coupled to the processing unit and storing instructions thereon, the instructions, when executed by the processing unit, causing the network device to perform acts comprising: transmitting, to a terminal device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; and performing a communication with the terminal device based on a target BWP set and a target energy configuration associated with the target BWP set, wherein the target BWP set and the target energy configuration are determined from the one or more BWP sets and the one or more energy configurations.
In a fifth aspect, there is provided a computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to carry out the method according to the first or second aspect.
Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some example embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
Fig. 1 is a schematic diagram of a communication environment in which embodiments of the present disclosure can be implemented;
Fig. 2 illustrates a signaling flow for communications according to some embodiments of the present disclosure;
Fig. 3 illustrates a schematic diagram of BWPs according to some embodiments of the present disclosure;
Fig. 4 illustrates a schematic diagram of bandwidths according to some embodiments of the present disclosure;
Fig. 5 illustrates a schematic diagram of BWP set switching according to some embodiments of the present disclosure;
Fig. 6 illustrates a schematic diagram of BWP set switching according to some embodiments of the present disclosure;
Fig. 7 illustrates a schematic diagram of BWP set switching according to some embodiments of the present disclosure;
Fig. 8 is a flowchart of an example method in accordance with an embodiment of the present disclosure;
Fig. 9 is a flowchart of an example method in accordance with an embodiment of the present disclosure; and
Fig. 10 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporate one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device. In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
The terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than  100GHz as well as Terahertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connection with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , and the like.
In one embodiment, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access technologies (RATs) . In one embodiment, the first network device may be a first RAT device and the second network device may be a second RAT device. In one embodiment, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first network device and the second network device. In one embodiment, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In one embodiment, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
Communications discussed herein may use conform to any suitable standards including, but not limited to, New Radio Access (NR) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , cdma2000, and Global System for  Mobile Communications (GSM) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.85G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) , and the sixth (6G) communication protocols. The techniques described herein may be used for the wireless networks and radio technologies mentioned above as well as other wireless networks and radio technologies. The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.
The term “circuitry” used herein may refer to hardware circuits and/or combinations of hardware circuits and software. For example, the circuitry may be a combination of analog and/or digital hardware circuits with software/firmware. As a further example, the circuitry may be any portions of hardware processors with software including digital signal processor (s) , software, and memory (ies) that work together to cause an apparatus, such as a terminal device or a network device, to perform various functions. In a still further example, the circuitry may be hardware circuits and or processors, such as a microprocessor or a portion of a microprocessor, that requires software/firmware for operation, but the software may not be present when it is not needed for operation. As used herein, the term circuitry also covers an implementation of merely a hardware circuit or processor (s) or a portion of a hardware circuit or processor (s) and its (or their) accompanying software and/or firmware.
As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term “includes” and its variants are to be read as open terms that mean “includes, but is not limited to. ” The term “based on” is to be read as “based at least in part on. ” The term “one embodiment” and “an embodiment” are to be read as “at least one embodiment. ” The term “another embodiment” is to be read as “at least one other embodiment. ” The terms “first, ” “second, ” and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as “best, ” “lowest, ” “highest, ” “minimum, ” “maximum, ” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
As mentioned above, a new study item of network energy saving also needs to be considered, which focuses on the energy saving at network device side. For a network device with light-to-medium load, in order to reduce energy consumption, the network device may temporarily stop its transmission/reception, or de-activate a portion of its antenna ports, or reduce its channel bandwidth (by changing the bandwidth part (BWP) or switching-off some carrier components (CCs) ) . Moreover, the coverage and traffic continuity should be considered. For example, if the network device decides to switch-off some of its antenna ports (i.e., by switching off some radio frequency (RF) chains) to save energy, the transmission power will be reduced. However, if the network device still keeps the original bandwidth, the power spectrum density (PSD) may become lower, and the coverage may be deteriorated. Therefore, the network device may need to reduce its bandwidth when it switches off some RF chains. For example, if the transmitting (TX) antenna number changes from 4 to 2 (consequently, the transmission power will be reduced by half) , the network device can simultaneously reduce its channel bandwidth from 200MHz to 100MHz, then the PSD (i.e., energy per resource element, EPRE) can keep the same, then the coverage will have no significant loss. Therefore, the network device antenna on-off and the BWP switching may be performed simultaneously.
Moreover, the terminal device can be configured with one or more BWPs. A Bandwidth Part (BWP) is a contiguous set of physical resource blocks (PRBs) on a given carrier. These RBs are selected from a contiguous subset of the common resource blocks for a given numerology. In the current NR specification, the terminal device can be configured with maximum 4 BWPs for downlink and uplink but at a given point of time only one BWP is active for downlink and one for uplink. In downlink control information (DCI) format 0-1/0-2 and 1-1/1-2, a BWP indicator field can be used to indicate a BWP from a set of BWPs (i.e., the at most four downlink (DL) BWPs or uplink (UL) BWPs) .
According to conventional technologies, a max multi-input multi-output (MIMO) layer of physical downlink shared channel (PDSCH) or physical uplink shared channel (PUSCH) for a UE can be a cell specific parameter or a BWP specific parameter. The  per-DL-BWP configuration of maximum number of DL MIMO layers can be supported. For example, the network device may indicate UE to deactivate some of the antenna ports by the BWP indicator filed in DCI, in order to save power.
As mentioned above, for a network device which decided to switch off a portion of its antenna port to save energy, in order to avoid coverage loss, it may simultaneously reduce its channel bandwidth. As a result, the UEs which have a BWP configuration larger than the reduced channel bandwidth may need to switch to an available BWP. However, there may be no available BWP in the set of BWP configuration (e.g., all the BWPs in the BWP set are larger than the reduced channel bandwidth) . In addition, with the network device antenna re-configuration, other parameters may also changes, e.g., the max number of MIMO layers, the original set of BWP may not match such parameter changes. To solve this issue, the network device may reconfigure the set of BWPs by radio resource control (RRC) signaling and then indicate the new BWP by DCI. However, there can be an unpredictable delay of the RRC reconfiguration and it is very difficult to ensure multiple UEs switch the BWP at the same/similar time.
In order to solve at least part of the above problems or other potential problems, solutions on BWP set switching for network energy saving are proposed. According to embodiments of the present disclosure, a network device transmits a configuration of BWP. The configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets. The terminal device determines a target BWP set and a target energy configuration associated with the target BWP set from the configuration of BWP. The terminal device applies the target energy configuration and performs a communication with the network device on the target BWP set. In this way, the energy configuration can be switched smoothly, thereby traffic continuity can be better supported. Moreover, it is easy to control all UEs switch the BWP at the same/similar time.
Fig. 1 illustrates a schematic diagram of a communication system in which embodiments of the present disclosure can be implemented. The communication system 100, which is a part of a communication network, comprises a terminal device 110-1, a terminal device 110-2, ..., a terminal device 110-N, which can be collectively referred to as “terminal device (s) 110. ” The number N can be any suitable integer number. The terminal devices 110 can communicate with each other via sidelink.
The communication system 100 further comprises a network device. In the communication system 100, the network device 120 and the terminal devices 110 can communicate data and control information to each other. The numbers of terminal devices shown in Fig. 1 are given for the purpose of illustration without suggesting any limitations.
Communications in the communication system 100 may be implemented according to any proper communication protocol (s) , comprising, but not limited to, cellular communication protocols of the first generation (1G) , the second generation (2G) , the third generation (3G) , the fourth generation (4G) and the fifth generation (5G) and on the like, wireless local network communication protocols such as Institute for Electrical and Electronics Engineers (IEEE) 802.11 and the like, and/or any other protocols currently known or to be developed in the future. Moreover, the communication may utilize any proper wireless communication technology, comprising but not limited to: Code Divided Multiple Address (CDMA) , Frequency Divided Multiple Address (FDMA) , Time Divided Multiple Address (TDMA) , Frequency Divided Duplexer (FDD) , Time Divided Duplexer (TDD) , Multiple-Input Multiple-Output (MIMO) , Orthogonal Frequency Divided Multiple Access (OFDMA) and/or any other technologies currently known or to be developed in the future.
Embodiments of the present disclosure can be applied to any suitable scenarios. For example, embodiments of the present disclosure can be implemented at reduced capability NR devices. Alternatively, embodiments of the present disclosure can be implemented in one of the followings: NR multiple-input and multiple-output (MIMO) , NR sidelink enhancements, NR systems with frequency above 52.6GHz, an extending NR operation up to 71GHz, narrow band-Internet of Thing (NB-IOT) /enhanced Machine Type Communication (eMTC) over non-terrestrial networks (NTN) , NTN, UE power saving enhancements, NR coverage enhancement, NB-IoT and LTE-MTC, Integrated Access and Backhaul (IAB) , NR Multicast and Broadcast Services, or enhancements on Multi-Radio Dual-Connectivity.
The term “slot” used herein refers to a dynamic scheduling unit. One slot comprises a predetermined number of symbols. The term “downlink (DL) sub-slot” may refer to a virtual sub-slot constructed based on uplink (UL) sub-slot. The DL sub-slot may comprise fewer symbols than one DL slot. The slot used herein may refer to a normal slot  which comprises a predetermined number of symbols and also refer to a sub-slot which comprises fewer symbols than the predetermined number of symbols.
Embodiments of the present disclosure will be described in detail below. Reference is first made to Fig. 2, which shows a signaling chart illustrating process 200 between the terminal device and the network device according to some example embodiments of the present disclosure. Only for the purpose of discussion, the process 200 will be described with reference to Fig. 1. The process 200 may involve the terminal device 110-1and the network device 120 in Fig. 1.
The terminal device 110-1 can be configured with one or more BWPs. In some embodiments, the terminal device 110-1 can be configured with one or more DL BWPs. Alternatively or in addition, the terminal device 110-1 can be configured with one or more UL BWPs. In other embodiments, the terminal device 110-1 can be configured with a common BWP or a BWP pair for both DL and UL.
In some example embodiments, the network device 120 may transmit configuration information indicating indexes of the one or more BWPs to the terminal device 110-1. For example, each BWP defined for a numerology can have following three different parameters: subcarrier spacing, symbol duration and cyclic prefix length. In some embodiments, each DL BWP may comprise at least one control resource set (CORESET) with UE Specific Search Space (USS) . Alternatively, at least one of the configured DL BWPs may comprise one CORESET with common search space (CSS) . With respect to uplink, the terminal device 110-1 shall not transmit PUSCH or PUCCH outside an active bandwidth part. There is an initial active BWP for the terminal device 110-1 during the initial access until the terminal device 110-1 during is explicitly configured with BWPs during or after RRC connection establishment. The term “initial BWP” used herein can refer to a BWP which is used to perform an initial access process. The term “active BWP” used herein can refer to a UE specific/dedicated BWP. The active BWP is the BWP which the terminal device uses for data transfer when the RRC connection is established. The term “default BWP” used herein can refer to a UE specific BWP which configured during RRC reconfiguration. If the default BWP is not configured, the initial BWP can be referred as the default BWP. For example, as shown in Fig. 3, the configuration information may comprise the configurations of the BWP310, BWP320, BWP330 and BWP340. Only as an example, the BWP310 can be the initial BWP, the  BWP320 can be the active BWP and the BWP340 can be the default BWP. It should be noted that Fig. 3 is only an example not a limitation.
The network device 120 transmits 2010 a configuration of BWP to the terminal device 110-1. In some example embodiments, the configuration information can be transmitted via RRC signaling. Alternatively, the configuration information can be transmitted via medium access control (MAC) signaling. In other embodiments, the configuration information may be transmitted via physical layer (PHY) signaling.
The configuration of BWP indicates one or more BWP sets. The configuration of BWP can comprise a BWP set identity of each of the one or more BWP sets. In some embodiments, the BWP set can comprise one BWP. Alternatively, the BWP set can comprise a plurality of BWPs. Only as an example, referring to Fig. 3, the BWP set may comprise one or more of the BWP310, BWP320, BWP330 and BWP340. In some embodiments, the one or more BWPs in the BWP set can be UL BWP or DL BWP. Alternatively, the one or more BWPs in the BWP set can be a common BWP or BWP pair for both DL and UL. A BWP can be comprised in multiple BWP sets. For example, the first BWP set can comprise the BWP 310 and the BWP 320 and the second BWP set can comprise the BWP 310 and the BWP 330. In other words, the BWP 310 can belong to both the first BWP set and the second BWP set.
The configuration of BWP further indicates one or more energy configurations associated with the one or more BWP sets. In other words, a BWP set can be associated with an energy configuration. In some embodiments, the energy configuration can comprise a configuration of an energy saving level. Alternatively, the energy configuration can comprise an energy saving configuration identity. The energy saving level can indicate to what extend the energy at the network device is saved. For example, if the energy saving level in a first energy configuration associated with a first BWP set is higher than the energy saving level in a second energy configuration associated with a second BWP set, it means that compared with applying the second energy configuration, more energy can be saved when applying the first energy configuration.
In some embodiments, the energy configuration can comprise a configuration of maximum bandwidth. Alternatively, the energy configuration can comprise a configuration of network device channel bandwidth. Referring to Fig. 4, the first energy configuration associated with the first BWP set may indicate the maximum bandwidth 410,  the second energy configuration associated with the second BWP set may indicate the maximum bandwidth 420, and the third energy configuration associated with the third BWP set may indicate the maximum bandwidth 430.
Alternatively or in addition, the energy configuration can comprise a configuration of a power level. For example, the energy configuration may indicate EPRE of a synchronization signal/physical broadcast channel block (SSB) . Alternatively or in addition, the energy configuration may indicate a power ratio or a power offset of channel state information reference signal (CS-RS) to SSB. It should be noted that the energy configuration may other parameters related to the power level.
In other embodiments, the energy configuration can comprise a configuration of maximum MIMO layer. For example, the configuration of maximum MIMO layer can be applied in in DL. Alternatively, the configuration of maximum MIMO layer can be applied in UL. In some embodiments, the configuration of maximum MIMO layer can be a cell specific maximum MIMO layer. In other embodiments, the configuration of maximum MIMO layer may be common for all BWPs in the corresponding BWP set.
The energy configuration may also comprise a configuration of SSB. For example, the configuration of SSB may indicate a time or frequency resource of a SSB. Alternatively, the energy configuration can comprise a configuration of random access channel (RACH) . For example, the configuration of RACH may comprise RACH occasion configuration. In some embodiments, the configuration of RACH can comprise one or more of: BWP bandwidth size frequency location, and CORESET.
Referring back to Fig. 2, the terminal device 110-1 determines 2030 a target BWP set and a target energy configuration associated with the target BWP set from the configuration of BWP. In some embodiments, the network device 120 may transmit 2020 DCI to the terminal device 110-1. The target BWP set and the target energy configuration can be determined (2030) based on the received DCI. Alternatively, the terminal device 110-1 may determine the target BWP set and the target energy configuration based on RRC configuration. In some embodiment, if the target BWP set is same as an active BWP set, the terminal device 110-1 does not perform BWP set switching. Alternatively, if the target BWP set is different from the active BWP set, the terminal device 110-1 may switch 2040 to the target BWP set. In some embodiments, the terminal device 110-1 may not perform the transmission or reception with the network device 120 within a duration for  performing the BWP set switching. Alternatively, the terminal device 110-1 may perform the transmission or reception on the initial BWP within the duration for performing the BWP set switching. The duration for performing the BWP set switching can be determined based on UE capability. Alternatively, the duration for performing the BWP set switching can be determined based on the network device configuration. In other embodiments, the duration for performing the BWP set switching can be indicated by the received DCI.
As mentioned above, the target BWP set and the target energy configuration can be determined (2030) based on the received DCI. In some embodiments, the DCI can be group common DCI. The DCI can be in a DCI format 2-X, where X is an integer or a letter. The group common DCI can indicate a BWP set identity of the target BWP set. Alternatively, the group common DCI can indicate an identity of the target energy configuration. In other embodiments, the group common DCI can indicate a target energy saving level. In this case, the terminal device 110-1 may select the target BWP set and the target energy configuration from the one or more BWP sets and the one or more energy configurations based on the group common DCI. In some embodiments, if the target BWP set is different from the active BWP set, the terminal device 110-1 may switch to a predetermined BWP in the target BWP set. For example, the terminal device 110-1 may switch to a BWP with a lowest BWP identity within the target BWP set.
Now reference is made to Fig. 5 where the BWP set switching is based on group common DCI. As shown in Fig. 5, the terminal device 110-1 can be currently operate on the BWP set 511 and the terminal device 110-2 can be currently operate on the BWP set 521. The network device 120 may transmit the group common DCI 530 to the terminal device 110-1 and the terminal device 110-2. The terminal device 110-1 and the terminal device 110-2 can determine their target BWP sets based on the group common DCI 530 and the configuration of BWP. The terminal device 110-1 can determine the target BWP set 512 which is from the active BWP 511, which means that the terminal device 110-1 needs to switch to the BWP set 512. The terminal device 110-2 can determine the target BWP set 522 which is from the active BWP 521, which means that the terminal device 110-2 needs to switch to the BWP set 522. As shown in Fig. 5, the terminal device 110-1 and the terminal device 110-2 can perform the BWP set switching within the duration 540. After the BWP set switching, the network device 120 may perform the transmission and/or  reception with the terminal devices 110-1 and 110-2. In this way, the network device 120 can easily control the BWP set switching time among multiple terminal devices.
Alternatively, the DCI can be UE specific DCI. For example, the network device 120 may indicate the target BWP set based on the DCI format 1-1/1-2 (i.e., the DL scheduling DCI) or DCI format 0-1/0-2 (i.e., the UL scheduling DCI) . In some embodiments, the terminal device 110-1 can ignore a resource allocation in the UE specific DCI. In other words, if the UE specific DCI is used to indicate BWP set switching, the UE specific DCI does not schedule a PDSCH or a PUSCH.
In some embodiments, the BWP indicator field in the UE specific DCI can be used to indicate the target BWP set. For example, the UE specific DCI can comprise one or more bits in a BWP indicator field indicating the target BWP set. In this case, for example, the first/last 1 or 2 bit in the BWP indicator field can be used to indicate the BWP set identity, and the remaining bits can be used to indicate the BWP identity in the BWP set. Optionally, the BWP identity can be only valid in a BWP set. Alternatively, the BWP identity can be unique in all BWP sets. In other words, any two BWP identities are different even they belong to different BWP sets. In this case, N bits for the BWP indicator field can be used to indicate at most (2^N) BWP identities, however, the (2^N) BWP identities may be associated with multiple BWP sets. The terminal device 110-1 may determine the target BWP set based on the BWP identity indicated by the UE specific DCI. In some other embodiments, the UE specific DCI can comprise a field indication for the BWP indicator field. For example, a field indication can be introduced in the BWP indicator field. In this case, in some embodiments, if the field indication equals to a first value, the BWP indicator field can be used to indicate a BWP within a BWP set. If the field indication equals to a second value, the BWP indicator field can be used to indicate a BWP set. In some embodiments, the field indication can be an explicit field in DCI. Alternatively, the field indication can be an implicit indication based on particular value of the other field (for example, the resource allocation, hybrid automatic repeat request (HARQ) process number and the like) in the UE specific DCI.
Alternatively, a new field can be introduced in the UE specific DCI. The bit-width of the newly introduced field can be log2 (M) , where M is the number of BWP sets or energy saving configurations. For example, the UE specific DCI can comprise a BWP set switching field for indicating the target BWP set. Alternatively, the UE specific DCI can comprise a BWP set indication field for indicating the target BWP set. In some  other embodiments, the UE specific DCI can comprise an energy configuration switching field for indicating the target energy configuration. Optionally, the UE specific DCI can comprise an energy configuration indication field for indicating the target energy configuration.
In some embodiments, the target BWP set may be different from the active BWP set and the UE specific DCI can indicate a target BWP in the target BWP set. In this case, the terminal device 110-1 can switch to the target BWP. Alternatively, if the UE specific DCI may not indicate the target BWP, the terminal device 110-1 can switch to a predetermined BWP in the target BWP set or switch to an initial BWP. For example, the predetermined BWP can be configured by the network device 120. Alternatively, the predetermined BWP can be the BWP with a particular BWP identity, for example, with the lowest or highest BWP identity within the target BWP set.
Referring to Fig. 6, Fig. 6 shows that the BWP set switching is based on the UE specific DCI. As shown in Fig. 6, the terminal device 110-1 can be currently operate on the BWP set 611 and the terminal device 110-2 can be currently operate on the BWP set 621. The network device 120 may transmit the DCI 631 which is specific to the terminal device 110-1. The terminal device 110-1 can determine their target BWP sets based on the DCI 631 and the configuration of BWP. The terminal device 110-1 can determine the target BWP set 612 which is from the active BWP 611, which means that the terminal device 110-1 needs to switch to the BWP set 612. As shown in Fig. 6, the terminal device 110-1 switches to the BWP set 612. The network device 120 may transmit the DCI 632 which is specific to the terminal device 110-2. The terminal device 110-1 can determine their target BWP sets based on the DCI 632 and the configuration of BWP. The terminal device 110-1 can determine the target BWP set 622 which is from the active BWP 621, which means that the terminal device 110-2 needs to switch to the BWP set 622. As shown in Fig. 6, the terminal device 110-2 switches to the BWP set 622. As shown in Fig. 6, the terminal device 110-1 may perform the BWP set earlier than the terminal device 110-2. In this case, the network device 120 does not schedule the terminal device 110-1 before its BWP set switching is completed. In this way, the network device 120 can easily control the BWP set switching time among multiple terminal devices.
Alternatively, the terminal device 110-1 may determine the target BWP set and the target energy configuration based on RRC configuration. For example, if the terminal device 110-1 does not support DCI based BWP set switching, the network device 120 may  indicate the BWP set switching by RRC configuration. In some embodiments, after the terminal device 110-1 receives a RRC configuration/reconfiguration of BWP set or energy saving configuration which is different from the currently used one, the terminal device 110-1 may perform the BWP set switching. Alternatively, the terminal device 110-1 may start a first timer which is configured by the network device 120. In this case, the terminal device 110-1 may switch from the active BWP set to the target BWP set upon an expiration or a stop of the first timer. In other words, after starting the first timer, the terminal device 110-1 may still use the current BWP set when the first timer is running (i.e., not expire or not be stopped) . In some embodiments, the terminal device 110-1 may start the BWP set switching when the first timer expires or is stopped. Alternatively, the terminal device 110-1 may finish the BWP set switching when the first timer expires or is stopped. The stop of the first timer may be indicated by the network device 120. Alternatively, the stop of the first timer may be triggered by a certain condition. In some embodiments, the value of first timer may be configured by the RRC signaling which indicates the BWP set switching. The value of the first timer may also be configured via DCI or medium access control control element (MAC CE) . The network device 120 may configure different terminal devices with different values of the first timer, in order to enable terminal devices performing BWP set switching at a same/similar time. In some embodiments, the first timer may be triggered to start by a MAC-CE, or a DCI.
Alternatively, the network device 120 may indicate the terminal device 110-1 a target time instant. In this case, the terminal device 110-1 may switch from the active BWP set to the target BWP set at the target time instant. For example, the terminal device 110-1 may start the BWP set switching at the target time instant. Alternatively, the terminal device 110-1 may finish the BWP set switching at the target time instant. The target time may be the starting time or the ending time of one of the followings: a system frame number (SFN) , a subframe, a slot or a symbol. In some embodiments, the target time instant can be indicated via RRC signaling. Alternatively, the target time instant can be indicated via DCI. In other embodiments, the target time instant can be indicated via a MAC CE. The target time instant can be indicated in the configuration of BWP.
In some other embodiments, after switching from the active BWP set to the target BWP set, the terminal device 110-1 may start a second timer. In this case, if the second timer is stopped or expired, the terminal device 110-1 may switch from the target BWP set to a predetermined BWP set. Alternatively, the terminal device 110-1 may switch back to  the active BWP set after the second timer is stopped or expired. In other embodiments, upon the stop or expiration of the second timer, the terminal device 110-1 may switch to the initial BWP. In some embodiments, the second timer can be indicated via RRC signaling. Alternatively, the second timer can be indicated via DCI. In other embodiments, the second timer can be indicated via a MAC CE. The second timer can be indicated in the configuration of BWP.
Referring to Fig. 7, Fig. 7 shows that the BWP set switching is based on the RRC configuration. As shown in Fig. 7, the terminal device 110-1 can be currently operate on the BWP set 711. The network device 120 may transmit the RRC configuration 720 to the terminal device 110-1. The terminal device 110-1 can determine the target BWP set 712 which is different from the active BWP 711 based on the RRC configuration 720, which means that the terminal device 110-1 needs to switch to the BWP set 712. After receiving the RRC configuration 720, the terminal device 110-1 can start the timer 730. The terminal device 110-1 can still use the BWP set 711 when the timer 730 is running. The transmission and/or reception can still be on the BWP 711 during the running time of the timer 730. When the timer 730 expires or the timer 730 is stopped, the terminal device 110-1 can finish the switching to the target BWP set 712. The terminal device 110-1 may also start the timer 740 after switching to the target BWP set 712. The transmission and/or reception can be on the BWP 712 during the running time of the timer 740. When the timer 740 expires or the timer 740 is stopped, the terminal device 110-1 can switch back to the BWP set 711.
Referring back to Fig. 2, the terminal device 110-1 performs 2050 a communication with the network device 120 based on the target BWP set and the target energy configuration. The terminal device 110-1 can apply the target energy configuration if the terminal device 110-1 performs the communication based on the target BWP set. In some embodiments, if the terminal device 110-1 switches to the predetermined BWP in the target BWP set, the terminal device 110-1 can perform the communication with the network device on the predetermined BWP. Alternatively, if the terminal device 110-1 switches to the target BWP indicated by the DCI, the terminal device 110-1 can perform the communication with the network device on the target BWP.
According to embodiments described with reference to Fig. 2, the terminal device can be configured with multiple BWP sets and multiple energy configurations associated with the multiple BWP sets. The terminal device can switch to a BWP set for  communications with the network device and apply the energy configuration associate with the BWP set. In this way, based on the BWP set switching mechanism, the energy saving configuration can be switched smoothly especially at the UE side, therefore traffic continuity can be better supported. Moreover, embodiments of the present disclosure achieve utilizing and enhancing the BWP switching mechanism to enable energy saving mode switching. For example, it is easy to control the switching time among multiple UEs, compared to RRC reconfiguration based method.
Fig. 8 shows a flowchart of an example method 800 in accordance with an embodiment of the present disclosure. The method 800 can be implemented at any suitable devices. Only for the purpose of illustrations, the method 800 can be implemented at a terminal device 110-1 as shown in Fig. 1.
In some embodiments, the terminal device 110-1 can be configured with one or more BWPs. In some embodiments, the terminal device 110-1 can be configured with one or more DL BWPs. Alternatively or in addition, the terminal device 110-1 can be configured with one or more UL BWPs. In other embodiments, the terminal device 110-1 can be configured with a common BWP or a BWP pair for both DL and UL.
In some example embodiments, the terminal device 110-1 may receive configuration information indicating indexes of the one or more BWPs from the network device 120. For example, each BWP defined for a numerology can have following three different parameters: subcarrier spacing, symbol duration and cyclic prefix length. In some embodiments, each DL BWP may comprise at least one CORESET with UE USS. Alternatively, at least one of the configured DL BWPs may comprise one CORESET with CSS. With respect to uplink, the terminal device 110-1 shall not transmit PUSCH or PUCCH outside an active bandwidth part. There is an initial active BWP for the terminal device 110-1 during the initial access until the terminal device 110-1 during is explicitly configured with BWPs during or after RRC connection establishment. The term “initial BWP” used herein can refer to a BWP which is used to perform an initial access process. The term “active BWP” used herein can refer to a UE specific/dedicated BWP. The active BWP is the BWP which the terminal device uses for data transfer when the RRC connection is established. The term “default BWP” used herein can refer to a UE specific BWP which configured during RRC reconfiguration. If the default BWP is not configured, the initial BWP can be referred as the default BWP.
At block 810, the terminal device 110-1 receives a configuration of BWP from the network device 120. In some example embodiments, the configuration information can be transmitted via RRC signaling. Alternatively, the configuration information can be transmitted via MAC signaling. In other embodiments, the configuration information may be transmitted via PHY signaling.
The configuration of BWP indicates one or more BWP sets. The configuration of BWP can comprise a BWP set identity of each of the one or more BWP sets. In some embodiments, the BWP set can comprise one BWP. Alternatively, the BWP set can comprise a plurality of BWPs. In some embodiments, the one or more BWPs in the BWP set can be UL BWP or DL BWP. Alternatively, the one or more BWPs in the BWP set can be a common BWP or BWP pair for both DL and UL. A BWP can be comprised in multiple BWP sets.
The configuration of BWP further indicates one or more energy configurations associated with the one or more BWP sets. In other words, a BWP set can be associated with an energy configuration. In some embodiments, the energy configuration can comprise a configuration of an energy saving level. Alternatively, the energy configuration can comprise an energy saving configuration identity. The energy saving level can indicate to what extend the energy at the network device is saved. For example, if the energy saving level in a first energy configuration associated with a first BWP set is higher than the energy saving level in a second energy configuration associated with a second BWP set, it means that compared with applying the second energy configuration, more energy can be saved when applying the first energy configuration.
In some embodiments, the energy configuration can comprise a configuration of maximum bandwidth. Alternatively, the energy configuration can comprise a configuration of network device channel bandwidth.
Alternatively or in addition, the energy configuration can comprise a configuration of a power level. For example, the energy configuration may indicate EPRE of a SSB. Alternatively or in addition, the energy configuration may indicate a power ratio or a power offset of CS-RS to SSB. It should be noted that the energy configuration may other parameters related to the power level.
In other embodiments, the energy configuration can comprise a configuration of maximum MIMO layer. For example, the configuration of maximum MIMO layer can be  applied in in DL. Alternatively, the configuration of maximum MIMO layer can be applied in UL. In some embodiments, the configuration of maximum MIMO layer can be a cell specific maximum MIMO layer. In other embodiments, the configuration of maximum MIMO layer may be common for all BWPs in the corresponding BWP set.
The energy configuration may also comprise a configuration of a SSB. For example, the configuration of SSB may indicate a time or frequency resource of a SSB. Alternatively, the energy configuration can comprise a configuration of RACH. For example, the configuration of RACH may comprise RACH occasion configuration. In some embodiments, the configuration of RACH can comprise one or more of: BWP bandwidth size frequency location, and CORESET.
At block 820, the terminal device 110-1 determines a target BWP set and a target energy configuration associated with the target BWP set from the configuration of BWP. In some embodiments, the terminal device 110-1 may transmit receive DCI from the network device 120. The target BWP set and the target energy configuration can be determined based on the received DCI. Alternatively, the terminal device 110-1 may determine the target BWP set and the target energy configuration based on RRC configuration. In some embodiment, if the target BWP set is same as an active BWP set, the terminal device 110-1 does not perform BWP set switching. Alternatively, if the target BWP set is different from the active BWP set, the terminal device 110-1 may switch to the target BWP set. In some embodiments, the terminal device 110-1 may not perform the transmission or reception with the network device 120 within a duration for performing the BWP set switching. Alternatively, the terminal device 110-1 may perform the transmission or reception on the initial BWP within the duration for performing the BWP set switching. The duration for performing the BWP set switching can be determined based on UE capability. Alternatively, the duration for performing the BWP set switching can be determined based on the network device configuration. In other embodiments, the duration for performing the BWP set switching can be indicated by the received DCI.
As mentioned above, the target BWP set and the target energy configuration can be determined based on the received DCI. In some embodiments, the DCI can be group common DCI. The DCI can be in a DCI format 2-X, where X is an integer or a letter. The group common DCI can indicate a BWP set identity of the target BWP set. Alternatively, the group common DCI can indicate an identity of the target energy configuration. In other embodiments, the group common DCI can indicate a target energy  saving level. In this case, the terminal device 110-1 may select the target BWP set and the target energy configuration from the one or more BWP sets and the one or more energy configurations based on the group common DCI. In some embodiments, if the target BWP set is different from the active BWP set, the terminal device 110-1 may switch to a predetermined BWP in the target BWP set. For example, the terminal device 110-1 may switch to a BWP with a lowest BWP identity within the target BWP set.
Alternatively, the DCI can be UE specific DCI. For example, the network device 120 may indicate the target BWP set based on the DCI format 1-1/1-2 (i.e., the DL scheduling DCI) or DCI format 0-1/0-2 (i.e., the UL scheduling DCI) . In some embodiments, the terminal device 110-1 can ignore a resource allocation in the UE specific DCI. In other words, if the UE specific DCI is used to indicate BWP set switching, the UE specific DCI does not schedule a PDSCH or a PUSCH.
In some embodiments, the BWP indicator field in the UE specific DCI can be used to indicate the target BWP set. For example, the UE specific DCI can comprise one or more bits in a BWP indicator field indicating the target BWP set. In this case, for example, the first/last 1 or 2 bit in the BWP indicator field can be used to indicate the BWP set identity, and the remaining bits can be used to indicate the BWP identity in the BWP set. Optionally, the BWP identity can be only valid in a BWP set. Alternatively, the BWP identity can be unique in all BWP sets. In other words, any two BWP identities are different even they belong to different BWP sets. In this case, N bits for the BWP indicator field can be used to indicate at most (2^N) BWP identities, however, the (2^N) BWP identities may be associated with multiple BWP sets. The terminal device 110-1 may determine the target BWP set based on the BWP identity indicated by the UE specific DCI. In some other embodiments, the UE specific DCI can comprise a field indication for the BWP indicator field. For example, a field indication can be introduced in the BWP indicator field. In this case, in some embodiments, if the field indication equals to a first value, the BWP indicator field can be used to indicate a BWP within a BWP set. If the field indication equals to a second value, the BWP indicator field can be used to indicate a BWP set. In some embodiments, the field indication can be an explicit field in DCI. Alternatively, the field indication can be an implicit indication based on particular value of the other field (for example, the resource allocation, hybrid automatic repeat request (HARQ) process number and the like) in the UE specific DCI.
Alternatively, a new field can be introduced in the UE specific DCI. The bit-width of the newly introduced field can be log2 (M) , where M is the number of BWP sets or energy saving configurations. For example, the UE specific DCI can comprise a BWP set switching field for indicating the target BWP set. Alternatively, the UE specific DCI can comprise a BWP set indication field for indicating the target BWP set. In some other embodiments, the UE specific DCI can comprise an energy configuration switching field for indicating the target energy configuration. Optionally, the UE specific DCI can comprise an energy configuration indication field for indicating the target energy configuration.
In some embodiments, the target BWP set may be different from the active BWP set and the UE specific DCI can indicate a target BWP in the target BWP set. In this case, the terminal device 110-1 can switch to the target BWP. Alternatively, if the UE specific DCI may not indicate the target BWP, the terminal device 110-1 can switch to a predetermined BWP in the target BWP set or switch to an initial BWP. For example, the predetermined BWP can be configured by the network device 120. Alternatively, the predetermined BWP can be the BWP with a particular BWP identity, for example, with the lowest or highest BWP identity within the target BWP set.
Alternatively, the terminal device 110-1 may determine the target BWP set and the target energy configuration based on RRC configuration. For example, if the terminal device 110-1 does not support DCI based BWP set switching, the network device 120 may indicate the BWP set switching by RRC configuration. In some embodiments, after the terminal device 110-1 receives a RRC configuration/reconfiguration of BWP set or energy saving configuration which is different from the currently used one, the terminal device 110-1 may perform the BWP set switching. Alternatively, the terminal device 110-1 may start a first timer which is configured by the network device 120. In this case, the terminal device 110-1 may switch from the active BWP set to the target BWP set upon expiration or a stop of the first timer. In other words, after starting the first timer, the terminal device 110-1 may still use the current BWP set when the first timer is running (i.e., not expire or not be stopped) . In some embodiments, the terminal device 110-1 may start the BWP set switching when the first timer expires or is stopped. Alternatively, the terminal device 110-1 may finish the BWP set switching when the first timer expires or is stopped. The stop of the first timer may be indicated by the network device 120. Alternatively, the stop of the first timer may be triggered by a certain condition. In some embodiments, the value  of first timer may be configured by the RRC signaling which indicates the BWP set switching. The value of the first timer may also be configured via DCI or MAC CE. The network device 120 may configure different terminal devices with different values of the first timer, in order to enable terminal devices performing BWP set switching at a same/similar time. In some embodiments, the first timer may be triggered to start by a MAC-CE, or a DCI.
Alternatively, the network device 120 may indicate the terminal device 110-1 a target time instant. In this case, the terminal device 110-1 may switch from the active BWP set to the target BWP set at the target time instant. For example, the terminal device 110-1 may start the BWP set switching at the target time instant. Alternatively, the terminal device 110-1 may finish the BWP set switching at the target time instant. The target time may be the starting time or the ending time of one of the followings: a SFN, a subframe, a slot or a symbol. In some embodiments, the target time instant can be indicated via RRC signaling. Alternatively, the target time instant can be indicated via DCI. In other embodiments, the target time instant can be indicated via a MAC CE. The target time instant can be indicated in the configuration of BWP.
In some other embodiments, after switching from the active BWP set to the target BWP set, the terminal device 110-1 may start a second timer. In this case, if the second timer is stopped or expired, the terminal device 110-1 may switch from the target BWP set to a predetermined BWP set. Alternatively, the terminal device 110-1 may switch back to the active BWP set after the second timer is stopped or expired. In other embodiments, upon the stop or expiration of the second timer, the terminal device 110-1 may switch to the initial BWP. In some embodiments, the second timer can be indicated via RRC signaling. Alternatively, the second timer can be indicated via DCI. In other embodiments, the second timer can be indicated via a MAC CE. The second timer can be indicated in the configuration of BWP.
At block 830, the terminal device 110-1 performs a communication with the network device 120 based on the target BWP set and the target energy configuration. The terminal device 110-1 can apply the target energy configuration if the terminal device 110-1 performs the communication based on the target BWP set. In some embodiments, if the terminal device 110-1 switches to the predetermined BWP in the target BWP set, the terminal device 110-1 can perform the communication with the network device on the predetermined BWP. Alternatively, if the terminal device 110-1 switches to the target  BWP indicated by the DCI, the terminal device 110-1 can perform the communication with the network device on the target BWP.
Fig. 9 shows a flowchart of an example method 900 in accordance with an embodiment of the present disclosure. The method 900 can be implemented at any suitable devices. Only for the purpose of illustrations, the method 900 can be implemented at a network device 120 as shown in Fig. 1.
In some example embodiments, the network device 120 may transmit configuration information indicating indexes of the one or more BWPs to the terminal device 110-1. For example, each BWP defined for a numerology can have following three different parameters: subcarrier spacing, symbol duration and cyclic prefix length. In some embodiments, each DL BWP may comprise at least one CORESET with UE Specific USS. Alternatively, at least one of the configured DL BWPs may comprise one CORESET with CSS.
At block 910, the network device 120 transmits a configuration of BWP to the terminal device 110-1. In some example embodiments, the configuration information can be transmitted via RRC signaling. Alternatively, the configuration information can be transmitted via MAC signaling. In other embodiments, the configuration information may be transmitted via PHY signaling.
The configuration of BWP indicates one or more BWP sets. The configuration of BWP can comprise a BWP set identity of each of the one or more BWP sets. In some embodiments, the BWP set can comprise one BWP. Alternatively, the BWP set can comprise a plurality of BWPs. In some embodiments, the one or more BWPs in the BWP set can be UL BWP or DL BWP. Alternatively, the one or more BWPs in the BWP set can be a common BWP or BWP pair for both DL and UL. A BWP can be comprised in multiple BWP sets. In other words, the BWP 310 can belong to both the first BWP set and the second BWP set.
The configuration of BWP further indicates one or more energy configurations associated with the one or more BWP sets. In other words, a BWP set can be associated with an energy configuration. In some embodiments, the energy configuration can comprise a configuration of an energy saving level. Alternatively, the energy configuration can comprise an energy saving configuration identity. The energy saving level can indicate to what extend the energy at the network device is saved. For example,  if the energy saving level in a first energy configuration associated with a first BWP set is higher than the energy saving level in a second energy configuration associated with a second BWP set, it means that compared with applying the second energy configuration, more energy can be saved when applying the first energy configuration.
In some embodiments, the energy configuration can comprise a configuration of maximum bandwidth. Alternatively, the energy configuration can comprise a configuration of network device channel bandwidth.
Alternatively or in addition, the energy configuration can comprise a configuration of a power level. For example, the energy configuration may indicate EPRE of a SSB. Alternatively or in addition, the energy configuration may indicate a power ratio or a power offset of CS-RS to SSB. It should be noted that the energy configuration may other parameters related to the power level.
In other embodiments, the energy configuration can comprise a configuration of maximum MIMO layer. For example, the configuration of maximum MIMO layer can be applied in in DL. Alternatively, the configuration of maximum MIMO layer can be applied in UL. In some embodiments, the configuration of maximum MIMO layer can be a cell specific maximum MIMO layer. In other embodiments, the configuration of maximum MIMO layer may be common for all BWPs in the corresponding BWP set.
The energy configuration may also comprise a configuration of SSB. For example, the configuration of SSB may indicate a time or frequency resource of a SSB. Alternatively, the energy configuration can comprise a configuration of random access channel (RACH) . For example, the configuration of RACH may comprise RACH occasion configuration. In some embodiments, the configuration of RACH can comprise one or more of: BWP bandwidth size frequency location, and CORESET.
In some embodiments, the network device 120 may transmit 2020 DCI to the terminal device 110-1. The target BWP set and the target energy configuration can be determined based on the received DCI. In some embodiments, the DCI can be group common DCI. The DCI can be in a DCI format 2-X, where X is an integer or a letter. The group common DCI can indicate a BWP set identity of the target BWP set. Alternatively, the group common DCI can indicate an identity of the target energy configuration. In other embodiments, the group common DCI can indicate a target energy saving level. Alternatively, the DCI can be UE specific DCI. For example, the network  device 120 may indicate the target BWP set based on the DCI format 1-1/1-2 (i.e., the DL scheduling DCI) or DCI format 0-1/0-2 (i.e., the UL scheduling DCI) . In some embodiments, the terminal device 110-1 can ignore a resource allocation in the UE specific DCI. In other words, if the UE specific DCI is used to indicate BWP set switching, the UE specific DCI does not schedule a PDSCH or a PUSCH.
In some embodiments, the BWP indicator field in the UE specific DCI can be used to indicate the target BWP set. For example, the UE specific DCI can comprise one or more bits in a BWP indicator field indicating the target BWP set. In this case, for example, the first/last 1 or 2 bit in the BWP indicator field can be used to indicate the BWP set identity, and the remaining bits can be used to indicate the BWP identity in the BWP set. Optionally, the BWP identity can be only valid in a BWP set. Alternatively, the BWP identity can be unique in all BWP sets. In other words, any two BWP identities are different even they belong to different BWP sets. In this case, N bits for the BWP indicator field can be used to indicate at most (2^N) BWP identities, however, the (2^N) BWP identities may be associated with multiple BWP sets. The terminal device 110-1 may determine the target BWP set based on the BWP identity indicated by the UE specific DCI. In some other embodiments, the UE specific DCI can comprise a field indication for the BWP indicator field. For example, a field indication can be introduced in the BWP indicator field. In this case, in some embodiments, if the field indication equals to a first value, the BWP indicator field can be used to indicate a BWP within a BWP set. If the field indication equals to a second value, the BWP indicator field can be used to indicate a BWP set. In some embodiments, the field indication can be an explicit field in DCI. Alternatively, the field indication can be an implicit indication based on particular value of the other field (for example, the resource allocation, hybrid automatic repeat request (HARQ) process number and the like) in the UE specific DCI.
Alternatively, a new field can be introduced in the UE specific DCI. The bit-width of the newly introduced field can be log2 (M) , where M is the number of BWP sets or energy saving configurations. For example, the UE specific DCI can comprise a BWP set switching field for indicating the target BWP set. Alternatively, the UE specific DCI can comprise a BWP set indication field for indicating the target BWP set. In some other embodiments, the UE specific DCI can comprise an energy configuration switching field for indicating the target energy configuration. Optionally, the UE specific DCI can  comprise an energy configuration indication field for indicating the target energy configuration.
Alternatively, target BWP set and the target energy configuration can be determined based on RRC configuration. For example, if the terminal device 110-1 does not support DCI based BWP set switching, the network device 120 may indicate the BWP set switching by RRC configuration. In some embodiments, the network device 120 may transmit a configuration of a first timer. In this case, the terminal device may switch to the target BWP set upon an expiration or a stop of the first timer. The stop of the first timer may be indicated by the network device 120. Alternatively, the stop of the first timer may be triggered by a certain condition. In some embodiments, the configuration of first timer may be configured by the RRC signaling which indicates the BWP set switching. The configuration of the first timer may also be configured via DCI or MAC CE. The network device 120 may configure different terminal devices with different values of the first timer, in order to enable terminal devices performing BWP set switching at a same/similar time. In some embodiments, the first timer may be triggered by a MAC-CE, or a DCI transmitted by the network device 120.
Alternatively, the network device 120 may indicate the terminal device 110-1 a target time instant. In this case, the terminal device 110-1 may switch from the active BWP set to the target BWP set at the target time instant. The target time may be the starting time or the ending time of one of the followings: a system frame number (SFN) , a subframe, a slot or a symbol. In some embodiments, the target time instant can be indicated via RRC signaling. Alternatively, the target time instant can be indicated via DCI. In other embodiments, the target time instant can be indicated via a MAC CE. The target time instant can be indicated in the configuration of BWP.
In some embodiments, the network device 120 may transmit a configuration of a second timer. In this case, the terminal device may switch from the target BWP set to one of: a predetermined BWP set, the active BWP set, or an initial BWP after an expiration or a stop of the second timer. In some embodiments, the configuration of the second timer can be transmitted via RRC signaling. Alternatively, the configuration of the second timer can be transmitted via DCI. Alternatively, the configuration of the second timer can be transmitted via a MAC CE. The second timer can be indicated in the configuration of BWP.
At block 920, the network device 120 performs a communication with the terminal device 110-1 based on the target BWP set and the target energy configuration. In some embodiments, if the terminal device 110-1 switches to the predetermined BWP in the target BWP set, the network device 120 can perform the communication with the terminal device 110-1 on the predetermined BWP. Alternatively, if the terminal device 110-1 switches to the target BWP indicated by the DCI, the network device 120 can perform the communication with the terminal device 110-1on the target BWP.
It should be noted that embodiments described with reference to Figs. 2-9 can be implemented separately or together.
In some embodiments, a terminal device comprises circuitry configured to receive, from a network device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; determine, from the configuration of BWP, a target BWP set and a target energy configuration associated with the target BWP set; and perform a communication with the network device based on the target BWP set and the target energy configuration.
In some embodiments, each of the one or more BWP sets comprises one or more BWPs, the configuration of BWP comprises a BWP set identity of each of the one or more BWP sets, and the configuration of BWP further comprises an identity of each of the one or more energy configurations.
In some embodiments, each of the one or more energy configurations comprises at least one of: a configuration of an energy saving level, an energy saving configuration identity, a configuration of maximum bandwidth, a configuration of network device channel bandwidth, a configuration of a power level, a configuration of maximum multi input multi output (MIMO) layer, a configuration of synchronization signal/physical broadcast channel block (SSB) or random access channel (RACH) .
In some embodiments, the terminal device comprises circuitry configured to receive, from the network device, group common downlink control information (DCI) , wherein the group common DCI indicates at least one of: a BWP set identity of the target BWP set, an identity of the target energy configuration, or a target energy saving level. In some embodiments, the terminal device comprises circuitry configured to determine the target BWP set and the target energy configuration by: selecting, based on the group  common DCI, the target BWP set and the target energy configuration from the one or more BWP sets and the one or more energy configurations.
In some embodiments, the terminal device comprises circuitry configured to in accordance with a determination that the target BWP set is different from an active BWP set, switch to a predetermined BWP in the target BWP set. In some embodiments, the terminal device comprises circuitry configured to perform the communication with the network device by: performing the communication with the network device on the predetermined BWP.
In some embodiments, the predetermined BWP is with a lowest BWP identity within the target BWP set.
In some embodiments, the terminal device comprises circuitry configured to receive, from the network device, user equipment (UE) specific downlink control information (DCI) , wherein the UE specific DCI comprises one of: one or more bits in a BWP indicator field indicating the target BWP set, a field indication for the target BWP set in the BWP indicator field, or a BWP set switching field for indicating the target BWP set, a BWP set indication field for indicating the target BWP set, an energy configuration switching field for indicating the target energy configuration, or an energy configuration indication field for indicating the target energy configuration.
In some embodiments, the terminal device comprises circuitry configured to in accordance with a determination that the target BWP set is different from an active BWP set and the UE specific DCI further indicates a target BWP in the target BWP set, switch to the target BWP. In some embodiments, the terminal device comprises circuitry configured to perform the communication with the network device by: performing the communication with the network device on the target BWP.
In some embodiments, the terminal device comprises circuitry configured to in accordance with a determination that the target BWP set is different from an active BWP set and the target BWP is absent in the UE specific DCI, switch to a predetermined BWP in the target BWP set or an initial BWP. In some embodiments, the terminal device comprises circuitry configured to perform the communication with the network device by performing the communication with the network device on the predetermined BWP or the initial BWP.
In some embodiments, the terminal device comprises circuitry configured to cause a resource allocation in the UE specific DCI to be ignored.
In some embodiments, the terminal device comprises circuitry configured to cause a transmission or reception with the network device to be stopped within a duration for performing BWP set switching.
In some embodiments, the terminal device comprises circuitry configured to perform a transmission or reception with the network device based on an initial BWP within a duration for performing BWP set switching.
In some embodiments, the terminal device comprises circuitry configured to start a first timer which is configured by the network device; and switch from an active BWP set to the target BWP set upon an expiration or a stop of the first timer.
In some embodiments, the first timer is triggered based on a medium access control control element (MAC CE) or downlink control information from the network device.
In some embodiments, the terminal device comprises circuitry configured to switch from an active BWP set to the target BWP set at a target time instant which is indicated by the network device.
In some embodiments, the terminal device comprises circuitry configured to start a second timer after switching from an active BWP set to the target BWP set; and in accordance with a determination of an expiration or a stop of the second timer, switch from the target BWP set to one of: a predetermined BWP set, the active BWP set, or an initial BWP.
In some embodiments, a network device comprises circuitry configured to transmit, at a network device and to a terminal device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; and perform a communication with the terminal device based on a target BWP set and a target energy configuration associated with the target BWP set, wherein the target BWP set and the target energy configuration are determined from the one or more BWP sets and the one or more energy configurations.
In some embodiments, each of the one or more BWP sets comprises one or more BWPs, the configuration of BWP comprises a BWP set identity of each of the one or more BWP sets, and the configuration of BWP further comprises an identity of each of the one or more energy configurations.
In some embodiments, each of the one or more energy configurations comprises at least one of: a configuration of an energy saving level, an energy saving configuration identity, a configuration of maximum bandwidth, a configuration of network device channel bandwidth, a configuration of a power level, a configuration of maximum multi input multi output (MIMO) layer, a configuration of synchronization signal/physical broadcast channel block (SSB) or random access channel (RACH) .
In some embodiments, the network device comprises circuitry configured to transmit, to the terminal device, group common downlink control information (DCI) , wherein the group common DCI indicates at least one of: a BWP set identity of the target BWP set, an identity of the target energy configuration, or a target energy saving level.
In some embodiments, the network device comprises circuitry configured to perform the communication by: in accordance with a determination that the target BWP set is different from an active BWP set, performing the communication with the terminal device on a predetermined BWP.
In some embodiments, the predetermined BWP is with a lowest BWP identity within the target BWP set.
In some embodiments, the network device comprises circuitry configured to transmit, to the terminal device, user equipment (UE) specific downlink control information (DCI) , wherein the UE specific DCI comprises one of: one or more bits in a BWP indicator field indicating the target BWP set, a field indication for the target BWP set in the BWP indicator field, or a BWP set switching field for indicating the target BWP set, a BWP set indication field for indicating the target BWP set, an energy configuration switching field for indicating the target energy configuration, or an energy configuration indication field for indicating the target energy configuration.
In some embodiments, the network device comprises circuitry configured to perform the communication by: in accordance with a determination that the target BWP set is different from an active BWP set and the UE specific DCI further indicates a target BWP  in the target BWP set, performing the communication with the terminal device on the target BWP.
In some embodiments, the network device comprises circuitry configured to perform the communication by: in accordance with a determination that the target BWP set is different from an active BWP set and the target BWP is absent in the UE specific DCI, performing the communication with the terminal device on the predetermined BWP or the initial BWP.
In some embodiments, the network device comprises circuitry configured to transmit, to the terminal device, a configuration of a first timer, wherein the terminal device switches to the target BWP set upon an expiration or a stop of the first timer.
In some embodiments, the network device comprises circuitry configured to transmit a medium access control control element (MAC CE) or downlink control information to the terminal device for triggering the first timer.
In some embodiments, the network device comprises circuitry configured to transmit, to the terminal device, an indication of a target time instant, wherein the terminal device switches to the target BWP set at the target time instant.
In some embodiments, the network device comprises circuitry configured to transmit, to the terminal device, a configuration of a second timer, wherein the terminal device switches from the target BWP set to one of: a predetermined BWP set, the active BWP set, or an initial BWP after an expiration or a stop of the second timer.
Fig. 10 is a simplified block diagram of a device 1000 that is suitable for implementing embodiments of the present disclosure. The device 1000 can be considered as a further example implementation of the terminal device 110-1 or the network device 120 as shown in Fig. 1. Accordingly, the device 1000 can be implemented at or as at least a part of the terminal device 110-1 or the network device 120.
As shown, the device 1000 includes a processor 1010, a memory 1020 coupled to the processor 1010, a suitable transmitter (TX) and receiver (RX) 1040 coupled to the processor 1010, and a communication interface coupled to the TX/RX 1040. The memory 1020 stores at least a part of a program 1030. The TX/RX 1040 is for bidirectional communications. The TX/RX 1040 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for  communication with other network elements, such as X2 interface for bidirectional communications between eNBs, S1 interface for communication between a Mobility Management Entity (MME) /Serving Gateway (S-GW) and the eNB, Un interface for communication between the eNB and a relay node (RN) , or Uu interface for communication between the eNB and a terminal device.
The program 1030 is assumed to include program instructions that, when executed by the associated processor 1010, enable the device 1000 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to Fig. 2 to 9. The embodiments herein may be implemented by computer software executable by the processor 1010 of the device 1200, or by hardware, or by a combination of software and hardware. The processor 1010 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 1010 and memory 1020 may form processing means 1050 adapted to implement various embodiments of the present disclosure.
The memory 1020 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor-based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1020 is shown in the device 1200, there may be several physically distinct memory modules in the device 2700. The processor 1010 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1200may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or  methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to Figs. 2 to 10. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) ,  an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.
As used herein, the term ‘terminal device’ refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Ultra-reliable and Low Latency Communications (URLLC) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, devices for Integrated Access and Backhaul (IAB) , Small Data Transmission (SDT) , mobility, Multicast and Broadcast Services (MBS) , positioning, dynamic/flexible duplex in commercial networks, reduced capability (RedCap) , Space borne vehicles or Air borne vehicles in Non-terrestrial networks (NTN) including Satellites and High Altitude Platforms (HAPs) encompassing Unmanned Aircraft Systems (UAS) , eXtended Reality (XR) devices including different types of realities such as Augmented Reality (AR) , Mixed Reality (MR) and Virtual Reality (VR) , the unmanned aerial vehicle (UAV) commonly known as a drone which is an aircraft without any human  pilot, devices on high speed train (HST) , or image capture devices such as digital cameras, sensors, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The ‘terminal device’ can further has ‘multicast/broadcast’ feature, to support public safety and mission critical, V2X applications, transparent IPv4/IPv6 multicast delivery, IPTV, smart TV, radio services, software delivery over wireless, group communications and IoT applications. It may also incorporated one or multiple Subscriber Identity Module (SIM) as known as Multi-SIM. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
The term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a transmission reception point (TRP) , a remote radio unit (RRU) , a radio head (RH) , a remote radio head (RRH) , an IAB node, a low power node such as a femto node, a pico node, a reconfigurable intelligent surface (RIS) , Network-controlled Repeaters, and the like.
The terminal device or the network device may have Artificial intelligence (AI) or Machine learning capability. It generally includes a model which has been trained from numerous collected data for a specific function, and can be used to predict some information.
The terminal or the network device may work on several frequency ranges, e.g. FR1 (410 MHz –7125 MHz) , FR2 (24.25GHz to 71GHz) , frequency band larger than 100GHz as well as Tera Hertz (THz) . It can further work on licensed/unlicensed/shared spectrum. The terminal device may have more than one connections with the network devices under Multi-Radio Dual Connectivity (MR-DC) application scenario. The terminal device or the network device can work on full duplex, flexible duplex and cross division duplex modes.
The network device may have the function of network energy saving, Self-Organising Networks (SON) /Minimization of Drive Tests (MDT) . The terminal may have the function of power saving.
The embodiments of the present disclosure may be performed in test equipment, e.g. signal generator, signal analyzer, spectrum analyzer, network analyzer, test terminal device, test network device, channel emulator.
The embodiments of the present disclosure may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols, 5.5G, 5G-Advanced networks, or the sixth generation (6G) networks.

Claims (32)

  1. A communication method, comprising:
    receiving, at a terminal device and from a network device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets;
    determining, from the configuration of BWP, a target BWP set and a target energy configuration associated with the target BWP set; and
    performing a communication with the network device based on the target BWP set and the target energy configuration.
  2. The method of claim 1, wherein each of the one or more BWP sets comprises one or more BWPs,
    the configuration of BWP comprises a BWP set identity of each of the one or more BWP sets, and
    the configuration of BWP further comprises an identity of each of the one or more energy configurations.
  3. The method of claim 1, wherein each of the one or more energy configurations comprises at least one of:
    a configuration of an energy saving level,
    an energy saving configuration identity,
    a configuration of maximum bandwidth,
    a configuration of network device channel bandwidth,
    a configuration of a power level,
    a configuration of maximum multi input multi output (MIMO) layer,
    a configuration of synchronization signal/physical broadcast channel block (SSB) or random access channel (RACH) .
  4. The method of claim 1, further comprising:
    receiving, from the network device, group common downlink control information (DCI) , wherein the group common DCI indicates at least one of:
    a BWP set identity of the target BWP set,
    an identity of the target energy configuration, or
    a target energy saving level; and
    wherein determining the target BWP set and the target energy configuration comprises:
    selecting, based on the group common DCI, the target BWP set and the target energy configuration from the one or more BWP sets and the one or more energy configurations.
  5. The method of claim 1, further comprising:
    in accordance with a determination that the target BWP set is different from an active BWP set, switching to a predetermined BWP in the target BWP set; and
    wherein performing the communication with the network device comprises:
    performing the communication with the network device on the predetermined BWP.
  6. The method of claim 5, wherein the predetermined BWP is with a lowest BWP identity within the target BWP set.
  7. The method of claim 1, further comprising:
    receiving, from the network device, user equipment (UE) specific downlink control information (DCI) , wherein the UE specific DCI comprises one of:
    one or more bits in a BWP indicator field indicating the target BWP set,
    a field indication for the target BWP set in the BWP indicator field, or
    a BWP set switching field for indicating the target BWP set,
    a BWP set indication field for indicating the target BWP set,
    an energy configuration switching field for indicating the target energy configuration, or
    an energy configuration indication field for indicating the target energy configuration.
  8. The method of claim 7, further comprising:
    in accordance with a determination that the target BWP set is different from an active BWP set and the UE specific DCI further indicates a target BWP in the target BWP set, switching to the target BWP; and
    wherein performing the communication with the network device comprises:
    performing the communication with the network device on the target BWP.
  9. The method of claim 7, further comprising:
    in accordance with a determination that the target BWP set is different from an active BWP set and the target BWP is absent in the UE specific DCI, switching to a predetermined BWP in the target BWP set or an initial BWP; and
    wherein performing the communication with the network device comprises:
    performing the communication with the network device on the predetermined BWP or the initial BWP.
  10. The method of claim 7, further comprising:
    causing a resource allocation in the UE specific DCI to be ignored.
  11. The method of claim 1, further comprising:
    causing a transmission or reception with the network device to be stopped within a duration for performing BWP set switching.
  12. The method of claim 1, further comprising:
    performing a transmission or reception with the network device based on an initial BWP within a duration for performing BWP set switching.
  13. The method of claim 1, further comprising:
    starting a first timer which is configured by the network device; and
    switching from an active BWP set to the target BWP set upon an expiration or a stop of the first timer.
  14. The method of claim 13, wherein the first timer is triggered based on a medium access control control element (MAC CE) or downlink control information from the network device.
  15. The method of claim 1, further comprising:
    switching from an active BWP set to the target BWP set at a target time instant which is indicated by the network device.
  16. The method of claim 1, further comprising:
    starting a second timer after switching from an active BWP set to the target BWP set; and
    in accordance with a determination of an expiration or a stop of the second timer, switching from the target BWP set to one of: a predetermined BWP set , the active BWP set, or an initial BWP.
  17. A communication method, comprising:
    transmitting, at a network device and to a terminal device, a configuration of bandwidth part (BWP) , wherein the configuration of BWP indicates one or more BWP sets and one or more energy configurations associated with the one or more BWP sets; and
    performing a communication with the terminal device based on a target BWP set and a target energy configuration associated with the target BWP set, wherein the target BWP set and the target energy configuration are determined from the one or more BWP sets and the one or more energy configurations.
  18. The method of claim 17, wherein each of the one or more BWP sets comprises one or more BWPs,
    the configuration of BWP comprises a BWP set identity of each of the one or more BWP sets, and
    the configuration of BWP further comprises an identity of each of the one or more energy configurations.
  19. The method of claim 17, wherein each of the one or more energy configurations comprises at least one of:
    a configuration of an energy saving level,
    an energy saving configuration identity,
    a configuration of maximum bandwidth,
    a configuration of network device channel bandwidth,
    a configuration of a power level,
    a configuration of maximum multi input multi output (MIMO) layer,
    a configuration of synchronization signal/physical broadcast channel block (SSB) or random access channel (RACH) .
  20. The method of claim 17, further comprising:
    transmitting, to the terminal device, group common downlink control information (DCI) , wherein the group common DCI indicates at least one of:
    a BWP set identity of the target BWP set,
    an identity of the target energy configuration, or
    a target energy saving level.
  21. The method of claim 17, wherein performing the communication comprises:
    in accordance with a determination that the target BWP set is different from an active BWP set, performing the communication with the terminal device on a predetermined BWP.
  22. The method of claim 21, wherein the predetermined BWP is with a lowest BWP identity within the target BWP set.
  23. The method of claim 17, further comprising:
    transmitting, to the terminal device, user equipment (UE) specific downlink control information (DCI) , wherein the UE specific DCI comprises one of:
    one or more bits in a BWP indicator field indicating the target BWP set,
    a field indication for the target BWP set in the BWP indicator field, or
    a BWP set switching field for indicating the target BWP set,
    a BWP set indication field for indicating the target BWP set,
    an energy configuration switching field for indicating the target energy configuration, or
    an energy configuration indication field for indicating the target energy configuration.
  24. The method of claim 23, wherein performing the communication comprises:
    in accordance with a determination that the target BWP set is different from an active BWP set and the UE specific DCI further indicates a target BWP in the target BWP set, performing the communication with the terminal device on the target BWP.
  25. The method of claim 23, wherein performing the communication comprises:
    in accordance with a determination that the target BWP set is different from an active BWP set and the target BWP is absent in the UE specific DCI, performing the communication with the terminal device on the predetermined BWP or the initial BWP.
  26. The method of claim 17, further comprising:
    transmitting, to the terminal device, a configuration of a first timer, wherein the terminal device switches to the target BWP set upon an expiration or a stop of the first timer.
  27. The method of claim 26, further comprising:
    transmitting a medium access control control element (MAC CE) or downlink control information to the terminal device for triggering the first timer.
  28. The method of claim 17, further comprising:
    transmitting, to the terminal device, an indication of a target time instant, wherein the terminal device switches to the target BWP set at the target time instant.
  29. The method of claim 17, further comprising:
    transmitting, to the terminal device, a configuration of a second timer, wherein the terminal device switches from the target BWP set to one of: a predetermined BWP set , the active BWP set, or an initial BWP after an expiration or a stop of the second timer.
  30. A terminal device comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform acts comprising the method according to any of claims 1-16.
  31. A network device comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform acts comprising the method according to any of claims 17-29.
  32. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of claims 1-16 or any of claims 17-29.
PCT/CN2022/074586 2022-01-28 2022-01-28 Methods, devices, and computer readable medium for communication WO2023141941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074586 WO2023141941A1 (en) 2022-01-28 2022-01-28 Methods, devices, and computer readable medium for communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/074586 WO2023141941A1 (en) 2022-01-28 2022-01-28 Methods, devices, and computer readable medium for communication

Publications (1)

Publication Number Publication Date
WO2023141941A1 true WO2023141941A1 (en) 2023-08-03

Family

ID=87469950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/074586 WO2023141941A1 (en) 2022-01-28 2022-01-28 Methods, devices, and computer readable medium for communication

Country Status (1)

Country Link
WO (1) WO2023141941A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109496452A (en) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 Power save signal monitor method and device
CN111345058A (en) * 2017-11-16 2020-06-26 瑞典爱立信有限公司 Radio link monitoring/radio link failure reconfiguration at partial handover of bandwidth
CN111566947A (en) * 2018-01-12 2020-08-21 高通股份有限公司 Operation of bandwidth part (BWP) switching
WO2021203275A1 (en) * 2020-04-08 2021-10-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for parameter setting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111345058A (en) * 2017-11-16 2020-06-26 瑞典爱立信有限公司 Radio link monitoring/radio link failure reconfiguration at partial handover of bandwidth
CN111566947A (en) * 2018-01-12 2020-08-21 高通股份有限公司 Operation of bandwidth part (BWP) switching
CN109496452A (en) * 2018-10-19 2019-03-19 北京小米移动软件有限公司 Power save signal monitor method and device
CN113727421A (en) * 2018-10-19 2021-11-30 北京小米移动软件有限公司 Power-saving signal monitoring method and device
WO2021203275A1 (en) * 2020-04-08 2021-10-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for parameter setting

Similar Documents

Publication Publication Date Title
WO2023141941A1 (en) Methods, devices, and computer readable medium for communication
WO2023050220A1 (en) Method, device and computer readable medium for communication
WO2024065179A1 (en) Methods, devices, and medium for communication
WO2023178694A1 (en) Method, device and computer readable medium for communciations
WO2023173341A1 (en) Methods, devices, and computer readable medium for communication
WO2024031388A1 (en) Methods of communication, terminal device, network device and computer storage medium
WO2024020814A1 (en) Method, device and computer readable medium for communications
WO2024000601A1 (en) Methods, devices, and medium for communication
WO2023193262A1 (en) Methods, devices, and computer readable medium for communication
WO2023184273A1 (en) Method, device and computer storage medium of communication
WO2023173423A1 (en) Methods, devices, and computer readable medium for communication
WO2024050844A1 (en) Method, device and computer storage medium of communication
WO2023108502A1 (en) Method, device and computer storage medium of communication
WO2023070352A1 (en) Method, device and computer storage medium of communication
WO2023197175A1 (en) Method, device and computer readable medium for communications
WO2023123439A1 (en) Method, device and computer readable medium for communications
WO2023108427A1 (en) Method, device and computer readable medium for communication
WO2023097657A1 (en) Method, device and computer storage medium of communication
WO2024021136A1 (en) Methods, terminal devices and computer readable medium for communication
WO2023050077A1 (en) Methods, devices, and computer readable medium for communication
WO2023108438A1 (en) Method, device and computer readable medium for communication
WO2023137638A1 (en) Method, device and computer readable medium for communications
WO2023201496A1 (en) Methods, devices, and computer readable medium for communication
WO2023133829A1 (en) Method, device and computer storage medium of communication
WO2023178478A1 (en) Method, device and computer storage medium of communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22922785

Country of ref document: EP

Kind code of ref document: A1