WO2024065633A1 - 射频反相器、传输线移相器、系统、芯片及雷达传感器 - Google Patents

射频反相器、传输线移相器、系统、芯片及雷达传感器 Download PDF

Info

Publication number
WO2024065633A1
WO2024065633A1 PCT/CN2022/123131 CN2022123131W WO2024065633A1 WO 2024065633 A1 WO2024065633 A1 WO 2024065633A1 CN 2022123131 W CN2022123131 W CN 2022123131W WO 2024065633 A1 WO2024065633 A1 WO 2024065633A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
signal
transmission line
phase shift
pair
Prior art date
Application number
PCT/CN2022/123131
Other languages
English (en)
French (fr)
Inventor
刘韬
刘正东
周文婷
陈嘉澍
Original Assignee
加特兰微电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加特兰微电子科技(上海)有限公司 filed Critical 加特兰微电子科技(上海)有限公司
Priority to PCT/CN2022/123131 priority Critical patent/WO2024065633A1/zh
Priority to CN202280004453.4A priority patent/CN115769495A/zh
Priority to US18/149,616 priority patent/US20240113406A1/en
Publication of WO2024065633A1 publication Critical patent/WO2024065633A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • H01Q3/2617Array of identical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/36Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with variable phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips

Definitions

  • the present application relates to the field of radio frequency phase shifting technology, and in particular to a radio frequency inverter, a transmission line phase shifter, a system, a chip and a radar sensor.
  • phase control capability in RF circuits can significantly increase information capacity, interference resistance, or improve the directionality of detection/communication.
  • phase shifter is connected to the RF circuit to enable the terminal device to have phase control capability.
  • the phase shifter's phase shift accuracy, phase shift precision, calibration complexity and calibration time, bandwidth and other influencing factors make the phase shifter a bottleneck in the overall performance of many RF circuits.
  • the present application provides a radio frequency inverter, a transmission line phase shifter, a system, a chip and a radar sensor.
  • the radio frequency reflector provides a circuit structure with a completely symmetrical layout, which effectively reduces the phase error during in-phase and anti-phase phase shifting.
  • a radio frequency inverter comprising an inductor circuit and a first phase adjustment circuit symmetrically arranged about the same symmetry axis, wherein: the inductor circuit comprises a single-ended signal interface and a differential signal interface; the first phase adjustment circuit comprises two controlled switches, each controlled switch being connected between a ground line and a ground terminal in the single-ended signal interface, so that the inductor circuit performs in-phase or anti-phase shifting on the received radio frequency signal.
  • a phase shifting system which includes a transmission line phase shifter and the radio frequency inverter as described in the first aspect, wherein: the transmission line phase shifter includes a single-ended transmission line phase shifter, and the single-ended transmission line phase shifter is connected to the single-ended signal interface of the radio frequency inverter; or the transmission line phase shifter includes a differential transmission line phase shifter, and the differential transmission line phase shifter is connected to the differential signal interface of the radio frequency inverter.
  • a radio frequency chip comprising: a phase shifting system as described in the second aspect.
  • a radar sensor comprising: a transmitting antenna, used to radiate an input RF transmitting signal into free space as a detection signal wave; a receiving antenna, used to convert the detected echo signal wave into a RF receiving signal; wherein the echo signal wave is formed by the detection signal wave being reflected by an object; and a RF chip as described in the third aspect, coupled to the transmitting antenna and the receiving antenna, used to output a RF transmitting signal with a phase shift to the transmitting antenna, and to convert the RF receiving signal into a baseband digital signal for measuring the object.
  • a device comprising: the radar sensor as shown above, or the radio frequency chip; and a device body for assembling the radar sensor or the radio frequency chip.
  • the phase shifting system which includes a radio frequency inverter and a transmission line phase shifter, uses a completely symmetrical inverter to provide high-precision in-phase and anti-phase shifting, and uses a transmission line phase shifter to achieve good consistency of phase shifting steps and high phase shifting accuracy, thereby improving the overall phase shifting capability of the phase shifting system.
  • FIG. 1a and 1b are schematic diagrams showing principles of a transmission line phase shifting unit according to an exemplary embodiment
  • FIG2 is a schematic structural diagram of a transmission line phase shift unit according to an exemplary embodiment
  • FIG3 is a schematic structural diagram of a transmission line phase shift unit according to an exemplary embodiment
  • FIG4 is a schematic structural diagram of a transmission line phase shift unit according to an exemplary embodiment
  • 5a and 5b are schematic structural diagrams respectively showing a transmission line phase shifter according to an exemplary embodiment
  • FIG6 is a schematic structural diagram of a radio frequency inverter according to an exemplary embodiment
  • 7a, 7b, 7c and 7d respectively show signal transmission schematic diagrams of a radio frequency inverter according to an exemplary embodiment
  • FIG. 8a and 8b are schematic structural diagrams showing a phase shifting system according to an exemplary embodiment
  • 9a and 9b are schematic structural diagrams of a transmission line phase shifter according to an exemplary embodiment
  • 10a and 10b are schematic structural diagrams of a transmission line phase shifter according to an exemplary embodiment
  • FIG11 is a schematic diagram of the structure of a phase shifting system
  • 12a and 12b are schematic diagrams showing the working state of a calibration circuit according to an exemplary embodiment
  • FIG. 13 is a schematic structural diagram of a radio frequency chip according to an exemplary embodiment.
  • the phase shifter performs phase shift processing on the local oscillator signal (also known as the LO signal), and converts it into a detection signal wave through the transmitting antenna and radiates it into the free space; when the detection signal wave radiated by the transmitting antenna is reflected by an object to form an echo signal wave, the receiving antenna converts the echo signal wave into a radio frequency receiving signal, and the radio frequency receiving signal is mixed with the local oscillator signal to output a baseband signal. Since the baseband signal carries the phase shift information provided by the phase shifter, it is beneficial for the signal processor of the radar sensor to accurately extract the physical relative measurement value of the object from the baseband signal.
  • the local oscillator signal also known as the LO signal
  • the phase shifter is an IQ phase shifter, that is, the phase shifter converts the input RF signal into an in-phase signal and an orthogonal signal, adjusts the amplitude of the in-phase signal and the orthogonal signal through a phase shift control signal, and uses vector synthesis to obtain an RF signal with any phase shift.
  • the IQ phase shifter is an active device, which makes it difficult to stabilize when the PVD changes; on the other hand, the IQ phase shifter has obvious irrational characteristics, which requires single-point calibration, for example, calibrating the preset phase shift points one by one. Predictably, the complexity and duration of the calibration limit the working efficiency of the radar sensor.
  • the present application provides a transmission line phase shifter.
  • the transmission line phase shifter includes at least one transmission line phase shifting unit.
  • the transmission line phase shifting unit includes multiple groups of transmission lines (which may or may not include ground lines) and multiple phase adjustment circuits.
  • the closed path lengths of radio frequency currents on different groups of transmission lines are different, so the equivalent inductances are different.
  • a portion of the phase adjustment circuit is connected between multiple groups of transmission lines, or between a transmission line and a ground line, and is used to switch signals between different transmission lines or between different ground lines, thereby adjusting the equivalent inductance L on the transmission line, so this portion of the phase adjustment circuit is called an inductance adjustment circuit.
  • phase adjustment circuit adds a switching capacitor between different transmission lines or between a transmission line and a ground line, thereby adjusting the equivalent capacitance C of the transmission line, so this portion of the phase adjustment circuit is called a capacitance adjustment circuit. Since the transmission line is inserted into the phase There is a corresponding relationship with the equivalent inductance L and the equivalent capacitance C Therefore, the insertion phase of the transmission line phase shift unit can be adjusted by the phase adjustment circuit (i.e., the inductance adjustment circuit and the capacitance adjustment circuit). Realize the phase shifting function.
  • the transmission line phase shift unit can be configured into at least two states, namely, the first phase state (also called the reference state) and the second phase state (also called the phase shift state).
  • the equivalent inductance and equivalent capacitance of the transmission line phase shift unit in the first and second phase states are respectively denoted as L 1 , C 1 and L 2 , C 2 , and the insertion phases in these two states are respectively denoted as and
  • the difference between the phase inserted by the transmission line phase shift unit in the first phase state (reference state) and the second phase state (phase shift state) is called the phase shift amount, which is recorded as therefore,
  • the transmission line phase shift unit may also provide three or more states.
  • the phase adjustment circuit adjusts the electrical parameters of the transmission path where the multiple groups of transmission lines are located according to the received at least one phase shift control signal, so that the radio frequency signal output by the transmission line phase shift unit has a phase shift of at least the first phase or the second phase relative to its input radio frequency signal.
  • Transmission line phase shifting units can be divided into single-ended transmission line phase shifting units and differential transmission line phase shifting units according to the basic structural type of the transmission line.
  • a transmission line phase shifting unit composed of a single-ended transmission line includes: a single-ended signal line, a first pair of ground lines, and a second pair of ground lines.
  • the single-ended signal line S and the first pair of ground lines constitute a first group of transmission lines
  • the single-ended signal line S and the second pair of ground lines constitute a second group of transmission lines.
  • Different equivalent inductances are achieved by using the difference in spacing between the two pairs of ground lines and the signal line; different equivalent capacitances are achieved by using the switching capacitors between the signal line and the ground line.
  • the circuit for switching the ground line and the switching capacitor are both included in the phase adjustment circuit 22.
  • a transmission line phase shift unit composed of differential transmission lines includes a first pair of differential transmission lines, a second pair of differential transmission lines, and a ground line, wherein the ground line is optional.
  • signal lines Sig1_P and Sig1_N constitute a first group of transmission lines
  • signal lines Sig2_P and Sig2_N constitute a second group of transmission lines. They are all differential transmission lines.
  • Different equivalent inductances are achieved by using the spacing difference between the two groups of differential transmission lines PN.
  • Different equivalent capacitances are achieved by using the switch capacitors between the differential transmission lines.
  • the inductance and switch capacitors of the switched differential transmission lines are both included in the adjustment circuit 21.
  • an axisymmetric structure is usually adopted, wherein the axis of symmetry is the center line of the transmission line phase shift unit, parallel to the signal transmission direction, such as the imaginary axis in Figure 1a and Figure 1b (the dotted line in the figure), and the imaginary axis is used to identify the structural symmetry relationship of each transmission line in the layout, rather than the physical transmission line.
  • the physical transmission line may overlap with the imaginary axis or partially overlap with the imaginary axis.
  • the signal line S in the single-ended transmission line phase shift unit overlaps with the imaginary axis
  • the ground line G1-1 and the ground line G1-2 in the first pair of ground lines have an equal first spacing d21 relative to the signal line S
  • the ground line G1-1 and the ground line G1-2 in the first pair of ground lines have an equal second spacing d22 relative to the signal line S.
  • the physical transmission line may not overlap with the imaginary axis.
  • the signal lines Sig1_P and Sig1_N in the first pair of differential transmission lines in the differential transmission line phase shifting unit have an equal first spacing d11 relative to the imaginary axis (the dotted line in the figure), and the signal lines Sig2_P and Sig2_N in the second pair of differential transmission lines have an equal second spacing d21 relative to the imaginary axis.
  • Figures 1a and 1b show the layout of the single-ended and differential transmission line phase shifting units, in which each group of transmission lines is located on the same metal layer.
  • the metal layers of each group of transmission lines can also be arranged in non-same layers, or even in a stacked layout.
  • the spacing between a group of transmission lines with a smaller inserted phase is shorter than the spacing between a group of transmission lines with a larger inserted phase.
  • the spacing between different groups of transmission lines can also be the same/similar, and different groups of transmission lines have different lengths, so that the equivalent inductance L/equivalent capacitance C corresponding to each group of transmission lines can achieve the desired adjustment range, and ultimately achieve the desired phase shift amount. And maintain matching impedance during phase shifting.
  • the phase adjustment circuit is a circuit designed according to the above principle to output at least one phase-shift control signal.
  • the phase-shift control signal is set according to the number of controlled devices in the phase adjustment circuit, the controlled electrical parameters, etc.
  • one of the phase-shift control signals uses its adjustable electrical parameters, such as voltage, current, duty cycle, etc., to achieve control of the controlled device.
  • the voltage of one phase-shift control signal can adjust the on-off of the switch tube.
  • the voltage (or current) of one phase-shift control signal can adjust the switch tube to provide different impedances within the linear region.
  • the voltage (or current) of one phase-shift control signal can adjust the switch tube to be in the cut-off region or saturation region.
  • the duty cycle of one phase-shift control signal can adjust the charging and discharging time of the capacitor, thereby further adjusting the adaptation of the corresponding phase state switching due to the change of capacitance.
  • the multiple phase-shift control signals constitute a coded signal to control the controlled array to adjust the capacitance parameters and/or inductance parameters of the overall circuit.
  • the multiple phase-shift control signals can adjust the number of on-off switches in the controlled switch array to adjust the corresponding capacitance parameters and/or inductance parameters.
  • the phase adjustment circuit in the transmission line phase shift unit may include a switch tube for switching different groups of transmission lines, or a switch tube for making different groups of transmission lines transmit different flow rates of radio frequency signals.
  • a switch tube manufactured using semiconductor technology can be switched in a saturation region or a cutoff region by adjusting a phase shift control signal.
  • a switch tube manufactured using semiconductor technology can adjust the resistance value in a linear region between a saturation region and a cutoff region by adjusting a phase shift control signal, so that different groups of transmission lines transmit shunt radio frequency signals.
  • the phase adjustment circuit may also include capacitors and resistors to adapt the capacitance and/or resistance value in the equivalent circuit required for the corresponding phase state, that is, the capacitance parameters and/or inductance parameters of the transmission line phase shift unit are actually changed. This can not only achieve the purpose of phase shifting the radio frequency signal, but also realize impedance matching between the transmission line phase shift unit and the external circuit.
  • external circuits include radio frequency drive amplifier circuits, or other circuits that receive phase-shifted radio frequency signals.
  • the phase adjustment circuit can adjust the equivalent inductance or equivalent capacitance in the transmission line phase shift unit separately.
  • the characteristic impedance Z C of the transmission line is required to remain unchanged before and after the phase shift.
  • the ratio of the equivalent inductance L to the equivalent capacitance C needs to be kept unchanged before and after the phase shift. Therefore, it is usually necessary to adjust the equivalent inductance and the equivalent capacitance at the same time.
  • some electronic devices such as different groups of transmission lines, switch tubes, etc., when they are adjusted, may change the capacitance parameters and inductance parameters at the same time.
  • the types of different controlled circuits in the phase adjustment circuit described in this application should be distinguished and understood from the perspective of playing a major role in adjusting the capacitance parameters or inductance parameters of the overall transmission line phase shift unit.
  • the phase adjustment circuit includes an inductance adjustment circuit, which is used to adjust the inductance parameter of the transmission line phase shift unit under the control of the phase shift control signal, so that the transmission line phase shift unit performs a phase shift operation according to the first phase or the second phase.
  • controlled devices such as switches and adjustable resistors, or switches and adjustable inductors are used to select different groups of transmission lines based on the group, so that the transmission line phase shifting unit can switch between the first phase and the second phase.
  • the inductance adjustment circuit is used for a circuit switched between the first pair of ground lines or the second pair of ground lines.
  • the inductance adjustment circuit includes: a switch tube SW_1 connected between the ground line G1-1 in the first pair of ground lines and the ground line G2-1 in the first pair of ground lines, and a switch tube SW_2 connected between the ground line G1-2 in the first pair of ground lines and the ground line G2-2 in the first pair of ground lines.
  • the switch tubes SW_1 and SW_2 are turned on, so that the single-ended signal line S and the first pair of ground lines (G1-1, G1-2) perform a phase shift operation; when configured as a phase shift state, the switch tubes SW_1 and SW_2 are turned off, so that the single-ended signal line S and the second pair of ground lines (G2-1, G2-2) perform a phase shift operation.
  • the inductance adjustment circuit is a circuit for adjusting the flow of the radio frequency signal in the first pair of ground wires and the second pair of ground wires.
  • the inductance adjustment circuit includes: a switch tube MOS_1 connected between the ground wire G1-1 in the first pair of ground wires and the ground wire G2-1 in the first pair of ground wires, and a switch tube MOS_2 connected between the ground wire G1-2 in the first pair of ground wires and the ground wire G2-2 in the first pair of ground wires.
  • the switch tubes MOS_1 and MOS_2 work in the saturation region or the linear region, so that the flow rate of the radio frequency signal flowing through the transmission path where the single-ended signal line S and the first pair of ground lines (G1-1, G1-2) are located is greater than the flow rate of the radio frequency signal flowing through the transmission path where the single-ended signal line S and the second pair of ground lines (G2-1, G2-2) are located; when it is selected to perform phase shifting on the input radio frequency signal according to the second phase, the switch tubes MOS_1 and MOS_2 work in the cut-off region or the linear region, so that the flow rate of the radio frequency signal flowing through the transmission path where the single-ended signal line S and the second pair of ground lines (G2-1, G2-2) are located is greater than the flow rate of the radio frequency signal flowing through the transmission path where the single-ended signal line S and the first pair of ground lines (G1-1, G1-2) are located.
  • the inductance adjustment circuit in the differential transmission line phase shift unit includes a switch tube, which is used to perform group selection between different groups of transmission lines.
  • the inductance adjustment circuit includes at least two switch tubes (sw_sig1, sw_sig2), wherein one switch tube sw_sig1 is connected between the signal line Sig2_P in the second pair of differential transmission lines and the signal line Sig1_P in the first pair of differential transmission lines; and the other switch tube sw_sig2 is connected between the signal line Sig2_N in the second pair of differential transmission lines and the signal line Sig1_N in the first pair of differential transmission lines.
  • the signal line Sig2_P and the signal line Sig1_P are both used to transmit the same radio frequency signal Sig_P in a differential group of radio frequency signals
  • the signal line Sig2_N and the signal line Sig1_N are both used to transmit the same radio frequency signal Sig_N in a differential group of radio frequency signals.
  • the switch tubes sw_sig1 and sw_sig2 are disconnected, so that the RF signal is transmitted via the second pair of differential signal lines Sig2_P and Sig2_N; when it is selected to perform a phase shift operation on the input RF signal according to the first phase, the second switch tubes sw_sig1 and sw_sig2 are turned on, so that the RF signal is transmitted via the first pair of differential signal lines Sig1_P and Sig1_N.
  • the phase adjustment circuit also includes a capacitance adjustment circuit, which is used to adjust the capacitance parameter of the transmission line phase shift unit under the control of the input phase shift control signal, so that the transmission line phase shift unit selects the first phase or the second phase.
  • the capacitance adjustment circuit is a controlled circuit that provides an adjustable capacitance, which can be adjusted according to the capacitance required by the transmission line phase shift unit in the first phase (or the second phase).
  • the capacitance adjustment circuit is based on the varactor circuit to provide adjustment, and for example includes at least one of the following controlled circuits: a switched capacitor array, and a varactor circuit including a varactor diode.
  • the switched capacitor array includes a series circuit of multiple sets of switch tubes and capacitors, and each switch tube is selectively turned on and off by an input phase shift control signal.
  • a switch capacitor with a fixed capacitance may be additionally included to provide a basic capacitance value for the capacitance adjustment circuit, and the remaining variable capacitance circuits adjust the total capacitance value based on the basic capacitance value.
  • the first switch tube may also be used as an adjustment mechanism by receiving an input control signal, and by adjusting the conduction state of the switch tube, it can work not only in the off and on states, but also in a variety of semi-conducting states between the off and on states, which is equivalent to controlling the capacitance value.
  • the capacitance adjustment circuit can be coupled between the transmission line transmitting the radio frequency signal and the reference ground.
  • the capacitance adjustment circuit in the single-ended transmission line phase shift unit is coupled between the signal line S and any ground line.
  • the differential transmission line phase shift unit also includes ground lines Gnd_P and Gnd_N. Among them, metal is used to connect Gnd_P and Gnd_N to form an equipotential circuit.
  • Each transmission line in the same group is coupled to the capacitance adjustment circuit between the ground lines Gnd_P and Gnd_N respectively.
  • the capacitance adjustment circuit includes two groups of capacitors cap and switch tubes sw_cap connected in series.
  • One group of capacitors cap and switch tubes sw_cap connected in series is connected between the ground line Gnd_P and the signal line Sig2_P, and the other group of capacitors cap and switch tubes sw_cap connected in series is connected between the ground line Gnd_N and the signal line Sig2_N.
  • the capacitance adjustment circuit is symmetrically arranged in the integrated circuit.
  • the spacing between the first pair of differential transmission lines (2 ⁇ d11 as shown in FIG. 1a) and the length of the transmission line in the first pair of differential transmission lines are set according to the inductance parameters and capacitance parameters corresponding to the first phase.
  • the capacitance adjustment circuit is connected between the second pair of differential transmission lines (Sip2_P, Sip2_N).
  • the capacitance adjustment circuit includes: capacitors cap1 and cap2 arranged symmetrically along the virtual axis, and a switch tube sw_cap. Among them, one end of the capacitor cap1 is connected to the second pair of differential signal lines Sig_P, and the other end is connected to the switch tube sw_cap; one end of the capacitor cap2 is connected to the second pair of differential signal lines Sig_N, and the other end is connected to the switch tube sw_cap.
  • the working process of the capacitance adjustment circuit is exemplified as follows: for example, under the control of the phase shift control signal, when the switch tube sw_cap is turned on, the transmission line phase shift unit performs a phase shift operation on the input RF signal according to the second phase; when the switch tube sw_cap is disconnected, the transmission line phase shift unit performs a phase shift operation on the input RF signal according to the first phase.
  • the switch tube sw_cap utilizes the semiconductor characteristics to provide a larger resistance value, it is equivalent to adjusting the shunt configuration of the RF signal in the two pairs of differential transmission lines, so that the current component of the RF signal transmitted by the second pair of differential transmission lines (Sip2_P, Sip2_N) is greater than the current component of the RF signal transmitted by the first pair of differential transmission lines (Sip1_P, Sip1_N), so that the transmission line phase shift unit performs a phase shift operation on the input RF signal according to the second phase; when the switch tube sw_cap utilizes the semiconductor characteristics to provide a smaller resistance value, it is equivalent to adjusting the shunt configuration of the RF signal in the two pairs of differential transmission lines, so that the current component of the RF signal transmitted by the second pair of differential transmission lines (Sip2_P, Sip2_N) is less than the current component of the RF signal transmitted by the first pair of differential transmission lines
  • the above-mentioned controlled circuits can be connected to the corresponding transmission lines according to the positional relationship between the transmission lines and the layout positions of the circuit components.
  • the phase adjustment circuit and each transmission line can be connected by conductors such as metallized vias and/or microstrip lines.
  • the transmission line phase shift unit also includes a multi-channel bridge. Each bridge may include a microstrip line, or a microstrip line and a metal via.
  • each bridge (Brg_11, Brg_21, and Brg_31) is coupled to the signal line Sig1_P and the signal line Sig2_P, respectively; each bridge (Brg_12, Brg_22, and Brg_32) is coupled to the signal line Sig1_N and the signal line Sig2_N, respectively.
  • each bridge Brg_11 and Brg_12, Brg_21 and Brg_22, and Brg_31 and Brg_32 are symmetrically arranged along the signal transmission direction, respectively.
  • Each bridge Brg_11 and Brg_31 is symmetrically arranged relative to the bridge Brg_21; each bridge Brg_12 and Brg_32 is symmetrically arranged relative to the bridge Brg_22.
  • the capacitance adjustment circuit and the inductance adjustment circuit are connected to the symmetrical position of each bridge to realize the circuit structure of the overall layout symmetry of the transmission line phase shift unit.
  • some electrical components in the capacitance adjustment circuit and the inductance adjustment circuit can be coupled to different connection points of the same bridge to reduce the number of bridges, thereby simplifying the circuit structure and improving the overall circuit stability of the transmission line phase shifting unit.
  • the transmission line phase shift unit in order to reduce the electromagnetic radiation of the differential transmission line phase shift unit to interfere with the signals of other circuits in the integrated circuit, such as the electromagnetic radiation to interfere with the signals of the low-frequency circuit, the transmission line phase shift unit further includes a ground conductor disposed around the first pair of differential transmission lines and the second pair of differential transmission lines, for providing electromagnetic shielding for the differential transmission line phase shift unit.
  • the ground conductor may be omitted or retained.
  • the grounding conductor is at least located in the metal layer between the transmission line phase shift unit and other circuits.
  • a grounding conductor in the shape of a grounding metal strip is formed on the metal layer.
  • the number of grounding metal strips can be multiple, so as to be arranged into a strip network-shaped grounding conductor with gaps.
  • a grounding conductor is formed in the metal layer between the differential transmission line phase shift unit and other circuits, and the grounding conductor is also a symmetrical structure to effectively shield electromagnetic radiation. As shown in FIG. 3 or FIG.
  • the grounding conductor includes: ground wires Gnd_P and Gnd_N, and a metal wire connecting the ground wires.
  • the envelope size of the grounding conductor is larger than the envelope size of the transmission line phase shift unit; or, as shown in FIG. 4, the envelope size of the grounding conductor is smaller than the envelope size of the transmission line phase shift unit.
  • a ground conductor is formed by using a metal layer between the transmission line phase shift unit and the packaging structure of the integrated circuit.
  • a three-dimensional ground conductor is formed by using a metal layer around each transmission line phase shift unit in the transmission line phase shift unit and a ground via between corresponding metal layers to accommodate the transmission line phase shifter.
  • the transmission line phase shifter includes a plurality of transmission line phase shift units, and at least one group of transmission lines of each transmission line phase shift unit is connected to each other to form a cascade circuit.
  • the phase shift that can be provided by each cascaded transmission line phase shift unit can be the same or different.
  • the state in which all transmission line phase shift units in the transmission line phase shift unit are in their respective first phases is taken as the reference state of the transmission line phase shift unit, and the state in which each transmission line phase shift unit is in the second phase is taken as a phase state.
  • the first phase and the second phase of each cascaded transmission line phase shift unit are the same, and each transmission line phase shift unit can be individually controlled by a phase shift control signal so that the transmission line phase shifter can provide a phase shift operation of an integer multiple of the phase shift step.
  • the phase shift step is the phase shift amount of a single transmission line phase shift unit in the transmission line phase shifter.
  • Each transmission line phase shift unit is electrically connected by at least one group of signal lines to form a cascade circuit.
  • the single-ended signal line S, the first pair of ground lines (G1-1 and G1-2), and the second pair of ground lines (G2-1 and G2-2) in each of the multiple single-ended transmission line phase shift units are all integrally manufactured metal lines.
  • Each transmission line phase shift unit uses a phase adjustment circuit to provide a phase shift operation.
  • the single-ended signal line S and the second pair of ground lines (G2-1 and G2-2) in each of the multiple single-ended transmission line phase shift units are all integrally manufactured metal lines.
  • Each transmission line phase shift unit uses a phase adjustment circuit to select the radio frequency signal to be transmitted along different groups of transmission lines to provide a phase shift operation.
  • the total phase shift amount and the phase shift error offset of the transmission line phase shifter are mutually constrained.
  • the more transmission line phase shift units are included in the transmission line phase shifter the larger the total phase amount that can be shifted as a whole.
  • the electromagnetic radiation generated by the long transmission line when transmitting the radio frequency signal can easily cause the entire transmission line phase shifter to produce nonlinear phase shift deviation.
  • the first pairs of transmission lines between the transmission line phase shifting units are physically isolated and connected through their respective second pairs of transmission lines.
  • Each pair of transmission lines used for phase shifting belongs to the same group of transmission lines in the above examples.
  • the second pair of ground lines (G2-1 and G2-2) used for phase shifting in the single-ended transmission line phase shifting unit belongs to part of the transmission lines in a group of transmission lines (S, G2-1, and G2-2).
  • the second pair of differential transmission lines (Sig2_P and Sig2_N) used for phase shifting in the differential transmission line phase shifting unit is a group of transmission lines (Sig2_P, Sig2_N).
  • the first pair of transmission lines of each transmission line phase shifting unit is arranged between the second pair of transmission lines, that is, the spacing between the first pair of transmission lines is smaller than the spacing between the second pair of transmission lines, then the first pair of transmission lines with the smaller spacing between each transmission line phase shifting unit is physically isolated, and the second pair of transmission lines with the larger spacing between each transmission line phase shifting unit is electrically connected.
  • the physical isolation includes a shielding structure for electromagnetic isolation, or a gap formed between transmission lines between transmission line phase shifting units, etc.
  • the shielding structure is a structure that enables non-current transmission between transmission lines, and examples thereof include protrusions or pores formed between transmission lines by insulating media; or metal vias arranged on the transmission lines so that RF signals cannot be transmitted by current, etc.
  • the gap is formed by physically unconnected transmission lines, and non-current transmission can be achieved by filling with insulating media such as plastic, or air.
  • the differential transmission line phase shifting units 11 are cascaded to form a transmission line phase shifter, wherein the differential RF signal (Input_P, Input_N) is the input signal, the differential RF signal (Output_P, Output_N) is the phase-shifted output signal, the second pairs of differential transmission lines (Sig2_P, Sig2_N) of the cascaded transmission line phase shifting units 11 are integrally formed as metal lines, and the first pairs of differential transmission lines (Sig1_P, Sig1_N) of the cascaded transmission line phase shifting units 11 are physically disconnected to form gaps. As shown in FIG.
  • the single-ended transmission line phase shifting units 12 are cascaded to form a transmission line phase shifter, wherein the single-ended RF signal Input is an input signal, the single-ended RF signal Output is a phase-shifted output signal, the second pairs of ground lines (G2-2, G2-1) of the cascaded transmission line phase shifting units 12, and the single-ended signal line S are integrally formed as metal lines, and the first pairs of ground lines (G1-2, G1-1) of the cascaded transmission line phase shifting units 12 are physically disconnected to form a gap.
  • the transmission line phase shifter can be configured alone in the radio frequency circuit to provide a phase shift with a phase shift step.
  • the transmission line phase shifter can be cascaded with other types of phase shifters to form a phase shift system.
  • the present application also provides a phase shifting system including the transmission line phase shifter and a phase shifting controller connected to the phase adjustment circuit of each transmission line phase shifter.
  • the phase shifting system may include Transmission line phase shifting units are cascaded.
  • Transmission line phase shifting units are cascaded.
  • the above-mentioned phase shifting system is not only difficult to adapt to the size restrictions of the radar chip, but also increases the loss of RF signals.
  • the present application also provides a phase shifting system, which includes: an RF inverter and a transmission line phase shifter.
  • the RF inverter and each transmission line phase shifter are cascaded.
  • the RF inverter can be connected to any cascade position of the cascaded transmission line phase shifting unit.
  • the RF inverter is located at the first stage or the last stage of the cascade circuit, so as to minimize the scattered control of the transmission line phase shifting unit to adjust multiple phase states.
  • the RF inverter is a controlled inverting or in-phase RF device, which can be a single-ended RF inverter or a differential RF inverter.
  • the circuit structure of the RF inverter is prone to layout asymmetry due to cross-layer and device connection, which makes the phase of the differential signal or single-ended signal output by some RF inverters deviate when the single-ended and differential signal conversion and reverse phase shift operation are simultaneously satisfied, thus affecting the phase shift accuracy of the entire phase shift system.
  • the radio frequency inverter includes: an inductor circuit and another phase adjustment circuit that are symmetrically arranged along the same symmetry axis.
  • the symmetry axis is used to measure the nominal circuit structure of the radio frequency inverter circuit in which the circuit is symmetrically arranged as a whole.
  • the symmetry axis can be non-physical and used to measure whether the circuit structure of the radio frequency inverter is a symmetrical structure.
  • the symmetry axis is a tap line in the inductor circuit, and the nominal value formed along the tap line.
  • the inductor circuit includes a single-ended signal interface and a differential signal interface.
  • the single-ended signal interface (or differential signal interface) is used to cascade the corresponding transmission line phase shifter or local oscillator circuit.
  • the single-ended signal interface includes a single-ended signal terminal SIG and a pair of ground terminals (Gnd_A, Gnd_B).
  • the differential signal interface includes: a pair of differential signal terminals (Sig_P, Sig_N).
  • the single-ended signal interface and the differential signal interface are both arranged in the circuit structure of the RF inverter in a symmetrical manner along the symmetry axis.
  • the phase adjustment circuit of the RF inverter includes two controlled switches, each of which is connected between a ground line and a ground terminal in the single-ended signal interface, so that the inductor circuit outputs the phase of the RF signal as in-phase or inverted.
  • the inductor circuit performs in-phase or inverted phase shifting on the input RF signal.
  • the controlled switches are symmetrical along the symmetry axis in the layout of the integrated circuit. Since the RF inverter has a symmetrical circuit structure, its inverted and in-phase phases have smaller phase errors.
  • the inductor circuit is a circuit structure arranged symmetrically about the symmetry axis, which includes: a first inductor providing a single-ended signal interface and a second inductor providing a differential signal interface.
  • the first inductor and the second inductor provide conversion between a single-ended radio frequency signal and a differential radio frequency signal through inductive coupling.
  • the first inductor and the second inductor can be arranged on the same or different metal layers of the integrated circuit, or have the same or different wiring shapes.
  • the wiring shape is exemplified by a circle, an ellipse, a rectangle, or a polygon (such as a pentagon or a hexagon), etc.
  • the inductor circuit includes: a first inductor 31 symmetrical along the tap line 311, wherein the tap line 311 is connected to the signal terminal 312 in the single-ended signal interface; and a second inductor 32 coupled to the first inductor 31, which is also symmetrical along the tap line 311 and connected to the differential signal interface (321, 322).
  • a pair of ground terminals (313, 314) of the first inductor 31 are respectively connected to a pair of controlled switches (SW_P, SW_N) in the phase adjustment circuit of the radio frequency inverter, wherein the pair of ground terminals (313, 314) are symmetrical along the tap line 311 (i.e., the symmetry axis).
  • Ground wires (33, 33') are also arranged at the single-ended signal interface of the first inductor and the differential signal interface of the second inductor.
  • the ground line on the single-ended signal side is symmetrical along the symmetry axis, so that the pair of controlled switches (SW_P, SW_N) are connected between the ground terminals (313, 314) and the ground line 33 in an axisymmetric circuit layout.
  • the ground line 33' on the differential signal interface side can also be symmetrical along the symmetry axis for ease of processing.
  • the first inductor 31 and the second inductor 32 shown in FIG6 can be located in different metal layers, or in the same metal layer and the overlapping part is insulated.
  • the RF inverter performs a phase shift operation of 0° on the single-ended RF signal input by the single-ended signal interface to output an RF signal of the same phase; when the controlled switch SW_P is turned on and the controlled switch SW_N is disconnected, as shown in Figure 7b, the RF inverter performs a phase shift operation of 180° on the single-ended RF signal input by the single-ended signal interface to output an inverted RF signal.
  • the RF inverter performs a phase shift operation of 0° on the RF signal input to the differential signal interface to output a single-ended RF signal; when the controlled switch SW_P is turned on and the controlled switch SW_N is disconnected, as shown in FIG7d , the RF inverter performs a phase shift operation of 180° on the RF signal input to the differential signal interface to output a single-ended RF signal with a phase opposite to that shown in FIG7c .
  • the single-ended signal interface of the RF inverter 42 is connected to the local oscillator circuit (not shown) in the radar sensor, and the differential signal interface of the RF inverter 42 is connected to a plurality of cascaded differential transmission line phase shift units 41.
  • the first pairs of differential signal lines with close spacing in adjacent transmission line phase shift units 41 are physically isolated from each other, and the second pairs of differential signal lines are electrically connected to each other and connected to the differential transmission lines (SIG_P, SIG_N) in the differential signal interface of the RF inverter 42; and the ground line of the transmission line phase shift unit 41 is connected to the ground line GND in the differential signal interface of the RF inverter 42.
  • the differential signal interface of the RF inverter 42 is connected to the local oscillator circuit (not shown) in the radar sensor, and the single-ended signal interface of the RF inverter 42 is connected to a plurality of cascaded single-ended transmission line phase shift units 43.
  • the first pairs of ground lines with close spacing in adjacent transmission line phase shift units 43 are physically isolated from each other, and the second pairs of ground lines are electrically connected to each other and connected to the ground line of the RF inverter 42, and the single-ended signal lines of the cascaded transmission line phase shift units 43 are connected to the single-ended signal line SIG in the single-ended signal interface of the RF inverter 42; and the ground line of the transmission line phase shift unit 43 is connected to the ground line GND in the differential signal interface of the RF inverter 42.
  • the overall phase shifting system can provide high-precision phase shifting operations within a phase shift range of 360° and effectively reduce the overall size of the phase shifter system in the integrated circuit.
  • the RF inverters and transmission line phase shifters shown in the above examples are passive devices, they are less affected by changes in the external environment, voltage, etc. when they are working, so that their phase shift errors are smaller than those of active devices such as IQ phase shifters.
  • the transmission line phase shifters are cascaded, their accumulated errors will become apparent.
  • the phase shift system of the present application can be calibrated.
  • the phase shift system may include a transmission line phase shifter, or may include cascaded RF inverters and transmission line phase shifters.
  • the signal interface of the radio frequency inverter is connected to the second group of transmission lines of the transmission line phase shifting unit and is physically isolated from at least part of the transmission lines in the first group of transmission lines.
  • the differential signal interface is connected to the second pair of differential transmission lines in the differential transmission line phase shifter, and the differential signal interface is physically isolated from the first pair of differential transmission lines in the differential transmission line phase shifter.
  • the differential signal end (SIG_P, SIG_N) in the differential signal interface of the RF inverter is correspondingly connected to the second pair of differential transmission lines (Sig2_P, Sig2_N) arranged on the outside in the differential transmission line phase shifter, and the first pair of differential transmission lines (Sig1_P, Sig1_N) arranged on the inside is physically isolated from the differential signal interface.
  • the single-ended signal interface is connected to a pair of ground lines in one group of transmission lines in the single-ended transmission line phase shifter, and the single-ended signal interface is physically isolated from a pair of ground lines in another group of transmission lines in the single-ended transmission line phase shifter.
  • the signal terminal SIG and the ground terminal GND in the single-ended signal interface of the RF inverter are correspondingly connected to the single-ended signal line S in the single-ended transmission line phase shifter and a pair of ground lines (G2-1, G2-2) arranged on the outside, and the other pair of ground lines (G1-1, G1-2) arranged on the inside are physically isolated from the single-ended signal interface.
  • the inductance and/or capacitance adjustment circuit of each transmission line phase shift unit in the transmission line phase shifter also includes a calibration mechanism. Affected by some engineering errors (such as design deviation, semiconductor processing deviation, temperature change, voltage change, process angle change, etc.), the capacitance parameters C 1 , C 2 and the inductance parameters L 1 , L 2 of the transmission line phase shift unit (including the transmission line and the controlled circuit) have a certain deviation from the target phase shift amount, making the phase shift function of the first and second phase states Deviation occurs, which eventually leads to the phase shift of the phase shifter There are deviations from the target phase shift amount. In order to correct these deviations, the transmission line phase shift unit needs to have a calibration mechanism.
  • the principle of the transmission line phase shifter calibration mechanism is: by adjusting the performance of the capacitance and/or inductance adjustment circuit, some or all of the circuit electrical parameters C 1 , C 2 , L 1 , L 2 are adjusted within a certain range, thereby adjusting the actual phase shift of the transmission line phase shift unit. Adjust to the designed target phase shift amount.
  • Each transmission line phase shift unit in the transmission line phase shifter is controlled by at least one corresponding phase shift control signal to compensate for the phase shift error of each phase shift amount that the transmission line phase shifter can provide.
  • the input phase shift control signal of each transmission line phase shift unit is determined according to the phase calibration information corresponding to the first phase or the second phase.
  • the calibration phase information is used for the actual phase shift amount of the radio frequency signal output by the calibrated phase shift system in a non-calibrated state after calibration (such as the working state), which is closer to the preset phase shift amount than the phase shift amount before calibration.
  • the calibration phase information is exemplified by the phase deviation between the actual phase shift amount of the phase shift system (or the transmission line phase shifter therein) and the phase shift amount before calibration, or compensation information determined according to the phase deviation.
  • the compensation information is determined according to the calibration strategy set by multiple tests of the transmission line phase shifter.
  • the calibration strategy includes but is not limited to at least one of the following: the influence of the phase shift change of the transmission line phase shifter (or a single transmission line phase shifter unit) within different phase shift amounts on the phase shift, the influence of temperature on the phase shift of the transmission line phase shifter (or a single transmission line phase shifter unit), the influence of the system error of the transmission line phase shifter (or a single transmission line phase shifter unit) on the phase shift, etc.
  • the compensation information includes, for example: determining the compensation electrical parameters corresponding to the phase shift phase according to the determined phase deviation.
  • the compensation electrical parameters include compensation voltage, compensation duty cycle, or compensation current, etc.
  • the adjustable electrical parameters contained in the phase shift control signal correspond to the compensation electrical parameters.
  • the calibration circuit of the transmission line phase shifter calculates the compensation information corresponding to each transmission line phase shifter unit according to the minimum value, maximum value, or unit phase shift of the preset total phase shift amount, and stores it.
  • the compensation information also includes, for example: any other phase shift amount between any two phase shift amounts and their phase deviation detected by the calibration circuit, and other corresponding compensation information determined.
  • each transmission line phase shifting unit cascaded in the transmission line phase shifter includes the state of the first phase and the second phase.
  • the transmission line phase shifter is not only an easy-to-manufacture passive device, but also can effectively reduce the nonlinear deviation of the phase shift. This makes the calibration circuit of the transmission line phase shifter more convenient and faster to perform calibration operations.
  • the radar sensor includes a calibration state and a working state.
  • the radar sensor performs at least one circuit calibration operation including calibrating the transmission line phase shifter; in the working state, the radar sensor performs at least one signal measurement and processing operation including receiving and transmitting electromagnetic waves and performing signal processing according to the effective interval of the electromagnetic waves.
  • the calibration state and the working state are different states that are switched in time.
  • the calibration circuit operates during a period including the working state to reduce the time and signal resources spent on calibration.
  • the transmission line phase shifter is calibrated according to any overall phase shift amount (such as the minimum phase shift amount) performs a phase shift operation on the input RF signal RF and outputs a phase-shifted RF signal RF_1.
  • the calibration circuit collects the phase shift amount according to the phase shift amount.
  • the corresponding RF signal RF_1 and calculate the actual phase shift of the RF signal RF_1 With the preset phase shift Phase deviation between The phase shift system is based on another overall phase shift amount (such as the maximum phase shift value) performs a phase shift operation on the input RF signal RF and outputs a phase-shifted RF signal RF_2.
  • the calibration circuit collects the phase shift value according to the phase shift value.
  • the corresponding RF signal RF_2 and the actual phase shift of the RF signal RF_2 are calculated.
  • the calibration circuit averages the two measured phase deviations respectively, and can obtain the phase deviations of the first phase and the second phase corresponding to each transmission line phase shifting unit.
  • the radar sensor in order to ensure high reliability of the measurement information provided by the radar sensor, the radar sensor includes a self-test system (BIST), and the above-mentioned calibration circuit can be configured in the self-test system to detect the phase deviation of the transmission line phase shifter in the calibration state. If the phase deviation is within the calibrable range, the calibration circuit is used to determine the phase calibration information and save it.
  • BIST self-test system
  • the transmission line phase shifter uses cascaded transmission line phase shift units, and each transmission line phase shift unit has good phase shift linearity. Therefore, the calibration circuit uniformly controls each transmission line phase shift unit in the transmission line phase shifter to be in the first phase or the second phase state to detect the phase deviation of the phase shift system for the RF signal, and thus obtains the phase deviation of each transmission line phase shift unit, and further obtains the phase calibration information.
  • the phase shifting system includes: a calibration circuit and a transmission line phase shifter.
  • the specific calibration steps of the calibration circuit are as follows: As shown in FIG12a, it is assumed that the transmission line phase shifter includes N cascaded transmission line phase shifting units (1#, 2#, ..., N#). All transmission line phase shifting units are configured to the first phase state before calibration, as shown in FIG12a.
  • the calibration circuit uses the output end of the transmission line phase shifter (i.e., output in the figure), the calibration circuit tests the phase of the output signal (relative to a certain same-frequency reference signal) and records it as As shown in FIG.
  • all the transmission line phase shifting units are configured to the second phase state before calibration, and the phase of the output signal of the transmission line phase shifter is tested by the calibration circuit, which is recorded as Then the overall phase shift of the transmission line phase shifter before calibration is Since the overall phase shift of the transmission line phase shifter comes from the common phase shift of each transmission line phase shift unit, and the phase shift of each transmission line phase shift unit is exactly the same, the phase shift of each transmission line phase shift unit before calibration is The calibration circuit can determine the overall calibrated phase shift of the transmission line phase shifter, and evenly divide the overall calibrated phase shift to obtain the calibrated phase shift step of the transmission line phase shift unit, thereby calibrating the calibrated phase shift step of the transmission line phase shift unit to a target value (e.g., 5.625°).
  • a target value e.g., 5.625°
  • the calibration circuit converts the target value corresponding to each transmission line phase shift unit into phase calibration information corresponding to the calibrated first phase and second phase phase shift amounts according to the mapping relationship between the preset electrical parameters and the phase shift amounts, and stores the information in the memory.
  • the fixed electrical parameters are used as the state of the first phase, and the electrical parameters corresponding to the calibrated second phase state are calculated based on the phase calibration information.
  • the calibration circuit combines the overall pre-calibration phase deviations at different phase states.
  • the phase deviation reflects the phase shift error of the phase shift amount corresponding to any phase state of the transmission line phase shift unit; according to the mapping relationship between the preset electrical parameters and the inserted phase, the phase deviation of each transmission line phase shift unit is converted into phase calibration information and stored in the memory.
  • the corresponding phase shift control signal is generated according to the phase calibration information corresponding to different phase shift states.
  • the calibration circuit includes: an analog circuit and a digital circuit, wherein the analog circuit includes: a phase acquisition circuit for converting a radio frequency signal into a baseband signal, and the digital circuit includes a phase calibration circuit for detecting a phase deviation of the baseband signal.
  • the phase acquisition circuit acquires the radio frequency signals output by the M transmission line phase shifting units in the phase shifting system, and performs down-conversion processing on the acquired radio frequency acquisition signals to obtain a baseband signal, which carries the actual phase before calibration in the radio frequency signal.
  • the baseband signal is converted into a baseband digital signal by using the analog-to-digital converter in the phase calibration circuit, and the calibrated first phase (or second phase) of each transmission line phase shifting unit is obtained by using the deviation between the actual phase described in the frequency domain and the phase shifting phase corresponding to the preset M times the first phase (or M times the second phase).
  • 1 ⁇ M ⁇ N, N is the total number of transmission line phase shifting units in the phase shifting system.
  • the phase calibration circuit calculates the phase calibration information of each transmission line phase shifting unit and stores it in the memory.
  • the calculation includes the equal division calculation of the phase deviation, the calculation of the conversion between the phase and the electrical parameters, etc.
  • the calibration circuit can preset parameters such as the initial phase of the RF signal used for calibration, the phase shift value in each phase state, or the phase shift amount, and control the transmission line phase shifter to perform the corresponding phase shift operation accordingly, thereby obtaining the actual phase shift amount.
  • the phase acquisition circuit includes: an RF acquisition circuit, a modulation circuit, and a frequency conversion circuit.
  • the RF acquisition circuit is coupled to the output end of the phase shift system, and is used to collect the RF signal output by the phase shift system to output a RF sampling signal.
  • the RF acquisition circuit can be a single-ended coupler or an orthogonal coupler.
  • the modulation circuit is coupled to the RF acquisition circuit and inputs a first baseband signal, and is used to modulate the RF sampling signal using the first baseband signal to output a modulation signal containing the actual phase.
  • the first baseband signal may be an IF signal, and its initial phase may be any phase.
  • the modulation circuit modulates the two signals so that the obtained modulation signal carries the actual phase.
  • the modulation circuit may be a single-ended modulation circuit or an orthogonal modulation circuit.
  • the frequency conversion circuit is coupled to the modulation circuit and inputs a local oscillator signal, and is used to use the local oscillator signal to perform down-conversion processing on the modulation signal to generate a second baseband signal containing an actual phase.
  • the local oscillator signal is an input radio frequency signal to the phase shifting system.
  • the frequency conversion circuit obtains a second baseband signal containing an actual phase by performing a down-conversion operation.
  • the frequency of the second baseband signal is substantially the same as the frequency of the first baseband signal.
  • the phase acquisition circuit uses the first baseband signal and the local oscillator signal to convert the radio frequency signal carrying the actual phase shift amount into a baseband signal (i.e., the second baseband signal) carrying the actual phase.
  • the frequency conversion circuit may be a single-ended frequency conversion circuit or an orthogonal frequency conversion circuit.
  • the phase calibration circuit is a digital circuit including an ADC, which converts the second baseband signal into a second baseband digital signal, converts the second baseband digital signal into a frequency domain and calculates the actual phase of the second baseband digital signal; the actual phase includes the sum of the initial phase of the local oscillator signal, the initial phase of the first baseband signal, and the actual phase of the transmission line phase shifter; by performing data calculations using the preset initial phase values, the phase calibration circuit can extract the calibrated actual phase of the transmission line phase shifter.
  • the phase acquisition circuit outputs a second baseband signal containing an orthogonal signal through a circuit combination of the above-mentioned circuit modules.
  • the phase calibration circuit is conducive to eliminating the initial phase in the local oscillator signal and the first baseband signal, thereby improving the calibration accuracy.
  • the above-mentioned initial phase values can also be obtained by performing respective phase detection on the first baseband signal or the local oscillator signal, thereby further reducing the calibration deviation caused by the operation of the calibration circuit.
  • phase calibration information is reflected in the phase shift control signal in the phase shift system, so that the phase shift system can more accurately perform phase shift operation according to the integer multiple of the calibrated first phase (or the integer multiple of the second phase) during operation.
  • the phase shift system also includes a phase shift controller.
  • the phase shift controller is connected to each phase adjustment circuit in the phase shift system to convert a phase shift instruction into a phase shift control signal.
  • the phase shift controller reads pre-stored phase calibration information according to the phase shift instruction and generates a corresponding phase shift control signal; wherein the phase calibration information is determined by calibrating the phase shifter.
  • the phase shift controller can be shared with a digital signal processor (such as an MCU, FPGA or a dedicated hardware processor) in the calibration circuit, or configured separately.
  • the phase shift controller includes a processor and a codec.
  • the phase shift controller and the digital signal processor jointly maintain a memory, which is used to store the calibration information of each phase in the phase shift system.
  • the phase shift controller determines the transmission line phase shift unit that provides phase shift according to the calibrated first phase and the transmission line phase shift unit that provides phase shift according to the calibrated second phase based on the phase shift information in the input phase shift control instruction, and generates a coded signal for controlling each transmission line phase shift unit, which is converted into each phase shift control signal through the codec and output to the phase adjustment circuit of each transmission line phase shift unit.
  • the phase shift control instruction may come from an upper system that controls the phase shift controller.
  • the upper system is a software system and/or hardware system running in an integrated circuit (such as a radar chip) where the phase shift system is located, or an external system connected to the pins of the integrated circuit.
  • the hardware system in the upper system may be shared with the phase shift controller or configured separately, and examples include a processor, etc.
  • Examples of software systems include programs that can be executed by the hardware system in a timing sequence, etc.
  • Examples of the phase shift control instruction are level signals or program instructions.
  • the phase shift controller also outputs a phase shift control signal to a phase adjustment circuit in the radio frequency inverter according to the phase shift control instruction, thereby realizing a variety of calibrated phase shift operations within a range of 360° with unit phase shift as the phase shift step.
  • the single-ended signal interface of the phase shifter is the input interface
  • the differential signal interface is the output interface.
  • the phase shift controller controls the switch tube SW_P in the phase adjustment circuit of the RF inverter to be disconnected and the switch tube SW_N to be turned on
  • the RF inverter outputs the same-phase RF signal
  • the phase shift controller controls the switch tube SW_P in the phase adjustment circuit of the RF inverter to be turned on and the switch tube SW_N to be disconnected
  • the RF inverter outputs the reversed-phase RF signal.
  • the differential signal interface of the phase shifter is the input interface
  • the single-ended signal interface is the output interface.
  • the RF inverter When the phase shift controller controls the switch tube SW_P in the phase adjustment circuit of the RF inverter to be disconnected and the switch tube SW_N to be turned on, the RF inverter outputs the same-phase differential RF signal; when the phase shift controller controls the switch tube SW_P in the phase adjustment circuit of the RF inverter to be turned on and the switch tube SW_N to be disconnected, the RF inverter outputs the reversed-phase differential RF signal.
  • each phase adjustment circuit in the transmission line phase shifter includes an adjustable device for adjusting the phase shift control signal, so as to realize the phase shift operation of the transmission line phase shifter according to the calibrated phase shift.
  • the capacitance adjustment circuit includes a switch capacitor array, a varactor diode, or an adjustable capacitor or other adjustable capacitance device.
  • the inductance adjustment circuit includes a switch tube, an adjustable resistor, or an adjustable inductor or other adjustable inductance (or adjustable resistance) device.
  • the capacitance adjustment circuit and the inductance adjustment circuit may also include fixed devices (such as fixed capacitors or fixed resistors, etc.) that are controllably connected to the circuit (or controlled not to be connected to the circuit), so that in the first phase (or second phase) state, the overall capacitance parameters and inductance parameters of the transmission line phase shifter meet the needs of phase shifting and impedance matching at the same time.
  • fixed devices such as fixed capacitors or fixed resistors, etc.
  • the transmission line phase shift unit includes a single-ended signal line Sig, a first pair of ground lines Gnd1, a second pair of ground lines Gnd2, a phase adjustment circuit, and a second bridge 53.
  • the phase adjustment circuit includes: a capacitance adjustment circuit, etc.
  • the capacitance adjustment circuit includes a variable capacitance diode D, an adjustable power supply S, and a controlled capacitance circuit.
  • the controlled capacitance circuit includes a switch tube sw_c and a capacitor C.
  • the capacitor C and the switch tube sw_c are connected in series between the signal line Sig and the second bridge 53, and are connected in parallel with the series circuit of the capacitor C and the switch tube sw_c.
  • the adjustable power supply S outputs an adjustable voltage (or current) according to the input phase shift control signal, and the variable capacitance diode D adjusts the capacitance under the control of the adjustable voltage (or current) so that the capacitance parameter of the transmission line phase shift unit meets the capacitance parameter required for the corresponding first phase (or second phase).
  • the inductance adjustment circuit includes each switch tube sw_l connected between each ground line in the first pair of ground lines and the second bridge 53.
  • Each switch tube sw_1 is turned on or off according to the input phase shift control signal to switch the transmission of the radio frequency signal on the first pair of ground wires or the second pair of ground wires.
  • the switch tube sw_1 adjusts the inductance parameter formed by the first pair of ground wires or the second pair of ground wires under the control of the switch voltage, so that the inductance parameter of the transmission line phase shift unit meets the inductance parameter required by the corresponding first phase (or second phase).
  • the switch tube sw_c When the input phase shift control signals of each channel indicate that the transmission line phase shift unit performs a phase shift operation according to the first phase, the switch tube sw_c is turned off, and each switch tube sw_1 is turned on, and the adjustable power supply adjusts the varactor diode to provide the first capacitance value, so that the first pair of ground wires Gnd1 and the signal line Sig in the single-ended transmission line phase shift unit form a transmission path for transmitting the radio frequency signal, and the varactor diode provides a capacitance value for calibrating the first phase.
  • the switch tube sw_c When the input phase shift control signals indicate that the transmission line phase shift unit performs phase shift operation according to the second phase, the switch tube sw_c is turned on, and the switch tubes sw_l are turned off, and the adjustable power supply adjusts the varactor diode to provide a second capacitance value, so that the second pair of ground wires Gnd2 and the signal wire Sig in the single-ended transmission line phase shift unit form a transmission path for transmitting radio frequency signals, and the varactor diode provides a compensation capacitance value for calibrating the second phase.
  • the transmission line phase shift unit is implemented in different phase states, and it is necessary to simultaneously meet the impedance matching of the radio frequency transmission link where the transmission line phase shift unit is located.
  • the calibrable transmission line phase shift unit shown in FIG. 9a is a transmission line phase shift unit that calibrates each phase shift amount by adjusting the capacitance parameter.
  • the transmission line phase shift unit shown in FIG. 9b is a transmission line phase shift unit that calibrates each phase shift amount by adjusting the inductance parameter.
  • the single-ended transmission line phase shift unit includes: a single-ended signal line Sig, a first pair of ground lines Gnd1, a second pair of ground lines Gnd2, a phase adjustment circuit, and a second bridge 53'.
  • the phase adjustment circuit includes: an inductance adjustment circuit, etc.
  • the capacitance adjustment circuit includes switch tubes sw_c and sw_s, and a capacitor C.
  • the capacitor C and the switch tube sw_c are connected in series between the signal line Sig and the second bridge 53', and the switch tube sw_s is connected between the signal line Sig and the second bridge 53', and is connected in parallel with the series circuit of the capacitor C and the switch tube sw_c.
  • the inductance adjustment circuit includes variable resistors Ad_R connected between each ground line in the first pair of ground lines Gnd1 and the second bridge 53'.
  • Each variable resistor Ad_R adjusts the resistance value according to the input phase shift control signal Vctrl to shunt the RF signal to be transmitted between the first pair of ground wires Gnd1 and the second pair of ground wires Gnd2.
  • the variable resistor Ad_R adjusts the inductance parameter formed by the first pair of ground wires Gnd1 and the second pair of ground wires Gnd2 under the control of an adjustable voltage (or current) so that the inductance parameter of the transmission line phase shift unit meets the inductance parameter required for the corresponding first phase (or second phase).
  • the switch tube sw_s When the input phase shift control signals of each channel indicate that the transmission line phase shift unit performs a phase shift operation according to the first phase, the switch tube sw_s is turned on and the switch tube sw_c is turned off, so that the first pair of ground wires Gnd1 and the signal wire Sig in the single-ended transmission line phase shift unit form a transmission path for transmitting the RF signal, and the equivalent inductance formed by the second pair of ground wires Gnd2 and the signal wire Sig provides an inductance value for calibrating the first phase by the first resistance value connected to the variable resistor Ad_R.
  • the switch tube sw_s When the input phase shift control signals indicate that the transmission line phase shift unit performs a phase shift operation according to the second phase, the switch tube sw_s is turned off and the switch tube sw_c is turned on, so that the second pair of ground wires Gnd2 and the signal wire Sig in the single-ended transmission line phase shift unit form a transmission path for transmitting the radio frequency signal, and the equivalent inductance formed by the first pair of ground wires Gnd1 through the second resistance value connected by the variable resistor Ad_R provides an inductance value for calibrating the second phase.
  • the transmission line phase shift unit includes a first pair of differential transmission lines (Sig1_P, Sig1_N), a second pair of differential transmission lines (Sig2_P, Sig2_N), a second phase adjustment circuit, and a first bridge (631, 632).
  • the second phase adjustment circuit includes: a capacitance adjustment circuit, an inductance adjustment circuit, etc.
  • the capacitance adjustment circuit includes a variable capacitance diode D2, an adjustable power supply S2, and a controlled capacitance circuit.
  • the controlled capacitance circuit includes a switch tube sw_cap, and a capacitor cap.
  • the series-connected capacitor cap and the switch tube sw_cap are connected between the second pair of differential transmission lines (Sig2_P, Sig2_N) through the first bridge 631.
  • the variable capacitance diode D2 and the adjustable power supply S2 are also connected between the second pair of differential transmission lines (Sig2_P, Sig2_N).
  • the adjustable power supply S2 outputs an adjustable voltage (or current) according to the input phase shift control signal, and the varactor diode D2 adjusts the capacitance under the control of the adjustable voltage (or current) so that the capacitance parameter of the transmission line phase shift unit meets the capacitance parameter required by the corresponding first phase (or second phase).
  • the inductance adjustment circuit includes each switch tube sw_sig connected between each differential transmission line in the second pair of differential transmission lines (Sig2_P, Sig2_N) and the first bridge 632.
  • Each switch tube sw_sig is turned on or off according to the input phase shift control signal to switch the RF signal to be transmitted on the first pair of ground lines or the second pair of ground lines, and the switch tube sw_sig adjusts the inductance parameter formed by the first pair of differential transmission lines or the second pair of differential transmission lines under the control of the switch voltage so that the inductance parameter of the transmission line phase shift unit meets the inductance parameter required by the corresponding first phase (or second phase).
  • the switch tube sw_cap is disconnected, and the switch tubes sw_sig are turned on, and the adjustable power supply adjusts the varactor diode to provide a first capacitance value, so that the first pair of differential transmission lines in the differential transmission line phase shift unit forms a transmission path for transmitting radio frequency signals, and the varactor diode provides a capacitance value for calibrating the first phase.
  • the switch tube sw_cap is turned on, and the switch tubes sw_sig are disconnected, and the adjustable power supply adjusts the varactor diode to provide a second capacitance value, so that the second pair of differential transmission lines in the differential transmission line phase shift unit forms a transmission path for transmitting radio frequency signals, and the varactor diode provides a capacitance value for calibrating the second phase.
  • the calibrable transmission line phase shift unit shown in FIG. 10a is a transmission line phase shift unit that calibrates each phase shift amount by adjusting the capacitance parameter.
  • the transmission line phase shift unit shown in FIG. 10b is a transmission line phase shift unit that calibrates each phase shift amount by adjusting the inductance parameter.
  • the differential transmission line phase shift unit includes: a first pair of differential transmission lines (Sig1_P, Sig1_N), a second pair of differential transmission lines (Sig2_P, Sig2_N), and a phase adjustment circuit, a first bridge (631', 632').
  • the phase adjustment circuit includes: a capacitance adjustment circuit, an inductance adjustment circuit, etc.
  • the capacitance adjustment circuit includes a switch tube sw_cap and a capacitor cap.
  • the series-connected capacitor cap and the switch tube sw_cap are connected to the second pair of differential transmission lines (Sig2_P, Sig2_N) through the first bridge.
  • the inductance adjustment circuit includes variable resistors R' connected between each transmission line (Sig2_P or Sig2_N) in the second pair of differential transmission lines and the first bridge 631'. Each variable resistor R' adjusts its resistance according to the input phase shift control signal Vctrl to shunt the RF signal for transmission between the first pair of differential transmission lines and the second pair of differential transmission lines.
  • variable resistor R' adjusts the inductance parameters formed by the first pair of differential transmission lines and the second pair of differential transmission lines under the control of an adjustable voltage (or current) so that the inductance parameters of the transmission line phase shift unit meet the inductance parameters required for the corresponding first phase (or second phase).
  • the switch tube sw_cap is disconnected, so that the first pair of differential transmission lines (Sig1_P, Sig1_N) in the differential transmission line phase shift unit forms a transmission path for transmitting the radio frequency signal, and the second pair of differential transmission lines (Sig2_P, Sig2_N) shunts the radio frequency signal in the second pair of differential transmission lines by the first resistance value connected by the variable resistor R', so that the formed equivalent inductance provides an inductance value for calibrating the first phase.
  • the switch tube sw_cap When the input phase shift control signals indicate that the transmission line phase shift unit performs a phase shift operation according to the second phase, the switch tube sw_cap is turned on, so that the second pair of differential transmission lines (Sig2_P, Sig2_N) in the differential transmission line phase shift unit forms a transmission path for transmitting the radio frequency signal, and the first pair of differential transmission lines (Sig1_P, Sig1_N) shunts the radio frequency signal in the second pair of differential transmission lines by the second resistance value connected by the variable resistor R', so that the formed equivalent inductance provides an inductance value for calibrating the first phase.
  • any of the above examples of transmission line phase shifting units are only examples.
  • the corresponding phase state can also be calibrated by adjusting both the inductance and the capacitance.
  • the transmission line phase shifting unit can be adjusted in different phase states by adjusting the inductance parameters and/or capacitance parameters, etc., to achieve impedance matching of the RF transmission link where the transmission line phase shifting unit is located.
  • impedance matching can be expressed as the stability of the ratio of the capacitance parameter and the inductance parameter of the transmission line phase shifting unit.
  • the capacitance adjustment circuit may also include a separate circuit for calibrating an adjustable capacitance.
  • the inductance adjustment circuit may also include a separate circuit for calibrating an adjustable inductance.
  • the circuit for calibrating capacitance parameters in the capacitance adjustment circuit is not limited to varactor diodes, but may also be a controlled circuit such as a switch capacitor array, a series capacitor and a switch tube.
  • the capacitance adjustment circuit may use an encoded phase shift control signal to adjust the switch capacitor array to replace the adjustable capacitance circuit of the fixed capacitor and the varactor diode combination to simplify the complexity of the capacitance adjustment circuit.
  • the circuit for calibrating inductance parameters in the inductance adjustment circuit is not limited to the switch tube and the variable resistor, but may also be a controlled circuit such as a switch resistor array.
  • the capacitance adjustment circuit and/or the inductance adjustment circuit may also comprehensively consider the inductance/capacitance changes between different phase states after calibration to provide a phase adjustment circuit that takes into account both calibration and phase shifting, so as to meet the circuit integration needs of the transmission line phase shift unit in the integrated circuit, or other circuit design requirements.
  • the capacitance adjustment circuit and/or inductance adjustment circuit as a whole or part of the controlled circuits therein may also adopt an access method different from that shown in the figure, so as to simultaneously meet the purposes of impedance matching and phase shifting by adjusting the capacitance parameters and/or inductance parameters under different phase states.
  • the present application also provides a radio frequency chip, as shown in FIG13 , which includes a signal generator, a frequency multiplier, a phase shift system, and a driving amplifier.
  • the signal generator generates an intermediate frequency signal according to a clock reference signal.
  • the signal generator includes a phase-locked loop circuit.
  • the voltage-controlled oscillator in the phase-locked loop circuit generates an intermediate frequency signal under loop control.
  • the intermediate frequency signal is, for example, an FMCW signal (continuous frequency modulation signal) suitable for the detection needs of the radar sensor for measuring physical quantities.
  • the frequency multiplier is connected to the signal generator to multiply the frequency of the intermediate frequency signal to the radio frequency signal.
  • the frequency multiplier is used to multiply the intermediate frequency signal to the radio frequency band. Taking the radar chip as an example, the frequency multiplier multiplies the FMCW signal to the millimeter wave band.
  • the phase shift system performs phase shift on the radio frequency signal under the control of the phase shift control signal, so that the output radio frequency signal has no phase shift or has a phase shift amount between 0-360 degrees compared with the input radio frequency signal.
  • phase shift system including N cascaded transmission line phase shift units as an example
  • M of the N transmission line phase shift units are in the second phase state, and (NM) states in the first phase 0, whereby the phase shifting system shifts the phase of the input RF signal by a total of
  • phase shift system including an RF inverter and N cascaded transmission line phase shift units
  • M of the N transmission line phase shift units are in a second phase state (such as a phase shift amount of ⁇ )
  • (N-M) are in a first phase state (such as a phase shift amount of 0)
  • the RF inverter is in a phase state of 180°
  • the phase shift system shifts the phase of the input RF signal by a total of (M ⁇ +180)°.
  • the driving amplifier is connected to the phase shifting system to amplify and output the RF signal with phase shifting.
  • the driving amplifier is used to amplify the RF signal with phase shifting to a power suitable for driving a subsequent circuit (such as an antenna device) and output it.
  • the RF chip generates a phase-shifted RF signal.
  • this phase-shifted RF signal can be used to improve radar signal recognition, reduce radar interference, and beamform using phase coding. Since the phase-shifting system has better linearity, it greatly simplifies the calibration difficulty and improves the accuracy of phase shifting.
  • the present application also provides a radar sensor, which is configured with an antenna array and a radio frequency chip, wherein the antenna array includes a transmitting antenna and a receiving antenna.
  • the driving amplifier in the RF chip converts the RF signal with phase shift into a detection signal wave through the transmitting antenna and sends it to free space.
  • the RF signal with phase shift is also called a RF transmitting signal.
  • the RF chip In order to receive the echo signal wave formed by the reflection of the detection signal wave by the object.
  • the RF chip also includes a signal receiver, which uses the RF signal (also known as the local oscillator signal) provided by the frequency multiplier to mix the input signal to obtain a baseband signal; it is converted into a baseband digital signal through the ADC and output.
  • the RF input signal is obtained by converting the echo signal wave through the receiving antenna. It can be seen that the output baseband digital signal not only includes the phase offset caused by the relative position relationship between the radar chip and the object, but also includes the phase shift amount performed by the phase shift system.
  • the signal processing circuit connected to the signal receiver can use the phase shift amount to filter the interference of the baseband digital signal to improve the signal-to-noise ratio in the received signal.
  • the signal processing circuit can use the received signal to perform signal processing including FFT to detect the measurement information between the radar chip and the objects in the surrounding environment. Examples of measurement information include: at least one of distance, relative speed, and angle.
  • the signal processing circuit includes a hardware accelerator and/or processor that specifically processes baseband digital signals (and/or received signals).
  • the signal processing circuit can be integrated into the RF chip or configured separately to form the main component of the radar sensor.
  • the present application further provides a device, comprising: a device body; and a radar sensor or a radio frequency chip as in the above embodiment disposed on the device body; wherein the radar sensor is used for target detection.
  • the radio frequency chip can also be used for communication to transmit a radio frequency signal carrying at least one of voice, text, and image.
  • the radar sensor or the radio frequency chip may be arranged outside or inside the device body, or a part of the radar sensor may be arranged inside the device body and another part may be arranged outside the device body.
  • radar sensors and/or RF chips can achieve functions such as target detection and/or communication by transmitting and receiving radio signals to provide the device body with detection target information and/or communication information, thereby assisting or even controlling the operation of the device body.
  • the device body may be a component or product used in fields such as smart housing, transportation, smart home, consumer electronics, monitoring, industrial automation, in-cabin detection, and health care.
  • the device body may be intelligent transportation equipment (such as cars, bicycles, motorcycles, ships, subways, trains, etc.), security equipment (such as cameras), liquid level/flow rate detection equipment, smart wearable devices (such as bracelets, glasses, etc.), smart home devices (such as sweeping robots, door locks, televisions, air conditioners, smart lights, etc.), various communication devices (such as mobile phones, tablet computers, etc.), and gates, smart traffic lights, smart signs, traffic cameras, and various industrialized robotic arms (or robots), etc. It may also be various instruments for detecting life characteristic parameters and various equipment equipped with the instruments, such as in-cabin detection of automobiles, indoor personnel monitoring, smart medical equipment, consumer electronic equipment, etc.
  • a radar sensor such as a millimeter-wave radar
  • a vehicle-mounted sensor can provide various functional safety guarantees for the ADAS system, such as automatic brake assistance (i.e., AEB), blind spot detection warning (i.e., BSD), lane change assistance warning (i.e., LCA), and reversing assistance warning (i.e., RCTA).
  • AEB automatic brake assistance
  • BSD blind spot detection warning
  • LCA lane change assistance warning
  • RCTA reversing assistance warning
  • this solution can improve detection accuracy by utilizing the higher resolution and more accurate phase shifting that the phase shifting system can provide. This improves the timeliness and reliability of the automatic assistance function of the ADAS.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

本申请提供一种射频反相器、传输线移相器、系统、芯片及雷达传感器。其中,该射频反相器包括以同一对称轴均对称布置的电感电路和第一相位调节电路,其中:所述电感电路,包括单端信号接口和差分信号接口;所述第一相位调节电路,包含两个受控开关,每一受控开关连接在地线与所述单端信号接口中的地端之间,以使所述电感电路将所接收的射频信号进行同相或反相移相。如此提供了版图完全对称的电路结构,有效降低同相和反相移相时的相位误差。

Description

射频反相器、传输线移相器、系统、芯片及雷达传感器 技术领域
本申请涉及射频移相技术领域,具体而言,涉及一种射频反相器、传输线移相器、系统、芯片及雷达传感器。
背景技术
在很多无线应用中,特别是无线通信和雷达传感器领域,射频电路中具备相位控制能力能够大幅提高信息容量、抗干扰能力、或者提高探测/通信的方向性。
为此,在射频电路中接入移相器,以使得终端器件具备相控能力。移相器的移相准确度、移相精度、校准复杂度及其校准时长、带宽等影响因素,使得移相器成为很多射频电路整体性能的瓶颈。
发明内容
针对现有技术存在的不足,本申请提供一种射频反相器、传输线移相器、系统、芯片及雷达传感器,该射频反射器提供了版图完全对称的电路结构,有效降低同相和反相移相时的相位误差。
根据本申请的第一方面,提出一种射频反相器,其包括以同一对称轴均对称布置的电感电路和第一相位调节电路,其中:所述电感电路,包括单端信号接口和差分信号接口;所述第一相位调节电路,包含两个受控开关,每一受控开关连接在地线与所述单端信号接口中的地端之间,以使所述电感电路将所接收的射频信号进行同相或反相移相。
根据本申请的第二方面,提出一种移相系统,其包括传输线移相器和如第一方面所述的射频反相器,其中:所述传输线移相器包括单端传输线移相器,所述单端传输线移相器连接所述射频反相器的单端信号接口;或者所述传输线移相器包括差分传输线移相器,所述差分传输线移相器连接所述射频反相器的差分信号接口。
根据本申请的第三方面提出一种射频芯片,其包括:如第二方面所述的移相系统。
根据本申请的第四方面,提出一种雷达传感器,包括:发射天线,用于将输入射频发射信号以探测信号波辐射至自由空间;接收天线,用于将所探测的回波信号波转为射频接收信号;其中,所述回波信号波为所述探测信号波经物体反射而形成的;如第三方面所述的射频芯片,耦接于所述发射天线和接收天线,用于将带有移相的射频发射信号输出至所述发射天线,以及将所述射频接收信号转为基带数字信号,以供对所述物体进行测量。
根据本申请的第五方面,提出一种设备,包括:如前所示的雷达传感器,或所述的射频芯片;设备本体,以装配所述雷达传感器或射频芯片。
本申请提供的包含射频反相器和传输线移相器的移相系统,一方面利用版图完全对称的反相器来提供高精准度的同相和反相移相;另一方面利用传输线移相器,实现移相步进一致性好、移相准确度高的目的。从而整体提升移相系统的移相能力。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
通过参照附图详细描述其示例实施例,本申请的上述和其它目标、特征及优点将变得更加显而易见。下面描述的附图仅仅是本申请的一些实施例,而不是对本申请的限制。
图1a和1b分别示出一示例性实施例的传输线移相单元的原理示意图;
图2示出一示例性实施例的传输线移相单元的结构示意图;
图3示出一示例性实施例的传输线移相单元的结构示意图;
图4示出一示例性实施例的传输线移相单元的结构示意图;
图5a和图5b分别示出一示例性实施例的传输线移相器的结构示意图;
图6示出一示例性实施例的射频反相器的结构示意图;
图7a、7b、7c、7d分别示出一示例性实施例的射频反相器的信号传输示意图;
图8a和8b分别示出一示例性实施例的移相系统的结构示意图;
图9a和9b分别示出一示例性实施例的传输线移相器的结构示意图;
图10a和10b分别示出一示例性实施例的传输线移相器的结构示意图;
图11为移相系统的结构示意图;
图12a和12b示出一示例性实施例的校准电路的工作状态示意图;
图13示出一示例性实施例的射频芯片的结构示意图。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的实施例;相反,提供这些实施例使得本申请将全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。在图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有这些特定细节中的一个或更多,或者可以采用其它的方式、组元、材料、装置等。
附图中所示的流程图仅是示例性说明,不是必须包括所有的内容和操作/步骤,也不是必须按所描述的顺序执行。例如,有的操作/步骤还可以分解,而有的操作/步骤可以合并或部分合并,因此实际执行的顺序有可能根据实际情况改变。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
本领域技术人员可以理解,附图只是示例实施例的示意图,附图中的模块或流程并不一定是实施本申请所必须的,因此不能用于限制本申请的保护范围。
以包含移相器的雷达传感器为例,按照雷达传感器中所配置的工作模式,移相器将本振信号(又称LO信号)进行移相处理,并通过发射天线转换成探测信号波辐射到自由空间;当发射天线所辐射的探测信号波经物体反射而形成回波信号波时,接收天线将所述回波信号波转换为射频接收信号,该射频接收信号经本振信号混频后,输出基带信号,该基带信号由于携带有移相器所提供的移相信息,因此,有利于雷达传感器的信号处理器准确地从基带信号中提取出对该物体的物理上的相对测量值。
在一些雷达传感器示例中,其中的移相器采用IQ移相器,即移相器将输入射频信号转成同相信号和正交信号,通过移相控制信号来调节同相信号和正交信号的幅值,并利用矢量合成来得到任意移相的射频信号。然而,一方面,IQ移相器为有源器件,使得其在PVD发生变化时,难于稳定;另一方面,IQ移相器具有明显的非理性特性,导致其需要采用单点校准,例如,对预设的移相点逐个地进行校准,可预测地,该校准复杂度和时长限制了雷达传感器的工作效率。
本申请提供一种传输线移相器。所述传输线移相器包含至少一个传输线移相单元。传输线移相单元包含多组传输线(可含地线,也可不含地线)和多个相位调节电路。不同组传输线上射频电流的闭合路径长度不同,因此等效电感不同。一部分相位调节电路连接于多组传输线之间,或传输线与地线之间,用于将信号在不同传输线上、或不同地线上切换,从而调节传输线上的等效电感L,因此这部分相位调节电路称为电感调节电路。另一部分相位调节电路在不同传输线之间或传输线与地线之间加入开关电容,从而调节传输线的等效电容C,因此这部分相位调节电路称为电容调节电路。由于传输线插入相位
Figure PCTCN2022123131-appb-000001
与等效电感L和等效电容C存在对应关系
Figure PCTCN2022123131-appb-000002
因此通过相位调节电路(即电感调节电路和电容调节电路)即可调节传输线移相单元的插入相位
Figure PCTCN2022123131-appb-000003
实现移相的功能。
通过控制相位调节电路的状态,可以将传输线移相单元配置为至少两种状态,称为第一相位状态(又叫参考态)和第二相位状态(又叫移相态)。传输线移相单元在第一和第二相位状态下的等效电感、等效电容分别记为L 1、C 1和L 2、C 2,在这两种状态下的插入相位分别记为
Figure PCTCN2022123131-appb-000004
Figure PCTCN2022123131-appb-000005
传输线移相单元在第一相位状态(参考态)和第二相位状态(移相态)下插入相位的差值称为移相量,记为
Figure PCTCN2022123131-appb-000006
因此,
Figure PCTCN2022123131-appb-000007
所述传输线移相单元也可提供三种或三种以上的状态。由此可见,所述相位调节电路根据所接收的至少一路移相控制信号,调整所述多组传输线所在传输路径的电参数,以使得所述传输线移相单元所输出的射频信号相对于其输入射频信号具有至少第一相位或第二相位的移相。
传输线移相单元根据传输线的基本结构类型可分为单端传输线移相单元和差分传输线移相单元。
例如,由单端传输线构成的传输线移相单元包括:单端信号线、第一对地线、以及第二对地线。如图1a所示,单端信号线S和第一对地线(G1-1,G1-2)构成第一组传输线,单端信号线S和第二对地线(G2-1,G2-2)构成第二组传输线。利用两对地线与信号线之间的间距差异,来实现不同的等效电感;利用信号线与地线之间的开关电容来实现不同的等效电容。切换地线的电路和开关电容均包含在相位调节电路22中。
又如,由差分传输线构成的传输线移相单元包括第一对差分传输线、第二对差分传输线、以及地线,其中地线可有可无。如图1b所示,信号线Sig1_P,Sig1_N构成第一组传输线,信号线Sig2_P和Sig2_N构成第二组传输线。它们均是差分传输线。利用两组差分传输线PN之间的间距差异,来实现不同的等效电感。利用差分传输线之间的开关电容,来实现不同的等效电容。切换差分传输线的电感和开关电容均包含在调节电路21中。
为了使传输线移相单元具有较稳定的电特性和较好差分对称性(后者仅对差分传输线移相单元有效),通常采用轴对称结构,其中对称轴是传输线移相单元的中心线,与信号传输方向平行,如图1a、图1b中的虚轴线(图中的点划线),虚轴线该虚轴线用以标识各传输线在版图布置上的结构对称关系,而非实体传输线。实体传输线可存在与虚轴线重叠、或部分重叠的情况,如图1a所示,单端传输线移相单元中的信号线S与虚轴线重叠,以及第一对地线中的地线G1-1和地线G1-2相对于信号线S具有相等的第一间距d21,第一对地线中的 地线G1-1和地线G1-2相对于信号线S具有相等的第二间距d22。实体传输线也可存在与虚轴线不重叠的情况,如图1b所示,差分传输线移相单元中的第一对差分传输线中的信号线Sig1_P和Sig1_N相对于虚轴线(图中的点划线)具有相等的第一间距d11,第二对差分传输线中的信号线Sig2_P和Sig2_N相对于虚轴线具有相等的第二间距d21。
需要说明的是,本领域技术人员应该理解,本申请中所举例的移相量、间距等物理量应被理解为符合工程误差范围的物理量。
还需要说明的是,图1a、1b展示了单端和差分两种传输线移相单元的版图布局方式,图中各组传输线位于同一金属层。在另一些示例中,各组传输线的金属层还可以布置成非同层,甚至叠层的布局方式。另外,在图1a、1b的示例中,插入相位较小的一组传输线之间的间距短于插入相位较大的一组传输线之间的间距。在另一些版图布置的示例中,不同组传输线之间的间距还可以相同/相似,不同组传输线之间具有不同的长度,以使各组传输线所对应的等效电感L/等效电容C实现期望的调节范围,最终实现期望的移相量
Figure PCTCN2022123131-appb-000008
并在移相过程中保持匹配阻抗。
为此相位调节电路为依据上述原理而设计的输出至少一路移相控制信号的电路。所述移相控制信号是根据相位调节电路中的受控器件的数量、受控电参数等而设置的。在一些示例中,其中的一路移相控制信号利用其可调的电参数,如电压、电流、占空比等,来实现对受控器件的控制。如一路移相控制信号的电压能够调整开关管通断。如一路移相控制信号的电压(或电流)能够调整开关管在线性区范围内提供不同阻抗。如一路移相控制信号的电压(或电流)能够调整开关管处于截止区、或饱和区等。如一路移相控制信号的占空比能够调整电容的充放电时长,从而进一步调整因电容变化而适配相应的相位状态切换等。在另一些示例中,其中的多路移相控制信号构成编码信号,以控制受控阵列以调整整体电路的电容参数和/或电感参数。如多路移相控制信号能够调整受控开关阵列中通断开关的数量,以调整相应的电容参数和/或电感参数等。
为此,传输线移相单元中的相位调节电路可包含用于切换不同组传输线的开关管,或者包含用于使得不同组传输线传输不同流量射频信号的开关管等。对应的,一种利用半导体工艺制造的开关管可以通过调整移相控制信号使其在饱和区或截止区进行切换。一种利用半导体工艺制造的开关管可通过调整移相控制信号使其在饱和区和截止区之间的线性区内调整阻值,以使得不同组传输线传输分流的射频信号。相位调节电路还可以包括电容、电阻,以适配相应的相位状态所需的等效电路中的容值和/或阻值,即实际改变了传输线移相单元的电容参数和/或电感参数。这不仅能达到射频信号移相的目的,还能实现传输线移相单元与外部电路之间的阻抗匹配。外部电路举例为射频的驱动放大电路、或接收经移相的射频信号的其他电路等。
由上述移相量的公式可见,所述相位调节电路可单独调节传输线移相单元中的等效电感或等效电容。为了保持移相前后传输线都处于匹配状态,要求移相前后传输线的特征阻抗Z C不变。根据公式
Figure PCTCN2022123131-appb-000009
在移相前后需保持等效电感L和等效电容C的比值不变。因此,通常需要同时调整等效电感和等效电容。对于射频电路来说,一些电子器件,如不同组的传输线、开关管等,当其被调节时,其可能同时改变电容参数和电感参数,本申请中所描述的相位调节电路中的不同受控电路的种类,应从对传输线移相单元整体的电容参数或电感参数起主要调节作用的角度出发来进行区分理解。
相位调节电路包括电感调节电路,用于在移相控制信号的控制下,调整所述传输线移相单元的电感参数,以使得所述传输线移相单元按照所述第一相位或第二相位进行移相操作。
在一些示例中,利用开关管和可调电阻、或开关管和可调电感等受控器件,对不同组传输线进行基于组的选择,以使得传输线移相单元实现在第一相位或第二相位的状态切换。
以传输线移相单元为单端传输线移相单元为例,在一些示例中,所述电感调节电路用于在第一对地线或第二对地线切换的电路。例如,电感调节电路包括:连接在第一对地线中的地线G1-1和第一对地线中的地线G2-1之间的开关管SW_1,以及连接在第一对地线中的地线G1-2和第一对地线中的地线G2-2之间的开关管SW_2。当传输线移相单元配置为第一相位状态时,开关管SW_1和SW_2导通,使得由单端信号线S和第一对地线(G1-1,G1-2)来执行移相操作;当配置为移相态时,开关管SW_1和SW_2断开,使得由单端信号线S和第二对地线(G2-1,G2-2)来执行移相操作。
在另一些示例中,所述电感调节电路用于调整射频信号在第一对地线和第二对地线的流量的电路。例如,电感调节电路包括:连接在第一对地线中的地线G1-1和第一对地线中的地线G2-1之间的开关管MOS_1,以及连接在第一对地线中的地线G1-2和第一对地线中的地线G2-2之间的开关管MOS_2。当选择对输入射频信号按照第一相位执行移相时,开关管MOS_1和MOS_2工作与饱和区或者线性区,使得以单端信号线S和第一对地线(G1-1,G1-2)所在传输路径中流经的射频信号的流量大于单端信号线S和第二对地线(G2-1,G2-2)所在传输路径中流经射频信号的流量;当选择对输入射频信号进行第二相位的移相时,开关管MOS_1和MOS_2工作与截止区或者线性区,使得以单端信号线S和第二对地线(G2-1,G2-2)所在传输路径中流经的射频信号的流量大于单端信号线S和第一对地线(G1-1,G1-2)所在传输路径中流经射频信号的流量。
以传输线移相单元为差分传输线移相单元为例,差分传输线移相单元中的电感调节电路包含开关管,其用于在不同组传输线之间进行组选择。例如,如图2所示,电感调节电路包含至少两个开关管(sw_sig1,sw_sig2),其中一个开关管sw_sig1连接在第二对差分传输线中的信号线Sig2_P与第一对差分传输线中的信号线Sig1_P之间;其中的另一个开关管sw_sig2连接在第二对差分传输线中的信号线Sig2_N与第一对差分传输线中的信号线Sig1_N之间。其中,信号线Sig2_P与信号线Sig1_P均用于传输差分的一组射频信号中的同一射频信号Sig_P,信号线Sig2_N与信号线Sig1_N均用于传输差分的一组射频信号中的同一射频信号Sig_N。
当选择对输入射频信号按照第二相位执行移相操作时,开关管sw_sig1和sw_sig2断开,使得以第二对差分信号线Sig2_P和Sig2_N传输射频信号;当选择对输入射频信号按照第一相位执行移相操作时,第二开关管sw_sig1和sw_sig2导通,使得以第一对差分信号线Sig1_P和Sig1_N传输射频信号。
相位调节电路还包括电容调节电路,用于在输入移相控制信号的控制下,调整所述传输线移相单元的电容参数,以使得传输线移相单元选择所述第一相位或第二相位。在此,电容调节电路为提供可调电容的受控电路,其可对应传输线移相单元在第一相位(或第二相位)的状态下所需的电容来进行调整。
电容调节电路是基于变容电路而提供调节的,举例包含以下至少一种受控电路:开关电容阵列、和包含变容二极管的变容电路。其中,所述开关电容阵列中包含多组开关管和电容的串联电路,其每个开关管受输入移相控制信号而选择性通断。包含变容二极管的变容电路,其中,所述变容二极管受输入移相控制信号而调整电容值。
在以上变容电路基础上,还可额外包含一个带固定电容的开关电容,为电容调节电路提供基础容值,而其余变容电路在基础容值的基础上对总容值进行调节。在以上固定和/或可变电容开关基础上,所述第一开关管受输入控制信号也可作为调节机制,通过调节开关管的导通状态,使其不仅工作在关断和导通两种状态,也可以工作在介于关断和导通之间的多种半导通状态,等效于控制了电容值。
所述电容调节电路可耦接于传输射频信号的传输线与参考地之间。例如,单端传输线移相单元中的电容调节电路耦接在信号线S和任一地线之间。又如,如图3所示,差分的传输线移相单元中还包括地线Gnd_P和Gnd_N。其中,Gnd_P和Gnd_N之间利用金属连接以形成等电位电路。同组中的每一传输线分别与地线Gnd_P和Gnd_N之间耦接电容调节电路。例如如图3所示,电容调节电路包括两组串联的电容cap和开关管sw_cap。其中一组串联的电容cap和开关管sw_cap连接在地线Gnd_P与信号线Sig2_P之间,另一组串联的电容cap和开关管sw_cap连接在地线Gnd_N与信号线Sig2_N之间。为了使得差分的传输线移相单元具有对称的版图布置,以维持差分的射频信号的对称性。所述电容调节电路对称地布置在集成电路中。
为了简化差分的传输线移相单元的电路复杂度,并维持差分信号的信号对称性,以有利于利用射频信号的抗干扰性实现移相和信号传输,其中的第一对差分传输线之间的间距(如图1a所示的2×d11),和第一对差分传输线中的传输线的长度是依据第一相位所对应的电感参数和电容参数而设置的。
以差分的传输线移相单元为例,如图2所示,电容调节电路连接于其中第二对差分传输线(Sip2_P,Sip2_N)之间。该电容调节电路包括:沿虚拟轴对称布置的电容cap1和cap2,和开关管sw_cap。其中,电容cap1的一端连接于第二对差分信号线Sig_P,另一端连接开关管sw_cap;电容cap2的一端连接于第二对差分信号线Sig_N,另一端连接开关管sw_cap。该电容调节电路的工作过程举例如下:例如,在移相控制信号的控制下,当开关管sw_cap导通时,传输线移相单元按照第二相位对输入射频信号进行移相操作;当开关管sw_cap断开时,传输线移相单元按照第一相位对输入射频信号进行移相操作。又如,在移相控制信号的控制下,当开关管sw_cap利用半导体特性而提供一较大阻值时,相当于调整射频信号在两对差分传输线中的分流配置,使得第二对差分传输线(Sip2_P,Sip2_N)所传输的射频信号的电流分量大于第一对差分传输线(Sip1_P,Sip1_N)所传输的射频信号的电流分量,如此,传输线移相单元按照第二相位对输入射频信号进行移相操作;当开关管sw_cap利用半导体特性而提供一较小阻值时,相当于调整射频信号在两对差分传输线中的分流配置,使得第二对差分传输线(Sip2_P,Sip2_N)所传输的射频信号的电流分量小于第一对差分传输线(Sip1_P,Sip1_N)所传输的射频信号的电流分量,如此,传输线移相单元按照第一相位对输入射频信号进行移相操作。
上述各受控电路可根据各传输线之间的位置关系、电路器件的布置位置而连接相应的传输线。例如,在半导体的堆叠结构中,相位调节电路与各传输线可利用金属化过孔、和/或微带线等导体连接。为了系统性抑制传输线移相单元切换移相时所产生的抖动、移相漂移、差分信号中的共模等移相器指标,所述传输线移相单元中还包括多路电桥。每一电桥可包含微带线,或者包含微带线和金属过孔。所有电桥整体呈对称结构,以将相位调节电路中的其他电器件对称地耦接于相应的传输线。如此实现传输线移相单元整体轴对称的电路结构。例如,如图2所示,各电桥(Brg_11、Brg_21、和Brg_31)分别耦接于信号线Sig1_P和信号线Sig2_P; 各电桥(Brg_12、Brg_22、和Brg_32)分别耦接于信号线Sig1_N和信号线Sig2_N。其中,各电桥Brg_11和Brg_12、Brg_21和Brg_22、以及Brg_31和Brg_32均分别沿信号传输方向对称布置。各电桥Brg_11、和Brg_31相对于电桥Brg_21对称布置;各电桥Brg_12、和Brg_32相对于电桥Brg_22对称布置。电容调节电路和电感调节电路接入各电桥的对称位置,以实现传输线移相单元的整体版图对称的电路结构。
在一些未图示的示例中,电容调节电路和电感调节电路中的部分电器件可耦接于同一电桥的不同连接点,以减少电桥的数量,如此可简化电路结构,提高传输线移相单元整体的电路稳定性。
在一些实施例中,为了减少差分的传输线移相单元的电磁辐射对集成电路中的其他电路的信号干扰,如电磁辐射对低频电路的信号干扰,传输线移相单元还包括设置在所述第一对差分传输线和第二对差分传输线周围的接地导体,用于提供所述差分传输线移相单元的电磁屏蔽。接地导体可以省去也可以保留。
在一些示例中,根据传输线移相单元与其他电路之间的位置关系,该接地导体至少位于传输线移相单元与其他电路之间的金属层。例如,在该金属层上形成接地金属带状的接地导体。其中,接地金属带的数量可以是多条,以被布置成带有间隙的条带网络状的接地导体。例如,在差分的传输线移相单元与其他电路之间的金属层形成接地导体,该接地导体亦为对称结构,以有效屏蔽电磁辐射。如图3、或图4所示,该接地导体包括:地线Gnd_P和Gnd_N,以及连接地线之间的金属线。其中,如图3所示,接地导体的包络尺寸大于传输线移相单元的包络尺寸;或者,如图4所示,接地导体的包络尺寸小于传输线移相单元的包络尺寸。
在另一些示例中,利用传输线移相单元与集成电路的封装结构之间的金属层,形成接地导体。
在又一些示例中,利用传输线移相单元中每一传输线移相单元周围的金属层和相应金属层之间的接地过孔,形成立体的接地导体,以容纳传输线移相器。
所述传输线移相器中包含多个传输线移相单元,各传输线移相单元的至少一组传输线彼此连接,以形成级联电路。所级联的每一传输线移相单元所能提供的移相可以相同或不同。以传输线移相单元中所有传输线移相单元处于各自的第一相位的状态为传输线移相单元的参考状态,每一传输线移相单元处于第二相位的状态为一种相位状态。例如,根据雷达传感器预设的移相步进,所级联的各传输线移相单元的第一相位和第二相位均相同,每一传输线移相单元可被单独地受移相控制信号控制,以供传输线移相器能提供移相步进的整倍数的移相操作。其中,移相步进为传输线移相器中单个传输线移相单元的移相量
Figure PCTCN2022123131-appb-000010
各传输线移相单元之间依靠至少一组信号线电连接而形成级联电路。例如,在雷达传感器中,多个单端的传输线移相单元中各自的单端信号线S、第一对地线(G1-1、和G1-2)、和第二对地线(G2-1、和G2-2)均为整体制造的金属线。各传输线移相单元利用相位调节电路来提供移相操作。又如,在雷达传感器中,多个单端的传输线移相单元中各自的单端信号线S、和第二对地线(G2-1、和G2-2)均为整体制造的金属线。各传输线移相单元利用相位调节电路来选择射频信号沿不同组的传输线传输,以提供移相操作。
对于射频信号来说,由于射频信号的电磁特性,以及传输线移相器中各传输线形成较长的总长度,使得传输线移相器在移相总量和移相误差偏移之间形成彼此制约的情况。当传输线移相器中所包含的传输线移相单元的数量越多,其整体可移相的总相位量越大,同时,由于传输线长度变长,长的传输线在传输射频信号时所产生的电磁辐射,容易使得整个传输线 移相器产生非线性的移相偏差。
为此,所述传输线移相单元中的用于移相的两对传输线,在形成级联时,各传输线移相单元之间的第一对传输线之间物理隔离,并通过各自的第二对传输线连接。
其中,所述用于移相的每一对传输线属于前述示例中的同组传输线中的传输线。例如,单端传输线移相单元中的用于移相的第二对地线(G2-1、和G2-2)属于一组传输线(S、G2-1、和G2-2)中的部分传输线。又如,差分传输线移相单元中的用于移相的第二对差分传输线(Sig2_P、和Sig2_N)即为一组传输线(Sig2_P、Sig2_N)。
在一些示例中,各传输线移相单元的第一对传输线布置于第二对传输线之间,即第一对传输线之间的间距小于第二对传输线之间的间距,则各传输线移相单元之间的同为间距较小的第一对传输线之间形成物理隔离,以及各传输线移相单元之间的同为间距较大的第二对传输线之间形成电连接。
所述物理隔离包括用于电磁隔离的屏蔽结构,或者在传输线移相单元之间传输线之间所形成的缝隙等。其中,屏蔽结构为使得传输线之间形成非电流传输的结构,其举例为藉由绝缘介质在传输线之间形成的凸起、或孔隙;或者在传输线上排布的金属过孔以使得射频信号无法电流传输等。所述缝隙是由物理不连接的传输线形成的,其可通过填充如塑料等绝缘介质,或空气来实现非电流传输。如图5a所示,差分的传输线移相单元11级联形成传输线移相器,其中,差分的射频信号(Input_P、Input_N)为输入信号,差分的射频信号(Output_P、Output_N)为经移相的输出信号,所级联的各传输线移相单元11的各第二对差分传输线(Sig2_P、Sig2_N)整体形成金属线,所级联的各传输线移相单元11的各第一对差分传输线(Sig1_P、Sig1_N)之间物理断开,以形成缝隙。又如图5b所示,单端的传输线移相单元12级联形成传输线移相器,其中,单端的射频信号Input为输入信号,单端的射频信号Output为经移相的输出信号,所级联的各传输线移相单元12的各第二对地线(G2-2、G2-1),以及单端信号线S均整体形成金属线,所级联的各传输线移相单元12的各第一对地线(G1-2、G1-1)之间物理断开,以形成缝隙。
利用在间距较近的不同传输线对之间形成物理间隔,有利于限制传输线移相器在较小的移相操作时,形成累积的电磁干扰。这一方面有利于提高传输线移相器的移相线性度和移相精度,另一方面大大降低了传输线移相器的校准难度。
所述传输线移相器可单独配置在射频电路中,以能够提供移相步进的移相。或者,传输线移相器与其他类型移相器级联,形成移相系统。
本申请还提供一种移相系统包括所述传输线移相器,以及与每一所述传输线移相器的相位调节电路连接的移相控制器。
为了利用每个传输线移相单元的移相量
Figure PCTCN2022123131-appb-000011
来实现如在360°内提供多级移相操作的目的,在一些示例中,所述移相系统可包括
Figure PCTCN2022123131-appb-000012
个传输线移相单元相级联。对于集成电路的尺寸限制较高的雷达芯片来说,上述所述移相系统,不仅难以适配雷达芯片的尺寸限制,而且增加了射频信号的损耗。为此,本申请还提供了一种移相系统,其包括:射频反相器和传输线移相器。其中,所述射频反相器与各传输线移相器均级联连接。所述射频反相器可接入级联的传输线移相单元的任一级联位置。例如,所述射频反相器位于级联电路的首级或末级,以利于尽量减少零散地控制传输线移相单元调整多种相位状态。
所述射频反相器为一种受控反相、或同相的射频器件,其可以为单端射频反相器或差分射频反相器。对集成电路的版图规划来说,射频反相器的电路结构中容易出现因跨层、器件连接 所导致的版图不对称的情况,这使得在同时满足单端和差分信号转换和反移相相操作时,一些射频反相器所输出的差分信号、或单端信号的相位有偏差,如此影响整个移相系统的移相精度。
为了以简化的电路结构来解决上述问题,本申请提供一种能够实现单端和差分转换的射频反相器。所述射频反相器包括:以同一对称轴均对称布置的电感电路和又一种相位调节电路。所述对称轴用于衡量射频反相器电路整体形成对称布局的电路结构的标称。例如该对称轴可以非实体而供衡量射频反相器的电路结构为对称结构使用。又如该对称轴为电感电路中的抽头线,以及沿抽头线所形成的标称。
其中,所述电感电路包括单端信号接口和差分信号接口。其中,单端信号接口(或差分信号接口)用于级联相应的传输线移相器或本振电路。单端信号接口包含单端信号端SIG、和一对地端(Gnd_A、Gnd_B)。差分信号接口包括:一对差分信号端(Sig_P,Sig_N)。所述单端信号接口和差分信号接口均沿对称轴对称的方式布置在射频反相器的电路结构中。
所述射频反相器的相位调节电路包含两个受控开关,每一受控开关连接在地线与所述单端信号接口中的地端之间,以使所述电感电路将射频信号的相位输出为同相或反相。换言之,所述电感电路将输入射频信号进行同相或反相移相。其中,所述受控开关在集成电路的版图布置中沿对称轴对称。由于上述射频反相器具有版图对称的电路结构,因此,其反相和同相均具有更小的相位误差。
为此,电感电路为以该对称轴对称布置的电路结构,其包括:提供单端信号接口的第一电感和提供差分信号接口的第二电感。第一电感和第二电感通过感应耦合提供单端的射频信号和差分的射频信号之间的转换。其中,在轴对称的电路布局下,所述第一电感和第二电感可布置在集成电路的相同或不同金属层,或具有相同或不同的布线形状。其中所述布线形状举例为圆形、椭圆形、矩形、或多边形(如五边形或六边形)等。
请参阅图6,所述电感电路包括:沿抽头线311轴对称的第一电感31,其中,所述抽头线311连接所述单端信号接口中的信号端312;以及与所述第一电感31耦合的第二电感32,其亦沿所述抽头线311轴对称,连接所述差分信号接口(321、322)。其中,第一电感31的一对地端(313、314)分别连接射频反相器的相位调节电路中的一对受控开关(SW_P、SW_N),其中,一对地端(313、314)沿抽头线311(即对称轴)对称。位于第一电感的单端信号接口和第二电感的差分信号接口处还分别布置地线(33、33’)。其中,单端信号端侧的地线沿对称轴对称,以使得该对受控开关(SW_P、SW_N)以轴对称的电路布局方式连接在地端(313、314)和地线33之间。差分信号接口侧的地线33’亦可沿对称轴对称,以便加工。其中,图6所示的第一电感31和第二电感32可位于不同金属层,或相同金属层且重叠处绝缘设置。
以单端信号接口为射频信号输入端,差分信号接口为射频信号输出端为例,在移相控制信号的控制下,当受控开关SW_P断开,受控开关SW_N导通时,如图7a所示,射频反相器将单端信号接口输入单端射频信号进行移相为0°的移相操作,以输出同相的射频信号;当受控开关SW_P导通,受控开关SW_N断开时,如图7b所示,射频反相器将单端信号接口输入单端射频信号进行移相为180°的移相操作,以输出反相的射频信号。
以差分信号接口为射频信号输入端,单端信号接口为射频信号输出端为例,在移相控制信号的控制下,当受控开关SW_P断开,受控开关SW_N导通时,如图7c所示,射频反相器将差分信号接口输入射频信号进行移相为0°的移相操作,以输出单端射频信号;当受控开关SW_P导通,受控开关SW_N断开时,如图7d所示,射频反相器将差分信号接口输入射频信号进行移相为180°的移相操作,以输出与图7c所示相位相反的单端射频信号。
以图8a所示的移相系统为例,射频反相器42的单端信号接口连接雷达传感器中的本振电路(未示出),以及射频反相器42的差分信号接口连接多个级联的差分的传输线移相单元41。其中,相邻传输线移相单元41中各间距较近的第一对差分信号线彼此物理隔离,以及各第二对差分信号线彼此电连接,且连接射频反相器42的差分信号接口中的差分传输线(SIG_P,SIG_N);以及传输线移相单元41的地线连接射频反相器42的差分信号接口中地线GND。
以图8b所示的移相系统为例,射频反相器42的差分信号接口连接雷达传感器中的本振电路(未示出),以及射频反相器42的单端信号接口连接多个级联的单端的传输线移相单元43。其中,相邻传输线移相单元43中各间距较近的第一对地线彼此物理隔离,以及各第二对地线彼此电连接,且连接射频反相器42的地线,以及级联的各传输线移相单元43的各单端信号线连接射频反相器42的单端信号接口中的单端信号线SIG;以及传输线移相单元43的地线连接射频反相器42的差分信号接口中地线GND。
由图8a和图8b所示示例可见,在包含有射频反相器和传输线移相器的移相系统中,由于传输线移相器在各自移相控制信号的控制下,可提供0-180°范围内以单位移相为步进的多次移相操作,以及射频反相器在移相控制信号的控制下可提供180°的反移相相操作,如此,实现了移相系统整体能够在360°的移相范围内提供高精度的移相操作且有效缩小了移相器系统在集成电路中的整体尺寸。
上述各示例中所示的射频反相器和传输线移相单元由于均属于无源器件,其工作时,受外部环境、电压等变化的影响较小,如此使得其移相误差小于如IQ移相器等有源器件。然而,当传输线移相单元级联时,其积累误差将显现出来。为此,本申请的移相系统可供校准。在此,所述移相系统可包含传输线移相器,或者包含级联的射频反相器和传输线移相器。
在考虑移相系统的电磁辐射的基础上,所述射频反相器的信号接口连接传输线移相单元的第二组传输线,且与第一组传输线中的至少部分传输线之间物理隔离。
具体地,所述差分信号接口连接所述差分传输线移相器中的第二对差分传输线,所述差分信号接口与所述差分传输线移相器中的第一对差分传输线物理隔离。仍参考图8a,射频反相器的差分信号接口中的差分信号端(SIG_P,SIG_N)对应连接差分传输线移相器中布置在外侧的第二对差分传输线(Sig2_P,Sig2_N),布置在内侧的第一对差分传输线(Sig1_P,Sig1_N)与差分信号接口物理隔离。
所述单端信号接口连接所述单端传输线移相器中的一组传输线中的一对地线,所述单端信号接口与所述单端传输线移相器中的另一组传输线中的一对地线物理隔离。仍参考图8b,射频反相器的单端信号接口中的信号端SIG和地线端GND对应连接单端传输线移相器中单端信号线S和布置在外侧的一对地线(G2-1,G2-2),布置在内侧的另一对地线(G1-1,G1-2)与单端信号接口物理隔离。
传输线移相器中的各传输线移相单元的电感和/或电容调节电路,还包含校准机制。受一些工程误差(如设计偏差、半导体加工偏差、温度变化、电压变化、工艺角变化等)影响,传输线移相单元(包括传输线和受控电路)的电容参数C 1,C 2和电感参数L 1,L 2离目标移相量存在一定偏差,使得第一、二相位状态的移相函数
Figure PCTCN2022123131-appb-000013
发生偏差,最终导致移相器的移相量
Figure PCTCN2022123131-appb-000014
与目标移相量存在偏差。为了纠正这些偏差,传输线移相单元需要具备校准机制。
传输线移相器校准机制的原理是:通过对电容和/或电感调节电路的性能进行调节,将电路的部分或全部电参数C 1,C 2,L 1,L 2在一定范围内进行调节,从而对传输线移相单元的实际移相量
Figure PCTCN2022123131-appb-000015
调节至设计目标移相量。
传输线移相器中的各传输线移相单元受相应的至少一路移相控制信号所控制,以补偿传输线移相器所能提供的各移相量的移相误差。为此,每一传输线移相单元输入移相控制信号是根据对应第一相位或第二相位的相位校准信息而确定的。其中,该校准相位信息为用于供经校准后的移相系统在校准后的某一非校准状态下(如工作状态下)所输出的射频信号的实际移相量,相比于校准前的移相量,更接近预设移相量的信息。该校准相位信息举例为移相系统(或其中的传输线移相器)的实际移相量与校准前的移相量之间的相位偏差,或者根据该相位偏差而确定的补偿信息。
在此,所述补偿信息是根据多次测试传输线移相器而设置的校准策略等而确定的。其中,该校准策略包括但不限于以下至少一种:传输线移相器(或单一传输线移相单元)在不同移相量内的移相变化对移相的影响、温度对传输线移相器(或单一传输线移相单元)移相影响、传输线移相器(或单一传输线移相单元)的系统误差对移相的影响等。所述补偿信息举例包括:根据所确定的相位偏差而确定对应移相相位的补偿电参数。补偿电参数包括补偿电压、补偿占空比、或补偿电流等。所述移相控制信号中所包含的可调电参数即对应于补偿电参数。例如,传输线移相器(或单一传输线移相单元)的校准电路按照预设移相量总量的最小值、或最大值、或单位移相等,分别计算对应每一传输线移相单元的补偿信息,并予以存储。所述补偿信息还举例包括:根据任意两个移相量及其经校准电路检测的相位偏差,而确定的该两个移相量之间的任意其他移相量及所对应的其他补偿信息。
在一些示例中,综合加工实现的难度、移相稳定性、以及移相精度等因素,传输线移相器中所级联的各传输线移相单元均包含第一相位和第二相位的状态。如此,传输线移相器不仅是容易制造的无源器件,而且能有效减少移相的非线性偏差。这使得传输线移相器的校准电路可更便捷、快速地进行校准操作。
与传输线移相器所在的集成电路的校准需求相关,以包含传输线移相器的雷达传感器为例,雷达传感器包含校准状态、工作状态。其中,在校准状态下,雷达传感器进行包含校准传输线移相器在内的至少一种电路校准操作;在工作状态下,雷达传感器进行包含收发电磁波并根据电磁波的有效区间进行信号处理在内的至少一种信号测量处理操作。其中,在一些示例中,校准状态和工作状态为分时切换的不同状态。在另一些示例中,该校准电路在包含工作状态的时段内运行,以减少校准所花费的时间和信号资源。
在校准时,传输线移相器按照任一整体的移相量
Figure PCTCN2022123131-appb-000016
(如移相量最小值)对输入射频信号RF进行移相操作,并输出经移相的射频信号RF_1,校准电路采集按照该移相量
Figure PCTCN2022123131-appb-000017
所对应的射频信号RF_1,并计算射频信号RF_1的实际移相量
Figure PCTCN2022123131-appb-000018
与预设的移相量
Figure PCTCN2022123131-appb-000019
之间的相位偏差
Figure PCTCN2022123131-appb-000020
移相系统按照又一整体的移相量
Figure PCTCN2022123131-appb-000021
(如移相量最大值)对输入射频信号RF进行移相操作,并输出经移相的射频信号RF_2,校准电路采集按照该移相量
Figure PCTCN2022123131-appb-000022
所对应的射频信号RF_2,并计算射频信号RF_2的实际移相量
Figure PCTCN2022123131-appb-000023
与预设的移相量
Figure PCTCN2022123131-appb-000024
之间的相位偏差
Figure PCTCN2022123131-appb-000025
按照参与校准测试的级联的传输线移相单元的数量,以及各传输线移相单元的移相误差呈线性累积的特点,校准电路对所测得的两相位偏差分别进行均分处理,即可得到每一传输线移相单元分别对应第一相位和第二相位各自的相位偏差。
在雷达传感器中,特别是车载用的雷达传感器,为确保雷达传感器所提供的测量信息的高可信度,雷达传感器中包含自检系统(BIST),上述的校准电路可配置在该自检系统中。以在校准状态中检测传输线移相器的相位偏差,若该相位偏差在可校准范围内,则利用该校准电路 来确定相位校准信息,并予以保存。
与IQ移相器所采用的逐个地对每一移相量进行校准的方式不同,传输线移相器由于采用了级联的传输线移相单元,且每一传输线移相单元具有较好的移相线性度。因此,校准电路通过统一控制传输线移相器中的每一传输线移相单元均位于第一相位或第二相位的状态,来检测移相系统对射频信号移相的相位偏差,即可得到每一传输线移相单元的相位偏差,进而得到相位校准信息。
为此,本申请所提供的移相系统,如图11,包括:校准电路、传输线移相器。其中,校准电路具体校准步骤如下:如图12a所示,设传输线移相器包括N个级联的传输线移相单元(1#、2#、…、N#)。将所有传输线移相单元均配置为校准前的第一相位状态,如图12a,利用该传输线移相器输出端(即图中的output),校准电路测试出输出信号(相对于某个同频参考信号)的相位,并记为
Figure PCTCN2022123131-appb-000026
如图12b所示,再将所有传输线移相单元配置为校准前的第二相位状态,并利用校准电路测试出传输线移相器输出输出信号的相位,记为
Figure PCTCN2022123131-appb-000027
那么传输线移相器的整体的校准前的移相量即
Figure PCTCN2022123131-appb-000028
由于传输线移相器整体的移相量来自每个传输线移相单元共同移相,而每个传输线移相单元移相量完全相同。所以每个传输线移相单元的校准前的移相量为
Figure PCTCN2022123131-appb-000029
即移相步进。通过校准电路可以确定传输线移相器的整体的校准后的移相量,并均分该整体的校准后的移相量,得到传输线移相单元的校准后的移相步进,从而将传输线移相单元的校准后的移相步进校准到目标值(例如5.625°)。
在一些示例中,校准电路按照预设的电参数与移相量之间的映射关系,将所得到的每一传输线移相单元对应各的目标值转换成校准后的第一相位和第二相位的移相量所对应的相位校准信息,并存储在存储器中。移相系统在工作时,以固定的电参数为第一相位的状态,并依据所述相位校准信息来计算校准后的第二相位状态所对应的电参数。
在另一些示例中,校准电路综合不同相位状态下的整体的校准前的相位偏差
Figure PCTCN2022123131-appb-000030
来确定每一传输线移相单元在任一相位状态下的校准前的相位偏差
Figure PCTCN2022123131-appb-000031
该相位偏差反映传输线移相单元任一相位状态所对应的移相量的移相误差;按照预设的电参数与插入相位之间的映射关系,将每一传输线移相单元的相位偏差转换成相位校准信息,并存储在存储器中。移相系统在工作时,以不同移相的状态所对应的各相位校准信息产生相应移相控制信号。
为此,校准电路包括:模拟电路和数字电路;其中,模拟电路包括:用于将射频信号转为基带信号的相位采集电路。数字电路包括用于检测基带信号的相位偏差的相位校准电路。
其中,所述相位采集电路通过采集移相系统中M个传输线移相单元所输出的射频信号,并将所采集的射频采集信号进行下变频处理,以得到基带信号,该基带信号携带有射频信号中的校准前的实际相位。利用相位校准电路中的模拟数字转换器,将基带信号转为基带数字信号,并利用频域所描述的实际相位和预设的M倍第一相位(或M倍第二相位)所对应的移相相位之间的偏差,来得到每一传输线移相单元的校准后的第一相位(或第二相位)。其中,1≤M≤N,N为移相系统中传输线移相单元的总数。利用至少两次检测到的实际相位,相位校准电路计算每一传输线移相单元的相位校准信息,并存储在存储器中。其中,所述计算包括相位偏差的均分计算,以及相位与电参数之间转换的计算等。
为了提取射频信号的实际移相量,在一些示例中,校准电路可预设用于校准的射频信号的初始相位、各相位状态下的移相值、或移相量等参数,并据此控制传输线移相器执行相应移相操作,由此得到出实际移相量。在另一些示例中,相位采集电路包括:射频采集电路、调制电路、和变频电路。其中,所述射频采集电路耦接于所述移相系统的输出端,用于采集移相系统 输出的射频信号以输出射频采样信号。该射频采集电路可以是单端耦合器、或正交耦合器。
所述调制电路耦接于所述射频采集电路,并输入第一基带信号,用于利用所述第一基带信号调制所述射频采样信号,以输出包含所述实际相位的调制信号。该第一基带信号可为IF信号,其初始相位可为任一相位。调制电路通过将两路信号进行调制而使得所得到的调制信号携带所述实际相位。所述调制电路可以是单端调制电路或正交调制电路。
所述变频电路耦接于所述调制电路,并输入本振信号,用于利用所述本振信号对所述调制信号进行下变频处理,生成包含实际相位的第二基带信号。其中,本振信号为移相系统输入射频信号。所述变频电路通过执行下变频操作,得到包含实际相位的第二基带信号。该第二基带信号的频率与第一基带信号的频率大致相同。如此,在校准前,相位采集电路利用第一基带信号和本振信号,将携带有实际移相量的射频信号转为携带有实际相位的基带信号(即第二基带信号)。所述变频电路可可报考单端变频电路或正交变频电路。
相位校准电路为包含ADC的数字电路,其将第二基带信号转为第二基带数字信号,并将第二基带数字信号转为频域并计算第二基带数字信号的实际相位;该实际相位包含了本振信号的初始相位、第一基带信号的初始相位、以及传输线移相器的实际相位三者之和;利用预设的各初始相位值进行数据运算,相位校准电路可提取出传输线移相器的校准后的实际相位。
在一些示例中,所述相位采集电路通过上述各电路模块的电路组合,以输出包含正交信号的第二基带信号。如此,有利于相位校准电路消除本振信号、第一基带信号中的初始相位,提高校准精度。上述各初始相位值还可以通过对第一基带信号或本振信号进行各自的相位检测而得到,进一步减少因校准电路运行而带来的校准偏差。
移相系统中的移相控制信号中反映了相位校准信息,以使得移相系统在运行时能够更准确地按照校准后的第一相位的整数倍(或第二相位的整数倍)进行移相操作。
所述移相系统还包括移相控制器。移相控制器连接移相系统中每一相位调节电路,以将一移相指令转换为移相控制信号。在包含有校准电路的系统中,该移相控制器根据移相指令读取预存储的相位校准信息,并生成相应的移相控制信号;其中,所述相位校准信息是经对所述移相器进行校准而确定的。
所述移相控制器可以与校准电路中的数字信号处理器(如MCU、FPGA或专用硬件处理器等)共用,或单独配置。例如,移相控制器包括处理器和编解码器等。所述移相控制器与该数字信号处理器共同维护一存储器,该存储器用于存储移相系统中的各相位校准信息。例如,移相控制器根据输入移相控制指令中的移相信息,确定按照经校准后的第一相位提供移相的传输线移相单元,以及经校准后的第二相位提供移相的传输线移相单元,并生成用于控制各传输线移相单元的编码信号,通过编解码器转换为各路移相控制信号,并输出至各传输线移相单元的相位调节电路。
该移相控制指令可来自于控制所述移相控制器的上层系统。所述上层系统为移相系统所在集成电路(如雷达芯片)中运行的软件系统和/或硬件系统,或者与所述集成电路的引脚连接的外部系统。该上层系统中的硬件系统可与移相控制器共用或单独配置,举例包括处理器等。软件系统举例包括可供硬件系统按照时序执行的程序等。所述移相控制指令举例为电平信号或程序指令。
对于包含射频反相器和传输线移相器的移相系统来说,移相控制器还根据移相控制指令向射频反相器中的相位调节电路输出移相控制信号。由此实现360°范围内以单位移相为移相步进的多种可校准的移相操作。
例如,如图7a、7b所示,移相反相器的单端信号接口为输入接口,差分信号接口为输出接口,当移相控制器控制射频反相器的相位调节电路中的开关管SW_P断开,开关管SW_N导通时,射频反相器输出同相射频信号;当移相控制器控制射频反相器的相位调节电路中的开关管SW_P导通,开关管SW_N断开时,射频反相器输出反相射频信号。又如,如图7c、7d所示,移相反相器的差分信号接口为输入接口,单端信号接口为输出接口,当移相控制器控制射频反相器的相位调节电路中的开关管SW_P断开,开关管SW_N导通时,射频反相器输出同相的差分射频信号;当移相控制器控制射频反相器的相位调节电路中的开关管SW_P导通,开关管SW_N断开时,射频反相器输出反相的差分射频信号。
相应的,传输线移相器中的各相位调节电路包括供移相控制信号调节的可调器件,以实现传输线移相器按照经校准的移相进行移相操作。例如,电容调节电路包含开关电容阵列、变容二极管、或可调电容等可调电容的器件。又如电感调节电路包含开关管、可调电阻、或可调电感等可调电感(或可调电阻)的器件。
需要说明的是,电容调节电路和电感调节电路中还可以包含受控接入电路(或受控不接入电路)的固定器件(如固定电容或固定电阻等),以使得在第一相位(或第二相位)状态下,传输线移相器的整体电容参数和电感参数同时符合移相和阻抗匹配的需要。
以传输线移相器包含级联的单端的传输线移相单元为例,如图9a所示,所述传输线移相单元包括单端的信号线Sig、第一对地线Gnd1、第二对地线Gnd2、以及相位调节电路、第二电桥53。其中,相位调节电路包括:电容调节电路等。其中,电容调节电路包括变容二极管D和可调电源S、和受控电容电路。其中,受控电容电路包括开关管sw_c、和电容C。其中,电容C和开关管sw_c串联接入信号线Sig和第二电桥53之间,与电容C和开关管sw_c的串联电路并联。可调电源S根据输入移相控制信号输出可调的电压(或电流),变容二极管D在可调的电压(或电流)的控制下调节电容,以使得传输线移相单元的电容参数符合相应第一相位(或第二相位)所需的电容参数。电感调节电路包括连接在第一对地线中每一地线和第二电桥53之间的各开关管sw_l。其中,每一开关管sw_l根据输入移相控制信号导通或断开,以切换射频信号在第一对地线或第二对地线传输,开关管sw_l在开关电压的控制下调节第一对地线或第二对地线所形成的电感参数,以使得传输线移相单元的电感参数符合相应第一相位(或第二相位)所需的电感参数。当输入各路移相控制信号表示传输线移相单元按照第一相位进行移相操作时,开关管sw_c断开,以及各开关管sw_l导通,以及可调电源调整变容二极管提供第一电容值,如此,使得单端的传输线移相单元中的第一对地线Gnd1和信号线Sig形成传输射频信号的传输路径,以及变容二极管提供用于校准第一相位的电容值。当输入各路移相控制信号表示传输线移相单元按照第二相位进行移相操作时,开关管sw_c导通,以及各开关管sw_l断开,以及可调电源调整变容二极管提供第二电容值,如此,使得单端的传输线移相单元中的第二对地线Gnd2和信号线Sig形成传输射频信号的传输路径,以及变容二极管提供用于校准第二相位的补偿电容值。如此,实现传输线移相单元在不同相位状态下,需同时符合于传输线移相单元所在射频传输链路的阻抗匹配。
上述图9a所示的可校准的传输线移相单元为一种通过调整电容参数来校准各移相量的传输线移相单元。与图9a不同的是,图9b所示的传输线移相单元为一种通过调整电感参数来校准各移相量的传输线移相单元。如图9b所示,单端的传输线移相单元包括:单端的信号线Sig、第一对地线Gnd1、第二对地线Gnd2、以及相位调节电路、第二电桥53’。其中,相位调节电路包括:电感调节电路等。其中,电容调节电路包括开关管sw_c和sw_s、和电容C。其中, 电容C和开关管sw_c串联接入信号线Sig和第二电桥53’之间,开关管sw_s连接在信号线Sig和第二电桥53’之间,与电容C和开关管sw_c的串联电路并联。电感调节电路包括连接在第一对地线Gnd1中每一地线和第二电桥53’之间的各可变电阻Ad_R。其中,每一可变电阻Ad_R根据输入移相控制信号Vctrl调整电阻值,以分流射频信号在第一对地线Gnd1和第二对地线Gnd2传输。换言之,可变电阻Ad_R在可调的电压(或电流)的控制下调节第一对地线Gnd1和第二对地线Gnd2所形成的电感参数,以使得传输线移相单元的电感参数符合相应第一相位(或第二相位)所需的电感参数。当输入各路移相控制信号表示传输线移相单元按照第一相位进行移相操作时,开关管sw_s导通且开关管sw_c断开,以使得单端的传输线移相单元中的第一对地线Gnd1和信号线Sig形成传输射频信号的传输路径,以及藉由可变电阻Ad_R所接入的第一电阻值而使得第二对地线Gnd2和信号线Sig所形成的等效电感提供用于校准第一相位的电感值。当输入各路移相控制信号表示传输线移相单元按照第二相位进行移相操作时,开关管sw_s断开且开关管sw_c导通,如此单端的传输线移相单元中的第二对地线Gnd2和信号线Sig形成传输射频信号的传输路径,以及藉由可变电阻Ad_R所接入的第二电阻值而使得第一对地线Gnd1所形成的等效电感提供用于校准第二相位的电感值。
以传输线移相单元为差分的传输线移相单元为例,如图10a所示,所述传输线移相单元包括第一对差分传输线(Sig1_P、Sig1_N)、和第二对差分传输线(Sig2_P、Sig2_N)、以及第二相位调节电路、第一电桥(631,632)。其中,第二相位调节电路包括:电容调节电路、电感调节电路等。其中,电容调节电路包括变容二极管D2和可调电源S2、和受控电容电路。其中,受控电容电路包括开关管sw_cap、和电容cap。其中,串联的电容cap和开关管sw_cap通过第一电桥631接入第二对差分传输线(Sig2_P、Sig2_N)之间。变容二极管D2和可调电源S2也接入第二对差分传输线(Sig2_P、Sig2_N)之间。其中,可调电源S2根据输入移相控制信号输出可调的电压(或电流),变容二极管D2在可调的电压(或电流)的控制下调节电容,以使得传输线移相单元的电容参数符合相应第一相位(或第二相位)所需的电容参数。电感调节电路包括连接在第二对差分传输线(Sig2_P、Sig2_N)中每一差分传输线和第一电桥632之间的各开关管sw_sig。其中,每一开关管sw_sig根据输入移相控制信号导通或断开,以切换射频信号在第一对地线或第二对地线传输,开关管sw_sig在开关电压的控制下调节第一对差分传输线或第二对差分传输线所形成的电感参数,以使得传输线移相单元的电感参数符合相应第一相位(或第二相位)所需的电感参数。当输入各路移相控制信号表示传输线移相单元按照第一相位进行移相操作时,开关管sw_cap断开,以及各开关管sw_sig导通,以及可调电源调整变容二极管提供第一电容值,如此,使得差分的传输线移相单元中的第一对差分传输线形成传输射频信号的传输路径,以及变容二极管提供用于校准第一相位的电容值。当输入各路移相控制信号表示传输线移相单元按照第二相位进行移相操作时,开关管sw_cap导通,以及各开关管sw_sig断开,以及可调电源调整变容二极管提供第二电容值,如此,使得差分的传输线移相单元中的第二对差分传输线形成传输射频信号的传输路径,以及变容二极管提供用于校准第二相位的电容值。
上述图10a所示的可校准的传输线移相单元为一种通过调整电容参数来校准各移相量的传输线移相单元。与图10a不同的是,图10b所示的传输线移相单元为一种通过调整电感参数来校准各移相量的传输线移相单元。如图10b所示,差分的传输线移相单元包括:第一对差分传输线(Sig1_P、Sig1_N)、和第二对差分传输线(Sig2_P、Sig2_N)、以及相位调节电路、第一电桥(631’,632’)。其中,相位调节电路包括:电容调节电路、电感调节电路等。其中, 电容调节电路包括包括开关管sw_cap、和电容cap。其中,串联的电容cap和开关管sw_cap通过第一电桥接入第二对差分传输线(Sig2_P、Sig2_N)。电感调节电路包括连接在第二对差分传输线中每一传输线(Sig2_P或Sig2_N)和第一电桥631’之间的各可变电阻R’。其中,每一可变电阻R’根据输入移相控制信号Vctrl调整电阻,以分流射频信号在第一对差分传输线和第二对差分传输线传输。换言之,可变电阻R’在可调的电压(或电流)的控制下调节第一对差分传输线和第二对差分传输线所形成的电感参数,以使得传输线移相单元的电感参数符合相应第一相位(或第二相位)所需的电感参数。当输入各路移相控制信号表示传输线移相单元按照第一相位进行移相操作时,开关管sw_cap断开,以使得差分的传输线移相单元中的第一对差分传输线(Sig1_P、Sig1_N)形成传输射频信号的传输路径,以及藉由可变电阻R’所接入的第一电阻值而使得第二对差分传输线(Sig2_P、Sig2_N)分流第二对差分传输线中的射频信号,以形成的等效电感提供用于校准第一相位的电感值。当输入各路移相控制信号表示传输线移相单元按照第二相位进行移相操作时,开关管sw_cap导通,以使得差分的传输线移相单元中的第二对差分传输线(Sig2_P、Sig2_N)形成传输射频信号的传输路径,以及藉由可变电阻R’所接入的第二电阻值而使得第一对差分传输线(Sig1_P、Sig1_N)分流第二对差分传输线中的射频信号,以形成的等效电感提供用于校准第一相位的电感值。
需要说明的是,上述任一传输线移相单元的示例仅为举例,在可校准的传输线移相单元中,还可以通过既调整电感又调整电容的方式来校准相应的相位状态。其均可藉由调整电感参数和/或电容参数等方式,来实现传输线移相单元在不同相位状态下,需同时符合于传输线移相单元所在射频传输链路的阻抗匹配。其中,阻抗匹配可表示为传输线移相单元的电容参数和电感参数之比值的稳定。
另外,由上述各示例可见,电容调节电路中还可包含单独的用于校准的可调电容的电路。电感调节电路中还可包含单独的用于校准的可调电感的电路。而且,电容调节电路中用于校准电容参数的电路不限于变容二极管,还可以是开关电容阵列、串联的电容和开关管等受控电路。例如,电容调节电路可利用经编码的移相控制信号来调整开关电容阵列,来替代固定电容和变容二极管组合的可调电容电路,以精简电容调节电路的复杂度等。类似地,电感调节电路中用于校准电感参数的电路不限于开关管和可变电阻,还可以是开关电阻阵列等受控电路。所述电容调节电路和/或电感调节电路还可以综合考虑经校准的不同相位状态之间的电感/电容变化以提供兼顾校准和移相的相位调节电路,以符合传输线移相单元在集成电路中的电路集成需要、或其他电路设计需求。
另外,所述电容调节电路和/或电感调节电路整体或其中的部分受控电路还可以采用不同于图示中的接入方式,以通过调节不同相位状态下的电容参数和/或电感参数的方式来同时满足阻抗匹配和移相的目的。
本申请还提供了一种射频芯片,如图13所示,其包括信号发生器、倍频器、移相系统、以及驱动放大器。
其中,信号发生器依据一时钟参考信号来生成中频信号。该信号发生器举例包括锁相环电路。锁相环电路中的压控振荡器受环路控制而产生中频信号。该中频信号举例为FMCW信号(连续调频信号)以适用于雷达传感器进行物理量测量的探测需要。
倍频器连接所述信号发生器,将所述中频信号的频率倍频至射频信号。倍频器用于将中频信号倍频至射频频段。以雷达芯片为例,倍频器将FMCW信号倍频至毫米波频段。
所述移相系统在移相控制信号的控制,对射频信号进行移相,使得所输出的射频信号相比 于所输入的射频信号无移相或有0-360°之间某一移相量。
以移相系统中包含级联的N个传输线移相单元为例,在移相控制器的控制下,N个传输线移相单元中的M个处于第二相位
Figure PCTCN2022123131-appb-000032
的状态,以及(N-M)个处于第一相位0的状态,由此,移相系统将输入射频信号的相位移相总计为
Figure PCTCN2022123131-appb-000033
以移相系统中包含射频反相器和级联的N个传输线移相单元为例,在移相控制器的控制下,N个传输线移相单元中的M个处于第二相位的状态(如移相量为Φ),以及(N-M)个处于第一相位状态(如移相量为0),以及射频反相器处于180°的相位状态;则移相系统将输入射频信号的相位移相总计为(MΦ+180)°。
驱动放大器连接所述移相系统,以将带有移相的射频信号放大并输出。该驱动放大器用于将带有移相的射频信号放大至适配驱动后级电路(如天线装置)的功率,并输出。
如此,射频芯片产生带有移相的射频信号。该带有移相的射频信号在雷达传感器中,可用于利用相位编码提高雷达信号的识别能力、减少雷达干扰、波束赋形等方面,由于移相系统具有更好的线性度,大大简化了校准难度,提高了移相的精准性。
本申请还提供一种雷达传感器,其配置有天线阵列和射频芯片,其中,天线阵列中包含发射天线和接收天线。
所述射频芯片中驱动放大器将带有移相的射频信号通过发射天线转换成探测信号波发送至自由空间。带有移相的射频信号又称为射频发射信号。
为了接收探测信号波经物体反射而形成的回波信号波。所述射频芯片还包括信号接收器,利用倍频器所提供的射频信号(又称本振信号)对输入信号进行混频,以得到基带信号;通过ADC转换成基带数字信号并输出。其中,射频输入信号为回波信号波经接收天线转换而得到的。由此可见,所输出的基带数字信号中不仅包含因所雷达芯片与物体之间的相对位置关系而导致的相位偏移,还包括移相系统所进行的移相量。由于移相系统的移相操作,使得与信号接收器连接的信号处理电路可利用该移相量来对基带数字信号进行干扰滤除,以提高所得到的接收信号中的信噪比。如此,信号处理电路可利用所述接收信号进行包含FFT在内的信号处理,以探测雷达芯片与周围环境中的物体之间的测量信息。测量信息举例包括:距离、相对速度、和角度之间的至少一种。其中,所述信号处理电路举例包括专门处理基带数字信号(和/或接收信号)的硬件加速器、和/或处理器等。信号处理电路可集成在射频芯片中,或单独配置,以形成雷达传感器的主要组成部分。
在一个实施例中,本申请还提供一种设备,其包括:设备本体;以及设置于设备本体上的如上述实施例的雷达传感器或射频芯片;其中,雷达传感器用于目标检测。射频芯片还可以用于通信,以传输携带语音、文字、和图像中至少一种的射频信号。
雷达传感器或射频芯片可以设置在设备本体的外部、或内部,或者雷达传感器的一部分设置在设备本体的内部,另一部分设置在设备本体的外部。
需要说明的是,雷达传感器和/或射频芯片可通过发射及接收无线电信号实现诸如目标检测和/或通信等功能,以向设备本体提供检测目标信息和/或通讯信息,进而辅助甚至控制设备本体的运行。
在一个可选的实施例中,上述设备本体可为应用于诸如智能住宅、交通、智能家居、消费电子、监控、工业自动化、舱内检测及卫生保健等领域的部件及产品。例如,该设备本体可为智能交通运输设备(如汽车、自行车、摩托车、船舶、地铁、火车等)、安防设备(如摄像头)、液位/流速检测设备、智能穿戴设备(如手环、眼镜等)、智能家居设备(如扫地机器人、门 锁、电视、空调、智能灯等)、各种通信设备(如手机、平板电脑等)等,以及诸如道闸、智能交通指示灯、智能指示牌、交通摄像头及各种工业化机械臂(或机器人)等,也可为用于检测生命特征参数的各种仪器以及搭载该仪器的各种设备,例如汽车舱内检测、室内人员监控、智能医疗设备、消费电子设备等。
在又一个可选的实施例中,当上述的设备本体应用于先进驾驶辅助系统(即ADAS)时,作为车载传感器的雷达传感器(如毫米波雷达)则可为ADAS系统提供诸如自动刹车辅助(即AEB)、盲点检测预警(即BSD)、辅助变道预警(即LCA)、倒车辅助预警(即RCTA)等各种功能安全提供保障。特别在电磁环境复杂的道路上,本方案可利用移相系统所能提供的更高分辨率和更准确的移相来提高检测准确性。由此来提高ADAS的自动辅助功能的及时性和可靠性。
应清楚地理解,本申请描述了如何形成和使用特定示例,但本申请不限于这些示例的任何细节。相反,基于本申请公开的内容的教导,这些原理能够应用于许多其它实施例。
以上具体地示出和描述了本申请的示例性实施例。应可理解的是,本申请不限于这里描述的详细结构、设置方式或实现方法;相反,本申请意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效设置。

Claims (14)

  1. 一种射频反相器,其特征在于,包括以同一对称轴均对称布置的电感电路和第一相位调节电路,其中:
    所述电感电路,包括单端信号接口和差分信号接口;
    所述第一相位调节电路,包含两个受控开关,每一受控开关连接在地线与所述单端信号接口中的地端之间,以使所述电感电路将所接收的射频信号进行同相或反相移相。
  2. 如权利要求1所述的射频反相器,其特征在于,所述电感电路包括:
    沿抽头线轴对称的第一电感,其中,所述抽头线连接所述单端信号接口中的单端信号端;
    与所述第一电感耦合的第二电感,沿所述抽头线轴对称,连接所述差分信号接口。
  3. 如权利要求1所述的射频反相器,其特征在于,所述单端信号接口为信号输入接口,所述差分信号接口为信号输出接口;或者所述单端信号接口为信号输出接口,所述差分信号接口为信号输入接口。
  4. 一种移相系统,其特征在于,包括传输线移相器和如权利要求1-3中任一所述的射频反相器,其中:
    所述传输线移相器包括单端传输线移相器,所述单端传输线移相器连接所述射频反相器的单端信号接口;或者
    所述传输线移相器包括差分传输线移相器,所述差分传输线移相器连接所述射频反相器的差分信号接口。
  5. 如权利要求4所述的移相系统,其特征在于,所述单端信号接口与所述单端传输线移相器中的一组传输线中的一对地线连接,且与另一组传输线中的一对地线物理隔离;
    所述差分信号接口与所述差分传输线移相器中的一对差分传输线连接,且与另一对差分传输线隔离。
  6. 如权利要求4所述的移相系统,其特征在于,所述差分传输线移相器包括至少一个差分传输线移相单元;所述差分传输线移相单元包括:第一对差分传输线、第二对差分传输线和第二相位调节电路;
    所述第二相位调节电路,与所述第一对差分传输线和第二对差分传输线耦接,根据所接收的相应移相控制信号,调节所述差分传输线移相单元的容性参数和/或感性参数,以能够按照第一相位或第二相位移相射频信号。
  7. 如权利要求6所述的移相系统,其特征在于,所述第一对差分传输线布置于所述第二对差分传输线之间;所述差分信号接口中的信号线对应连接第二对差分传输线。
  8. 如权利要求4所述的移相系统,其特征在于,所述单端传输线移相器包括至少一个单端传输线移相单元;所述单端传输线移相单元包括:单端信号线、第一对地线、第二对地线、和第三相位调节电路;
    所述第三相位调节电路根据所接收的相应移相控制信号,调节所述单端传输线移相单元的电感参数和/或电容参数,以能够按照第一相位或第二相位移相射频信号。
  9. 如权利要求8所述的移相系统,其特征在于,所述单端信号线布置在所述第一对地线之间,以及所述单端信号线和第一对地线均布置在第二对地线之间;所述单端信号接口中的线对应连接第二对地线和单端信号线。
  10. 如权利要求4所述的移相系统,其特征在于,还包括:移相控制器,耦接所述传输线移相器和射频反相器,以选择性控制相应传输线移相器和/或射频反相器的相位。
  11. 如权利要求4所述的移相系统,其特征在于,所述传输线移相器包括级联的多个传输线移相单元;每一传输线移相单元的移相量相同;
    所述移相系统以所述移相量为移相步进,以在360°范围内对射频信号进行移相。
  12. 一种射频芯片,其特征在于,包括:如权利要求4-11中任一所述的移相系统。
  13. 一种雷达传感器,其特征在于,包括:
    发射天线,用于将所接收的射频发射信号以探测信号波辐射至自由空间;
    接收天线,用于将所探测的回波信号波转为射频接收信号;其中,所述回波信号波为所述探测信号波经物体反射而形成的;
    如权利要求12所述的射频芯片,耦接于所述发射天线和接收天线,用于将带有相移的射频发射信号输出至所述发射天线,以及将所述射频接收信号转为基带数字信号。
  14. 一种设备,其特征在于,包括:
    如权利要求13所示的雷达传感器,或如权利要求12所述的射频芯片;
    设备本体,以装配所述雷达传感器或射频芯片。
PCT/CN2022/123131 2022-09-30 2022-09-30 射频反相器、传输线移相器、系统、芯片及雷达传感器 WO2024065633A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/123131 WO2024065633A1 (zh) 2022-09-30 2022-09-30 射频反相器、传输线移相器、系统、芯片及雷达传感器
CN202280004453.4A CN115769495A (zh) 2022-09-30 2022-09-30 射频反相器、传输线移相器、系统、芯片及雷达传感器
US18/149,616 US20240113406A1 (en) 2022-09-30 2023-01-03 Radio frequency inverter, transmission line phase shifter, system, chip, and radar sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/123131 WO2024065633A1 (zh) 2022-09-30 2022-09-30 射频反相器、传输线移相器、系统、芯片及雷达传感器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/149,616 Continuation US20240113406A1 (en) 2022-09-30 2023-01-03 Radio frequency inverter, transmission line phase shifter, system, chip, and radar sensor

Publications (1)

Publication Number Publication Date
WO2024065633A1 true WO2024065633A1 (zh) 2024-04-04

Family

ID=85348455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123131 WO2024065633A1 (zh) 2022-09-30 2022-09-30 射频反相器、传输线移相器、系统、芯片及雷达传感器

Country Status (3)

Country Link
US (1) US20240113406A1 (zh)
CN (1) CN115769495A (zh)
WO (1) WO2024065633A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525632A (zh) * 2002-12-18 2004-09-01 因芬尼昂技术股份公司 产生直流电压的方法、电路装置及开关模式调整监控模块
CN1747307A (zh) * 2004-07-19 2006-03-15 英特赛尔美国股份有限公司 对于双端dc-ac变换器的ac电压输出幅度的控制
CN103066940A (zh) * 2012-12-12 2013-04-24 锐迪科科技有限公司 无源平衡-非平衡转换器
CN104247278A (zh) * 2012-04-19 2014-12-24 高通股份有限公司 单端接收机中用于电源抑制的阻抗平衡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1525632A (zh) * 2002-12-18 2004-09-01 因芬尼昂技术股份公司 产生直流电压的方法、电路装置及开关模式调整监控模块
CN1747307A (zh) * 2004-07-19 2006-03-15 英特赛尔美国股份有限公司 对于双端dc-ac变换器的ac电压输出幅度的控制
CN104247278A (zh) * 2012-04-19 2014-12-24 高通股份有限公司 单端接收机中用于电源抑制的阻抗平衡
CN103066940A (zh) * 2012-12-12 2013-04-24 锐迪科科技有限公司 无源平衡-非平衡转换器

Also Published As

Publication number Publication date
US20240113406A1 (en) 2024-04-04
CN115769495A (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
Ku et al. A high-linearity 76–85-GHz 16-element 8-transmit/8-receive phased-array chip with high isolation and flip-chip packaging
US6317075B1 (en) FMCW sensor
Öztürk et al. A 60-GHz SiGe BiCMOS monostatic transceiver for FMCW radar applications
Kim et al. A quadrature radar topology with Tx leakage canceller for 24-GHz radar applications
Tang et al. A 4TX/4RX pulsed chirping phased-array radar transceiver in 65-nm CMOS for X-band synthetic aperture radar application
Ozturk et al. Measuring target range and velocity: Developments in chip, antenna, and packaging technologies for 60-GHz and 122-GHz industrial radars
CN112671428B (zh) 一种多通道射频信号收发幅相控制装置
CN110190830A (zh) 一种双频带小型化数字移相器
CN110022151A (zh) 用于操作压控振荡器的方法、压控振荡器和集成电路
US7672647B2 (en) Integrated circuit for transmitting and/or receiving signals
WO2024065633A1 (zh) 射频反相器、传输线移相器、系统、芯片及雷达传感器
WO2024065630A1 (zh) 移相系统、射频芯片、雷达传感器
WO2024065631A1 (zh) 传输线移相器、系统、芯片及雷达传感器
WO2024065632A1 (zh) 传输线移相器、系统、芯片及雷达传感器
Grüner et al. Ultracompact monostatic MIMO radar with nonredundant aperture
CN110824464A (zh) 一种微波传感器及智能探测装置
CN118120108A (zh) 移相系统、射频芯片、雷达传感器
CN118120107A (zh) 传输线移相器、系统、芯片及雷达传感器
KR20240078608A (ko) 위상 변이 시스템, 무선주파수 칩 및 레이더 센서
JP4310546B2 (ja) 高周波モジュール
CN102185579B (zh) X频段微波线性模拟调相器
Doris et al. Mm-wave automotive radar: from evolution to revolution
US20240175980A1 (en) Calibration circuit and method, phase-shift circuit, radio-frequency transceiver circuit, radar and device
JP4864758B2 (ja) 直交ミクサおよびイメージリジェクションミクサ
CN211979195U (zh) 一种微波传感器及智能探测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22826588

Country of ref document: EP

Kind code of ref document: A1