WO2024063326A1 - 선박의 폐열을 이용한 선박 폐열 발전 시스템 - Google Patents
선박의 폐열을 이용한 선박 폐열 발전 시스템 Download PDFInfo
- Publication number
- WO2024063326A1 WO2024063326A1 PCT/KR2023/011570 KR2023011570W WO2024063326A1 WO 2024063326 A1 WO2024063326 A1 WO 2024063326A1 KR 2023011570 W KR2023011570 W KR 2023011570W WO 2024063326 A1 WO2024063326 A1 WO 2024063326A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ship
- heat
- waste heat
- fresh water
- evaporator
- Prior art date
Links
- 239000002918 waste heat Substances 0.000 title claims abstract description 120
- 238000010248 power generation Methods 0.000 title claims abstract description 42
- 239000013535 sea water Substances 0.000 claims abstract description 34
- 239000013505 freshwater Substances 0.000 claims description 58
- 239000012530 fluid Substances 0.000 claims description 36
- 238000001816 cooling Methods 0.000 claims description 15
- 239000000446 fuel Substances 0.000 abstract description 17
- 239000002826 coolant Substances 0.000 abstract description 10
- 239000007789 gas Substances 0.000 abstract description 9
- 238000001704 evaporation Methods 0.000 abstract description 6
- 230000008020 evaporation Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000005431 greenhouse gas Substances 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000010612 desalination reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000008520 organization Effects 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000010344 co-firing Methods 0.000 description 1
- -1 diesel Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J2/00—Arrangements of ventilation, heating, cooling, or air-conditioning
- B63J2/12—Heating; Cooling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J3/00—Driving of auxiliaries
- B63J3/02—Driving of auxiliaries from propulsion power plant
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D15/00—Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
- F01D15/10—Adaptations for driving, or combinations with, electric generators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K23/00—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
- F01K23/02—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
- F01K23/06—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
- F01K23/10—Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K9/00—Plants characterised by condensers arranged or modified to co-operate with the engines
- F01K9/02—Arrangements or modifications of condensate or air pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G5/00—Profiting from waste heat of combustion engines, not otherwise provided for
- F02G5/02—Profiting from waste heat of exhaust gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to a ship waste heat power generation system using ship waste heat.
- exhaust gas waste heat and engine coolant waste heat from ships using various fuels such as diesel, LNG, and co-firing are recovered, and the recovered ship waste heat is used as a heat source. It produces power through the organic Rankine cycle by heating seawater, and combines exhaust gas waste heat with different waste heat temperatures and engine coolant waste heat in parallel or series to increase the amount of evaporation heat, thereby improving the output of the organic Rankine cycle.
- This relates to a ship waste heat power generation system using waste heat.
- the International Maritime Organization aims to improve the fuel efficiency of the entire international shipping industry by 40% by 2030 and achieve a halving of greenhouse gas emissions (50%) by 2050, thereby achieving zero greenhouse gas emissions during this century.
- IMO International Maritime Organization
- a transition to carbon-free fuels and electric propulsion systems is inevitable in the long term, but in the short to medium term, use of low-carbon fuels such as LNG and improved ship operation efficiency
- low-carbon fuels such as LNG and improved ship operation efficiency
- recycling waste heat generated from a ship's internal combustion engine or cryogenic cargo hold can contribute to additional energy savings and improved ship operation efficiency.
- ship waste heat utilization technology is a realistic and effective regulatory response that can be applied to ships using existing internal combustion engines. can be expected.
- Patent Document 1 Korean Patent Publication No. 2012-0110709 (Title of invention: Organic Rankine cycle power generation system using waste heat)
- the present invention was made in consideration of the above situation, and the purpose of the present invention is to provide a ship waste heat power generation system using ship waste heat, which can increase the energy recovery rate of waste heat discarded from ships using various ship fuels. It is there.
- Another object of the present invention is to provide a ship waste heat power generation system using ship waste heat, which can improve organic Rankine cycle output by increasing the amount of evaporation heat by combining exhaust gas waste heat with different waste heat temperatures and engine coolant waste heat in parallel or series. It's about doing it.
- the ship waste heat power generation system using the waste heat of the ship discharges steam that passes through the economizer 500 and boiler 600 installed on the exhaust port side of the ship and the ship's engine after cooling. It includes an organic Rankine cycle (100) that uses the warmed first fresh water recovered from the heated seawater through the heat exchanger (300) as a heat source, and uses some of the seawater taken in through the suction pump (200) as a heat needle.
- a ship waste heat power generation system using waste heat from a ship wherein the organic Rankine cycle includes an evaporator 130 using the steam and first fresh water as a heat source; Turbine generators (140, 150) that are rotated by the working fluid that flows out after being evaporated by the evaporator to produce power; A condenser 110 that liquefies the working fluid flowing out of the turbine generator by using some of the seawater introduced through the suction pump as a heat needle; And a circulation pump 120 that compresses the working fluid flowing out of the condenser and supplies it to the evaporator.
- Turbine generators 140, 150
- a condenser 110 that liquefies the working fluid flowing out of the turbine generator by using some of the seawater introduced through the suction pump as a heat needle
- a circulation pump 120 that compresses the working fluid flowing out of the condenser and supplies it to the evaporator.
- a ship waste heat power generation system using waste heat of a ship recovers heat from warmed fresh water discharged after cooling the ship's engine through a second heat exchanger 320 and heats it.
- the second fresh water is used as a secondary heat source
- the steam that passed through the economizer 500 and boiler 610 installed on the exhaust side of the ship is used as a primary heat source
- the heat source is generated by seawater introduced through the suction pump 200.
- a ship waste heat power generation system using the waste heat of a ship including an organic Rankine cycle (100′) using a portion of the third fresh water heat exchanged in the heat exchanger 310 as a heat needle, wherein the organic Rankine cycle uses the second fresh water Evaporator 1 (131) as a heat source; Evaporator 2 (133) uses the steam as a heat source and is connected in series with the evaporator 1; Turbine generators 140 and 150 that are rotated by the working fluid flowing out after being evaporated by the evaporators 1 and 2 to produce power; A condenser 110 that liquefies the working fluid flowing out of the turbine generator by using some of the third fresh water as a heat needle; and a circulation pump 120 that compresses the working fluid flowing out of the condenser and provides it to the evaporator 1.
- the first heat exchanger 310 heat exchanges the third fresh water with sea water introduced through the suction pump 200
- the second heat exchanger 320 heat-exchanges the second fresh water with the heat-exchanged third fresh water
- the circulation pump 330 operates between the first heat exchanger 310 and the second heat exchanger 320. While circulating the third fresh water, the circulation pump 410 may circulate the second fresh water between the second heat exchanger 320 and the evaporator 1 (131).
- a ship waste heat power generation system using the waste heat of a ship is a first heated by the waste heat of the duct within the pipe (P) passing through the outside of the duct of the ship. Heat is recovered from fresh water and warmed seawater discharged after cooling the ship's engine through a heat exchanger (300), using the heated second freshwater as a heat source, and some of the seawater absorbed through the suction pump (200) as a heat needle.
- a ship waste heat power generation system using ship waste heat including an organic Rankine cycle (100′′), wherein the organic Rankine cycle includes an evaporator 3 (135) using the first fresh water as a heat source; Evaporator 4 (137) uses the second fresh water as a heat source and is connected in parallel with the evaporator 3; Turbine generators 140 and 150 that are rotated by the working fluid flowing out after being evaporated by the evaporators 3 and 4 to produce power; A condenser 110 that liquefies the working fluid flowing out of the turbine generator by using some of the seawater absorbed through the suction pump as a heat needle; and a circulation pump 120 that compresses the working fluid flowing out of the condenser and supplies it to the evaporators 3 and 4.
- the organic Rankine cycle includes an evaporator 3 (135) using the first fresh water as a heat source; Evaporator 4 (137) uses the second fresh water as a heat source and is connected in parallel with the evaporator 3; Turbine generators 140 and 150
- the ship waste heat power generation system using the waste heat of the ship includes a circulation pump 420 that circulates the first fresh water heated by the waste heat of the duct within the pipe P through the evaporator 3 (135). ; and a circulation pump 400 that circulates the second fresh water heated through the heat exchanger 300 through the evaporator 4 (137).
- fresh water heated through an economizer and boiler installed on the exhaust side of the ship, and warmed sea water discharged after cooling the ship's engine through a heat exchanger is composed of an organic Rankine cycle that uses heated fresh water with heat recovery as a heat source and some of the seawater absorbed through the suction pump as a heat needle, thereby increasing the energy recovery rate of waste heat discarded from ships using various ship fuels. There is an excellent effect that can be achieved.
- Figure 1 is a configuration diagram of a ship waste heat power generation system using waste heat from ships according to the first embodiment of the present invention.
- Figure 2 is a configuration diagram of a ship waste heat power generation system using waste heat from a ship according to a second embodiment of the present invention.
- Figure 3 is a configuration diagram of a ship waste heat power generation system using waste heat from ships according to a third embodiment of the present invention.
- one component when one component 'transmits', 'delivers', or 'provides' data or signals to another component, it means that one component transmits data or signals directly to another component. It involves transmitting data or signals to another component through at least one other component.
- Figure 1 is a configuration diagram of a ship waste heat power generation system using waste heat from ships according to the first embodiment of the present invention.
- the ship waste heat power generation system using ship waste heat according to the first embodiment of the present invention includes an organic Rankine cycle 100 and peripheral devices, as shown in FIG. 1.
- the organic Rankine cycle 100 produces power from waste heat discarded through the engine and exhaust port without using fuel.
- the organic Rankine cycle 100 includes an evaporator 130, turbine generators 140 and 150, a condenser 110, and a circulation pump 120.
- the evaporator 130 recovers heat through the heat exchanger 300 from the steam that has passed through the economizer 500 and boiler 600 installed on the exhaust side of the ship, and the warmed seawater discharged after cooling the ship's engine. It serves to evaporate the working fluid using the first fresh water as a heat source.
- the turbine generator serves to produce power by rotating by the working fluid that flows out after being evaporated by the evaporator 130, and generates power when the turbine 140 rotates and the turbine 140 rotates by the working fluid that flows out.
- the condenser 110 serves to liquefy the working fluid flowing out of the turbine generators 140 and 150 by using some of the seawater absorbed through the suction pump 200 as a heat needle.
- the circulation pump 120 serves to compress the working fluid flowing out of the condenser 110 and provide it to the evaporator 130.
- Peripheral devices include a suction pump 200, a heat exchanger 300, a circulation pump 400, an economizer 500, and a boiler 600.
- the suction pump 200 serves to take in seawater by the rotational force of the motor and provide it to the condenser 110 and the cooling part of the engine.
- the heat exchanger 300 serves to heat exchange the second fresh water supplied to the evaporator 130 using heated seawater discharged after engine cooling.
- the circulation pump 400 serves to circulate the second fresh water between the heat exchanger 300 and the evaporator 130.
- the economizer 500 is a device that preheats the feedwater flowing into the boiler 600 using heat from the exhaust port, and is also called an economizer.
- the thermal efficiency of the boiler 600 is improved by the economizer 500, and thermal stress and corrosion of the boiler wall are reduced.
- the boiler 600 serves to generate heated steam using ship fuel and provide it to the evaporator 130.
- the ship waste heat power generation system using the ship's waste heat configured as described above, steam passing through the economizer and boiler installed on the exhaust side of the ship, and warmed seawater discharged after cooling the ship's engine It is composed of an organic Rankine cycle that uses heated fresh water recovered from heat through a heat exchanger as a heat source and some of the seawater absorbed through a suction pump as a heat needle, thereby reducing the waste heat discarded from ships using various ship fuels. Energy recovery rate can be increased.
- Figure 2 is a configuration diagram of a ship waste heat power generation system using waste heat from a ship according to a second embodiment of the present invention.
- the ship waste heat power generation system using ship waste heat according to the second embodiment of the present invention includes an organic Rankine cycle 100' and peripheral devices, as shown in FIG. 2.
- the Organic Rankine Cycle (100′) does not use fuel but produces electricity from waste heat discarded through the engine and exhaust.
- the organic Rankine cycle (100') includes evaporator 1 (131), evaporator 2 (133), turbine generators (140, 150), a condenser (110), and a circulation pump (120).
- Evaporator 1 recovers heat from the heated fresh water discharged after cooling the ship's engine through the second heat exchanger (320) and serves to secondary evaporate the working fluid using the heated second fresh water as a heat source. do.
- Evaporator 2 (133) is connected in series with evaporator 1 (131) and serves to secondarily evaporate the working fluid primarily evaporated by evaporator 1 (131).
- Evaporator 2 (133) serves to primarily evaporate the working fluid using steam that has passed through the economizer (500) and boiler (610) installed on the exhaust side of the ship as a heat source.
- the turbine generator serves to generate power by rotating by the working fluid that flows out after being evaporated by the evaporators 1 and 2 (131, 133), and the turbine 140 and the turbine 140 that rotate by the working fluid that flows out. It includes a generator 150 that produces power when rotating.
- the condenser 110 uses some of the third fresh water heat-exchanged in the first heat exchanger 310 by seawater introduced through the suction pump 200 as a heat needle to heat the working fluid flowing out of the turbine generators 140 and 150. It plays a role in liquefying.
- the circulation pump 120 serves to compress the working fluid flowing out of the condenser 110 and provide it to the evaporator 1 (131).
- Peripheral devices include a suction pump 200, a first heat exchanger 310, a second heat exchanger 320, a circulation pump 330, a circulation pump 410, an economizer 500, and a boiler 610.
- the suction pump 200 serves to absorb seawater by the rotational force of the motor and provide it to the first heat exchanger 310.
- the first heat exchanger 310 serves to heat exchange the third fresh water provided to the condenser 110 by seawater introduced through the suction pump 200.
- the second heat exchanger 320 serves to heat exchange the second fresh water provided to the evaporator 1 (131) with the heat-exchanged third fresh water.
- the circulation pump 330 serves to circulate the third fresh water between the first heat exchanger 310 and the second heat exchanger 320.
- the circulation pump 410 serves to circulate the second fresh water between the second heat exchanger 320 and the evaporator 1 (131).
- the economizer 500 is a device that preheats the feedwater flowing into the boiler 610 using heat from the exhaust port, and is also called an economizer.
- the thermal efficiency of the boiler 610 is improved by the economizer 500, and thermal stress and corrosion of the boiler wall are reduced.
- the boiler 600 serves to generate heated steam using ship fuel and provide it to the evaporator 130.
- Organic Rankine cycle ((100′) when configured, the waste heat is heated by exhaust gas waste heat and engine coolant waste heat with different waste heat temperatures.
- Organic Rankine cycle output can be improved by increasing the amount of evaporation heat by combining evaporators 1 and 2 (131, 133) in series, which use fresh water as a heat source.
- Figure 3 is a configuration diagram of a ship waste heat power generation system using waste heat from ships according to a third embodiment of the present invention.
- the ship waste heat power generation system using ship waste heat according to the third embodiment of the present invention includes an organic Rankine cycle (100′′) and peripheral devices, as shown in FIG. 2.
- the Organic Rankine Cycle (100′′) does not use fuel but produces electricity from waste heat discarded through the engine and exhaust.
- the organic Rankine cycle (100′′) includes evaporator 3 (135), evaporator 4 (137), turbine generators (140, 150), condenser (110), and circulation pump (120).
- Evaporator 3 (135) serves to recover heat from the warmed seawater discharged after cooling the ship's engine through the heat exchanger 300 and evaporate the working fluid using the warmed second fresh water as a heat source.
- Evaporator 4 (137) is connected in parallel with evaporator 3 (135) and serves to evaporate the working fluid using the first fresh water heated by the waste heat of the duct as a heat source within the pipe (P) passing through the outer end of the ship's duct. Do it.
- the power generation amount is selected individually according to the safety of the heat source and the heat content of steam and coolant.
- the turbine generator serves to generate power by rotating by the working fluid that flows out after being evaporated by the evaporators 3 and 4 (135, 137), and the turbine 140 and the turbine 140 that rotate by the working fluid that flows out. It includes a generator 150 that produces power when rotating.
- the condenser 110 serves to liquefy the working fluid flowing out of the turbine generators 140 and 150 by using some of the seawater absorbed through the suction pump 200 as a heat needle.
- the circulation pump 120 serves to compress the working fluid flowing out of the condenser 110 and provide it to the evaporators 3 and 4 (135, 137).
- Peripheral devices include a suction pump 200, a heat exchanger 300, a circulation pump 400, and a circulation pump 420.
- the suction pump 200 serves to absorb seawater by the rotational force of the motor and provide it to the condenser 110 and the cooling part of the engine.
- the heat exchanger 300 serves to heat exchange the second fresh water supplied to the evaporator 4 (137) using the heated seawater discharged after engine cooling.
- the circulation pump 400 serves to circulate the second fresh water between the heat exchanger 300 and the evaporator 4 (137).
- the circulation pump 420 serves to circulate the first fresh water heated by the waste heat of the duct within the pipe P through the evaporator 3 (135).
- the waste heat is heated by exhaust gas waste heat and engine coolant waste heat with different waste heat temperatures.
- Organic Rankine cycle efficiency can be improved by reducing the amount of evaporation heat by combining evaporators 3 and 4 (135, 137) in parallel, which use fresh water as a heat source.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Ocean & Marine Engineering (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
본 발명은 선박의 폐열을 이용한 선박 폐열 발전 시스템에 관한 것으로서, 특히 디젤, 혼소, LNG 등 다양한 선박 연료를 사용하는 선박에서의 배기가스 폐열및 엔진 냉각수 폐열을 회수하고, 회수된 선박의 폐열을 열원으로 하고 해수를 열침으로 하여 유기랭킨사이클에 의해 전력을 생산하며, 폐열 온도가 다른 배기가스 폐열과 엔진 냉각수 폐열을 병렬 또는 직렬로 조합하여 증발 열량을 감소시킴으로써 유기랭킨사이클 효율을 향상시키기 위한, 선박의 폐열을 이용한 선박 폐열 발전 시스템에 관한 것이다.
Description
본 발명은 선박의 폐열을 이용한 선박 폐열 발전 시스템에 관한 것으로서, 특히 디젤, LNG, 혼소 등 다양한 연료를 사용하는 선박에서의 배기가스 폐열 및 엔진 냉각수 폐열을 회수하고, 회수된 선박의 폐열을 열원으로 하고 해수를 열침으로 하여 유기랭킨사이클에 의해 전력을 생산하며, 폐열 온도가 다른 배기가스 폐열과 엔진 냉각수 폐열을 병렬 또는 직렬로 조합하여 증발 열량을 증가시킴으로써 유기랭킨사이클 출력을 향상시키기 위한, 선박의 폐열을 이용한 선박 폐열 발전 시스템에 관한 것이다.
국제해사기구(IMO)는 선박 온실가스 감축 전략을 통하여 2030년까지 국제 해운 전체의 연비효율을 40% 개선하고, 2050년에 온실가스 배출량 반감(50%)을 달성하여 금세기 중 온실가스 제로 구현을 목표로 하고 있고, 국제해사기구(IMO)의 선박배출 온실가스 규제 대응을 위해서는 장기적으로는 무탄소 연료 및 전기추진시스템으로 전환이 불가피하나, 중단기적으로 LNG 등 저탄소연료의 사용과 선박 운항효율 향상기술의 적용을 통한 규제 대응이 필요한 시점이다. 이러한 관점에서, 선박의 내연기관 또는 극저온 화물창 등에서 발생하는 폐열을 재활용할 경우, 추가적인 에너지 절감과 선박의 운항효율 향상에 기여 가능하다. 특히, 연료전지, 배터리 등을 활용한 전기추진시스템이 기술적, 경제적 관점에서 단기간 내 대형 선박에 상용화가 어려운 상황에서, 선박의 폐열활용 기술은 기존 내연기관 사용 선박에 적용 가능한 현실적이고 효과적인 규제 대응 방안으로 기대될 수 있다.
기존 선박에서는, 배기가스가 400도의 고열로 배출되어 이코노마이저(economizer)에서 스팀을 생산하고 240도 내외로 배출되고 있으나, 기존 스팀 생산 방식은 활용이 적고 범위가 한정되어 이를 선박의 폐열 발전을 위한 열원으로 활용하면 배기 온도를 200도 내외로 줄이고 전력 생산을 통해 다양한 박용기기에 활용이 가능하고, 버려지는 폐열을 추가적으로 이용할 수 있다. 한편, 엔진 냉각수는 90도 내외로 유지되고, 증발식 담수화 설비의 열원으로 사용되고 있지만, 증발식 담수화는 큰 용적 대비 생산량이 적고 대부분의 열은 해수로 배출되고 있어, 이 배출열을 활용하여 추가적으로 선박의 폐열 발전으로 전환하여 활용하게 되면 에너지 회수를 높일 수 있다.
또한, 선박 운항 중에 발생되는 온실가스를 저감하기 위해, 선박 연료는 기존 디젤류에서 저탄소 연료인 LNG, 암모니아로 전환 중에 있고, 황 성분이 적은 LNG 연료 선박이 증가하고 있다. LNG 연료 추진 선박은 기존 150도 이하에서 발생되는 저온부식이 없기 때문에 대량의 폐열을 활용한 선박 폐열 발전설비 적용이 가능하여 선박 운항 중에 발생되는 온실가스를 감축시킬 수 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 특허 공개 제2012-0110709호 공보(발명의 명칭 : 폐열을 이용한 유기 랭킨 사이클 발전 시스템)
따라서 본 발명은 상기와 같은 상황을 고려하여 이루어진 것으로서, 본 발명의 목적은 다양한 선박 연료를 사용하는 선박에서 버려지는 폐열의 에너지 회수율을 높일 수 있는, 선박의 폐열을 이용한 선박 폐열 발전 시스템을 제공하는 데에 있다.
본 발명의 다른 목적은 폐열 온도가 다른 배기가스 폐열과 엔진 냉각수 폐열을 병렬 또는 직렬로 조합하여 증발 열량을 증가시킴으로써 유기랭킨사이클 출력을 향상시킬 수 있는, 선박의 폐열을 이용한 선박 폐열 발전 시스템을 제공하는 데에 있다.
상기 목적을 달성하기 위해, 본 발명의 실시형태에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템은 선박의 배기구 측에 설치된 이코노마이저(500) 및 보일러(600)를 통과한 증기 및 선박의 엔진 냉각 후 배출되는 가온 된 해수로부터 열교환기(300)를 통해 열을 회수한 가온 된 제1 담수를 열원으로하고, 흡입 펌프(200)를 통해 취수된 해수 중 일부를 열침으로 하는 유기랭킨사이클(100)을 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템으로서, 상기 유기랭킨사이클은 상기 증기 및 제1 담수를 열원으로 사용하는 증발기(130); 상기 증발기에 의해 증발된 후 유출되는 작동유체에 의해 회전되어 전력을 생산하는 터빈 발전기(140, 150); 상기 흡입 펌프를 통해 유입된 해수 중 일부를 열침으로 사용하여 상기 터빈 발전기로부터 유출되는 작동유체를 액화시키는 응축기(110); 및 상기 응축기로부터 유출되는 작동유체를 압축시켜 상기 증발기로 제공하는 순환펌프(120);를 포함하는 것을 특징으로 한다.
상기 목적을 달성하기 위해, 본 발명의 다른 실시형태에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템은 선박의 엔진 냉각 후 배출되는 가온 된 담수로부터 제2 열교환기(320)를 통해 열을 회수하여 가온 된 제2 담수를 2차 열원으로 하고, 선박의 배기구 측에 설치된 이코노마이저(500) 및 보일러(610)를 통과한 증기를 1차 열원으로 하고, 흡입 펌프(200)를 통해 유입된 해수에 의해 제1 열교환기(310)에서 열교환된 제3 담수 중 일부를 열침으로 하는 유기랭킨사이클(100′)을 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템으로서, 상기 유기랭킨사이클은 상기 제2 담수를 열원으로 하는 증발기 1(131); 상기 증기를 열원으로 하며 상기 증발기 1과 직렬 연결된 증발기 2(133); 상기 증발기 1, 2에 의해 증발된 후 유출되는 작동유체에 의해 회전되어 전력을 생산하는 터빈 발전기(140, 150); 상기 제3 담수중 일부를 열침으로 사용하여 상기 터빈 발전기로부터 유출되는 작동유체를 액화시키는 응축기(110); 및 상기 응축기로부터 유출되는 작동유체를 압축시켜 상기 증발기 1로 제공하는 순환펌프(120);를 포함하는 것을 특징으로 한다.
상기 다른 실시형태에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템에 있어서, 상기 제1 열교환기(310)는 상기 흡입 펌프(200)를 통해 유입된 해수에 의해 상기 제3 담수를 열 교환시키며, 상기 제2 열교환기(320)는 열교환 된 상기 제3 담수에 의해 상기 제2 담수를 열 교환시키며, 순환펌프(330)는 상기 제1 열교환기(310)와 상기 제2 열교환기(320) 사이에서 제3 담수를 순환시키며, 순환펌프(410)는 상기 제 2 열교환기(320)와 상기 증발기 1(131) 사이에서 제2 담수를 순환시킬 수 있다.
상기 목적을 달성하기 위해, 본 발명의 또 다른 실시형태에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템은 선박의 덕트 일단 외측을 통과하는 배관(P) 내에서 상기 덕트의 폐열에 의해 가온 된 제1 담수, 및 선박의 엔진 냉각 후 배출되는 가온 된 해수로부터 열교환기(300)를 통해 열을 회수하여 가온 된 제2 담수를 열원으로하고, 흡입 펌프(200)를 통해 흡수된 해수 중 일부를 열침으로 하는 유기랭킨사이클(100″)을 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템으로서, 상기 유기랭킨사이클은 상기 제1 담수를 열원으로 하는 증발기 3(135); 상기 제2 담수를 열원으로 하며 상기 증발기 3과 병렬 연결된 증발기 4(137); 상기 증발기 3, 4에 의해 증발된 후 유출되는 작동유체에 의해 회전되어 전력을 생산하는 터빈 발전기(140, 150); 상기 흡입 펌프를 통해 흡수된 해수 중 일부를 열침으로 사용하여 상기 터빈 발전기로부터 유출되는 작동유체를 액화시키는 응축기(110); 및 상기 응축기로부터 유출되는 작동유체를 압축시켜 상기 증발기 3, 4에 제공하는 순환펌프(120);를 포함하는 것을 특징으로 한다.
상기 또 다른 실시형태에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템은 상기 배관(P) 내에서 덕트의 폐열에 의해 가온 된 제1 담수를 상기 증발기 3(135)을 통해 순환시키는 순환펌프(420); 및 상기 열교환기(300)를 통해 가온 된 제2 담수를 상기 증발기 4(137)를 통해 순환시키는 순환펌프(400);를 더 포함할 수 있다.
본 발명의 실시형태에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템에 의하면, 선박의 배기구 측에 설치된 이코노마이저 및 보일러를 통과하여 가온 된 담수, 및 선박의 엔진 냉각 후 배출되는 가온 된 해수로부터 열교환기를 통해 열을 회수한 가온 된 담수를 열원으로하고, 흡입 펌프를 통해 흡수된 해수 중 일부를 열침으로 하는 유기랭킨사이클을 포함하여 구성됨으로써, 다양한 선박 연료를 사용하는 선박에서 버려지는 폐열의 에너지 회수율을 높일 수 있다는 뛰어난 효과가 있다.
또한, 본 발명의 실시형태에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템에 의하면, 유기랭킨사이클 구성 시 폐열 온도가 다른 배기가스 폐열 및 엔진 냉각수 폐열에 의해 가온된 담수들을 열원으로 이용하는 증발기들을 병렬 또는 직렬로 조합하여 증발 열량을 증가시킴으로써 유기랭킨사이클 출력을 향상시킬 수 있다는 뛰어난 효과가 있다.
도 1은 본 발명의 제1 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템의 구성도이다.
도 2는 본 발명의 제2 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템의 구성도이다.
도 3은 본 발명의 제3 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템의 구성도이다.
본 발명의 실시예를 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시예를 기술하기 위한 것이며, 결코 제한적으로 해석되어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하는 것으로 해석되어서는 안 된다.
도면에서 도시된 각 시스템에서, 몇몇 경우에서의 요소는 각각 동일한 참조 번호 또는 상이한 참조 번호를 가져서 표현된 요소가 상이하거나 유사할 수가 있음을 시사할 수 있다. 그러나 요소는 상이한 구현을 가지고 본 명세서에서 보여지거나 기술된 시스템 중 몇몇 또는 전부와 작동할 수 있다. 도면에서 도시된 다양한 요소는 동일하거나 상이할 수 있다. 어느 것이 제1 요소로 지칭되는지 및 어느 것이 제2 요소로 불리는지는 임의적이다.
본 명세서에서 어느 하나의 구성요소가 다른 구성요소로 데이터 또는 신호를 '전송', '전달' 또는 '제공'한다 함은 어느 한 구성요소가 다른 구성요소로 직접 데이터 또는 신호를 전송하는 것은 물론, 적어도 하나의 또 다른 구성요소를 통하여 데이터 또는 신호를 다른 구성요소로 전송하는 것을 포함한다.
이하, 본 발명의 실시예를 도면을 참조하여 상세히 설명하기로 한다.
[제1 실시예]
도 1은 본 발명의 제1 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템의 구성도이다.
본 발명의 제1 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템은, 도 1에 도시된 바와 같이, 유기랭킨사이클(100) 및 주변장치를 포함한다.
유기랭킨사이클(100)은 연료를 사용하지 않고 엔진 및 배기구를 통해 버려지는 폐열로 전력을 생산하는 역할을 한다. 유기랭킨사이클(100)은 증발기(130), 터빈 발전기(140, 150), 응축기(110) 및 순환펌프(120)를 포함한다.
증발기(130)는 선박의 배기구 측에 설치된 이코노마이저(500) 및 보일러(600)를 통과한 증기, 및 선박의 엔진 냉각 후 배출되는 가온 된 해수로부터 열교환기(300)를 통해 열을 회수하여 가온 된 제1 담수를 열원으로 하여 작동유체를 증발시키는 역할을 한다.
터빈 발전기는 증발기(130)에 의해 증발된 후 유출되는 작동유체에 의해 회전하여 전력을 생산하는 역할을 하며, 유출되는 작동유체에 의해 회전하는 터빈(140)과 터빈(140)의 회전 시 전력을 생산하는 발전기(150)를 포함한다.
응축기(110)는 흡입 펌프(200)를 통해 흡수된 해수 중 일부를 열침으로 사용하여 터빈 발전기(140, 150)로부터 유출되는 작동유체를 액화시키는 역할을 한다.
순환펌프(120)는 응축기(110)로부터 유출되는 작동유체를 압축시켜 증발기(130)로 제공하는 역할을 한다.
주변 장치는 흡입 펌프(200), 열교환기(300), 순환펌프(400), 이코노마이저(500) 및 보일러(600)를 포함한다.
흡입 펌프(200)는 모터의 회전력에 의해 해수를 취수하여 응축기(110) 및 엔진의 냉각부로 제공하는 역할을 한다.
열교환기(300)는 엔진 냉각 후 배출되는 가온 된 해수를 이용하여 증발기(130)에 공급되는 제2 담수를 열교환시키는 역할을 한다.
순환펌프(400)는 열교환기(300)와 증발기(130) 사이에서 제2 담수를 순환시키는 역할을 한다.
이코노마이저(500)는 배기구의 열을 이용하여 보일러(600)에 유입되는 급수를 예열하는 장치로서 절탄기라고도 한다. 보일러(600)는 이코노마이저(500)에 의해 열효율이 향상되고 보일러벽의 열응력 및 부식이 감소한다.
보일러(600)는 선박 연료를 이용하여 가열된 증기를 발생시켜 증발기(130)에 제공하는 역할을 한다.
상기와 같이 구성된 본 발명의 제1 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템에 의하면, 선박의 배기구 측에 설치된 이코노마이저 및 보일러를 통과한 증기, 및 선박의 엔진 냉각 후 배출되는 가온 된 해수로부터 열교환기를 통해 열을 회수한 가온 된 담수를 열원으로하고, 흡입 펌프를 통해 흡수된 해수 중 일부를 열침으로 하는 유기랭킨사이클을 포함하여 구성됨으로써, 다양한 선박 연료를 사용하는 선박에서 버려지는 폐열의 에너지 회수율을 높일 수 있다.
[제2 실시예]
도 2는 본 발명의 제2 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템의 구성도이다.
본 발명의 제2 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템은, 도 2에 도시된 바와 같이, 유기랭킨사이클(100′) 및 주변장치를 포함한다.
유기랭킨사이클(100′)은 연료를 사용하지 않고 엔진 및 배기구를 통해 버려지는 폐열로 전력을 생산하는 역할을 한다. 유기랭킨사이클(100′)은 증발기 1(131), 증발기 2(133), 터빈 발전기(140, 150), 응축기(110) 및 순환펌프(120)를 포함한다.
증발기 1(131)은 선박의 엔진 냉각 후 배출되는 가온 된 담수로부터 제2 열교환기(320)를 통해 열을 회수하여 가온 된 제2 담수를 열원으로 하여 작동유체를 2차 적으로 증발시키는 역할을 한다.
증발기 2(133)는 증발기 1(131)과 직렬로 연결되어 증발기 1(131)에 의해 1차 적으로 증발된 작동유체를 2차 적으로 증발시키는 역할을 한다. 증발기 2(133)는 선박의 배기구 측에 설치된 이코노마이저(500) 및 보일러(610)를 통과한 증기를 열원으로 하여 작동유체를 1차 적으로 증발시키는 역할을 한다.
터빈 발전기는 증발기 1, 2(131, 133)에 의해 증발된 후 유출되는 작동유체에 의해 회전하여 전력을 생산하는 역할을 하며, 유출되는 작동유체에 의해 회전하는 터빈(140)과 터빈(140)의 회전 시 전력을 생산하는 발전기(150)를 포함한다.
응축기(110)는 흡입 펌프(200)를 통해 유입된 해수에 의해 제1 열교환기(310)에서 열교환된 제3 담수 중 일부를 열침으로 사용하여 터빈 발전기(140, 150)로부터 유출되는 작동유체를 액화시키는 역할을 한다.
순환펌프(120)는 응축기(110)로부터 유출되는 작동유체를 압축시켜 증발기 1(131)로 제공하는 역할을 한다.
주변 장치는 흡입 펌프(200), 제1 열교환기(310), 제2 열교환기(320), 순환펌프(330), 순환펌프(410), 이코노마이저(500) 및 보일러(610)를 포함한다.
흡입 펌프(200)는 모터의 회전력에 의해 해수를 흡수하여 제1 열교환기(310)에 제공하는 역할을 한다.
제1 열교환기(310)는 흡입 펌프(200)를 통해 유입된 해수에 의해 응축기(110)에 제공되는 제3 담수를 열 교환시키는 역할을 한다.
제2 열교환기(320)는 열교환 된 제3 담수에 의해 증발기 1(131)에 제공되는 제2 담수를 열 교환시키는 역할을 한다.
순환펌프(330)는 제1 열교환기(310)와 제2 열교환기(320) 사이에서 제3 담수를 순환시키는 역할을 한다.
순환펌프(410)는 제 2 열교환기(320)와 증발기 1(131) 사이에서 제2 담수를 순환시키는 역할을 한다.
이코노마이저(500)는 배기구의 열을 이용하여 보일러(610)에 유입되는 급수를 예열하는 장치로서 절탄기라고도 한다. 보일러(610)는 이코노마이저(500)에 의해 열효율이 향상되고 보일러벽의 열응력 및 부식이 감소한다.
보일러(600)는 선박 연료를 이용하여 가열된 증기를 발생시켜 증발기(130)에 제공하는 역할을 한다.
상기와 같이 구성된 본 발명의 제2 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템에 의하면, 유기랭킨사이클((100′) 구성 시 폐열 온도가 다른 배기가스 폐열 및 엔진 냉각수 폐열에 의해 가온된 담수들을 열원으로 이용하는 증발기 1, 2(131, 133)를 직렬로 조합하여 증발 열량을 증가시킴으로써 유기랭킨사이클 출력을 향상시킬 수 있다
[제3 실시예]
도 3은 본 발명의 제3 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템의 구성도이다.
본 발명의 제3 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템은, 도 2에 도시된 바와 같이, 유기랭킨사이클(100″) 및 주변장치를 포함한다.
유기랭킨사이클(100″)은 연료를 사용하지 않고 엔진 및 배기구를 통해 버려지는 폐열로 전력을 생산하는 역할을 한다. 유기랭킨사이클(100″)은 증발기 3(135), 증발기 4(137), 터빈 발전기(140, 150), 응축기(110) 및 순환펌프(120)를 포함한다.
증발기 3(135)은 선박의 엔진 냉각 후 배출되는 가온 된 해수로부터 열교환기(300)를 통해 열을 회수하여 가온 된 제2 담수를 열원으로 사용하여 작동유체를 증발시키는 역할을 한다.
증발기 4(137)는 증발기 3(135)과 병렬로 연결되어 선박의 덕트 일단 외측을 통과하는 배관(P) 내에서 덕트의 폐열에 의해 가온 된 제1 담수를 열원으로 하여 작동유체를 증발시키는 역할을 한다. 증발기의 병렬 운전을 통해 열원의 안전성과 증기 및 냉각수 열량에 따라 개별로 선택하여 발전량을 선택한다.
터빈 발전기는 증발기 3, 4(135, 137)에 의해 증발된 후 유출되는 작동유체에 의해 회전하여 전력을 생산하는 역할을 하며, 유출되는 작동유체에 의해 회전하는 터빈(140)과 터빈(140)의 회전 시 전력을 생산하는 발전기(150)를 포함한다.
응축기(110)는 흡입 펌프(200)를 통해 흡수된 해수 중 일부를 열침으로 사용하여 터빈 발전기(140, 150)로부터 유출되는 작동유체를 액화시키는 역할을 한다.
순환펌프(120)는 응축기(110)로부터 유출되는 작동유체를 압축시켜 증발기 3, 4(135, 137)로 제공하는 역할을 한다.
주변 장치는 흡입 펌프(200), 열교환기(300), 순환펌프(400), 및 순환펌프(420)를 포함한다.
흡입 펌프(200)는 모터의 회전력에 의해 해수를 흡수하여 응축기(110) 및 엔진의 냉각부로 제공하는 역할을 한다.
열교환기(300)는 엔진 냉각 후 배출되는 가온 된 해수를 이용하여 증발기4(137)에 공급되는 제2 담수를 열교환시키는 역할을 한다.
순환펌프(400)는 열교환기(300)와 증발기 4(137) 사이에서 제2 담수를 순환시키는 역할을 한다.
순환펌프(420)는 배관(P) 내에서 덕트의 폐열에 의해 가온 된 제1 담수를 증발기 3(135)을 통해 순환시키는 역할을 한다.
상기와 같이 구성된 본 발명의 제3 실시예에 의한 선박의 폐열을 이용한 선박 폐열 발전 시스템에 의하면, 유기랭킨사이클((100″) 구성 시 폐열 온도가 다른 배기가스 폐열 및 엔진 냉각수 폐열에 의해 가온된 담수들을 열원으로 이용하는 증발기 3, 4(135, 137)를 병렬로 조합하여 증발 열량을 감소시킴으로써 유기랭킨사이클 효율을 향상시킬 수 있다
도면과 명세서에는 최적의 실시예가 개시되었으며, 특정한 용어들이 사용되었으나 이는 단지 본 발명의 실시형태를 설명하기 위한 목적으로 사용된 것이지 의미를 한정하거나 특허 청구범위에 기재된 본 발명의 범위를 제한하기 위하여 사용된 것은 아니다. 그러므로 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
Claims (5)
- 선박의 배기구 측에 설치된 이코노마이저(500) 및 보일러(600)를 통과한 증기, 및 선박의 엔진 냉각 후 배출되는 가온 된 해수로부터 열교환기(300)를 통해 열을 회수한 가온 된 제1 담수를 열원으로하고, 흡입 펌프(200)를 통해 흡수된 해수 중 일부를 열침으로 하는 유기랭킨사이클(100)을 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템으로서,상기 유기랭킨사이클은상기 증기 및 제1 담수를 열원으로 사용하는 증발기(130);상기 증발기에 의해 증발된 후 유출되는 작동유체에 의해 회전되어 전력을 생산하는 터빈 발전기(140, 150);상기 흡입 펌프를 통해 흡수된 해수 중 일부를 열침으로 사용하여 상기 터빈 발전기로부터 유출되는 작동유체를 액화시키는 응축기(110); 및상기 응축기로부터 유출되는 작동유체를 압축시켜 상기 증발기로 제공하는 순환펌프(120);를 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템.
- 선박의 엔진 냉각 후 배출되는 가온 된 담수로부터 제2 열교환기(320)를 통해 열을 회수하여 가온 된 제2 담수를 1차 열원으로 하고, 선박의 배기구 측에 설치된 이코노마이저(500) 및 보일러(610)를 통과한 증기를 2차 열원으로 하고, 흡입 펌프(200)를 통해 유입된 해수에 의해 제1 열교환기(310)에서 열교환된 제3 담수 중 일부를 열침으로 하는 유기랭킨사이클(100′)을 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템으로서,상기 유기랭킨사이클은상기 제2 담수를 열원으로 하는 증발기 1(131);상기 증기를 열원으로 하며 상기 증발기 1과 직렬 연결된 증발기 2(133);상기 증발기 1, 2에 의해 증발된 후 유출되는 작동유체에 의해 회전되어 전력을 생산하는 터빈 발전기(140, 150);상기 제3 담수중 일부를 열침으로 사용하여 상기 터빈 발전기로부터 유출되는 작동유체를 액화시키는 응축기(110); 및상기 응축기로부터 유출되는 작동유체를 압축시켜 상기 증발기 1로 제공하는 순환펌프(120);를 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템.
- 제2 항에 있어서,상기 제1 열교환기(310)는 상기 흡입 펌프(200)를 통해 유입된 해수에 의해 상기 제3 담수를 열 교환시키며,상기 제2 열교환기(320)는 열교환 된 상기 제3 담수에 의해 상기 제2 담수를 열 교환시키며,순환펌프(330)는 상기 제1 열교환기(310)와 상기 제2 열교환기(320) 사이에서 제3 담수를 순환시키며,순환펌프(410)는 상기 제 2 열교환기(320)와 상기 증발기 1(131) 사이에서 제2 담수를 순환시키는, 선박의 폐열을 이용한 선박 폐열 발전 시스템.
- 선박의 덕트 일단 외측을 통과하는 배관(P) 내에서 상기 덕트의 폐열에 의해 가온 된 제1 담수, 및 선박의 엔진 냉각 후 배출되는 가온 된 해수로부터 열교환기(300)를 통해 열을 회수하여 가온 된 제2 담수를 열원으로하고, 흡입 펌프(200)를 통해 흡수된 해수 중 일부를 열침으로 하는 유기랭킨사이클(100″)을 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템으로서,상기 유기랭킨사이클은상기 제1 담수를 열원으로 하는 증발기 3(135);상기 제2 담수를 열원으로 하며 상기 증발기 3과 병렬 연결된 증발기 4(137);상기 증발기 3, 4에 의해 증발된 후 유출되는 작동유체에 의해 회전되어 전력을 생산하는 터빈 발전기(140, 150);상기 흡입 펌프를 통해 흡수된 해수 중 일부를 열침으로 사용하여 상기 터빈 발전기로부터 유출되는 작동유체를 액화시키는 응축기(110); 및상기 응축기로부터 유출되는 작동유체를 압축시켜 상기 증발기 3, 4에 제공하는 순환펌프(120);를 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템.
- 제4 항에 있어서,상기 배관(P) 내에서 덕트의 폐열에 의해 가온 된 제1 담수를 상기 증발기 3(135)을 통해 순환시키는 순환펌프(420); 및상기 열교환기(300)를 통해 가온 된 제2 담수를 상기 증발기 4(137)를 통해 순환시키는 순환펌프(400);를 더 포함하는, 선박의 폐열을 이용한 선박 폐열 발전 시스템.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020220119571A KR102530053B1 (ko) | 2022-09-21 | 2022-09-21 | 선박의 폐열을 이용한 선박 폐열 발전 시스템 |
KR10-2022-0119571 | 2022-09-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024063326A1 true WO2024063326A1 (ko) | 2024-03-28 |
Family
ID=86386068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/011570 WO2024063326A1 (ko) | 2022-09-21 | 2023-08-07 | 선박의 폐열을 이용한 선박 폐열 발전 시스템 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102530053B1 (ko) |
WO (1) | WO2024063326A1 (ko) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102530053B1 (ko) * | 2022-09-21 | 2023-05-10 | 한국해양과학기술원 | 선박의 폐열을 이용한 선박 폐열 발전 시스템 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011089451A (ja) * | 2009-10-21 | 2011-05-06 | Ihi Marine United Inc | 給電システム及びその制御方法 |
KR20120127015A (ko) * | 2011-05-13 | 2012-11-21 | 삼성중공업 주식회사 | 선박용 폐열 회수 시스템 |
KR20140042323A (ko) * | 2012-09-28 | 2014-04-07 | 대우조선해양 주식회사 | 선박의 폐열을 이용한 에너지 절감 시스템 |
KR20200045865A (ko) * | 2018-10-23 | 2020-05-06 | 삼성중공업 주식회사 | 엔진의 폐열을 이용한 에너지 절감 장치 그리고 이를 포함하는 해양구조물 |
KR102530053B1 (ko) * | 2022-09-21 | 2023-05-10 | 한국해양과학기술원 | 선박의 폐열을 이용한 선박 폐열 발전 시스템 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101370451B1 (ko) | 2011-03-30 | 2014-03-06 | 한국에너지기술연구원 | 폐열을 이용한 유기 랭킨 사이클 발전 시스템 |
-
2022
- 2022-09-21 KR KR1020220119571A patent/KR102530053B1/ko active IP Right Grant
-
2023
- 2023-08-07 WO PCT/KR2023/011570 patent/WO2024063326A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011089451A (ja) * | 2009-10-21 | 2011-05-06 | Ihi Marine United Inc | 給電システム及びその制御方法 |
KR20120127015A (ko) * | 2011-05-13 | 2012-11-21 | 삼성중공업 주식회사 | 선박용 폐열 회수 시스템 |
KR20140042323A (ko) * | 2012-09-28 | 2014-04-07 | 대우조선해양 주식회사 | 선박의 폐열을 이용한 에너지 절감 시스템 |
KR20200045865A (ko) * | 2018-10-23 | 2020-05-06 | 삼성중공업 주식회사 | 엔진의 폐열을 이용한 에너지 절감 장치 그리고 이를 포함하는 해양구조물 |
KR102530053B1 (ko) * | 2022-09-21 | 2023-05-10 | 한국해양과학기술원 | 선박의 폐열을 이용한 선박 폐열 발전 시스템 |
Also Published As
Publication number | Publication date |
---|---|
KR102530053B1 (ko) | 2023-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024063326A1 (ko) | 선박의 폐열을 이용한 선박 폐열 발전 시스템 | |
CN109268099B (zh) | 一种基于温差发电与有机朗肯循环联合船用柴油机余热回收系统及其方法 | |
JP3070959B2 (ja) | 熱エネルギ回収方法及び装置 | |
EP3051111B1 (en) | Waste heat recovery system, ship propulsion system, ship, and waste heat recovery method | |
FI94895C (fi) | Järjestely kombivoimalaitoksessa | |
KR960705134A (ko) | 가스-증기 터빈 장치의 가스 터빈의 냉각제를 냉각시키기 위한 장치(device for cooling the gas-turbine coolant in a combined gas and steam turbine installation) | |
JPH094510A (ja) | 燃焼エンジンプラント、燃焼エンジンプラント用過給燃焼エンジン装置および燃焼エンジンプラントの効率を改善する方法 | |
WO2024085408A1 (ko) | 이코노마이저를 통해 회수한 lng 엔진 선박의 폐열을 이용한 선박 폐열 발전시스템 | |
KR20140025943A (ko) | 연료유 절감을 위한 중앙 집중 냉각 시스템 | |
ATE175487T1 (de) | Dampfkraftanlage zur erzeugung elektrischer energie | |
WO2012081805A1 (ko) | 과급기가 설치된 선박의 흡입공기 냉각시스템 | |
KR20180097363A (ko) | 초임계 이산화탄소 발전시스템 | |
WO2011065304A1 (ja) | 蒸気タービン発電システムおよびこれを備える船舶 | |
KR102153769B1 (ko) | 선박의 폐열회수 시스템 | |
KR20170135066A (ko) | 초임계 이산화탄소 발전시스템 및 이를 구비한 선박 | |
WO2020213773A1 (ko) | 발전 효율이 향상된 유기랭킨 사이클을 이용한 선박의 발전 시스템 | |
JPH1089017A (ja) | 発電設備および動力設備 | |
CN103541782B (zh) | 基于配气活塞式热气机的船舶余热发电装置及其工作方法 | |
RU2162534C1 (ru) | Автономная когенерационная энергоустановка | |
WO2014158000A1 (ko) | Lng 재기화 및 발전 병합장치 | |
KR20170114332A (ko) | 복합 발전 시스템 및 이를 구비한 선박 | |
WO2023176996A1 (ko) | 연료전지와 하이브리드 추진 장치를 구비한 하이브리드 추진 선박 | |
RU2164615C1 (ru) | Теплоэнергетическая установка | |
KR20100113756A (ko) | 선박 기관의 소기 냉각 장치 | |
RU2163684C1 (ru) | Автономная комбинированная установка для одновременного производства электроэнергии и тепла |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23868386 Country of ref document: EP Kind code of ref document: A1 |