WO2024065399A1 - 天线、控制方法和相关设备 - Google Patents

天线、控制方法和相关设备 Download PDF

Info

Publication number
WO2024065399A1
WO2024065399A1 PCT/CN2022/122600 CN2022122600W WO2024065399A1 WO 2024065399 A1 WO2024065399 A1 WO 2024065399A1 CN 2022122600 W CN2022122600 W CN 2022122600W WO 2024065399 A1 WO2024065399 A1 WO 2024065399A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
switch unit
sub
antenna
parasitic
Prior art date
Application number
PCT/CN2022/122600
Other languages
English (en)
French (fr)
Inventor
朱毛毛
周铭
梁擎
朱青
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/122600 priority Critical patent/WO2024065399A1/zh
Priority to CN202280009041.XA priority patent/CN118120111A/zh
Publication of WO2024065399A1 publication Critical patent/WO2024065399A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith

Definitions

  • the present application relates to the field of antennas, and in particular to an antenna, a control method and related equipment.
  • Antennas are key components for realizing intelligent network functions such as radio communications, wireless networks, and satellite positioning, and they play a key role in sending and receiving signals in communication systems.
  • the polarization of an antenna refers to the direction of the electric field strength formed when the antenna radiates.
  • the antenna pattern refers to the graph of the relative field strength of the radiation field changing with direction at a certain distance from the antenna.
  • a board-mounted antenna is an antenna that directly uses a printed circuit board (PCB) as a medium and realizes the antenna through a PCB process. This type of PCB board-mounted antenna is widely used in wireless modules such as WiFi modules, Bluetooth modules, and ZigBee modules.
  • Intelligent networking includes both the intelligent needs of unmanned driving and advanced driving assistance systems (ADAS), as well as the information networking needs between people, vehicles and roads, such as: unmanned delivery vehicles, self-driving trucks, self-driving buses, self-driving taxis, passenger car ADAS and road side units (Road Side Unit, RSU), etc.
  • ADAS advanced driving assistance systems
  • Smart cars, new energy vehicles or vehicle domain controllers Domain Control Unit, DCU), body controllers (Body Control Module, BCM) or car computers, portable devices, smart locks, etc. will have onboard antennas.
  • Onboard antennas are usually fixed on circuit boards, and the polarization mode and directional pattern are immutable. It is very likely that the antenna performance will be affected by the installation position, space restrictions, metal shielding, etc., resulting in poor signals in some areas, affecting the user experience.
  • the present application provides an antenna, a control method and related equipment, which can change the polarization mode and radiation pattern of the antenna and improve the antenna performance.
  • the present application provides an antenna, comprising a substrate, a parasitic unit, a radiation unit, a first switch unit, and a second switch unit.
  • the substrate is provided with a feeding terminal, a first ground terminal and a second ground terminal. Two ends of the parasitic unit are connected to the first ground terminal and the second ground terminal. One end of the radiation unit is connected to the feeding terminal.
  • the first switch unit and the second switch unit are provided on the parasitic unit.
  • the first switch unit and the second switch unit can control the on and off of the circuit, and can change the polarization mode and radiation pattern of the antenna, so that the antenna has different working modes. Different working modes can adapt to different antenna application scenarios and improve antenna performance.
  • the parasitic unit includes a first sub-parasitic unit, a second sub-parasitic unit and a third sub-parasitic unit.
  • One end of the first sub-parasitic unit is connected to the first ground terminal, and the other end of the first sub-parasitic unit is connected to one end of the second sub-parasitic unit through the first switch unit.
  • the other end of the second sub-parasitic unit is connected to one end of the third sub-parasitic unit through the second switch unit.
  • the other end of the third sub-parasitic unit is connected to the second ground terminal.
  • a difference between an equivalent electrical size of the first sub-parasitic unit and the second sub-parasitic unit and an equivalent electrical size of the radiation unit is within a first range.
  • the specific values of the first range can be set according to actual conditions, as long as the equivalent electrical dimensions of the first sub-parasitic unit and the second sub-parasitic unit are equivalent to the equivalent electrical dimensions of the radiation unit.
  • the antenna can constitute a horizontally polarized antenna.
  • equivalent electrical sizes of the second sub-parasitic unit and the third sub-parasitic unit are greater than equivalent electrical sizes of the first sub-parasitic unit and the second sub-parasitic unit.
  • the equivalent electrical sizes of the second sub-parasitic unit and the third sub-parasitic unit are set to be larger than the equivalent electrical sizes of the first sub-parasitic unit and the second sub-parasitic unit to ensure the directional gain of the antenna.
  • the length of the first sub-parasitic unit and the length of the third sub-parasitic unit are both within the second range.
  • the specific value of the second range can be set according to the actual situation, as long as the first sub-parasitic unit and the third sub-parasitic unit are grounded respectively and do not affect the signal of the radiation unit.
  • the distance from the first ground terminal to the feeding terminal is within a third range.
  • the first switch unit when the first switch unit is turned on and the second switch unit is turned off, the first sub-parasitic unit and the parallel part of the radiating unit form a balanced feeding end, on which the current amplitudes are equal and the phases are opposite.
  • the spacing of the balanced feeding ends will affect the impedance of the antenna and thus affect the efficiency of the antenna, so it needs to be controlled within a certain range, that is, within the third range.
  • the difference between the distance between the second ground terminal and the feeding terminal and one quarter of the dielectric wavelength is within a fourth range.
  • the antenna gain will be affected.
  • the antenna when the first switch unit and the second switch unit are both disconnected, the antenna forms a vertically polarized antenna.
  • the second sub-parasitic unit is in a suspended state, and the first sub-parasitic unit and the third sub-parasitic unit have no effect on the signal of the radiating unit due to size limitations, and the radiating unit forms a vertically polarized antenna.
  • the antenna when the first switch unit is turned on and the second switch unit is turned off, the antenna constitutes a horizontally polarized antenna.
  • the third sub-parasitic unit is grounded, but due to size limitations, the third sub-parasitic unit has no effect on the signal of the radiating unit.
  • the first sub-parasitic unit and part of the radiating unit are symmetrically designed, which can offset the radiation field of part of the radiating unit, so that the radiating unit, the first sub-parasitic unit and the second sub-parasitic unit constitute a horizontally polarized antenna.
  • the antenna when the first switch unit is disconnected and the second switch unit is turned on, the antenna constitutes a vertically polarized antenna.
  • the first sub-parasitic unit is grounded, but due to size limitations, the first sub-parasitic unit has no effect on the signal of the radiating unit.
  • the current phase of the second sub-parasitic unit, the second switch unit, and the third sub-parasitic unit as a whole is 90° ahead of the radiating unit, so the above-mentioned whole becomes a reflector, which reflects the signal of the radiating unit, and the antenna at this time constitutes a vertically polarized antenna.
  • the first switch unit and the second switch unit are: a diode, a triode or a field effect transistor, etc.
  • the polarization mode and radiation pattern of the antenna can be controlled to adapt to different antenna application scenarios, with strong flexibility.
  • the first switch unit and/or the second switch unit is a zero-ohm resistor.
  • the first switch unit and/or the second switch unit can be directly set to a zero ohm resistor, and the polarization mode and directional pattern of the antenna can be directly customized as needed, or the dynamic adjustment mode can be reduced. In this case, the cost of the antenna is low and it can be directly customized for the required scene.
  • the present application also provides a control method for controlling the antenna of the first aspect.
  • the control method includes: determining the working mode of the antenna. Controlling the first switch unit and the second switch unit according to the working mode. When the working mode is the first vertical polarization mode, the first switch unit and the second switch unit are controlled to be disconnected. Alternatively, when the working mode is the horizontal polarization mode, the first switch unit is controlled to be turned on, and the second switch unit is controlled to be disconnected. Alternatively, when the working mode is the second vertical polarization mode, the first switch unit is controlled to be disconnected, and the second switch unit is controlled to be turned on.
  • the present application further provides a controller for controlling the antenna of the first aspect.
  • the controller includes a determination module and a control module.
  • the determination module is used to determine the working mode of the antenna.
  • a control module is used to control the first switch unit and the second switch unit according to the working mode.
  • the working mode is the first vertical polarization mode
  • the first switch unit and the second switch unit are controlled to be disconnected.
  • the working mode is the horizontal polarization mode
  • the first switch unit is controlled to be turned on
  • the second switch unit is controlled to be disconnected.
  • the working mode is the second vertical polarization mode
  • the first switch unit is controlled to be disconnected, and the second switch unit is controlled to be turned on.
  • the present application further provides a controller, comprising one or more processors; wherein the one or more processors are used to execute computer programs stored in one or more memories, so that the controller implements the control method described in the second aspect.
  • the present application also provides a communication device, comprising the controller described in the third aspect or the fourth aspect and the antenna described in the first aspect.
  • the present application also provides a vehicle comprising the communication device described in the fifth aspect.
  • FIG1A is a schematic diagram of the structure of an antenna provided in an embodiment of the present application.
  • FIG1B is a schematic diagram of the structure of another antenna provided in an embodiment of the present application.
  • FIG1C is a schematic diagram of the structure of another antenna provided in an embodiment of the present application.
  • FIG1D is a schematic diagram of the structure of another antenna provided in an embodiment of the present application.
  • FIG. 1E is a schematic diagram of the structure of another antenna provided in an embodiment of the present application.
  • FIG2A is a schematic diagram of an on-off state of an antenna provided in an embodiment of the present application.
  • FIG2B is an antenna pattern corresponding to FIG2A ;
  • FIG3A is a schematic diagram of another on-off state of an antenna provided in an embodiment of the present application.
  • FIG3B is an antenna pattern corresponding to FIG3A ;
  • FIG4A is a schematic diagram of another on-off state of an antenna provided in an embodiment of the present application.
  • FIG4B is an antenna pattern corresponding to FIG4A
  • FIG5 is a flow chart of a control method provided in an embodiment of the present application.
  • FIG6 is a schematic diagram of the structure of a controller provided in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of the structure of another controller provided in an embodiment of the present application.
  • first and second are used for descriptive purposes only and are not to be understood as suggesting or implying relative importance or implicitly indicating the number of the indicated technical features.
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of the features, and in the description of the embodiments of the present application, unless otherwise specified, "plurality” means two or more.
  • the polarization of an antenna refers to the direction of the electric field strength formed when the antenna radiates.
  • Horizontal polarization means that when the radio wave propagates in space, the instantaneous direction of its electric field vector is parallel to the ground.
  • Vertical polarization means that when the radio wave propagates in space, the instantaneous direction of its electric field vector is perpendicular to the ground.
  • the vibrator generally refers to the antenna vibrator, which is a component on the antenna that has the function of guiding and amplifying electromagnetic waves, making the electromagnetic signal received by the antenna stronger.
  • a non-fed oscillator refers to an oscillator whose feeding signal is not directly connected through a transmission line.
  • a reflector refers to a non-fed oscillator that has a reflecting effect on the beam.
  • PCB Printed Circuit Board
  • Printed circuit board is also called printed circuit board, commonly known as hard board.
  • a flexible printed circuit board is a printed circuit made of a flexible insulating substrate (polyester film or polyimide, etc.).
  • a flexible printed circuit board is also called a flexible board.
  • the embodiment of the present application provides an antenna whose polarization mode and radiation pattern can be changed to adapt to different antenna application scenarios, improve the stability of antenna communication, and enhance the user experience.
  • the antenna includes a substrate 101, a parasitic unit, a radiation unit 102, a first switch unit 103 and a second switch unit 104.
  • the substrate is provided with a feeding terminal A, a first ground terminal B and a second ground terminal C. Two ends of the parasitic unit are connected to the first ground terminal B and the second ground terminal C. One end of the radiation unit 102 is connected to the feeding terminal A.
  • the first switch unit 103 and the second switch unit 104 are provided on the parasitic unit.
  • the polarization mode and radiation pattern of the antenna can be changed, so that the antenna has different working modes. Different working modes can adapt to different antenna application scenarios to effectively improve the user experience of the communication device.
  • the antenna's directivity pattern and polarization can be adjusted by controlling the on and off of the first switch unit and the second switch unit to achieve high-performance coverage of the antenna signal, effectively reducing the requirements for the antenna's installation position.
  • it is beneficial to the normalized design of the vehicle and reduces the risk of vehicle modification.
  • the substrate may be a printed circuit board (PCB) or a flexible printed circuit board (FPC).
  • the outer edge of the substrate may be any shape such as a rectangle, a square, a parallelogram, or a circle. Exemplarily, referring to FIG1A , the outer edge of the substrate 101 is a rectangle.
  • a metal ground is provided on the PCB, that is, the PCB has a metal ground layer.
  • the first ground terminal B and the second ground terminal C are connected to the metal ground layer to achieve grounding.
  • the radiation unit 102 is connected to a feed source via a feed end.
  • the feed source is a microwave circuit network that can feed a high-frequency signal to the radiation unit 102 according to a certain amplitude and/or phase distribution.
  • the radiation unit 102 can be implemented by a feed vibrator, which is, for example, a monopole antenna.
  • the parasitic unit includes a first sub-parasitic unit, a second sub-parasitic unit and a third sub-parasitic unit.
  • One end of the first sub-parasitic unit is connected to the first ground terminal, and the other end of the first sub-parasitic unit is connected to one end of the second sub-parasitic unit through the first switch unit.
  • the other end of the second sub-parasitic unit is connected to one end of the third sub-parasitic unit through the second switch unit.
  • the other end of the third sub-parasitic unit is connected to the second ground terminal.
  • the parasitic unit can be implemented using a metal branch.
  • the metal branch includes a first sub-branch 105 (corresponding to the first sub-parasitic unit), a second sub-branch 106 (corresponding to the second sub-parasitic unit) and a third sub-branch 107 (corresponding to the third sub-parasitic unit).
  • one end of the first sub-branch 105 is connected to the first ground terminal
  • the other end of the first sub-branch 105 is connected to one end of the second sub-branch 106 through the first switch unit 103.
  • the other end of the second sub-branch 106 is connected to one end of the third sub-branch 107 through the second switch unit 104.
  • the other end of the third sub-branch 107 is connected to the second ground terminal.
  • the radiation unit 102 has a long side and a short side.
  • the radiation unit 102 is L-shaped, one side of the L is a long side, and the other side is a short side.
  • the radiation unit 102 can be miniaturized by winding or the like.
  • the long side can be a bent side, see FIG. 1B (the long side is a right-angled bent side) and FIG. 1C (the long side is a curved bent side).
  • the long side can also be a curved side, see FIG. 1D.
  • the directions of the short side and the long side can be changed.
  • the short side of the radiation unit 102 and the first sub-branch 105 remain symmetrical.
  • the portion consisting of the radiation unit 102 and the first sub-branch 105 and the second sub-branch 106 may be arranged symmetrically (as shown in FIG. 1A ) or asymmetrically (for example, FIG. 1B , FIG. 1C , and FIG. 1D ).
  • the short side of the radiation unit is parallel to the first sub-branch 105, and the long side points in the opposite direction to the second sub-branch 106, so that the part consisting of the first sub-branch 105 and the second sub-branch 106 and the radiation unit 102 form a dipole antenna.
  • the difference between the equivalent electrical dimensions of the first sub-parasitic unit and the second sub-parasitic unit and the equivalent electrical dimensions of the radiating unit is within a first range, wherein the electrical dimensions are the ratio of the actual dimensions to the working wavelength.
  • the two equivalent electrical dimensions tend to be consistent, and the error between them is within a tolerable range, which is the first range.
  • the difference between the equivalent electrical dimensions D1 of the first sub-parasitic unit and the second sub-parasitic unit and the equivalent electrical dimension K of the radiating unit is within the first range, that is,
  • the specific values of the first range can be set according to actual conditions, as long as the equivalent electrical dimensions of the first sub-parasitic unit and the second sub-parasitic unit are consistent with the equivalent electrical dimensions of the radiating unit.
  • the antenna can constitute a horizontally polarized antenna.
  • the difference between the equivalent electrical dimensions of the first sub-branch 105 and the second sub-branch 106 and the equivalent electrical dimensions of the radiating unit 102 is within the first range.
  • the first range is 0 to 0.2 ⁇
  • the first range includes two endpoints of 0 and 0.2 ⁇
  • is the wavelength of the medium.
  • the first range is 0 to 0.05 ⁇ , and the first range includes two endpoints of 0 and 0.05 ⁇ ; at this time, the differential effect of the differential structure formed by the radiating unit 102 and the first sub-branch 105 and the second sub-branch 106 is better.
  • the medium wavelength is the wavelength of the electromagnetic wave corresponding to the center frequency of the operating band (Operating Band) of the radiation unit in the embodiment of the present application.
  • is related to the dielectric constant.
  • the dielectric constant corresponding to ⁇ is related to the dielectric constant of the medium and the dielectric constant of air.
  • the dielectric constant corresponding to ⁇ is the average value of the dielectric constant of the medium and the dielectric constant of air.
  • the operating frequency band of the radiation unit is a range and may include multiple channels, and the length of the radiation unit is a fixed value, it is difficult to achieve the best resonance of the radiation unit to the electromagnetic wave of the operating frequency, so the length of the radiation unit does not need to be exactly 1/4 ⁇ .
  • the length of the radiation unit only needs to be close to 1/4 ⁇ , for example, the length of the radiation unit is about 0.2 ⁇ -0.3 ⁇ .
  • the equivalent electrical dimensions of the second sub-parasitic unit and the third sub-parasitic unit are greater than the equivalent electrical dimensions of the first sub-parasitic unit and the second sub-parasitic unit.
  • the equivalent electrical dimensions of the second sub-parasitic unit and the third sub-parasitic unit are greater than the equivalent electrical dimensions of the first sub-parasitic unit and the second sub-parasitic unit.
  • the equivalent electrical size D2 of the second sub-parasitic unit and the third sub-parasitic unit only needs to be slightly larger than the equivalent electrical size D1 of the first sub-parasitic unit and the second sub-parasitic unit, that is, the difference obtained by D2-D1 is within an acceptable range, which can be 0 to 0.1 ⁇ , which does not include the endpoint 0 but includes the endpoint 0.1 ⁇ .
  • the range can be 0 to 0.05 ⁇ , and similarly, the range does not include the endpoint 0 but includes the endpoint 0.05 ⁇ ; when this range is adopted, the gain of the directional antenna is greater.
  • the length of the first sub-parasitic unit and the length of the third sub-parasitic unit are both within the second range.
  • the specific value of the second range can be set according to the actual situation, as long as the first sub-parasitic unit and the third sub-parasitic unit are grounded respectively and do not affect the signal of the radiating unit.
  • the second range is 0 to 0.1 ⁇ , and the second range includes two endpoints of 0 and 0.1 ⁇ .
  • Figure 1E is a schematic diagram of the structure of another antenna provided in an embodiment of the present application.
  • the length of the first sub-branch 105 i.e., the first sub-parasitic unit
  • the first switch unit 103 is connected to the first ground terminal B.
  • the specific positions of the first switch unit 103 and the second switch unit 104 are not fixed and are not limited to the positions shown in any of the schematic diagrams of FIG. 1A to FIG. 1E , and can be adjusted according to actual conditions.
  • the distance from the first ground terminal B to the feeding terminal A is within a third range.
  • the first switch unit is turned on and the second switch unit is turned off, the first sub-parasitic unit and the parallel part of the radiating unit form a balanced feeding terminal, on which the current amplitudes are equal and the phases are opposite.
  • the spacing of the balanced feeding terminals will affect the impedance of the antenna and thus affect the efficiency of the antenna. Therefore, controlling the distance from the first ground terminal B to the feeding terminal A within a certain range, i.e., within the third range, can reduce the impact on the antenna impedance and improve the efficiency of the antenna.
  • the third range is 0 to 0.1 ⁇ , and the third range does not include the endpoint 0 but includes the endpoint 0.1 ⁇ .
  • the distance between the second ground terminal C and the feeding terminal A approaches one-quarter of the dielectric wavelength, so that the antenna gain can be improved.
  • the distance between the second ground terminal C and the feeding terminal A is the straight-line distance D AC therebetween, and D AC is approximately 1/4 ⁇ , that is,
  • the fourth range is 0-0.1 ⁇ , and the fourth range includes the endpoint 0 and the endpoint 0.1 ⁇ .
  • the fourth range is 0-0.05 ⁇ , and the fourth range includes the endpoint 0 and the endpoint 0.05 ⁇ .
  • FIG2A shows the antenna state at this time.
  • the second sub-branch 106 is a suspended metal branch, and the second sub-branch 106 is not grounded. Since the first sub-branch 105 and the third sub-branch 107 are small in size (their lengths are within the above-mentioned second range), they have no effect on the antenna's radiation pattern. At this time, the antenna constitutes a vertically polarized antenna, and the corresponding antenna radiation pattern refers to FIG2B.
  • Figure 3A shows the antenna state at this time.
  • the third sub-branch 107 has no effect on the antenna pattern due to its small size.
  • the first sub-branch 105 and part of the radiating unit 102 are symmetrically designed, which can offset the radiation field of part of the radiating unit 102, so that the radiating unit 102, the first sub-branch 105 and the second sub-branch 106 constitute a horizontally polarized dipole antenna, and the corresponding antenna pattern refers to Figure 3B.
  • first sub-branch 105 and the second sub-branch 106 can form a symmetrical design with the radiation unit 102, which can optimize the polarization performance of the antenna.
  • Figure 4A shows the antenna state at this time.
  • the first sub-branch 105 has no effect on the antenna's radiation pattern due to its small size.
  • the current phase of the second sub-branch 106, the second switch unit 104 and the third sub-branch 107 as a whole is 90° ahead of the current phase of the radiation unit 102. Therefore, the above-mentioned whole becomes a reflector, which reflects the signal of the radiation unit 102.
  • the antenna constitutes a vertically polarized antenna, and the corresponding antenna radiation pattern refers to Figure 4B.
  • the first switch unit and the second switch unit are: a diode, a triode, or a metal-oxide semiconductor field-effect transistor (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET, referred to as field effect transistor), etc.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • the transistor includes an NPN transistor or a PNP transistor, and the metal-oxide semiconductor field effect transistor is referred to as a MOS transistor.
  • the on and off of controllable switches such as diodes, transistors, and MOS transistors can be controlled by the controller outputting a control signal.
  • the controller outputs a high or low level for on and off control.
  • the antenna has dynamic adjustable capability and has multiple dynamic adjustment modes (such as Figure 2B, Figure 3B or Figure 4B), which can adapt to different antenna application scenarios and has strong flexibility.
  • the first switch unit, or the second switch unit, or the first switch unit and the second switch unit can be directly set to a zero-ohm resistance, which is equivalent to a turned-on switch.
  • the polarization mode and radiation pattern of the antenna can be directly customized as needed, or the dynamic adjustment mode can be reduced.
  • the cost of the antenna is lower at this time, and it can be directly customized according to the required scenario.
  • the first switch unit or the second switch unit when the first switch unit or the second switch unit is in the on state, the first switch unit or the second switch unit can be a zero ohm resistor.
  • the antenna mode corresponding to the antenna in different models and different positions i.e., Figure 2B, Figure 3B or Figure 4B
  • the antenna mode corresponding to the antenna in different models and different positions can be determined by testing, and the on and off states corresponding to the first switch unit and the second switch unit are determined, that is, the zero ohm installation position is determined, and the switch unit in the on state is implemented with a zero ohm resistor, while the position of the switch unit in the off state can be left empty and unconnected.
  • the antenna has a lower cost and meets customization requirements.
  • the number of sub-branches is 2 (FIG. 1E) or 3 (FIG. 1A to FIG. 1D) as an example.
  • the number of sub-branches is greater than three, which can also achieve the effect of the embodiment of the present application. No further elaboration is given, and it is also within the protection scope of the present application.
  • the number of switch units is two switch units (FIG. 1A to FIG. 1E) as an example.
  • the number of switch units can also be three or greater than three, which can also achieve the effect of the embodiment of the present application. No further elaboration is given, and it is also within the protection scope of the present application.
  • FIG5 is a flow chart of a control method provided in an embodiment of the present application.
  • the control method is used to control the above-mentioned antenna, and the control method includes:
  • the working mode when the working mode is the first vertical polarization mode, the first switch unit and the second switch unit are controlled to be disconnected.
  • the working mode when the working mode is the horizontal polarization mode, the first switch unit is controlled to be turned on, and the second switch unit is controlled to be disconnected.
  • the working mode is the second vertical polarization mode, the first switch unit is controlled to be disconnected, and the second switch unit is controlled to be turned on.
  • the embodiment of the present application further provides a controller 600 for controlling the above-mentioned antenna.
  • FIG6 is a schematic diagram of the structure of a controller provided in an embodiment of the present application.
  • the controller 600 includes a determination module 601 and a control module 602. Among them:
  • the determination module 601 is used to determine the working mode of the antenna.
  • the control module 602 is used to control the first switch unit and the second switch unit according to the working mode.
  • the working mode is the first vertical polarization mode
  • the first switch unit and the second switch unit are controlled to be disconnected.
  • the working mode is the horizontal polarization mode
  • the first switch unit is controlled to be turned on
  • the second switch unit is controlled to be disconnected.
  • the working mode is the second vertical polarization mode
  • the first switch unit is controlled to be disconnected, and the second switch unit is controlled to be turned on.
  • Fig. 7 is a schematic diagram of the structure of another controller provided by the embodiment of the present application.
  • the embodiment of the present application further provides a controller 700.
  • the controller 700 includes a memory 701, a processor 702, a communication interface 704 and a bus 703.
  • the memory 701, the processor 702 and the communication interface 704 are connected to each other through the bus 703.
  • the controller 700 may be a chip or a chip system.
  • the memory 701 may be a read-only memory (ROM), a static storage device, a dynamic storage device or a random access memory (RAM).
  • the memory 701 may store a program. When the program stored in the memory 701 is executed by the processor 702, the processor 702 is used to execute each step of the control method described in any of the above embodiments.
  • Processor 702 can adopt a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), a graphics processing unit (GPU) or one or more integrated circuits to execute relevant programs to implement the control method described in any of the above embodiments.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • GPU graphics processing unit
  • the processor 702 may also be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the control method described in any embodiment of the present application may be completed by an integrated logic circuit of hardware in the processor 702 or by instructions in the form of software.
  • the above-mentioned processor 702 may also be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • the disclosed methods, steps and logic block diagrams in the embodiments of the present application may be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, etc.
  • the steps of the control method described in any embodiment of the present application may be directly embodied as being executed by a hardware decoding processor, or may be executed by a combination of hardware and software modules in a decoding processor.
  • the software module may be located in a mature storage medium in the art such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory or an electrically erasable programmable memory, a register, etc.
  • the storage medium is located in the memory 701, and the processor 702 reads the information in the memory 701 and completes the control method described in any of the above embodiments in combination with its hardware.
  • the communication interface 704 uses a transceiver device such as, but not limited to, a transceiver to implement communication between the controller 700 and other devices or a communication network.
  • a transceiver device such as, but not limited to, a transceiver to implement communication between the controller 700 and other devices or a communication network.
  • the bus 703 may include a path for transmitting information between various components of the controller 700 (eg, the memory 701 , the processor 702 , and the communication interface 704 ).
  • controller 700 shown in FIG. 7 only shows a memory, a processor, and a communication interface, in the specific implementation process, those skilled in the art should understand that the controller 700 also includes other devices necessary for normal operation. At the same time, according to specific needs, those skilled in the art should understand that the controller 700 may also include hardware devices for implementing other additional functions. In addition, those skilled in the art should understand that the controller 700 may also only include the devices necessary for implementing the embodiments of the present application, and does not necessarily include all the devices shown in FIG. 7.
  • An embodiment of the present application provides a communication device, which includes the aforementioned controller and the aforementioned antenna.
  • the embodiment of the present application provides a vehicle, which includes the aforementioned communication device.
  • the vehicles in this application may include road vehicles, water vehicles, air vehicles, industrial equipment, agricultural equipment, or entertainment equipment, etc.
  • the vehicle may be a vehicle, which is a vehicle in a broad sense, and may be a vehicle (such as a commercial vehicle, a passenger car, a motorcycle, a flying car, a train, etc.), an industrial vehicle (such as a forklift, a trailer, a tractor, etc.), an engineering vehicle (such as an excavator, a bulldozer, a crane, etc.), agricultural equipment (such as a mower, a harvester, etc.), amusement equipment, a toy vehicle, etc.
  • the embodiment of this application does not specifically limit the type of vehicle.
  • the vehicle may be a vehicle such as an airplane or a ship.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the units is only a logical function division. There may be other division methods in actual implementation, such as multiple units or components can be combined or integrated into another system, or some features can be ignored or not executed.
  • Another point is that the mutual coupling or direct coupling or communication connection shown or discussed can be through some interfaces, indirect coupling or communication connection of devices or units, which can be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place or distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions can be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions can be transmitted from a website site, a computer, a server or a data center by wired (e.g., coaxial cable, optical fiber, digital subscriber line) or wireless (e.g., infrared, wireless, microwave, etc.) mode to another website site, computer, server or data center.
  • the computer-readable storage medium can be any available medium that a computer can access or a data storage device such as a server or a data center that includes one or more available media integration.
  • the available medium can be a magnetic medium, (e.g., a floppy disk, a hard disk, a tape), an optical medium (e.g., a DVD), or a semiconductor medium (e.g., a solid-state hard disk), etc.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

一种天线、控制方法和相关设备。其中,天线包括基板、寄生单元、辐射单元、第一开关单元和第二开关单元。基板上设置有馈电端,第一接地端和第二接地端。寄生单元的两端连接于第一接地端和第二接地端。而辐射单元的一端连接于馈电端。上述第一开关单元、第二开关单元设置于寄生单元上。实施本申请提供的技术方案,通过控制第一开关单元和第二开关单元的工作,可以改变天线的极化方式和方向图,使得天线具有不同的工作模式,不同的工作模式可以适配不同的天线应用场景。

Description

天线、控制方法和相关设备 技术领域
本申请涉及天线领域,尤其涉及一种天线、控制方法和相关设备。
背景技术
天线是实现无线电通信、无线网络、卫星定位等智能网联功能的关键部件,承担着通信系统收发信号的关键作用。天线的极化,就是指天线辐射时形成的电场强度的方向。而天线方向图,是指在离天线一定距离处,辐射场的相对场强随方向变化的图形。进一步地,板载天线是直接利用印制电路板(Printed Circuit Board,PCB)作为介质,将天线通过PCB工艺实现的一种天线。这种PCB板载天线在WiFi模块、蓝牙模块、ZigBee模块等无线模块上应用极为广泛。
随着车辆智能化、网联化的不断推进,车辆已经不再是单纯的机械工业结合产品,有时更像是一个会奔跑的无线通信节点。天线作为整个通信系统最前端的组成部分,位置数据、通信数据往往需要天线来进行定位与传输。因此,天线的好坏直接影响着整个智能网联车辆系统的性能。智能网联既包括了无人驾驶、高级驾驶辅助系统(Advanced Driving Assistance System,ADAS)的智能化需求,也包括了人车路之间的信息网联化需求,例如:无人配送车辆、自驾卡车、自驾巴士、自驾的士、乘用车ADAS以及路侧单元(Road Side Unit,RSU)等等。
智能车、新能源车或者车辆的域控制器(Domain Control Unit,DCU)、车身控制器(Body Control Module,BCM)或车机、便携设备、智能锁等会有板载天线。而板载天线通常固定在电路板上,极化方式和方向图不可变,极有可能因为安装位置、空间限制、金属遮挡等原因影响天线性能,导致部分区域信号很差,影响用户体验。
发明内容
本申请提供了一种天线、控制方法和相关设备,可以改变天线的极化方式和方向图,提升天线性能。
第一方面,本申请提供了一种天线,包括基板、寄生单元、辐射单元、第一开关单元和第二开关单元。
其中,基板上设置有馈电端,第一接地端和第二接地端。寄生单元的两端连接于第一接地端和第二接地端。而辐射单元的一端连接于馈电端。上述第一开关单元、第二开关单元设置于寄生单元上。
本方案中,第一开关单元和第二开关单元可以控制电路的通断,可以改变天线的极化方式和方向图,使得天线具有不同的工作模式,不同的工作模式可以适配不同的天线应用场景,提升天线性能。
结合第一方面,在一种实施方式中,寄生单元包括第一子寄生单元,第二子寄生单元和第三子寄生单元。
其中,第一子寄生单元的一端连接第一接地端,第一子寄生单元的另一端通过第一开关 单元与第二子寄生单元的一端连接。第二子寄生单元的另一端通过第二开关单元与第三子寄生单元的一端连接。第三子寄生单元的另一端连接第二接地端。
结合第一方面,在一种实施方式中,第一子寄生单元和第二子寄生单元的等效电尺寸与辐射单元的等效电尺寸之差位于第一范围内。
其中,第一范围的具体数值可以根据实际情况进行设置,只要使得第一子寄生单元和第二子寄生单元的等效电尺寸与辐射单元的等效电尺寸相当即可,这样,通过控制第一开关单元和第二开关单元的工作,天线可以构成水平极化天线。
结合第一方面,在一种实施方式中,第二子寄生单元和第三子寄生单元的等效电尺寸大于第一子寄生单元和第二子寄生单元的等效电尺寸。
本方案中,设定第二子寄生单元和第三子寄生单元的等效电尺寸大于第一子寄生单元和第二子寄生单元的等效电尺寸,以保障天线的定向增益。
结合第一方面,在一种实施方式中,第一子寄生单元的长度和第三子寄生单元的长度均位于第二范围内。
本方案中,第二范围的具体数值可以根据实际情况进行设置,只要第一子寄生单元、第三子寄生单元各自接地后,不对辐射单元的信号造成影响即可。
结合第一方面,在一种实施方式中,第一接地端到馈电端的距离位于第三范围内。
本方案中,当第一开关单元导通,第二开关单元断开时,第一子寄生单元与辐射单元的平行部分组成平衡馈电端,其上电流幅度相等,相位相反,平衡馈电端的间距会影响天线的阻抗,从而影响天线的效率,所以需要控制在一定范围内,即第三范围内。
结合第一方面,在一种实施方式中,第二接地端与馈电端的距离与四分之一介质波长之差位于第四范围内。
本方案中,第二接地端与馈电端的距离如果不能满足趋于四分之一介质波长,则天线增益会受影响,第二接地端与馈电端的距离与四分之一介质波长之间的差值越大,天线的增益越小。因此,第二接地端与馈电端的距离与四分之一介质波长之差需要位于第四范围内,第四范围的具体数值可以根据实际情况进行设置。
结合第一方面,在一种实施方式中,第一开关单元和第二开关单元均断开时,天线构成垂直极化天线。此时,第二子寄生单元为悬浮状态,而第一子寄生单元和第三子寄生单元由于尺寸限制,导致它们对辐射单元的信号没有影响,由辐射单元构成垂直极化天线。
结合第一方面,在一种实施方式中,第一开关单元导通,第二开关单元断开时,天线构成水平极化天线。此时,第三子寄生单元接地,但是第三子寄生单元由于尺寸限制,导致它对辐射单元的信号没有影响。而此时第一子寄生单元和部分的辐射单元为对称设计,可以抵消辐射单元部分的辐射场,使得辐射单元、第一子寄生单元和第二子寄生单元构成水平极化天线。
结合第一方面,在一种实施方式中,第一开关单元断开,第二开关单元导通时,天线构成垂直极化天线。此时,第一子寄生单元接地,但是第一子寄生单元由于尺寸限制,导致它对辐射单元的信号没有影响。而此时,第二子寄生单元、第二开关单元和第三子寄生单元这个整体上的电流相位相比辐射单元超前90°,因此,上述的整体成为反射器,该反射器对辐射单元的信号进行反射,此时的天线构成垂直极化天线。
结合第一方面,在一种实施方式中,第一开关单元和第二开关单元为:二极管、三极管或场效应管等。
本方案,当第一开关单元和第二开关单元为二极管、三极管或场效应管时,可以对天线 的极化方式和方向图进行控制,以适应不同的天线应用场景,灵活性强。
结合第一方面,在一种实施方式中,第一开关单元和/或第二开关单元为零欧姆电阻。
本方案中,可以将第一开关单元和/或第二开关单元直接设置为零欧姆电阻,根据需要直接定制天线的极化方式和方向图,或减少动态调节模式,此时天线的成本较低,可以直接针对所需场景定制化。第二方面,本申请还提供了一种控制方法,用于控制第一方面的天线。
该控制方法包括:确定天线的工作模式。根据工作模式控制第一开关单元和第二开关单元。其中,当工作模式为第一垂直极化模式时,控制第一开关单元和第二开关单元断开。或者,当工作模式为水平极化模式时,控制第一开关单元导通,以及控制第二开关单元断开。或者,当工作模式为第二垂直极化模式时,控制第一开关单元断开,以及控制第二开关单元导通。
第三方面,本申请还提供了一种控制器,用于控制第一方面的天线。
该控制器包括确定模块和控制模块。其中:
确定模块,用于确定天线的工作模式。
控制模块,用于根据工作模式控制第一开关单元和第二开关单元。其中,当工作模式为第一垂直极化模式时,控制第一开关单元和第二开关单元断开。或者,当工作模式为水平极化模式时,控制第一开关单元导通,以及控制第二开关单元断开。或者,当工作模式为第二垂直极化模式时,控制第一开关单元断开,以及控制第二开关单元导通。
第四方面,本申请还提供了一种控制器,控制器包括一个或多个处理器;其中,所述一个或多个处理器用于执行一个或多个存储器存储的计算机程序,使得所述控制器实现如第二方面所述的控制方法。
第五方面,本申请还提供了一种通信设备,包括第三方面或第四方面所述的控制器和第一方面所述的天线。
第六方面,本申请还提供一种运载工具,包括第五方面所述的通信设备。
附图说明
图1A是本申请实施例提供的一种天线的结构示意图;
图1B是本申请实施例提供的另一种天线的结构示意图;
图1C是本申请实施例提供的另一种天线的结构示意图;
图1D是本申请实施例提供的另一种天线的结构示意图;
图1E是本申请实施例提供的另一种天线的结构示意图;
图2A是本申请实施例提供的一种天线的通断示意图;
图2B是图2A对应的天线方向图;
图3A是本申请实施例提供的另一种天线的通断示意图;
图3B是图3A对应的天线方向图;
图4A是本申请实施例提供的另一种天线的通断示意图;
图4B是图4A对应的天线方向图;
图5是本申请实施例提供的一种控制方法的流程示意图;
图6是本申请实施例提供的一种控制器的结构示意图;
图7是本申请实施例提供的另一种控制器的结构示意图。
具体实施方式
本申请以下实施例中所使用的术语只是为了描述特定实施例的目的,而并非旨在作为对本申请的限制。如在本申请的说明书和所附权利要求书中所使用的那样,单数表达形式“一个”、“一种”、“所述”、“上述”、“该”和“这一”旨在也包括复数表达形式,除非其上下文中明确地有相反指示。还应当理解,本申请中使用的术语“和/或”是指并包含一个或多个所列出项目的任何或所有可能组合。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为暗示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征,在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
为了便于理解,下面先对本申请实施例涉及的相关术语及概念进行介绍。
(1)、天线极化
天线的极化,是指天线辐射时形成的电场强度方向。水平极化是指电波在空间传播时,其电场矢量的瞬时方向与地面平行。而垂直极化是指电波在空间传播时,其电场矢量的瞬时方向与地面垂直。
(2)、非馈电振子
振子一般是指天线振子,天线振子是天线上的元器件,具有导向和放大电磁波的作用,使天线接收到的电磁信号更强。
而非馈电振子是指馈电信号不直接通过传输线连接的振子。
(3)、反射器
反射器是指对波束有反射作用的非馈电振子。
(4)、印制电路板(PCB)
印制电路板又称印刷电路板,通常称之为硬板。
(5)、柔性印刷电路板(Flex Print Circuit Board,FPC)
柔性印刷电路板是用柔性的绝缘基材(聚酯薄膜或聚酰亚胺等)制成的印刷电路,柔性印刷电路板也称柔板。
以上对于技术术语的说明可以应用在下文中。
本申请实施例提供一种天线,其极化方式和方向图可以变化,以适配不同的天线应用场景,提高天线通信的稳定性,提升用户的使用体验。
下面对本申请提供的天线做具体说明:
参考图1A,图1A是本申请实施例提供的一种天线的结构示意图。天线包括基板101、寄生单元、辐射单元102、第一开关单元103和第二开关单元104。
其中,基板上设置有馈电端A,第一接地端B和第二接地端C。寄生单元的两端连接于第一接地端B和第二接地端C。而辐射单元102的一端连接于馈电端A。上述第一开关单元103、第二开关单元104设置于寄生单元上。
本方案中,通过控制第一开关单元和第二开关单元的通断,可以改变天线的极化方式和方向图,使得天线具有不同的工作模式,不同的工作模式可以适配不同的天线应用场景,以有效提升用户关于通信设备的使用体验。
以天线设置在车辆上为例,对于不同的车型和不同的天线安装位置,可以通过控制第一开关单元和第二开关单元的通断以调整天线的方向图和极化,实现天线信号的高性能覆盖,有效降低对天线的安装位置的要求,同时有利于车辆的归一化设计,降低车辆的改版风险。
可选的,上述基板可以为印制电路板(Printed Circuit Board,PCB)或者柔性印刷电路板(Flex Print Circuit Board,FPC)等。进一步可选的,基板的外边缘可以为矩形、方形、平行四边形、或圆形等任意形状。示例性地,参考图1A,基板101的外边缘为矩形。
作为一种可能的实施方式,PCB上设置有金属地,即:PCB具有金属地层。第一接地端B和第二接地端C与金属地层连接实现接地。
作为一种可能的实施方式,辐射单元102通过馈电端与馈电源连接。馈电源是一种微波电路网络,能够将高频信号按一定的幅度和/或相位分布馈送到辐射单元102。可选的,辐射单元102可以采用馈电振子来实现,馈电振子例如为一个单极(Monopole)天线。
作为一种可能的实施方式,寄生单元包括第一子寄生单元,第二子寄生单元和第三子寄生单元。
其中,第一子寄生单元的一端连接第一接地端,第一子寄生单元的另一端通过第一开关单元与第二子寄生单元的一端连接。第二子寄生单元的另一端通过第二开关单元与第三子寄生单元的一端连接。第三子寄生单元的另一端连接第二接地端。
作为一种可能的方案,寄生单元可以采用金属枝节来实现。参考图1A,金属枝节包括第一子枝节105(对应第一子寄生单元),第二子枝节106(对应第二子寄生单元)和第三子枝节107(对应第三子寄生单元)。其中,第一子枝节105的一端连接第一接地端,第一子枝节105的另一端通过第一开关单元103与第二子枝节106的一端连接。第二子枝节106的另一端通过第二开关单元104与第三子枝节107的一端连接。第三子枝节107的另一端连接第二接地端。
作为一种可能的方案,辐射单元102具有长边和短边。示例性地,参考图1A,辐射单元102为L形,L的一边为长边,另一边为短边。
为了节约空间,辐射单元102可以通过绕线等方式进行小型化设计。示例性的,上述长边可以为弯折边,参考图1B(长边为直角弯折边)和图1C(长边为具有弧度的弯折边)。或者,长边也可以为弧形边,参考图1D。
可选的,短边和长边的指向可以变化。作为一种短边的指向的设置,辐射单元102的短边与第一子枝节105保持对称。
作为一种可能的实施方式,参考图1A,辐射单元102与第一子枝节105和第二子枝节106组成的部分可以对称(如图1A)设置,也可以不对称(例如图1B、图1C、图1D)。
当辐射单元102与第一子枝节105和第二子枝节106组成的部分对称时,辐射单元的短边与第一子枝节105平行,而长边与第二子枝节106指向相反的方向,使得第一子枝节105和第二子枝节106组成的部分与辐射单元102形成一个偶极子天线。
作为又一种可能的实施方式,第一子寄生单元和第二子寄生单元的等效电尺寸与辐射单元的等效电尺寸之差位于第一范围内,其中,电尺寸即实际尺寸比上工作波长。换句话说,前后两个等效电尺寸趋于一致,它们之间的误差在可容忍的范围内即可,该可容忍的范围即为第一范围。也即第一子寄生单元和第二子寄生单元的等效电尺寸D1与辐射单元的等效电尺寸K之间的差距位于第一范围之内,即|D1-K|位于第一范围之内,||表示绝对值。
需要说明的是,第一范围的具体数值可以根据实际情况进行设置,只要使得第一子寄生单元和第二子寄生单元的等效电尺寸与辐射单元的等效电尺寸趋于一致即可,这样,通过控制第一开关单元和第二开关单元的工作,天线可以构成水平极化天线。进一步以图1A为例,第一子枝节105和第二子枝节106的等效电尺寸与辐射单元102的等效电尺寸之间的差距位于第一范围内。例如,第一范围为0~0.2λ,第一范围包括0和0.2λ两个端点,而λ为介质 波长。又例如,第一范围为0~0.05λ,第一范围包括0和0.05λ两个端点;此时,辐射单元102与第一子枝节105和第二子枝节106构成的差分结构的差分效果更好。
其中,介质波长为本申请实施例中辐射单元的工作频段(Operating Band)的中心频率对应的电磁波波长。λ与介电常数相关。当辐射单元印刷在介质表面时,λ对应的介电常数与介质的介电常数以及空气的介电常数都有关系。例如,λ对应的介电常数为介质的介电常数和空气的介电常数的平均值。
一些可能的设计中,由于辐射单元的工作频段是一个范围并可以包括多个信道,而辐射单元的长度为固定值,较难使辐射单元对工作频率的电磁波达到最佳谐振,因此辐射单元的长度无需精确的为1/4λ。辐射单元的长度只要接近1/4λ即可,例如辐射单元的长度约为0.2λ-0.3λ。
作为又一种可能的实施方式,第二子寄生单元和第三子寄生单元的等效电尺寸大于第一子寄生单元和第二子寄生单元的等效电尺寸。设定第二子寄生单元和第三子寄生单元的等效电尺寸大于第一子寄生单元和第二子寄生单元的等效电尺寸,可以保障天线的定向增益。
具体地,第二子寄生单元和第三子寄生单元的等效电尺寸D2只需略大于第一子寄生单元和第二子寄生单元的等效电尺寸D1即可,即D2-D1得到的差值位于一个可接受的范围,该范围可以为0~0.1λ,该范围不包括端点0,但包括端点0.1λ。又例如,该范围可以为0~0.05λ,同样地,该范围不包括端点0,但包括端点0.05λ;采用该范围时,定向天线的增益更大。
作为又一种可能的实施方式,第一子寄生单元的长度和第三子寄生单元的长度均位于第二范围内。
需要说明的是,第二范围的具体数值可以根据实际情况进行设置,只要第一子寄生单元、第三子寄生单元各自接地后,不对辐射单元的信号造成影响即可。例如,第二范围为0~0.1λ,第二范围包括0和0.1λ两个端点。参考图1E,图1E是本申请实施例提供的另一种天线的结构示意图,图1E中,第一子枝节105(即第一子寄生单元)的长度为0,此时,第一开关单元103连接第一接地端B。
由上述描述可知,第一开关单元103和第二开关单元104的具体位置不固定,不仅限于图1A至图1E任一示意图中所示的位置,可以根据实际情况进行调整。
作为一种可能的示例,参考图1A,第一接地端B到馈电端A的距离位于第三范围内,具体地,当第一开关单元导通,第二开关单元断开时,第一子寄生单元与辐射单元的平行部分组成平衡馈电端,其上电流幅度相等,相位相反,平衡馈电端的间距会影响天线的阻抗,从而影响天线的效率,所以将第一接地端B到馈电端A的距离控制在一定范围内,即第三范围内,可以减少对天线阻抗的影响,提升天线的效率。
例如,第三范围为0~0.1λ,第三范围不包括端点0,但包括端点0.1λ。
作为又一种可能的示例,第二接地端C与馈电端A之间的距离趋于四分之一介质波长,如此可以提升天线增益,第二接地端C与馈电端A的距离与四分之一介质波长之间的差值越大,天线的增益越小。因此,参考图1A,第二接地端C与馈电端A的距离与四分之一介质波长之差位于第四范围内,即第二接地端C与馈电端A的距离与四分之一介质波长之间的误差在可容忍范围内,该可容忍范围即第四范围。具体地,第二接地端C与馈电端A的距离即它们之间的直线距离D AC,D AC约为1/4λ即可,也即|D AC-1/4λ|位于第四范围之内,||表示绝对值。
例如,第四范围为0~0.1λ,第四范围包括端点0和端点0.1λ。又例如,第四范围为0~0.05 λ,第四范围包括端点0和端点0.05λ。
作为一种可能的设计,以图1A为例,第一开关单元103和第二开关单元104均断开时,参考图2A,图2A示出了此时的天线状态。其中,第二子枝节106为悬浮金属枝,第二子枝节106不接地,而由于第一子枝节105和第三子枝节107的尺寸较小(它们的长度位于上述第二范围内),所以它们对天线的方向图无影响,此时的天线构成垂直极化天线,对应的天线方向图参考图2B。
作为又一种可能的设计,以图1A为例,第一开关单元103导通,第二开关单元104断开时,参考图3A,图3A示出了此时的天线状态。其中,第三子枝节107由于尺寸较小,对天线的方向图无影响。而第一子枝节105和部分的辐射单元102为对称设计,可以抵消辐射单元102部分的辐射场,使得辐射单元102、第一子枝节105和第二子枝节106构成水平极化偶极子(Dipole)天线,对应的天线方向图参考图3B。
进一步地,第一子枝节105和第二子枝节106可以与辐射单元102形成对称设计,能够优化天线的极化性能。
作为又一种可能的设计,以图1A为例,第一开关单元103断开,第二开关单元104导通时,参考图4A,图4A示出了此时的天线状态。其中,第一子枝节105由于尺寸较小,对天线的方向图无影响。而第二子枝节106、第二开关单元104和第三子枝节107这个整体上的电流相位相比辐射单元102的电流相位超前90°,因此,上述的整体成为反射器,该反射器对辐射单元102的信号进行反射,此时的天线构成垂直极化天线,对应的天线方向图参考图4B。
示例性地,本申请实施例中,第一开关单元和第二开关单元为:二极管、三极管、或金属-氧化物半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET,简称场效应管)等。
其中,三极管包括NPN型三极管或PNP型三极管,金属-氧化物半导体场效应晶体管简称MOS管。二极管、三极管、MOS管等可控开关的通断可通过控制器输出控制信号进行控制,例如,对于二极管或三极管,控制器输出高或低电平进行通断控制。此时,天线具有动态可调能力,具有多种动态调节模式(如图2B、图3B或图4B),可以适应不同的天线应用场景,灵活性强。
在另一种实现中,可以将第一开关单元,或第二开关单元,或第一开关单元和第二开关单元直接设置为零欧姆电阻,零欧姆电阻相当于导通的开关,此时,根据需要直接定制天线的极化方式和方向图,或减少动态调节模式,相比于采用以上可控开关来说,此时天线的成本较低,可以直接针对所需场景定制化。
具体地,第一开关单元或第二开关单元为导通状态时,第一开关单元或第二开关单元可以为零欧姆电阻。以天线设置在车辆上为例,可以通过测试确定天线在不同车型、不同位置对应的天线模式(即图2B、图3B或图4B),确定第一开关单元、第二开关单元对应的通断状态,即确定零欧姆的安装位置,处于导通状态的开关单元用零欧姆电阻来实现,而处于断开状态的开关单元的位置空着不连接即可,此时的天线具有较低成本,且满足定制化需求。
上述示例性描述中,子枝节的个数以2个(图1E)或3个(图1A至图1D)为例,子枝节的个数为大于三个的情况也同样可以实现本申请实施例的效果,不做赘述,也在本申请的保护范围内。另外,上述示例性描述中,开关单元的个数以两个开关单元(图1A至图1E)为例,开关单元的个数也可以为三个或大于三个,同样可以实现本申请实施例的效果,不做赘述,也在本申请的保护范围内。
下面介绍本申请实施例提供的一种控制方法。
参考图5,图5是本申请实施例提供的一种控制方法的流程示意图。该控制方法用于控制上述的天线,控制方法包括:
501、确定天线的工作模式。
502、根据工作模式控制第一开关单元和第二开关单元。
其中,当工作模式为第一垂直极化模式时,控制第一开关单元和第二开关单元断开。或者,当工作模式为水平极化模式时,控制第一开关单元导通,以及控制第二开关单元断开。或者,当工作模式为第二垂直极化模式时,控制第一开关单元断开,以及控制第二开关单元导通。
本申请实施例还提供一种控制器600,用于控制上述的天线。
参考图6,图6是本申请实施例提供的一种控制器的结构示意图。控制器600包括确定模块601和控制模块602。其中:
确定模块601,用于确定天线的工作模式。
控制模块602,用于根据工作模式控制第一开关单元和第二开关单元。其中,当工作模式为第一垂直极化模式时,控制第一开关单元和第二开关单元断开。或者,当工作模式为水平极化模式时,控制第一开关单元导通,以及控制第二开关单元断开。或者,当工作模式为第二垂直极化模式时,控制第一开关单元断开,以及控制第二开关单元导通。
本申请实施例还提供一种控制器,参考图7,图7是本申请实施例提供的另一种控制器的结构示意图。本申请实施例还提供了一种控制器700。
该控制器700包括存储器701、处理器702、通信接口704以及总线703。其中,存储器701、处理器702、通信接口704通过总线703实现彼此之间的通信连接。其中,存储器701可以为一个或多个,处理器702可以为一个或多个。
示例性地,控制器700可以为芯片或芯片系统。
存储器701可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器701可以存储程序,当存储器701中存储的程序被处理器702执行时,处理器702用于执行上述任意实施例所述的控制方法的各个步骤。
处理器702可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),图形处理器(graphics processing unit,GPU)或者一个或多个集成电路,用于执行相关程序,以实现上述任一实施例所述的控制方法。
处理器702还可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,本申请任一实施例所述的控制方法的各个步骤可以通过处理器702中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器702还可以是通用处理器、数字信号处理器(Digital Signal Processing,DSP)、专用集成电路(ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请任一实施例所述的控制方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。 软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器701,处理器702读取存储器701中的信息,结合其硬件完成上述任一实施例所述的控制方法。
通信接口704使用例如但不限于收发器一类的收发装置,来实现控制器700与其他设备或通信网络之间的通信。
总线703可包括在控制器700各个部件(例如,存储器701、处理器702、通信接口704)之间传送信息的通路。
应注意,尽管图7所示的控制器700仅仅示出了存储器、处理器、通信接口,但是在具体实现过程中,本领域的技术人员应当理解,控制器700还包括实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当理解,控制器700还可包括实现其他附加功能的硬件器件。此外,本领域的技术人员应当理解,控制器700也可仅仅包括实现本申请实施例所必须的器件,而不必包括图7中所示的全部器件。
本申请实施例提供了一种通信设备。该通信设备包括前述的控制器和前述的天线。
本申请实施例提供了一种运载工具。该运载工具包括前述的通信设备。
本申请中的运载工具可以包括路上交通工具、水上交通工具、空中交通工具、工业设备、农业设备、或娱乐设备等。例如运载工具可以为车辆,该车辆为广义概念上的车辆,可以是交通工具(如商用车、乘用车、摩托车、飞行车、火车等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。再如,运载工具可以为飞机、或轮船等交通工具。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例 如,软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如固态硬盘)等。
以上所述,以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (15)

  1. 一种天线,其特征在于,包括:
    基板,所述基板上设置有馈电端,第一接地端和第二接地端;
    寄生单元,两端连接于所述第一接地端和第二接地端;
    辐射单元,一端连接于所述馈电端;
    第一开关单元、第二开关单元,设置于所述寄生单元上。
  2. 根据权利要求1所述的天线,其特征在于,所述寄生单元包括第一子寄生单元,第二子寄生单元和第三子寄生单元,
    所述第一子寄生单元的一端连接所述第一接地端,所述第一子寄生单元的另一端通过所述第一开关单元与所述第二子寄生单元的一端连接,所述第二子寄生单元的另一端通过所述第二开关单元与所述第三子寄生单元的一端连接,所述第三子寄生单元的另一端连接所述第二接地端。
  3. 根据权利要求2所述的天线,其特征在于,所述第一子寄生单元和所述第二子寄生单元的等效电尺寸与所述辐射单元的等效电尺寸之差位于第一范围内。
  4. 根据权利要求2或3所述的天线,其特征在于,所述第二子寄生单元和所述第三子寄生单元的等效电尺寸大于所述第一子寄生单元和所述第二子寄生单元的等效电尺寸。
  5. 根据权利要求2至4任一项所述的天线,其特征在于,所述第一子寄生单元的长度和所述第三子寄生单元的长度均位于第二范围内。
  6. 根据权利要求1至5任一项所述的天线,其特征在于,所述第一接地端到所述馈电端的距离位于第三范围内。
  7. 根据权利要求1至6任一项所述的天线,其特征在于,所述第二接地端与所述馈电端的距离与四分之一介质波长之差位于第四范围内。
  8. 根据权利要求1至7任一项所述的天线,其特征在于,所述第一开关单元和所述第二开关单元均断开时,所述天线构成垂直极化天线;
    或者,
    所述第一开关单元导通,所述第二开关单元断开时,所述天线构成水平极化天线;
    或者,
    所述第一开关单元断开,所述第二开关单元导通时,所述天线构成垂直极化天线。
  9. 根据权利要求1至8任一项所述的天线,其特征在于,所述第一开关单元和所述第二开关单元为:二极管、三极管、或场效应管。
  10. 根据权利要求1至8任一项所述的天线,其特征在于,所述第一开关单元和/或所述第二开关单元为零欧姆电阻。
  11. 一种控制方法,其特征在于,用于控制如权利要求1至10任一项所述的天线,所述方法包括:
    确定所述天线的工作模式;
    根据所述工作模式控制所述第一开关单元和所述第二开关单元;
    其中,当所述工作模式为第一垂直极化模式时,控制所述第一开关单元和所述第二开关单元断开;
    或者,
    当所述工作模式为水平极化模式时,控制所述第一开关单元导通,以及控制所述第二开关单元断开;
    或者,
    当所述工作模式为第二垂直极化模式时,控制所述第一开关单元断开,以及控制所述第二开关单元导通。
  12. 一种控制器,其特征在于,用于控制如权利要求1至10任一项所述的天线,所述控制器包括:
    确定模块,用于确定所述天线的工作模式;
    控制模块,用于根据所述工作模式控制所述第一开关单元和所述第二开关单元;
    其中,当所述工作模式为第一垂直极化模式时,控制所述第一开关单元和所述第二开关单元断开;
    或者,
    当所述工作模式为水平极化模式时,控制所述第一开关单元导通,以及控制所述第二开关单元断开;
    或者,
    当所述工作模式为第二垂直极化模式时,控制所述第一开关单元断开,以及控制所述第二开关单元导通。
  13. 一种控制器,其特征在于,所述控制器包括一个或多个处理器;其中,所述一个或多个处理器用于执行一个或多个存储器存储的计算机程序,使得所述控制器实现如权利要求11所述的控制方法。
  14. 一种通信设备,其特征在于,包括权利要求12或13所述的控制器和权利要求1至10任一项所述的天线。
  15. 一种运载工具,其特征在于,包括:如权利要求14所述的通信设备。
PCT/CN2022/122600 2022-09-29 2022-09-29 天线、控制方法和相关设备 WO2024065399A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/122600 WO2024065399A1 (zh) 2022-09-29 2022-09-29 天线、控制方法和相关设备
CN202280009041.XA CN118120111A (zh) 2022-09-29 2022-09-29 天线、控制方法和相关设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/122600 WO2024065399A1 (zh) 2022-09-29 2022-09-29 天线、控制方法和相关设备

Publications (1)

Publication Number Publication Date
WO2024065399A1 true WO2024065399A1 (zh) 2024-04-04

Family

ID=90475358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122600 WO2024065399A1 (zh) 2022-09-29 2022-09-29 天线、控制方法和相关设备

Country Status (2)

Country Link
CN (1) CN118120111A (zh)
WO (1) WO2024065399A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261941A (ja) * 2005-03-16 2006-09-28 Ricoh Co Ltd アンテナ装置、無線モジュールおよび無線システム
US20070001924A1 (en) * 2005-06-30 2007-01-04 Sony Corporation Antenna device, wireless communication apparatus using the same, and control method of controlling wireless communication apparatus
US20070229357A1 (en) * 2005-06-20 2007-10-04 Shenghui Zhang Reconfigurable, microstrip antenna apparatus, devices, systems, and methods
CN102017297A (zh) * 2008-03-05 2011-04-13 艾斯特里克有限公司 用于控制天线波束方向的天线和方法
US20130050037A1 (en) * 2011-08-29 2013-02-28 Yokohama National University Antenna apparatus and wireless communication apparatus using the same
CN103887591A (zh) * 2012-12-21 2014-06-25 宏碁股份有限公司 移动装置及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261941A (ja) * 2005-03-16 2006-09-28 Ricoh Co Ltd アンテナ装置、無線モジュールおよび無線システム
US20070229357A1 (en) * 2005-06-20 2007-10-04 Shenghui Zhang Reconfigurable, microstrip antenna apparatus, devices, systems, and methods
US20070001924A1 (en) * 2005-06-30 2007-01-04 Sony Corporation Antenna device, wireless communication apparatus using the same, and control method of controlling wireless communication apparatus
CN102017297A (zh) * 2008-03-05 2011-04-13 艾斯特里克有限公司 用于控制天线波束方向的天线和方法
US20130050037A1 (en) * 2011-08-29 2013-02-28 Yokohama National University Antenna apparatus and wireless communication apparatus using the same
CN103887591A (zh) * 2012-12-21 2014-06-25 宏碁股份有限公司 移动装置及其控制方法

Also Published As

Publication number Publication date
CN118120111A (zh) 2024-05-31

Similar Documents

Publication Publication Date Title
KR101621480B1 (ko) 도파관 대 유전체 도파관의 천이 구조
US7696946B2 (en) Reducing stray capacitance in antenna element switching
US8232924B2 (en) Broadband patch antenna and antenna system
US8299971B2 (en) Control module chassis-integrated slot antenna
US9478866B2 (en) Orientation agnostic millimeter-wave radio link
AU2020422039B2 (en) Antenna structure and electronic device having the antenna structure
US10535926B2 (en) Antenna and antenna module comprising the same
US20160118708A1 (en) Antenna device
WO2013153770A1 (ja) アンテナ装置
CN111430920A (zh) 超宽带天线及超宽带通信装置
US20220416431A1 (en) Antenna and radar
CN113690588A (zh) 天线装置、电子设备及天线装置的设计方法
JP2000082913A (ja) アンテナ装置およびこれを用いた無線受信装置
TWI245452B (en) A multi-band monopole antenna with dual purpose
WO2024065399A1 (zh) 天线、控制方法和相关设备
US20240079765A1 (en) Antenna, wireless signal processing device, and unmanned aerial vehicle
JP3323020B2 (ja) ダイバーシチアンテナ
US9831545B2 (en) Antenna device
US10103442B2 (en) Antenna structure
US10234493B2 (en) Wireless module, electronic module, and measuring method
CN114665255A (zh) 微带阵列天线及车载娱乐系统
CN114094325A (zh) 一种uwb双天线结构
JP2000201014A (ja) マイクロストリップアンテナ
CN109346822A (zh) 一种双辐射臂wifi天线
JPH11308018A (ja) 伝送路変換構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22960036

Country of ref document: EP

Kind code of ref document: A1