WO2024065126A1 - 一种连续多时隙的传输方法、装置及存储介质 - Google Patents

一种连续多时隙的传输方法、装置及存储介质 Download PDF

Info

Publication number
WO2024065126A1
WO2024065126A1 PCT/CN2022/121499 CN2022121499W WO2024065126A1 WO 2024065126 A1 WO2024065126 A1 WO 2024065126A1 CN 2022121499 W CN2022121499 W CN 2022121499W WO 2024065126 A1 WO2024065126 A1 WO 2024065126A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
symbol
time slots
indication information
sidelink transmission
Prior art date
Application number
PCT/CN2022/121499
Other languages
English (en)
French (fr)
Inventor
赵文素
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/121499 priority Critical patent/WO2024065126A1/zh
Priority to CN202280003654.2A priority patent/CN115918217A/zh
Publication of WO2024065126A1 publication Critical patent/WO2024065126A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/401Circuits for selecting or indicating operating mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/25Control channels or signalling for resource management between terminals via a wireless link, e.g. sidelink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to a method, device and storage medium for transmitting continuous multiple time slots.
  • LBT listen before talk
  • guard symbol guard symbol
  • GP guard period
  • data is not transmitted at the guard symbol, but the transmit-receive conversion or the transmit-receive conversion is performed. This makes it impossible for the terminal to achieve continuous multi-time slot transmission. Instead, the transmission is interrupted at the guard symbol of a time slot, and before the transmission of the next time slot begins, the terminal needs to perform LBT again. This makes it impossible to achieve continuous multi-time slot transmission.
  • the present disclosure provides a continuous multi-time slot transmission method, device and storage medium.
  • a method for transmitting continuous multiple time slots is provided.
  • the method is applied to a first terminal, and includes: sending data on the last symbol of a first type of time slot used for direct link sidelink transmission in a plurality of continuous time slots; the first type of time slot is a non-last time slot of the plurality of continuous time slots.
  • sending data on the last symbol of a first type of time slot used for direct link sidelink transmission in multiple consecutive time slots includes: performing resource mapping on the resource unit RE where the last symbol of the first type of time slot used for sidelink transmission is located, and sending different data from symbols adjacent to and/or non-adjacent symbols on the last symbol of the first type of time slot used for sidelink transmission; or, performing resource mapping on the RE where the last symbol of the first type of time slot used for sidelink transmission is located, and sending the same data as adjacent symbols and/or non-adjacent symbols on the last symbol of the first type of time slot used for sidelink transmission; wherein adjacent symbols represent the previous symbol or the next symbol of the last symbol of the first type of time slot used for sidelink transmission.
  • the method also includes: using the last symbol of a second type time slot in a plurality of consecutive time slots for sidelink transmission as a protection symbol to perform a transmit/receive conversion of the first terminal, the second type time slot being the last time slot of the plurality of consecutive time slots.
  • the method also includes: sending indication information, the indication information is used to indicate whether there is a protection symbol in the time slot; if there is a protection symbol, the protection symbol is used for the first terminal to perform send-receive conversion; if there is no protection symbol, the last symbol used for sidelink transmission in the time slot indicated by the indication information is used to send data.
  • the indication information is used to indicate at least one of the following information: the indication information is used to indicate whether there is a protection symbol in the current time slot, and the indication information is sent in each time slot in a plurality of consecutive time slots; the indication information is used to indicate the number of time slots in a plurality of consecutive time slots, and the indication information is sent in the first time slot or other time slots in the plurality of consecutive time slots.
  • the indication information is based on the first stage direct connection control information SCI, the second stage SCI or the media access control unit MAC CE indication.
  • a method for transmitting continuous multiple time slots which is applied to a second terminal and includes: receiving data on the last symbol of a first type of time slot used for direct link sidelink transmission in a plurality of continuous time slots; the first type of time slot is a non-last time slot in the plurality of continuous time slots.
  • receiving data on the last symbol of a first type of time slot used for a direct link sidelink transmission in a plurality of consecutive time slots includes: receiving data different from symbols adjacent to and/or non-adjacent symbols of the last symbol of the first type of time slot used for sidelink transmission; or, receiving data identical to adjacent symbols and/or non-adjacent symbols of the last symbol of the first type of time slot used for sidelink transmission; wherein adjacent symbols represent the previous symbol or the next symbol of the last symbol of the first type of time slot used for sidelink transmission.
  • the method further includes: using the last symbol of a second type time slot in a plurality of consecutive time slot resources for sidelink transmission as a protection symbol to perform transceiver conversion of the second terminal; the second type time slot is the last time slot in the plurality of consecutive time slots.
  • the method also includes: receiving indication information, the indication information is used to indicate whether there is a protection symbol in the time slot; if there is a protection symbol, the protection symbol is used for the second terminal to perform transmit and receive conversion; if there is no protection symbol, the last symbol used for sidelink transmission in the time slot indicated by the indication information is used to receive data.
  • the indication information is used to indicate at least one of the following information: the indication information is used to indicate whether there is a protection symbol in the current time slot, and the indication information is received in each time slot among a plurality of consecutive time slots; the indication information is used to indicate the number of time slots among a plurality of consecutive time slots, and the indication information is received in the first time slot or other time slots among the plurality of consecutive time slots.
  • the indication information is based on the first stage direct connection control information SCI, the second stage SCI or the media access control unit MAC CE indication.
  • a transmission device for continuous multiple time slots is provided, and the device is a first terminal.
  • the device includes: a sending module, used to send data on the last symbol of a first type of time slot used for direct link sidelink transmission in a plurality of continuous time slots; the first type of time slot is a non-last time slot of the plurality of continuous time slots.
  • the sending module is also used to: perform resource mapping on the resource unit RE where the last symbol of the first type time slot used for sidelink transmission is located, and send different data on the last symbol of the first type time slot used for sidelink transmission that is adjacent to the last symbol of the first type time slot used for sidelink transmission and/or non-adjacent symbols; or, perform resource mapping on the RE where the last symbol of the first type time slot used for sidelink transmission is located, and send the same data as the adjacent symbols and/or non-adjacent symbols on the last symbol of the first type time slot used for sidelink transmission; wherein the adjacent symbols represent the previous symbol or the next symbol of the last symbol of the first type time slot used for sidelink transmission.
  • the device also includes: a conversion module, which is used to use the last symbol of the second type time slot used for sidelink transmission in multiple consecutive time slots as a protection symbol to perform transmission and reception conversion of the first terminal, and the second type time slot is the last time slot of the multiple consecutive time slots.
  • the sending module is also used to: send indication information, the indication information is used to indicate whether there is a protection symbol in the time slot; if there is a protection symbol, the protection symbol is used for the first terminal to perform send-receive conversion; if there is no protection symbol, the last symbol used for sidelink transmission in the time slot indicated by the indication information is used to send data.
  • the indication information is used to indicate at least one of the following information; the indication information is used to indicate whether there is a protection symbol in the current time slot, and the sending module is also used to send the indication information in each time slot in a plurality of consecutive time slots; the indication information is used to indicate the number of time slots in a plurality of consecutive time slots, and the sending module is also used to send the indication information in the first time slot or other time slots in the plurality of consecutive time slots.
  • the indication information is based on the first stage direct connection control information SCI, the second stage SCI or the media access control unit MAC CE indication.
  • a transmission device for continuous multiple time slots is provided, and the device is a second terminal, and the device includes: a receiving module, used to receive data on the last symbol of a first type of time slot used for direct link sidelink transmission in a plurality of continuous time slots; the first type of time slot is a non-last time slot in the plurality of continuous time slots.
  • the receiving module is also used to: receive, on the last symbol of the first type time slot used for sidelink transmission, data different from symbols adjacent to and/or non-adjacent symbols of the last symbol of the first type time slot used for sidelink transmission; or, receive, on the last symbol of the first type time slot used for sidelink transmission, data identical to adjacent symbols and/or non-adjacent symbols; wherein adjacent symbols represent the previous symbol or the next symbol of the last symbol of the first type time slot used for sidelink transmission.
  • the device also includes: a conversion module, used to use the last symbol of the second type time slot in a plurality of consecutive time slot resources used for sidelink transmission as a protection symbol to perform transceiver conversion of the second terminal; the second type time slot is the last time slot in the plurality of consecutive time slots.
  • the receiving module is also used to: receive indication information, the indication information is used to indicate whether there is a protection symbol in the time slot; if there is a protection symbol, the protection symbol is used for the second terminal to perform transmit and receive conversion; if there is no protection symbol, the last symbol used for sidelink transmission in the time slot indicated by the indication information is used to receive data.
  • the indication information is used to indicate at least one of the following information: the indication information is used to indicate whether there is a protection symbol in the current time slot, and the receiving module is also used to receive the indication information in each time slot in a plurality of consecutive time slots; the indication information is used to indicate the number of time slots in a plurality of consecutive time slots, and the receiving module is also used to receive the indication information in the first time slot or other time slots in the plurality of consecutive time slots.
  • the indication information is based on the first stage direct connection control information SCI, the second stage SCI or the media access control unit MAC CE indication.
  • a continuous multi-time slot transmission device comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute any one of the methods in the first aspect.
  • a continuous multi-time slot transmission device comprising: a processor; a memory for storing processor executable instructions; wherein the processor is configured to: execute any one of the methods in the second aspect.
  • a non-temporary computer-readable storage medium is provided.
  • the first terminal When instructions in the storage medium are executed by a processor of a first terminal, the first terminal is enabled to execute any one of the methods in the first aspect.
  • a non-temporary computer-readable storage medium is provided.
  • the second terminal is enabled to execute any one of the methods in the second aspect.
  • the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: by sending data on the last symbol of a non-last time slot in a plurality of consecutive time slots, the terminal can implement data transmission in a plurality of consecutive time slots.
  • Fig. 1 is a schematic diagram showing the structure of a communication system according to an exemplary embodiment.
  • Fig. 2 is a schematic diagram showing data transmission based on LBT according to an exemplary embodiment.
  • Fig. 3 is a schematic diagram of a sidelink time slot structure according to an exemplary embodiment.
  • Fig. 4 is a flow chart of a method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 5 is a schematic diagram showing a continuous multi-slot transmission according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 7 is a schematic diagram showing a time slot transmission according to an exemplary embodiment.
  • Fig. 8 is a schematic diagram showing another continuous multi-slot transmission according to an exemplary embodiment.
  • Fig. 9 is a flow chart showing another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 10 is a schematic diagram showing another time slot transmission according to an exemplary embodiment.
  • Fig. 11 is a flow chart of yet another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 12 is a schematic diagram showing yet another continuous multi-slot transmission according to an exemplary embodiment.
  • Fig. 13 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 14 is a flow chart of yet another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 15 is a schematic diagram showing sending indication information according to an exemplary embodiment.
  • Fig. 16 is a flow chart of yet another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 17 is a schematic diagram showing another method of sending indication information according to an exemplary embodiment.
  • Fig. 18 is a schematic diagram showing yet another method of sending indication information according to an exemplary embodiment.
  • Fig. 19 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 20 is a flow chart of yet another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • FIG. 21 is a flow chart of yet another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 22 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 23 is a flow chart of yet another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • FIG. 24 is a flow chart of yet another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • FIG25 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 26 is a flow chart of yet another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • FIG. 27 is a flow chart of yet another method for transmitting continuous multiple time slots according to an exemplary embodiment.
  • Fig. 28 is a schematic diagram showing yet another continuous multi-slot transmission according to an exemplary embodiment.
  • Fig. 29 is a schematic diagram showing another continuous multi-slot transmission according to an exemplary embodiment.
  • Fig. 30 is a schematic diagram showing yet another continuous multi-slot transmission according to an exemplary embodiment.
  • Fig. 31 is a schematic diagram of yet another continuous multi-slot transmission according to an exemplary embodiment.
  • Fig. 32 is a schematic diagram of another continuous multi-slot transmission according to an exemplary embodiment.
  • Fig. 33 is a schematic diagram of a transmission device for continuous multiple time slots according to an exemplary embodiment.
  • Fig. 34 is a schematic diagram of another continuous multi-slot transmission device according to an exemplary embodiment.
  • Fig. 35 is a schematic diagram of yet another continuous multi-slot transmission device according to an exemplary embodiment.
  • the continuous multi-slot data transmission method provided by the embodiment of the present disclosure can be applied to the direct communication system shown in Figure 1.
  • the network device configures various transmission parameters for data transmission for the direct communication device 1.
  • Direct communication device 1, direct communication device 2 and direct communication device 3 perform direct communication. There may or may not be obstacles between different direct communication devices.
  • the link for communication between the network device and the direct communication device is an uplink and downlink, and the link between different direct communication devices is a direct link (sidelink).
  • the communication scenario of direct communication between directly connected communication devices can be a vehicle-to-everything (V2X) business scenario.
  • V represents the vehicle-mounted device
  • X represents any object that interacts with the vehicle-mounted device.
  • X mainly includes vehicle-mounted devices, handheld devices, traffic roadside infrastructure and networks.
  • the information mode of V2X interaction includes: interaction between vehicle-mounted devices and vehicle-mounted devices (Vehicle to Vehicle, V2V), between vehicle-mounted devices and roadside devices (Vehicle to Infrastructure, V2I), between vehicle-mounted devices and handheld devices (Vehicle to Pedestrian, V2P), and between vehicle-mounted devices and networks (Vehicle to Network, V2N).
  • 5G NR technology is used in 3GPP Rel-16 to support new V2x communication services and scenarios, such as fleet management (Vehicles Platooning), perception extension (Extended Sensors), advanced driving (Advanced Driving), and remote driving (remote driving).
  • V2x sidelink can provide higher communication rate, shorter communication delay, and more reliable communication quality.
  • the communication scenario of direct communication between directly connected communication devices can also be a device-to-device (D2D) communication scenario.
  • the directly connected communication devices for direct communication may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices, or other processing devices connected to a wireless modem, as well as various forms of user equipment (UE), mobile stations (MS), terminals, terminal equipment, etc.
  • UE user equipment
  • MS mobile stations
  • terminals terminal equipment
  • FIG. 2 shows a schematic diagram of data transmission based on LBT. It can be seen that when LBT is successful, a single time slot resource can be selected for data transmission, or multiple time slot resources can be selected for data transmission. For example, the LBT corresponding to the white box in FIG. 2, for example, after the LBT on the left side of FIG. 2 is successful, a single time slot resource is selected for data transmission. For another example, after the LBT on the right side of FIG. 2 is successful, multiple time slot resources are selected for data transmission.
  • LBT fails, resource selection cannot be performed, resulting in communication failure or inability to communicate.
  • continuous data transmission of multiple time slot resources can be supported, so that fewer LBT times can be used to reduce the impact of LBT failure on communication.
  • each time slot used for sidelink transmission will also have an additional GP symbol for PSFCH.
  • PSFCH physical sidelink feedback channel
  • the existing R16/R17 protocol stipulates that data is not transmitted at the guard symbol, but a send-receive conversion or a send-receive conversion is performed.
  • the length of a guard symbol is greater than 16 microseconds (us) or 25us. This will cause the terminal to be unable to achieve continuous multi-time slot transmission. For example, if the guard symbol channel in a time slot is occupied by a WiFi device, the terminal transmission is interrupted, and the terminal needs to perform LBT again before the start of the next time slot transmission.
  • the present disclosure provides a method for transmitting continuous multiple time slots, which enables a terminal to realize data transmission of continuous multiple time slots by sending data on the last symbol of a non-last time slot in the continuous multiple time slots.
  • FIG4 is a flow chart of a method for transmitting continuous multiple time slots according to an exemplary embodiment. As shown in FIG4 , the method is used for a first terminal and includes the following steps.
  • step S11 data is sent on the last symbol of a first type time slot used for sidelink transmission in a plurality of consecutive time slots.
  • the first terminal may send data on the last symbol of a first type of time slot used for sidelink transmission in a plurality of consecutive time slots, wherein the first type of time slot is a non-last time slot in the plurality of consecutive time slots.
  • the data transmitted in the continuous multiple time slots is the data transmitted in the continuous 4 time slots.
  • the data can be sent on the last symbol used for sidelink transmission in all non-last time slots. For example, data is sent on the last symbol used for sidelink transmission in the first time slot, data is sent on the last symbol used for sidelink transmission in the second time slot, and data is sent on the last symbol used for sidelink transmission in the third time slot.
  • the non-last symbol which can be called other symbols
  • the corresponding data can still be transmitted.
  • the first type of time slot in the above-mentioned multiple consecutive time slots is the last symbol used for sidelink transmission. For example, there can be 14 symbols in one time slot. Assuming that the symbols with sequence numbers 0-13 are used for sidelink transmission, the last symbol used for sidelink transmission is symbol 13; or, there are 10 symbols used for sidelink transmission in one time slot. If the symbols with sequence numbers 3-12 are used for sidelink transmission, the last symbol used for sidelink transmission is symbol 12, rather than the last symbol with sequence number 13 in one time slot. Therefore, it can be understood that the last symbol involved in the present disclosure can be the last symbol used for sidelink transmission in the corresponding time slot.
  • the embodiment of the present disclosure sends data on the last symbol used for sidelink transmission, so that the last symbol used for sidelink transmission cannot be used as a guard symbol.
  • the first device will not perform send-receive conversion due to the existence of the guard symbol, so that data can be transmitted in multiple consecutive time slots.
  • the transmission method of continuous multiple time slots enables a terminal to realize data transmission of continuous multiple time slots by sending data on the last symbol used for sidelink transmission in a non-last time slot among the continuous multiple time slots.
  • FIG6 is a flow chart of another transmission method for continuous multiple time slots according to an exemplary embodiment.
  • sending data on the last symbol of a first type time slot used for sidelink transmission in a plurality of continuous time slots may include:
  • step S21 resource mapping is performed on a resource element (RE) where the last symbol of a first type time slot used for sidelink transmission is located, and different data on symbols adjacent to and/or non-adjacent to the last symbol of the first type time slot used for sidelink transmission is sent on the last symbol of the first type time slot used for sidelink transmission.
  • RE resource element
  • the first terminal may perform resource mapping on the RE where the last symbol of the first type time slot used for sidelink transmission is located. And send different data on symbols adjacent to the last symbol of the first type time slot used for sidelink transmission and/or non-adjacent symbols on the last symbol of the first type time slot used for sidelink transmission.
  • the adjacent symbols are represented by the previous symbol or the next symbol of the last symbol of the first type time slot used for sidelink transmission.
  • FIG. 7 shows a schematic diagram of time slot transmission.
  • the first terminal can perform resource mapping on the RE where the last symbol used for sidelink transmission is located.
  • the first terminal sends data 1 on the last symbol used for sidelink transmission in the Nth time slot, and the data 1 is different from data 2 on the previous symbol or data 3 on the next symbol of the last symbol used for sidelink transmission in the Nth time slot.
  • the previous symbol of the last symbol used for sidelink transmission in the Nth time slot can be the second to last symbol used for sidelink transmission in the Nth time slot
  • the next symbol of the last symbol used for sidelink transmission in the Nth time slot can be the first symbol of the N+1th time slot, or can also be the first symbol used for sidelink transmission in the N+1th time slot.
  • the symbol after the last symbol used for sidelink transmission in the Nth time slot may be the symbol immediately after the last symbol used for sidelink transmission. For example, there may be 14 symbols in one time slot. Assuming that the symbols used for sidelink transmission are 10 symbols, such as symbols numbered 3 to 12, the last symbol used for sidelink transmission is symbol 12, and the symbol after the last symbol used for sidelink transmission may be symbol 13.
  • the data 1 is different from the data 4 on the ath symbol of the Nth time slot, or the data 5 on the bth symbol of the N+1th time slot.
  • the ath symbol and the bth symbol are used to express symbols that are non-adjacent to the last symbol used for sidelink transmission in the Nth time slot.
  • Non-adjacent symbols can be any symbol in any time slot except the previous symbol and the next symbol of the last symbol used for sidelink transmission in the Nth time slot.
  • the first terminal can transmit any valid data on the last symbol of the first type time slot used for sidelink transmission.
  • the valid data is data different from any symbol of any other time slot, that is, non-redundant data.
  • rate matching can be performed accordingly to cope with the situation where the corresponding resources do not match the valid data actually transmitted.
  • the first terminal needs to perform rate matching on the last symbol of the first type of time slot used for sidelink transmission, such as the last symbol of the first time slot used for sidelink transmission, the last symbol of the second time slot used for sidelink transmission, and the last symbol of the third time slot used for sidelink transmission.
  • FIG9 is a flow chart of another method for transmitting a continuous multiple time slots according to an exemplary embodiment.
  • sending data on the last symbol of a first type time slot used for sidelink transmission in a continuous multiple time slots may include:
  • step S31 resource mapping is performed on the RE where the last symbol of the first type time slot used for sidelink transmission is located, and the same data as that on adjacent symbols and/or non-adjacent symbols is sent on the last symbol of the first type time slot used for sidelink transmission.
  • the first terminal may perform resource mapping on the RE where the last symbol of the first type time slot used for sidelink transmission is located, and send the same data on symbols adjacent to and/or non-adjacent to the last symbol of the first type time slot used for sidelink transmission on the last symbol of the first type time slot used for sidelink transmission.
  • FIG. 10 takes the Nth time slot as an example. It can be seen that in the Nth time slot, the first terminal can perform resource mapping on the RE where the last symbol used for sidelink transmission is located. The first terminal sends data 1 on the last symbol used for sidelink transmission in the Nth time slot, and the data 1 can be the same as the data 1 on the symbol before or after the last symbol used for sidelink transmission in the Nth time slot.
  • the symbol before the last symbol used for sidelink transmission in the Nth time slot can be the penultimate symbol used for sidelink transmission in the Nth time slot, and the symbol after the last symbol of the Nth time slot can be the first symbol of the N+1th time slot, or can also be the first symbol used for sidelink transmission in the N+1th time slot.
  • the symbol after the last symbol used for sidelink transmission in the Nth time slot may be the symbol immediately after the last symbol used for sidelink transmission. For example, there may be 14 symbols in one time slot. Assuming that the symbols used for sidelink transmission are 10 symbols, such as symbols numbered 3 to 12, the last symbol used for sidelink transmission is symbol 12, and the symbol after the last symbol used for sidelink transmission may be symbol 13.
  • the data 1 may be the same as the data 1 on the ath symbol of the Nth time slot, or the data 1 on the bth symbol of the N+1th time slot. It can be understood that the ath symbol and the bth symbol are used to express symbols that are non-adjacent to the last symbol used for sidelink transmission in the Nth time slot. Non-adjacent symbols may be any symbol in any time slot except the previous symbol and the next symbol of the last symbol used for sidelink transmission in the Nth time slot.
  • the first terminal may transmit any redundant data on the last symbol of the first type time slot used for sidelink transmission.
  • the redundant data is the same data as any symbol of any other time slot, that is, non-valid data.
  • the first terminal when any redundant data is transmitted on the last symbol of the first type time slot used for sidelink transmission, the first terminal may also perform rate matching to avoid a situation where the corresponding resources do not match the actually transmitted data.
  • the continuous multi-time slot transmission method provided by the embodiment of the present disclosure transmits valid data or redundant data on the last symbol of the first type time slot used for sidelink transmission, so that the last symbol cannot be used as a protection symbol, thereby realizing data transmission of multiple continuous time slots of the terminal.
  • FIG11 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment. As shown in FIG11 , the method further includes:
  • step S41 the last symbol of the second type time slot used for sidelink transmission in the plurality of consecutive time slots is used as a protection symbol to perform a transmission/reception conversion of the first terminal.
  • the first terminal may use the last symbol of the second type time slot used for sidelink transmission in the plurality of consecutive time slots as a protection symbol.
  • the second type time slot is the last time slot of the plurality of consecutive time slots.
  • the first terminal performs the transmission and reception conversion of the first terminal based on the protection symbol of the second type time slot in the plurality of consecutive time slots.
  • the data transmitted in the continuous multiple time slots is the data transmitted in the continuous 4 time slots.
  • the last symbol used for the sidelink transmission in the last time slot can be used as the guard symbol.
  • the last symbol used for the sidelink transmission in the fourth time slot is used as the guard symbol.
  • the non-last symbol (or other symbol) used for the sidelink transmission in the second type time slot is usually used to transmit the corresponding data, and the corresponding data can still be transmitted in this embodiment.
  • the first terminal can perform corresponding transmit and receive conversion.
  • the transmission method of continuous multiple time slots provided by the embodiment of the present disclosure enables the terminal to realize the transmission and reception conversion by using the last symbol of the last time slot in the continuous multiple time slots for sidelink transmission as a protection symbol.
  • FIG13 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment. As shown in FIG13 , the method further includes:
  • step S51 instruction information is sent.
  • the first terminal may send indication information.
  • the indication information is used to indicate whether there is a protection symbol in the time slot. If there is a protection symbol, the protection symbol is used by the first terminal to perform a send-receive conversion; if there is no protection symbol, the last symbol used for sidelink transmission in the time slot indicated by the indication information is used to send data.
  • the first terminal can send the indication information to enable the device receiving the indication information to understand which time slots may have protection symbols.
  • time slots without protection symbols the last symbol used for sidelink transmission will be used to transmit data.
  • the corresponding terminal (such as the first terminal or the terminal receiving the indication information) can perform send-receive conversion or send-receive conversion based on the protection symbols.
  • the continuous multi-time slot transmission method provided by the embodiment of the present disclosure can indicate which time slots have protection symbols and which time slots do not have protection symbols through indication information, so that the terminal can realize data transmission of multiple continuous time slots and send-receive conversion or send-receive conversion based on the indication information.
  • indication information is used to indicate at least one of the following information: indication information is used to indicate whether there is a protection symbol in the current time slot; indication information is used to indicate the number of time slots in the continuous multiple time slots.
  • FIG14 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment. As shown in FIG14, in response to the indication information indicating whether there is a protection symbol in the current time slot, the method further includes:
  • step S61 indication information is sent in each time slot of a plurality of consecutive time slots.
  • the first device may send the indication information of the corresponding time slot in each time slot of a plurality of consecutive time slots. So that the indication information can be used to indicate whether there is a guard symbol in the current time slot.
  • the indication information may be 1 bit of information.
  • the indication information of 0 indicates that there is no guard symbol
  • the indication information of 1 indicates that there is a guard symbol.
  • the indication information of 1 indicates that there is no guard symbol
  • the indication information of 0 indicates that there is a guard symbol.
  • the present disclosure does not limit the value of the specific indication information.
  • the indication information indicates that there is no protection symbol in the current time slot, it means that all symbols used for sidelink transmission in the current time slot are used for data transmission.
  • the indication information indicates that there is a protection symbol in the current time slot, it means that the corresponding terminal (for example, the first terminal or the terminal receiving the indication information) should perform the sending and receiving conversion or the sending and receiving conversion according to the protection symbol of the current time slot.
  • FIG15 a schematic diagram of sending indication information is shown in FIG15. Assuming that the data transmitted in the continuous multiple time slots is the data transmitted in the continuous 4 time slots, if the indication information is used to indicate whether there is a protection symbol in the current time slot. Then for each time slot, the indication information corresponding to the time slot can be sent on the corresponding time slot respectively.
  • indication information 1 is sent in the first time slot, and the indication information 1 is used to indicate whether there is a protection symbol in the first time slot, and it can also be considered that the indication information 1 is used to indicate whether the last symbol used for sidelink transmission in the first time slot is a protection symbol;
  • indication information 2 is sent in the second time slot, and the indication information 2 is used to indicate whether there is a protection symbol in the second time slot, and it can also be considered that the indication information 2 is used to indicate whether the last symbol used for sidelink transmission in the second time slot is a protection symbol;
  • indication information 3 is sent in the third time slot, and the indication information 3 is used to indicate whether there is a protection symbol in the third time slot, and it can also be considered that the indication information 3 is used to indicate whether the last symbol used for sidelink transmission in the third time slot is a protection symbol;
  • indication information 4 is sent in the fourth time slot, and the indication information 4 is used to indicate whether there is a protection symbol in the fourth time slot, and it can also be considered that the indication information 4
  • FIG16 is a flow chart of a method for transmitting a plurality of consecutive time slots according to an exemplary embodiment. As shown in FIG16 , in response to the indication information indicating the number of time slots of the plurality of consecutive time slots, the method further includes:
  • step S71 indication information is sent in the first time slot or other time slots among a plurality of consecutive time slots.
  • the indication information sent by the first device is used to indicate the number of time slots m of the consecutive multiple time slots, where m is a positive integer greater than 1.
  • the first device may send the indication information in the first time slot or other time slots of the consecutive multiple time slots. So that the device receiving the indication information can determine the number of time slots of the consecutive multiple time slots based on the indication information, so that the corresponding terminal (for example, the first terminal or the terminal receiving the indication information) performs the sending and receiving conversion or the sending and receiving conversion in the last time slot of the consecutive multiple time slots.
  • FIG17 another schematic diagram of sending indication information is shown in FIG17.
  • the indication information can be sent in the first time slot of the consecutive multiple time slots.
  • the indication information is sent in the first time slot, and the indication information is used to indicate the number of time slots m in the consecutive multiple time slots.
  • the indication information can indicate that in the consecutive m time slots, the last symbol used for sidelink transmission in the first m-1 time slots is not a protection symbol, and the last symbol used for sidelink transmission in the mth time slot is a protection symbol.
  • the indication information may be used to indicate the number m' of time slots in a plurality of consecutive time slots.
  • indication information is sent in the first time slot, and the indication information is used to indicate the number m' of time slots in which no protection symbol exists in a plurality of consecutive time slots.
  • the indication information may indicate that the last symbol used for sidelink transmission in the m' consecutive time slots is not a protection symbol, and that the last symbol used for sidelink transmission in the m'+1th time slot is a protection symbol.
  • the indication information may be used to indicate the number m' of time slots in a plurality of consecutive time slots.
  • the indication information is sent in the third time slot, and the indication information is used to indicate the number m' of time slots in which no protection symbol exists in a plurality of consecutive time slots.
  • the indication information may indicate that the last symbol used for sidelink transmission in the m' consecutive time slots is not a protection symbol, and that the last symbol used for sidelink transmission in the m'+1th time slot is a protection symbol.
  • the corresponding terminal may perform the transmission-reception conversion or the transmission-reception conversion in the protection symbol of the last time slot based on the number of time slots of the consecutive time slots, and perform data transmission in all symbols used for sidelink transmission in the non-last time slot.
  • the sending of the indication information in the third time slot is only an exemplary description, and the present disclosure does not limit the specific corresponding time slots of other time slots except the first time slot.
  • the number of time slots of the consecutive multiple time slots may be a certain value in a preconfigured set of preconfigured values, which is not limited in the present disclosure.
  • indication information when used to indicate the number of time slots of a plurality of consecutive time slots, such indication information can be considered as a dynamic indication method.
  • the transmission method for continuous multiple time slots indicates whether there are protection symbols in the continuous multiple time slots through different forms of indication information, so that the terminal can realize data transmission of the continuous multiple time slots and transmit-receive conversion or transmit-receive conversion based on the indication information.
  • the indication information is based on the first-stage sidelink control information (SCI), the second-stage SCI or the medium access control element (MAC CE) indication.
  • SCI first-stage sidelink control information
  • MAC CE medium access control element
  • the first terminal may receive the first-stage SCI or the second-stage SCI sent by other terminals, or the first terminal may receive the MAC CE sent by the network device.
  • the first terminal may determine the indication information based on the indication of the received first-stage SCI, second-stage SCI or MAC CE.
  • the continuous multi-time slot transmission method determines the indication information based on the indication of the first stage SCI, the second stage SCI or the MAC CE, so that the terminal can realize the data transmission of continuous multiple time slots and the sending and receiving conversion or the sending and receiving conversion based on the indication information.
  • FIG19 is a flow chart of another method for transmitting a continuous multi-time slot according to an exemplary embodiment. As shown in FIG19 , the method is applied to a first terminal and may include the following steps:
  • step S81 the instruction information is sent.
  • the first terminal may send indication information.
  • the indication information is used to indicate whether there is a protection symbol in the time slot. If there is a protection symbol, the protection symbol is used by the first terminal to perform a send-receive conversion; if there is no protection symbol, the last symbol used for sidelink transmission in the time slot indicated by the indication information is used to send data.
  • step S82 data is sent on the last symbol of a first type time slot used for sidelink transmission in a plurality of consecutive time slots.
  • the first terminal may send data on the last symbol of a first type of time slot used for sidelink transmission in a plurality of consecutive time slots, wherein the first type of time slot is a non-last time slot in the plurality of consecutive time slots.
  • step S81 can refer to the implementation process of step S51
  • step S82 can refer to the implementation process of step S11, which will not be repeated in this disclosure.
  • the transmission method of continuous multiple time slots provided by the embodiment of the present disclosure can indicate which time slots have protection symbols and which time slots do not have protection symbols through indication information, so that the terminal can send data on the last symbol used for sidelink transmission in the non-last time slot among the continuous multiple time slots based on the indication information, thereby realizing data transmission in the continuous multiple time slots.
  • Figure 20 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment. As shown in Figure 20, the method is used for the second terminal and includes the following steps:
  • step S91 data is received at the last symbol of a first type time slot used for sidelink transmission in a plurality of consecutive time slots.
  • the second terminal may receive data on the last symbol of a first type of time slot used for sidelink transmission in a plurality of consecutive time slots, wherein the first type of time slot is a non-last time slot in the plurality of consecutive time slots.
  • the data transmitted in the continuous multiple time slots is data transmitted in the continuous 4 time slots.
  • data can be received on the last symbol used for sidelink transmission in all non-last time slots.
  • data is received on the last symbol used for sidelink transmission in the first time slot
  • data is received on the last symbol used for sidelink transmission in the second time slot
  • data is received on the last symbol used for sidelink transmission in the third time slot.
  • the non-last symbol (or other symbols) used for sidelink transmission in the first type of time slot is usually used to transmit corresponding data, and in this embodiment, corresponding data can still be transmitted.
  • the first type of time slot in the above-mentioned multiple consecutive time slots is the last symbol used for sidelink transmission. For example, there can be 14 symbols in one time slot. Assuming that the symbols with sequence numbers 0-13 are used for sidelink transmission, the last symbol used for sidelink transmission is symbol 13; or, there are 10 symbols used for sidelink transmission in one time slot. If the symbols with sequence numbers 3-12 are used for sidelink transmission, the last symbol used for sidelink transmission is symbol 12, rather than the last symbol with sequence number 13 in one time slot. Therefore, it can be understood that the last symbol involved in the present disclosure can be the last symbol used for sidelink transmission in the corresponding time slot.
  • the embodiment of the present disclosure receives data on the last symbol used for sidelink transmission, so that the last symbol used for sidelink transmission cannot be used as a guard symbol, and then the second device will not perform transmit-receive conversion due to the existence of the guard symbol, so that data can be received in multiple consecutive time slots.
  • the transmission method of continuous multiple time slots enables a terminal to realize data transmission of continuous multiple time slots by receiving data on the last symbol used for sidelink transmission in a non-last time slot among the continuous multiple time slots.
  • FIG21 is a flow chart of another transmission method for continuous multiple time slots according to an exemplary embodiment.
  • receiving data on the last symbol of a first type time slot used for sidelink transmission in a plurality of continuous time slots may include:
  • step S101 different data on symbols adjacent to and/or non-adjacent to the last symbol of a first type time slot used for sidelink transmission is received on the last symbol of a first type time slot used for sidelink transmission.
  • the second terminal may receive data different from symbols adjacent to and/or non-adjacent to the last symbol of the first type time slot used for sidelink transmission on the last symbol of the first type time slot used for sidelink transmission, wherein the adjacent symbol is represented by a symbol before or after the last symbol of the first type time slot used for sidelink transmission.
  • the second terminal receives data 1 on the last symbol used for sidelink transmission in the Nth time slot, and the data 1 is different from the data 2 on the previous symbol or the data 3 on the next symbol of the last symbol used for sidelink transmission in the Nth time slot.
  • the previous symbol of the last symbol used for sidelink transmission in the Nth time slot can be the penultimate symbol used for sidelink transmission in the Nth time slot
  • the next symbol of the last symbol used for sidelink transmission in the Nth time slot can be the first symbol of the N+1th time slot, or can also be the first symbol used for sidelink transmission in the N+1th time slot.
  • the next symbol of the last symbol used for sidelink transmission in the Nth time slot can be the next symbol immediately adjacent to the last symbol used for sidelink transmission.
  • the symbols used for sidelink transmission are 10 symbols, such as symbols with sequence numbers 3-12.
  • the last symbol used for sidelink transmission is symbol 12, and the symbol following the last symbol used for sidelink transmission may be symbol 13.
  • the data 1 is different from the data 4 on the ath symbol of the Nth time slot, or the data 5 on the bth symbol of the N+1th time slot.
  • the ath symbol and the bth symbol are used to express symbols that are non-adjacent to the last symbol used for sidelink transmission in the Nth time slot.
  • Non-adjacent symbols can be any symbol in any time slot except the previous symbol and the next symbol of the last symbol used for sidelink transmission in the Nth time slot.
  • the second terminal can receive any valid data on the last symbol of the first type time slot used for sidelink transmission, and the valid data is data different from any symbol of any other time slot, that is, non-redundant data.
  • FIG22 is a flow chart of another transmission method for continuous multiple time slots according to an exemplary embodiment.
  • receiving data on the last symbol of the first type time slot used for sidelink transmission in the continuous multiple time slots may include:
  • step S111 the same data as those on adjacent symbols and/or non-adjacent symbols are received on the last symbol of the first type time slot for sidelink transmission.
  • the second terminal may receive the same data on symbols adjacent to and/or non-adjacent to the last symbol of the first type time slot used for sidelink transmission on the last symbol of the first type time slot used for sidelink transmission.
  • another time slot transmission schematic diagram shown in FIG. 10 takes the Nth time slot as an example. It can be seen that the second terminal receives data 1 on the last symbol used for sidelink transmission in the Nth time slot, and the data 1 can be the same as the data 1 on the previous symbol or the next symbol of the last symbol used for sidelink transmission in the Nth time slot. It can be understood that the previous symbol of the last symbol used for sidelink transmission in the Nth time slot can be the penultimate symbol used for sidelink transmission in the Nth time slot, and the next symbol of the last symbol of the Nth time slot can be the first symbol of the N+1th time slot, or can also be the first symbol used for sidelink transmission in the N+1th time slot.
  • the next symbol of the last symbol used for sidelink transmission in the Nth time slot can be the next symbol of the last symbol used for sidelink transmission immediately adjacent to the last symbol used for sidelink transmission.
  • the symbols used for sidelink transmission are 10 symbols, such as symbols with sequence numbers 3-12.
  • the last symbol used for sidelink transmission is symbol 12, and the symbol following the last symbol used for sidelink transmission may be symbol 13.
  • the data 1 may be the same as the data 1 on the ath symbol of the Nth time slot, or the data 1 on the bth symbol of the N+1th time slot. It can be understood that the ath symbol and the bth symbol are used to express symbols that are non-adjacent to the last symbol used for sidelink transmission in the Nth time slot. Non-adjacent symbols may be any symbol in any time slot except the previous symbol and the next symbol of the last symbol used for sidelink transmission in the Nth time slot.
  • the second terminal can receive any redundant data on the last symbol of the first type time slot used for sidelink transmission.
  • the redundant data is the same data as any symbol of any other time slot, that is, non-valid data.
  • the continuous multi-time slot transmission method receives valid data or transmits redundant data on the last symbol of the first type time slot used for sidelink transmission, so that the last symbol cannot be used as a protection symbol, thereby realizing data transmission of multiple continuous time slots of the terminal.
  • FIG23 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment. As shown in FIG23, the method further includes:
  • step S121 the last symbol of the second type time slot used for sidelink transmission in the plurality of consecutive time slots is used as a protection symbol to perform a transmission/reception conversion of the second terminal.
  • the second terminal may use the last symbol of the second type time slot used for sidelink transmission in the plurality of consecutive time slots as a protection symbol.
  • the second type time slot is the last time slot of the plurality of consecutive time slots.
  • the second terminal performs the transceiver conversion of the second terminal based on the protection symbol of the second type time slot in the plurality of consecutive time slots.
  • the data transmitted in the continuous multiple time slots is data transmitted in the continuous 4 time slots.
  • the last symbol used for the sidelink transmission in the last time slot can be used as the guard symbol.
  • the last symbol used for the sidelink transmission in the fourth time slot is used as the guard symbol.
  • the non-last symbol (or other symbol) used for the sidelink transmission in the second type time slot is usually used to receive the corresponding data, and the corresponding data can still be received in this embodiment.
  • the second terminal can perform corresponding transmit and receive conversion.
  • the transmission method of continuous multiple time slots provided by the embodiment of the present disclosure enables the terminal to realize the transmission and reception conversion by using the last symbol of the last time slot in the continuous multiple time slots used for sidelink transmission as a protection symbol.
  • FIG24 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment. As shown in FIG24, the method further includes:
  • step S131 indication information is received.
  • the second terminal may receive indication information.
  • the indication information is used to indicate whether there is a protection symbol in the time slot. If there is a protection symbol, the protection symbol is used for the second terminal to perform a transceiver conversion; if there is no protection symbol, the last symbol used for sidelink transmission in the time slot indicated by the indication information is used to receive data.
  • the second terminal can understand which time slots may have protection symbols based on the indication information by receiving the indication information. For time slots without protection symbols, the last symbol used for sidelink transmission will be used to receive data. For time slots with protection symbols, the corresponding terminal (such as the second terminal or the terminal sending the indication information) can perform transceiver conversion or transceiver conversion based on the protection symbols.
  • the second terminal may determine which time slots may have protection symbols and which time slots may not have protection symbols by decoding the indication information.
  • the continuous multi-time slot transmission method provided by the embodiment of the present disclosure can indicate which time slots have protection symbols and which time slots do not have protection symbols through indication information, so that the terminal can realize data transmission of multiple continuous time slots and transmit-receive conversion or transmit-receive conversion based on the indication information.
  • indication information is used to indicate at least one of the following information: indication information is used to indicate whether there is a protection symbol in the current time slot; indication information is used to indicate the number of time slots in the continuous multiple time slots.
  • FIG25 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment. As shown in FIG25, in response to the indication information indicating whether there is a protection symbol in the current time slot, the method further includes:
  • step S141 indication information is received in each time slot of a plurality of consecutive time slots.
  • the second device may receive the indication information of the corresponding time slot in each time slot of a plurality of consecutive time slots. So that the indication information can be used to indicate whether there is a guard symbol in the current time slot.
  • the indication information may be 1 bit of information.
  • the indication information of 0 indicates that there is no guard symbol
  • the indication information of 1 indicates that there is a guard symbol.
  • the indication information of 1 indicates that there is no guard symbol
  • the indication information of 0 indicates that there is a guard symbol.
  • the present disclosure does not limit the value of the specific indication information.
  • the indication information indicates that there is no protection symbol in the current time slot, it means that all symbols used for sidelink transmission in the current time slot are used for data transmission.
  • the indication information indicates that there is a protection symbol in the current time slot, it means that the corresponding terminal (for example, the second terminal or the terminal sending the indication information) should perform the transmit-receive conversion or the transmit-receive conversion according to the protection symbol of the current time slot.
  • the indication information is used to indicate whether there is a protection symbol in the current time slot. Then for each time slot, the indication information corresponding to the time slot can be received on the corresponding time slot respectively.
  • the indication information 1 is received in the first time slot, and the indication information 1 is used to indicate whether there is a protection symbol in the first time slot, and it can also be considered that the indication information 1 is used to indicate whether the last symbol used for sidelink transmission in the first time slot is a protection symbol;
  • the indication information 2 is received in the second time slot, and the indication information 2 is used to indicate whether there is a protection symbol in the second time slot, and it can also be considered that the indication information 2 is used to indicate whether the last symbol used for sidelink transmission in the second time slot is a protection symbol;
  • the indication information 3 is received in the third time slot, and the indication information 3 is used to indicate whether there is a protection symbol in the third time slot, and it can also be considered that the indication information 3 is used to indicate whether the last symbol used for sidelink transmission in the third time slot is a protection symbol;
  • the indication information 4 is received in the fourth time slot, and the indication information 4 is used to indicate whether there is a protection symbol in the fourth time slot, and it can also be considered that
  • the second terminal may determine whether there is a protection symbol in the current time slot by decoding the indication information corresponding to each time slot.
  • FIG26 is a flow chart of another method for transmitting multiple consecutive time slots according to an exemplary embodiment. As shown in FIG26, in response to the indication information indicating the number of time slots of the consecutive multiple time slots, the method further includes:
  • step S151 indication information is received in the first time slot or other time slots among a plurality of consecutive time slots.
  • the indication information sent by the second device is used to indicate the number of time slots m of the consecutive multiple time slots, where m is a positive integer greater than 1.
  • the second device can receive the indication information in the first time slot or other time slots of the consecutive multiple time slots. So that the second device can determine the number of time slots of the consecutive multiple time slots based on the indication information, the corresponding terminal (such as the second terminal or the terminal sending the indication information) performs the transceiver conversion or the transceiver conversion in the last time slot of the consecutive multiple time slots.
  • the indication information can be received in the first time slot of the consecutive multiple time slots.
  • the indication information is received in the first time slot, and the indication information is used to indicate the number of time slots m of the consecutive multiple time slots.
  • the indication information can indicate that in the consecutive m time slots, the last symbol used for sidelink transmission in the first m-1 time slots is not a protection symbol, and the last symbol used for sidelink transmission in the mth time slot is a protection symbol.
  • the indication information may be used to indicate the number m' of time slots in a plurality of consecutive time slots.
  • the indication information is received in the first time slot, and the indication information is used to indicate the number m' of time slots in which there is no protection symbol in a plurality of consecutive time slots.
  • the indication information may indicate that the last symbol used for sidelink transmission in the m' consecutive time slots is not a protection symbol, and the last symbol used for sidelink transmission in the m'+1th time slot is a protection symbol.
  • the indication information can indicate that in the consecutive m time slots, the last symbol used for sidelink transmission in the first m-1 time slots is not a protection symbol, and the last symbol used for sidelink transmission in the mth time slot is a protection symbol.
  • the indication information may be used to indicate the number m' of time slots in a plurality of consecutive time slots.
  • the indication information is received in the third time slot, and the indication information is used to indicate the number m' of time slots in which there is no protection symbol in a plurality of consecutive time slots.
  • the indication information may indicate that the last symbol used for sidelink transmission in the m' consecutive time slots is not a protection symbol, and that the last symbol used for sidelink transmission in the m'+1th time slot is a protection symbol.
  • the second terminal can determine which time slots in a plurality of consecutive time slots have protection symbols and which time slots do not have protection symbols by decoding indication information received in the first time slot or other time slots.
  • the corresponding terminal may perform a transmit-receive conversion or a transmit-receive conversion in the protection symbol of the last time slot based on the number of time slots of the consecutive multiple time slots, and perform data reception in all symbols used for sidelink transmission in non-last time slots.
  • receiving the indication information in the third time slot is only an exemplary description, and the present disclosure does not limit the specific corresponding time slots of other time slots except the first time slot.
  • the number of time slots of the consecutive multiple time slots may be a certain value in a preconfigured set of preconfigured values, which is not limited in the present disclosure.
  • indication information when used to indicate the number of time slots of a plurality of consecutive time slots, such indication information can be considered as a dynamic indication method.
  • the transmission method of continuous multiple time slots indicates whether there are protection symbols in the continuous multiple time slots through different forms of indication information, so that the terminal can realize data reception and transmit-receive conversion or transmit-receive conversion in the continuous multiple time slots based on the indication information.
  • the indication information is based on the first stage SCI, the second stage SCI or the MAC CE indication.
  • the second terminal may receive the first-stage SCI or the second-stage SCI sent by other terminals, or the first terminal may receive the MAC CE sent by the network device.
  • the second terminal may determine the indication information based on the indication of the received first-stage SCI, second-stage SCI or MAC CE.
  • the continuous multi-time slot transmission method determines the indication information based on the indication of the first stage SCI, the second stage SCI or the MAC CE, so that the terminal can realize data reception of multiple continuous time slots and transmit-receive conversion or transmit-receive conversion based on the indication information.
  • FIG27 is a flow chart of another method for transmitting continuous multiple time slots according to an exemplary embodiment. As shown in FIG27, the method is applied to a second terminal and may include the following steps:
  • step S161 indication information is received.
  • the second terminal may receive indication information.
  • the indication information is used to indicate whether there is a protection symbol in the time slot. If there is a protection symbol, the protection symbol is used for the second terminal to perform a transceiver conversion; if there is no protection symbol, the last symbol used for sidelink transmission in the time slot indicated by the indication information is used to receive data.
  • step S162 data is received at the last symbol of a first type time slot used for sidelink transmission in a plurality of consecutive time slots.
  • the second terminal may receive data on the last symbol of a first type of time slot used for sidelink transmission in a plurality of consecutive time slots, wherein the first type of time slot is a non-last time slot in the plurality of consecutive time slots.
  • step S161 can refer to the implementation process of step S131, and the specific implementation of step S162 can refer to the implementation process of step S91, which will not be repeated in this disclosure.
  • the transmission method of continuous multiple time slots provided by the embodiment of the present disclosure can indicate which time slots have protection symbols and which time slots do not have protection symbols through indication information, so that the terminal can receive data on the last symbol used for sidelink transmission in the non-last time slot among the continuous multiple time slots based on the indication information, thereby realizing data transmission in the continuous multiple time slots.
  • FIG28 is a schematic diagram of a continuous multiple time slot transmission according to an exemplary embodiment.
  • the data transmitted in the continuous multiple time slots is the data transmitted in the continuous 4 time slots.
  • the last symbol used for the sidelink transmission in the first time slot is used for transmitting data
  • the last symbol used for the sidelink transmission in the second time slot is used for transmitting data
  • the last symbol used for the sidelink transmission in the third time slot is used for transmitting data. It can be understood that for the last symbol used for the sidelink transmission in a time slot to transmit data, data can be sent in response to the terminal being the first terminal, or data can be received in response to the terminal being the second terminal.
  • the last symbol used for the sidelink transmission in the fourth time slot can be used as a GP.
  • the first terminal needs to send data on the first time slot, the second time slot, and the last symbol used for sidelink transmission in the third time slot. Therefore, there may be a situation where the resources corresponding to the corresponding symbols and the data to be sent do not match.
  • the first terminal can perform rate matching on the last symbol used for sidelink transmission in the first time slot, the last symbol used for sidelink transmission in the second time slot, and the last symbol used for sidelink transmission in the third time slot, as well as the corresponding data to be transmitted.
  • rate matching is not required.
  • the data sent by the first terminal may be data transmitted on a physical sidelink shared channel (PSSCH).
  • PSSCH physical sidelink shared channel
  • the transmission method of continuous multiple time slots realizes data transmission of continuous multiple time slots by transmitting data on the last symbol of the non-last time slot used for sidelink transmission in the continuous multiple time slots, and performing transmit-receive conversion or transmit-receive conversion on the last symbol of the last time slot used for sidelink transmission.
  • FIG29 is a schematic diagram of another continuous multi-slot transmission according to an exemplary embodiment.
  • the data transmitted in a plurality of consecutive time slots is data transmitted in four consecutive time slots.
  • the last symbol used for sidelink transmission in the first time slot is used to transmit data
  • the last symbol used for sidelink transmission in the second time slot is used to transmit data
  • the last symbol used for sidelink transmission in the third time slot is used to transmit data. It can be understood that for the last symbol used for sidelink transmission in a time slot to transmit data, data can be sent in response to the terminal being the first terminal, or data can be received in response to the terminal being the second terminal.
  • the last symbol used for sidelink transmission in the fourth time slot can be used as a GP.
  • data different from the data on the symbol adjacent to the current last symbol may be transmitted, that is, it can be considered to be valid data, or non-redundant data.
  • the last symbol used for sidelink transmission in the first time slot is used to transmit data 1, and the data 1 is different from the data 2 and data 3 of the adjacent symbols.
  • the last symbol used for sidelink transmission in the second time slot is used to transmit data 4, and the data 4 is different from the data 5 and data 6 of the adjacent symbols.
  • the last symbol used for sidelink transmission in the third time slot is used to transmit data 7, and the data 7 is different from the data 8 and data 9 of the adjacent symbols.
  • the transmission method of continuous multiple time slots realizes data transmission of continuous multiple time slots by transmitting data on the last symbol of the non-last time slot used for sidelink transmission in the continuous multiple time slots, and performing transmit-receive conversion or transmit-receive conversion on the last symbol of the last time slot used for sidelink transmission.
  • FIG30 is a schematic diagram of another continuous multiple time slot transmission according to an exemplary embodiment.
  • the data transmitted in a plurality of consecutive time slots is data transmitted in four consecutive time slots.
  • the last symbol used for sidelink transmission in the first time slot is used to transmit data
  • the last symbol used for sidelink transmission in the second time slot is used to transmit data
  • the last symbol used for sidelink transmission in the third time slot is used to transmit data. It can be understood that for the last symbol used for sidelink transmission in a time slot to transmit data, data can be sent in response to the terminal being the first terminal, or data can be received in response to the terminal being the second terminal.
  • the last symbol used for sidelink transmission in the fourth time slot can be used as a GP.
  • the data transmitted on the last symbol used for sidelink transmission in the first type of time slot may be data different from the data on the symbol that is not adjacent to the current last symbol, that is, it can be considered to be valid data, or non-redundant data.
  • the last symbol used for sidelink transmission in the first time slot is used to transmit data 1, and the data 1 is different from the non-adjacent symbols, such as data 2 of the a-th symbol and data 3 of the b-th symbol.
  • the last symbol used for sidelink transmission in the second time slot is used to transmit data 4, and the data 4 is different from the non-adjacent symbols, such as data 3 of the b-th symbol and data 5 of the c-th symbol.
  • the last symbol used for sidelink transmission in the third time slot is used to transmit data 7, and the data 7 is different from the non-adjacent symbols, such as data 5 of the c-th symbol and data 8 of the d-th symbol.
  • the transmission method of continuous multiple time slots realizes data transmission of continuous multiple time slots by transmitting data on the last symbol of the non-last time slot used for sidelink transmission in the continuous multiple time slots, and performing transmit-receive conversion or transmit-receive conversion on the last symbol of the last time slot used for sidelink transmission.
  • FIG31 is a schematic diagram of another continuous multi-slot transmission according to an exemplary embodiment.
  • the data transmitted in a plurality of consecutive time slots is data transmitted in four consecutive time slots.
  • the last symbol used for sidelink transmission in the first time slot is used to transmit data
  • the last symbol used for sidelink transmission in the second time slot is used to transmit data
  • the last symbol used for sidelink transmission in the third time slot is used to transmit data. It can be understood that for the last symbol used for sidelink transmission in a time slot to transmit data, data can be sent in response to the terminal being the first terminal, or data can be received in response to the terminal being the second terminal.
  • the last symbol used for sidelink transmission in the fourth time slot can be used as a GP.
  • the same data as that on the symbol adjacent to the current last symbol may be transmitted, that is, it can be considered as transmitting redundant data, or non-valid data.
  • the adjacent symbol can be the previous symbol or the next symbol of the current last symbol.
  • the last symbol used for sidelink transmission in the first time slot is used to transmit data 1, which is the same as data 1 of the previous symbol or data 1 of the next symbol.
  • the last symbol used for sidelink transmission in the second time slot is used to transmit data 2, which is the same as data 2 of the previous symbol or data 2 of the next symbol.
  • the last symbol used for sidelink transmission in the third time slot is used to transmit data 3, which is the same as data 3 of the previous symbol or data 3 of the next symbol.
  • the transmission method of continuous multiple time slots realizes data transmission of continuous multiple time slots by transmitting data on the last symbol of the non-last time slot used for sidelink transmission in the continuous multiple time slots, and performing transmit-receive conversion or transmit-receive conversion on the last symbol of the last time slot used for sidelink transmission.
  • FIG32 is a schematic diagram of another continuous multi-slot transmission according to an exemplary embodiment.
  • the data transmitted in a plurality of consecutive time slots is data transmitted in four consecutive time slots.
  • the last symbol used for sidelink transmission in the first time slot is used to transmit data
  • the last symbol used for sidelink transmission in the second time slot is used to transmit data
  • the last symbol used for sidelink transmission in the third time slot is used to transmit data. It can be understood that for the last symbol used for sidelink transmission in a time slot to transmit data, data can be sent in response to the terminal being the first terminal, or data can be received in response to the terminal being the second terminal.
  • the last symbol used for sidelink transmission in the fourth time slot can be used as a GP.
  • the data transmitted may be the same as the data transmitted on the symbol that is not adjacent to the current last symbol, that is, it can be considered as transmitting redundant data, or non-valid data.
  • the last symbol used for sidelink transmission in the first time slot is used to transmit data 1
  • the data 1 is the same as the data 1 of the non-adjacent symbol, such as the data 1 of the a-th symbol or the data 1 of the b-th symbol.
  • the last symbol used for sidelink transmission in the second time slot is used to transmit data 2
  • the data 2 is the same as the data 2 of the non-adjacent symbol, such as the data 2 of the c-th symbol or the data 2 of the d-th symbol.
  • the last symbol used for sidelink transmission in the third time slot is used to transmit data 3, and the data 3 is the same as the data 3 of the non-adjacent symbol, such as the data 3 of the e-th symbol or the data 3 of the f-th symbol.
  • the transmission method of continuous multiple time slots realizes data transmission of continuous multiple time slots by transmitting data on the last symbol of the non-last time slot used for sidelink transmission in the continuous multiple time slots, and performing transmit-receive conversion or transmit-receive conversion on the last symbol of the last time slot used for sidelink transmission.
  • an embodiment of the present disclosure also provides a continuous multi-time slot transmission device.
  • the continuous multi-slot transmission device includes hardware structures and/or software modules corresponding to the execution of each function in order to realize the above functions.
  • the embodiment of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a function is executed in the form of hardware or computer software driving hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be considered to exceed the scope of the technical solution of the embodiment of the present disclosure.
  • Fig. 33 is a schematic diagram of a transmission device for continuous multiple time slots according to an exemplary embodiment.
  • the device 100 is a first terminal, and the device 100 includes: a sending module 101, configured to send data on the last symbol of a first type of time slot used for direct link sidelink transmission in a plurality of continuous time slots; the first type of time slot is a non-last time slot of the plurality of continuous time slots.
  • the transmission device of continuous multiple time slots provided by the embodiment of the present disclosure transmits data on the last symbol of the non-last time slot used for sidelink transmission in the continuous multiple time slots, so that the terminal can realize data transmission of continuous multiple time slots.
  • the sending module 101 is further used to: perform resource mapping on the resource unit RE where the last symbol of the first type time slot used for sidelink transmission is located, and send different data on symbols adjacent to and/or non-adjacent symbols on the last symbol of the first type time slot used for sidelink transmission; or, perform resource mapping on the RE where the last symbol of the first type time slot used for sidelink transmission is located, and send the same data as adjacent symbols and/or non-adjacent symbols on the last symbol of the first type time slot used for sidelink transmission; wherein the adjacent symbols represent the previous symbol or the next symbol of the last symbol of the first type time slot used for sidelink transmission.
  • the continuous multi-time slot transmission device transmits valid data or redundant data on the last symbol of the first type time slot used for sidelink transmission, so that the last symbol cannot be used as a protection symbol, thereby realizing data transmission of multiple continuous time slots by the terminal.
  • the device 100 also includes: a conversion module 102, which is used to use the last symbol of the second type time slot in a plurality of consecutive time slots used for sidelink transmission as a protection symbol to perform transmission and reception conversion of the first terminal, and the second type time slot is the last time slot of the plurality of consecutive time slots.
  • a conversion module 102 which is used to use the last symbol of the second type time slot in a plurality of consecutive time slots used for sidelink transmission as a protection symbol to perform transmission and reception conversion of the first terminal, and the second type time slot is the last time slot of the plurality of consecutive time slots.
  • the transmission device of continuous multiple time slots provided by the embodiment of the present disclosure enables the terminal to realize the transmission and reception conversion by using the last symbol of the last time slot in the continuous multiple time slots for sidelink transmission as a protection symbol.
  • the sending module 101 is also used to: send indication information, the indication information is used to indicate whether there is a protection symbol in the time slot; if there is a protection symbol, the protection symbol is used by the first terminal to perform send-receive conversion; if there is no protection symbol, the last symbol in the time slot indicated by the indication information is used to send data.
  • the continuous multi-time slot transmission device provided by the embodiment of the present disclosure can indicate which time slots have protection symbols and which time slots do not have protection symbols through indication information, so that the terminal can realize data transmission of multiple continuous time slots and send-receive conversion or send-receive conversion based on the indication information.
  • the indication information is used to indicate at least one of the following information; the indication information is used to indicate whether there is a protection symbol in the current time slot, and the sending module 101 is also used to send the indication information in each time slot in a plurality of consecutive time slots; the indication information is used to indicate the number of time slots in a plurality of consecutive time slots, and the sending module 101 is also used to send the indication information in the first time slot or other time slots in the plurality of consecutive time slots.
  • the transmission device for continuous multiple time slots indicates whether there are protection symbols in the continuous multiple time slots through different forms of indication information, so that the terminal can realize data transmission and send-receive conversion or send-receive conversion in the continuous multiple time slots based on the indication information.
  • the indication information is based on the first stage direct connection control information SCI, the second stage SCI or the media access control unit MAC CE indication.
  • the continuous multi-time slot transmission device determines the indication information based on the indication of the first stage SCI, the second stage SCI or the MAC CE, so that the terminal can realize data transmission of continuous multiple time slots and transmit-receive conversion or transmit-receive conversion based on the indication information.
  • Fig. 34 is a schematic diagram of another transmission device of continuous multiple time slots according to an exemplary embodiment.
  • the device 200 is a second terminal, and the device 200 includes: a receiving module 201, configured to receive data on the last symbol of a first type of time slot used for direct link sidelink transmission in a plurality of continuous time slots; the first type of time slot is a non-last time slot in the plurality of continuous time slots.
  • the transmission device of continuous multiple time slots receives data on the last symbol used for sidelink transmission in a non-last time slot among the continuous multiple time slots, so that the terminal can realize data transmission of continuous multiple time slots.
  • the receiving module 201 is further used to: receive, on the last symbol of the first type time slot used for sidelink transmission, data different from that on symbols adjacent to and/or non-adjacent symbols of the last symbol of the first type time slot used for sidelink transmission; or, receive, on the last symbol of the first type time slot used for sidelink transmission, data identical to that on adjacent symbols and/or non-adjacent symbols; wherein adjacent symbols represent the previous symbol or the next symbol of the last symbol of the first type time slot used for sidelink transmission.
  • the continuous multi-time slot transmission device receives valid data or transmits redundant data on the last symbol of the first type of time slot used for sidelink transmission, so that the last symbol cannot be used as a protection symbol, thereby realizing data transmission of multiple continuous time slots by the terminal.
  • the device 200 also includes: a conversion module 202, which is used to use the last symbol of the second type time slot in a plurality of consecutive time slot resources used for sidelink transmission as a protection symbol to perform transceiver conversion of the second terminal; the second type time slot is the last time slot in the plurality of consecutive time slots.
  • a conversion module 202 which is used to use the last symbol of the second type time slot in a plurality of consecutive time slot resources used for sidelink transmission as a protection symbol to perform transceiver conversion of the second terminal.
  • the transmission device of continuous multiple time slots provided by the embodiment of the present disclosure enables the terminal to realize the transmission and reception conversion by using the last symbol of the last time slot in the continuous multiple time slots for sidelink transmission as a protection symbol.
  • the receiving module 201 is also used to: receive indication information, the indication information is used to indicate whether there is a protection symbol in the time slot; if there is a protection symbol, the protection symbol is used for the second terminal to perform transmit and receive conversion; if there is no protection symbol, the last symbol in the time slot indicated by the indication information is used to receive data.
  • the continuous multi-time slot transmission device provided by the embodiment of the present disclosure can indicate which time slots have protection symbols and which time slots do not have protection symbols through indication information, so that the terminal can realize data transmission of multiple continuous time slots and transmit-receive conversion or transmit-receive conversion based on the indication information.
  • the indication information is used to indicate at least one of the following information: the indication information is used to indicate whether there is a protection symbol in the current time slot, and the receiving module 201 is also used to receive the indication information in each time slot in a plurality of consecutive time slots; the indication information is used to indicate the number of time slots in a plurality of consecutive time slots, and the receiving module 201 is also used to receive the indication information in the first time slot or other time slots in the plurality of consecutive time slots.
  • the transmission device for continuous multiple time slots indicates whether there are protection symbols in the continuous multiple time slots through different forms of indication information, so that the terminal can realize data reception and transmit-receive conversion or transmit-receive conversion in the continuous multiple time slots based on the indication information.
  • the indication information is based on the first stage direct connection control information SCI, the second stage SCI or the media access control unit MAC CE indication.
  • the continuous multi-time slot transmission device determines the indication information based on the indication of the first stage SCI, the second stage SCI or the MAC CE, so that the terminal can realize data reception of multiple continuous time slots and transmit-receive conversion or transmit-receive conversion based on the indication information.
  • Figure 35 is a schematic diagram of another continuous multi-slot transmission device according to an exemplary embodiment.
  • the device 300 can be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc.
  • the device 300 may be a first terminal or a second terminal.
  • the apparatus 300 may include one or more of the following components: a processing component 302 , a memory 304 , a power component 306 , a multimedia component 308 , an audio component 310 , an input/output (I/O) interface 312 , a sensor component 314 , and a communication component 316 .
  • the processing component 302 generally controls the overall operation of the device 300, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above-mentioned method.
  • the processing component 302 may include one or more modules to facilitate the interaction between the processing component 302 and other components.
  • the processing component 302 may include a multimedia module to facilitate the interaction between the multimedia component 308 and the processing component 302.
  • the memory 304 is configured to store various types of data to support operations on the device 300. Examples of such data include instructions for any application or method operating on the device 300, contact data, phone book data, messages, pictures, videos, etc.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory
  • flash memory magnetic disk or optical disk.
  • the power component 306 provides power to the various components of the device 300.
  • the power component 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for the device 300.
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touch, slide, and gestures on the touch panel. The touch sensor may not only sense the boundaries of the touch or slide action, but also detect the duration and pressure associated with the touch or slide operation.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operating mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each front camera and rear camera may be a fixed optical lens system or have a focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), and when the device 300 is in an operating mode, such as a call mode, a recording mode, and a speech recognition mode, the microphone is configured to receive an external audio signal.
  • the received audio signal can be further stored in the memory 304 or sent via the communication component 316.
  • the audio component 310 also includes a speaker for outputting audio signals.
  • I/O interface 312 provides an interface between processing component 302 and peripheral interface modules, such as keyboards, click wheels, buttons, etc. These buttons may include but are not limited to: a home button, a volume button, a start button, and a lock button.
  • the sensor assembly 314 includes one or more sensors for providing various aspects of the status assessment of the device 300.
  • the sensor assembly 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, the sensor assembly 314 can also detect the position change of the device 300 or a component of the device 300, the presence or absence of user contact with the device 300, the orientation or acceleration/deceleration of the device 300, and the temperature change of the device 300.
  • the sensor assembly 314 can include a proximity sensor configured to detect the presence of a nearby object without any physical contact.
  • the sensor assembly 314 can also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 314 can also include an accelerometer, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the device 300 and other devices.
  • the device 300 can access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives a broadcast signal or broadcast-related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • the apparatus 300 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, microcontrollers, microprocessors or other electronic components to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers microcontrollers, microprocessors or other electronic components to perform the above method.
  • a non-transitory computer-readable storage medium including instructions is also provided, such as a memory 304 including instructions, and the instructions can be executed by the processor 320 of the device 300 to perform the above method.
  • the non-transitory computer-readable storage medium can be a ROM, a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, an optical data storage device, etc.
  • the present disclosure occupies part of the original time slots corresponding to the protection symbol for sidelink transmission, so that the corresponding time slot is used for the last symbol of sidelink transmission to transmit data, and is not used as a protection symbol.
  • the corresponding time slot is used for the last symbol of sidelink transmission to transmit data, and is not used as a protection symbol.
  • only the last time slot includes the protection symbol. Continuous multi-time slot data transmission is achieved, and the efficiency of channel access is improved.
  • plural refers to two or more than two, and other quantifiers are similar.
  • “And/or” describes the association relationship of associated objects, indicating that three relationships may exist.
  • a and/or B can represent: A exists alone, A and B exist at the same time, and B exists alone.
  • the character “/” generally indicates that the objects associated with each other are in an "or” relationship.
  • the singular forms “a”, “the” and “the” are also intended to include the plural forms, unless the context clearly indicates other meanings.
  • first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other, and do not indicate a specific order or degree of importance. In fact, the expressions “first”, “second”, etc. can be used interchangeably.
  • the first information can also be referred to as the second information, and similarly, the second information can also be referred to as the first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种连续多时隙的传输方法、装置及存储介质。包括:在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上发送数据;第一类型时隙为连续多个时隙的非最后一个时隙。通过在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上发送数据,使得终端可以实现连续多个时隙的数据传输。

Description

一种连续多时隙的传输方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种连续多时隙的传输方法、装置及存储介质。
背景技术
相关技术中,在直连链路(sidelink)的非授权频段下,当两个终端进行通信传输时,在相应的时隙(slot)先进行先听后说(listen before talk,LBT),以便确定信道是否可用。当LBT成功后可以选择单个时隙进行数据传输,或者选择多个时隙进行传输。相应的,当在一次LBT成功后,可以支持连续的多个时隙的传输,则可以通过更少的LBT次数,以减少LBT失败所带来的影响。
然而,在sidelink的时隙结构中,每个时隙中至少存在一个保护符号(guard symbol)或称保护间隔(guard period,GP)。并且,在现有的通信协议下规定了在guard symbol处不传输数据,而是进行收发转换或发收转换。这使得终端无法实现连续多时隙的传输。而是在一个时隙的guard symbol处传输中断,在下一个时隙的传输开始前,终端需要再次进行LBT。这导致了连续多时隙的传输无法实现。
发明内容
为克服相关技术中存在的问题,本公开提供一种连续多时隙的传输方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种连续多时隙的传输方法,方法应用于第一终端,包括:在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上发送数据;第一类型时隙为连续多个时隙的非最后一个时隙。
在一种实施方式中,在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上发送数据,包括:在第一类型时隙用于sidelink传输的最后一个符号所在的资源单元RE上进行资源映射,并在第一类型时隙用于sidelink传输的最后一个符号上发送与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,在第一类型时隙用于sidelink传输的最后一个符号所在的RE上进行资源映射,并在第一类型时隙用于sidelink传输的最后一个符号上发送与相邻的符号和/或非相邻的符号上相同的数据;其中,相邻的符号表示第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
在一种实施方式中,方法还包括:将连续多个时隙中第二类型时隙用于sidelink传输 的最后一个符号作为保护符号,进行第一终端的发收转换,第二类型时隙为连续多个时隙的最后一个时隙。
在一种实施方式中,方法还包括:发送指示信息,指示信息用于指示时隙中是否存在保护符号;若存在保护符号,则保护符号用于第一终端进行发收转换;若不存在保护符号,则指示信息指示的时隙中用于sidelink传输的最后一个符号用于发送数据。
在一种实施方式中,指示信息用于指示以下至少一种信息;指示信息用于指示当前时隙是否存在保护符号,在连续多个时隙中的各时隙发送指示信息;指示信息用于指示连续多个时隙的时隙数量,在连续多个时隙中的第一个时隙或者其它时隙发送指示信息。
在一种实施方式中,指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
根据本公开实施例的第二方面,提供一种连续多时隙的传输方法,方法应用于第二终端,包括:在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上接收数据;第一类型时隙为连续多个时隙中的非最后一个时隙。
在一种实施方式中,在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上接收数据,包括:在第一类型时隙用于sidelink传输的最后一个符号上接收与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,在第一类型时隙用于sidelink传输的最后一个符号上接收与相邻的符号和/或非相邻的符号上相同的数据;其中,相邻的符号表示第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
在一种实施方式中,方法还包括:将连续多个时隙资源中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行第二终端的收发转换;第二类型时隙为连续多个时隙中的最后一个时隙。
在一种实施方式中,方法还包括:接收指示信息,指示信息用于指示时隙中是否存在保护符号;若存在保护符号,则保护符号用于第二终端进行收发转换;若不存在保护符号,则指示信息指示的时隙中用于sidelink传输的最后一个符号用于接收数据。
在一种实施方式中,指示信息用于指示以下至少一种信息:指示信息用于指示当前时隙是否存在保护符号,在连续多个时隙中的各时隙接收指示信息;指示信息用于指示连续多个时隙的时隙数量,在连续多个时隙中的第一个时隙或者其它时隙接收指示信息。
在一种实施方式中,指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
根据本公开实施例的第三方面,提供一种连续多时隙的传输装置,装置为第一终端, 装置包括:发送模块,用于在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上发送数据;第一类型时隙为连续多个时隙的非最后一个时隙。
在一种实施方式中,发送模块还用于:在第一类型时隙用于sidelink传输的最后一个符号所在的资源单元RE上进行资源映射,并在第一类型时隙用于sidelink传输的最后一个符号上发送与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,在第一类型时隙用于sidelink传输的最后一个符号所在的RE上进行资源映射,并在第一类型时隙用于sidelink传输的最后一个符号上发送与相邻的符号和/或非相邻的符号上相同的数据;其中,相邻的符号表示第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
在一种实施方式中,装置还包括:转换模块,用于将连续多个时隙中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行第一终端的发收转换,第二类型时隙为连续多个时隙的最后一个时隙。
在一种实施方式中,发送模块还用于:发送指示信息,指示信息用于指示时隙中是否存在保护符号;若存在保护符号,则保护符号用于第一终端进行发收转换;若不存在保护符号,则指示信息指示的时隙中用于sidelink传输的最后一个符号用于发送数据。
在一种实施方式中,指示信息用于指示以下至少一种信息;指示信息用于指示当前时隙是否存在保护符号,发送模块还用于在连续多个时隙中的各时隙发送指示信息;指示信息用于指示连续多个时隙的时隙数量,发送模块还用于在连续多个时隙中的第一个时隙或者其它时隙发送指示信息。
在一种实施方式中,指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
根据本公开实施例的第四方面,提供一种连续多时隙的传输装置,装置为第二终端,装置包括:接收模块,用于在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上接收数据;第一类型时隙为连续多个时隙中的非最后一个时隙。
在一种实施方式中,接收模块还用于:在第一类型时隙用于sidelink传输的最后一个符号上接收与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,在第一类型时隙用于sidelink传输的最后一个符号上接收与相邻的符号和/或非相邻的符号上相同的数据;其中,相邻的符号表示第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
在一种实施方式中,装置还包括:转换模块,用于将连续多个时隙资源中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行第二终端的收发转换;第二类型 时隙为连续多个时隙中的最后一个时隙。
在一种实施方式中,接收模块还用于:接收指示信息,指示信息用于指示时隙中是否存在保护符号;若存在保护符号,则保护符号用于第二终端进行收发转换;若不存在保护符号,则指示信息指示的时隙中用于sidelink传输的最后一个符号用于接收数据。
在一种实施方式中,指示信息用于指示以下至少一种信息:指示信息用于指示当前时隙是否存在保护符号,接收模块还用于在连续多个时隙中的各时隙接收指示信息;指示信息用于指示连续多个时隙的时隙数量,接收模块还用于在连续多个时隙中的第一个时隙或者其它时隙接收指示信息。
在一种实施方式中,指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
根据本公开实施例的第五方面,提供一种连续多时隙的传输装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:执行第一方面中任意一项的方法。
根据本公开实施例的第六方面,提供一种连续多时隙的传输装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,处理器被配置为:执行第二方面中任意一项的方法。
根据本公开实施例的第七方面,提供一种非临时性计算机可读存储介质,当存储介质中的指令由第一终端的处理器执行时,使得第一终端能够执行第一方面中任意一项的方法。
根据本公开实施例的第八方面,提供一种非临时性计算机可读存储介质,当存储介质中的指令由第二终端的处理器执行时,使得第二终端能够执行第二方面中任意一项的方法。
本公开的实施例提供的技术方案可以包括以下有益效果:通过在连续多个时隙中非最后一个时隙的最后一个符号上发送数据,使得终端可以实现连续多个时隙的数据传输。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种通信系统结构示意图。
图2是根据一示例性实施例示出的一种基于LBT进行数据传输示意图。
图3是根据一示例性实施例示出的一种sidelink时隙结构示意图。
图4是根据一示例性实施例示出的一种连续多时隙的传输方法流程图。
图5是根据一示例性实施例示出的一种连续多时隙传输示意图。
图6是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。
图7是根据一示例性实施例示出的一种时隙传输示意图。
图8是根据一示例性实施例示出的另一种连续多时隙传输示意图。
图9是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。
图10是根据一示例性实施例示出的另一种时隙传输示意图。
图11是根据一示例性实施例示出的再一种连续多时隙的传输方法流程图。
图12是根据一示例性实施例示出的又一种连续多时隙传输示意图。
图13是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。
图14是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。
图15是根据一示例性实施例示出的一种指示信息发送示意图。
图16是根据一示例性实施例示出的再一种连续多时隙的传输方法流程图。
图17是根据一示例性实施例示出的另一种指示信息发送示意图。
图18是根据一示例性实施例示出的又一种指示信息发送示意图。
图19是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。
图20是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。
图21是根据一示例性实施例示出的再一种连续多时隙的传输方法流程图。
图22是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。
图23是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。
图24是根据一示例性实施例示出的再一种连续多时隙的传输方法流程图。
图25是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。
图26是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。
图27是根据一示例性实施例示出的再一种连续多时隙的传输方法流程图。
图28是根据一示例性实施例示出的再一种连续多时隙传输示意图。
图29是根据一示例性实施例示出的另一种连续多时隙传输示意图。
图30是根据一示例性实施例示出的又一种连续多时隙传输示意图。
图31是根据一示例性实施例示出的再一种连续多时隙传输示意图。
图32是根据一示例性实施例示出的另一种连续多时隙传输示意图。
图33是根据一示例性实施例示出的一种连续多时隙的传输装置示意图。
图34是根据一示例性实施例示出的另一种连续多时隙的传输装置示意图。
图35是根据一示例性实施例示出的又一种连续多时隙的传输装置示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开实施例提供的连续多时隙数据发送方法可应用于图1所示的直连通信系统。参阅图1所示,直连通信设备之间进行直连通信的场景中,网络设备为直连通信设备1配置各种用于数据传输的传输参数。直连通信设备1,直连通信设备2和直连通信设备3进行直连通信。不同的直连通信设备之间可以存在障碍物,也可以不存在障碍物。网络设备与直连通信设备之间进行通信的链路为上下行链路,不同的直连通信设备之间的链路是直连链路(sidelink)。
本公开中,直连通信设备之间直接通信的通信场景可以是车用无线通信技术(Vehicle to Everything,V2X)业务场景。其中,V代表车载设备,X代表任何与车载设备交互的对象。当前X主要包含车载设备、手持设备、交通路侧基础设施和网络。V2X交互的信息模式包括:车载设备与车载设备之间(Vehicle to Vehicle,V2V)、车载设备与路边设备之间(Vehicle to Infrastructure,V2I)、车载设备与手持设备之间(Vehicle to Pedestrian,V2P)、车载设备与网络之间(Vehicle to Network,V2N)的交互。
随着新一代5G移动通信技术的发展,在3GPP Rel-16中利用5G NR技术实现了对新的V2x通信服务和场景的支持,如车队管理(Vehicles Platooning),感知扩展(Extended Sensors),先进驾驶(Advanced Driving),和远程驾驶(remote driving)等。总体来说,5G V2x sidelink能够提供更高的通信速率,更短的通信延时,更可靠的通信质量。
直连通信设备之间直接通信的通信场景也可以是终端到终端(Device to Device,D2D)的通信场景。本公开实施例中进行直接通信的直连通信设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端(terminal),终端设备(Terminal Equipment)等等。为方便描述,本公开实施例以下以直连通信设备为用户设备为例进行说明。可以理解,用户设备也可以称为终端。
相关技术中,在sidelink非授权频段下(即sl-u),两个终端进行相互通信传输时,通 常会在相应的时隙(slot)资源上先进行LBT,以确定相应的信道是否可用。例如图2所示出的,一种基于LBT进行数据传输示意图。可以看出,当LBT成功后可以选择单个时隙资源进行数据传输,也可以选择多个时隙资源进行数据传输。例如图2中白色框对应的LBT,例如图2中左侧的LBT成功后选择了单个时隙资源进行数据传输。又例如图2中右侧的LBT成功后选择了多个时隙资源进行数据传输。而当LBT失败后,则无法进行资源选择,从而导致通信失败或无法通信。在一些情况下,当在一次LBT成功后可以支持连续的多个时隙资源的数据发送,使得可以通过更少的LBT次数,以减少LBT失败所带来的对通信造成的影响。
但是在目前的sidelink时隙结构中,例如图3所示出的,每个时隙中至少存在一个guard symbol或称GP。例如每一个时隙中用于sidelink传输的最后一个符号。或者在配置了物理直连链路反馈信道(physical sidelink feedback channel,PSFCH)时,每个用于sidelink传输的时隙还会额外存在一个用于PSFCH的GP符号。
在现有的R16/R17协议中规定了在guard symbol处不传输数据,而是进行收发转换或发收转换。通常一个guard symbol长度大于16微秒(us)或25us。这会导致终端无法实现连续多时隙的传输。例如,在一个时隙的guard symbol信道被例如WiFi设备占用,导致终端传输中断,终端需要在下一个时隙的传输开始前,再次进行LBT。
显然,由于guard symbol的存在,使得连续多时隙传输无法实现。
因此,本公开提供了一种连续多时隙的传输方法,通过在连续多个时隙中非最后一个时隙的最后一个符号上发送数据,使得终端可以实现连续多个时隙的数据传输。
图4是根据一示例性实施例示出的一种连续多时隙的传输方法流程图,如图4所示,该方法用于第一终端,包括以下步骤。
在步骤S11中,在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上发送数据。
本公开实施例中,第一终端可以在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上发送数据。其中,第一类型时隙为连续多个时隙的非最后一个时隙。
可以如图5所示出的,假设连续多个时隙传输数据为连续4个时隙传输数据。假设第一终端用于发送数据,可以在所有非最后一个时隙中用于sidelink传输的最后一个符号上发送数据。例如,在第一个时隙中用于sidelink传输的最后一个符号上发送数据,在第二个时隙中用于sidelink传输的最后一个符号上发送数据,以及在第三个时隙中用于sidelink传输的最后一个符号上发送数据。可以理解,第一类型时隙中用于sidelink传输的非最后一个符号(可以称为其它符号)通常用于传输相应数据,在本实施例中可以仍然传输相应 数据。
需要说明的是,上述连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号。例如,1个时隙中可以有14个符号,假设序号0-13的符号用于sidelink的传输,则用于sidelink传输的最后一个符号为符号13;或,1个时隙中用于sidelink传输的符号为10个符号,如序号3-12的符号用于sidelink的传输,则用于sidelink传输的最后一个符号为符号12,而不是1个时隙中的最后一个序号为13的符号。因此可以理解,本公开所涉及的最后一个符号可以是相应时隙中用于sidelink传输的最后一个符号。
可以明白的是,相比于相关技术中用于sidelink传输的最后一个符号作为guard symbol的情况,本公开实施例通过在用于sidelink传输的最后一个符号上发送数据,使得用于sidelink传输的最后一个符号无法作为guard symbol,进而第一设备就不会因为guard symbol的存在而进行发收转换,以实现可以连续多个时隙传输数据。
本公开实施例提供的连续多时隙的传输方法,通过在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上发送数据,使得终端可以实现连续多个时隙的数据传输。
本公开实施例提供的一种连续多时隙的传输方法中,图6是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。如图6所示,在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上发送数据,可以包括:
在步骤S21中,在第一类型时隙用于sidelink传输的最后一个符号所在的资源单元(resource element,RE)上进行资源映射,并在第一类型时隙用于sidelink传输的最后一个符号上发送与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据。
本公开实施例中,第一终端可以在第一类型时隙用于sidelink传输的最后一个符号所在的RE上进行资源映射。并在第一类型时隙用于sidelink传输的最后一个符号上发送与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据。其中,相邻的符号表示为第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
例如图7所示出的一种时隙传输示意图,以第N个时隙为例,可以看出,在第N个时隙中,第一终端可以在用于sidelink传输的最后一个符号所在的RE上进行资源映射。第一终端在第N个时隙用于sidelink传输的最后一个符号上发送数据1,该数据1与第N个时隙用于sidelink传输的最后一个符号的前一个符号上的数据2,或后一个符号上的数据3均不同。可以理解,第N个时隙用于sidelink传输的最后一个符号的前一个符号可以是第 N个时隙用于sidelink传输的倒数第二个符号,第N个时隙用于sidelink传输的最后一个符号的后一个符号可以是第N+1个时隙的第一个符号,或者也可以是第N+1个时隙用于sidelink传输的第一个符号。当然,若第N个时隙用于sidelink传输的最后一个符号并非该时隙中的最后一个符号,则第N个时隙用于sidelink传输的最后一个符号的后一个符号可以是紧邻该用于sidelink传输的最后一个符号的后一个符号,例如,1个时隙中可以有14个符号,假设用于sidelink传输的符号为10个符号,如序号3-12的符号。用于sidelink传输的最后一个符号为符号12,则用于sidelink传输的最后一个符号的后一个符号可以是符号13。
在一些情况下,该数据1与第N个时隙的第a个符号上的数据4,或第N+1个时隙的第b个符号上的数据5均不同。可以理解,第a个符号、第b个符号用于表述与第N个时隙用于sidelink传输的最后一个符号非相邻的符号。非相邻的符号可以是除第N个时隙用于sidelink传输的最后一个符号的前一个符号以及后一个符号以外的任意时隙中的任意符号。
也就是说,第一终端可以在第一类型时隙用于sidelink传输的最后一个符号上传输任意有效数据,此有效数据为与其它任意时隙的任意符号不同的数据,即非冗余数据。
本公开实施例中,当第一终端在第一类型时隙用于sidelink传输的最后一个符号上传输有效数据的情况下,可以相应的进行速率匹配,以应对相应资源与实际传输的有效数据不匹配的情况。例如图8所示出的,第一终端需要对第一类型时隙用于sidelink传输的最后一个符号,例如第一个时隙用于sidelink传输的最后一个符号、第二个时隙用于sidelink传输的最后一个符号和第三个时隙用于sidelink传输的最后一个符号进行速率匹配。
或者,在另一些实施例中,图9是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。如图9所示,在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上发送数据,可以包括:
在步骤S31中,在第一类型时隙用于sidelink传输的最后一个符号所在的RE上进行资源映射,并在第一类型时隙用于sidelink传输的最后一个符号上发送与相邻的符号和/或非相邻的符号上相同的数据。
本公开实施例中,第一终端可以在第一类型时隙用于sidelink传输的最后一个符号所在的RE上进行资源映射。并在第一类型时隙用于sidelink传输的最后一个符号上发送与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上相同的数据。
例如图10所示出的另一种时隙传输示意图,以第N个时隙为例,可以看出,在第N 个时隙中,第一终端可以在用于sidelink传输的最后一个符号所在的RE上进行资源映射。第一终端在第N个时隙用于sidelink传输的最后一个符号上发送数据1,该数据1可以与第N个时隙用于sidelink传输的最后一个符号的前一个符号上的数据1,或后一个符号上的数据1相同。可以理解,第N个时隙用于sidelink传输的最后一个符号的前一个符号可以是第N个时隙用于sidelink传输的倒数第二个符号,第N个时隙的最后一个符号的后一个符号可以是第N+1个时隙的第一个符号,或者也可以是第N+1个时隙用于sidelink传输的第一个符号。当然,若第N个时隙用于sidelink传输的最后一个符号并非该时隙中的最后一个符号,则第N个时隙用于sidelink传输的最后一个符号的后一个符号可以是紧邻该用于sidelink传输的最后一个符号的后一个符号,例如,1个时隙中可以有14个符号,假设用于sidelink传输的符号为10个符号,如序号3-12的符号。用于sidelink传输的最后一个符号为符号12,则用于sidelink传输的最后一个符号的后一个符号可以是符号13。
在一些情况下,该数据1可以与第N个时隙的第a个符号上的数据1,或第N+1个时隙的第b个符号上的数据1相同。可以理解,第a个符号、第b个符号用于表述与第N个时隙用于sidelink传输的最后一个符号非相邻的符号。非相邻的符号可以是除第N个时隙用于sidelink传输的最后一个符号的前一个符号以及后一个符号以外的任意时隙中的任意符号。
也就是说,第一终端可以在第一类型时隙用于sidelink传输的最后一个符号上传输任意冗余数据,此冗余数据为与其它任意时隙的任意符号相同的数据,即非有效数据。
本公开实施例中,在第一类型时隙用于sidelink传输的最后一个符号上传输任意冗余数据的情况下,第一终端也可以进行速率匹配,以避免出现相应资源与实际传输的数据不匹配的情况。
本公开实施例提供的连续多时隙的传输方法,通过在第一类型时隙用于sidelink传输的最后一个符号上传输有效数据或者传输冗余数据,使得最后一个符号无法作为保护符号,进而实现终端连续多个时隙的数据传输。
本公开实施例提供的一种连续多时隙的传输方法中,图11是根据一示例性实施例示出的再一种连续多时隙的传输方法流程图。如图11所示,方法还包括:
在步骤S41中,将连续多个时隙中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行第一终端的发收转换。
本公开实施例中,第一终端可以将连续多个时隙中第二类型时隙用于sidelink传输的最后一个符号作为保护符号。其中,第二类型时隙为连续多个时隙的最后一个时隙。第一终端基于连续多个时隙中第二类型时隙的保护符号,进行第一终端的发收转换。
可以如图12所示出的,假设连续多个时隙传输数据为连续4个时隙传输数据。假设第一终端用于发送数据,可以在将最后一个时隙中用于sidelink传输的最后一个符号作为guard symbol。例如,将第四个时隙中用于sidelink传输的最后一个符号作为guard symbol。可以理解,第二类型时隙中用于sidelink传输的非最后一个符号(或称其它符号)通常用于传输相应数据,在本实施例中可以仍然传输相应数据。
可以明白的是,当用于sidelink传输的最后一个符号作为guard symbol的情况下,第一终端可以进行相应的发收转换。
本公开实施例提供的连续多时隙的传输方法,通过将连续多个时隙中最后一个时隙用于sidelink传输的最后一个符号作为保护符号,使得终端可以实现发收转换。
公开实施例提供的一种连续多时隙的传输方法中,图13是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。如图13所示,方法还包括:
在步骤S51中,发送指示信息。
本公开实施例中,第一终端可以发送指示信息。该指示信息用于指示时隙中是否存在保护符号。其中,若存在保护符号,则保护符号用于第一终端进行发收转换;若不存在保护符号,则指示信息指示的时隙中用于sidelink传输的最后一个符号用于发送数据。
可以理解,第一终端通过发送指示信息,可以使得接收到指示信息的设备了解哪些时隙可能存在保护符号。对于不存在保护符号的时隙,其用于sidelink传输的最后一个符号将用于传输数据。对于存在保护符号的时隙,则相应的终端(例如第一终端或者接收指示信息的终端)可以基于保护符号进行发收转换或者收发转换。
本公开实施例提供的连续多时隙的传输方法,通过指示信息可以指示哪些时隙存在保护符号,哪些时隙不存在保护符号,使得终端可以基于指示信息实现连续多个时隙的数据传输,以及发收转换或收发转换。
本公开实施例提供的一种连续多时隙的传输方法中,指示信息用于指示以下至少一种信息:指示信息用于指示当前时隙是否存在保护符号;指示信息用于指示连续多个时隙的时隙数量。
本公开实施例中,图14是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。如图14所示,响应于指示信息用于指示当前时隙是否存在保护符号,方法还包括:
在步骤S61中,在连续多个时隙中的各时隙发送指示信息。
本公开实施例中,第一设备发送的指示信息若用于指示当前时隙是否存在保护符号,第一设备可以在连续多个时隙中的每个时隙发送对应时隙的指示信息。以使得指示信息可 以用于指示当前时隙是否存在保护符号。例如,指示信息可以是1比特(bit)信息。如,指示信息为0表示不存在guard symbol,指示信息为1表示存在guard symbol。又或者,指示信息为1表示不存在guard symbol,指示信息为0表示存在guard symbol。本公开对具体指示信息的取值不作限定。
可以理解,当指示信息指示当前时隙不存在保护符号,则表示当前时隙用于sidelink传输的所有符号用于数据传输。当指示信息指示当前时隙存在保护符号,则表示相应终端(例如第一终端或者接收指示信息的终端)应当根据当前时隙的保护符号进行发收转换或者收发转换。
例如图15所示出的一种指示信息发送示意图。假设连续多个时隙传输数据为连续4个时隙传输数据,若指示信息用于指示当前时隙是否存在保护符号。则针对每个时隙可以分别在相应时隙上发送该时隙对应的指示信息。例如,在第一个时隙发送指示信息1,该指示信息1用于指示第一个时隙中是否存在保护符号,也可以认为指示信息1用于指示第一个时隙中用于sidelink传输的最后一个符号是否为保护符号;在第二个时隙发送指示信息2,该指示信息2用于指示第二个时隙中是否存在保护符号,也可以认为指示信息2用于指示第二个时隙中用于sidelink传输的最后一个符号是否为保护符号;在第三个时隙发送指示信息3,该指示信息3用于指示第三个时隙中是否存在保护符号,也可以认为指示信息3用于指示第三个时隙中用于sidelink传输的最后一个符号是否为保护符号;在第四个时隙发送指示信息4,该指示信息4用于指示第四个时隙中是否存在保护符号,也可以认为指示信息4用于指示第四个时隙中用于sidelink传输的最后一个符号是否为保护符号。
本公开实施例中,图16是根据一示例性实施例示出的一种连续多时隙的传输方法流程图。如图16所示,响应于指示信息用于指示连续多个时隙的时隙数量,方法还包括:
在步骤S71中,在连续多个时隙中的第一个时隙或者其它时隙发送指示信息。
本公开实施例中,第一设备发送的指示信息若用于指示连续多个时隙的时隙数量m,其中,m为大于1的正整数。第一设备可以在连续多个时隙中的第一个时隙或者其它时隙发送指示信息。以使得接收到该指示信息的设备可以基于该指示信息确定连续多个时隙的时隙数量,以便相应的终端(例如第一终端或者接收指示信息的终端)在连续多个时隙的最后一个时隙进行发收转换或者收发转换。
例如图17所示出的另一种指示信息发送示意图。假设连续多个时隙传输数据为连续4个时隙传输数据,若指示信息用于指示连续多个时隙的时隙数量m。例如,m=4。则可以在连续多个时隙中的第一个时隙发送指示信息。例如,在第一个时隙发送指示信息,该指示信息用于指示连续多个时隙的时隙数量m。该指示信息可以表示连续m个时隙中,前 m-1个时隙中用于sidelink传输的最后一个符号不是保护符号,以及第m个时隙中用于sidelink传输的最后一个符号是保护符号。
在一些实施例中,指示信息可以用于指示连续多个时隙的时隙数量m’。该m’表示连续多个时隙中不存在保护符号的时隙数量。假设连续多个时隙传输数据为连续4个时隙传输数据,则m’=3。仍以图17为例,在第一个时隙发送指示信息,该指示信息用于指示连续多个时隙中不存在保护符号的时隙数量m’。该指示信息可以表示连续m’个时隙中用于sidelink传输的最后一个符号不是保护符号,以及第m’+1个时隙中用于sidelink传输的最后一个符号是保护符号。
又例如图18是根据一示例性实施例示出的又一种指示信息发送示意图。假设连续多个时隙传输数据为连续4个时隙传输数据,若指示信息用于指示连续多个时隙的时隙数量m。例如,m=4。则可以在连续多个时隙中除第一个时隙以外的其它时隙发送指示信息。例如,在第三个时隙发送指示信息,该指示信息用于指示连续多个时隙的时隙数量m。该指示信息可以表示连续m个时隙中,前m-1个时隙中用于sidelink传输的最后一个符号不是保护符号,以及第m个时隙中用于sidelink传输的最后一个符号是保护符号。
在一些实施例中,指示信息可以用于指示连续多个时隙的时隙数量m’。该m’表示连续多个时隙中不存在保护符号的时隙数量。假设连续多个时隙传输数据为连续4个时隙传输数据,则m’=3。仍以图18为例,在第三个时隙发送指示信息,该指示信息用于指示连续多个时隙中不存在保护符号的时隙数量m’。该指示信息可以表示连续m’个时隙中用于sidelink传输的最后一个符号不是保护符号,以及第m’+1个时隙中用于sidelink传输的最后一个符号是保护符号。
当指示信息指示连续多个时隙的时隙数量的情况下,可基于连续多个时隙的时隙数量,相应终端(例如第一终端或者接收指示信息的终端)可以在最后一个时隙的保护符号进行发收转换或者收发转换。并在非最后一个时隙用于sidelink传输的所有符号进行数据传输。
可以理解,上述在第三个时隙发送指示信息仅为一种示例性描述,本公开并不限定除第一个时隙以外的其它时隙具体对应的时隙。
在一些实施例中,连续多个时隙的时隙数量可以是预先配置的预配置数值集中的某一个数值,本公开不作限定。
可以明白的是,指示信息用于指示连续多个时隙的时隙数量的情况下,可以认为此类指示信息是一种动态指示方式。
本公开实施例提供的连续多时隙的传输方法,通过不同形式的指示信息对连续多个时 隙中是否存在保护符号进行指示,使得终端可以基于指示信息实现连续多个时隙的数据传输,以及发收转换或收发转换。
本公开实施例提供的一种连续多时隙的传输方法中,指示信息基于第一阶段直连控制信息(sidelink control information,SCI)、第二阶段SCI或媒体访问控制单元(medium access control control element,MAC CE)指示。
本公开实施例中,第一终端可以接收其它终端发送的第一阶段SCI或第二阶段SCI,又或者第一终端接收网络设备发送的MAC CE。第一终端可以基于接收到的第一阶段SCI、第二阶段SCI或MAC CE的指示,确定指示信息。
本公开实施例提供的连续多时隙的传输方法,通过基于第一阶段SCI、第二阶段SCI或MAC CE的指示,确定指示信息,使得终端可以基于指示信息实现连续多个时隙的数据传输,以及发收转换或收发转换。
本公开实施例提供的一种连续多时隙的传输方法中,图19是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。如图19所示,该方法应用于第一终端,可以包括以下步骤:
在步骤S81中,发送指示信息。
本公开实施例中,第一终端可以发送指示信息。该指示信息用于指示时隙中是否存在保护符号。其中,若存在保护符号,则保护符号用于第一终端进行发收转换;若不存在保护符号,则指示信息指示的时隙中用于sidelink传输的最后一个符号用于发送数据。
在步骤S82中,在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上发送数据。
本公开实施例中,第一终端可以在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上发送数据。其中,第一类型时隙为连续多个时隙的非最后一个时隙。
可以理解,步骤S81具体实现可以参考步骤S51的实现过程,步骤S82具体实现可以参考步骤S11的实现过程,本公开在此不再赘述。
本公开实施例提供的连续多时隙的传输方法,通过指示信息可以指示哪些时隙存在保护符号,哪些时隙不存在保护符号,使得终端可以基于指示信息在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上发送数据,进而实现连续多个时隙的数据传输。
基于相同构思,图20是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。如图20所示,该方法用于第二终端,包括以下步骤:
在步骤S91中,在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上 接收数据。
本公开实施例中,第二终端可以在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上接收数据。其中,第一类型时隙为连续多个时隙的非最后一个时隙。
可以如图5所示出的,假设连续多个时隙传输数据为连续4个时隙传输数据。假设第二终端用于接收数据,可以在所有非最后一个时隙中用于sidelink传输的最后一个符号上接收数据。例如,在第一个时隙中用于sidelink传输的最后一个符号上接收数据,在第二个时隙中用于sidelink传输的最后一个符号上接收数据,以及在第三个时隙中用于sidelink传输的最后一个符号上接收数据。可以理解,第一类型时隙中用于sidelink传输的非最后一个符号(或称其它符号)通常用于传输相应数据,在本实施例中可以仍然传输相应数据。
需要说明的是,上述连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号。例如,1个时隙中可以有14个符号,假设序号0-13的符号用于sidelink的传输,则用于sidelink传输的最后一个符号为符号13;或,1个时隙中用于sidelink传输的符号为10个符号,如序号3-12的符号用于sidelink的传输,则用于sidelink传输的最后一个符号为符号12,而不是1个时隙中的最后一个序号为13的符号。因此可以理解,本公开所涉及的最后一个符号可以是相应时隙中用于sidelink传输的最后一个符号。
可以明白的是,相比于相关技术中用于sidelink传输的最后一个符号作为guard symbol的情况,本公开实施例通过在用于sidelink传输的最后一个符号上接收数据,使得用于sidelink传输的最后一个符号无法作为guard symbol,进而第二设备就不会因为guard symbol的存在而进行收发转换,以实现可以连续多个时隙接收数据。
本公开实施例提供的连续多时隙的传输方法,通过在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上接收数据,使得终端可以实现连续多个时隙的数据传输。
本公开实施例提供的一种连续多时隙的传输方法中,图21是根据一示例性实施例示出的再一种连续多时隙的传输方法流程图。如图21所示,在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上接收数据,可以包括:
在步骤S101中,在第一类型时隙用于sidelink传输的最后一个符号上接收与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据。
本公开实施例中,第二终端可以在第一类型时隙用于sidelink传输的最后一个符号上接收与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据。其中,相邻的符号表示为第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
例如图7所示出的一种时隙传输示意图,以第N个时隙为例,可以看出,第二终端在第N个时隙用于sidelink传输的最后一个符号上接收数据1,该数据1与第N个时隙用于sidelink传输的最后一个符号的前一个符号上的数据2,或后一个符号上的数据3均不同。可以理解,第N个时隙用于sidelink传输的最后一个符号的前一个符号可以是第N个时隙用于sidelink传输的倒数第二个符号,第N个时隙用于sidelink传输的最后一个符号的后一个符号可以是第N+1个时隙的第一个符号,或者也可以是第N+1个时隙用于sidelink传输的第一个符号。当然,若第N个时隙用于sidelink传输的最后一个符号并非该时隙中的最后一个符号,则第N个时隙用于sidelink传输的最后一个符号的后一个符号可以是紧邻该用于sidelink传输的最后一个符号的后一个符号,例如,1个时隙中可以有14个符号,假设用于sidelink传输的符号为10个符号,如序号3-12的符号。用于sidelink传输的最后一个符号为符号12,则用于sidelink传输的最后一个符号的后一个符号可以是符号13。
在一些情况下,该数据1与第N个时隙的第a个符号上的数据4,或第N+1个时隙的第b个符号上的数据5均不同。可以理解,第a个符号、第b个符号用于表述与第N个时隙用于sidelink传输的最后一个符号非相邻的符号。非相邻的符号可以是除第N个时隙用于sidelink传输的最后一个符号的前一个符号以及后一个符号以外的任意时隙中的任意符号。
也就是说,第二终端可以在第一类型时隙用于sidelink传输的最后一个符号上接收任意有效数据,此有效数据为与其它任意时隙的任意符号不同的数据,即非冗余数据。
或者,在另一些实施例中,图22是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。如图22所示,在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上接收数据,可以包括:
在步骤S111中,在第一类型时隙用于sidelink传输的最后一个符号上接收与相邻的符号和/或非相邻的符号上相同的数据。
本公开实施例中,第二终端可以在第一类型时隙用于sidelink传输的最后一个符号上接收与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上相同的数据。
例如图10所示出的另一种时隙传输示意图,以第N个时隙为例,可以看出,第二终端在第N个时隙用于sidelink传输的最后一个符号上接收数据1,该数据1可以与第N个时隙用于sidelink传输的最后一个符号的前一个符号上的数据1,或后一个符号上的数据1相同。可以理解,第N个时隙用于sidelink传输的最后一个符号的前一个符号可以是第N个时隙用于sidelink传输的倒数第二个符号,第N个时隙的最后一个符号的后一个符号可 以是第N+1个时隙的第一个符号,或者也可以是第N+1个时隙用于sidelink传输的第一个符号。当然,若第N个时隙用于sidelink传输的最后一个符号并非该时隙中的最后一个符号,则第N个时隙用于sidelink传输的最后一个符号的后一个符号可以是紧邻该用于sidelink传输的最后一个符号的后一个符号,例如,1个时隙中可以有14个符号,假设用于sidelink传输的符号为10个符号,如序号3-12的符号。用于sidelink传输的最后一个符号为符号12,则用于sidelink传输的最后一个符号的后一个符号可以是符号13。
在一些情况下,该数据1可以与第N个时隙的第a个符号上的数据1,或第N+1个时隙的第b个符号上的数据1相同。可以理解,第a个符号、第b个符号用于表述与第N个时隙用于sidelink传输的最后一个符号非相邻的符号。非相邻的符号可以是除第N个时隙用于sidelink传输的最后一个符号的前一个符号以及后一个符号以外的任意时隙中的任意符号。
也就是说,第二终端可以在第一类型时隙用于sidelink传输的最后一个符号上接收任意冗余数据,此冗余数据为与其它任意时隙的任意符号相同的数据,即非有效数据。
本公开实施例提供的连续多时隙的传输方法,通过在第一类型时隙用于sidelink传输的最后一个符号上接收有效数据或者传输冗余数据,使得最后一个符号无法作为保护符号,进而实现终端连续多个时隙的数据传输。
本公开实施例提供的一种连续多时隙的传输方法中,图23是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。如图23所示,方法还包括:
在步骤S121中,将连续多个时隙中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行第二终端的收发转换。
本公开实施例中,第二终端可以将连续多个时隙中第二类型时隙用于sidelink传输的最后一个符号作为保护符号。其中,第二类型时隙为连续多个时隙的最后一个时隙。第二终端基于连续多个时隙中第二类型时隙的保护符号,进行第二终端的收发转换。
可以如图12所示出的,假设连续多个时隙传输数据为连续4个时隙传输数据。假设第二终端用于接收数据,可以在将最后一个时隙中用于sidelink传输的最后一个符号作为guard symbol。例如,将第四个时隙中用于sidelink传输的最后一个符号作为guard symbol。可以理解,第二类型时隙中用于sidelink传输的非最后一个符号(或称其它符号)通常用于接收相应数据,在本实施例中可以仍然接收相应数据。
可以明白的是,当用于sidelink传输的最后一个符号作为guard symbol的情况下,第二终端可以进行相应的收发转换。
本公开实施例提供的连续多时隙的传输方法,通过将连续多个时隙中最后一个时隙用 于sidelink传输的最后一个符号作为保护符号,使得终端可以实现收发转换。
公开实施例提供的一种连续多时隙的传输方法中,图24是根据一示例性实施例示出的再一种连续多时隙的传输方法流程图。如图24所示,方法还包括:
在步骤S131中,接收指示信息。
本公开实施例中,第二终端可以接收指示信息。该指示信息用于指示时隙中是否存在保护符号。其中,若存在保护符号,则保护符号用于第二终端进行收发转换;若不存在保护符号,则指示信息指示的时隙中用于sidelink传输的最后一个符号用于接收数据。
可以理解,第二终端通过接收指示信息,可以基于该指示信息了解哪些时隙可能存在保护符号。对于不存在保护符号的时隙,其用于sidelink传输的最后一个符号将用于接收数据。对于存在保护符号的时隙,则相应的终端(例如第二终端或者发送指示信息的终端)可以基于保护符号进行收发转换或者发收转换。
本公开实施例中,第二终端可以通过解码指示信息,以确定哪些时隙可能存在保护符号,哪些时隙不存在保护符号。
本公开实施例提供的连续多时隙的传输方法,通过指示信息可以指示哪些时隙存在保护符号,哪些时隙不存在保护符号,使得终端可以基于指示信息实现连续多个时隙的数据传输,以及收发转换或发收转换。
本公开实施例提供的一种连续多时隙的传输方法中,指示信息用于指示以下至少一种信息:指示信息用于指示当前时隙是否存在保护符号;指示信息用于指示连续多个时隙的时隙数量。
本公开实施例中,图25是根据一示例性实施例示出的另一种连续多时隙的传输方法流程图。如图25所示,响应于指示信息用于指示当前时隙是否存在保护符号,方法还包括:
在步骤S141中,在连续多个时隙中的各时隙接收指示信息。
本公开实施例中,第二设备接收的指示信息若用于指示当前时隙是否存在保护符号,第二设备可以在连续多个时隙中的每个时隙接收对应时隙的指示信息。以使得指示信息可以用于指示当前时隙是否存在保护符号。例如,指示信息可以是1比特(bit)信息。如,指示信息为0表示不存在guard symbol,指示信息为1表示存在guard symbol。又或者,指示信息为1表示不存在guard symbol,指示信息为0表示存在guard symbol。本公开对具体指示信息的取值不作限定。
可以理解,当指示信息指示当前时隙不存在保护符号,则表示当前时隙用于sidelink传输的所有符号用于数据传输。当指示信息指示当前时隙存在保护符号,则表示相应终端 (例如第二终端或者发送指示信息的终端)应当根据当前时隙的保护符号进行收发转换或者发收转换。
例如图15所示,假设连续多个时隙传输数据为连续4个时隙传输数据,若指示信息用于指示当前时隙是否存在保护符号。则针对每个时隙可以分别在相应时隙上接收该时隙对应的指示信息。例如,在第一个时隙接收指示信息1,该指示信息1用于指示第一个时隙中是否存在保护符号,也可以认为指示信息1用于指示第一个时隙中用于sidelink传输的最后一个符号是否为保护符号;在第二个时隙接收指示信息2,该指示信息2用于指示第二个时隙中是否存在保护符号,也可以认为指示信息2用于指示第二个时隙中用于sidelink传输的最后一个符号是否为保护符号;在第三个时隙接收指示信息3,该指示信息3用于指示第三个时隙中是否存在保护符号,也可以认为指示信息3用于指示第三个时隙中用于sidelink传输的最后一个符号是否为保护符号;在第四个时隙接收指示信息4,该指示信息4用于指示第四个时隙中是否存在保护符号,也可以认为指示信息4用于指示第四个时隙中用于sidelink传输的最后一个符号是否为保护符号。
本公开实施例中,第二终端可以通过解码每个时隙对应的指示信息,以确定当前时隙是否存在保护符号。
本公开实施例中,图26是根据一示例性实施例示出的又一种连续多时隙的传输方法流程图。如图26所示,响应于指示信息用于指示连续多个时隙的时隙数量,方法还包括:
在步骤S151中,在连续多个时隙中的第一个时隙或者其它时隙接收指示信息。
本公开实施例中,第二设备发送的指示信息若用于指示连续多个时隙的时隙数量m,其中,m为大于1的正整数。第二设备可以在连续多个时隙中的第一个时隙或者其它时隙接收指示信息。以便第二设备可以基于该指示信息确定连续多个时隙的时隙数量,相应的终端(例如第二终端或者发送指示信息的终端)在连续多个时隙的最后一个时隙进行收发转换或者发收转换。
例如图17所示,假设连续多个时隙传输数据为连续4个时隙传输数据,若指示信息用于指示连续多个时隙的时隙数量m。例如,m=4。则可以在连续多个时隙中的第一个时隙接收指示信息。例如,在第一个时隙接收指示信息,该指示信息用于指示连续多个时隙的时隙数量m。该指示信息可以表示连续m个时隙中,前m-1个时隙中用于sidelink传输的最后一个符号不是保护符号,以及第m个时隙中用于sidelink传输的最后一个符号是保护符号。
在一些实施例中,指示信息可以用于指示连续多个时隙的时隙数量m’。该m’表示连续多个时隙中不存在保护符号的时隙数量。假设连续多个时隙传输数据为连续4个时隙 传输数据,则m’=3。仍以图17为例,在第一个时隙接收指示信息,该指示信息用于指示连续多个时隙中不存在保护符号的时隙数量m’。该指示信息可以表示连续m’个时隙中用于sidelink传输的最后一个符号不是保护符号,以及第m’+1个时隙中用于sidelink传输的最后一个符号是保护符号。
又例如图18所示,假设连续多个时隙传输数据为连续4个时隙传输数据,若指示信息用于指示连续多个时隙的时隙数量m。例如,m=4。则可以在连续多个时隙中除第一个时隙以外的其它时隙接收指示信息。例如,在第三个时隙接收指示信息,该指示信息用于指示连续多个时隙的时隙数量m。该指示信息可以表示连续m个时隙中,前m-1个时隙中用于sidelink传输的最后一个符号不是保护符号,以及第m个时隙中用于sidelink传输的最后一个符号是保护符号。
在一些实施例中,指示信息可以用于指示连续多个时隙的时隙数量m’。该m’表示连续多个时隙中不存在保护符号的时隙数量。假设连续多个时隙传输数据为连续4个时隙传输数据,则m’=3。仍以图18为例,在第三个时隙接收指示信息,该指示信息用于指示连续多个时隙中不存在保护符号的时隙数量m’。该指示信息可以表示连续m’个时隙中用于sidelink传输的最后一个符号不是保护符号,以及第m’+1个时隙中用于sidelink传输的最后一个符号是保护符号。
本公开实施例中,第二终端可以通过解码第一个时隙或其它时隙接收到的指示信息,以确定连续多个时隙中哪些时隙存在保护符号,哪些时隙不存在保护符号。
当指示信息指示连续多个时隙的时隙数量的情况下,可基于连续多个时隙的时隙数量,相应终端(例如第二终端或者发送指示信息的终端)可以在最后一个时隙的保护符号进行收发转换或者发收转换。并在非最后一个时隙用于sidelink传输的所有符号进行数据接收。
可以理解,上述在第三个时隙接收指示信息仅为一种示例性描述,本公开并不限定除第一个时隙以外的其它时隙具体对应的时隙。
在一些实施例中,连续多个时隙的时隙数量可以是预先配置的预配置数值集中的某一个数值,本公开不作限定。
可以明白的是,指示信息用于指示连续多个时隙的时隙数量的情况下,可以认为此类指示信息是一种动态指示方式。
本公开实施例提供的连续多时隙的传输方法,通过不同形式的指示信息对连续多个时隙中是否存在保护符号进行指示,使得终端可以基于指示信息实现连续多个时隙的数据接收,以及收发转换或发收转换。
本公开实施例提供的一种连续多时隙的传输方法中,指示信息基于第一阶段SCI、第二阶段SCI或MAC CE指示。
本公开实施例中,第二终端可以接收其它终端发送的第一阶段SCI或第二阶段SCI,又或者第一终端接收网络设备发送的MAC CE。第二终端可以基于接收到的第一阶段SCI、第二阶段SCI或MAC CE的指示,确定指示信息。
本公开实施例提供的连续多时隙的传输方法,通过基于第一阶段SCI、第二阶段SCI或MAC CE的指示,确定指示信息,使得终端可以基于指示信息实现连续多个时隙的数据接收,以及收发转换或发收转换。
本公开实施例提供的一种连续多时隙的传输方法中,图27是根据一示例性实施例示出的再一种连续多时隙的传输方法流程图。如图27所示,该方法应用与第二终端,可以包括以下步骤:
在步骤S161中,接收指示信息。
本公开实施例中,第二终端可以接收指示信息。该指示信息用于指示时隙中是否存在保护符号。其中,若存在保护符号,则保护符号用于第二终端进行收发转换;若不存在保护符号,则指示信息指示的时隙中用于sidelink传输的最后一个符号用于接收数据。
在步骤S162中,在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上接收数据。
本公开实施例中,第二终端可以在连续多个时隙中第一类型时隙用于sidelink传输的最后一个符号上接收数据。其中,第一类型时隙为连续多个时隙的非最后一个时隙。
可以理解,步骤S161具体实现可以参考步骤S131的实现过程,步骤S162具体实现可以参考步骤S91的实现过程,本公开在此不再赘述。
本公开实施例提供的连续多时隙的传输方法,通过指示信息可以指示哪些时隙存在保护符号,哪些时隙不存在保护符号,使得终端可以基于指示信息在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上接收数据,进而实现连续多个时隙的数据传输。
本公开实施例提供的一种连续多时隙的传输方法中,图28是根据一示例性实施例示出的一种连续多时隙传输示意图。
本公开实施例中,如图28所示,假设连续多个时隙传输数据为连续4个时隙传输数据。其中,第一个时隙中用于sidelink传输的最后一个符号用于传输数据,在第二个时隙中用于sidelink传输的最后一个符号用于传输数据,以及在第三个时隙中用于sidelink传输的最后一个符号用于传输数据。可以理解,对于某个时隙中用于sidelink传输的最后一个 符号用于传输数据,可以响应于终端为第一终端的情况下发送数据,或者可以响应于终端为第二终端的情况下接收数据。第四个时隙中用于sidelink传输的最后一个符号可以作为GP。
在终端为第一终端的情况下,第一终端需要在第一个时隙、第二个时隙以及在第三个时隙中用于sidelink传输的的最后一个符号上发送数据。因此可能会出现相应符号对应的资源和需要发送的数据不匹配的情况。第一终端可以对第一个时隙用于sidelink传输的最后一个符号、第二个时隙用于sidelink传输的最后一个符号和第三个时隙用于sidelink传输的最后一个符号以及相应需要传输的数据进行速率匹配。而对于第四个时隙用于sidelink传输的最后一个符号,由于该符号作为GP,则无需进行速率匹配。
本公开实施例中,第一终端发送的数据可以是物理直连链路共享信道(physical sidelink shared channel,PSSCH)上传输的数据。
本公开实施例提供的连续多时隙的传输方法,通过在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上传输数据,以及在最后一个时隙用于sidelink传输的最后一个符号上进行发收转换或收发转换,实现了连续多个时隙的数据传输。
本公开实施例提供的一种连续多时隙的传输方法中,图29是根据一示例性实施例示出的另一种连续多时隙传输示意图。
本公开实施例中,如图29所示,假设连续多个时隙传输数据为连续4个时隙传输数据。其中,第一个时隙中用于sidelink传输的最后一个符号用于传输数据,在第二个时隙中用于sidelink传输的最后一个符号用于传输数据,以及在第三个时隙中用于sidelink传输的最后一个符号用于传输数据。可以理解,对于某个时隙中用于sidelink传输的最后一个符号用于传输数据,可以响应于终端为第一终端的情况下发送数据,或者可以响应于终端为第二终端的情况下接收数据。第四个时隙中用于sidelink传输的最后一个符号可以作为GP。
在第一类时隙中用于sidelink传输的最后一个符号上传输数据,可以传输与当前最后一个符号相邻的符号上不同的数据,即可以认为是传输有效数据,或称非冗余数据。例如图29中,第一个时隙中用于sidelink传输的最后一个符号用于传输数据1,该数据1与相邻的符号的数据2、数据3均不相同。同理,第二个时隙中用于sidelink传输的最后一个符号用于传输数据4,该数据4与相邻的符号的数据5、数据6均不相同。第三个时隙中用于sidelink传输的最后一个符号用于传输数据7,该数据7与相邻的符号的数据8、数据9均不相同。
本公开实施例提供的连续多时隙的传输方法,通过在连续多个时隙中非最后一个时隙 用于sidelink传输的最后一个符号上传输数据,以及在最后一个时隙用于sidelink传输的最后一个符号上进行发收转换或收发转换,实现了连续多个时隙的数据传输。
本公开实施例提供的一种连续多时隙的传输方法中,图30是根据一示例性实施例示出的又一种连续多时隙传输示意图。
本公开实施例中,如图30所示,假设连续多个时隙传输数据为连续4个时隙传输数据。其中,第一个时隙中用于sidelink传输的最后一个符号用于传输数据,在第二个时隙中用于sidelink传输的最后一个符号用于传输数据,以及在第三个时隙中用于sidelink传输的最后一个符号用于传输数据。可以理解,对于某个时隙中用于sidelink传输的最后一个符号用于传输数据,可以响应于终端为第一终端的情况下发送数据,或者可以响应于终端为第二终端的情况下接收数据。第四个时隙中用于sidelink传输的最后一个符号可以作为GP。
在第一类时隙中用于sidelink传输的最后一个符号上传输数据,可以传输与当前最后一个符号非相邻的符号上不同的数据,即可以认为是传输有效数据,或称非冗余数据。例如图30中,第一个时隙中用于sidelink传输的最后一个符号用于传输数据1,该数据1与非相邻的符号的例如第a个符号的数据2、第b个符号的数据3不同。同理,第二个时隙中用于sidelink传输的最后一个符号用于传输数据4,该数据4与非相邻的符号的例如第b个符号的数据3、第c个符号的数据5不同。第三个时隙中用于sidelink传输的最后一个符号用于传输数据7,该数据7与非相邻的符号的例如第c个符号的数据5、第d个符号的数据8不同。
本公开实施例提供的连续多时隙的传输方法,通过在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上传输数据,以及在最后一个时隙用于sidelink传输的最后一个符号上进行发收转换或收发转换,实现了连续多个时隙的数据传输。
本公开实施例提供的一种连续多时隙的传输方法中,图31是根据一示例性实施例示出的再一种连续多时隙传输示意图。
本公开实施例中,如图31所示,假设连续多个时隙传输数据为连续4个时隙传输数据。其中,第一个时隙中用于sidelink传输的最后一个符号用于传输数据,在第二个时隙中用于sidelink传输的最后一个符号用于传输数据,以及在第三个时隙中用于sidelink传输的最后一个符号用于传输数据。可以理解,对于某个时隙中用于sidelink传输的最后一个符号用于传输数据,可以响应于终端为第一终端的情况下发送数据,或者可以响应于终端为第二终端的情况下接收数据。第四个时隙中用于sidelink传输的最后一个符号可以作为GP。
在第一类时隙中用于sidelink传输的最后一个符号上传输数据,可以传输与当前最后一个符号相邻的符号上相同的数据,即可以认为是传输冗余数据,或称非有效数据。可以理解,相邻的符号可以是当前最后一个符号的前一个符号或后一个符号。例如图31中,第一个时隙中用于sidelink传输的最后一个符号用于传输数据1,该数据1与前一个符号的数据1或后一个符号的数据1相同。同理,第二个时隙中用于sidelink传输的最后一个符号用于传输数据2,该数据2与前一个符号的数据2或后一个符号的数据2相同。第三个时隙中用于sidelink传输的最后一个符号用于传输数据3,该数据3与前一个符号的数据3或后一个符号的数据3相同。
本公开实施例提供的连续多时隙的传输方法,通过在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上传输数据,以及在最后一个时隙用于sidelink传输的最后一个符号上进行发收转换或收发转换,实现了连续多个时隙的数据传输。
本公开实施例提供的一种连续多时隙的传输方法中,图32是根据一示例性实施例示出的另一种连续多时隙传输示意图。
本公开实施例中,如图32所示,假设连续多个时隙传输数据为连续4个时隙传输数据。其中,第一个时隙中用于sidelink传输的最后一个符号用于传输数据,在第二个时隙中用于sidelink传输的最后一个符号用于传输数据,以及在第三个时隙中用于sidelink传输的最后一个符号用于传输数据。可以理解,对于某个时隙中用于sidelink传输的最后一个符号用于传输数据,可以响应于终端为第一终端的情况下发送数据,或者可以响应于终端为第二终端的情况下接收数据。第四个时隙中用于sidelink传输的最后一个符号可以作为GP。
在第一类时隙中用于sidelink传输的最后一个符号上传输数据,可以传输与当前最后一个符号非相邻的符号上相同的数据,即可以认为是传输冗余数据,或称非有效数据。例如图32中,第一个时隙中用于sidelink传输的最后一个符号用于传输数据1,该数据1与非相邻的符号的例如第a个符号的数据1或第b个符号的数据1相同。同理,第二个时隙中用于sidelink传输的最后一个符号用于传输数据2,该数据2与非相邻的符号的例如第c个符号的数据2或第d个符号的数据2相同。第三个时隙中用于sidelink传输的最后一个符号用于传输数据3,该数据3与非相邻的符号的例如第e个符号的数据3或第f个符号的数据3相同。
本公开实施例提供的连续多时隙的传输方法,通过在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上传输数据,以及在最后一个时隙用于sidelink传输的最后一个符号上进行发收转换或收发转换,实现了连续多个时隙的数据传输。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种连续多时隙的传输装置。
可以理解的是,本公开实施例提供的连续多时隙的传输装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图33是根据一示例性实施例示出的一种连续多时隙的传输装置示意图。参照图33,该装置100为第一终端,该装置100包括:发送模块101,用于在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上发送数据;第一类型时隙为连续多个时隙的非最后一个时隙。
本公开实施例提供的连续多时隙的传输装置,通过在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上发送数据,使得终端可以实现连续多个时隙的数据传输。
在一些实施方式中,发送模块101还用于:在第一类型时隙用于sidelink传输的最后一个符号所在的资源单元RE上进行资源映射,并在第一类型时隙用于sidelink传输的最后一个符号上发送与第一类型时隙的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,在第一类型时隙用于sidelink传输的最后一个符号所在的RE上进行资源映射,并在第一类型时隙用于sidelink传输的最后一个符号上发送与相邻的符号和/或非相邻的符号上相同的数据;其中,相邻的符号表示第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
本公开实施例提供的连续多时隙的传输装置,通过在第一类型时隙用于sidelink传输的最后一个符号上传输有效数据或者传输冗余数据,使得最后一个符号无法作为保护符号,进而实现终端连续多个时隙的数据传输。
在一些实施方式中,装置100还包括:转换模块102,用于将连续多个时隙中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行第一终端的发收转换,第二 类型时隙为连续多个时隙的最后一个时隙。
本公开实施例提供的连续多时隙的传输装置,通过将连续多个时隙中最后一个时隙用于sidelink传输的最后一个符号作为保护符号,使得终端可以实现发收转换。
在一些实施方式中,发送模块101还用于:发送指示信息,指示信息用于指示时隙中是否存在保护符号;若存在保护符号,则保护符号用于第一终端进行发收转换;若不存在保护符号,则指示信息指示的时隙中最后一个符号用于发送数据。
本公开实施例提供的连续多时隙的传输装置,通过指示信息可以指示哪些时隙存在保护符号,哪些时隙不存在保护符号,使得终端可以基于指示信息实现连续多个时隙的数据传输,以及发收转换或收发转换。
在一些实施方式中,指示信息用于指示以下至少一种信息;指示信息用于指示当前时隙是否存在保护符号,发送模块101还用于在连续多个时隙中的各时隙发送指示信息;指示信息用于指示连续多个时隙的时隙数量,发送模块101还用于在连续多个时隙中的第一个时隙或者其它时隙发送指示信息。
本公开实施例提供的连续多时隙的传输装置,通过不同形式的指示信息对连续多个时隙中是否存在保护符号进行指示,使得终端可以基于指示信息实现连续多个时隙的数据传输,以及发收转换或收发转换。
在一些实施方式中,指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
本公开实施例提供的连续多时隙的传输装置,通过基于第一阶段SCI、第二阶段SCI或MAC CE的指示,确定指示信息,使得终端可以基于指示信息实现连续多个时隙的数据传输,以及发收转换或收发转换。
图34是根据一示例性实施例示出的另一种连续多时隙的传输装置示意图。参照图34,该装置200为第二终端,该装置200包括:接收模块201,用于在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上接收数据;第一类型时隙为连续多个时隙中的非最后一个时隙。
本公开实施例提供的连续多时隙的传输装置,通过在连续多个时隙中非最后一个时隙用于sidelink传输的最后一个符号上接收数据,使得终端可以实现连续多个时隙的数据传输。
在一些实施方式中,接收模块201还用于:在第一类型时隙用于sidelink传输的最后一个符号上接收与第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,在第一类型时隙用于sidelink传输的最后一个符号上接收与相 邻的符号和/或非相邻的符号上相同的数据;其中,相邻的符号表示第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
本公开实施例提供的连续多时隙的传输装置,通过在第一类型时隙用于sidelink传输的最后一个符号上接收有效数据或者传输冗余数据,使得最后一个符号无法作为保护符号,进而实现终端连续多个时隙的数据传输。
在一些实施方式中,装置200还包括:转换模块202,用于将连续多个时隙资源中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行第二终端的收发转换;第二类型时隙为连续多个时隙中的最后一个时隙。
本公开实施例提供的连续多时隙的传输装置,通过将连续多个时隙中最后一个时隙用于sidelink传输的最后一个符号作为保护符号,使得终端可以实现收发转换。
在一些实施方式中,接收模块201还用于:接收指示信息,指示信息用于指示时隙中是否存在保护符号;若存在保护符号,则保护符号用于第二终端进行收发转换;若不存在保护符号,则指示信息指示的时隙中最后一个符号用于接收数据。
本公开实施例提供的连续多时隙的传输装置,通过指示信息可以指示哪些时隙存在保护符号,哪些时隙不存在保护符号,使得终端可以基于指示信息实现连续多个时隙的数据传输,以及收发转换或发收转换。
在一些实施方式中,指示信息用于指示以下至少一种信息:指示信息用于指示当前时隙是否存在保护符号,接收模块201还用于在连续多个时隙中的各时隙接收指示信息;指示信息用于指示连续多个时隙的时隙数量,接收模块201还用于在连续多个时隙中的第一个时隙或者其它时隙接收指示信息。
本公开实施例提供的连续多时隙的传输装置,通过不同形式的指示信息对连续多个时隙中是否存在保护符号进行指示,使得终端可以基于指示信息实现连续多个时隙的数据接收,以及收发转换或发收转换。
在一些实施方式中,指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
本公开实施例提供的连续多时隙的传输装置,通过基于第一阶段SCI、第二阶段SCI或MAC CE的指示,确定指示信息,使得终端可以基于指示信息实现连续多个时隙的数据接收,以及收发转换或发收转换。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图35是根据一示例性实施例示出的又一种连续多时隙的传输装置示意图。例如,装 置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
本公开实施例中,装置300可以是第一终端,也可以是第二终端。
参照图35,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本公开通过对原有部分时隙对应用于sidelink传输的保护符号进行占用,以使得相应时隙用于sidelink传输的最后一个符号传输数据,而不作为保护符号。使得在连续多个时隙传输时,只有最后一个时隙包括保护符号。实现了连续的多时隙的数据传输,提高了信道接入的效率。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联 对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (28)

  1. 一种连续多时隙的传输方法,其特征在于,所述方法应用于第一终端,包括:
    在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上发送数据;所述第一类型时隙为所述连续多个时隙的非最后一个时隙。
  2. 根据权利要求1所述的方法,其特征在于,所述在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上发送数据,包括:
    在所述第一类型时隙用于sidelink传输的最后一个符号所在的资源单元RE上进行资源映射,并在所述第一类型时隙用于sidelink传输的最后一个符号上发送与所述第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,
    在所述第一类型时隙用于sidelink传输的最后一个符号所在的RE上进行资源映射,并在所述第一类型时隙用于sidelink传输的最后一个符号上发送与所述相邻的符号和/或非相邻的符号上相同的数据;
    其中,所述相邻的符号表示所述第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    将所述连续多个时隙中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行所述第一终端的发收转换,所述第二类型时隙为所述连续多个时隙的最后一个时隙。
  4. 根据权利要求1-3中任意一项所述的方法,其特征在于,所述方法还包括:
    发送指示信息,所述指示信息用于指示时隙中是否存在保护符号;
    若存在保护符号,所述保护符号用于所述第一终端进行发收转换;若不存在保护符号,所述指示信息指示的时隙中用于sidelink传输的最后一个符号用于发送数据。
  5. 根据权利要求4所述的方法,其特征在于,所述指示信息用于指示以下至少一种信息:
    所述指示信息用于指示当前时隙是否存在保护符号,在所述连续多个时隙中的各时隙发送所述指示信息;
    所述指示信息用于指示所述连续多个时隙的时隙数量,在所述连续多个时隙中的第一个时隙或者其它时隙发送所述指示信息。
  6. 根据权利要求4或5所述的方法,其特征在于,所述指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
  7. 一种连续多时隙的传输方法,其特征在于,所述方法应用于第二终端,包括:
    在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上接收数据;所述第一类型时隙为所述连续多个时隙中的非最后一个时隙。
  8. 根据权利要求7所述的方法,其特征在于,所述在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上接收数据,包括:
    在所述第一类型时隙用于sidelink传输的最后一个符号上接收与所述第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,
    在所述第一类型时隙用于sidelink传输的最后一个符号上接收与所述相邻的符号和/或非相邻的符号上相同的数据;
    其中,所述相邻的符号表示所述第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
  9. 根据权利要求7或8所述的方法,其特征在于,所述方法还包括:
    将所述连续多个时隙资源中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行所述第二终端的收发转换;所述第二类型时隙为所述连续多个时隙中的最后一个时隙。
  10. 根据权利要求7-9中任意一项所述的方法,其特征在于,所述方法还包括:
    接收指示信息,所述指示信息用于指示时隙中是否存在保护符号;
    若存在保护符号,所述保护符号用于所述第二终端进行收发转换;若不存在保护符号,所述指示信息指示的时隙中用于sidelink传输的最后一个符号用于接收数据。
  11. 根据权利要求10所述的方法,其特征在于,所述指示信息用于指示以下至少一种信息:
    所述指示信息用于指示当前时隙是否存在保护符号,在所述连续多个时隙中的各时隙接收所述指示信息;
    所述指示信息用于指示所述连续多个时隙的时隙数量,在所述连续多个时隙中的第一个时隙或者其它时隙接收所述指示信息。
  12. 根据权利要求10或11所述的方法,其特征在于,所述指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
  13. 一种连续多时隙的传输装置,其特征在于,所述装置为第一终端,所述装置包括:
    发送模块,用于在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上发送数据;所述第一类型时隙为所述连续多个时隙的非最后一个时隙。
  14. 根据权利要求13所述的装置,其特征在于,所述发送模块还用于:
    在所述第一类型时隙用于sidelink传输的最后一个符号所在的资源单元RE上进行资源映射,并在所述第一类型时隙用于sidelink传输的最后一个符号上发送与所述第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,
    在所述第一类型时隙用于sidelink传输的最后一个符号所在的RE上进行资源映射,并在所述第一类型时隙用于sidelink传输的最后一个符号上发送与所述相邻的符号和/或非相邻的符号上相同的数据;
    其中,所述相邻的符号表示所述第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
  15. 根据权利要求13或14所述的装置,其特征在于,所述装置还包括:
    转换模块,用于将所述连续多个时隙中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行所述第一终端的发收转换,所述第二类型时隙为所述连续多个时隙的最后一个时隙。
  16. 根据权利要求13-15中任意一项所述的装置,其特征在于,所述发送模块还用于:
    发送指示信息,所述指示信息用于指示时隙中是否存在保护符号;
    若存在保护符号,则保护符号用于所述第一终端进行发收转换;若不存在保护符号,则所述指示信息指示的时隙中用于sidelink传输的最后一个符号用于发送数据。
  17. 根据权利要求16所述的装置,其特征在于,所述指示信息用于指示以下至少一种信息:
    所述指示信息用于指示当前时隙是否存在保护符号,所述发送模块还用于在所述连续多个时隙中的各时隙发送所述指示信息;
    所述指示信息用于指示所述连续多个时隙的时隙数量,所述发送模块还用于在所述连续多个时隙中的第一个时隙或者其它时隙发送所述指示信息。
  18. 根据权利要求16或17所述的装置,其特征在于,所述指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
  19. 一种连续多时隙的传输装置,其特征在于,所述装置为第二终端,所述装置包括:
    接收模块,用于在连续多个时隙中第一类型时隙用于直连链路sidelink传输的最后一个符号上接收数据;所述第一类型时隙为所述连续多个时隙中的非最后一个时隙。
  20. 根据权利要求19所述的装置,其特征在于,所述接收模块还用于:
    在所述第一类型时隙用于sidelink传输的最后一个符号上接收与所述第一类型时隙用于sidelink传输的最后一个符号相邻的符号和/或非相邻的符号上不同的数据;或,
    在所述第一类型时隙用于sidelink传输的最后一个符号上接收与所述相邻的符号和/或非相邻的符号上相同的数据;
    其中,所述相邻的符号表示所述第一类型时隙用于sidelink传输的最后一个符号的前一个符号或后一个符号。
  21. 根据权利要求19或20所述的装置,其特征在于,所述装置还包括:
    转换模块,用于将所述连续多个时隙资源中第二类型时隙用于sidelink传输的最后一个符号作为保护符号,进行所述第二终端的收发转换;所述第二类型时隙为所述连续多个时隙中的最后一个时隙。
  22. 根据权利要求19-21中任意一项所述的装置,其特征在于,所述接收模块还用于:
    接收指示信息,所述指示信息用于指示时隙中是否存在保护符号;
    若存在保护符号,则保护符号用于所述第二终端进行收发转换;若不存在保护符号,则所述指示信息指示的时隙中用于sidelink传输的最后一个符号用于接收数据。
  23. 根据权利要求22所述的装置,其特征在于,所述指示信息用于指示以下至少一种信息:
    所述指示信息用于指示当前时隙是否存在保护符号,所述接收模块还用于在所述连续多个时隙中的各时隙接收所述指示信息;
    所述指示信息用于指示所述连续多个时隙的时隙数量,所述接收模块还用于在所述连续多个时隙中的第一个时隙或者其它时隙接收所述指示信息。
  24. 根据权利要求22或23所述的装置,其特征在于,所述指示信息基于第一阶段直连控制信息SCI、第二阶段SCI或媒体访问控制单元MAC CE指示。
  25. 一种连续多时隙的传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至6中任意一项所述的方法。
  26. 一种连续多时隙的传输装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求7至12中任意一项所述的方法。
  27. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由第一终端的处理器执行时,使得所述第一终端能够执行权利要求1至6中任意一项所述的方法。
  28. 一种非临时性计算机可读存储介质,当所述存储介质中的指令由第二终端的处理器执行时,使得所述第二终端能够执行权利要求7至12中任意一项所述的方法。
PCT/CN2022/121499 2022-09-26 2022-09-26 一种连续多时隙的传输方法、装置及存储介质 WO2024065126A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/121499 WO2024065126A1 (zh) 2022-09-26 2022-09-26 一种连续多时隙的传输方法、装置及存储介质
CN202280003654.2A CN115918217A (zh) 2022-09-26 2022-09-26 一种连续多时隙的传输方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/121499 WO2024065126A1 (zh) 2022-09-26 2022-09-26 一种连续多时隙的传输方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2024065126A1 true WO2024065126A1 (zh) 2024-04-04

Family

ID=86495872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/121499 WO2024065126A1 (zh) 2022-09-26 2022-09-26 一种连续多时隙的传输方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN115918217A (zh)
WO (1) WO2024065126A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111480382A (zh) * 2018-02-07 2020-07-31 Oppo广东移动通信有限公司 用户设备及其无线通信方法
WO2021184323A1 (zh) * 2020-03-19 2021-09-23 Oppo广东移动通信有限公司 数据发送方法和终端设备
CN113632582A (zh) * 2021-07-08 2021-11-09 北京小米移动软件有限公司 基于物理直连通信数据信道的通信方法、装置及存储介质
WO2021223072A1 (en) * 2020-05-06 2021-11-11 Qualcomm Incorporated Slot or mini-slot bundling for sidelink communication in a wireless communications network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111480382A (zh) * 2018-02-07 2020-07-31 Oppo广东移动通信有限公司 用户设备及其无线通信方法
WO2021184323A1 (zh) * 2020-03-19 2021-09-23 Oppo广东移动通信有限公司 数据发送方法和终端设备
WO2021223072A1 (en) * 2020-05-06 2021-11-11 Qualcomm Incorporated Slot or mini-slot bundling for sidelink communication in a wireless communications network
CN113632582A (zh) * 2021-07-08 2021-11-09 北京小米移动软件有限公司 基于物理直连通信数据信道的通信方法、装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE, SANECHIPS: "NR sidelink physical layer structure", 3GPP DRAFT; R1-1906457 NR SIDELINK PHYSICAL LAYER STRUCUTRE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 3 May 2019 (2019-05-03), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 12, XP051708492 *

Also Published As

Publication number Publication date
CN115918217A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2022151276A1 (zh) 通信方法、通信装置及存储介质
WO2023279342A1 (zh) 基于物理直连通信数据信道的通信方法、装置及存储介质
WO2021088009A1 (zh) 反馈方法、反馈装置及存储介质
US20230262665A1 (en) Method and apparatus for determining resource, and storage medium
US20230413234A1 (en) Method and device for resource selection, and storage medium
WO2022082382A1 (zh) 辅助资源集发送接收方法、装置及存储介质
EP4057549A1 (en) Feedback method, feedback apparatus and storage medium
EP3876563B1 (en) Method and apparatus for broadcasting configuration information of synchronizing signal block, and method and apparatus for receiving configuration information of synchronizing signal block
WO2018086010A1 (zh) 控制协议数据单元pdu发送方法及装置
WO2024065126A1 (zh) 一种连续多时隙的传输方法、装置及存储介质
EP4266780A1 (en) Auxiliary resource set determining method and apparatus, and storage medium
US20220124045A1 (en) Data transmission method and apparatus, electronic device and storage medium
EP4181438A1 (en) Information transmission method and apparatus, communication device and storage medium
WO2021226766A1 (zh) 发送数据的方法、装置、通信设备及存储介质
WO2024065120A1 (zh) 一种连续多时隙数据传输方法、装置及存储介质
RU2820333C1 (ru) Способ и устройство для определения набора вспомогательных ресурсов, а также носитель данных
US20240155564A1 (en) Resource selection method, resource selection device and storage medium
WO2023077318A1 (zh) 基于辅助资源集进行通信的方法、装置及存储介质
CN112789806B (zh) 数据传输方法、装置及存储介质
WO2024130505A1 (zh) 调度处理方法以及装置、通信设备及存储介质
WO2024124493A1 (zh) 连续多时隙的资源选择方法、装置
WO2022061734A1 (zh) 资源选择方法、资源选择装置及存储介质
WO2021138909A1 (zh) 数据帧传输方法、数据帧传输装置及存储介质
WO2021142795A1 (zh) 一种数据传输的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959778

Country of ref document: EP

Kind code of ref document: A1