WO2024065718A1 - 电池和用电设备 - Google Patents

电池和用电设备 Download PDF

Info

Publication number
WO2024065718A1
WO2024065718A1 PCT/CN2022/123366 CN2022123366W WO2024065718A1 WO 2024065718 A1 WO2024065718 A1 WO 2024065718A1 CN 2022123366 W CN2022123366 W CN 2022123366W WO 2024065718 A1 WO2024065718 A1 WO 2024065718A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
battery
battery according
exhaust
present application
Prior art date
Application number
PCT/CN2022/123366
Other languages
English (en)
French (fr)
Inventor
李星
张辰辰
唐彧
李振华
金海族
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/123366 priority Critical patent/WO2024065718A1/zh
Publication of WO2024065718A1 publication Critical patent/WO2024065718A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery and an electrical device.
  • the present application provides a battery and an electrical device, which can improve the safety of the battery.
  • the present application provides a battery, comprising: a casing; a battery cell disposed in the casing, a first surface of the battery cell being provided with a first pressure relief mechanism; an exhaust device disposed in the casing, an exhaust channel being formed inside the exhaust device, an air inlet being provided on the exhaust device and connected to the exhaust channel, the air inlet being arranged opposite to the first pressure relief mechanism.
  • the exhaust device has a first wall and a second wall that are arranged opposite to each other, the first wall is closer to the battery cell than the second wall, the air inlet is arranged on the first wall, the exhaust channel is formed between the first wall and the second wall, and the specific heat capacity of the first wall is greater than the specific heat capacity of the second wall.
  • the heat discharged by the first pressure relief mechanism can be quickly absorbed, and the impact of thermal runaway on the adjacent battery cell can be effectively reduced.
  • the specific heat capacity of the first wall is c, satisfying c ⁇ 2KJ/(kg ⁇ °C).
  • the specific heat capacity c of the first wall satisfies or is greater than or equal to 2KJ/(kg ⁇ °C), so that the first wall can effectively absorb the heat generated by the thermal runaway of the battery cell, that is, by limiting the material of the first wall, the energy absorbed by the unit mass of the first wall (1kg) when the temperature increases by 1°C is at least 2KJ.
  • c ⁇ 3KJ/(kg ⁇ °C) is satisfied.
  • the specific heat capacity c of the first wall satisfies greater than or equal to 3KJ/(kg ⁇ °C), so that the first wall can effectively absorb the heat generated by the thermal runaway of the battery cell, that is, by limiting the material of the first wall, the energy absorbed by the first wall per unit mass when the temperature increases by 1°C is at least 3KJ.
  • a accommodating chamber is formed inside the first wall, and the accommodating chamber is used to accommodate a heat exchange medium to adjust the gas temperature in the exhaust channel.
  • a accommodating chamber is formed inside the first wall, and the accommodating chamber can accommodate a heat exchange medium to effectively absorb the gas temperature in the exhaust channel, that is, effectively reduce the impact of high temperature generated by thermal runaway of the battery cell on adjacent battery cells.
  • the first wall has a medium inlet and a medium outlet, and the medium inlet and the medium outlet are respectively connected to the accommodating chamber.
  • the heat exchange medium can flow in the accommodating chamber, so that the heat exchange medium that has not exchanged heat with the gas in the exhaust channel can be introduced into the accommodating chamber, and the heat exchange medium that has exchanged heat with the gas in the exhaust channel can be discharged, thereby ensuring the effect of regulating the temperature of the gas in the exhaust channel, thereby effectively reducing the impact of the high temperature generated by thermal runaway of the battery cell on the adjacent battery cells.
  • an adhesive layer is provided between the first wall and the first surface, the battery cell is connected to the first wall via the adhesive layer, and the thickness of the adhesive layer is D1, satisfying 0.2 mm ⁇ D1 ⁇ 5 mm.
  • the exhaust device can be fixed to the first surface of the battery cell by an adhesive layer. If the thickness of the adhesive layer is less than 0.2mm, the exhaust device cannot be effectively bonded to the surface of the battery cell, which may easily cause the exhaust device to separate from the battery cell, and thus fail to guide the high-temperature gas discharged by the first pressure relief mechanism into the exhaust channel; if the thickness of the adhesive layer is greater than 5mm, it affects the energy density of the battery and also affects the heat absorption effect of the first wall, thereby reducing the safety of the battery.
  • the thickness D1 of the adhesive layer is limited to 0.2mm ⁇ D1 ⁇ 5mm, which can ensure that the battery has a higher energy density and higher safety while satisfying the condition of stable connection between the exhaust device and the battery cell.
  • 0.5 mm ⁇ D1 ⁇ 3 mm is satisfied.
  • the thickness D1 of the adhesive layer is limited to 0.5mm ⁇ D1 ⁇ 3mm, so that the adhesive layer has a suitable thickness to effectively connect the exhaust device and the battery cell, effectively ensure the heat absorption effect of the first wall, and ensure that the battery has a high energy density.
  • the second wall is made of fireproof material.
  • the second wall made of fireproof material by arranging the second wall made of fireproof material to be relatively far away from the battery cell, it is able to withstand the direct impact of the high-temperature gas and reduce the impact of the high-temperature gas on the box body.
  • the melting point of the second wall is P, satisfying P ⁇ 600°C.
  • the melting point P of the second wall should have a higher value, that is, satisfy P ⁇ 600°C, so as to effectively avoid the high-temperature gas from impacting the box body and causing damage to the box body.
  • P ⁇ 1500° C. is satisfied.
  • the second wall is made of a material with a melting point P greater than 1500° C., the second wall has an excellent fireproof effect and can effectively ensure the safety of the battery.
  • the thickness of the second wall is D2, satisfying 0.5 mm ⁇ D2 ⁇ 5 mm.
  • the thickness D2 of the second wall is limited to 0.5mm ⁇ D2 ⁇ 5mm, so that the battery has a higher energy density and higher safety.
  • 0.7 mm ⁇ D2 ⁇ 3 mm is satisfied.
  • the thickness D2 of the second wall is limited to 0.7mm ⁇ D2 ⁇ 3mm.
  • the thickness of the second wall is D2, expressed in mm, and the melting point of the second wall is P, expressed in ° C., satisfying 1500 ⁇ D2*P ⁇ 3000.
  • the fireproof effect of the second wall is related to its melting point and thickness. If its melting point is high, a thinner thickness can be used to achieve a certain fireproof effect. Similarly, if its melting point is low, the same fireproof effect can be achieved by increasing its thickness.
  • the thickness of the second wall affects the energy density of the battery. For this reason, in some embodiments of the present application, the balance between the fireproof effect and the battery energy density is maintained by multiplying the thickness D2 of the second wall by the melting point P of the second wall. That is, if D2*P is less than 1500, its fireproof effect is poor. If D2*P ⁇ 3000, it affects the battery energy density. For this reason, the present application satisfies 1500 ⁇ D2*P ⁇ 3000, so that the second wall has a better fireproof effect and does not affect the energy density of the battery.
  • the impact resistance of the second wall is E, satisfying E ⁇ 20KJ/m 2 .
  • the second wall in some embodiments of the present application meets the impact strength E ⁇ 20 KJ/m 2 .
  • E ⁇ 30KJ/m 2 is satisfied.
  • the impact strength E of the second wall is greater than 30 KJ/m 2 , which can effectively enable the second wall to resist the impact of high-temperature gas, ensure the structural integrity of the second wall, and further ensure its fireproof effect.
  • the capacity of the battery cell is A, with a unit of ah; the distance between the first wall and the second wall is h, with a unit of mm; and 0.01 ⁇ h/A ⁇ 0.1 is satisfied.
  • the high-temperature gas when the battery cell is in thermal runaway, the high-temperature gas will be discharged by the first pressure relief mechanism.
  • the high-temperature gas enters the exhaust channel from the air inlet, and at least part of the high-temperature gas will directly impact the surface of the second wall facing the first wall. Due to the reaction, the speed of the high-temperature gas will decrease, and even cause backflow, thereby affecting the exhaust efficiency of the battery cell, so that the gas inside the battery cell is not discharged in time.
  • the gap between the first wall and the second wall can be regarded as the exhaust gap.
  • the gap between the first wall and the second wall is smaller, it means that the second wall is closer to the first pressure relief mechanism, the smaller the exhaust gap, the greater the influence of the second wall on the exhaust efficiency of the battery cell, the more untimely the exhaust, and the greater the risk of battery explosion.
  • the gap between the first wall and the second wall is larger, it means that the second wall is farther from the first pressure relief mechanism, the larger the exhaust gap, the smaller the influence on the exhaust efficiency, the more timely the exhaust, and the smaller the risk of battery explosion.
  • the gap between the first wall and the second wall is larger, it affects the energy density of the battery.
  • the distance between the first wall and the second wall is h
  • the distance h between the first wall and the second wall and the capacity A of the battery cell affect the safety and energy density of the battery.
  • h/A ⁇ 0.01 there is insufficient exhaust gap, and after the thermal runaway of the battery cell, the internal high-temperature gas cannot be discharged in time, causing the shell to rupture or even the battery to explode.
  • the battery provided in this application can meet 0.01 ⁇ h/A ⁇ 0.1, so that the battery has a higher energy density under the condition of higher safety.
  • the exhaust device further has a third wall, the third wall is arranged on a surface of the second wall facing away from the first wall, and the third wall is used to support the second wall.
  • the second wall can be made of a softer fireproof material, that is, a lower strength material.
  • a third wall with higher strength is provided to support the second wall to improve the overall structural strength of the exhaust device, ensure that the exhaust device has a stable, non-deformable exhaust passage, and ensure effective guidance of high-temperature gas.
  • the strength of the third wall is X, satisfying X ⁇ 70MPa.
  • the third wall provided in the present application satisfies X ⁇ 70MPa, so that the third wall can effectively support the second wall.
  • X ⁇ 80MPa is satisfied.
  • the thickness of the third wall is D3, satisfying 0.3mm ⁇ D3 ⁇ 4mm.
  • the thickness of the third wall if the thickness of the third wall is larger, such as greater than 4mm, it can withstand greater impact, but affects the energy density of the battery. If the thickness of the third wall is smaller, such as less than 0.3mm, the energy density of the battery can be improved, but the impact that can be sustained is smaller. For this reason, in some embodiments of the present application, the thickness D3 of the third wall satisfies 0.3mm ⁇ D3 ⁇ 4mm, so that it can withstand a larger impact while ensuring the energy density of the battery cell.
  • 0.5 mm ⁇ D3 ⁇ 3 mm is satisfied.
  • the thickness D3 of the third wall satisfies 0.5mm ⁇ D3 ⁇ 3mm, so that it can withstand a certain impact while ensuring the energy density of the battery cell as much as possible, so that the exhaust device can smoothly guide the high-temperature gas, reduce the risk of heat spread in the battery and damage to the box structure, and effectively improve the safety of the battery.
  • the thickness of the third wall is D3, measured in mm, and the strength of the third wall is X, measured in MPa, satisfying 100 ⁇ D3*X ⁇ 500.
  • the support and impact resistance of the third wall are related to its strength and thickness. If its strength is high, a certain support and impact resistance can be achieved with a thinner thickness. Similarly, if its strength is low, the same support and impact resistance can be achieved by increasing its thickness.
  • the thickness of the third wall affects the energy density of the battery. For this reason, in some embodiments of the present application, the balance between the support and impact resistance and the battery energy density is maintained by multiplying the thickness D3 of the third wall by the melting point X of the third wall. That is, if D3*X is less than 100, its support and impact resistance are poor. If D2*P ⁇ 500, it affects the battery energy density. For this reason, the present application satisfies 100 ⁇ D2*P ⁇ 500, so that the third wall has better support and impact resistance and does not affect the energy density of the battery.
  • 140 ⁇ D3*X ⁇ 240 is satisfied.
  • the third wall satisfies 140 ⁇ D3*X ⁇ 240, so that the third wall has excellent support and impact resistance effects and ensures that the battery has a high energy density.
  • the thickness of the second wall is D2
  • the thickness of the third wall is D3, satisfying 1mm ⁇ D2+D3 ⁇ 10mm.
  • the sum of the thickness of the second wall and the third wall affects the energy density of the battery, the fire prevention effect of the exhaust device and the overall structural strength of the exhaust device. If the sum of the thickness of the second wall and the third wall is greater than 10 mm, the energy density of the battery will be reduced. If the sum of the thickness of the second wall and the third wall is less than 1 mm, the fire prevention effect of the exhaust device and the overall structural strength of the exhaust device will be reduced. For this reason, in some embodiments of the present application, the sum of the thickness of the second wall D2 and the third wall D4 satisfies 1mm ⁇ D2+D3 ⁇ 10mm, so that the exhaust device has better fire prevention effect and higher structural strength under the condition that the battery has a higher energy density.
  • 2mm ⁇ D2+D3 ⁇ 7mm is satisfied.
  • the third wall and the second wall satisfy 2mm ⁇ D2+D3 ⁇ 7mm, so that the exhaust device has better fire prevention effect and higher structural strength under the condition of higher energy density of the battery.
  • the multiple battery cells there are multiple battery cells, and the multiple battery cells are stacked on each other; the exhaust device has multiple air inlets, and the multiple air inlets are spaced apart along the stacking direction of the battery cells to correspond one-to-one with the first pressure relief mechanisms of the battery cells.
  • multiple air inlets are provided to respectively correspond to the first pressure relief mechanisms of multiple battery cells in the battery, thereby ensuring that the high-temperature gas discharged from any battery cell due to thermal runaway can enter the exhaust channel, thereby avoiding the high-temperature gas from impacting the box and affecting adjacent battery cells, reducing the risk of heat spread in the battery and damage to the box structure, and effectively improving the safety of the battery.
  • the exhaust device has an exhaust port connected to the exhaust channel, and the exhaust port is connected to the outside of the box.
  • the exhaust port of the exhaust device is connected to the outside of the box, thereby effectively exhausting the high-temperature gas generated in the battery to the outside, avoiding heat accumulation in the box and affecting the battery cells in the battery.
  • a second pressure relief mechanism is provided on the wall of the box body, and the exhaust device has an exhaust port connected to the exhaust channel, and the exhaust port is located in the box body and is arranged toward the second pressure relief mechanism.
  • the high-temperature gas is discharged through the exhaust port of the exhaust device.
  • the second pressure relief mechanism is actuated to discharge the high-temperature gas in the box to ensure the safety of the battery.
  • the present application further provides an electrical device, comprising the battery provided in the first aspect, wherein the battery is used to provide electrical energy.
  • FIG1 is a schematic diagram of the structure of a vehicle provided in some embodiments of the present application.
  • FIG2 is a schematic diagram of a battery in some embodiments of the present application.
  • FIG3 is a schematic diagram of a battery cell and an exhaust device in some embodiments of the present application.
  • FIG4 is an enlarged view of point A in FIG3 ;
  • FIG5 is a perspective schematic diagram of a battery cell and an exhaust device in some embodiments of the present application.
  • FIG6 is a schematic diagram of the interior of a first wall in some embodiments of the present application.
  • FIG7 is an enlarged view of point B in FIG5 ;
  • FIG8 is a three-dimensional schematic diagram of an exhaust device and a plurality of battery cells in some embodiments of the present application.
  • FIG. 9 is a schematic diagram of an exhaust device and a plurality of battery cells in some embodiments of the present application.
  • Icons 10-box; 11-first box; 12-second box; 13-second pressure relief mechanism; 20-battery cell; 21-first surface; 22-first pressure relief mechanism; 23-electrode terminal; 30-exhaust device; 31-exhaust channel; 32-air inlet; 33-first wall; 330-accommodating chamber; 331-medium inlet; 332-medium outlet; 34-second wall; 35-adhesive layer; 36-third wall; 360-through hole;
  • the term "and/or" is only a description of the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists, A and B exist at the same time, and B exists.
  • the character "/" in this article generally indicates that the associated objects before and after are in an "or" relationship.
  • multiple refers to more than two (including two).
  • multiple groups refers to more than two groups (including two groups), and “multiple pieces” refers to more than two pieces (including two pieces).
  • the orientation or position relationship indicated by the technical terms “length”, “width”, “thickness”, “up”, “down”, etc. is based on the orientation or position relationship shown in the accompanying drawings, and is only for the convenience of describing the embodiments of the present application and simplifying the description, rather than indicating or implying that the referred device or element must have a specific orientation, be constructed and operated in a specific orientation, and therefore cannot be understood as a limitation on the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in the present application may include one or more battery cells.
  • the battery generally includes a box for encapsulating one or more batteries. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell includes a shell, a first pressure relief mechanism, an electrode terminal, an electrode assembly and an electrolyte.
  • the electrode assembly and the electrolyte are arranged inside the shell, and the first pressure relief mechanism is arranged on the surface of the shell.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive electrode sheet and the negative electrode sheet to work.
  • the material of the separator can be PP (polypropylene) or PE (polyethylene), etc.
  • the electrode terminal is arranged in the shell and is electrically connected to the electrode lug of the electrode assembly for outputting or inputting the electrical energy of the battery cell.
  • the first pressure relief mechanism refers to an element or component that is actuated to release the internal pressure or temperature of the battery cell when the internal pressure or temperature reaches a threshold value.
  • the first pressure relief mechanism may be in the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, and may specifically be a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell reaches a threshold value, the first pressure relief mechanism performs an action or a weak structure provided in the first pressure relief mechanism is destroyed, thereby forming an opening or channel for the internal pressure or temperature to be released.
  • the "activation" mentioned in this application means that the first pressure relief mechanism is in action or activated to a certain state, so that the internal pressure and temperature of the battery cell can be released.
  • the action produced by the first pressure relief mechanism may include but is not limited to: at least a part of the first pressure relief mechanism is ruptured, broken, torn or opened, etc.
  • the first pressure relief mechanism is actuated, the high-temperature and high-pressure gas inside the battery cell will be discharged outward from the actuated part. In this way, the pressure and temperature of the battery cell can be relieved under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the battery box may be provided with a second pressure relief mechanism, the working principle of which is the same as that of the first pressure relief mechanism, and the second pressure relief mechanism may be an element or component that is actuated to release the internal pressure or temperature when the internal pressure or temperature of the battery reaches a threshold value.
  • the second pressure relief mechanism may take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, and may specifically adopt a pressure-sensitive or temperature-sensitive element or structure.
  • a first pressure relief mechanism is usually set to avoid potential more serious safety accidents such as explosions, thereby improving the safety of the battery.
  • the risk of safety problems due to thermal runaway of the battery is also high.
  • the inventors further studied and found that one of the reasons for the safety problems of the battery due to thermal runaway is that the high-temperature gas generated by the thermal runaway of the battery cell in the battery is discharged by the first pressure relief mechanism, which will directly act on the box, easily causing damage to the box or even melting through, and the heat of the high-temperature gas will spread to the adjacent battery cells, which will cause thermal spread of the battery, causing safety risks to the battery.
  • the inventor in order to improve the safety of the battery, the inventor has designed a battery after in-depth research, which includes an exhaust device with an exhaust channel inside.
  • the exhaust device is arranged in the battery box, and the air inlet of the exhaust device is arranged opposite to the first pressure relief mechanism to enable the high-temperature gas discharged by the first pressure relief mechanism to enter the exhaust channel.
  • the high-temperature gas generated by the chemical and electrochemical reactions is discharged through the first pressure relief mechanism and then enters the exhaust channel in the exhaust device, thereby preventing the high-temperature gas from directly impacting the box body and preventing the heat of the high-temperature gas from spreading to adjacent battery cells. This reduces the risk of damage to the box structure and heat spread, and effectively improves the safety of the battery.
  • the battery cells disclosed in the embodiments of the present application can be used, but not limited to, in electrical equipment such as vehicles, ships or aircraft.
  • the power supply system of the electrical equipment can be composed of the battery cells and batteries disclosed in the present application.
  • the embodiment of the present application provides an electric device using a battery as a power source
  • the electric device may be, but is not limited to, a mobile phone, a tablet computer, a laptop computer, an electric toy, an electric tool, an electric bicycle, an electric motorcycle, an electric car, a ship, a spacecraft, etc.
  • the electric toy may include a fixed or mobile electric toy, for example, a game console, an electric car toy, an electric ship toy, an electric airplane toy, etc.
  • the spacecraft may include an airplane, a rocket, a space shuttle, a spacecraft, etc.
  • FIG. 1 is a schematic diagram of the structure of a vehicle 1000 provided in some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • a battery 100 is provided inside the vehicle 1000, and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000.
  • the battery 100 may be used to power the vehicle 1000, for example, the battery 100 may be used as an operating power source for the vehicle 1000, for the circuit system of the vehicle 1000, for example, for the working power requirements during the startup, navigation and operation of the vehicle 1000.
  • the vehicle 1000 may further include a controller 200 and a motor 300 , wherein the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, to meet the power requirements of starting, navigating, and driving the vehicle 1000 .
  • the battery 100 can not only serve as an operating power source for the vehicle 1000, but also serve as a driving power source for the vehicle 1000, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000.
  • Figure 2 is a schematic diagram of a battery 100 in some embodiments of the present application
  • Figure 3 is a schematic diagram of a battery cell 20 and an exhaust device 30 in some embodiments of the present application
  • Figure 4 is an enlarged view of point A in Figure 3.
  • the battery 100 includes a housing 10, a battery cell 20, and an exhaust device 30.
  • the battery cell 20 is disposed in the housing 10, and a first pressure relief mechanism 22 is disposed on a first surface 21 of the battery cell 20.
  • the exhaust device 30 is disposed in the housing 10, and an exhaust channel 31 is formed inside the exhaust device 30.
  • An air inlet 32 connected to the exhaust channel 31 is disposed on the exhaust device 30, and the air inlet 32 is disposed opposite to the first pressure relief mechanism 22.
  • the box 10 includes a first box 11 and a second box 12, which are covered with each other to form a battery cavity, and a plurality of battery cells 20 are placed in the battery cavity.
  • the shapes of the first box 11 and the second box 12 can be determined according to the shapes of the combination of the plurality of battery cells 20. Referring to FIG. 2, the first box 11 can be in the shape of a plate, and the second box 12 is formed with an opening on the surface facing the first box 11, and the first box 11 covers the opening.
  • the first box 11 and the second box 12 can each have an opening, for example, the first box 11 and the second box 12 can both be hollow cuboids and each has only one face as an opening face, the openings of the first box 11 and the second box 12 are arranged oppositely, and the first box 11 and the second box 12 are buckled to form a box 10 with a closed chamber.
  • a plurality of battery cells 20 are connected in parallel or in series or in a mixed combination and stacked and placed in the box 10 formed by buckling the first box 11 and the second box 12.
  • the first surface 21 of the battery cell 20 is a surface provided with the first pressure relief mechanism 22. When the battery cell 20 is in thermal runaway, the high temperature gas is discharged from the first pressure relief mechanism 22 of the first surface 21.
  • the first surface 21 of the battery cell 20 may be the bottom surface, top surface or side surface of the battery cell 20. Referring to FIG. 3 , the electrode terminal 23 of the battery cell 20 is provided on the top surface of the battery cell 20, and the first pressure relief mechanism 22 is provided on the bottom surface of the battery cell 20.
  • the air inlet 32 is arranged opposite to the first pressure relief mechanism 22 may mean that when the first pressure relief mechanism 22 is actuated, the discharged high-temperature gas can directly enter the exhaust channel 31 from the air inlet 32 , thereby preventing the high-temperature gas from directly acting on the box body 10 and affecting the adjacent battery cells 20 .
  • the exhaust device 30 has a first wall 33 and a second wall 34 that are relatively arranged, the first wall 33 is closer to the battery cell 20 than the second wall 34, the air inlet 32 is arranged on the first wall 33, and an exhaust channel 31 is formed between the first wall 33 and the second wall 34, and the specific heat capacity of the first wall 33 is greater than the specific heat capacity of the second wall 34.
  • the first wall 33 is closer to the first surface 21 of the battery cell 20 than the second wall 34 .
  • the high-temperature gas discharged from the first pressure relief mechanism 22 of the battery cell 20 can directly impact the surface of the second wall 34 facing the first wall 33 .
  • Specific heat capacity also known as specific heat capacity, or specific heat for short, is the heat capacity of a substance per unit mass, that is, the amount of heat absorbed by a substance per unit mass when its temperature changes.
  • specific heat capacity of the first wall 33 refers to the amount of heat absorbed by the first wall 33 per unit mass when its temperature changes.
  • the specific heat capacity of the first wall 33 is greater than the specific heat capacity of the second wall 34 may mean that a unit mass of the first wall 33 absorbs more heat when the temperature rises by 1°C than a unit mass of the second wall 34 absorbs when the temperature rises by 1°C, that is, the first wall 33 has a better heat absorption capacity than the second wall 34.
  • the first wall 33 can be made of a material with high specific heat, such as magnesium oxide, zinc oxide, iron oxide, lead oxide, barium sulfate, asphalt, paraffin, calcium carbonate or magnesium carbonate.
  • the heat discharged by the first pressure relief mechanism 22 can be quickly absorbed, so as to effectively reduce the impact of thermal runaway on the adjacent battery cell 20 .
  • the specific heat capacity of the first wall 33 is c, satisfying c ⁇ 2KJ/(kg ⁇ °C).
  • the first wall 33 has a higher specific heat capacity, and the specific heat capacity of the first wall 33 may be 2KJ/(kg ⁇ °C), 2.5KJ/(kg ⁇ °C), 3KJ/(kg ⁇ °C), 3.5KJ/(kg ⁇ °C), 4KJ/(kg ⁇ °C), 4.5KJ/(kg ⁇ °C) or a higher value.
  • the specific heat capacity c of the first wall 33 can be measured by adiabatic calorimetry, water calorimeter method or gas constant pressure specific heat capacity measurement method.
  • the specific heat capacity c of the first wall 33 satisfies greater than or equal to 2KJ/(kg ⁇ °C), so that the first wall 33 can effectively absorb the heat generated by the thermal runaway of the battery cell 20, that is, by limiting the material of the first wall 33, the energy absorbed by the first wall 33 per unit mass (1kg) when the temperature increases by 1°C is at least 2KJ.
  • c ⁇ 3KJ/(kg ⁇ °C) is satisfied.
  • the first wall 33 has a higher specific heat capacity, and the specific heat capacity of the first wall 33 may be 3 KJ/(kg ⁇ °C), 3.5 KJ/(kg ⁇ °C), 4 KJ/(kg ⁇ °C), 4.5 KJ/(kg ⁇ °C) or a higher value.
  • the specific heat capacity c of the first wall 33 satisfies greater than or equal to 3KJ/(kg ⁇ °C), so that the first wall 33 can effectively absorb the heat generated by the thermal runaway of the battery cell 20, that is, by limiting the material of the first wall 33, the energy absorbed by the first wall 33 per unit mass (1kg) when the temperature rises by 1°C is at least 3KJ.
  • Figure 5 is a three-dimensional schematic diagram of a battery cell 20 and an exhaust device 30 in some embodiments of the present application
  • Figure 6 is an internal schematic diagram of a first wall 33 in some embodiments of the present application
  • Figure 7 is an enlarged view of B in Figure 5.
  • a receiving chamber 330 is formed inside the first wall 33, and the receiving chamber 330 is used to receive a heat exchange medium to adjust the gas temperature in the exhaust channel 31.
  • the heat exchange medium may be a fluid (liquid or gas), and regulating the temperature means absorbing the heat of the high-temperature gas in the exhaust passage 31.
  • the fluid may be circulating to achieve a better temperature regulation effect.
  • the fluid may be water, a mixture of water and ethylene glycol, or air, etc.
  • the first wall 33 since the first wall 33 has a heat exchange medium inside, it can also regulate the temperature of the battery cell 20 to achieve cooling of the battery cell 20.
  • the heat exchange medium is a coolant
  • the first wall 33 may be called a water-cooled plate.
  • a accommodating chamber 330 is formed inside the first wall 33, and the accommodating chamber 330 can accommodate a heat exchange medium to effectively absorb the heat of the gas in the exhaust channel 31, that is, effectively reduce the impact of the high temperature generated by the thermal runaway of the battery cell 20 on the adjacent battery cell 20.
  • the first wall 33 may be a plate-like structure with a solid interior.
  • the first wall 33 has a medium inlet 331 and a medium outlet 332 , and the medium inlet 331 and the medium outlet 332 are respectively connected to the accommodating chamber 330 .
  • the medium inlet 331 and the medium outlet 332 are respectively disposed at two opposite ends in the extension direction of the first wall 33 to achieve the flow of the heat exchange medium.
  • the medium inlet 331 and the medium outlet 332 are connected to the thermal management system of the battery 100 through a pipeline, and the thermal management system can provide the heat exchange medium through the pipeline and the medium inlet 331, and the heat exchange medium in the first wall 33 can return to the thermal management system through the medium outlet 332 and the pipeline.
  • the heat exchange medium can flow in the accommodating chamber 330, so that the heat exchange medium that has not exchanged heat with the gas in the exhaust channel 31 can be introduced into the accommodating chamber 330, and the heat exchange medium that has exchanged heat with the gas in the exhaust channel 31 can be discharged, thereby ensuring the effect of regulating the temperature of the gas in the exhaust channel 31, thereby effectively reducing the influence of the high temperature generated by the thermal runaway of the battery cell 20 on the adjacent battery cell 20.
  • an adhesive layer 35 is disposed between the first wall 33 and the first surface 21 , and the thickness of the adhesive layer 35 is D1 , satisfying 0.2 mm ⁇ D1 ⁇ 5 mm.
  • the adhesive layer 35 may refer to a component having adhesiveness, and the first wall 33 and the first surface 21 are connected to each other through the adhesiveness of the adhesive layer 35 .
  • the thickness D1 of the adhesive layer 35 may be 0.2 mm, 0.3 mm, 0.4 mm . . . 4.7 mm, 4.8 mm, 4.9 mm or 5 mm.
  • the exhaust device 30 can be fixed to the first surface 21 of the battery cell 20 by the adhesive layer 35. If the thickness of the adhesive layer 35 is less than 0.2 mm, the exhaust device 30 cannot be effectively bonded to the surface of the battery cell 20, which easily causes the exhaust device 30 to be separated from the battery cell 20, and thus cannot guide the high-temperature gas discharged by the first pressure relief mechanism 22 into the exhaust channel 31; if the thickness of the adhesive layer 35 is greater than 5 mm, it affects the energy density of the battery 100, and also affects the heat absorption effect of the first wall 33, so that the safety of the battery 100 is reduced.
  • the thickness D1 of the adhesive layer 35 is limited to 0.2 mm ⁇ D1 ⁇ 5 mm, which can ensure that the battery 100 has a higher energy density and higher safety under the condition of meeting the stable connection between the exhaust device 30 and the battery cell 20.
  • 0.5 mm ⁇ D1 ⁇ 3 mm is satisfied.
  • the thickness D1 of the adhesive layer 35 may be 0.5 mm, 0.6 mm, 0.7 mm, . . . 2.7 mm, 2.8 mm, 2.9 mm, or 3 mm.
  • the thickness D1 of the adhesive layer 35 is limited to 0.5mm ⁇ D1 ⁇ 3mm, so that the adhesive layer 35 has a thickness of appropriate size, so as to effectively connect the exhaust device 30 and the battery cell 20, effectively ensure the heat absorption effect of the first wall 33, and at the same time ensure that the battery 100 has a higher energy density.
  • the second wall 34 is made of a fireproof material.
  • the second wall 34 has a good fireproof effect, preventing the heat of the high temperature gas from affecting the structural integrity of the box 10.
  • the second wall 34 can be made of fireproof materials such as ceramic fiber, glass fiber, basalt fiber, rock wool, and alumina fiber.
  • the second wall 34 made of fireproof material can withstand the direct impact of high temperature gas, thereby reducing the impact of high temperature gas on the box body 10.
  • the melting point of the second wall 34 is P, satisfying P ⁇ 600°C.
  • the second wall 34 may be made of a fireproof material with a melting point of P, and P may be 600° C., 700° C., 800° C., 900° C., 1500° C., 1600° C. or a higher value.
  • the melting point P of the second wall 34 should have a relatively high value, that is, satisfy P ⁇ 600°C, so as to effectively prevent the high-temperature gas from impacting the box body 10 and causing damage to the box body 10.
  • P ⁇ 1500° C. is satisfied.
  • the melting point P of the fireproof material used to make the second wall 34 may be 1500° C., 1550° C., 1600° C., 1650° C., . . . 1800° C. or a higher value.
  • the second wall 34 is made of a material with a melting point P greater than 1500° C., the second wall 34 has an excellent fireproof effect and can effectively ensure the safety of the battery 100 .
  • the thickness of the second wall 34 is D2, satisfying 0.5 mm ⁇ D2 ⁇ 5 mm.
  • the dimension of the second wall 34 is the thickness of the second wall 34 , and the thickness D2 of the second wall 34 can be 0.5 mm, 0.6 mm, 0.7 mm...3 mm, 3.1 mm...4.8 mm, 4.9 mm or 5 mm.
  • the thickness D2 of the second wall 34 is limited to 0.5mm ⁇ D2 ⁇ 5mm, so that the battery 100 has a higher energy density and higher safety.
  • 0.7 mm ⁇ D2 ⁇ 3 mm is satisfied.
  • the thickness D2 of the second wall 34 may be 0.7 mm, 0.8 mm, 0.9 mm...2 mm, 2.1 mm...2.8 mm, 2.9 mm or 3 mm.
  • the thickness D2 of the second wall 34 is limited to 0.7mm ⁇ D2 ⁇ 3mm.
  • the thickness of the second wall 34 is D2 (in mm), the melting point of the second wall 34 is P (in ° C.), and 1500 ⁇ D2*P ⁇ 3000 is satisfied.
  • D2*P refers to the product of the thickness D2 of the second wall 34 and the melting point P of the second wall 34. For example, when D2 is 3 mm and P is 700°C, D2*P is 2100.
  • the fireproof effect of the second wall 34 is related to its melting point and thickness. If its melting point is high, a thinner thickness can be used to achieve a certain fireproof effect. Similarly, if its melting point is low, the same fireproof effect can be achieved by increasing its thickness.
  • the thickness of the second wall 34 affects the energy density of the battery 100. For this reason, in some embodiments of the present application, the balance between the fireproof effect and the energy density of the battery 100 is maintained by multiplying the thickness D2 of the second wall 34 by the melting point P of the second wall 34. That is, if D2*P is less than 1500, its fireproof effect is poor. If D2*P ⁇ 3000, it affects the energy density of the battery 100. For this reason, the present application satisfies 1500 ⁇ D2*P ⁇ 3000, so that the second wall 34 has a good fireproof effect and does not affect the energy density of the battery 100.
  • the impact resistance of the second wall 34 is E, satisfying E ⁇ 20KJ/m 2 .
  • Impact strength refers to the ability of a unit area to resist impact strength.
  • the impact strength E of the second wall 34 may be 20 KJ/m 2 , 25 KJ/m 2 , 30 KJ/m 2 or a higher value.
  • the impact resistance of the second wall 34 may be measured by a drop weight impact test.
  • the second wall 34 meets the impact strength E ⁇ 20KJ/m2.
  • E ⁇ 30KJ/m 2 is satisfied.
  • the impact resistance E of the second wall 34 may be 30 KJ/m 2 , 31 KJ/m 2 , 32 KJ/m 2 or higher.
  • the impact resistance E of the second wall 34 is greater than 30 KJ/m 2 , which can effectively enable the second wall 34 to resist the impact of high-temperature gas, ensure the structural integrity of the second wall 34 , and further ensure its fireproof effect.
  • the capacity of the battery cell 20 is A, in units of ah.
  • the spacing between the first wall 33 and the second wall 34 is h, in units of mm. 0.01 ⁇ h/A ⁇ 0.1 is satisfied.
  • Battery cell capacity is one of the important performance indicators to measure battery cell performance. It indicates the amount of electricity discharged by the battery cell under certain conditions (discharge rate, temperature, termination voltage, etc.) (JS-150D can be used for discharge test).
  • the distance h between the first wall 33 and the second wall 34 may refer to a distance between a surface of the first wall 33 facing the second wall 34 and a surface of the second wall 34 facing the first wall 33 along a direction from the first wall 33 to the second wall 34 .
  • h/A may be 0.01, 0.02, 0.03, 0.04 ... 0.08, 0.09 or 0.1.
  • the high-temperature gas when the battery cell 20 thermally runs away, the high-temperature gas will be discharged by the first pressure relief mechanism 22.
  • the high-temperature gas enters the exhaust channel 31 through the air inlet 32.
  • At least part of the high-temperature gas will directly impact the surface of the second wall 34 facing the first wall 33, causing the speed of the high-temperature gas to decrease and even cause backflow, thereby affecting the exhaust efficiency of the battery cell 20 and causing the gas inside the battery cell 20 to be discharged untimely.
  • the gap between the first wall 33 and the second wall 34 can be regarded as the exhaust gap.
  • the gap between the first wall 33 and the second wall 34 is smaller, it means that the second wall 34 is closer to the first pressure relief mechanism 22, and the exhaust gap is smaller, then the second wall 34 has a greater impact on the exhaust efficiency of the battery cell 20, the exhaust is more delayed, and the risk of explosion of the battery 100 is greater; conversely, if the gap between the first wall 33 and the second wall 34 is larger, it means that the second wall 34 is farther away from the first pressure relief mechanism 22, and the exhaust gap is larger, then the impact on the exhaust efficiency is smaller, the exhaust is more timely, and the risk of explosion of the battery 100 is smaller; at the same time, if the gap between the first wall 33 and the second wall 34 is larger, the energy density of the battery 100 is lower.
  • the spacing h between the first wall 33 and the second wall 34 and the capacity A of the battery cell 20 affect the safety and energy density of the battery 100.
  • h/A ⁇ 0.01 there is insufficient exhaust gap, and after the thermal runaway of the battery cell 20, the internal high-temperature gas cannot be discharged in time, causing the shell of the battery cell 20 to rupture or even the battery 100 to explode.
  • the battery 100 provided in the present application can satisfy 0.01 ⁇ h/A ⁇ 0.1, so that the battery 100 has a higher energy density under the condition of higher safety.
  • the exhaust device 30 further has a third wall 36 , which is disposed on a surface of the second wall 34 facing away from the first wall 33 , and is used to support the second wall 34 .
  • the third wall 36 has a higher structural strength than the second wall 34.
  • the third wall 36 is disposed on the surface of the second wall 34 away from the first wall 33 to support the second wall 34.
  • the third wall 36 can be made of a relatively strong material such as aluminum alloy, steel or plastic.
  • the second wall 34 can be made of a softer fireproof material.
  • a third wall 36 with higher strength is provided to support the second wall 34 to improve the overall structural strength of the exhaust device 30, ensure that the exhaust device 30 has a stable, non-deformable exhaust channel 31, and ensure effective guidance of high-temperature gas.
  • the strength of the third wall 36 is X, satisfying X ⁇ 70 MPa.
  • Strength refers to the mechanical property of an object to resist fracture and excessive deformation.
  • the strength X of the third wall 36 can be measured by applying a certain force per unit area of the third wall 36 using a dedicated strength tester.
  • the strength of the third wall 36 may be 70 MPa, 75 MPa, 80 MPa or higher.
  • the third wall 36 satisfies X ⁇ 70 MPa, so that the third wall 36 effectively supports the second wall 34.
  • X ⁇ 80MPa is satisfied.
  • the strength of the third wall 36 may be 80 MPa, 85 MPa, 90 MPa or higher.
  • the thickness of the third wall 36 is D3, satisfying 0.3 mm ⁇ D3 ⁇ 4 mm.
  • the thickness D3 of the third wall 36 may refer to the dimension of the third wall 36 along the direction from the first wall 33 to the third wall 36. In some embodiments, the thickness D3 of the third wall 36 may be 0.3 mm, 0.4 mm, 0.5 mm ... 3.8 mm, 3.9 mm or 4 mm.
  • the thickness of the third wall 36 if the thickness of the third wall 36 is larger, such as greater than 4 mm, it can withstand greater impact, but affects the energy density of the battery 100; if the thickness of the third wall 36 is smaller, such as less than 0.3 mm, it can increase the energy density of the battery 100, but the impact that can be sustained is smaller. For this reason, in some embodiments of the present application, the thickness D3 of the third wall 36 satisfies 0.3 mm ⁇ D3 ⁇ 4 mm, so that it can withstand greater impact while ensuring the energy density of the battery cell 20.
  • 0.5 mm ⁇ D3 ⁇ 3 mm is satisfied.
  • the thickness D3 of the third wall 36 may be 0.5 mm, 0.6 mm, 0.7 mm . . . 2.8 mm, 2.9 mm or 3 mm.
  • the thickness D3 of the third wall 36 satisfies 0.5mm ⁇ D3 ⁇ 3mm, so that it can withstand a certain impact while ensuring the energy density of the battery cell 20 as much as possible, so that the exhaust device 30 can smoothly guide the high-temperature gas, reduce the risk of heat spread in the battery 100 and damage to the structure of the box body 10, and effectively improve the safety of the battery 100.
  • the thickness of the third wall 36 is D3, expressed in mm, and the strength of the third wall 36 is X, expressed in MPa, satisfying 100 ⁇ D3*X ⁇ 500.
  • D3*X may refer to the product of the thickness D3 of the third wall 36 and the strength X of the third wall 36 .
  • D3*X is 140.
  • D3*X may be 100, 120, 140 . . . 490 or 500.
  • the support and impact resistance effect of the third wall 36 is related to its strength and thickness. If its strength is high, a certain support and impact resistance effect can be achieved with a thinner thickness. Similarly, if its strength is low, the same support and impact resistance effect can be achieved by increasing its thickness, and the thickness of the third wall 36 affects the energy density of the battery 100.
  • the balance between the support and impact resistance effects and the energy density of the battery 100 is maintained by multiplying the thickness D3 of the third wall 36 by the melting point X of the third wall 36, that is, if D3*X is less than 100, the support and impact resistance effects are poor, and if D2*P ⁇ 500, it affects the energy density of the battery 100.
  • the present application satisfies 100 ⁇ D2*P ⁇ 500, so that the third wall 36 has better support and impact resistance effects without affecting the energy density of the battery 100.
  • 140 ⁇ D3*X ⁇ 240 is satisfied.
  • D3*X may be 140, 150, 160 . . . 230 or 240.
  • the third wall 36 satisfies 140 ⁇ D3*X ⁇ 240, so that the third wall 36 has excellent support and impact resistance effects, and ensures that the battery 100 has a high energy density.
  • the thickness of the second wall 34 is D2
  • the thickness of the third wall 36 is D3 , satisfying 1 mm ⁇ D2 + D3 ⁇ 10 mm.
  • D2+D3 may be 1 mm, 2 mm, 3 mm...9 mm or 10 mm.
  • the sum of the thicknesses of the second wall 34 and the third wall 36 affects the energy density of the battery 100, the fire prevention effect of the exhaust device 30 and the overall structural strength of the exhaust device 30. If the sum of the thicknesses of the second wall 34 and the third wall 36 is greater than 10 mm, the energy density of the battery 100 will be reduced. If the sum of the thicknesses of the second wall 34 and the third wall 36 is less than 1 mm, the fire prevention effect of the exhaust device 30 and the overall structural strength of the exhaust device 30 will be reduced.
  • the sum of the thicknesses of the second wall 34 and the third wall 36 satisfies 1mm ⁇ D2+D3 ⁇ 10mm, so that under the condition that the battery 100 has a higher energy density, the exhaust device 30 has a better fire prevention effect and a higher structural strength.
  • 2mm ⁇ D2+D3 ⁇ 7mm is satisfied.
  • D2+D3 may be 2mm, 3mm, 4mm...6mm or 7mm.
  • the third wall 36 and the second wall 34 satisfy 2mm ⁇ D2+D3 ⁇ 7mm, so that the exhaust device 30 has better fire prevention effect and higher structural strength under the condition that the battery 100 has a higher energy density.
  • a lightening hole may be provided inside the third wall 36 to reduce the weight of the third wall 36 , thereby increasing the energy density of the battery 100 .
  • the second wall 34 may be disposed on the third wall 36 by bonding, welding or clamping.
  • both ends of the third wall 36 perpendicular to its extension direction may be connected to the first wall 33, so that the second wall 34 and the first wall 33 can enclose the exhaust channel 31.
  • the third wall 36 and the first wall 33 may be connected by a connector, and the material of the connector may be the same as that of the first wall 33 or the third wall 36.
  • the exhaust device 30 is connected to the first surface 21 of the battery cell 20 through the adhesive layer 35 to achieve the fixation of the exhaust device 30.
  • a through hole 360 is formed on the wall of the third wall 36 perpendicular to the first surface 21, and a bolt is passed through the through hole 360 to connect with the box body 10, which can also achieve the fixation of the exhaust device 30.
  • Figure 8 is a three-dimensional schematic diagram of multiple battery cells 20 and an exhaust device 30 in some embodiments of the present application
  • Figure 9 is a schematic diagram of multiple battery cells 20 and an exhaust device 30 in some embodiments of the present application.
  • the exhaust device 30 has multiple air inlets 32 , which are spaced apart along the stacking direction x of the battery cells 20 to correspond to the first pressure relief mechanisms 22 of the battery cells 20 .
  • a plurality of battery cells 20 may be arranged along the stacking direction x, and the exhaust device 30 may be provided with a plurality of air inlets 32 correspondingly to each first pressure relief mechanism 22.
  • the first direction y may be the height direction of the battery 100, two rows of battery cells 20 are arranged, and for this purpose, along the first direction, the exhaust device 30 may be provided with two rows of air inlets 32 correspondingly.
  • the structure of the exhaust device 30 along the second direction z can be a first wall 33, a second wall 34, a third wall 36, a second wall 34 and a first wall 33, that is, the exhaust device 30 can have two exhaust channels 31, and the two exhaust channels 31 are arranged and distributed at intervals along the second direction z.
  • Each first wall 33 is provided with an air inlet 32 corresponding to the first pressure relief mechanism 22 of the battery cell 20.
  • multiple air inlets 32 are provided to respectively correspond to the first pressure relief mechanisms 22 of multiple battery cells 20 in the battery 100, thereby ensuring that the high-temperature gas discharged due to thermal runaway of any battery cell 20 can enter the exhaust channel 31, thereby avoiding the high-temperature gas from impacting the box body 10 and affecting the adjacent battery cells 20, reducing the risk of heat spread in the battery 100 and damage to the structure of the box body 10, and effectively improving the safety of the battery 100.
  • the exhaust device 30 has an exhaust port connected to the exhaust channel 31, and the exhaust port is connected to the outside of the box body 10.
  • the exhaust port of the exhaust device 30 is located at both ends or one end of the extension direction of the exhaust device 30, and the exhaust port is connected to the outside of the box body 10 to discharge the high-temperature gas in the exhaust channel 31 to the outside.
  • the exhaust port of the exhaust device 30 is connected to the outside of the box 10, thereby effectively exhausting the high-temperature gas generated in the battery 100 to the outside, avoiding heat accumulation in the box 10 and affecting the battery cells 20 in the battery 100.
  • a second pressure relief mechanism 13 is provided on the wall of the box body 10 , and the exhaust device 30 has an exhaust port connected to the exhaust channel 31 .
  • the exhaust port is located in the box body 10 and is arranged toward the second pressure relief mechanism 13 .
  • a second pressure relief mechanism 13 is disposed on the wall of the box body 10 .
  • the second pressure relief mechanism 13 can be actuated to exhaust the gas.
  • the high-temperature gas is discharged through the exhaust port of the exhaust device 30 .
  • the second pressure relief mechanism 13 is actuated to discharge the high-temperature gas in the box 10 , thereby ensuring the safety of the battery 100 .
  • the present application further provides an electrical device, the electrical device comprising a battery 100, and the battery 100 is used to increase electrical energy.
  • some embodiments of the present application provide a battery 100 , which includes a box body 10 , an exhaust device 30 , and six columns of battery cells 20 .
  • a second pressure relief mechanism 13 is disposed on the wall of the box body 10 , and the exhaust device 30 and the battery cell 20 are both disposed inside the box body 10 .
  • each column of battery cells 20 includes two rows of battery cells 20 along the first direction y, and each row of battery cells 20 includes nine battery cells 20 stacked on each other along the stacking direction x.
  • the exhaust devices 30 are disposed between two adjacent columns of battery cells 20 and correspond to the first pressure relief mechanisms 22 of each battery cell 20 in the two adjacent columns of battery cells 20 .
  • a first pressure relief mechanism 22 is disposed on the first surface 21 of each battery cell 20 .
  • An exhaust passage 31 is formed inside the exhaust device 30, and an air inlet 32 connected to the exhaust passage 31 is provided on the exhaust device 30, and the air inlet 32 is arranged opposite to the first pressure relief mechanism 22 of the corresponding battery cell 20.
  • the high-temperature gas exhausted by the first pressure relief mechanism 22 can enter the exhaust passage 31 through the corresponding air inlet 32, so as to achieve directional pressure relief of the high-temperature gas, prevent the high-temperature gas from directly impacting the box body 10, and prevent the heat of the high-temperature gas from affecting the adjacent battery cells 20.
  • the exhaust device 30 includes a first wall 33, a second wall 34 and a third wall 36.
  • the first wall 33 is connected to the first surface 21 of the battery cell 20 through an adhesive layer 35.
  • the first wall 33 and the second wall 34 are spaced apart to form an exhaust channel 31, and the third wall 36 is arranged on the surface of the second wall 34 away from the first wall 33 to support the second wall 34.
  • the specific heat capacity of the first wall 33 is relatively high.
  • the specific heat capacity of the first wall 33 is c, satisfying c ⁇ 2KJ/(kg ⁇ °C), and in other embodiments, the first wall 33 satisfies c ⁇ 2KJ/(kg ⁇ °C).
  • the first wall 33 can be bonded to the battery cell 20 by an adhesive layer 35 with a thickness of D1.
  • the adhesive layer 35 satisfies 0.2mm ⁇ D1 ⁇ 5mm. In other embodiments, the adhesive layer 35 satisfies 0.5mm ⁇ D1 ⁇ 3mm.
  • the first wall 33 may be a water-cooled plate, that is, a receiving chamber 330 is formed inside the first wall 33 , and the receiving chamber 330 is used to receive a heat exchange medium, which flows in and out through a medium inlet 331 and a medium outlet 332 on the first wall 33 .
  • the first wall 33 may be a plate-like structure.
  • the second wall 34 is made of a fireproof material, and the melting point P of the second wall 34 should be greater than or equal to 600° C. In some embodiments, the melting point P of the second wall 34 may be greater than or equal to 1500° C. In some embodiments, the thickness of the second wall 34 is D2 (in mm), and the melting point of the second wall 34 is P (in ° C), which satisfies 1500 ⁇ D2*P ⁇ 3000. In some embodiments, the thickness D2 of the second wall 34 satisfies 0.5mm ⁇ D2 ⁇ 5mm.
  • the impact strength of the second wall 34 is E, which satisfies E ⁇ 20KJ/m 2.
  • the second wall 34 can also be made of a material with an impact strength greater than or equal to 30KJ/m 2.
  • the unit is ah; when the distance between the first wall 33 and the second wall 34 is h, the unit is mm; the battery 100 satisfies 0.01 ⁇ h/A ⁇ 0.1.
  • the third wall 36 is a relatively strong structure.
  • the third wall 36 can be made of a material with a strength greater than or equal to 70 MPa. To further improve the strength of the third wall 36, it can also be made of a material with a strength greater than or equal to 80 MPa.
  • the third wall 36 satisfies 100 ⁇ D3*X ⁇ 500. In some embodiments, the third wall 36 satisfies 140 ⁇ D3*X ⁇ 240.
  • the second wall 34 and the third wall 36 satisfy 1 mm ⁇ D2 + D3 ⁇ 10 mm. In other embodiments, the second wall 34 and the third wall 36 satisfy 2 mm ⁇ D2 + D3 ⁇ 7 mm.
  • the inventors used the specific heat capacity of the first wall as c, the melting point of the second wall as P, the thickness of the second wall as D2, the impact strength of the second wall as E, the distance between the first wall and the second wall as h, and the capacity of the battery cell as A as variables of the battery and the battery cells in the battery, and subjected one of the battery cells in the battery to thermal runaway treatment (making its heat generation efficiency higher than the heat dissipation efficiency), and conducted multiple experiments to prove that the batteries provided in some embodiments of the present application have high safety.
  • the experimental results can be seen in Table 1.
  • the battery cell When c is less than 2KJ/(kg ⁇ °C), the battery cell will catch fire after thermal runaway, and its heat transfer will cause the adjacent battery cells to fail, thus causing the battery to catch fire.
  • the inventors used the strength X of the third wall and the thickness D3 of the third wall as battery variables, conducted vibration main frequency tests on the battery, and conducted multiple experiments to prove that the batteries provided in some embodiments of the present application have high safety.
  • the experimental results can be seen in Table 2.
  • the function of the third wall is to support and ensure the stability and strength of the exhaust device. It can be seen from Table 2 that when X ⁇ 70MPa, D3 ⁇ 0.5mm, and 100 ⁇ D3*X ⁇ 3000, it can ensure that the main frequency of vibration meets the requirements of the vehicle, and ensure that the exhaust device effectively guides the high-temperature gas, so that the battery has a higher safety.
  • D3*X ⁇ 100 the strength of the support structure is weak and cannot meet the requirements of the vehicle operating conditions for vibration strength, resulting in the exhaust device being unable to exhaust and easily causing safety risks.
  • D3*X > 3000 although the strength of the support structure can meet the requirements of the vehicle operating conditions for vibration strength, it occupies more space or greatly increases the cost of materials, over-design, and causes waste.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请公开一种电池和用电装置。电池包括:箱体;电池单体,设于所述箱体内,所述电池单体的第一表面设置有第一泄压机构;排气装置,设于所述箱体内,所述排气装置的内部形成有排气通道,所述排气装置上设置有与所述排气通道连通的进气口,所述进气口与所述第一泄压机构相对设置。本申请提供的技术方案能够提高电池的安全性。

Description

电池和用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种电池和用电装置。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,如何提高电池的安全性,是电池技术一个亟需解决的技术问题。。
发明内容
本申请提供了一种电池和用电设备,其能够提高电池的安全性。
本申请是通过如下技术方案实现的:
第一方面,本申请提供了一种电池,包括:箱体;电池单体,设于所述箱体内,所述电池单体的第一表面设置有第一泄压机构;排气装置,设于所述箱体内,所述排气装置的内部形成有排气通道,所述排气装置上设置有与所述排气通道连通的进气口,所述进气口与所述第一泄压机构相对设置。
上述方案中,在电池单体发生热失控时,电池单体内部因发生化学以及电化学反应产生大量高温气体,高温气体在电池单体内部压力的作用下,从第一泄压机构排出并进入排气装置内的排气通道中,通过排气通道限制高温气体的流向,以避免高温气体对箱体造成直接的冲击以及壁面高温气体的热量影响相邻的电池单体,降低电池发生热蔓延以及箱体结构受损的风险,有效地提高了电池的安全性。
根据本申请的一些实施例,所述排气装置具有相对设置的第一壁和第二壁,所述第一壁较所述第二壁更接近所述电池单体,所述进气口设置于所述第一壁,所述第一壁和所述第二壁之间形成所述排气通道,所述第一壁的比热容大于所述第二壁的比热容。
上述方案中,通过将比热容较大的第一壁设置地更接近电池单体,能够快速地吸收由第一泄压机构排出的热量,有效地降低因热失控而对相邻的电池单体造成的影响。
根据本申请的一些实施例,所述第一壁的比热容为c,满足c≥2KJ/(kg·℃)。
上述方案中,为降低电池单体热失控后因高温对相邻电池单体的影响,第一壁的比热容c满足大于等于2KJ/(kg·℃),以使得第一壁能够有效地吸收电池单体热失控产生的热量,即通过限制第一壁的材质,使得单位质量的第一壁(1kg)温度升高1℃所吸收的能量至少为2KJ。
根据本申请的一些实施例,满足c≥3KJ/(kg·℃)。
上述方案中,为有效地降低电池单体热失控后因高温对相邻电池单体的影响,第一壁的比热容c满足大于等于3KJ/(kg·℃),以使得第一壁能够有效地吸收电池单体热失控产生的热量,即通过限制第一壁的材质,使得单位质量的第一壁温度升高1℃所吸收的能量至少为3KJ。
根据本申请的一些实施例,所述第一壁的内部形成有容纳腔室,所述容纳腔室用于容纳换热介质,以调节所述排气通道内的气体温度。
上述方案中,第一壁的内部形成有容纳腔室,且该容纳腔室可以容纳换热介质,以有效地吸收排气通道内的气体温度,即有效地降低电池单体因热失控而产生的高温对相邻电池单体的影响。
根据本申请的一些实施例,所述第一壁具有介质进口和介质出口,所述介质进口和所述介质出口分别连通所述容纳腔室。
上述方案中,通过设置介质进口和介质出口,能够使得换热介质在容纳腔室中流动,以能够向容纳腔室中通入未与排气通道内的气体发生热交换的换热介质,能够排出已与排气通道内的气体发生热交换的换热介质,保证对排气通道内的气体的温度调节的效果,进而有效地降低电池单体因热失控而产生的高温对相邻电池单体的影响。
根据本申请的一些实施例,所述第一壁与所述第一表面之间设置有粘接层,所述电池单体通过所述粘接层连接于所述第一壁,所述粘接层的厚度为D1,满足0.2mm≤D1≤5mm。
上述方案中,排气装置可以通过粘接层固定在电池单体的第一表面,若粘接层的厚度小于0.2mm,则无法有效地将排气装置粘接在电池单体的表面,容易造成排气装置脱离于电池单体,进而无法引导由第一泄压机构排出的高温气体进入排气通道中;若粘接层的厚度大于5mm,则影响电池的能量密度,且也影响了第一壁的吸热效果,使得电池的安全性降低,为此,本申请的一些实施例中,将粘接层的厚度D1限定为0.2mm≤D1≤5mm,能够现在满足排气装置与电池单体的稳定连接的条件下,保证电池具有较高的能量密度以及较高的安全性。
根据本申请的一些实施例,满足0.5mm≤D1≤3mm。
上述方案中,将粘接层的厚度D1限定为0.5mm≤D1≤3mm,能够使得粘接层具有合适尺寸的厚度,以能够有效地将排气装置和电池单体连接,能够有效地保证第一壁的吸热效果,同时能够保证电池具有较高的能量密度。
根据本申请的一些实施例,所述第二壁由防火材料制成。
上述方案中,通过将由防火材料制成的第二壁设置为较远离电池单体,能够承受高温气体的直接冲击,降低高温气体对箱体的冲击。
根据本申请的一些实施例,所述第二壁的熔点为P,满足P≥600℃。
上述方案中,当第二壁所承受的温度到达熔点时,第二壁的物态发生变化以无法起到防火效果。即当第一泄压机构排出的高温气体作用于第二壁时,若其作用于第二壁的温度高于P,会导致第二壁熔化,无法阻挡该高温气体作用于排气装置之外的情况。为此,第二壁的熔点P应具有较高的数值,即满足P≥600℃,以有效地避免高温气体对箱体造成冲击造成箱体受损的情况。
根据本申请的一些实施例,满足P≥1500℃。
上述方案中,若采用熔点P大于1500℃的材料制得第二壁,则第二壁具有优秀的防火效果,能够有效保证电池的安全性。
根据本申请的一些实施例,所述第二壁的厚度为D2,满足0.5mm≤D2≤5mm。
上述方案中,第二壁的厚度越大,越能保证第二壁的防火效果,保证高温气体不会破坏第二壁作用于箱体,然而第二壁的厚度越大则会影响电池的能量密度,为此,本申请一些实施例中,将第二壁的厚度D2限定为0.5mm≤D2≤5mm,使得电池具有较高的能量密度以及较高的安全性。
根据本申请的一些实施例,满足0.7mm≤D2≤3mm。
上述方案中,为尽可能的降低第二壁的厚度对电池的能量密度造成的影响,以及尽可能的提高电池的安全性,本申请一些实施例中,将第二壁的厚度D2限定为0.7mm≤D2≤3mm。
根据本申请的一些实施例,所述第二壁的厚度为D2,单位为mm,所述第二壁的熔点为P,单位为℃,满足1500≤D2*P≤3000。
上述方案中,第二壁的防火效果与其熔点和厚度有关,若其熔点较高,可以较薄的厚度,达到一定的防火效果,同理,若其熔点较低,则可通过提高其厚度方式,达到同样的防火效果,而第二壁的厚度影响电池的能量密度,为此本申请一些实施例中,通过第二壁的厚度D2与第二壁的熔点P的乘积的方式,来维持防火效果和电池能量密度的平衡,即若D2*P小于1500,则其防火效果较差,若D2*P≥3000则其影响电池能量密度,为此本申请满足1500≤D2*P≤3000,以使得该第二壁具有较好的防火效果且不影响电池的能量密度。
根据本申请的一些实施例,所述第二壁的耐冲击强度为E,满足E≥20KJ/m 2
上述方案中,若第二壁的耐冲击强度较低,如低于20KJ/m 2,则存在因高温气体的冲击导致第二壁受损而降低防火效果的情况发生,为此,本申请一些实施例中的第二壁,满足耐冲击强度E≥20KJ/m 2
根据本申请的一些实施例,满足E≥30KJ/m 2
上述方案中,第二壁的耐冲击强度E大于30KJ/m 2,能够有效地使得第二壁抵抗高温气体的冲击,保证第二壁的结构完整性,进而保证其防火效果。
根据本申请的一些实施例,所述电池单体的容量为A,单位为ah;所述第一壁和所述第二壁的间距为h,单位为mm;满足0.01≤h/A≤0.1。
上述方案中,在电池单体热失控时,高温气体会由第一泄压机构排出,在排出的过程中,由进气口进入到排气通道内,至少部分高温气体会直接冲击于第二壁的面向第一壁的表面,因反作用的原因会导致高温气体的速度下降,甚至造成回流,进而影响电池单体的排气效率,使得电池单体内部的气体排出不及时,其中,第一壁和第二壁的间隙可以看作排气间隙,若第一壁和第二壁的间隙越小,则表明第二壁离第一泄压机构越近,排气间隙越小,则第二壁对电池单体的排气效率影响越大,排气越不及时,电池爆炸的风险越大,反之,若第一壁和第二壁的间隙越大,则表明第二壁离第一泄压机构越远,排气间隙越大,则对排气效率影响越小,排气越及时,电池爆炸的风险越小,同时,若第一壁和第二壁的间隙越大,则影响电池的能量密度。
同时,当电池单体的容量A越大时,该电池单体发生热失控产生的高温气体的量则越多,其所需要更大的排气间隙(第一壁和第二壁的间距为h),才能降低电池爆炸的风险。为此,第一壁和第二壁的间距h和电池单体的容量A影响着电池的安全性以及能量密度。其中,当h/A<0.01时,存在排气间隙不足,电池单体热失控后,内部的高温气体无法及时排出,造成外壳破裂甚至电池爆炸的问题。当h/A>0.1时,存在排气间隙过大,导致电池内部空间浪费,影响电池能量密度的问题,为此,本申请提供的电池可以满足0.01≤h/A≤0.1,以使得该电池具有较高 安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,所述排气装置还具有第三壁,所述第三壁设置于所述第二壁的背离于所述第一壁的表面,所述第三壁用于支撑所述第二壁。
在一些实施例中,第二壁可以采用质地较软即强度较低的防火材料制得,为此,通过设置强度较高的第三壁支撑第二壁,以提高排气装置整体结构强度,保证排气装置具有稳定、不易变形的排气通道,保证对高温气体的有效引导。
根据本申请的一些实施例,所述第三壁的强度为X,满足X≥70MPa。
上述方案中,若第三壁的强度不高于70MPa,则不能有效地支撑第二壁,排气装置受冲击后易变形,可能会存在排气通道被截断或者口径缩小影响高温气体排出的问题,影响电池的安全性,为此,本申请提供的第三壁,满足X≥70MPa,以使得第三壁对第二壁进行有效地支撑。
根据本申请的一些实施例,满足X≥80MPa。
上述方案中,X≥80MPa,能够使得第三壁对第二壁进行有效地支撑,保证第二壁的完整性,也保证排气通道的完整性,进而使得电池具有较高的安全性。
根据本申请的一些实施例,所述第三壁的厚度为D3,满足0.3mm≤D3≤4mm。
上述方案中,若第三壁的厚度越大,如大于4mm,则能够承受更大的冲击,但影响电池的能量密度,若第三壁的厚度越小,如小于0.3mm,则能够提高电池的能量密度,但能够承受的冲击越小,为此,本申请一些实施例中,第三壁的厚度D3满足0.3mm≤D3≤4mm,以在保证电池单体的能量密度的条件下,能够承受较大的冲击。
根据本申请的一些实施例,满足0.5mm≤D3≤3mm。
上述方案中,第三壁的厚度D3满足0.5mm≤D3≤3mm,以在尽可能的保证电池单体的能量密度的条件下,能够承受一定的冲击,以使得排气装置能够顺利地引导高温气体,降低电池发生热蔓延以及箱体结构受损的风险,有效地提高了电池的安全性。
根据本申请的一些实施例,所述第三壁的厚度为D3,单位为mm,所述第三壁的强度为X,单位为MPa,满足100≤D3*X≤500。
上述方案中,第三壁的支撑和抗冲击效果与其强度和厚度有关,若其强度较高,可以以较薄的厚度,达到一定的支撑和抗冲击效果,同理,若其强度较低,则可通过提高其厚度方式,达到同样的支撑和抗冲击效果,而第三壁的厚度影响电池的能量密度,为此本申请一些实施例中,通过第三壁的厚度D3与第三壁的熔点X的乘积的方式,来维持支撑和抗冲击效果和电池能量密度的平衡,即若D3*X小于100,则其支撑和抗冲击效果较差,若D2*P≥500,则其影响电池能量密度,为此本申请满足100≤D2*P≤500,以使得该第三壁具有较好的支撑和抗冲击效果且不影响电池的能量密度。
根据本申请的一些实施例,满足140≤D3*X≤240。
上述方案中,第三壁满足140≤D3*X≤240,使得第三壁具有优秀的支撑和抗冲击效果,且保证电池具有较高的能量密度。
根据本申请的一些实施例,所述第二壁的厚度为D2,所述第三壁的厚度为D3,满足1mm≤D2+D3≤10mm。
上述方案中,第二壁和第三壁的厚度之和影响电池的能量密度、排气装置的防火效果以及排气装置的整体结构强度,若第二壁和第三壁的厚度之和大于10mm,则会导致电池的能量密度降低,若第二壁和第三壁的厚度之和小于1mm,则会降低排气装置的防火效果以及排气装置的整体结构强度,为此,本申请一些实施例中,第二壁D2和第三壁D4的厚度之和满足1mm≤D2+D3≤10mm,使得在电池具有较高的能量密度的条件下,排气装置具有较好的防火效果以及较高的结构强度。
根据本申请的一些实施例,满足2mm≤D2+D3≤7mm。
上述方案中,第三壁和第二壁满足2mm≤D2+D3≤7mm,使得电池在具有较高的能量密度的条件下,排气装置具有更好的防火效果以及更高的结构强度。
根据本申请的一些实施例,所述电池单体的数量为多个,多个所述电池单体相互堆叠设置;所述排气装置具有多个所述进气口,多个所述进气口沿所述电池单体的堆叠方向间隔分布以与所述电池单体的所述第一泄压机构一一对应。
上述方案中,通过设置多个进气口,以能够分别对应电池中的多个电池单体的第一泄压机构,保证任意一个电池单体热失控排出的高温气体都能够进入排气通道中,从而避免高温气体对箱体造成冲击以及影响相邻的电池单体,降低电池发生热蔓延以及箱体结构受损的风险,有效地提高了电池的安全性。
根据本申请的一些实施例,所述排气装置具有与所述排气通道连通的排气口,所述排气口与所述箱体的外部连通。
上述方案中,排气装置的排气口与箱体的外部连通,进而有效地将电池内产生的高温气体排至外界,避免热量累积于箱体内,影响电池内的电池单体。
根据本申请的一些实施例,所述箱体的壁部设置有第二泄压机构,所述排气装置具有与所述排气通道连通的排气口,所述排气口位于所述箱体内并朝向所述第二泄压机构设置。
上述方案中,高温气体经排气装置的排气口排出,随着箱体内的压力的增高,第二泄压机构致动以排出箱体内的高温气体,保证电池的安全性。
第二方面,本申请还提供一种用电设备,包括第一方面提供的电池,所述电池用于提供电能。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例中电池的示意图;
图3为本申请一些实施例中电池单体和排气装置的示意图;
图4为图3中A处的放大图;
图5为本申请一些实施例中电池单体和排气装置的立体示意图;
图6为本申请一些实施例中第一壁的内部示意图;
图7为图5中B处的放大图;
图8为本申请一些实施例中排气装置和多个电池单体立体示意图;
图9为本申请一些实施例中排气装置和多个电池单体的示意图。
图标:10-箱体;11-第一箱体;12-第二箱体;13-第二泄压机构;20-电池单体;21-第一表面;22-第一泄压机构;23-电极端子;30-排气装置;31-排气通道;32-进气口;33-第一壁;330-容纳腔室;331-介质进口;332-介质出口;34-第二壁;35-粘接层;36-第三壁;360-通孔;
1000-车辆;100-电池;200-控制器;300-马达。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“长度”、“宽度”、“厚度”、“上”、“下”等指示的方位或位置 关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括一个或者多个电池单体。电池一般包括用于封装一个或多个电池的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括外壳、第一泄压机构、电极端子、电极组件和电解液,电极组件和电解液设于外壳内部,第一泄压机构设置于外壳的表面上。电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。电极端子设置于外壳并与电极组件的极耳电连接,以用于输出或输入电池单体的电能。
第一泄压机构是指电池单体的内部压力或温度达到阈值时致动以泄放内部压力或温度的元件或部件。第一泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到阈值时,第一泄压机构执行动作或者第一泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指第一泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。第一泄压机构产生的动作可以包括但不限于:第一泄压机构中的至少一部分破裂、破碎、被撕裂或者打开等等。第一泄压机构在致动时,电池单体的内部的高温高压气体会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压及泄温,从而避免潜在的更严重的事故发生。
电池的箱体可以设置第二泄压机构,第二泄压机构的工作原理与第一泄压机构相同,第二泄压机构可以为电池的内部压力或温度达到阈值时致动以泄放内部压力或温度的元件或部件。第二泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。为此,如何使得电池具有较高的安全性,是电池技术一个亟需解决的技术问题。
发明人发现,为泄出电池单体内的高温气体,通常会设置第一泄压机构,以避免例如爆炸等潜在的更严重的安全事故发生,起到提高电池安全性的作用。然而,尽管设置有第一泄压机构,但电池因热失控发生安全问题的风险也较高。为此发明人进一步研究发现,造成电池因热失控发生安全问题的原因之一在于,电池中的电池单体因热失控产生的高温气体由第一泄压机构排出,会直接作用于箱体,容易导致箱体受损甚至被熔穿,且高温气体的热量会蔓延到相邻的电池单体,会引发电池的热蔓延,致使电池产生安全风险。
鉴于此,为提高电池的安全性,发明人经深入研究,设计了一种电池,该电池包括排气装置,该排气装置的内部具有排气通道,排气装置设于电池的箱体内,排气装置的进气口与第一泄压机构相对设置,以能够使得由第一泄压机构排出的高温气体进入到排气通道内。
上述方案中,电池单体发生热失控,因发生化学以及电化学反应产生的高温气体经第一泄压机构排出后进入排气装置内的排气通道中,避免高温气体直接对箱体造成冲击,避免高温气体的热量蔓延至相邻的电池单体,故降低箱体结构受损以及热蔓延的风险,有效地提高了电池的安全性。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体、电池等组成该用电设备的电源系统。
本申请实施例提供一种使用电池作为电源的用电设备,用电设备可以为但不限于手机、平板电脑、笔记本电脑、电动玩具、电动工具、电动自行车、电动摩托车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆1000的电路系统,例如用于车辆1000的启动、导航和运行时的工作用电需求。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
根据本申请的一些实施例,请参见图2-图4,图2为本申请一些实施例中电池100的示意图,图3为本申请一些实施例中电池单体20和排气装置30的示意图,图4为图3中A处的放大图。
电池100包括箱体10、电池单体20以及排气装置30。电池单体20设于箱体10内,电池单体20的第一表面21设置有第一泄压机构22。排气装置30设于箱体10内,排气装置30的内部形成有排气通道31,排气装置30上设置有与排气通道31连通的进气口32,进气口32与第一泄压机构22相对设置。
箱体10包括第一箱体11和第二箱体12,第一箱体11和第二箱体12相互盖合后形成电池腔,多个电池单体20放置于电池腔内。其中,第一箱体11和第二箱体12的形状可以根据多个电池单体20组合的形状而定。参见图2,第一箱体11可以呈板状,第二箱体12面向第一箱体11的面形成有开口,第一箱体11盖合开口。在一些实施例中,第一箱体11和第二箱体12可以均具有一个开口,例如,第一箱体11和第二箱体12均可以为中空长方体且各自只有一个面为开口面,第一箱体11和第二箱体12的开口相对设置,并且第一箱体11和第二箱体12相互扣合形成具有封闭腔室的箱体10。多个电池单体20相互并联或串联或混联组合以及层叠后置于第一箱体11和第二箱体12扣合后形成的箱体10内。
电池单体20的第一表面21为设置有第一泄压机构22的面,当该电池单体20热失控时,高温气体由第一表面21的第一泄压机构22排出。在一些实施例中,电池单体20的第一表面21可以为电池单体20的底面、顶面或者侧面。参见图3,电池单体20的电极端子23设置于电池单体20的顶面,第一泄压机构22设置于电池单体20的底面。
“进气口32与第一泄压机构22相对设置”,可以指第一泄压机构22在致动时,排出的高温气体能直接由进气口32进入排气通道31中,起到避免高温气体直接作用于箱体10以及影响相邻电池单体20的作用。
上述方案中,在电池单体20发生热失控时,电池单体20内部因发生化学以及电化学反应产生大量高温气体,高温气体在电池单体20内部压力的作用下,从第一泄压机构22排出并进入排气装置30内的排气通道31,通过排气装置30限制高温气体的流向,能够避免高温气体直接对箱体10造成冲击以及避免高温气体的热量影响相邻的电池单体20,降低电池100发生热蔓延以及箱体10结构受损的风险,有效地提高了电池100的安全性。
根据本申请的一些实施例,请参见图4,排气装置30具有相对设置的第一壁33和第二壁34,第一壁33较第二壁34更接近电池单体20,进气口32设置于第一壁33,第一壁33和第二壁34之间形成排气通道31,第一壁33的比热容大于第二壁34的比热容。
第一壁33较第二壁34更接近电池单体20的第一表面21,由电池单体20的第一泄压机构22排出的高温气体可以直接冲击于第二壁34的面向第一壁33的表面。
比热容,又称比热容量,简称比热,是单位质量物质的热容量,即单位质量物体改变单位温度时吸收的热量。比如,第一壁33的比热容是指单位质量的第一壁33改变温度时吸收的热量。
“第一壁33的比热容大于第二壁34的比热容”,可以指单位质量的第一壁33温度上升1℃时吸收的热量多于单位质量的第二壁34温度上升1℃时吸收的热量,即,第一壁33比第二壁34具有更好的吸热能力。
在一些实施例中,第一壁33可以采用氧化镁、氧化锌、氧化铁、氧化铅、硫酸钡、沥青、石蜡、碳酸钙或碳酸镁等高比热材料制得。
上述方案中,通过将比热容较大的第一壁33设置地更接近电池单体20,能够快速地吸收由第一泄压机构22排出的热量,以有效地降低因热失控而对相邻的电池单体20造成的影响。
根据本申请的一些实施例,第一壁33的比热容为c,满足c≥2KJ/(kg·℃)。
在一些实施例中的,第一壁33具有较高的比热容,第一壁33的比热容可以为2KJ/(kg·℃)、2.5KJ/(kg·℃)、3KJ/(kg·℃)、3.5KJ/(kg·℃)、4KJ/(kg·℃)、4.5KJ/(kg·℃)或者更高的数值。
在一些实施例中,第一壁33的比热容c可以采用绝热量热法、水卡计法或者气体定压比热容测定方法测量。
上述方案中,为降低电池单体20热失控后因高温对相邻电池单体20的影响,第一壁33的比热容c满足大于等于2KJ/(kg·℃),以使得第一壁33能够有效地吸收电池单体20热失控产生的热量,即通过限制第一壁33的材质,使得单位质量(1kg)的第一壁33温度升高1℃所吸收的能量至少为2KJ。
根据本申请的一些实施例,满足c≥3KJ/(kg·℃)。
在一些实施例中的,第一壁33具有更高的比热容,第一壁33的比热容可以为3KJ/(kg·℃)、3.5KJ/(kg·℃)、4KJ/(kg·℃)、4.5KJ/(kg·℃)或者更高的数值。
上述方案中,为有效地降低电池单体20热失控后因高温对相邻电池单体20的影响,第一壁33的比热容c 满足大于等于3KJ/(kg·℃),以使得第一壁33能够有效地吸收电池单体20热失控产生的热量,即通过限制第一壁33的材质,使得单位质量(1kg)的第一壁33温度升高1℃所吸收的能量至少为3KJ。
根据本申请的一些实施例,请参见图5-图7,图5为本申请一些实施例中电池单体20和排气装置30的立体示意图,图6为本申请一些实施例中第一壁33的内部示意图,图7为图5中B处的放大图。第一壁33的内部形成有容纳腔室330,容纳腔室330用于容纳换热介质,以调节排气通道31内的气体温度。
换热介质可以是流体(液体或气体),调节温度是指吸收排气通道31内的高温气体的热量。可选的,流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。在一些实施例中,第一壁33由于内部具有换热介质,故也能够调节电池单体20的温度,实现对电池单体20的降温。当换热介质为冷却液时,该第一壁33可以称为水冷板。
上述方案中,第一壁33的内部形成有容纳腔室330,且该容纳腔室330可以容纳换热介质,以有效地吸收排气通道31内的气体热量,即有效地降低电池单体20因热失控而产生的高温对相邻电池单体20的影响。
在其他一些实施例中,第一壁33可以为板状结构,其内部为实心。
根据本申请的一些实施例,请参见图5和7,第一壁33具有介质进口331和介质出口332,介质进口331和介质出口332分别连通容纳腔室330。
在一些实施例中,介质进口331和介质出口332分别设置于第一壁33的延伸方向上的相对的两个端部,以实现换热介质的流动。在一些实施例中,介质进口331和介质出口332可以通过管道与电池100的热管理系统连接,热管理系统可以通过管道和介质进口331提供换热介质,第一壁33内的换热介质可以通过介质出口332和管道回到热管理系统中。
上述方案中,通过设置介质进口331和介质出口332,能够使得换热介质在容纳腔室330中流动,以能够向容纳腔室330中通入未与排气通道31内的气体发生热交换的换热介质,能够排出已与排气通道31内的气体发生热交换的换热介质,保证对排气通道31内的气体的温度调节的效果,进而有效地降低电池单体20因热失控而产生的高温对相邻电池单体20的影响。
根据本申请的一些实施例,第一壁33与第一表面21之间设置有粘接层35,粘接层35的厚度为D1,满足0.2mm≤D1≤5mm。
粘接层35,可以指具有粘性的部件,第一壁33和第一表面21通过粘接层35的粘性实现相互连接。
在一些实施例中,粘接层35的厚度D1可以为0.2mm、0.3mm、0.4mm…4.7mm、4.8mm、4.9mm或5mm。
上述方案中,排气装置30可以通过粘接层35固定在电池单体20的第一表面21,若粘接层35的厚度小于0.2mm,则无法有效地将排气装置30粘接在电池单体20的表面,容易造成排气装置30脱离于电池单体20,进而无法引导由第一泄压机构22排出的高温气体进入排气通道31中;若粘接层35的厚度大于5mm,则影响电池100的能量密度,且也影响了第一壁33的吸热效果,使得电池100的安全性降低。为此,本申请的一些实施例中,将粘接层35的厚度D1限定为0.2mm≤D1≤5mm,能够在满足排气装置30与电池单体20的稳定连接的条件下,保证电池100具有较高的能量密度以及较高的安全性。
根据本申请的一些实施例,满足0.5mm≤D1≤3mm。
在一些实施例中,粘接层35的厚度D1可以为0.5mm、0.6mm、0.7mm…2.7mm、2.8mm、2.9mm或3mm。
上述方案中,将粘接层35的厚度D1限定为0.5mm≤D1≤3mm,能够使得粘接层35具有合适尺寸的厚度,以能够有效地将排气装置30和电池单体20连接,能够有效地保证第一壁33的吸热效果,同时能够保证电池100具有较高的能量密度。
根据本申请的一些实施例,第二壁34由防火材料制成。
第二壁34具有良好的防火效果,避免高温气体的热量影响箱体10的结构完整性。在一些实施例中,第二壁34可以采用陶瓷纤维、玻璃纤维、玄武岩纤维、岩棉、氧化铝纤维等防火材料制得。
上述方案中,通过将由防火材料制成的第二壁34能够承受高温气体的直接冲击,降低高温气体对箱体10的冲击
根据本申请的一些实施例,第二壁34的熔点为P,满足P≥600℃。
在一些实施例中,第二壁34可以采用熔点为P的防火材料制得,P可以为600℃、700℃、800℃、900℃…1500℃、1600℃或者更高的数值。
上述方案中,当第二壁34所承受的温度到达熔点时,第二壁34的物态发生变化,无法起到防火效果。即当第一泄压机构22排出的高温气体作用于第二壁34时,若其作用于第二壁34的温度高于P,会导致第二壁34熔化,无法阻挡该高温气体作用于排气装置30之外的情况。为此,第二壁34的熔点P应具有较高的数值,即满足P ≥600℃,以有效地避免高温气体对箱体10造成冲击,造成箱体10受损的情况。
根据本申请的一些实施例,满足P≥1500℃。
在一些实施例中,制得第二壁34的防火材料的熔点P可以为1500℃、1550℃、1600℃、1650℃…1800℃或者更高的数值。
上述方案中,若采用熔点P大于1500℃的材料制得第二壁34,则第二壁34具有优秀的防火效果,能够有效保证电池100的安全性。
根据本申请的一些实施例,如图4,第二壁34的厚度为D2,满足0.5mm≤D2≤5mm。
沿第一壁33指向第二壁34的方向上,第二壁34的尺寸为第二壁34的厚度,第二壁34的厚度D2可以取值0.5mm、0.6mm、0.7mm…3mm、3.1mm…4.8mm、4.9mm或者5mm。
上述方案中,第二壁34的厚度越大,越能保证第二壁34的防火效果,保证高温气体不会破坏第二壁34而作用于箱体10,然而第二壁34的厚度越大则会影响电池100的能量密度,为此,本申请一些实施例中,将第二壁34的厚度D2限定为0.5mm≤D2≤5mm,使得电池100具有较高的能量密度以及较高的安全性。
根据本申请的一些实施例,满足0.7mm≤D2≤3mm。
在一些实施例中,第二壁34的厚度D2可以取值0.7mm、0.8mm、0.9mm…2mm、2.1mm…2.8mm、2.9mm或者3mm。
上述方案中,为尽可能的降低第二壁34的厚度对电池100的能量密度造成的影响,以及尽可能的提高电池100的安全性,本申请一些实施例中,将第二壁34的厚度D2限定为0.7mm≤D2≤3mm。
根据本申请的一些实施例,第二壁34的厚度为D2(单位为mm),第二壁34的熔点为P,单位为℃,满足1500≤D2*P≤3000。
D2*P指第二壁34的厚度D2和第二壁34的熔点P的乘积。例如当D2取值为3mm,P取值为700℃时,D2*P为2100。
上述方案中,第二壁34的防火效果与其熔点和厚度有关,若其熔点较高,可以较薄的厚度,达到一定的防火效果;同理,若其熔点较低,则可通过提高其厚度的方式,达到同样的防火效果。而第二壁34的厚度影响电池100的能量密度,为此本申请一些实施例中,通过第二壁34的厚度D2与第二壁34的熔点P的乘积的方式,来维持防火效果和电池100能量密度的平衡,即若D2*P小于1500,则其防火效果较差,若D2*P≥3000则其影响电池100能量密度,为此本申请满足1500≤D2*P≤3000,以使得该第二壁34具有较好的防火效果且不影响电池100的能量密度。
根据本申请的一些实施例,第二壁34的耐冲击强度为E,满足E≥20KJ/m 2
耐冲击强度,指单位面积抵抗冲击强度的能力。第二壁34的耐冲击强度E可以为20KJ/m 2、25KJ/m 2、30KJ/m 2或者更高数值。
在一些实施例中,第二壁34的耐冲击强度可以通过落锤冲击试验测量。
上述方案中,若第二壁34的耐冲击强度较低,如低于20KJ/m 2,则存在因高温气体的冲击导致第二壁34受损而降低防火效果的情况发生。为此,本申请一些实施例中的第二壁34,满足耐冲击强度E≥20KJ/m2。
根据本申请的一些实施例,满足E≥30KJ/m 2
在一些实施例中,第二壁34的耐冲击强度E可以为30KJ/m 2、31KJ/m 2、32KJ/m 2或者更高数值。
上述方案中,第二壁34的耐冲击强度E大于30KJ/m 2,能够有效地使得第二壁34抵抗高温气体的冲击,保证第二壁34的结构完整性,进而保证其防火效果。
根据本申请的一些实施例,电池单体20的容量为A,单位为ah。参见图4,第一壁33和第二壁34的间距为h,单位为mm。满足0.01≤h/A≤0.1。
电池单体容量是衡量电池单体性能的重要性能指标之一,它表示在一定条件下(放电率、温度、终止电压等)电池单体放出的电量(可用JS-150D做放电测试)。
第一壁33和第二壁34的间距h可以指,沿第一壁33指向第二壁34的方向,第一壁33的面向第二壁34的表面与第二壁34的面向第一壁33的表面的距离。
在一些实施例中,h/A可以为0.01、0.02、0.03、0.04…0.08、0.09或者0.1。
上述方案中,在电池单体20热失控时,高温气体会由第一泄压机构22排出,在排出的过程中,由进气口32进入到排气通道31内,至少部分高温气体会直接冲击于第二壁34的面向第一壁33的表面,使得高温气体的速 度下降,甚至造成回流,进而影响电池单体20的排气效率,使得电池单体20内部的气体排出不及时。其中,第一壁33和第二壁34之间的间隙可以看作排气间隙,若第一壁33和第二壁34之间的间隙越小,则表明第二壁34离第一泄压机构22越近,排气间隙越小,则第二壁34对电池单体20的排气效率影响越大,排气越不及时,电池100爆炸的风险越大;反之,若第一壁33和第二壁34之间的间隙越大,则表明第二壁34离第一泄压机构22越远,排气间隙越大,则对排气效率影响越小,排气越及时,电池100爆炸的风险越小;同时,若第一壁33和第二壁34的间隙越大,则电池100的能量密度越低。
同时,当电池单体20的容量A越大时,则该电池单体20发生热失控产生的高温气体的量越多,需要的排气间隙(第一壁33和第二壁34的间距为h)越大。为此,第一壁33和第二壁34的间距h和电池单体20的容量A影响着电池100的安全性以及能量密度。其中,当h/A<0.01时,存在排气间隙不足,电池单体20热失控后,内部的高温气体无法及时排出,造成电池单体20的外壳破裂甚至电池100爆炸的问题。当h/A>0.1时,存在排气间隙过大,导致电池100内部空间浪费,影响电池100能量密度的问题。为此,本申请提供的电池100可以满足0.01≤h/A≤0.1,以使得该电池100具有较高安全性的条件下,具有较高的能量密度。
根据本申请的一些实施例,请参见图3和图4,排气装置30还具有第三壁36,第三壁36设置于第二壁34的背离于第一壁33的表面,第三壁36用于支撑第二壁34。
第三壁36的结构强度高于第二壁34的结构强度,第三壁36设置在第二壁34的背离于第一壁33的表面,以起到支撑第二壁34的作用。在一些实施例中,第三壁36可以通过铝合金、钢或塑料等强度较高的材料制得。
在一些实施例中,第二壁34可以采用质地较软的防火材料制得,为此,通过设置强度较高的第三壁36支撑第二壁34,以提高排气装置30的整体结构强度,保证排气装置30具有稳定、不易变形的排气通道31,保证对高温气体的有效引导。
根据本申请的一些实施例,第三壁36的强度为X,满足X≥70MPa。
强度是指物体抵抗断裂和过度变形的力学性能,第三壁36的强度X可以采用专用的强度测试仪,通过对第三壁36的单位面积施加一定的力而测量获得。
在一些实施例中,第三壁36的强度可以为70MPa、75MPa、80Mpa或者更高的数值。
上述方案中,若第三壁36的强度不高于70MPa,则不能有效地支撑第二壁34,排气装置30受冲击后易变形,可能会存在排气通道31被截断或者口径缩小影响高温气体排出的问题,影响电池100的安全性。为此,本申请提供的第三壁36,满足X≥70MPa,以使得第三壁36对第二壁34进行有效地支撑。
根据本申请的一些实施例,满足X≥80MPa。
在一些实施例中,第三壁36的强度可以为80MPa、85MPa、90MPa或者更高的数值。
上述方案中,X≥80MPa,能够使得第三壁36对第二壁34进行有效地支撑,保证第二壁34的完整性,也保证排气通道31的完整性,进而使得电池100具有较高的安全性。
根据本申请的一些实施例,参见图4,第三壁36的厚度为D3,满足0.3mm≤D3≤4mm。
第三壁36的厚度D3,可以指沿第一壁33指向第三壁36的方向,第三壁36的尺寸。在一些实施例中,第三壁36的厚度D3可以为0.3mm、0.4mm、0.5mm…3.8mm、3.9mm或者4mm。
上述方案中,若第三壁36的厚度越大,如大于4mm,则能够承受更大的冲击,但影响电池100的能量密度;若第三壁36的厚度越小,如小于0.3mm,则能够提高电池100的能量密度,但能够承受的冲击越小。为此,本申请一些实施例中,第三壁36的厚度D3满足0.3mm≤D3≤4mm,以在保证电池单体20的能量密度的条件下,能够承受较大的冲击。
根据本申请的一些实施例,满足0.5mm≤D3≤3mm。
在一些实施例中,第三壁36的厚度D3可以为0.5mm、0.6mm、0.7mm…2.8mm、2.9mm或者3mm。
上述方案中,第三壁36的厚度D3满足0.5mm≤D3≤3mm,以在尽可能的保证电池单体20的能量密度的条件下,能够承受一定的冲击,以使得排气装置30能够顺利地引导高温气体,降低电池100发生热蔓延以及箱体10结构受损的风险,有效地提高了电池100的安全性。
根据本申请的一些实施例,第三壁36的厚度为D3,单位为mm,第三壁36的强度为X,单位为MPa,满足100≤D3*X≤500。
D3*X,可以指第三壁36的厚度D3和第三壁36的强度X的乘积,如当D3为2mm,X为70MPa时,D3*X为140。
在一些实施例中,D3*X可以为100、120、140…490或500。
上述方案中,第三壁36的支撑和抗冲击效果与其强度和厚度有关,若其强度较高,可以以较薄的厚度,达 到一定的支撑和抗冲击效果;同理,若其强度较低,则可通过提高其厚度方式,达到同样的支撑和抗冲击效果,而第三壁36的厚度影响电池100的能量密度。
为此本申请一些实施例中,通过第三壁36的厚度D3与第三壁36的熔点X的乘积的方式,来维持支撑和抗冲击效果和电池100能量密度的平衡,即若D3*X小于100,则其支撑和抗冲击效果较差,若D2*P≥500,则其影响电池100能量密度,为此本申请满足100≤D2*P≤500,以使得该第三壁36具有较好的支撑和抗冲击效果且不影响电池100的能量密度。
根据本申请的一些实施例,满足140≤D3*X≤240。
在一些实施例中,D3*X可以为140、150、160…230或240。
上述方案中,第三壁36满足140≤D3*X≤240,使得第三壁36具有优秀的支撑和抗冲击效果,且保证电池100具有较高的能量密度。
根据本申请的一些实施例,如图4,第二壁34的厚度为D2,第三壁36的厚度为D3,满足1mm≤D2+D3≤10mm。
在一些实施例中,D2+D3可以为1mm、2mm、3mm…9mm或者10mm。
上述方案中,第二壁34和第三壁36的厚度之和影响电池100的能量密度、排气装置30的防火效果以及排气装置30的整体结构强度,若第二壁34和第三壁36的厚度之和大于10mm,则会导致电池100的能量密度降低,若第二壁34和第三壁36的厚度之和小于1mm,则会降低排气装置30的防火效果以及排气装置30的整体结构强度,为此,本申请一些实施例中,第二壁34和第三壁36的厚度之和满足1mm≤D2+D3≤10mm,使得在电池100具有较高的能量密度的条件下,排气装置30具有较好的防火效果以及较高的结构强度。
根据本申请的一些实施例,满足2mm≤D2+D3≤7mm。
在一些实施例中,D2+D3可以为2mm、3mm、4mm…6mm或者7mm。
上述方案中,第三壁36和第二壁34满足2mm≤D2+D3≤7mm,使得电池100在具有较高的能量密度的条件下,排气装置30具有更好的防火效果以及更高的结构强度。
在一些实施例中,请参见图7,第三壁36的内部可以设置减轻孔,以降低第三壁36的重量,进而可以提高电池100的能量密度。
在一些实施例中,第二壁34可通过粘接、焊接或卡接的方式设置于第三壁36。
在一些实施例中,第三壁36的垂直于其延伸方向的两端可以与第一壁33连接,以使得第二壁34能够与第一壁33合围出排气通道31。在另一些实施例中,第三壁36和第一壁33之间可以通过连接件连接,连接件的材料可以与第一壁33的材料相同,也可以与第三壁36的材料相同。
在一些实施例中,排气装置30通过粘接层35与电池单体20的第一表面21连接,实现排气装置30的固定。在另一些实施例中,如图7,第三壁36的垂直于第一表面21的壁形成有通孔360,通过螺栓穿过通孔360与箱体10连接,同样能够实现排气装置30的固定。
根据本申请的一些实施例,请结合图5、图8和图9,图8为本申请一些实施例中多个电池单体20和排气装置30立体示意图,图9为本申请一些实施例中多个电池单体20和排气装置30的示意图。
电池单体20的数量为多个,多个电池单体20相互堆叠设置。排气装置30具有多个进气口32,多个进气口32沿电池单体20的堆叠方向x间隔分布以与电池单体20的第一泄压机构22一一对应。
在一些实施例中,电池100中,沿堆叠方向x可设置多个电池单体20,排气装置30对应地设置多个进气口32,以对应每个第一泄压机构22。在一些实施例中,沿垂直于堆叠方向x的第一方向y,例如第一方向y可以为电池100的高度方向,设置有两排电池单体20,为此,沿第一方向,排气装置30可对应地设置两排进气口32。
在一些实施例中,电池100中,沿第二方向z(第二方向z垂直于堆叠方向x和第一方向y),设置有两列电池单体20,每列电池单体20沿第一方向y具有两排电池单体20,排气装置30设置于两列电池单体20之间且沿第一方向延伸,如图9,该排气装置30沿第二方向z的结构可以为第一壁33、第二壁34、第三壁36、第二壁34以及第一壁33,即该排气装置30可以具有两个排气通道31,两个排气通道31沿第二方向z间隔排列分布。每一个第一壁33均设置有对应于电池单体20的第一泄压机构22的进气口32。
上述方案中,通过设置多个进气口32,以能够分别对应电池100中的多个电池单体20的第一泄压机构22,保证任意一个电池单体20热失控排出的高温气体都能够进入排气通道31中,从而避免高温气体对箱体10造成冲击以及影响相邻的电池单体20,降低电池100发生热蔓延以及箱体10结构受损的风险,有效地提高了电池100的安全性。
根据本申请的其他一些实施例,排气装置30具有与排气通道31连通的排气口,排气口与箱体10的外部连 通。
在其他一些实施例中,排气装置30的排气口位于排气装置30的延伸方向的两端或者一端,排气口与箱体10的外部连通,以实现排气通道31内的高温气体排出至外界。
上述方案中,排气装置30的排气口与箱体10的外部连通,进而有效地将电池100内产生的高温气体排至外界,避免热量累积于箱体10内,影响电池100内的电池单体20。
根据本申请的一些实施例,箱体10的壁部设置有第二泄压机构13,排气装置30具有与排气通道31连通的排气口,排气口位于箱体10内并朝向第二泄压机构13设置。
如图2,箱体10的壁部设置有第二泄压机构13,当箱体10内积累了大量的由排气装置30排出的气体后,第二泄压机构13可致动以排出气体。
上述方案中,高温气体经排气装置30的排气口排出,随着箱体10内的压力的增高,第二泄压机构13致动以排出箱体10内的高温气体,保证电池100的安全性。
根据本申请的一些实施例,本申请还提供一种用电设备,用电设备包括电池100,电池100用于提高电能。
根据本申请的一些实施例,请参见图2-图6,本申请一些实施例提供一种电池100,该电池100包括箱体10、排气装置30以及六列电池单体20。
箱体10的壁设置有第二泄压机构13,排气装置30和电池单体20均设置于箱体10内。
六列电池单体20沿第二方向z间隔布设,每列电池单体20沿第一方向y包括两排电池单体20,每排电池单体20包括沿堆叠方向x相互堆叠设置的九个电池单体20。
排气装置30的数量有三个,排气装置30设置于相邻的两列电池单体20之间,且对应于该相邻两列电池单体20中的每个电池单体20第一泄压机构22。
每个电池单体20的第一表面21均设置有第一泄压机构22。
排气装置30的内部形成有排气通道31,排气装置30上设置有与排气通道31连通的进气口32,进气口32与对应的电池单体20的第一泄压机构22相对设置。由第一泄压机构22排出的高温气体可以通过对应的进气口32进入排气通道31内,实现高温气体的定向泄压,避免高温气体直接冲击箱体10,以及避免高温气体的热量影响到相邻的电池单体20。
沿排气装置30的厚度方向,排气装置30包括第一壁33、第二壁34以及第三壁36。第一壁33通过粘接层35连接于电池单体20的第一表面21。第一壁33和第二壁34间隔设置以形成排气通道31,第三壁36设置于第二壁34的背离于第一壁33的表面以支撑第二壁34。第一壁33的比热容较高,在一些实施例中,第一壁33的比热容为c,满足c≥2KJ/(kg·℃),在另一些实施例中,第一壁33满足c≥2KJ/(kg·℃)。在一些实施例中,第一壁33可以通过厚度为D1的粘接层35粘接于电池单体20,在一些实施例中,粘接层35满足0.2mm≤D1≤5mm。在另一些实施例中,粘接层35满足0.5mm≤D1≤3mm。参见图7,第一壁33可以采用水冷板,即第一壁33的内部形成容纳腔室330,容纳腔室330用于容纳换热介质,换热介质通过第一壁33上的介质进口331和介质出口332流入和流出。
在其他一些实施例中,参见图8,第一壁33可以为板状结构。
第二壁34由防火材料制成,第二壁34的熔点P应大于等于600℃,在一些实施例中,第二壁34的熔点P可以大于等于1500℃。在一些实施例中,第二壁34的厚度为D2(单位为mm),第二壁34的熔点为P(单位为℃),满足1500≤D2*P≤3000。在一些实施例中,第二壁34的厚度D2,满足0.5mm≤D2≤5mm。
第二壁34的耐冲击强度为E,满足E≥20KJ/m 2,为保证第二壁34的安全性,第二壁34也可以采用耐冲击强度大于等于30KJ/m 2的材料制得。为保证高温气体顺利地排出,当电池单体20的容量为A时,单位ah;第一壁33和第二壁34的间距为h时,单位为mm;电池100满足0.01≤h/A≤0.1。
第三壁36为强度较大的结构,一般地,第三壁36的可以采用强度大于等于70MPa的材料制得,为进一步提高第三壁36的强度,也可以采用强度大于等于80MPa的材料制得。在一些实施例中,为平衡电池100的能量密度以及第三壁36的支撑性,第三壁36的厚度为D3(单位为mm)时,第三壁36的强度为X(单位为MPa)时,第三壁36满足100≤D3*X≤500。在一些实施例中,第三壁36满足140≤D3*X≤240。
在一些实施例中,第二壁34和第三壁36满足1mm≤D2+D3≤10mm。在另一些实施例中,第二壁34和第三壁36满足2mm≤D2+D3≤7mm。
发明人以第一壁的比热容为c、第二壁的熔点为P、第二壁的厚度为D2、第二壁的耐冲击强度为E、第一壁和第二壁的间距为h以及电池单体的容量为A为电池以及电池中的电池单体的变量,并将该电池中的其中一个电池单体作出热失控处理(使其产热效率高于散热效率),进行多次实验以证明本申请一些实施例中提供的电池具有较高的安全性。实验结果可参见表1。
表1
Figure PCTCN2022123366-appb-000001
由表1可以看出,当c≥2KJ/(kg·℃),P≥600℃,D2≥0.5mm,1500≤D2*P,E≥20KJ/m 2,h/A≥0.01时,电池单体因为滥用导致热失控后,只冒烟而不起火,其热冲击以及热传递不会导致相邻电池单体发生失效,进而保证整个电池不会发生热扩散,保证电池的安全。
当c<2KJ/(kg·℃)时,电池单体热失控后,会起火,其热传递会导致相邻电池单体发生失效,进而引发电池起火。
当D2*P<1500或者h/A<0.01时,电池单体热失控后,其热冲击会导致相邻电池单体发生失效,进而引发热扩散,导致电池着火。
当D2>5mm或D2*P>3000或h/A>0.1时,会因安全过设计导致电池的能量密度降低。
发明人以第三壁的强度X和第三壁的厚度D3为电池变量,对该电池进行振动主频测试,进行多次实验以证明本申请一些实施例中提供的电池具有较高的安全性。实验结果可参见表2。
表2
Figure PCTCN2022123366-appb-000002
第三壁作用是支撑保证排气装置的稳定性,保证强度;由表2可以看出,当X≥70MPa,D3≥0.5mm,100≤D3*X≤3000时,可以保证振动的主频满足车载的要求,保证排气装置有效地引导高温气体,使得电池具有较高的安全性。当D3*X<100时,支撑结构强度弱,无法满足车载工况对振动强度的要求,导致排气装置无法排气,容易产生安全风险。当D3*X>3000时,虽然支撑结构的强度可以满足车载工况对振动强度的要求,但是占用空间多或者大幅增加材料的成本,过设计,造成浪费。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种电池,其中,包括:
    箱体;
    电池单体,设于所述箱体内,所述电池单体的第一表面设置有第一泄压机构;
    排气装置,设于所述箱体内,所述排气装置的内部形成有排气通道,所述排气装置上设置有与所述排气通道连通的进气口,所述进气口与所述第一泄压机构相对设置。
  2. 根据权利要求1所述的电池,其中,
    所述排气装置具有相对设置的第一壁和第二壁,所述第一壁较所述第二壁更接近所述电池单体,所述进气口设置于所述第一壁,所述第一壁和所述第二壁之间形成所述排气通道,所述第一壁的比热容大于所述第二壁的比热容。
  3. 根据权利要求2所述的电池,其中,
    所述第一壁的比热容为c,满足c≥2KJ/(kg·℃)。
  4. 根据权利要求3所述的电池,其中,
    满足c≥3KJ/(kg·℃)。
  5. 根据权利要求2-4任一项所述的电池,其中,
    所述第一壁的内部形成有容纳腔室,所述容纳腔室用于容纳换热介质,以调节所述排气通道内的气体温度。
  6. 根据权利要求5所述的电池,其中,
    所述第一壁具有介质进口和介质出口,所述介质进口和所述介质出口分别连通所述容纳腔室。
  7. 根据权利要求2-6任一项所述的电池,其中,
    所述第一壁与所述第一表面之间设置有粘接层,所述电池单体通过所述粘接层连接于所述第一壁,所述粘接层的厚度为D1,满足0.2mm≤D1≤5mm。
  8. 根据权利要求7所述的电池,其中,
    满足0.5mm≤D1≤3mm。
  9. 根据权利要求2-8任一项所述的电池,其中,
    所述第二壁由防火材料制成。
  10. 根据权利要求9所述的电池,其中,
    所述第二壁的熔点为P,满足P≥600℃。
  11. 根据权利要求10所述的电池,其中,
    满足P≥1500℃。
  12. 根据权利要求9-11任一项所述的电池,其中,
    所述第二壁的厚度为D2,满足0.5mm≤D2≤5mm。
  13. 根据权利要求12所述的电池,其中,
    满足0.7mm≤D2≤3mm。
  14. 根据权利要求9-13任一项所述的电池,其中,
    所述第二壁的厚度为D2,单位为mm,所述第二壁的熔点为P,单位为℃,满足1500≤D2*P≤3000。
  15. 根据权利要求2-14任一项所述的电池,其中,
    所述第二壁的耐冲击强度为E,满足E≥20KJ/m 2
  16. 根据权利要求14所述的电池,其中,
    满足E≥30KJ/m 2
  17. 根据权利要求2-16任一项所述的电池,其中,
    所述电池单体的容量为A,单位为ah;
    所述第一壁和所述第二壁的间距为h,单位为mm;
    满足0.01≤h/A≤0.1。
  18. 根据权利要求9-17任一项所述的电池,其中,
    所述排气装置还具有第三壁,所述第三壁设置于所述第二壁的背离于所述第一壁的表面,所述第三壁用于支撑所述第二壁。
  19. 根据权利要求18所述的电池,其中,
    所述第三壁的强度为X,满足X≥70MPa。
  20. 根据权利要求19所述的电池,其中,
    满足X≥80MPa。
  21. 根据权利要求18-20任一项所述的电池,其中,
    所述第三壁的厚度为D3,满足0.3mm≤D3≤4mm。
  22. 根据权利要求21所述的电池,其中,
    满足0.5mm≤D3≤3mm。
  23. 根据权利要求18-22任一项所述的电池,其中,
    所述第三壁的厚度为D3,单位为mm,所述第三壁的强度为X,单位为MPa,满足100≤D3*X≤3000。
  24. 根据权利要求23所述的电池,其中,
    满足300≤D3*X≤2500。
  25. 根据权利要求18-24任一项所述的电池,其中,
    所述第二壁的厚度为D2,所述第三壁的厚度为D3,满足1mm≤D2+D3≤10mm。
  26. 根据权利要求25所述的电池,其中,满足2mm≤D2+D3≤7mm。
  27. 根据权利要求1-26任一项所述的电池,其中,
    所述电池单体的数量为多个,多个所述电池单体相互堆叠设置;
    所述排气装置具有多个所述进气口,多个所述进气口沿所述电池单体的堆叠方向间隔分布以与所述电池单体的所述第一泄压机构一一对应。
  28. 根据权利要求1-27任一项所述的电池,其中,
    所述排气装置具有与所述排气通道连通的排气口,所述排气口与所述箱体的外部连通。
  29. 根据权利要求1-27任一项所述的电池,其中,
    所述箱体的壁部设置有第二泄压机构,所述排气装置具有与所述排气通道连通的排气口,所述排气口位于所述箱体内并朝向所述第二泄压机构设置。
  30. 一种用电设备,其中,包括权利要求1-29任一项所述的电池,所述电池用于提供电能。
PCT/CN2022/123366 2022-09-30 2022-09-30 电池和用电设备 WO2024065718A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123366 WO2024065718A1 (zh) 2022-09-30 2022-09-30 电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123366 WO2024065718A1 (zh) 2022-09-30 2022-09-30 电池和用电设备

Publications (1)

Publication Number Publication Date
WO2024065718A1 true WO2024065718A1 (zh) 2024-04-04

Family

ID=90475686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123366 WO2024065718A1 (zh) 2022-09-30 2022-09-30 电池和用电设备

Country Status (1)

Country Link
WO (1) WO2024065718A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473884A (zh) * 2009-09-18 2012-05-23 松下电器产业株式会社 电池组件
CN111668408A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包以及车辆
CN112038528A (zh) * 2020-09-08 2020-12-04 北京未来智酷汽车科技有限公司 一种电池箱
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN114976470A (zh) * 2022-07-28 2022-08-30 广东采日能源科技有限公司 一种储能电池箱

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102473884A (zh) * 2009-09-18 2012-05-23 松下电器产业株式会社 电池组件
CN111668408A (zh) * 2019-03-08 2020-09-15 比亚迪股份有限公司 电池托盘、动力电池包以及车辆
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN112038528A (zh) * 2020-09-08 2020-12-04 北京未来智酷汽车科技有限公司 一种电池箱
CN114976470A (zh) * 2022-07-28 2022-08-30 广东采日能源科技有限公司 一种储能电池箱

Similar Documents

Publication Publication Date Title
JP7419533B2 (ja) 電池、その関連装置、製造方法及び製造機器
CN112909398B (zh) 电池、用电设备、制备电池的方法和设备
CN116365160A (zh) 电池和用电设备
JP7429719B2 (ja) 電池、電力消費機器、電池の製造方法及び装置
CN112018302B (zh) 电池、用电装置、制备电池的方法和设备
JP7403561B2 (ja) 電池のケース、電池、電力消費装置、電池製造方法及び装置
WO2024077789A1 (zh) 电池及用电装置
JP7466656B2 (ja) 電池、装置、電池の製造方法及び製造装置
WO2022099661A1 (zh) 箱体、电池、用电设备及电池的制造方法
US20220328927A1 (en) Battery, electric apparatus, and method and device for preparing battery
CN117981152A (zh) 电池、用电设备、制造电池的方法和设备
CN219286591U (zh) 电池以及用电设备
CN115485895B (zh) 电池、用电装置、制备电池的方法和装置
WO2022082396A1 (zh) 电池、用电装置、制备电池的方法及装置
JP2023544047A (ja) 電池の筐体、電池、電力消費装置、電池の製造方法及び装置
WO2024065718A1 (zh) 电池和用电设备
CN116114113A (zh) 电池、装置、电池的制备方法以及制备装置
WO2024092442A1 (zh) 电池和用电设备
EP4009435B1 (en) Battery, power consuming apparatus and method and apparatus for producing battery
WO2023005462A1 (zh) 电池和用电装置
EP4345984A1 (en) Battery and electrical apparatus
WO2024065739A1 (zh) 电池以及用电装置
CN219643037U (zh) 电池和用电装置
WO2022082389A1 (zh) 电池、用电设备、制备电池的方法和装置
WO2024002163A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960337

Country of ref document: EP

Kind code of ref document: A1