WO2024065418A1 - 数据传输方法、装置、设备、介质和程序产品 - Google Patents

数据传输方法、装置、设备、介质和程序产品 Download PDF

Info

Publication number
WO2024065418A1
WO2024065418A1 PCT/CN2022/122703 CN2022122703W WO2024065418A1 WO 2024065418 A1 WO2024065418 A1 WO 2024065418A1 CN 2022122703 W CN2022122703 W CN 2022122703W WO 2024065418 A1 WO2024065418 A1 WO 2024065418A1
Authority
WO
WIPO (PCT)
Prior art keywords
bluetooth
packet
wifi
scheduling information
domain resource
Prior art date
Application number
PCT/CN2022/122703
Other languages
English (en)
French (fr)
Inventor
俞忠兴
Original Assignee
哲库科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲库科技(上海)有限公司 filed Critical 哲库科技(上海)有限公司
Priority to PCT/CN2022/122703 priority Critical patent/WO2024065418A1/zh
Publication of WO2024065418A1 publication Critical patent/WO2024065418A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • the embodiments of the present application relate to the field of Bluetooth technology, and in particular to a data transmission method, apparatus, device, medium and program product.
  • Bluetooth is a wireless technology standard that enables short-range data exchange between fixed devices, mobile devices, and building personal area networks.
  • Bluetooth organization In related technologies, mainstream manufacturers including the Bluetooth organization are trying to improve the transmission rate of Bluetooth, such as increasing bandwidth, improving modulation and coding capabilities, etc. These practices can improve the transmission rate of Bluetooth and serve the transmission of high-definition audio data. For example, the Bluetooth organization is currently preparing to define a 2M bandwidth with a maximum transmission rate of 6 megabits per second (Mbps).
  • the present application provides a data transmission method, apparatus, device, medium and program product.
  • the technical solution at least includes:
  • a data transmission method comprising:
  • Receive Bluetooth packets which include scheduling information about Wireless Fidelity (WIFI) packets;
  • WIFI Wireless Fidelity
  • a data transmission method comprising:
  • a data transmission device comprising:
  • a Bluetooth receiving module is used to receive Bluetooth packets, which include scheduling information about WIFI packets;
  • the WIFI receiving module is used to receive WIFI packets based on the scheduling information.
  • a data transmission device comprising:
  • a Bluetooth sending module is used to send Bluetooth packets, which include scheduling information about WIFI packets;
  • the WIFI sending module is used to send WIFI packets based on the scheduling information.
  • a first Bluetooth device includes: a processor and a memory.
  • the memory stores a computer program, which is loaded and executed by the processor to implement the data transmission methods in various aspects as described above.
  • a second Bluetooth device includes: a processor and a memory.
  • the memory stores a computer program, which is loaded and executed by the processor to implement the data transmission methods in various aspects as described above.
  • a computer-readable storage medium in which at least one instruction, at least one program, code set or instruction set is stored, and the at least one instruction, at least one program, code set or instruction set is loaded and executed by a processor to implement data transmission methods as described in the above aspects.
  • a computer program product (or computer program) is provided, which includes computer instructions, and the computer instructions are stored in a computer-readable storage medium; a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the data transmission method as described in the above aspects.
  • Data is transmitted by indicating the scheduling information of WIFI packets through Bluetooth packets, control information is transmitted based on Bluetooth packets, and data information is transmitted based on WIFI technology.
  • WIFI wireless fidelity
  • control information is transmitted based on Bluetooth packets
  • data information is transmitted based on WIFI technology.
  • FIG1 shows a schematic diagram of a data transmission system provided by an exemplary embodiment of the present application
  • FIG2 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application.
  • FIG3 shows a schematic diagram of a data transmission system provided by an exemplary embodiment of the present application
  • FIG4 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application.
  • FIG5 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application.
  • FIG6 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application.
  • FIG7 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application.
  • FIG8 shows a schematic diagram of a data transmission system provided by an exemplary embodiment of the present application.
  • FIG9 shows a schematic diagram of a data transmission system provided by an exemplary embodiment of the present application.
  • FIG10 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application.
  • FIG11 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application.
  • FIG12 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application.
  • FIG13 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application.
  • FIG14 shows a block diagram of a data transmission device provided by an exemplary embodiment of the present application.
  • FIG15 shows a block diagram of a data transmission device provided by an exemplary embodiment of the present application.
  • FIG16 shows a schematic structural diagram of a second Bluetooth device provided by an exemplary embodiment of the present application.
  • FIG. 17 shows a schematic structural diagram of a first Bluetooth device provided by an exemplary embodiment of the present application.
  • user information including but not limited to user device information, user personal information, etc.
  • data including but not limited to data used for analysis, stored data, displayed data, etc.
  • first, second, etc. may be used in the present application to describe various information, these information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first parameter may also be referred to as the second parameter, and similarly, the second parameter may also be referred to as the first parameter.
  • the word "if” as used herein may be interpreted as "at the time of” or "when” or "in response to determining”.
  • Air interface The communication interface between wireless communication devices, usually including time and frequency resources.
  • Frequency point is a number given to a fixed frequency. For example, if the frequency interval is 200KHz, 890MHz to 915MHz is divided into 125 wireless frequency segments according to the frequency interval of 200KHz, and each wireless frequency segment is numbered from 1 to 125. These numbers are called frequency points.
  • Bluetooth defines many profiles similar to applications, which gives it a unique advantage over WIFI, which has not developed independent applications.
  • WIFI consumes more power than Bluetooth, which is not conducive to the battery life of electronic devices.
  • the transmission rate of Bluetooth is lower than that of WIFI, which is gradually insufficient for the ever-increasing transmission rate required for audio data today.
  • This application provides a technical solution for integrated transmission of Bluetooth technology and WIFI technology.
  • the control information in the data transmission process is transmitted using Bluetooth technology, and the data information in the data transmission process is transmitted using WIFI technology, which can take into account the low power consumption characteristics of Bluetooth technology and the high transmission rate characteristics of WIFI technology.
  • FIG. 1 shows a schematic diagram of a data transmission system 10 provided by an exemplary embodiment of the present application.
  • the data transmission system 10 includes a transmitting end device and a receiving end device, which are respectively referred to as the transmitting end 100 and the receiving end 130.
  • the transmitting end 100 and the receiving end 130 can exchange roles at different times or scenarios. For example, when the first Bluetooth device and the second Bluetooth device communicate, they respectively play the roles of the transmitting end 100 and the receiving end 130 at different times.
  • the transmitting end 100 includes a Bluetooth transmitter 110 and a WIFI transmitter 120.
  • the transmitting end 100 includes but is not limited to any Bluetooth device in a mobile phone, a tablet computer, or a notebook computer.
  • the receiving end 130 includes a Bluetooth receiver 140 and a WIFI receiver 150.
  • the receiving end 130 includes but is not limited to any Bluetooth device such as a mobile phone, a TWS headset, and a Bluetooth speaker.
  • the Bluetooth transmitter 110 and the Bluetooth receiver 140 can establish a Bluetooth connection, such as a Bluetooth Low Energy (BLE) connection. After the Bluetooth connection is established, the Bluetooth transmitter 110 sends a Bluetooth packet to the Bluetooth receiver 140, and the WIFI transmitter 120 sends a WIFI packet to the WIFI receiver 150.
  • the Bluetooth packet includes scheduling information about the WIFI packet.
  • the Bluetooth receiver 140 and the Bluetooth transmitter 110 are both Bluetooth transceivers with transceiver capabilities.
  • Fig. 2 shows a schematic diagram of a data transmission method provided by an exemplary embodiment of the present application.
  • a Bluetooth transmitter sends a Bluetooth packet to a Bluetooth receiver
  • a WIFI transmitter sends a WIFI packet to a WIFI receiver in a plurality of time intervals that appear sequentially.
  • the Bluetooth transmitter sends a Bluetooth packet 1 to the Bluetooth receiver.
  • the Bluetooth packet 1 includes a pointer, which points to the scheduling information about the WIFI packet 1 to be transmitted by the WIFI transmitter.
  • the scheduling information includes time-frequency resource information such as frequency point and time offset.
  • the time-frequency resource information includes at least one of time domain resource information and frequency domain resource information.
  • the time domain resource information includes at least one of time offset, time slice information, receiving duration, and timeout duration; the frequency domain resource information includes at least one of frequency point and bandwidth.
  • the WIFI transmitter sends a WIFI packet 1 to the WIFI receiver. Because WIFI is a monitoring backoff system, it is necessary to detect whether there is signal energy in the air interface when sending to decide whether to send the WIFI packet 1. Therefore, there is a clear channel assessment (CCA) time before sending the WIFI packet 1. If the evaluation result of CCA is that there is no signal energy in the air interface, it proves that the channel is idle and the WIFI packet 1 can be sent; if the evaluation result of CCA is that there is signal energy in the air interface, it proves that the channel is busy and the WIFI packet 1 cannot be sent. It is necessary to wait until there is no signal energy in the air interface before sending the WIFI packet 1.
  • CCA channel assessment
  • the WIFI receiver needs to be turned on in advance by a CCA time (the start time of the CCA time in the figure), that is, to receive the WIFI packet 1 at the time offset position indicated by the time domain resource information, and the time offset position is the start time position of CCA. After the WIFI receiver is turned on, it monitors and receives the WIFI packet 1 at any time on the frequency domain resources indicated by the frequency domain resource information.
  • the Bluetooth transmitter sends a Bluetooth packet 2 to the Bluetooth receiver, and the Bluetooth receiver sends a Bluetooth reply packet 1 to the Bluetooth transmitter.
  • the Bluetooth reply packet 1 includes an Acknowledgement (ACK) message or a Negative Acknowledgement (NACK) message for the WIFI packet 1.
  • ACK Acknowledgement
  • NACK Negative Acknowledgement
  • the ACK message and the NACK message can be referred to as ACK and NACK, respectively.
  • the receiving end does not receive the WIFI packet 1 within the time specified by the Bluetooth packet 1, then a NACK of the WIFI packet 1 is returned to the sending end, so that the sending end confirms that the WIFI packet 1 has not been successfully received and needs to be retransmitted.
  • the WIFI transmitter sends the WIFI packet 2 to the WIFI receiver.
  • the Bluetooth transmitter sends a Bluetooth packet 3 to the Bluetooth receiver, and the Bluetooth receiver sends a Bluetooth reply packet 2 to the Bluetooth transmitter, and the Bluetooth reply packet 2 includes an ACK or NACK for the WIFI packet 2.
  • the WIFI transmitter sends a WIFI packet 3 to the WIFI receiver.
  • the method provided in this embodiment transmits audio data by means of a Bluetooth packet indicating the scheduling information of a WIFI packet, which not only improves the data transmission rate but also achieves the goal of maintaining low power consumption during the transmission process.
  • FIG. 3 shows a schematic diagram of a data transmission system provided by an exemplary embodiment of the present application.
  • the data transmission system includes a first Bluetooth device 330 and a second Bluetooth device 300.
  • the first Bluetooth device 330 includes a Bluetooth receiver 140 and a WIFI receiver 150.
  • the second Bluetooth device 300 includes a Bluetooth transmitter 110 and a WIFI transmitter 120.
  • the Bluetooth receiver 140 and the Bluetooth transmitter 110 are both Bluetooth transceivers with transceiver capabilities.
  • the Bluetooth receiver 110 establishes a Bluetooth connection with the Bluetooth transmitter 140 . After the connection is established, the Bluetooth receiver 110 sends a Bluetooth packet to the Bluetooth transmitter 140 .
  • the Bluetooth packet includes scheduling information about the WIFI packet.
  • the WIFI transmitter 120 sends the WIFI packet to the WIFI receiver 150 .
  • FIG4 shows a schematic diagram of a data transmission method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the method executed by a second Bluetooth device as an example. The method includes:
  • Step 410 The second Bluetooth device sends a Bluetooth packet, where the Bluetooth packet includes scheduling information about the WIFI packet.
  • the Bluetooth transmitter in the second Bluetooth device sends a Bluetooth packet, which is a data packet based on the Bluetooth protocol.
  • the Bluetooth packet includes a pointer, which points to the scheduling information about the WIFI packet. Different scheduling information corresponds to different WIFI packets, and the WIFI packet is a data packet based on the WIFI protocol.
  • the scheduling information is the time-frequency resource information used by the Bluetooth packet to indicate the WIFI packet.
  • the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 420 The WIFI transmitter sends a WIFI packet based on the scheduling information.
  • the WIFI transmitter sends WIFI packets based on the WIFI protocol, and can accurately send corresponding different WIFI packets according to different scheduling information.
  • the second Bluetooth device is provided with a coexistence software channel between WIFI and Bluetooth.
  • the Bluetooth program delivers the data to be sent and the scheduling information to the WIFI program by using the coexistence software channel, and the WIFI program sends the data using the WIFI transmission channel based on the scheduling information.
  • the method provided in this embodiment transmits data by means of a Bluetooth packet indicating the scheduling information of a WIFI packet, transmits control information based on a Bluetooth packet, and transmits data information based on WIFI technology.
  • the transmission rate reaches the current lossless transmission requirements of audio data, no additional burden is imposed on the second Bluetooth device.
  • FIG5 shows a schematic diagram of a data transmission method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the method executed by a second Bluetooth device as an example.
  • the method includes:
  • Step 510 Send a Bluetooth packet 1 corresponding to the first Bluetooth device, where the Bluetooth packet 1 includes scheduling information about the WIFI packet 1.
  • Bluetooth packet 1 includes pointer 1, and pointer 1 points to scheduling information about WIFI packet 1.
  • the pointer points to the transmission frequency point, transmission timing and/or data packet type of the WIFI packet.
  • the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • the time domain resource information includes at least one of the following items, which is described using FIG. 2 as an example:
  • P is used to indicate the offset value between the end time of the Bluetooth packet and the start time of the CCA, or, P is used to indicate the offset value between the start time of the Bluetooth packet and the start time of the CCA.
  • Time slice information J information about the time slice where the WiFi packet is located.
  • the time slice is a time domain allocation mechanism in WiFi technology.
  • Receiving time R the time from when the WIFI receiver is turned on to when the WIFI packet is finished receiving
  • Timeout duration M It is used to determine the period of time during which the WiFi packet is not successfully received.
  • the frequency domain resource information includes at least one of the following:
  • Frequency point D used to indicate the frequency position occupied by the WiFi packet when it is sent
  • Bandwidth L It is used to indicate the frequency bandwidth occupied by the WiFi packet when it is sent.
  • the scheduling information further includes at least one of the following:
  • Packet rate type used to indicate the transmission rate of the WIFI packet, or the packet type of the WIFI packet;
  • Modulation and coding mode The configuration of the WiFi packet transmission rate is realized through the modulation and coding scheme (MCS) index value. Different MCSs have different WiFi packet transmission rates.
  • MCS modulation and coding scheme
  • Step 520 The WIFI transmitter performs CCA on the frequency domain resources indicated by the frequency domain resource information based on the start time indicated by the time domain resource information.
  • WIFI is a monitoring backoff system, it is necessary to detect whether there is signal energy in the air interface when sending to decide whether to send WIFI packet 1. Therefore, there is a CCA time before sending WIFI packet 1.
  • step 530 If there is no signal energy in the air interface, it proves that the channel is idle, and step 530 is executed; if there is signal energy in the air interface, it proves that the channel is busy, and step 532 is executed.
  • Step 530 Send the WIFI packet 1 corresponding to the first Bluetooth device based on the scheduling information included in the Bluetooth packet 1.
  • the WIFI transmitter When the channel is idle, the WIFI transmitter sends a WIFI packet 1 corresponding to the first Bluetooth device.
  • Step 532 cancel sending the WIFI packet and wait for re-performing CCA.
  • the WIFI transmitter cancels the transmission of WIFI packet 1.
  • the reference point of the channel idle time is the time point when the last busy state ends. After canceling the transmission, the WIFI transmitter continuously determines whether the channel to be used is idle. Only when it is determined that the channel is idle can the WIFI transmitter obtain the right to use the channel.
  • CCA In the case of a busy channel, CCA will be attempted multiple times. If the CCA is successful again and the current time does not exceed the timeout period, WIFI packet 1 will continue to be sent; if CCA is still unsuccessful after the timeout period expires, the current sending will be canceled. The timeout period is counted from the start time of the first CCA.
  • Step 540 Send the next Bluetooth packet, which includes scheduling information about the next WIFI packet.
  • the second Bluetooth device sends a next Bluetooth packet based on the Bluetooth protocol, where the next Bluetooth packet includes scheduling information about a next WIFI packet, where the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 550 Receive Bluetooth response packet 1, where Bluetooth response packet 1 includes ACK or NACK for the WIFI packet.
  • the Bluetooth transmitter When the Bluetooth transmitter receives the ACK of WIFI packet 1, it determines that the transmission of WIFI packet 1 is normal. When the Bluetooth transmitter receives the NACK of WIFI packet 1, it determines that the transmission of WIFI packet 1 is abnormal and needs to be retransmitted.
  • Bluetooth reply packet 1 can be transmitted before the next Bluetooth packet or after the next Bluetooth packet.
  • the Bluetooth packet is transmitted using a connection-oriented synchronous stream service (CIS) link, and the duration of intervals such as interval N and interval N+1 is the duration of a sub-event in the CIS link.
  • a sub-event includes a first Bluetooth packet and a second Bluetooth packet used to respond to the first Bluetooth packet.
  • the first Bluetooth packet in each sub-event is sent by the second Bluetooth device to the first Bluetooth device, and the first Bluetooth packet includes WIFI scheduling information for the next Bluetooth packet;
  • the second Bluetooth packet in each sub-event is sent by the first Bluetooth device to the second Bluetooth device, and the second Bluetooth packet includes ACK/NACK feedback about the previous WIFI packet.
  • the method provided in this embodiment transmits data by indicating the scheduling information of the WIFI packet through the Bluetooth packet, transmits the control information based on the Bluetooth packet, and transmits the data information based on the WIFI technology.
  • the method transmits data by indicating the scheduling information of the WIFI packet through the Bluetooth packet, transmits the control information based on the Bluetooth packet, and transmits the data information based on the WIFI technology.
  • the confirmation retransmission mechanism of the WIFI packet enables the second Bluetooth device to decide to retransmit the WIFI packet or continue to transmit the next WIFI packet according to the information provided by the first Bluetooth device, thereby ensuring the transmission reliability of the WIFI packet.
  • FIG6 shows a schematic diagram of a data transmission method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the method being executed by a first Bluetooth device as an example.
  • the method includes:
  • Step 610 The first Bluetooth device receives a Bluetooth packet, where the Bluetooth packet includes scheduling information about the WIFI packet.
  • the Bluetooth receiver in the first Bluetooth device receives a Bluetooth packet, which is a data packet based on the Bluetooth protocol.
  • Different scheduling information corresponds to different WIFI packets, which is a data packet based on the WIFI protocol.
  • the scheduling information is the time-frequency resource information used by the Bluetooth packet to indicate the WIFI packet.
  • the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 620 The WIFI receiver receives the WIFI packet based on the scheduling information.
  • the Bluetooth packet received by the Bluetooth receiver includes scheduling information about the WIFI packet.
  • the Bluetooth receiver transmits the scheduling information of the WIFI packet to the WIFI receiver.
  • the WIFI receiver receives the WIFI packet according to the scheduling information. Different WIFI packets corresponding to different scheduling information can be accurately received.
  • the method provided in this embodiment solves the problem of lossless transmission of audio data and meets the requirement of low power consumption during the transmission process by adding a WIFI receiver to the first Bluetooth device, transmitting data by indicating the scheduling information of the WIFI packet through the Bluetooth packet, transmitting the control information based on the Bluetooth packet, and transmitting the data information based on the WIFI technology.
  • FIG7 shows a schematic diagram of a data transmission method provided by an exemplary embodiment of the present application. This embodiment is illustrated by taking the method executed by a first Bluetooth device as an example.
  • the method includes:
  • Step 710 The first Bluetooth device receives Bluetooth packet 1 , where Bluetooth packet 1 includes scheduling information about WIFI packet 1 .
  • the first Bluetooth device receives Bluetooth packet 1 based on the Bluetooth protocol.
  • Bluetooth packet 1 includes pointer 1, and pointer 1 points to scheduling information about WIFI packet 1.
  • the Bluetooth packet includes a pointer that points to scheduling information about the WIFI packet, for example, the pointer points to the transmission frequency point, transmission timing and/or data packet type of the WIFI packet.
  • the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • the time domain resource information includes at least one of the following items, which is described using FIG. 2 as an example:
  • P is used to indicate the offset value between the end time of the Bluetooth packet and the start time of the CCA, or, P is used to indicate the offset value between the start time of the Bluetooth packet and the start time of the CCA.
  • Time slice information J information about the time slice where the WiFi packet is located.
  • the time slice is a time domain allocation mechanism in WiFi technology.
  • Receiving time R the time from when the WIFI receiver is turned on to when the WIFI packet is finished receiving
  • Timeout duration M It is used to determine the period of time during which the WiFi packet is not successfully received.
  • the frequency domain resource information includes at least one of the following:
  • Frequency point D used to indicate the frequency position occupied by the WiFi packet when it is sent
  • Bandwidth L It is used to indicate the frequency bandwidth occupied by the WiFi packet when it is sent.
  • the scheduling information further includes at least one of the following:
  • Packet rate type used to indicate the transmission rate of the WIFI packet, or the packet type of the WIFI packet;
  • Modulation and coding mode The configuration of the WiFi packet transmission rate is realized through the modulation and coding scheme (MCS) index value. Different MCSs have different WiFi packet transmission rates.
  • MCS modulation and coding scheme
  • Step 720 Turn on the WIFI receiver based on the start time indicated by the time domain resource information.
  • the first Bluetooth device includes a Bluetooth receiver and a WIFI receiver.
  • the WIFI receiver does not need to be kept turned on all the time. Turning on the WIFI receiver at the start time indicated by the time domain resource information helps reduce the power consumption of the first Bluetooth device.
  • Step 730 The first Bluetooth device attempts to receive WIFI packet 1 on the frequency domain resources indicated by the frequency domain resource information through the WIFI receiver.
  • the WIFI receiver receives the WIFI packet 1 on the frequency domain resource indicated by the frequency domain resource information included in the Bluetooth packet 1.
  • Step 740 the first Bluetooth device receives the WIFI packet 1 based on the scheduling information included in the Bluetooth packet 1, and turns off or puts the WIFI receiver into sleep mode after receiving the WIFI packet 1.
  • the WIFI receiver After receiving the WIFI packet 1, the WIFI receiver is turned off or put to sleep, and is turned on again at the start time indicated by the time domain resource information included in the next Bluetooth packet.
  • Step 742 If the WIFI packet 1 has not been received by the end time or timeout time indicated by the time domain resource information, turn off or put the WIFI receiver into sleep mode.
  • WIFI packet 1 If WIFI packet 1 is not received within the end time or timeout time indicated by the time domain resource information, it indicates that a transmission problem occurs. After turning off the WIFI receiver, a NACK of WIFI packet 1 is sent to the second Bluetooth device, so that the second Bluetooth device determines that WIFI packet 1 has not been successfully received.
  • Step 750 Receive the next Bluetooth packet, where the next Bluetooth packet includes scheduling information about the next WIFI packet.
  • the first Bluetooth device receives a next Bluetooth packet based on the Bluetooth protocol, where the next Bluetooth packet includes scheduling information about a next WIFI packet, where the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 760 Send Bluetooth reply packet 1, which includes ACK or NACK of the WIFI packet.
  • the Bluetooth receiver When the WIFI receiver receives WIFI packet 1, the Bluetooth receiver needs to return an ACK of WIFI packet 1 to the second Bluetooth device, so that the second Bluetooth device determines that WIFI packet 1 has been successfully received. If the WIFI receiver does not receive WIFI packet 1 within the time specified by Bluetooth packet 1, the Bluetooth receiver returns a NACK of WIFI packet 1 to the second Bluetooth device, so that the second Bluetooth device determines that WIFI packet 1 has not been successfully received and needs to be retransmitted.
  • the method provided in this embodiment transmits data by indicating the scheduling information of the WIFI packet through the Bluetooth packet, transmits the control information based on the Bluetooth packet, and transmits the data information based on the WIFI technology.
  • the method transmits data by indicating the scheduling information of the WIFI packet through the Bluetooth packet, transmits the control information based on the Bluetooth packet, and transmits the data information based on the WIFI technology.
  • the power consumption of the first Bluetooth device can be reduced by turning on the WIFI receiver at the start time indicated by the time domain resource information instead of keeping it turned on all the time.
  • the confirmation retransmission mechanism of the WIFI packet enables the second Bluetooth device to decide to retransmit the WIFI packet or continue to transmit the next WIFI packet according to the information provided by the first Bluetooth device, thereby ensuring the transmission reliability of the WIFI packet.
  • the first Bluetooth device is an example of a device.
  • the first Bluetooth device is a group of Bluetooth devices.
  • the first Bluetooth device is a TWS headset, which includes a first Bluetooth sub-device and a second Bluetooth sub-device, as shown in FIG8; for another example, the first Bluetooth device is a combination speaker, which may include 2-8 speaker devices.
  • the following example takes the first Bluetooth device including the first Bluetooth sub-device and the second Bluetooth sub-device as an example.
  • FIG. 8 shows a schematic diagram of a data transmission system provided by an exemplary embodiment of the present application.
  • the data transmission system includes a second Bluetooth device 300, a first Bluetooth sub-device 800 and a second Bluetooth sub-device 830.
  • the second Bluetooth device 300 includes a Bluetooth transmitter 110 and a WIFI transmitter 120.
  • the first Bluetooth sub-device 800 includes a first Bluetooth receiver 810 and a first WIFI receiver 820.
  • the second Bluetooth sub-device 830 includes a second Bluetooth receiver 840 and a second WIFI receiver 850.
  • the Bluetooth transmitter and the Bluetooth receiver are both Bluetooth transceivers with transceiver capabilities.
  • the Bluetooth transmitter 110 establishes Bluetooth connections with the first Bluetooth receiver 810 and the second Bluetooth receiver 840 respectively. After the connection is established, the Bluetooth transmitter 110 sends Bluetooth packets to the first Bluetooth receiver 810 and the second Bluetooth receiver 840 respectively, and the Bluetooth packets include scheduling information about the WIFI packet.
  • the WIFI transmitter 120 sends WIFI packets to the first WIFI receiver 820 and the second WIFI receiver 850 respectively.
  • the first Bluetooth device includes two Bluetooth sub-devices, there are two transmission modes:
  • the two Bluetooth sub-devices use their own independent "Bluetooth package + WIFI package”.
  • FIG. 9 shows a schematic diagram of a data transmission system provided by an exemplary embodiment of the present application.
  • the data transmission system includes a mobile phone terminal 800, a left earphone terminal 900 and a right earphone terminal 930.
  • the mobile phone terminal 800 includes a Bluetooth transmitter 110 and a WIFI transmitter 120.
  • the left earphone terminal 900 includes a left Bluetooth receiver 910 and a left WIFI receiver 920.
  • the right earphone terminal 930 includes a right Bluetooth receiver 940 and a right WIFI receiver 950.
  • the Bluetooth transmitter 110 establishes Bluetooth connections with the left Bluetooth receiver 910 and the right Bluetooth receiver 940 respectively. After the connection is established, the Bluetooth transmitter 110 sends Bluetooth packets to the left Bluetooth receiver 910 and the right Bluetooth receiver 940 respectively.
  • the Bluetooth packets include scheduling information about the WIFI packets.
  • the WIFI transmitter 120 sends WIFI packets to the left WIFI receiver 920 and the right WIFI receiver 950 respectively.
  • the above-mentioned Bluetooth transmitter and Bluetooth receiver are both Bluetooth transceivers with transceiver capabilities.
  • Fig. 10 is a schematic diagram of a data transmission method provided by an exemplary embodiment of the present application.
  • the following takes the second Bluetooth device as a mobile phone end, the first Bluetooth sub-device and the second Bluetooth sub-device as earphone ends as an example, and describes the transmission of audio data in multiple time intervals that appear sequentially.
  • Bluetooth packet A1 includes pointer Z1, which points to the scheduling information of the first WIFI packet to be transmitted by the WIFI transmitter, and the scheduling information includes time-frequency resource information such as frequency point and time offset.
  • the time-frequency resource information includes at least one of time domain resource information and frequency domain resource information, and the time domain resource information includes at least one of time offset, time slice information, receiving duration, and timeout duration; the frequency domain resource information includes at least one of frequency point and bandwidth.
  • the WIFI transmitter sends the first WIFI packet to the WIFI receiver. Because WIFI is a monitoring backoff system, it is necessary to detect whether the air interface has signal energy when sending to decide whether to send the first WIFI packet, so there is a CCA time before sending the first WIFI packet. If the evaluation result of CCA is that there is no signal energy at the air interface, it proves that the channel is idle and the first WIFI packet can be sent; if the evaluation result of CCA is that there is signal energy at the air interface, it proves that the channel is busy and the first WIFI packet cannot be sent. It is necessary to wait until there is no signal energy at the air interface before sending the first WIFI packet.
  • CCA In the case of a busy channel, CCA will be attempted multiple times. If the CCA is successful again and the current time does not exceed the timeout period, the first WIFI packet will continue to be sent; if CCA is still unsuccessful after the timeout period, the current sending will be canceled. The timeout period is counted from the start time of the first CCA.
  • the WIFI receiver needs to be turned on one CCA time in advance (the start time of the CCA time in the figure) and receive information at the time offset position specified by the Bluetooth packet A1. After being turned on, it monitors and receives the first WIFI packet at any time on the frequency domain resources indicated by the frequency domain resource information.
  • the Bluetooth transmitter sends Bluetooth packet A2 to the Bluetooth receiver, and the information in the Bluetooth packet A2 sent to the left and right earphones is the same.
  • the Bluetooth receiver sends a Bluetooth reply packet B1 to the Bluetooth transmitter, and the information in the Bluetooth reply packet B1 sent to the left and right earphones is the same, including ACK or NACK for the first WIFI packet.
  • the earphone After the earphone receives the first WIFI packet, it needs to return an ACK of the first WIFI packet to the mobile phone, so that the mobile phone determines that the first WIFI packet has been successfully received.
  • the earphone does not receive the first WIFI packet at the time specified by the Bluetooth packet A1
  • a NACK of the first WIFI packet is returned to the mobile phone, so that the mobile phone determines that the first WIFI packet has not been successfully received and needs to be retransmitted. Since the earphone end is divided into a left earphone and a right earphone, the mobile phone may receive two Bluetooth reply packets for the first WIFI packet. As long as the confirmation feedback of one Bluetooth reply packet is NACK, the mobile phone needs to retransmit the first WIFI packet.
  • the WIFI transmitter sends a second WIFI packet to the WIFI receiver.
  • the Bluetooth transmitter sends Bluetooth packet A3 to the Bluetooth receiver, and the information in the Bluetooth packet A3 sent to the left and right earphones is the same.
  • the Bluetooth receiver sends a Bluetooth reply packet B2 to the Bluetooth transmitter, and the information in the Bluetooth reply packet B2 sent to the left and right earphones is the same.
  • the Bluetooth reply packet includes ACK or NACK for the second WIFI packet. According to the scheduling information included in the Bluetooth packet A3, the WIFI transmitter sends a third WIFI packet to the WIFI receiver.
  • the method provided in this embodiment transmits audio data by sending a Bluetooth packet to the headset end to indicate the scheduling information of the WIFI packet.
  • the power consumption is lower than that of transmitting audio data entirely by WIFI, the effect of transmitting audio data by WIFI is achieved, thereby improving the data transmission efficiency.
  • Bluetooth package + WIFI package For the case where two Bluetooth sub-devices use their own independent "Bluetooth package + WIFI package”, please refer to the following embodiment:
  • FIG. 11 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application, wherein the method is executed by a first Bluetooth sub-device and a second Bluetooth sub-device.
  • Step 1110 Send a first Bluetooth packet corresponding to the first Bluetooth sub-device, where the first Bluetooth packet includes scheduling information about the first WIFI packet.
  • the second Bluetooth device sends a first Bluetooth packet based on the Bluetooth protocol, the first Bluetooth packet includes a first pointer, and the first pointer points to scheduling information about the first WIFI packet.
  • the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 1112 Send a second Bluetooth packet corresponding to the second Bluetooth sub-device, where the second Bluetooth packet includes scheduling information about the second WIFI packet.
  • the second Bluetooth device sends a second Bluetooth packet based on the Bluetooth protocol, the second Bluetooth packet includes a second pointer, and the second pointer points to the scheduling information about the second WIFI packet.
  • the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 1120 The WIFI transmitter performs CCA on the frequency domain resources indicated by the frequency domain resource information based on the start time indicated by the time domain resource information.
  • WIFI is a monitoring backoff system, it is necessary to detect whether there is signal energy in the air interface when sending to decide whether to send WIFI packet 1. Therefore, there is a CCA time before sending WIFI packet 1.
  • step 1130 and step 1132 are executed respectively; if there is signal energy in the air interface, it proves that the channel is busy, and step 1134 is executed.
  • Step 1130 Send a first WIFI packet corresponding to the first Bluetooth sub-device based on the scheduling information included in the first Bluetooth packet.
  • the WIFI transmitter When the channel is idle, the WIFI transmitter sends a first WIFI packet corresponding to the first Bluetooth sub-device.
  • the frequency domain positions of the first WIFI packet and the second WIFI packet are different, and the time domain positions may be the same or different. If the first WIFI packet and the second WIFI packet are in the same frequency band, the time domain positions are different. If the first WIFI packet and the second WIFI packet are in different frequency bands (with a large interval), the time domain positions may be the same.
  • Step 1132 Send a second WIFI packet corresponding to the second Bluetooth sub-device based on the scheduling information included in the second Bluetooth packet.
  • the WIFI transmitter When the channel is idle, the WIFI transmitter sends a second WIFI packet corresponding to the second Bluetooth sub-device.
  • the frequency domain positions of the first WIFI packet and the second WIFI packet are different, and the time domain positions may be the same or different. If the first WIFI packet and the second WIFI packet are in the same frequency band, the time domain positions are different. If the first WIFI packet and the second WIFI packet are in different frequency bands (with a large interval), the time domain positions may be the same.
  • Step 1134 cancel sending the WIFI packet and wait for re-performing CCA.
  • the WIFI transmitter cancels the sending of the WIFI packet.
  • the reference point of the channel idle time is the time point when the last busy state ends. After canceling the sending, the WIFI transmitter continuously determines whether the channel to be used is idle. Only when it is determined that the channel is idle can the WIFI transmitter obtain the right to use the channel.
  • any channel that the WIFI transmitter intends to use is in a busy state, and the WIFI transmitter cancels sending the WIFI packet.
  • the WIFI transmitter cancels sending the corresponding WIFI packet whose channel is busy. That is, when the channel corresponding to the first WIFI packet is busy, the sending of the first WIFI packet is temporarily canceled and waits for CCA to be performed again; when the channel corresponding to the second WIFI packet is busy, the sending of the second WIFI packet is temporarily canceled and waits for CCA to be performed again.
  • the first WIFI packet or the second WIFI packet will continue to be sent; if the CCA is still unsuccessful after the timeout period, the current sending will be canceled. Wait for the next sending opportunity and then send the first WIFI packet or the second WIFI packet.
  • an interval between frequency domain resources occupied by the first WIFI packet and the second WIFI packet during transmission is greater than a first threshold, and time domain resources occupied by the first WIFI packet and the second WIFI packet during transmission partially overlap or completely overlap.
  • Step 1140 Send a third Bluetooth packet, where the third Bluetooth packet is the next Bluetooth packet of the first Bluetooth packet, and the third Bluetooth packet includes scheduling information about the third WIFI packet.
  • the first Bluetooth sub-device sends a third Bluetooth packet based on the Bluetooth protocol, the third Bluetooth packet is the next Bluetooth packet of the first Bluetooth packet, the third Bluetooth packet includes a third pointer, the third pointer points to scheduling information about the third WIFI packet, and the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 1142 Send a fourth Bluetooth packet, where the fourth Bluetooth packet is the next Bluetooth packet of the second Bluetooth packet, and the fourth Bluetooth packet includes scheduling information about the fourth WIFI packet.
  • the second Bluetooth sub-device sends a fourth Bluetooth packet based on the Bluetooth protocol, the fourth Bluetooth packet is the next Bluetooth packet of the second Bluetooth packet, the fourth Bluetooth packet includes a fourth pointer, the fourth pointer points to scheduling information about the fourth WIFI packet, and the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 1150 Receive a first Bluetooth reply packet to the first Bluetooth packet, where the first Bluetooth reply packet includes an ACK or a NACK for the first WIFI packet.
  • the Bluetooth transmitter and the Bluetooth receiver are both Bluetooth transceivers with transceiver capabilities.
  • the Bluetooth transmitter receives an ACK for the first WIFI packet, it is determined that the first WIFI packet is transmitted normally.
  • receives a NACK for the first WIFI packet it is determined that the first WIFI packet is transmitted abnormally and needs to be retransmitted.
  • Step 1152 Receive a second Bluetooth reply packet of the second Bluetooth packet, where the second Bluetooth reply packet includes an ACK or a NACK for the second WIFI packet.
  • the Bluetooth transmitter and the Bluetooth receiver are both Bluetooth transceivers with transceiver capabilities.
  • the Bluetooth transmitter receives an ACK for the second WIFI packet, it is determined that the second WIFI packet is transmitted normally.
  • the Bluetooth transmitter receives a NACK for the second WIFI packet, it is determined that the second WIFI packet is transmitted abnormally and needs to be retransmitted.
  • the method provided in this embodiment sends the first WIFI packet and the second WIFI packet respectively through the second Bluetooth device, so that the power consumption of the first Bluetooth device is reduced compared with the power consumption of the audio data as a whole received by the first Bluetooth sub-device and the second Bluetooth sub-device.
  • the confirmation retransmission mechanism of the WIFI packet enables the first Bluetooth sub-device and the second Bluetooth sub-device to decide to retransmit the WIFI packet or continue to transmit the next WIFI packet according to the information provided by the first Bluetooth device, thereby ensuring the transmission reliability of the WIFI packet.
  • FIG. 12 is a schematic diagram showing a data transmission method provided by an exemplary embodiment of the present application, wherein the method is executed by a first Bluetooth sub-device and a second Bluetooth sub-device.
  • Step 1210 The first Bluetooth sub-device receives a first Bluetooth packet, where the first Bluetooth packet includes scheduling information about the first WIFI packet.
  • the first Bluetooth sub-device receives a first Bluetooth packet based on the Bluetooth protocol, the first Bluetooth packet includes a first pointer, and the first pointer points to scheduling information about the first WIFI packet.
  • the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 1212 The second Bluetooth sub-device receives a second Bluetooth packet, where the second Bluetooth packet includes scheduling information about the second WIFI packet.
  • the second Bluetooth sub-device receives a second Bluetooth packet based on the Bluetooth protocol, the second Bluetooth packet includes a second pointer, and the second pointer points to scheduling information about the second WIFI packet.
  • the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 1220 Turn on the WIFI receiver based on the start time indicated by the time domain resource information.
  • the first Bluetooth sub-device includes a first Bluetooth receiver and a first WIFI receiver
  • the second Bluetooth sub-device includes a second Bluetooth receiver and a second WIFI receiver.
  • the WIFI receiver does not need to be turned on all the time, and turning on the WIFI receiver at the start time indicated by the time domain resource information helps reduce the power consumption of the Bluetooth device.
  • Step 1230 The first Bluetooth sub-device attempts to receive a first WIFI packet on the frequency domain resources indicated by the frequency domain resource information through the first WIFI receiver.
  • the first WIFI receiver receives the first WIFI packet on the frequency domain resource indicated by the frequency domain resource information included in the first Bluetooth packet.
  • Step 1232 The second Bluetooth sub-device attempts to receive a second WIFI packet on the frequency domain resources indicated by the frequency domain resource information through the second WIFI receiver.
  • the second WIFI receiver receives the second WIFI packet on the frequency domain resources indicated by the frequency domain resource information included in the second Bluetooth packet.
  • Step 1240 the first Bluetooth sub-device receives the first WIFI packet based on the scheduling information of the first Bluetooth packet, and turns off or puts the first WIFI receiver into sleep mode after receiving the first WIFI packet.
  • the first Bluetooth sub-device turns off or puts the first WIFI receiver to sleep after receiving the first WIFI packet, and turns it on again at the start time indicated by the time domain resource information included in the next Bluetooth packet.
  • Step 1242 the second Bluetooth sub-device receives the second WIFI packet based on the scheduling information of the second Bluetooth packet, and turns off or puts the second WIFI receiver into sleep mode after receiving the second WIFI packet.
  • the second Bluetooth sub-device turns off or puts the second WIFI receiver to sleep after receiving the second WIFI packet, and turns it on again at the start time indicated by the time domain resource information included in the next Bluetooth packet.
  • Step 1244 If no WIFI packet is received within the end time or timeout time indicated by the time domain resource information, turn off the WIFI receiver.
  • the WIFI packet If the WIFI packet is not received within the end time or timeout time indicated by the time domain resource information, it indicates that a transmission problem occurs. After turning off the WIFI receiver, a NACK of the WIFI packet is sent to the second Bluetooth device, so that the second Bluetooth device determines that the WIFI packet transmission is abnormal.
  • the first WIFI receiver and the second WIFI receiver When the first WIFI packet and the second WIFI packet received by the first WIFI receiver and the second WIFI receiver are the same, either the first WIFI receiver or the second WIFI receiver does not receive the WIFI packet, the first WIFI receiver and the second WIFI receiver are turned off, and a NACK of the first WIFI packet or the second WIFI packet is sent to the second Bluetooth device, so that the second Bluetooth device determines that the transmission of the first WIFI packet or the second WIFI packet is abnormal.
  • the receiver that has not received the WIFI packet is turned off, and a NACK corresponding to the unreceived WIFI packet is sent to the second Bluetooth device, so that the second Bluetooth device knows that the corresponding WIFI packet transmission is abnormal.
  • an interval between frequency domain resources occupied by the first WIFI packet and the second WIFI packet during transmission is greater than a first threshold, and time domain resources occupied by the first WIFI packet and the second WIFI packet during transmission partially overlap or completely overlap.
  • Step 1250 Receive a third Bluetooth packet, where the third Bluetooth packet is the next Bluetooth packet of the first Bluetooth packet, and the third Bluetooth packet includes scheduling information about the third WIFI packet.
  • the first Bluetooth sub-device receives a third Bluetooth packet based on the Bluetooth protocol, the third Bluetooth packet is the next Bluetooth packet of the first Bluetooth packet, the third Bluetooth packet includes a third pointer, the third pointer points to scheduling information about the third WIFI packet, and the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 1252 Receive a fourth Bluetooth packet, where the fourth Bluetooth packet is the next Bluetooth packet of the second Bluetooth packet, and the fourth Bluetooth packet includes scheduling information about a fourth WIFI packet.
  • the second Bluetooth sub-device receives a fourth Bluetooth packet based on the Bluetooth protocol, the fourth Bluetooth packet is the next Bluetooth packet of the second Bluetooth packet, the fourth Bluetooth packet includes a fourth pointer, the fourth pointer points to scheduling information about the fourth WIFI packet, and the scheduling information includes at least one of time domain resource information and frequency domain resource information.
  • Step 1260 Send a first Bluetooth reply packet to the first Bluetooth packet, where the first Bluetooth reply packet includes an ACK or a NACK for the first WIFI packet.
  • the Bluetooth transmitter and the Bluetooth receiver are both Bluetooth transceivers with transceiver capabilities.
  • the first WIFI receiver receives the first WIFI packet
  • the first Bluetooth receiver needs to return an ACK of the first WIFI packet to the second Bluetooth device, so that the second Bluetooth device determines that the first WIFI packet has been successfully received. If the first WIFI receiver does not receive the first WIFI packet at the time specified by the first Bluetooth packet, the first Bluetooth receiver returns a NACK of the first WIFI packet to the second Bluetooth device, so that the second Bluetooth device determines that the first WIFI packet has not been successfully received and needs to be retransmitted.
  • Step 1262 Send a second Bluetooth reply packet to the second Bluetooth packet, where the second Bluetooth reply packet includes an ACK or a NACK for the second WIFI packet.
  • the Bluetooth transmitter and the Bluetooth receiver are both Bluetooth transceivers with transceiver capabilities.
  • the second WIFI receiver receives the second WIFI packet
  • the second Bluetooth receiver needs to return an ACK of the second WIFI packet to the second Bluetooth device, so that the second Bluetooth device determines that the second WIFI packet has been successfully received. If the second WIFI receiver does not receive the second WIFI packet at the time specified by the second Bluetooth packet, the second Bluetooth receiver returns a NACK of the second WIFI packet to the second Bluetooth device, so that the second Bluetooth device determines that the second WIFI packet has not been successfully received and needs to be retransmitted.
  • the method provided in this embodiment receives the first WIFI packet and the second WIFI packet respectively through the first Bluetooth sub-device and the second Bluetooth sub-device, so that the power consumption is reduced compared with the power consumption of the audio data as a whole received by the first Bluetooth sub-device and the second Bluetooth sub-device.
  • the confirmation retransmission mechanism of the WIFI packet enables the second Bluetooth device to decide to retransmit the WIFI packet or continue to transmit the next WIFI packet according to the information provided by the first Bluetooth sub-device and the second Bluetooth sub-device, thereby ensuring the transmission reliability of the WIFI packet.
  • Fig. 13 shows a schematic diagram of a data transmission method provided by an exemplary embodiment of the present application.
  • the following takes the second Bluetooth device as a mobile phone end, the first Bluetooth sub-device and the second Bluetooth sub-device as earphone ends as an example, and describes the transmission of audio data in multiple time intervals that appear in sequence.
  • the Bluetooth transmitter sends Bluetooth packet LA1 to the left Bluetooth receiver and Bluetooth packet RA1 to the right Bluetooth receiver.
  • the information in Bluetooth packet LA1 is different from that in Bluetooth packet RA1.
  • Bluetooth packet LA1 includes pointer LZ1, which points to the scheduling information about the first left WIFI packet to be transmitted by the WIFI transmitter, and the scheduling information includes time-frequency resource information such as frequency point and time offset;
  • Bluetooth packet RA1 includes pointer RZ1, which points to the scheduling information about the first right WIFI packet to be transmitted by the WIFI transmitter, and the scheduling information includes time-frequency resource information such as frequency point and time offset.
  • Time-frequency resource information includes at least one of time domain resource information and frequency domain resource information.
  • the time domain resource information includes at least one of time offset, time slice information, receiving duration, and timeout duration; the frequency domain resource information includes at least one of frequency point and bandwidth.
  • the WIFI transmitter sends the first left WIFI packet to the left WIFI receiver and the first right WIFI packet to the right WIFI receiver. Because WIFI is a monitoring backoff system, it is necessary to detect whether there is signal energy in the air interface when sending to decide whether to send the WIFI packet, so there is a CCA time before sending the WIFI packet. If the evaluation result of CCA is that there is no signal energy in the air interface, it proves that the channel is idle and the WIFI packet can be sent; if the evaluation result of CCA is that there is signal energy in the air interface, it proves that the channel is busy and the WIFI packet cannot be sent. It is necessary to wait until there is no signal energy in the air interface before sending the WIFI packet.
  • the left WIFI receiver and the right WIFI receiver need to be turned on in advance by a CCA time (the start time of the CCA time in the figure), and receive information at the time offset position specified by the Bluetooth packet LA1 and the Bluetooth packet RA1 respectively.
  • the first left WIFI packet and the first right WIFI packet are monitored and received at any time on the frequency domain resources indicated by the frequency domain resource information.
  • the Bluetooth transmitter sends a Bluetooth packet LA2 to the left Bluetooth receiver and sends a Bluetooth packet RA2 to the right Bluetooth receiver, and the information in the Bluetooth packet LA2 is different from that in the Bluetooth packet RA2.
  • the Bluetooth transmitter and the Bluetooth receiver are both Bluetooth transceivers with transceiver capabilities.
  • the left Bluetooth receiver sends a Bluetooth reply packet LB1 to the Bluetooth transmitter, and the right Bluetooth receiver sends a Bluetooth reply packet LB2 to the Bluetooth transmitter.
  • the Bluetooth reply packet LB1 includes an ACK or NACK for the first left WIFI packet
  • the Bluetooth reply packet LB2 includes an ACK or NACK for the first right WIFI packet.
  • the earphone end After the earphone end receives the WIFI packet, it needs to return an ACK of the WIFI packet to the mobile phone end, so that the mobile phone end confirms that the WIFI packet has been successfully received. If the earphone end does not receive the WIFI packet at the time specified by the Bluetooth packet, then a NACK of the WIFI packet is returned to the mobile phone end, so that the mobile phone end confirms that the WIFI packet has not been successfully received and needs to be retransmitted.
  • the WIFI transmitter sends the second left WIFI packet to the WIFI receiver, and according to the scheduling information included in the Bluetooth packet RA2, the WIFI transmitter sends the second right WIFI packet to the WIFI receiver.
  • the method provided in this embodiment sends the audio data sent by the mobile phone to the left and right earphones separately, so that the left and right earphones only receive their own audio data.
  • the power consumption of this method is lower than the power consumption of sending the audio data as a whole to the left and right earphones.
  • the first Bluetooth device 330 does not include (or does not use) a WIFI transmitter as an example to achieve lower power consumption. However, it is not excluded that in some embodiments, the first Bluetooth device 330 also includes a WIFI transmitter, and the second Bluetooth device 300 also includes a WIFI receiver. In this embodiment, the WIFI transmitter of the first Bluetooth device 330 sends a WIFI reply packet to the WIFI receiver of the second Bluetooth device 300 to feedback the ACK or NACK of the WIFI packet. After receiving the WIFI packet, the first Bluetooth device 330 can send a WIFI reply packet to the WIFI receiver in the second Bluetooth device after a fixed time interval, such as a Distributed Inter-frame Spacing (DIFS). The WIFI reply packet includes the ACK or NACK of the WIFI packet.
  • DIFS Distributed Inter-frame Spacing
  • FIG. 14 shows a block diagram of a data transmission device provided by an exemplary embodiment of the present application, wherein the device comprises:
  • the Bluetooth receiving module 1410 is used to receive a Bluetooth packet, which includes scheduling information about the WIFI packet;
  • the WIFI receiving module 1420 is configured to receive WIFI packets based on the scheduling information.
  • the Bluetooth packet includes a pointer, which points to the scheduling information about the WIFI packet.
  • the scheduling information includes: at least one of time domain resource information and frequency domain resource information.
  • the time domain resource information includes at least one of the following: an offset value between the start receiving time and the Bluetooth packet; time slice information; receiving duration; and timeout duration.
  • the frequency domain resource information includes at least one of the following: frequency point; bandwidth.
  • the scheduling information also includes at least one of the following: packet rate type; modulation and coding method; encryption method.
  • the data transmission device is provided with a WIFI receiver
  • the WIFI receiving module 1420 includes:
  • An activation unit configured to activate the WIFI receiver based on the start time indicated by the time domain resource information
  • the receiving unit is used to try to receive a WIFI packet on the frequency domain resource indicated by the frequency domain resource information through a WIFI receiver.
  • the WIFI receiving module 1420 is used to turn off the WIFI receiver if no WIFI packet is received within the end time or timeout time indicated by the time domain resource information.
  • the Bluetooth receiving module 1410 is used to receive the next Bluetooth packet, and the next Bluetooth packet includes scheduling information about the next WIFI packet.
  • the WIFI receiving module 1420 is used to send a Bluetooth reply packet after the next Bluetooth packet, and the Bluetooth reply packet includes an ACK or NACK for the WIFI packet.
  • the first Bluetooth device includes: a first Bluetooth sub-device and a second Bluetooth sub-device.
  • the first Bluetooth sub-device receives a first Bluetooth packet
  • the second Bluetooth sub-device receives the second Bluetooth packet
  • the first Bluetooth sub-device receives the first WIFI packet based on the scheduling information of the first Bluetooth packet
  • the second Bluetooth sub-device receives the second WIFI packet based on the scheduling information of the second Bluetooth packet.
  • an interval between frequency domain resources occupied by the first WIFI packet and the second WIFI packet during transmission is greater than a first threshold, and time domain resources occupied by the first WIFI packet and the second WIFI packet during transmission partially overlap or completely overlap.
  • FIG. 15 shows a block diagram of a data transmission device provided by an exemplary embodiment of the present application, wherein the device comprises:
  • a Bluetooth sending module 1510 is used to send a Bluetooth packet, where the Bluetooth packet includes scheduling information about the WIFI packet;
  • the WIFI sending module 1520 is used to send WIFI packets based on the scheduling information.
  • the Bluetooth packet includes a pointer, where the pointer points to scheduling information about the WIFI packet, and the scheduling information includes: at least one of time domain resource information and frequency domain resource information.
  • the time domain resource information includes at least one of the following: an offset value between the start receiving time and the Bluetooth packet; time slice information; receiving duration; and timeout duration.
  • the frequency domain resource information includes at least one of the following: frequency point; bandwidth.
  • the scheduling information also includes at least one of the following: packet rate type; modulation and coding method; encryption method.
  • the data transmission device is provided with a WIFI transmitter
  • the WIFI transmission module 1520 includes:
  • a CCA unit configured to perform CCA on the frequency domain resources indicated by the frequency domain resource information based on the start time indicated by the time domain resource information;
  • the sending unit is used to send a WIFI packet on the frequency domain resources indicated by the frequency domain resource information through a WIFI transmitter when the CCA is successful.
  • the Bluetooth sending module 1510 is used to send the next Bluetooth packet, and the next Bluetooth packet includes scheduling information about the next WIFI packet.
  • the WIFI sending module 1520 is used to receive a Bluetooth reply packet after sending the next Bluetooth packet, and the Bluetooth reply packet includes an ACK or NACK for the WIFI packet.
  • the first Bluetooth device on the receiving side includes: a first Bluetooth sub-device and a second Bluetooth sub-device.
  • an interval between frequency domain resources occupied by the first WIFI packet and the second WIFI packet during transmission is greater than a first threshold, and time domain resources occupied by the first WIFI packet and the second WIFI packet during transmission partially overlap or completely overlap.
  • FIG. 16 shows a schematic structural diagram of a second Bluetooth device 300 provided in an exemplary embodiment of the present application.
  • the second Bluetooth device 300 includes a central processing unit (CPU) 1600 (or a microprocessor), a Bluetooth transmitter/transceiver 110, and a WIFI transmitter 120.
  • the CPU 1600 includes one or more processing cores, and executes various functional applications and information processing by running software programs and modules.
  • the CPU 1800 is responsible for managing the Bluetooth transmitter/transceiver 110 and the WIFI transmitter 120 to implement all or part of the steps performed by the second Bluetooth device 300 in the above method example.
  • the second Bluetooth device 300 does not limit the second Bluetooth device 300 , and the second Bluetooth device 300 may include more or fewer components than those shown in the figure, or combine certain components, or adopt a different arrangement of components.
  • FIG. 17 shows a schematic structural diagram of a first Bluetooth device 330 provided by an exemplary embodiment of the present application.
  • the first Bluetooth device 330 includes a microprocessor 1700, a Bluetooth receiver/transceiver 140, and a WIFI receiver 150.
  • the microprocessor 1700 includes one or more processing cores, and executes various functional applications and information processing by running software programs and modules.
  • the microprocessor 1700 is responsible for managing the Bluetooth receiver/transceiver 140 and the WIFI receiver 150 to implement all or part of the steps performed by the first Bluetooth device 330 in the above method example.
  • the above-mentioned structure does not constitute a limitation on the first Bluetooth device 330 , and the first Bluetooth device 330 may include more or fewer components than shown in the figure, or combine certain components, or adopt a different component arrangement.
  • the present application also provides a Bluetooth headset, which includes: a Bluetooth receiver/transceiver and a WIFI receiver, but does not include a WIFI transmitter.
  • the Bluetooth headset is used to implement the data transmission method performed by the receiving end or the first Bluetooth device.
  • a computer program product includes computer instructions, the computer instructions are stored in a computer-readable storage medium.
  • a processor of a computer device reads the computer instructions from the computer-readable storage medium, and the processor reads and executes the computer instructions from the computer-readable storage medium to implement the data transmission method provided by each of the above method embodiments.
  • a computer-readable storage medium is further provided, in which a computer program is stored.
  • the computer program is loaded and executed by a processor to implement the data transmission method provided by the above-mentioned method embodiments.
  • Computer-readable media include computer storage media and communication media, wherein the communication media include any media that facilitates the transmission of a computer program from one place to another.
  • the storage medium can be any available medium that a general or special-purpose computer can access.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法、装置、设备、介质和程序产品,属于蓝牙技术领域。该方法由第一蓝牙设备执行,该方法包括:接收蓝牙包,蓝牙包包括有关于WIFI包的调度信息;基于调度信息接收WIFI包。该方法通过蓝牙包指示WIFI包的调度信息的方式来传输数据,既做到了提高数据传输速率,又达到了传输过程中保持低功耗的目标。

Description

数据传输方法、装置、设备、介质和程序产品 技术领域
本申请实施例涉及蓝牙技术领域,特别涉及一种数据传输方法、装置、设备、介质和程序产品。
背景技术
蓝牙是一种无线技术标准,可实现固定设备、移动设备和楼宇个人域网之间的短距离数据交换。
相关技术中,主流厂家包括蓝牙组织都在为提升蓝牙的传输速率做一些尝试,比如提升带宽,提高调制编码能力等等。这些做法都能提升蓝牙的传输速率,为传输高清音频数据服务。例如,目前蓝牙组织正在准备定义的是2M带宽,最高传输速率是6兆比特每秒(Megabits per second,Mbps)。
然而在手机向真无线立体声(True Wireless Stereo,TWS)耳机传输无损音乐的场景下,需要对192K*24*2(采样率*比特率*蓝牙设备数)的高清音频数据进行无损传输,2M带宽的最高传输速率6Mbps仍然不足。
发明内容
本申请提供了一种数据传输方法、装置、设备、介质和程序产品。该技术方案至少包括:
根据本申请实施例的一个方面,提供了一种数据传输方法,该方法包括:
接收蓝牙包,蓝牙包包括有关于无线保真(Wireless Fidelity,WIFI)包的调度信息;
基于调度信息接收WIFI包。
根据本申请实施例的另一个方面,提供了一种数据传输方法,该方法包括:
发送蓝牙包,蓝牙包包括有关于WIFI包的调度信息;
基于调度信息发送WIFI包。
根据本申请实施例的另一个方面,提供了一种数据传输装置,该装置包括:
蓝牙接收模块,用于接收蓝牙包,蓝牙包包括有关于WIFI包的调度信息;
WIFI接收模块,用于基于调度信息接收WIFI包。
根据本申请实施例的另一个方面,提供了一种数据传输装置,该装置包括:
蓝牙发送模块,用于发送蓝牙包,蓝牙包包括有关于WIFI包的调度信息;
WIFI发送模块,用于基于调度信息发送WIFI包。
根据本申请实施例的另一个方面,提供了一种第一蓝牙设备,该第一蓝牙设备包括:处理器和存储器。
其中,存储器存储有计算机程序,计算机程序由处理器加载并执行以实现如上各个方面的数据传输方法。
根据本申请实施例的另一个方面,提供了一种第二蓝牙设备,该第二蓝牙设备包括:处理器和存储器。
其中,存储器存储有计算机程序,计算机程序由处理器加载并执行以实现如上各个方面的数据传输方法。
根据本申请实施例的另一个方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令、至少一段程序、代码集或指令集,至少一条指令、至少一段程序、代码集或指令集由处理器加载并执行以实现如上述各个方面的数据传输方法。
根据本申请实施例的另一个方面,提供了一种计算机程序产品(或者计算机程序),该计算机程序产品(或者计算机程序)包括计算机指令,计算机指令存储在计算机可读存储介质中;计算机设备的处理器从计算机可读存储介质中读取计算机指令,处理器执行计算机指令,使得计算机设备执行如上述各个方面的数据传输方法。
本申请实施例提供的技术方案可以包括以下有益效果:
通过蓝牙包指示WIFI包的调度信息的方式传输数据,将控制信息基于蓝牙包进行传输,将数据信息基于WIFI技术进行传输,在完全继承蓝牙上层音频相关框架和生态的基础上,和完全使用WIFI传输音频数据相比,能达到低功耗目标;和完全使用蓝牙传输音频数据相比,能够拓宽传输带宽,提高数据传输速率。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本申请一个示例性实施例提供的数据传输系统的示意图;
图2示出了本申请一个示例性实施例提供的数据传输方法的示意图;
图3示出了本申请一个示例性实施例提供的数据传输系统的示意图;
图4示出了本申请一个示例性实施例提供的数据传输方法的示意图;
图5示出了本申请一个示例性实施例提供的数据传输方法的示意图;
图6示出了本申请一个示例性实施例提供的数据传输方法的示意图;
图7示出了本申请一个示例性实施例提供的数据传输方法的示意图;
图8示出了本申请一个示例性实施例提供的数据传输系统的示意图;
图9示出了本申请一个示例性实施例提供的数据传输系统的示意图;
图10示出了本申请一个示例性实施例提供的数据传输方法的示意图;
图11示出了本申请一个示例性实施例提供的数据传输方法的示意图;
图12示出了本申请一个示例性实施例提供的数据传输方法的示意图;
图13示出了本申请一个示例性实施例提供的数据传输方法的示意图;
图14示出了本申请一个示例性实施例提供的数据传输装置的框图;
图15示出了本申请一个示例性实施例提供的数据传输装置的框图;
图16示出了本申请一个示例性实施例提供的第二蓝牙设备的结构示意图;
图17示出了本申请一个示例性实施例提供的第一蓝牙设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
需要说明的是,本申请所涉及的用户信息(包括但不限于用户设备信息、用户个人信息等)和数据(包括但不限于用于分析的数据、存储的数据、展示的数据等),均为经用户授权或者经过各方充分授权的信息和数据,且相关数据的收集、使用和处理需要遵守相关国家和地区的相关法律法规和标准。
应当理解,尽管在本申请可能采用术语第一、第二等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本申请范围的情况下,第一参数也可以被称为第二参数,类似地,第二参数也可以被称为第一参数。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
本申请中部分关键术语简介如下:
空口:无线通信设备之间的通信接口,通常包括时频资源。
频点:频点是给固定频率的编号。例如频率间隔为200KHz,依照200KHz的频率间隔从890MHz到915MHz分为125个无线频率段,并对每个无线频率段进行编号,从1到125,这些编号就是所说的频点。
在音频领域,蓝牙定义了很多类似于应用程序的配置文件,和没有发展出独立应用程序的WIFI相比占有独特的优势,并且WIFI的功耗比蓝牙要高,不利于电子设备的续航使用。但是蓝牙的传输速率和WIFI的传输速率相比更小,对于如今音频数据所需要的不断增加的传输速率来说逐渐不够。
本申请提供了一种蓝牙技术和WIFI技术进行融合传输的技术方案。将数据传输过程中的控制信息采用蓝牙技术进行传输,将数据传输过程中的数据信息采用WIFI技术进行传输,可以同时兼顾蓝牙技术的低功耗特点和WIFI技术的高传输速率特点。
图1示出了本申请一个示例性实施例提供的数据传输系统10的示意图。
数据传输系统10包括发送端设备和接收端设备,分别简称为发送端100和接收端130。其中,发送端100和接收端130可以在不同时刻或场景下互换角色,比如第一蓝牙设备和第二蓝牙设备在通信时,在不同时刻分别充当发送端100和接收端130的角色。
发送端100包括蓝牙发送机110和WIFI发送机120。发送端100包括但不限于手机、平板电脑、笔记本电脑中的任意一种蓝牙设备。
接收端130包括蓝牙接收机140和WIFI接收机150。接收端130包括但不限于手机、TWS耳机、蓝牙音响中的任意一种蓝牙设备。
蓝牙发送机110与蓝牙接收机140可以建立蓝牙连接,比如蓝牙低能耗(Bluetooth Low Energy,BLE)连接。在建立蓝牙连接后,蓝牙发送机110向蓝牙接收机140发送蓝牙包,WIFI发送机120向WIFI接收机150发送WIFI包。其中,蓝牙包包括有关于WIFI包的调度信息。在一些实施例中,蓝牙接收机140和蓝牙发送机110均为具有收发能力的蓝牙收发机。
图2示出了本申请一个示例性实施例提供的数据传输方法的示意图。通过使用蓝牙指示WIFI传输音频数据的方法,功耗低于直接使用WIFI传输音频数据,同时,传输速率可以达到远大于蓝牙技术的数据传输速率。
下面以顺序出现的多个时间间隔中,蓝牙发送机向蓝牙接收机发送蓝牙包,WIFI发送机向WIFI接收机发送WIFI包进行说明。
在间隔T中,蓝牙发送机向蓝牙接收机发送蓝牙包①,蓝牙包①包括一指针,该指针指向WIFI发送机将要发射的关于WIFI包①的调度信息,该调度信息包括频点和时间偏移等时频资源信息。时频资源信息包括时域资源信息和频域资源信息中的至少一种,时域资源信息包括时间偏移、时间片信息、接收时长、超时时长中的至少一种;频域资源信息包括频点,带宽中的至少一种。
WIFI发送机向WIFI接收机发送WIFI包①。因为WIFI是监听退避系统,需要在发送时检测空口是否有信号能量从而决定是否发送WIFI包①,所以在发送WIFI包①之前有一个空闲信道评估(Clear Channel Assessment,CCA)时间。如果CCA的评估结果为空口没有信号能量,那么证明信道空闲,就可以发送WIFI包①;如果CCA的评估结果为空口有信号能量,那么证明信道繁忙,不能发送WIFI包①,需要等待空口没有信号能量时再发送WIFI包①。WIFI接收机作为接收方,需要提前一个CCA时间(图中CCA时间的开始时间)开启,即在时域资源信息所指示的时间偏移位置接收WIFI包①,时间偏移位置是CCA的开始时间位置。WIFI接收机开启后在频域资源信息所指示的频域资源上随时监测和接收WIFI包①。
在间隔T+1中,蓝牙发送机向蓝牙接收机发送蓝牙包②,蓝牙接收机向蓝牙发送机发送蓝牙回复包①,蓝牙回复包①包括对WIFI包①的确认(Acknowledgement,ACK)消息或非确认(Negative Acknowledgement,NACK)消息,ACK消息和NACK消息分别可以简称为ACK和NACK。接收端接收到WIFI包①之后,需要返回给发送端一个WIFI包①的ACK,使得发送端确认WIFI包①已被成功接收。如果接收端在蓝牙包①指定的时间没有接收到WIFI包①,那么返回给发送端一个WIFI包①的NACK,使得发送端确认WIFI包①未被成功接收,需要重新传输。
此外,根据蓝牙包②包括的调度信息,WIFI发送机向WIFI接收机发送WIFI包②。
在间隔T+2中,蓝牙发送机向蓝牙接收机发送蓝牙包③,蓝牙接收机向蓝牙发送机发送蓝牙回复包②,蓝牙回复包②包括对WIFI包②的ACK或NACK。根据蓝牙包③包括的调度信息,WIFI发送机向WIFI接收机发送WIFI包③。
综上所述,本实施例提供的方法通过蓝牙包指示WIFI包的调度信息的方式来传输音频数据,既做到了提高数据传输速率,又达到了传输过程中保持低功耗的目标。
图3示出了本申请一个示例性实施例提供的数据传输系统的示意图。
数据传输系统包括第一蓝牙设备330和第二蓝牙设备300,第一蓝牙设备330包括蓝牙接收机140和WIFI接收机150,第二蓝牙设备300包括蓝牙发送机110和WIFI发送机120。在一些实施例中,蓝牙接收机140和蓝牙发送机110均为具有收发能力的蓝牙收发机。
蓝牙接收机110与蓝牙发送机140建立蓝牙连接,建立连接后,蓝牙接收机110向蓝牙发送机140发送蓝牙包,蓝牙包包括有关于WIFI包的调度信息,WIFI发送机120向WIFI接收机150发送WIFI包。
图4示出了本申请一个示例性实施例提供的数据传输方法的示意图,本实施例以该方法由第二蓝牙设备执行来举例说明,该方法包括:
步骤410:第二蓝牙设备发送蓝牙包,蓝牙包包括有关于WIFI包的调度信息。
第二蓝牙设备中的蓝牙发送机发送蓝牙包,蓝牙包是基于蓝牙协议的数据包。蓝牙包包括一指针,该指针指向关于WIFI包的调度信息,不同的调度信息对应不同的WIFI包,WIFI包是基于WIFI协议的数据包。
其中,调度信息是蓝牙包用来指示WIFI包的时频资源信息。示例性的,调度信息包括时域资源信息 和频域资源信息中的至少一种。
步骤420:WIFI发送机基于调度信息发送WIFI包。
WIFI发送机基于WIFI协议发送WIFI包,根据不同的调度信息可以准确地发送对应的不同WIFI包。
示例性的,第二蓝牙设备中设置有WIFI和蓝牙之间的共存软件通路。蓝牙程序通过使用共存软件通路,把待发送的数据和调度信息递交给WIFI程序,WIFI程序基于调度信息,使用WIFI的发送通路将数据进行发送。
综上所述,本实施例提供的方法通过蓝牙包指示WIFI包的调度信息的方式传输数据,将控制信息基于蓝牙包进行传输,将数据信息基于WIFI技术进行传输,在传输速率达到如今音频数据的无损传输要求的情况下,没有对第二蓝牙设备造成额外的负担。
图5示出了本申请一个示例性实施例提供的数据传输方法的示意图,本实施例以该方法由第二蓝牙设备执行来举例说明,该方法包括。
步骤510:发送第一蓝牙设备对应的蓝牙包1,蓝牙包1包括有关于WIFI包1的调度信息。
第二蓝牙设备基于蓝牙协议发送蓝牙包1。示例性的,蓝牙包1包括指针1,指针1指向关于WIFI包1的调度信息。比如,该指针指向WIFI包的发射频点、发射时机和/或数据包类型。
示例性的,调度信息包括时域资源信息和频域资源信息中的至少一种。
在一些实施例中,时域资源信息包括如下至少一项,以图2为例进行说明:
·开始接收时间与蓝牙包之间的偏移值P:
可选地,P用于指示蓝牙包的结束时刻与CCA的开始时间之间的偏移值,或,P用于指示蓝牙包的开始时刻与CCA的开始时间之间的偏移值。
·时间片信息J:WIFI包所在时间片的信息,时间片是WIFI技术中的一种时域分配机制;
·接收时长R:从开启WIFI接收机到WIFI包结束接收的一段时间;
·超时时长M:用来确定WIFI包没有被成功接收的一段时间。
在一些实施例中,频域资源信息包括如下至少一项:
·频点D:用于指示WIFI包在发送时占据的频率位置;
·带宽L:用于指示WIFI包在发送时占据的频率宽带。
在一些实施例中,调度信息还包括如下至少一项:
·包速率类型:用于指示WIFI包的传输速率,或者说WIFI包的包类型;
·调制编码方式:WIFI包传输速率的配置通过调制与编码策略(Modulation and Coding Scheme,MCS)索引值实现,不同的MCS具有不同的WIFI包传输速率;
·加密方式。
步骤520:WIFI发送机基于时域资源信息所指示的开始时间,在频域资源信息所指示的频域资源上进行CCA。
因为WIFI是监听退避系统,需要在发送时检测空口是否有信号能量从而决定是否发送WIFI包1,所以在发送WIFI包1之前有一个CCA时间。
如果空口没有信号能量,那么证明信道空闲,执行步骤530;如果空口有信号能量,那么证明信道繁忙,执行步骤532。
步骤530:基于蓝牙包1包括的调度信息发送第一蓝牙设备对应的WIFI包1。
在信道空闲的情况下,WIFI发送机发送第一蓝牙设备对应的WIFI包1。
步骤532:取消发送WIFI包,等待重新进行CCA。
在信道繁忙的情况下,WIFI发送机取消发送WIFI包1。信道空闲时间的基准点是上一次的繁忙状态结束的时间点。取消发送后,WIFI发送机不断确定欲使用的信道是否处于空闲状态,直至确定信道处于空闲状态,WIFI发送机才可获得信道使用权。
在信道繁忙的情况下,会多次尝试CCA。若重新进行CCA成功,且当前时刻未超过超时时长,则继续发送WIFI包1;若在超时时长到达后仍未CCA成功,则本次发送取消。超时时长是从第一次开始CCA的开始时间计时的。
步骤540:发送下一蓝牙包,下一蓝牙包包括有关于下一WIFI包的调度信息。
第二蓝牙设备基于蓝牙协议发送下一蓝牙包,下一蓝牙包包括有关于下一WIFI包的调度信息,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤550:接收蓝牙回复包1,蓝牙回复包1包括对WIFI包的ACK或NACK。
蓝牙发送机接收到WIFI包1的ACK时,判断WIFI包1传输正常。蓝牙发送机接收到WIFI包1的NACK时,判断WIFI包1传输异常,需要重新传输。
需要说明的是,下一蓝牙包和蓝牙回复包1均在间隔N+1中传输。蓝牙回复包1可以在下一蓝牙包之前传输,也可以在下一蓝牙包之后传输。
在一些实施例中,蓝牙包采用面向连接的同步流业务(Connected Isochronous Stream,CIS)链路传输,间隔N、间隔N+1等间隔的时长为CIS链路中的一个子事件的时长。一个子事件中包括第一蓝牙包和用于回应第一蓝牙包的第二蓝牙包。其中,每个子事件中的第一蓝牙包由第二蓝牙设备向第一蓝牙设备发送,第一蓝牙包包括下一蓝牙包的WIFI调度信息;每个子事件中的第二蓝牙包由第一蓝牙设备向第二蓝牙设备发送,第二蓝牙包包括关于上一WIFI包的ACK/NACK反馈。
综上所述,本实施例提供的方法通过蓝牙包指示WIFI包的调度信息的方式传输数据,将控制信息基于蓝牙包进行传输,将数据信息基于WIFI技术进行传输。在完全继承蓝牙上层音频相关框架和生态的基础上,和完全使用WIFI传输音频数据相比,能达到低功耗目标;和完全使用蓝牙传输音频数据相比,能够拓宽传输带宽,提高数据传输速率。
WIFI包的确认重传机制使得第二蓝牙设备根据第一蓝牙设备提供的信息决定重新传输WIFI包或者继续传输下一WIFI包,保证WIFI包的传输可靠性。
图6示出了本申请一个示例性实施例提供的数据传输方法的示意图,本实施例以该方法由第一蓝牙设备执行来举例说明,该方法包括。
步骤610:第一蓝牙设备接收蓝牙包,蓝牙包包括有关于WIFI包的调度信息。
第一蓝牙设备中的蓝牙接收机接收蓝牙包,蓝牙包是基于蓝牙协议的数据包。不同的调度信息对应不同的WIFI包,WIFI包是基于WIFI协议的数据包。
其中,调度信息是蓝牙包用来指示WIFI包的时频资源信息,示例性的,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤620:WIFI接收机基于调度信息接收WIFI包。
蓝牙接收机接收到的蓝牙包包括有关于WIFI包的调度信息,蓝牙接收机将WIFI包的调度信息传输给WIFI接收机,WIFI接收机根据调度信息接收WIFI包,通过不同的调度信息可以准确地接收对应的不同WIFI包。
综上所述,本实施例提供的方法通过在第一蓝牙设备增加WIFI接收机,通过蓝牙包指示WIFI包的调度信息的方式传输数据,将控制信息基于蓝牙包进行传输,将数据信息基于WIFI技术进行传输,解决了音频数据的无损传输问题并且满足了传输过程低功耗的要求。
图7示出了本申请一个示例性实施例提供的数据传输方法的示意图,本实施例以该方法由第一蓝牙设备执行来举例说明,该方法包括。
步骤710:第一蓝牙设备接收蓝牙包1,蓝牙包1包括有关于WIFI包1的调度信息。
第一蓝牙设备基于蓝牙协议接收蓝牙包1。在一些实施例中,蓝牙包1包括指针1,指针1指向关于WIFI包1的调度信息。在一些实施例中,蓝牙包包括一指针,该指针指向关于WIFI包的调度信息,比如,该指针指向WIFI包的发射频点、发射时机和/或数据包类型。
示例性的,调度信息包括时域资源信息和频域资源信息中的至少一种。
在一些实施例中,时域资源信息包括如下至少一项,以图2为例进行说明:
·开始接收时间与蓝牙包之间的偏移值P:
可选地,P用于指示蓝牙包的结束时刻与CCA的开始时间之间的偏移值,或,P用于指示蓝牙包的开始时刻与CCA的开始时间之间的偏移值。
·时间片信息J:WIFI包所在时间片的信息,时间片是WIFI技术中的一种时域分配机制;
·接收时长R:从开启WIFI接收机到WIFI包结束接收的一段时间;
·超时时长M:用来确定WIFI包没有被成功接收的一段时间。
在一些实施例中,频域资源信息包括如下至少一项:
·频点D:用于指示WIFI包在发送时占据的频率位置;
·带宽L:用于指示WIFI包在发送时占据的频率宽带。
在一些实施例中,调度信息还包括如下至少一项:
·包速率类型:用于指示WIFI包的传输速率,或者说WIFI包的包类型;
·调制编码方式:WIFI包传输速率的配置通过调制与编码策略(Modulation and Coding Scheme,MCS)索引值实现,不同的MCS具有不同的WIFI包传输速率;
·加密方式。
步骤720:基于时域资源信息所指示的开始时间,开启WIFI接收机。
第一蓝牙设备包括蓝牙接收机和WIFI接收机,WIFI接收机不需要一直保持开启状态,在时域资源信息所指示的开始时间开启WIFI接收机有助于减少第一蓝牙设备的功耗。
步骤730:第一蓝牙设备通过WIFI接收机在频域资源信息所指示的频域资源上,尝试接收WIFI包1。
WIFI接收机在蓝牙包1包括的频域资源信息所指示的频域资源上接收WIFI包1。
接收成功时,执行步骤740;接收不成功时,执行步骤742。
步骤740:第一蓝牙设备基于蓝牙包1包括的调度信息接收WIFI包1,接收到WIFI包1后关闭或休眠WIFI接收机。
在接收到WIFI包1后关闭或休眠WIFI接收机,在下一蓝牙包包括的时域资源信息所指示的开始时间再次开启。
步骤742:在时域资源信息所指示的结束时间或超时时间还未接收到WIFI包1的情况下,关闭或休眠WIFI接收机。
如果在时域资源信息所指示的结束时间或超时时间还未接收到WIFI包1,表示传输出现问题,关闭WIFI接收机后向第二蓝牙设备发送WIFI包1的NACK,让第二蓝牙设备确定WIFI包1未被成功接收。
步骤750:接收下一蓝牙包,下一蓝牙包包括关于下一WIFI包的调度信息。
第一蓝牙设备基于蓝牙协议接收下一蓝牙包,下一蓝牙包包括有关于下一WIFI包的调度信息,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤760:发送蓝牙回复包1,蓝牙回复包1包括WIFI包的ACK或NACK。
WIFI接收机接收到WIFI包1时,蓝牙接收机需要返回给第二蓝牙设备WIFI包1的ACK,使得第二蓝牙设备判断WIFI包1已被成功接收。如果WIFI接收机在蓝牙包1指定的时间没有接收到WIFI包1,那么蓝牙接收机返回给第二蓝牙设备WIFI包1的NACK,使得第二蓝牙设备判断WIFI包1未被成功接收,需要重新传输。
综上所述,本实施例提供的方法通过蓝牙包指示WIFI包的调度信息的方式传输数据,将控制信息基于蓝牙包进行传输,将数据信息基于WIFI技术进行传输。在完全继承蓝牙上层音频相关框架和生态的基础上,和完全使用WIFI传输音频数据相比,能达到低功耗目标;和完全使用蓝牙传输音频数据相比,能够拓宽传输带宽,提高数据传输速率。
通过在时域资源信息所指示的开始时间开启WIFI接收机,而不是一直保持开启状态可以减少第一蓝牙设备的功耗。
WIFI包的确认重传机制使得第二蓝牙设备根据第一蓝牙设备提供的信息决定重新传输WIFI包或者继续传输下一WIFI包,保证WIFI包的传输可靠性。
上述实施例中以第一蓝牙设备是一个设备来举例说明。但是在一些实施例中,第一蓝牙设备是一组蓝牙设备。例如,第一蓝牙设备是TWS耳机,则包括第一蓝牙子设备和第二蓝牙子设备,如图8所示;又例如,第一蓝牙设备是组合音箱,则可能包含2-8个音箱子设备。下面以第一蓝牙设备包括第一蓝牙子设备和第二蓝牙子设备来举例说明。
图8示出了本申请一个示例性实施例提供的数据传输系统的示意图。
数据传输系统包括第二蓝牙设备300、第一蓝牙子设备800和第二蓝牙子设备830,第二蓝牙设备300包括蓝牙发送机110和WIFI发送机120,第一蓝牙子设备800包括第一蓝牙接收机810和第一WIFI接收机820,第二蓝牙子设备830包括第二蓝牙接收机840和第二WIFI接收机850。在一些实施例中,上述蓝牙发送机和蓝牙接收机均为具有收发能力的蓝牙收发机。
蓝牙发送机110与第一蓝牙接收机810和第二蓝牙接收机840分别建立蓝牙连接,建立连接后,蓝牙发送机110分别向第一蓝牙接收机810和第二蓝牙接收机840发送蓝牙包,蓝牙包包括有关于WIFI包的调度信息,WIFI发送机120分别向第一WIFI接收机820和第二WIFI接收机850发送WIFI包。
在第一蓝牙设备包括两个蓝牙子设备的情况下,存在两种传输方式:
1.两个蓝牙子设备共用同一份“蓝牙包+WIFI包”;
2.两个蓝牙子设备使用各自独立的一份“蓝牙包+WIFI包”。
针对两个蓝牙子设备共用同一份“蓝牙包+WIFI包”的情况,请参考如下实施例:
图9示出了本申请一个示例性实施例提供的数据传输系统的示意图。
数据传输系统包括手机端800、左耳机端900和右耳机端930,手机端800包括蓝牙发送机110和WIFI发送机120,左耳机端900包括左蓝牙接收机910和左WIFI接收机920,右耳机端930包括右蓝牙接收机940和右WIFI接收机950。蓝牙发送机110与左蓝牙接收机910和右蓝牙接收机940分别建立蓝牙连接,建立连接后,蓝牙发送机110分别向左蓝牙接收机910和右蓝牙接收机940发送蓝牙包,蓝牙包包括有关 于WIFI包的调度信息,WIFI发送机120分别向左WIFI接收机920和右WIFI接收机950发送WIFI包。在一些实施例中,上述蓝牙发送机和蓝牙接收机均为具有收发能力的蓝牙收发机。
图10示出了本申请一个示例性实施例提供的数据传输方法的示意图。下面以第二蓝牙设备为手机端,第一蓝牙子设备和第二蓝牙子设备为耳机端为例,顺序出现的多个时间间隔中传输音频数据进行说明。
在间隔N中,蓝牙发送机向蓝牙接收机发送蓝牙包A1,发送到左右耳机上的蓝牙包A1中的信息是相同的。蓝牙包A1包括指针Z1,指针Z1指向WIFI发送机将要发射的第一WIFI包的调度信息,该调度信息包括频点和时间偏移等时频资源信息。时频资源信息包括时域资源信息和频域资源信息中的至少一种,时域资源信息包括时间偏移、时间片信息、接收时长、超时时长中的至少一种;频域资源信息包括频点,带宽至少一种。
WIFI发送机向WIFI接收机发送第一WIFI包。因为WIFI是监听退避系统,需要在发送时检测空口是否有信号能量从而决定是否发送第一WIFI包,所以在发送第一WIFI包之前有一个CCA时间。如果CCA的评估结果为空口没有信号能量,那么证明信道空闲,就可以发送第一WIFI包;如果CCA的评估结果为空口有信号能量,那么证明信道繁忙,不能发送第一WIFI包,需要等待空口没有信号能量时再发送第一WIFI包。
在信道繁忙的情况下,会多次尝试CCA。若重新进行CCA成功,且当前时刻未超过超时时长,则继续发送第一WIFI包;若在超时时长到达后仍未CCA成功,则本次发送取消。超时时长是从第一次开始CCA的开始时间计时的。
WIFI接收机作为接收方,需要提前一个CCA时间(图中CCA时间的开始时间)开启,在蓝牙包A1指定的时间偏移位置接收信息,开启后在频域资源信息所指示的频域资源上随时监测和接收第一WIFI包。
在间隔N+1中,蓝牙发送机向蓝牙接收机发送蓝牙包A2,发送到左右耳机上的蓝牙包A2中的信息是相同的。蓝牙接收机向蓝牙发送机发送蓝牙回复包B1,发送到左右耳机上的蓝牙回复包B1中的信息是相同的,包括对第一WIFI包的ACK或NACK。耳机端接收到第一WIFI包之后,需要返回给手机端一个第一WIFI包的ACK,使得手机端判断第一WIFI包已被成功接收。如果耳机端在蓝牙包A1指定的时间没有接收到第一WIFI包,那么返回给手机端一个第一WIFI包的NACK,使得手机端判断第一WIFI包未被成功接收,需要重新传输。由于耳机端分为左耳机和右耳机,因此手机端可能会收到2个第一WIFI包的确蓝牙回复包,只要有一个蓝牙回复包的确认反馈为NACK,则手机端需要重传第一WIFI包。
根据蓝牙包A2包括的调度信息,WIFI发送机向WIFI接收机发送第二WIFI包。
在间隔N+2中,蓝牙发送机向蓝牙接收机发送蓝牙包A3,发送到左右耳机上的蓝牙包A3中的信息是相同的,蓝牙接收机向蓝牙发送机发送蓝牙回复包B2,发送到左右耳机上的蓝牙回复包B2中的信息是相同的,蓝牙回复包包括对第二WIFI包的ACK或NACK。根据蓝牙包A3包括的调度信息,WIFI发送机向WIFI接收机发送第三WIFI包。
综上所述,本实施例提供的方法通过手机端向耳机端发送蓝牙包指示WIFI包的调度信息的方式来传输音频数据,在功耗小于完全使用WIFI传输音频数据的情况下,达到用WIFI传输音频数据的效果,提高了数据传输效率。
针对两个蓝牙子设备使用各自独立的一份“蓝牙包+WIFI包”的情况,请参考如下实施例:
图11示出了本申请一个示例性实施例提供的数据传输方法的示意图,该方法由第一蓝牙子设备和第二蓝牙子设备执行。
步骤1110:发送第一蓝牙子设备对应的第一蓝牙包,第一蓝牙包包括有关于第一WIFI包的调度信息。
第二蓝牙设备基于蓝牙协议发送第一蓝牙包,第一蓝牙包包括第一指针,第一指针指向关于第一WIFI包的调度信息。示例性的,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤1112:发送第二蓝牙子设备对应的第二蓝牙包,第二蓝牙包包括有关于第二WIFI包的调度信息。
第二蓝牙设备基于蓝牙协议发送第二蓝牙包,第二蓝牙包包括第二指针,第二指针指向关于第二WIFI包的调度信息。示例性的,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤1120:WIFI发送机基于时域资源信息所指示的开始时间,在频域资源信息所指示的频域资源上进行CCA。
因为WIFI是监听退避系统,需要在发送时检测空口是否有信号能量从而决定是否发送WIFI包1,所以在发送WIFI包1之前有一个CCA时间。
如果空口没有信号能量,那么证明信道空闲,分别执行步骤1130和步骤1132;如果空口有信号能量,那么证明信道繁忙,执行步骤1134。
步骤1130:基于第一蓝牙包包括的调度信息发送第一蓝牙子设备对应的第一WIFI包。
在信道空闲的情况下,WIFI发送机发送第一蓝牙子设备对应的第一WIFI包。
在一些实施例中,第一WIFI包和第二WIFI包发送的频域位置不同,时域位置可以相同,也可以不同。如果第一WIFI包和第二WIFI包是同一个频段,时域位置就不同,如果第一WIFI包和第二WIFI包是不同频段(间隔较大),时域位置可以相同。
步骤1132:基于第二蓝牙包包括的调度信息发送第二蓝牙子设备对应的第二WIFI包。
在信道空闲的情况下,WIFI发送机发送第二蓝牙子设备对应的第二WIFI包。
在一些实施例中,第一WIFI包和第二WIFI包发送的频域位置不同,时域位置可以相同,也可以不同。如果第一WIFI包和第二WIFI包是同一个频段,时域位置就不同,如果第一WIFI包和第二WIFI包是不同频段(间隔较大),时域位置可以相同。
步骤1134:取消发送WIFI包,等待重新进行CCA。
在信道繁忙的情况下,WIFI发送机取消发送WIFI包。信道空闲时间的基准点是上一次的繁忙状态结束的时间点。取消发送后,WIFI发送机不断确定欲使用的信道是否处于空闲状态,直至确定信道处于空闲状态,WIFI发送机才可获得信道使用权。
当WIFI发送机发送的第一WIFI包和第二WIFI包相同时,WIFI发送机任一欲使用的信道处于繁忙状态,WIFI发送机取消发送WIFI包。
当WIFI发送机发送的第一WIFI包和第二WIFI包不同时,WIFI发送机取消发送欲使用的信道处于繁忙状态的对应WIFI包。也即,在第一WIFI包对应的信道处于繁忙状态的情况下,暂时取消发送第一WIFI包,等待重新进行CCA;在第二WIFI包对应的信道处于繁忙状态的情况下,暂时取消发送第二WIFI包,等待重新进行CCA。
若重新进行CCA成功,且当前时刻未超过超时时长,则继续发送第一WIFI包或第二WIFI包;若在超时时长到达后仍未CCA成功,则本次发送取消。等待下次发送机会,再发送第一WIFI包或第二WIFI包。
在本实施例的一种可能设计中,第一WIFI包和第二WIFI包在传输时占用的频域资源之间的间隔大于第一阈值,第一WIFI包和第二WIFI包在传输时占用的时域资源存在部分重叠或全部重叠。
假设第一WIFI包和第二WIFI包均成功传输,则继续下述步骤。
步骤1140:发送第三蓝牙包,第三蓝牙包是第一蓝牙包的下一蓝牙包,第三蓝牙包包括有关于第三WIFI包的调度信息。
第一蓝牙子设备基于蓝牙协议发送第三蓝牙包,第三蓝牙包是第一蓝牙包的下一蓝牙包,第三蓝牙包包括第三指针,第三指针指向关于第三WIFI包的调度信息,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤1142:发送第四蓝牙包,第四蓝牙包是第二蓝牙包的下一蓝牙包,第四蓝牙包包括有关于第四WIFI包的调度信息。
第二蓝牙子设备基于蓝牙协议发送第四蓝牙包,第四蓝牙包是第二蓝牙包的下一蓝牙包,第四蓝牙包包括第四指针,第四指针指向关于第四WIFI包的调度信息,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤1150:接收第一蓝牙包的第一蓝牙回复包,第一蓝牙回复包包括对第一WIFI包的ACK或NACK。
在一些实施例中,蓝牙发送机和蓝牙接收机均为具有收发能力的蓝牙收发机。蓝牙发送机接收到第一WIFI包的ACK时,确定第一WIFI包传输正常。蓝牙发送机接收到第一WIFI包的NACK时,确定第一WIFI包传输异常,需要重新传输。
步骤1152:接收第二蓝牙包的第二蓝牙回复包,第二蓝牙回复包包括对第二WIFI包的ACK或NACK。
在一些实施例中,蓝牙发送机和蓝牙接收机均为具有收发能力的蓝牙收发机。蓝牙发送机接收到第二WIFI包的ACK时,确定第二WIFI包传输正常。蓝牙发送机接收到第二WIFI包的NACK时,确定第二WIFI包传输异常,需要重新传输。
综上所述,本实施例提供的方法通过第二蓝牙设备分别发送第一WIFI包和第二WIFI包,使得第一蓝牙设备的功耗与音频数据作为一个整体由第一蓝牙子设备和第二蓝牙子设备接收的功耗相比降低了。
WIFI包的确认重传机制使得第一蓝牙子设备和第二蓝牙子设备根据第一蓝牙设备提供的信息决定重新传输WIFI包或者继续传输下一WIFI包,保证WIFI包的传输可靠性。
图12示出了本申请一个示例性实施例提供的数据传输方法的示意图,该方法由第一蓝牙子设备和第二蓝牙子设备执行。
步骤1210:第一蓝牙子设备接收第一蓝牙包,第一蓝牙包包括有关于第一WIFI包的调度信息。
第一蓝牙子设备基于蓝牙协议接收第一蓝牙包,第一蓝牙包包括第一指针,第一指针指向关于第一 WIFI包的调度信息。示例性的,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤1212:第二蓝牙子设备接收第二蓝牙包,第二蓝牙包包括有关于第二WIFI包的调度信息。
第二蓝牙子设备基于蓝牙协议接收第二蓝牙包,第二蓝牙包包括第二指针,第二指针指向关于第二WIFI包的调度信息。示例性的,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤1220:基于时域资源信息所指示的开始时间,开启WIFI接收机。
第一蓝牙子设备包括第一蓝牙接收机和第一WIFI接收机,第二蓝牙子设备包括第二蓝牙接收机和第二WIFI接收机。WIFI接收机不需要一直保持开启状态,在时域资源信息所指示的开始时间开启WIFI接收机有助于减少蓝牙设备的功耗。
步骤1230:第一蓝牙子设备通过第一WIFI接收机在频域资源信息所指示的频域资源上,尝试接收第一WIFI包。
第一WIFI接收机在第一蓝牙包包括的频域资源信息所指示的频域资源上接收第一WIFI包。
接收成功时,执行步骤1240;接收不成功时,执行步骤1244。
步骤1232:第二蓝牙子设备通过第二WIFI接收机在频域资源信息所指示的频域资源上,尝试接收第二WIFI包。
第二WIFI接收机在第二蓝牙包包括的频域资源信息所指示的频域资源上接收第二WIFI包。
接收成功时,执行步骤1242;接收不成功时,执行步骤1244。
步骤1240:第一蓝牙子设备基于第一蓝牙包的调度信息接收第一WIFI包,接收到第一WIFI包后关闭或休眠第一WIFI接收机。
第一蓝牙子设备在接收到第一WIFI包后关闭或休眠第一WIFI接收机,在下一蓝牙包包括的时域资源信息所指示的开始时间再次开启。
步骤1242:第二蓝牙子设备基于第二蓝牙包的调度信息接收第二WIFI包,接收到第二WIFI包后关闭或休眠第二WIFI接收机。
第二蓝牙子设备在接收到第二WIFI包后关闭或休眠第二WIFI接收机,在下一蓝牙包包括的时域资源信息所指示的开始时间再次开启。
步骤1244:在时域资源信息所指示的结束时间或超时时间还未接收到WIFI包的情况下,关闭WIFI接收机。
如果在时域资源信息所指示的结束时间或超时时间还未接收到WIFI包,表示传输出现问题,关闭WIFI接收机后向第二蓝牙设备发送WIFI包的NACK,使得第二蓝牙设备判断WIFI包传输异常。
当第一WIFI接收机和第二WIFI接收机接收的第一WIFI包和第二WIFI包相同时,第一WIFI接收机和第二WIFI接收机任一未接收到WIFI包,关闭第一WIFI接收机和第二WIFI接收机,向第二蓝牙设备发送第一WIFI包或第二WIFI包的NACK,使得第二蓝牙设备判断第一WIFI包或第二WIFI包传输异常。
当第一WIFI接收机和第二WIFI接收机接收的第一WIFI包和第二WIFI包不同时,关闭未接收到WIFI包的接收机,向第二蓝牙设备发送对应未接收到的WIFI包的NACK,使得第二蓝牙设备知道对应WIFI包传输异常。
在本实施例的一种可能设计中,第一WIFI包和第二WIFI包在传输时占用的频域资源之间的间隔大于第一阈值,第一WIFI包和第二WIFI包在传输时占用的时域资源存在部分重叠或全部重叠。
步骤1250:接收第三蓝牙包,第三蓝牙包是第一蓝牙包的下一蓝牙包,第三蓝牙包包括有关于第三WIFI包的调度信息。
第一蓝牙子设备基于蓝牙协议接收第三蓝牙包,第三蓝牙包是第一蓝牙包的下一蓝牙包,第三蓝牙包包括第三指针,第三指针指向关于第三WIFI包的调度信息,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤1252:接收第四蓝牙包,第四蓝牙包是第二蓝牙包的下一蓝牙包,第四蓝牙包包括有关于第四WIFI包的调度信息。
第二蓝牙子设备基于蓝牙协议接收第四蓝牙包,第四蓝牙包是第二蓝牙包的下一蓝牙包,第四蓝牙包包括第四指针,第四指针指向关于第四WIFI包的调度信息,调度信息包括时域资源信息和频域资源信息中的至少一种。
步骤1260:发送第一蓝牙包的第一蓝牙回复包,第一蓝牙回复包包括对第一WIFI包的ACK或NACK。
在一些实施例中,蓝牙发送机和蓝牙接收机均为具有收发能力的蓝牙收发机。第一WIFI接收机接收到第一WIFI包时,第一蓝牙接收机需要返回给第二蓝牙设备第一WIFI包的ACK,使得第二蓝牙设备判断第一WIFI包已被成功接收。如果第一WIFI接收机在第一蓝牙包指定的时间没有接收到第一WIFI包,那么第一蓝牙接收机返回给第二蓝牙设备第一WIFI包的NACK,使得第二蓝牙设备判断第一WIFI包未 被成功接收,需要重新传输。
步骤1262:发送第二蓝牙包的第二蓝牙回复包,第二蓝牙回复包包括对第二WIFI包的ACK或NACK。
在一些实施例中,蓝牙发送机和蓝牙接收机均为具有收发能力的蓝牙收发机。第二WIFI接收机接收到第二WIFI包时,第二蓝牙接收机需要返回给第二蓝牙设备第二WIFI包的ACK,使得第二蓝牙设备判断第二WIFI包已被成功接收。如果第二WIFI接收机在第二蓝牙包指定的时间没有接收到第二WIFI包,那么第二蓝牙接收机返回给第二蓝牙设备第二WIFI包的NACK,使得第二蓝牙设备判断第二WIFI包未被成功接收,需要重新传输。
综上所述,本实施例提供的方法通过第一蓝牙子设备和第二蓝牙子设备分别接收第一WIFI包和第二WIFI包,使得功耗与音频数据作为一个整体由第一蓝牙子设备和第二蓝牙子设备接收的功耗相比降低了。
在时域资源信息所指示的开始时间开启WIFI接收机,而不是一直保持开启状态可以减少第一蓝牙子设备和第二蓝牙子设备的功耗。
WIFI包的确认重传机制使得第二蓝牙设备根据第一蓝牙子设备和第二蓝牙子设备提供的信息决定重新传输WIFI包或者继续传输下一WIFI包,保证WIFI包的传输可靠性。
图13示出了本申请一个示例性实施例提供的数据传输方法的示意图。下面以第二蓝牙设备为手机端,第一蓝牙子设备和第二蓝牙子设备为耳机端为例,在顺序出现的多个时间间隔中传输音频数据进行说明。
在间隔N中,蓝牙发送机向左蓝牙接收机发送蓝牙包LA1,向右蓝牙接收机发送蓝牙包RA1,蓝牙包LA1和蓝牙包RA1中的信息不同。蓝牙包LA1包括指针LZ1,指针LZ1指向关于WIFI发送机将要发射的第一左WIFI包的调度信息,该调度信息包括频点和时间偏移等时频资源信息;蓝牙包RA1包括指针RZ1,指针RZ1指向关于WIFI发送机将要发射的第一右WIFI包的调度信息,该调度信息包括频点和时间偏移等时频资源信息。时频资源信息包括时域资源信息和频域资源信息中的至少一种,时域资源信息包括时间偏移、时间片信息、接收时长、超时时长中的至少一种;频域资源信息包括频点,带宽中的至少一种。
WIFI发送机向左WIFI接收机发送第一左WIFI包,向右WIFI接收机发送第一右WIFI包。因为WIFI是监听退避系统,需要在发送时检测空口是否有信号能量从而决定是否发送WIFI包,所以在发送WIFI包之前有一个CCA时间。如果CCA的评估结果为空口没有信号能量,那么证明信道空闲,就可以发送WIFI包;如果CCA的评估结果为空口有信号能量,那么证明信道繁忙,不能发送WIFI包,需要等待空口没有信号能量时再发送WIFI包。左WIFI接收机和右WIFI接收机作为接收方,需要提前一个CCA时间(图中CCA时间的开始时间)开启,分别在蓝牙包LA1和蓝牙包RA1指定的时间偏移位置接收信息,开启后在频域资源信息所指示的频域资源上随时监测接收第一左WIFI包和第一右WIFI包。
在间隔N+1中,蓝牙发送机向左蓝牙接收机发送蓝牙包LA2,向右蓝牙接收机发送蓝牙包RA2,蓝牙包LA2和蓝牙包RA2中的信息不同。在一些实施例中,蓝牙发送机和蓝牙接收机均为具有收发能力的蓝牙收发机。左蓝牙接收机向蓝牙发送机发送蓝牙回复包LB1,右蓝牙接收机向蓝牙发送机发送蓝牙回复包LB2,蓝牙回复包LB1包括对第一左WIFI包的ACK或NACK,蓝牙回复包LB2包括对第一右WIFI包的ACK或NACK。耳机端接收到WIFI包之后,需要返回给手机端一个WIFI包的ACK,使得手机端确认WIFI包已被成功接收。如果耳机端在蓝牙包指定的时间没有接收到WIFI包,那么返回给手机端一个WIFI包的NACK,使得手机端确认WIFI包未被成功接收,需要重新传输。
根据蓝牙包LA2包括的调度信息,WIFI发送机向WIFI接收机发送第二左WIFI包,根据蓝牙包RA2包括的调度信息,WIFI发送机向WIFI接收机发送第二右WIFI包。
综上所述,本实施例提供的方法通过把手机端发送给左右耳机端的音频数据分开发送,使得左右耳机端只接收属于自己的音频数据,该方法的功耗与音频数据作为一个整体发送给左右耳机端的功耗相比降低了。
在上述实施例中,均以第一蓝牙设备330不包括(或不使用)WIFI发送机来举例说明,以达到较低的功耗。但是不排除在一些实施例中,第一蓝牙设备330还包括WIFI发送机,第二蓝牙设备300还包括WIFI接收机。在该实施例中,由第一蓝牙设备330的WIFI发送机向第二蓝牙设备300的WIFI接收机发送WIFI回复包,用于反馈WIFI包的ACK或NACK,第一蓝牙设备330可以在接收到WIFI包后,间隔固定时长,例如一个分布式帧间间隙(Distributed Inter-frame Spacing,DIFS)后,由WIFI发送机向第二蓝牙设备中的WIFI接收机发送WIFI回复包,该WIFI回复包包括WIFI包的ACK或NACK。
图14示出了本申请一个示例性实施例提供的数据传输装置的框图,所述装置包括:
蓝牙接收模块1410,用于接收蓝牙包,蓝牙包包括有关于WIFI包的调度信息;
WIFI接收模块1420,用于基于调度信息接收WIFI包。
在本实施例的一种可能设计中,蓝牙包包括一指针,该指针指向关于WIFI包的调度信息。
在本实施例的一种可能设计中,调度信息包括:时域资源信息和频域资源信息中的至少一种。
时域资源信息包括如下至少一项:开始接收时间与蓝牙包之间的偏移值;时间片信息;接收时长;超时时长。
频域资源信息包括如下至少一项:频点;带宽。
在本实施例的一种可能设计中,调度信息还包括如下至少一项:包速率类型;调制编码方式;加密方式。
在本实施例的一种可能设计中,上述数据传输装置设置有WIFI接收机,WIFI接收模块1420包括:
开启单元,用于基于时域资源信息所指示的开始时间,开启WIFI接收机;
接收单元,用于通过WIFI接收机在频域资源信息所指示的频域资源上,尝试接收WIFI包。
在本实施例的一种可能设计中,WIFI接收模块1420用于在时域资源信息所指示的结束时间或超时时间还未接收到WIFI包的情况下,关闭WIFI接收机。
在本实施例的一种可能设计中,蓝牙接收模块1410用于接收下一蓝牙包,下一蓝牙包包括有关于下一WIFI包的调度信息。
在本实施例的一种可能设计中,WIFI接收模块1420用于在下一蓝牙包之后发送蓝牙回复包,蓝牙回复包包括对WIFI包的ACK或NACK。
在本实施例的一种可能设计中,第一蓝牙设备包括:第一蓝牙子设备和第二蓝牙子设备。
在一些实施例中:第一蓝牙子设备接收第一蓝牙包;
以及,第二蓝牙子设备接收第二蓝牙包;
在一些实施例中:第一蓝牙子设备基于第一蓝牙包的调度信息接收第一WIFI包;
以及,第二蓝牙子设备基于第二蓝牙包的调度信息接收第二WIFI包。
在本实施例的一种可能设计中,第一WIFI包和第二WIFI包在传输时占用的频域资源之间的间隔大于第一阈值,第一WIFI包和第二WIFI包在传输时占用的时域资源存在部分重叠或全部重叠。
图15示出了本申请一个示例性实施例提供的数据传输装置的框图,所述装置包括:
蓝牙发送模块1510,用于发送蓝牙包,蓝牙包包括有关于WIFI包的调度信息;
WIFI发送模块1520,用于基于调度信息发送WIFI包。
在本实施例的一种可能设计中,蓝牙包包括一指针,该指针指向关于WIFI包的调度信息,调度信息包括:时域资源信息和频域资源信息中的至少一种。
时域资源信息包括如下至少一项:开始接收时间与蓝牙包之间的偏移值;时间片信息;接收时长;超时时长。
频域资源信息包括如下至少一项:频点;带宽。
在本实施例的一种可能设计中,调度信息还包括如下至少一项:包速率类型;调制编码方式;加密方式。
在本实施例的一种可能设计中,上述数据传输装置设置有WIFI发送机,WIFI发送模块1520包括:
CCA单元,用于基于时域资源信息所指示的开始时间,在频域资源信息所指示的频域资源上进行CCA;
发送单元,用于在CCA成功的情况下,通过WIFI发送机在频域资源信息所指示的频域资源上,发送WIFI包。
在本实施例的一种可能设计中,蓝牙发送模块1510用于发送下一蓝牙包,下一蓝牙包包括有关于下一WIFI包的调度信息。
在本实施例的一种可能设计中,WIFI发送模块1520用于在发送下一蓝牙包之后,接收蓝牙回复包,蓝牙回复包包括对WIFI包的ACK或NACK。
在本实施例的一种可能设计中,接收侧的第一蓝牙设备包括:第一蓝牙子设备和第二蓝牙子设备。
在一些实施例中:发送第一蓝牙子设备对应的第一蓝牙包;
以及,发送第二蓝牙子设备对应的第二蓝牙包;
在一些实施例中:基于第一蓝牙包的调度信息发送第一蓝牙子设备对应的第一WIFI包;
以及,基于第二蓝牙包的调度信息发送第二蓝牙子设备对应的第二WIFI包。
在本实施例的一种可能设计中,第一WIFI包和第二WIFI包在传输时占用的频域资源之间的间隔大于第一阈值,第一WIFI包和第二WIFI包在传输时占用的时域资源存在部分重叠或全部重叠。
图16示出了本申请一个示例性实施例提供的第二蓝牙设备300的结构示意图。
第二蓝牙设备300包括中央处理器(Central Processing Unit,CPU)1600(或微处理器)、蓝牙发送/收发机110和WIFI发送机120。CPU1600包括一个或者一个以上处理核心,通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。CPU1800负责管理蓝牙发送/收发机110和WIFI发送机120,以实现上述方法例中由第二蓝牙设备300执行的全部或部分步骤。
本领域技术人员可以理解,上述示出的结构并不构成对第二蓝牙设备300的限定,第二蓝牙设备300可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
图17示出了本申请一个示例性实施例提供的第一蓝牙设备330的结构示意图。
第一蓝牙设备330包括微处理器1700、蓝牙接收/收发机140和WIFI接收机150。微处理器1700包括一个或者一个以上处理核心,通过运行软件程序以及模块,从而执行各种功能应用以及信息处理。微处理器1700负责管理蓝牙接收/收发机140和WIFI接收机150,以实现上述方法例中由第一蓝牙设备330执行的全部或部分步骤。
本领域技术人员可以理解,上述示出的结构并不构成对第一蓝牙设备330的限定,第一蓝牙设备330可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
在示例性实施例中,本申请还提供了一种蓝牙耳机,该蓝牙耳机包括:蓝牙接收/收发机和WIFI接收机,但不包括WIFI发送机,该蓝牙耳机用以实现如接收端或第一蓝牙设备所执行的数据传输方法。
在示例性实施例中,还提供了一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器从计算机可读存储介质读取该计算机指令,处理器从计算机可读存储介质读取并执行该计算机指令,以实现上述各方法实施例提供的数据传输方法。
在示例性实施例中,还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,计算机程序由处理器加载并执行以实现上述各方法实施例提供的数据传输方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (30)

  1. 一种数据传输方法,其特征在于,所述方法由第一蓝牙设备执行,所述方法包括:
    接收蓝牙包,所述蓝牙包包括有关于WIFI包的调度信息;
    基于所述调度信息接收所述WIFI包。
  2. 根据权利要求1所述的方法,其特征在于,所述蓝牙包包括有关于WIFI包的调度信息包括:
    所述蓝牙包包括一指针,所述指针指向关于WIFI包的调度信息。
  3. 根据权利要求1所述的方法,其特征在于,所述调度信息包括时域资源信息和频域资源信息中的至少一种。
  4. 根据权利要求3所述的方法,其特征在于,所述时域资源信息包括如下至少一项:
    开始接收时间与所述蓝牙包之间的偏移值;
    时间片信息;
    接收时长;
    超时时长。
  5. 根据权利要求3所述的方法,其特征在于,所述频域资源信息包括如下至少一项:
    频点;
    带宽。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述调度信息还包括如下至少一项:
    包速率类型;
    调制编码方式;
    加密方式。
  7. 根据权利要求3至5任一所述的方法,其特征在于,所述蓝牙设备设置有WIFI接收机,所述基于所述调度信息接收所述WIFI包,包括:
    基于所述时域资源信息所指示的开始时间,开启所述WIFI接收机;
    通过所述WIFI接收机在所述频域资源信息所指示的频域资源上,尝试接收所述WIFI包。
  8. 根据权利要求3至5任一所述的方法,其特征在于,所述方法还包括:
    在所述时域资源信息所指示的结束时间或超时时间还未接收到所述WIFI包的情况下,关闭所述WIFI接收机。
  9. 根据权利要求1至5任一所述的方法,其特征在于,所述方法还包括:
    发送蓝牙回复包,所述蓝牙回复包包括对所述WIFI包的确认ACK消息或非确认NACK消息。
  10. 根据权利要求9所述的方法,其特征在于,所述发送蓝牙回复包之前,还包括:
    接收下一蓝牙包,所述下一蓝牙包包括有关于下一WIFI包的调度信息;
    所述发送所述蓝牙回复包,包括:
    在接收所述下一蓝牙包之后发送所述蓝牙回复包,所述蓝牙回复包包括对所述WIFI包的ACK消息或NACK消息。
  11. 根据权利要求1至10任一所述的方法,其特征在于,所述第一蓝牙设备包括:第一蓝牙子设备和第二蓝牙子设备,所述接收蓝牙包,包括:
    所述第一蓝牙子设备接收第一蓝牙包;以及,所述第二蓝牙子设备接收第二蓝牙包;
    所述基于所述调度信息接收所述WIFI包,包括:
    所述第一蓝牙子设备基于所述第一蓝牙包的调度信息接收第一WIFI包;以及,所述第二蓝牙子设备基于所述第二蓝牙包的调度信息接收第二WIFI包。
  12. 根据权利要求11所述的方法,其特征在于,
    所述第一WIFI包和所述第二WIFI包在传输时占用的频域资源之间的间隔大于第一阈值,所述第一 WIFI包和所述第二WIFI包在传输时占用的时域资源存在部分重叠或全部重叠。
  13. 一种数据传输方法,其特征在于,所述方法由第二蓝牙设备执行,所述方法包括:
    发送蓝牙包,所述蓝牙包包括有关于WIFI包的调度信息;
    基于所述调度信息发送所述WIFI包。
  14. 根据权利要求13所述的方法,其特征在于,所述蓝牙包包括有关于WIFI包的调度信息包括:
    所述蓝牙包包括一指针,所述指针指向关于WIFI包的调度信息。
  15. 根据权利要求13所述的方法,其特征在于,所述调度信息包括时域资源信息和频域资源信息中的至少一种。
  16. 根据权利要求15所述的方法,其特征在于,所述时域资源信息包括如下至少一项:
    开始接收时间与所述蓝牙包之间的偏移值;
    时间片信息;
    接收时长;
    超时时长。
  17. 根据权利要求15所述的方法,其特征在于,所述频域资源信息包括如下至少一项:
    频点;
    带宽。
  18. 根据权利要求13至17任一所述的方法,其特征在于,所述调度信息还包括如下至少一项:
    包速率类型;
    调制编码方式;
    加密方式。
  19. 根据权利要求12至15任一所述的方法,其特征在于,所述蓝牙设备设置有WIFI发送机,所述基于所述调度信息发送所述WIFI包,包括:
    基于所述时域资源信息所指示的开始时间,在所述频域资源信息所指示的频域资源上进行CCA;
    在所述CCA成功的情况下,通过所述WIFI发送机在所述频域资源信息所指示的频域资源上,发送所述WIFI包。
  20. 根据权利要求12至15任一所述的方法,其特征在于,所述方法还包括:
    接收蓝牙回复包,所述蓝牙回复包包括对所述WIFI包的ACK消息或NACK消息。
  21. 根据权利要求20所述的方法,其特征在于,所述接收蓝牙回复包之前,还包括:
    发送下一蓝牙包,所述下一蓝牙包包括有关于下一WIFI包的调度信息;
    所述接收蓝牙回复包,包括:
    在发送所述下一蓝牙包之后,接收所述蓝牙回复包,所述蓝牙回复包包括对所述WIFI包的ACK消息或NACK消息。
  22. 根据权利要求13至21任一所述的方法,其特征在于,作为接收侧的第一蓝牙设备包括:第一蓝牙子设备和第二蓝牙子设备,所述发送蓝牙包,包括:
    发送所述第一蓝牙子设备对应的第一蓝牙包;以及,发送所述第二蓝牙子设备对应的第二蓝牙包;
    所述基于所述调度信息发送所述WIFI包,包括:
    基于所述第一蓝牙包的调度信息发送所述第一蓝牙子设备对应的第一WIFI包;以及,基于所述第二蓝牙包的调度信息发送所述第二蓝牙子设备对应的第二WIFI包。
  23. 根据权利要求22所述的方法,其特征在于,
    所述第一WIFI包和所述第二WIFI包在传输时占用的频域资源之间的间隔大于第一阈值,所述第一WIFI包和所述第二WIFI包在传输时占用的时域资源存在部分重叠或全部重叠。
  24. 一种数据传输装置,其特征在于,所述装置包括:
    蓝牙接收模块,用于接收蓝牙包,所述蓝牙包包括有关于WIFI包的调度信息;
    WIFI接收模块,用于基于所述调度信息接收所述WIFI包。
  25. 一种数据传输装置,其特征在于,所述装置包括:
    蓝牙发送模块,用于发送蓝牙包,所述蓝牙包包括有关于WIFI包的调度信息;
    WIFI发送模块,用于基于所述调度信息发送所述WIFI包。
  26. 一种第一蓝牙设备,其特征在于,所述第一蓝牙设备包括:处理器和存储器,所述存储器存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如权利要求1至12任一所述数据传输方法。
  27. 一种第二蓝牙设备,其特征在于,所述第二蓝牙设备包括:处理器和存储器,所述存储器存储有计算机程序,所述计算机程序由所述处理器加载并执行以实现如权利要求13至23任一所述数据传输方法。
  28. 一种蓝牙耳机,其特征在于,所述蓝牙耳机包括:蓝牙接收机和WIFI接收机,所述蓝牙耳机用以实现如权利要求1至12任一所述数据传输方法。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序由处理器加载并执行以实现如权利要求1至23任一所述数据传输方法。
  30. 一种计算机程序产品,其特征在于,所述计算机程序产品包括计算机指令,所述计算机指令存储在计算机可读存储介质中,处理器从所述计算机可读存储介质中获取所述计算机指令,使得所述处理器加载并执行以实现如权利要求1至23任一所述数据传输方法。
PCT/CN2022/122703 2022-09-29 2022-09-29 数据传输方法、装置、设备、介质和程序产品 WO2024065418A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122703 WO2024065418A1 (zh) 2022-09-29 2022-09-29 数据传输方法、装置、设备、介质和程序产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122703 WO2024065418A1 (zh) 2022-09-29 2022-09-29 数据传输方法、装置、设备、介质和程序产品

Publications (1)

Publication Number Publication Date
WO2024065418A1 true WO2024065418A1 (zh) 2024-04-04

Family

ID=90475300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122703 WO2024065418A1 (zh) 2022-09-29 2022-09-29 数据传输方法、装置、设备、介质和程序产品

Country Status (1)

Country Link
WO (1) WO2024065418A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160286554A1 (en) * 2015-03-27 2016-09-29 Intel IP Corporation Methods, Systems, and Devices for Dynamic Packet Transfer in Wireless Networks
WO2019085351A1 (zh) * 2017-10-31 2019-05-09 青岛海信电器股份有限公司 无线连接方法及设备
CN110312237A (zh) * 2019-07-05 2019-10-08 恒玄科技(上海)有限公司 无线耳机及无线耳机的通信方法
US20200359442A1 (en) * 2019-05-07 2020-11-12 Baidu Online Network Technology (Beijing) Co., Ltd. Network distribution and pairing method, control terminal, device and server
CN114258003A (zh) * 2021-12-22 2022-03-29 英华达(南京)科技有限公司 音频播放控制方法、系统、设备及存储介质
CN114827922A (zh) * 2022-05-13 2022-07-29 山东亚微软件股份有限公司 一种电子桌牌控制方法、装置和介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160286554A1 (en) * 2015-03-27 2016-09-29 Intel IP Corporation Methods, Systems, and Devices for Dynamic Packet Transfer in Wireless Networks
WO2019085351A1 (zh) * 2017-10-31 2019-05-09 青岛海信电器股份有限公司 无线连接方法及设备
US20200359442A1 (en) * 2019-05-07 2020-11-12 Baidu Online Network Technology (Beijing) Co., Ltd. Network distribution and pairing method, control terminal, device and server
CN110312237A (zh) * 2019-07-05 2019-10-08 恒玄科技(上海)有限公司 无线耳机及无线耳机的通信方法
CN114258003A (zh) * 2021-12-22 2022-03-29 英华达(南京)科技有限公司 音频播放控制方法、系统、设备及存储介质
CN114827922A (zh) * 2022-05-13 2022-07-29 山东亚微软件股份有限公司 一种电子桌牌控制方法、装置和介质

Similar Documents

Publication Publication Date Title
US11658843B2 (en) System and method for full-duplex media access control using request-to-send signaling
JP6801757B2 (ja) 無線通信装置及び無線通信方法
RU2421924C2 (ru) Усовершенствование энергосбережения для беспроводной связи
CN101772192B (zh) 无线通信方法及无线电子装置
US9872298B2 (en) System and method for reducing collisions in wireless networks
JP7074216B2 (ja) 情報処理装置および情報処理方法
JP2016522631A (ja) Ps−pollに対するアクセスポイント応答
US10819489B2 (en) Real time ACK/NAK from link sniffing
WO2021129893A1 (zh) 一种用于无线通信系统的设备通信方法及系统
JP2008522497A (ja) マルチモード無線操作のためのシステムおよび方法
KR20080019618A (ko) 단말기 지원의 wlan 접근점 속도 적응
US8848676B1 (en) Apparatus and method for coexistent wireless and bluetooth communication employing interruption of arbitration requests to allocate use of a shared antenna
WO2020037990A1 (zh) 实现数据传输的冲突检测方法及装置
US10880045B2 (en) Retransmission and new packet detection in wireless systems
WO2020107348A1 (zh) 非授权频谱中的通信方法、装置及系统
US11184890B2 (en) Low-latency Wi-Fi MAC-layer protocol
US20070195813A1 (en) Multicast packet transmitting method of wireless network
Garcia-Luna-Aceves CTMA: A More Efficient Channel Access Method for Networks with Hidden Terminals
WO2024065418A1 (zh) 数据传输方法、装置、设备、介质和程序产品
US20070195769A1 (en) Multicast packet transmitting method of wireless network
US20220104131A1 (en) Bluetooth-based data transmission method and data receiving method, communicating apparatus and computer storage medium
US20220086910A1 (en) Multi-User-RTS and CTS Frames for a Sub-Channel Selective Transmission Station
CN114666742A (zh) 蓝牙数据包的广播方法、装置、终端及存储介质
US11677507B2 (en) Faster retransmission in multi-link communication
US20210410137A1 (en) Low-Latency Communication in a WLAN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960055

Country of ref document: EP

Kind code of ref document: A1