WO2024063203A1 - Device for sensing position of structure and mems scanner package comprising same - Google Patents

Device for sensing position of structure and mems scanner package comprising same Download PDF

Info

Publication number
WO2024063203A1
WO2024063203A1 PCT/KR2022/018596 KR2022018596W WO2024063203A1 WO 2024063203 A1 WO2024063203 A1 WO 2024063203A1 KR 2022018596 W KR2022018596 W KR 2022018596W WO 2024063203 A1 WO2024063203 A1 WO 2024063203A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
lens
mirror
light
measured
Prior art date
Application number
PCT/KR2022/018596
Other languages
French (fr)
Korean (ko)
Inventor
조경우
김명섭
이동윤
최진홍
박국현
Original Assignee
주식회사 위멤스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220142226A external-priority patent/KR20240133800A/en
Application filed by 주식회사 위멤스 filed Critical 주식회사 위멤스
Priority to EP22944027.6A priority Critical patent/EP4372448A1/en
Publication of WO2024063203A1 publication Critical patent/WO2024063203A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to a device for sensing the rotation angle or vertical position of a structure in real time and a MEMS scanner package including the same.
  • MEMS Scanner is a laser beam steering device used in LiDAR (Light Detection And Ranging), which is used to measure targets such as surrounding terrain, objects, and obstacles, and projection displays using lasers.
  • LiDAR Light Detection And Ranging
  • These MEMS scanners have advantages such as small size, thinness, low power consumption, and low price compared to other mechanical scanners, so their use is increasing in various sensing and display fields.
  • Another method is to use a piezoresistive element whose resistance changes depending on the deformation of the spring. This method has a simple structure and circuit, but has the disadvantage of requiring an additional impurity doping process and having poor temperature stability.
  • FIG. 3 shows a conventional method of detecting a change in the position of reflected light by incident a laser beam on the center of the front or back of the MEMS scanning mirror.
  • the laser and a position sensitive detector (PSD) are used to determine transmission/reception efficiency. And to increase measurement accuracy, it has an inclination angle at a long distance, and if this inclination angle is not present, distortion may occur in the detection signal.
  • Patent Document 1 US Patent Publication US10324283B2 (2019.06.18)
  • Non-patent Document 1 Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications, Presented at SPIE Conference on Laser Radar Technology and Applications XXII, Anaheim, CA April 12 th , 2017
  • the present invention was developed to solve the problems of the prior art described above, and is a miniaturization device that includes a device that can directly measure the driving angle and phase from the real-time waveform of the rotation angle of the scanning mirror in the MEMS scanner.
  • the purpose is to provide a MEMS scanner package.
  • the purpose of the present invention is to provide a miniaturized MEMS scanner package that is free from interference due to driving signals.
  • the purpose of the present invention is to provide a MEMS scanner capable of stable and accurate operation by configuring feedback control using real-time rotation angle information of the MEMS scanning mirror.
  • a position sensing device for a structure according to the present invention for solving the above problems includes: an object to be measured; a light source disposed at a predetermined interval behind the object to be measured and emitting light toward the rear of the object to be measured; a lens located between the light source and the object to be measured through which light emitted from the light source passes; and a detector that receives light that passes through the lens and is then reflected from the back of the object to be measured and returned, wherein the center of the lens may be arranged to be spaced apart in the horizontal direction from the light emitting center of the light source.
  • the chief ray of light passing through the lens may pass through one part of the lens that is a certain distance away from the center of the lens.
  • the light emitted from the light source is incident on the central portion of the back of the object to be measured, and at this time, the angle of incidence is an inclined angle rather than a vertical one.
  • the light source and the sensor may be arranged at a predetermined distance apart from each other in a direction parallel to the rotation axis of the mirror on a horizontal plane.
  • the separation distance between the light source and the sensor may be within a range of 10 to 90% of the effective radius of the lens from the center of the lens.
  • the light source may be a vertical cavity surface emitting laser (VCSEL) or an LED.
  • VCSEL vertical cavity surface emitting laser
  • the lens may be a convex lens that is convex upward or downward, a biconvex lens that is convex upward or downward, or a part thereof.
  • the lens may be a cylindrical convex lens or a portion thereof.
  • the beam emitted from the light source passes through a convex lens away from the center of the object to be measured and is then reflected at the central portion of the back of the object to be measured at an inclined angle, and can then directly reach the detector without passing through the lens. there is.
  • the chief ray of light that passes through one part of the lens and then is reflected from the back of the object to be measured and returns may pass through the other side of the lens.
  • the beam emitted from the light source may pass through the concave lens toward the side close to the center of the object to be measured and then be incident on the central portion of the back of the object to be measured at an inclined angle.
  • the detector is a one-dimensional or two-dimensional position detector whose output varies depending on the position at which light enters, and a photo detector can also be used.
  • the sensor may include one two-dimensional position sensor or at least two one-dimensional sensors.
  • the two one-dimensional sensors may be arranged perpendicular to each other, or both the two one-dimensional sensors may be arranged vertically or horizontally.
  • the long axis of the one-dimensional position sensor is arranged in a direction perpendicular to the rotation axis of the mirror, so that as the object to be measured rotates, the path of light emitted from the light source follows the long axis of the position sensor. can be changed.
  • the separation direction of the light source and the sensor may be arranged perpendicular to the rotation axis direction of the mirror, and in this case, the long axis direction of the one-dimensional position sensor is arranged perpendicular to the rotation axis of the mirror, which is the object to be measured, as above.
  • the angle of incidence can be compensated with arctan (x/h), where x is the position sensor. Above is the travel distance of the laser beam, and h is the height difference between the back of the mirror and the position detector.
  • the MEMS scanner package includes a MEMS scanner element including a mirror; A first circuit board on which the MEMS scanner element is mounted; a light source disposed at a predetermined distance behind the mirror of the MEMS scanner element and emitting light toward the rear of the mirror; a lens located between the light source and the mirror through which light emitted from the light source passes; a detector that receives light that passes through the lens and is then reflected from the back of the mirror and returned; and a second circuit board on which the light source and the sensor are mounted, and are electrically connected to the light source and the sensor, respectively, and the center of the lens may be arranged to be horizontally spaced from the light emitting center of the light source. .
  • a spacer disposed between the light source and the lens to maintain a constant distance between the light source and the lens may be further included.
  • Another embodiment of the position sensing device of a structure includes: an object to be measured; a light source disposed at a predetermined interval behind the object to be measured and emitting light toward the rear of the object to be measured; a detector that receives light emitted from the light source and reflected from the back of the object to be measured and returned; and an integrated support having a first surface supporting the light source and a second surface supporting the sensor, wherein the first surface and the second surface are inclined at a predetermined angle to face each other, and from the light source.
  • the emitted light may be incident on the rear of the object to be measured at an inclined angle rather than perpendicular.
  • supports bent at a certain angle are disposed on the light source and the sensor so that light is emitted and incident vertically, respectively, and a flexible circuit board electrically connected to the light source and the sensor may be further included.
  • the present invention configured as described above has the effect of accurately and stably sensing real-time rotation angle information of the MEMS scanning mirror without interference from the driving signal.
  • the MEMS scanner of the MEMS scanner package according to the present invention can configure feedback control using rotation angle information obtained as a real-time waveform according to the mirror position, which has the effect of enabling stable and accurate operation.
  • the MEMS scanner package according to the present invention can be miniaturized and produced at low cost, not only is it easy to design a system using it, but it can also be applied to various fields.
  • Figure 1 shows the structure and rotational operation state of a MEMS mirror
  • Figure 2 shows a comb-shaped electrode structure included in a conventional MEMS driver to sense the rotation angle of the mirror.
  • Figure 3 shows a conventional device that detects a change in the position of reflected light by incident a laser beam on the front or back of a MEMS scanning mirror
  • FIGS. 4 and 5 are side and front views of a MEMS scanner package including a position sensing device for a structure according to a first embodiment of the present invention
  • 6 and 7 are side and front views showing the arrangement of the light source and lens in the MEMS scanner package according to the first embodiment of the present invention
  • Figures 8 to 10 are a plan view, front view, and side view showing the path of the laser beam according to the rotation of the scanning mirror in the position sensing device of the structure of Figures 4 and 5;
  • 11 and 12 are graphs showing the results of optical numerical analysis according to the rotation of the scanning mirror of the MEMS scanner package according to the first embodiment of the present invention.
  • Figure 13 is a diagram showing the structure of a downwardly convex lens in the MEMS scanner package according to the second embodiment of the present invention.
  • Figure 14 is a diagram showing the structure of a convex lens having both sides convex in the MEMS scanner package according to the third embodiment of the present invention.
  • Figure 15 is a diagram showing a structure using only the left part of the convex lens in the MEMS scanner package according to the fourth embodiment of the present invention.
  • 16 and 17 are side and front views of a MEMS scanner package including a support in the position sensing device for a structure according to a fifth embodiment of the present invention
  • FIGS. 18 to 20 are a plan view, front view, and side view showing the path of the laser beam according to the rotation of the scanning mirror in the MEMS scanner package of FIGS. 16 and 17;
  • 21 and 22 are side and front views showing a step structure in a MEMS scanner package according to a sixth embodiment of the present invention.
  • 23 and 24 are side and front views showing a MEMS scanner package according to a seventh embodiment of the present invention.
  • 25 and 26 are side and front views showing a MEMS scanner package according to an eighth embodiment of the present invention.
  • FIGS. 27 and 28 are side and front views of a MEMS scanner package according to a ninth embodiment of the present invention.
  • 29 to 31 are plan views showing the arrangement of position sensors for two-dimensional measurement in a MEMS scanner package according to the first embodiment of the present invention.
  • Figures 4 and 5 show a side view and a front view of a MEMS scanner package including a position sensing device of a structure according to a first embodiment of the present invention
  • Figures 6 and 7 show a MEMS scanner according to a first embodiment of the present invention.
  • Side and front views showing the arrangement of the light source and lens in the package.
  • the position sensing device of the structure according to the first embodiment of the present invention includes a mirror 111 of the MEMS scanner element 110 and a mirror of the MEMS scanner element 110 as objects to be measured.
  • a light source 130 is disposed at a predetermined distance behind the mirror 111 and emits light toward the rear of the mirror 111, and is located between the light source 130 and the mirror 111 to emit light to the light source 130. It includes a lens 131 through which the chief ray of light emitted from passes through, and a position sensor 140 that receives the light reflected from the back of the mirror 111 after passing through the lens 131 and returning.
  • the main ray of light passing through the lens 131 passes through one part of the lens 131 that is a certain distance away from the center of the lens 131.
  • the chief ray of light emitted from the light source 130 passes through one half of the lens
  • the chief ray of light reflected from the back of the mirror 111 may pass through the other half of the lens.
  • the rotation angle of the mirror 111 of the MEMS scanner element 110 is measured by the position detector 140.
  • the state in which the mirror 111 is rotated is indicated by a dotted line.
  • the MEMS scanner package according to the first embodiment of the present invention includes a position sensing device for the structure, a first circuit board 120 on which the MEMS scanner element 110 is mounted, The light source 130 and the position sensor 140 are mounted, and include a second circuit board 121 that is electrically connected to the light source 130 and the position sensor 140, respectively.
  • a spacer 120 is disposed between the light source 130 and the lens 131 to maintain a constant distance between the light source 130 and the lens 131.
  • the spacer 120 is disposed on the second circuit board 121, and the lens 131 is disposed on the spacer 120.
  • the center of the lens is arranged to be spaced apart from the light emitting center of the light source 130 in the direction toward the detector, so the light emitted from the light source 130 is tilted rather than vertical. It is incident on the back of the mirror 111 at a true angle.
  • the separation distance between the center of the lens 131 and the light emitting center of the light source 130 may range from 10 to 90% of the effective radius of the lens from the center of the lens 131.
  • the light source 130 and the position sensor 140 are arranged side by side on the horizontal surface of the second circuit board 121 at a predetermined interval.
  • the light source 130 may be a laser beam.
  • the optical path of the chief ray is refracted in the horizontal direction, and at the same time, the laser beam is focused or parallel light is formed. do.
  • a one-axis position sensor ( The long axis (x-axis) of 140) is arranged in a direction perpendicular to the rotation axis (y-axis) of the MEMS mirror 111.
  • the position sensor 140 is disposed long in the direction of the long axis (x-axis) perpendicular to the rotation axis (y-axis) of the mirror 111 and the mirror ( As 111) rotates, the path of light emitted from the light source 130 changes along the long axis (x-axis) of the position detector 140.
  • the position sensor 140 When the mirror 111 rotates around the x-axis, the position sensor 140 is arranged long in the long axis (y-axis) direction perpendicular to the rotation axis (x-axis).
  • a voltage signal corresponding to the change in position is generated from the position detector 140, and through a process of converting the position information into an angle, a linear rotation angle can be finally derived.
  • a vertical cavity surface light emitting laser (VCSEL) or LED may be used as the light source 130.
  • VCSEL vertical cavity surface light emitting laser
  • LED may be used as the light source 130.
  • the lens 131 may be made of glass or plastic material and may have a spherical or aspherical shape.
  • the sensor is a position sensor whose output varies depending on the position at which light is incident, and can be used as a one-dimensional or two-dimensional position sensor.
  • Figures 8 to 10 are a top view, front view, and side view showing the path of the laser beam according to the rotation of the scanning mirror in the position sensing device of Figures 4 and 5.
  • ⁇ _rotation represents the rotation angle of the mirror 111 with respect to the rotation axis (y-axis)
  • ⁇ _refraction represents the refraction angle of light by the lens 131
  • Disp_rotation represents the displacement of the light spot according to the rotation angle on the detector.
  • the position sensor 140 can continuously measure the position of a one-dimensional or two-dimensional light spot on the detector surface.
  • Figures 11 and 12 are graphs showing the results of optical numerical analysis according to the rotation of the scanning mirror of the MEMS scanner package according to the first embodiment of the present invention.
  • Figure 11 shows that the displacement in the direction of the long axis (x-axis) detected by the position sensor is 0 when the scanning mirror is not rotated
  • Figure 12 shows the position sensor when the scanning mirror is rotated 10 degrees around the rotation axis (y-axis).
  • An example is shown where the displacement in the long axis (x-axis) direction detected is approximately -0.8mm.
  • Figure 13 shows the structure of a lens in a MEMS scanner package according to a second embodiment of the present invention.
  • the first embodiment of FIGS. 4 to 7 is an example in which the lens 131 is a convex lens that is convex upward.
  • the lens 131a is a convex lens that is convex downward and other components are the same as those of the first embodiment. Same as example.
  • Figure 14 shows the structure of a lens in a MEMS scanner package according to a third embodiment of the present invention.
  • the lens 131b is a biconvex lens that is convex upward and downward.
  • Figure 15 shows the structure of the lens in the MEMS scanner package according to the fourth embodiment of the present invention, and in this embodiment, the lens 131c is a part of a convex lens that is convex upward.
  • the lens 131c may be a cylindrical convex lens.
  • the lens is a concave lens in the form of a hemisphere or cylinder
  • the beam emitted from the light source passes through the concave lens toward the side closer to the center of the object to be measured and then enters the central portion of the back of the object to be measured at an inclined angle. It could be.
  • Figures 16 and 17 show a side view and a front view of a MEMS scanner package including a position sensing device for a structure according to a fifth embodiment of the present invention.
  • the position sensing device of the structure according to the fifth embodiment of the present invention includes a mirror 211 of the MEMS scanner element 210 and a mirror of the MEMS scanner element 210 as objects to be measured.
  • a light source 230 is disposed at a predetermined distance behind the mirror 211 and emits light to the rear of the mirror 211. Light radiated from the light source 230 is reflected from the rear of the mirror 211 and returns. It has a position sensor 240 that receives light, a first surface 241a supporting the light source 230, and a second surface 241b supporting the position sensor 240, and the first surface 241a and The second surface 241b includes supports 241 inclined at a certain angle to face each other.
  • the support 241 may be integrally formed to include the first surface 241a and the second surface 241b.
  • the rotation angle of the mirror 211 of the MEMS scanner element 210 is measured by the position detector 240.
  • the MEMS scanner package according to the fifth embodiment of the present invention includes a position sensing device for the structure, and further includes a circuit board 220 on which the MEMS scanner element 210 is mounted. Includes. An internal space 226 is formed in the circuit board 220, and the light source 230, the position sensor 240, and the support 241 of the position sensing device are installed in the internal space 226.
  • the light emitting surface of the light source 230 is not parallel to the rotation axis (y-axis) of the scanning mirror 211 and forms a certain angle, so that the light enters the mirror 211 at an angle and is then reflected to a position sensor located on the opposite side. It is received at (240).
  • a flexible circuit board 242 is bent at a certain angle and disposed between the light source 230 and the support 241 and between the position sensor 240 and the support 241. They are electrically connected to the light source 230 and the position sensor 240, respectively.
  • the flexible circuit board 242 may be formed of polyimide film and copper wiring.
  • the mirror 211 rotates around the rotation axis (y-axis), and the position sensor 240 is disposed long along the long axis (x-axis) perpendicular to the rotation axis (y-axis) of the mirror 211.
  • the path of light emitted from the light source 230 changes along the long axis (x-axis) of the position detector 240. This method also applies when the mirror rotates around the y-axis.
  • FIGS. 18 to 20 are plan, front, and side views showing the path of the laser beam according to the rotation of the scanning mirror in the position sensing device of the structure of FIGS. 16 and 17, and detailed descriptions thereof will be omitted.
  • 21 and 22 are side and front views showing a MEMS scanner package according to a sixth embodiment of the present invention, and in this embodiment, the position sensing device of the structure is surrounded within the internal space 226 of the circuit board 220.
  • the step structure 221 is further formed to facilitate alignment of the position where the position sensing device is bonded.
  • the sixth embodiment of the present invention may have a circuit board 220 having a two-stage stepped structure in which, in addition to the step caused by the internal space 226, an additional step is formed by the step structure 221.
  • FIGS 23 and 24 are side and front views showing a MEMS scanner package according to a seventh embodiment of the present invention.
  • an internal space 226 is formed in the circuit board 220a, and a hole 222 is formed and penetrates the internal space 226.
  • the MEMS scanner element 210 is mounted on the circuit board 220a, and the light source 230, the position sensor 240, the flexible circuit board 242, and the support 241 supporting them are positioned in the hole 222. It is mounted to cover from the bottom.
  • FIGS. 25 and 26 are side and front views showing a MEMS scanner package according to an eighth embodiment of the present invention.
  • a light source 230, a position sensor 240, a flexible circuit board 242, and a support 241 supporting them are placed between the MEMS scanner element 210 and the flat circuit board 220b. 220b), and a spacer 224 is disposed between the MEMS scanner element 210 and the circuit board 220b.
  • the support 241 may be integrally formed to include the first surface 241a and the second surface 241b, as described in the fifth embodiment of FIGS. 16 and 17 .
  • FIGS 27 and 28 are side and front views showing a MEMS scanner package according to a ninth embodiment of the present invention.
  • an internal space is formed in the circuit board 220c, and the light source 230, the position sensor 240, the flexible circuit board 242, and the integrated support 241 for supporting them are mounted in the internal space. It is different from the 8th embodiment, and the remaining configuration is the same as the 8th embodiment.
  • Mirrors that move on two axes typically have a slow axis with a low driving frequency and a fast axis with a high driving frequency.
  • the waveform can be measured using a two-dimensional position detector (PSD) together with the lens. From this, the magnitude and phase of the driving angle can be extracted.
  • PSD two-dimensional position detector
  • the fast axis waveform can be directly obtained from the two position sensors (343, 344), and the time difference Information about the slow axis can be extracted from the two outputs.
  • the fast axis waveform can be directly obtained from the two position sensors (343, 344), and the time difference Information about the slow axis can be extracted from the two outputs.
  • both position sensors 345 and 346 are arranged horizontally, information about the fast axis and slow axis can be obtained, but there is a disadvantage in that waveforms cannot be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

The present invention relates to a MEMS scanner package comprising: a MEMS scanner element (110) including a mirror (111); a first circuit board (120) on which the MEMS scanner element (110) is mounted; a light source (130) disposed at a predetermined distance at the rear of the mirror (111) of the MEMS scanner element (110) and emitting light toward the back surface of the mirror (111); a lens (131), located between the light source (130) and the mirror (111), through which the light emitted from the light source (130) passes; a position sensor (140) that receives light that passes through the lens (131) and is then reflected from the back surface of the mirror (111) and returned; and a second circuit board (121) on which the light source (130) and the position sensor (140) are mounted and which are electrically connected to the light source (130) and the position sensor (140), wherein the center of the lens (131) is spaced apart from a light-emitting center of the light source (130) in a direction toward the position sensor (140), such that the light passing through the lens (131) is disposed at an inclined incidence angle at the center of the back surface of the mirror (111), and wherein the position sensor (140) is one two-dimensional position sensor or multiple one-dimensional position sensors, and in the case of one-axis scanning, the long axis of the position sensor is arranged perpendicular to the rotation axis of the mirror (111).

Description

구조체의 위치 센싱 장치 및 이를 포함하는 멤스 스캐너 패키지Structure position sensing device and MEMS scanner package including the same
본 발명은 구조체의 회전각 또는 수직 위치를 실시간으로 센싱하는 장치 및 이를 포함하는 멤스 스캐너 패키지에 관한 것이다.The present invention relates to a device for sensing the rotation angle or vertical position of a structure in real time and a MEMS scanner package including the same.
멤스 스캐너(MEMS Scanner)는 주변의 지형, 물체, 장애물 등과 같은 객체(Target)를 측정하는데 사용되는 라이다(LiDAR; Light Detection And Ranging), 레이저를 이용한 프로젝션 디스플레이 등에 사용되는 레이저 빔 조향장치이다. 이러한 멤스 스캐너는 다른 기계적 방식의 스캐너에 비해 소형, 박형, 저전력 소모, 저가격 등의 장점이 있어서 여러가지 센싱 및 디스플레이 분야에서 사용이 늘고 있는 추세에 있다.MEMS Scanner is a laser beam steering device used in LiDAR (Light Detection And Ranging), which is used to measure targets such as surrounding terrain, objects, and obstacles, and projection displays using lasers. These MEMS scanners have advantages such as small size, thinness, low power consumption, and low price compared to other mechanical scanners, so their use is increasing in various sensing and display fields.
멤스 스캐너를 사용하는 라이다 센서와 프로젝션 디스플레이에서는 정확하고 안정적인 구동을 위해 멤스 스캐닝 미러의 회전각(또는 수직 위치) 정보를 실시간으로 제공받아 시스템을 구현할 필요가 있다. 공진형 스캐너의 경우 주위 온도 변화에 따라 공진주파수가 달라질 수 있으므로 이에 대한 모니터링 및 제어를 위하여 미러의 구동각을 실시간으로 측정할 수 있는 센서가 필요하다. 그러나, 멤스 스캐닝 미러의 크기가 작고 고속 구동이 일반적이기 때문에 정확한 회전각을 센싱하는데 어려움이 있다.For lidar sensors and projection displays that use MEMS scanners, it is necessary to implement a system that receives rotation angle (or vertical position) information of the MEMS scanning mirror in real time for accurate and stable operation. In the case of a resonant scanner, the resonant frequency may vary depending on changes in ambient temperature, so a sensor that can measure the driving angle of the mirror in real time is needed to monitor and control this. However, because the size of the MEMS scanning mirror is small and it is generally driven at high speed, it is difficult to sense the exact rotation angle.
이러한 문제를 해결하기 위한 방법으로, 미국 특허공보 US10324283B2(선행기술문헌 1)에 개시된 바와 같이, 멤스 구동기에 포함된 빗살구조(comb structure)의 정전용량 변화를 감지하여 회전각을 센싱하는 방식이 시도되고 있다. 도 1에 멤스 미러의 회전에 따라 레이저 빔이 이동하는 궤적이 도시되어 있으며, 도 2에는 구동기에 포함된 빗살구조의 정전용량 변화를 감지하여 회전각을 센싱하는 종래 디바이스가 도시되어 있다. 하지만, 정전 구동 방식의 경우 소형화의 장점이 있으나, 구동 신호로 인한 간섭으로 정전 용량의 미약한 변화를 검출하는데 어려움이 있다. 또한, 시간 영역의 실제 파형을 얻기 어려우며, 이에 따른 미러 회전의 크기 및 위상 추출에 있어서 신호처리 회로가 복잡하다는 문제가 있다.As a method to solve this problem, as disclosed in US Patent Publication US10324283B2 (Prior Art Document 1), a method of sensing the rotation angle by detecting the change in capacitance of the comb structure included in the MEMS driver was attempted. It is becoming. Figure 1 shows the trajectory of the laser beam as the MEMS mirror rotates, and Figure 2 shows a conventional device that senses the rotation angle by detecting changes in capacitance of the comb structure included in the driver. However, although the electrostatic drive method has the advantage of miniaturization, it is difficult to detect slight changes in capacitance due to interference from the drive signal. In addition, there is a problem that it is difficult to obtain the actual waveform in the time domain, and the signal processing circuit is complicated in extracting the magnitude and phase of the mirror rotation.
다른 방법으로는 스프링의 변형에 따라 저항이 변화하는 압저항 (piezoresistive) 소자를 이용할 수 있다. 이 방법은 구조와 회로가 단순하지만 불순물 도핑(doping) 공정이 추가적으로 필요하며, 온도 안정성이 좋지 않다는 단점이 있다.Another method is to use a piezoresistive element whose resistance changes depending on the deformation of the spring. This method has a simple structure and circuit, but has the disadvantage of requiring an additional impurity doping process and having poor temperature stability.
또 다른 방법으로, 2017년 SPIE 컨퍼런스에서 발표된 선행기술문헌 2에 개시된 바와 같이, 멤스 스캐닝 미러의 전면 또는 후면에 레이저 빔을 입사하여 미러의 회전각 위치를 파형으로 직접 얻을 수 있는 광학적 센싱 방법이 실험실 환경에서 적용된 디바이스가 제시되었다. 도 3에 멤스 스캐닝 미러의 전면 또는 후면의 중앙에 레이저 빔을 입사하여 반사된 빛의 위치 변화를 감지하는 종래 방법이 도시되어 있으며, 레이저와 위치 감지기 (PSD: position sensitive detector)는 송신/수신 효율 및 측정 정확도를 높이기 위하여 먼 거리에서 경사각을 가지고 있으며, 이 경사각이 없을 경우 감지 신호에 왜곡이 발생할 수 있다. 그러나, 이 방법은 디바이스 사이즈가 크고 무거우며, 넓은 각도의 센싱을 할 경우 대면적의 위치 감지기가 필요하여 가격이 상승하는 등의 문제점이 있다. 또한, 소형화를 위해 광원과 위치 감지기를 회로 기판에 직접 실장할 경우 동일한 평면에 배치되어야 하므로, 별도의 광학계를 사용하지 않는 한, 스캐닝 미러의 후면 중앙에 기울어진 각도로 광을 입사시키는 것이 불가능하다는 단점이 있다.Another method, as disclosed in Prior Art Document 2 published at the SPIE conference in 2017, is an optical sensing method that can directly obtain the rotation angle position of the mirror as a waveform by incident a laser beam on the front or back of the MEMS scanning mirror. A device applied in a laboratory environment is presented. Figure 3 shows a conventional method of detecting a change in the position of reflected light by incident a laser beam on the center of the front or back of the MEMS scanning mirror. The laser and a position sensitive detector (PSD) are used to determine transmission/reception efficiency. And to increase measurement accuracy, it has an inclination angle at a long distance, and if this inclination angle is not present, distortion may occur in the detection signal. However, this method has problems in that the device size is large and heavy, and when sensing a wide angle, a large-area position sensor is required, which increases the price. In addition, when the light source and position sensor are mounted directly on the circuit board for miniaturization, they must be placed on the same plane, so it is impossible to incident light at an inclined angle at the center of the back of the scanning mirror unless a separate optical system is used. There is a downside.
<선행기술문헌><Prior art literature>
(특허문헌 1) 미국 특허공보 US10324283B2 (2019.06.18)(Patent Document 1) US Patent Publication US10324283B2 (2019.06.18)
(비특허문헌 1) Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications, Presented at SPIE Conference on Laser Radar Technology and Applications XXII, Anaheim, CA April 12th, 2017(Non-patent Document 1) Closed-Loop Control of Gimbal-less MEMS Mirrors for Increased Bandwidth in LiDAR Applications, Presented at SPIE Conference on Laser Radar Technology and Applications XXII, Anaheim, CA April 12 th , 2017
본 발명은 상술한 종래기술의 문제점들을 해결하기 위하여 안출된 것으로서, 멤스 스캐너에 있어서 스캐닝 미러의 회전각에 대한 실시간 파형은 물론, 이것으로부터 구동각 및 위상을 직접 측정할 수 있는 장치를 포함하는 소형화된 멤스 스캐너 패키지를 제공하는 것을 목적으로 한다.The present invention was developed to solve the problems of the prior art described above, and is a miniaturization device that includes a device that can directly measure the driving angle and phase from the real-time waveform of the rotation angle of the scanning mirror in the MEMS scanner. The purpose is to provide a MEMS scanner package.
또한, 본 발명은 구동 신호로 인한 간섭이 없는 소형화된 멤스 스캐너 패키지를 제공하는 것을 목적으로 한다.Additionally, the purpose of the present invention is to provide a miniaturized MEMS scanner package that is free from interference due to driving signals.
또한, 본 발명은 멤스 스캐닝 미러의 실시간 회전각 정보를 활용하여 피드백 제어를 구성함으로써 안정적이고 정확한 구동이 가능한 멤스 스캐너를 제공하는 것을 목적으로 한다.Additionally, the purpose of the present invention is to provide a MEMS scanner capable of stable and accurate operation by configuring feedback control using real-time rotation angle information of the MEMS scanning mirror.
상기한 과제를 해결하기 위한 본 발명에 따른 구조체의 위치 센싱 장치는, 피측정체; 상기 피측정체의 후방으로 일정 간격 이격되게 배치되어 상기 피측정체의 후면으로 광을 발산하는 광원; 상기 광원과 상기 피측정체 사이에 위치하여 상기 광원으로부터 발산된 광이 통과하는 렌즈; 및 상기 렌즈를 통과한 후 상기 피측정체의 후면에서 반사되어 되돌아오는 광을 수광하는 감지기;를 포함하고, 상기 렌즈의 중심은 상기 광원의 발광 중심으로부터 수평 방향으로 이격되어 배치될 수 있다. A position sensing device for a structure according to the present invention for solving the above problems includes: an object to be measured; a light source disposed at a predetermined interval behind the object to be measured and emitting light toward the rear of the object to be measured; a lens located between the light source and the object to be measured through which light emitted from the light source passes; and a detector that receives light that passes through the lens and is then reflected from the back of the object to be measured and returned, wherein the center of the lens may be arranged to be spaced apart in the horizontal direction from the light emitting center of the light source.
또한, 상기 렌즈를 통과하는 상기 광의 주광선은 상기 렌즈의 중심으로부터 일정 거리 이격된 한쪽 부위를 통과할 수 있다. 여기서, 상기 광원으로부터 발산된 광은 상기 피측정체 후면의 중앙 부위로 입사하며, 이때 입사각은 수직이 아닌 기울어진 각도이다.Additionally, the chief ray of light passing through the lens may pass through one part of the lens that is a certain distance away from the center of the lens. Here, the light emitted from the light source is incident on the central portion of the back of the object to be measured, and at this time, the angle of incidence is an inclined angle rather than a vertical one.
또한, 상기 광원과 상기 감지기는 수평면 상에 미러의 회전축 방향과 나란한 방향으로 소정 간격 이격되어 배치될 수 있다. 여기서, 상기 광원과 상기 감지기의 이격 거리는 상기 렌즈의 중심으로부터 렌즈 유효 반경의 10 내지 90% 범위 내에 있을 수 있다.Additionally, the light source and the sensor may be arranged at a predetermined distance apart from each other in a direction parallel to the rotation axis of the mirror on a horizontal plane. Here, the separation distance between the light source and the sensor may be within a range of 10 to 90% of the effective radius of the lens from the center of the lens.
또한, 상기 광원은 수직 캐비티 표면 광방출 레이저(VCSEL) 또는 LED일 수 있다.Additionally, the light source may be a vertical cavity surface emitting laser (VCSEL) or an LED.
또한, 상기 렌즈는 위로 또는 아래로 볼록한 볼록렌즈이거나 상하로 볼록한 양면 볼록렌즈 또는 그 일부일 수 있다. 상기 렌즈는 실린더 형태의 볼록 렌즈 또는 그 일부일 수 있다.Additionally, the lens may be a convex lens that is convex upward or downward, a biconvex lens that is convex upward or downward, or a part thereof. The lens may be a cylindrical convex lens or a portion thereof.
또한, 상기 광원으로부터 발산된 빔은 피측정체 중앙으로부터 먼 쪽으로 볼록렌즈를 투과한 후 기울어진 각도로 상기 피측정체 후면의 중앙 부위에서 반사되며, 이후 렌즈를 통과하지 않고 직접 감지기에 도달할 수 있다.In addition, the beam emitted from the light source passes through a convex lens away from the center of the object to be measured and is then reflected at the central portion of the back of the object to be measured at an inclined angle, and can then directly reach the detector without passing through the lens. there is.
한편, 상기 볼록렌즈의 일부가 아닌 전체를 사용하는 경우, 상기 렌즈의 한쪽 부위를 통과한 후 상기 피측정체의 후면에서 반사되어 되돌아오는 광의 주광선이 상기 렌즈의 다른 한쪽을 통과할 수 있다.On the other hand, when using the entire convex lens rather than a part, the chief ray of light that passes through one part of the lens and then is reflected from the back of the object to be measured and returns may pass through the other side of the lens.
또한 상기 렌즈가 구형 또는 실린더 형태의 오목 렌즈일 경우, 상기 광원으로부터 발산된 빔은 피측정체 중앙에 가까운 쪽으로 오목렌즈를 투과한 후 기울어진 각도로 상기 피측정체 후면의 중앙 부위에 입사될 수 있다.In addition, when the lens is a concave lens in the form of a sphere or cylinder, the beam emitted from the light source may pass through the concave lens toward the side close to the center of the object to be measured and then be incident on the central portion of the back of the object to be measured at an inclined angle. there is.
또한 상기 감지기는 광이 입사하는 위치에 따라 출력이 달라지는 1차원 또는 2차원 위치 감지기이며, 그 밖에 광 감지기 (photo detector)를 사용할 수 있다.Additionally, the detector is a one-dimensional or two-dimensional position detector whose output varies depending on the position at which light enters, and a photo detector can also be used.
또한, 상기 감지기는 1개의 2차원 위치 감지기 또는 적어도 2개의 1차원 감지기를 포함할 수 있다.Additionally, the sensor may include one two-dimensional position sensor or at least two one-dimensional sensors.
또한, 상기 1차원 감지기 2개가 서로 수직하게 배열하거나, 상기 1차원 감지기 2개가 모두 수직 또는 수평으로 배열될 수 있다.Additionally, the two one-dimensional sensors may be arranged perpendicular to each other, or both the two one-dimensional sensors may be arranged vertically or horizontally.
또한, 상기 미러가 1축으로 회전할 때는 1차원 위치 감지기의 장축이 상기 미러의 회전축과 수직 방향으로 배치되어 상기 피측정체가 회전함에 따라 상기 광원으로부터 발산된 광의 경로가 상기 위치 감지기의 장축을 따라 변경될 수 있다. In addition, when the mirror rotates along one axis, the long axis of the one-dimensional position sensor is arranged in a direction perpendicular to the rotation axis of the mirror, so that as the object to be measured rotates, the path of light emitted from the light source follows the long axis of the position sensor. can be changed.
또한, 상기 광원과 상기 감지기의 이격 방향이 미러의 회전축 방향과 수직으로 배치될 수 있으며, 이 때 1차원 위치 감지기의 장축 방향은 위와 마찬가지로 피측정체인 미러의 회전축과 수직으로 배치된다.In addition, the separation direction of the light source and the sensor may be arranged perpendicular to the rotation axis direction of the mirror, and in this case, the long axis direction of the one-dimensional position sensor is arranged perpendicular to the rotation axis of the mirror, which is the object to be measured, as above.
또한, 상기 피측정체의 회전에 따른 상기 피측정체의 위치 변화에 대해 상기 위치 감지기로부터 보다 선형적인 전압 신호를 얻기 위하여 arctan(x/h)로 입사각을 보상할 수 있으며, 여기서 x는 위치 감지기 위에서 레이저 빔의 이동 거리이며, h는 미러 후면과 위치 감지기 사이의 높이 차이이다.In addition, in order to obtain a more linear voltage signal from the position sensor for the change in position of the object to be measured according to the rotation of the object to be measured, the angle of incidence can be compensated with arctan (x/h), where x is the position sensor. Above is the travel distance of the laser beam, and h is the height difference between the back of the mirror and the position detector.
본 발명에 따른 멤스 스캐너 패키지는, 미러를 포함하는 멤스 스캐너 소자; 상기 멤스 스캐너 소자가 실장되는 제1 회로기판; 상기 멤스 스캐너 소자의 미러의 후방으로 일정 간격 이격되게 배치되어 상기 미러의 후면으로 광을 발산하는 광원; 상기 광원과 상기 미러 사이에 위치하여 상기 광원으로부터 발산된 광이 통과하는 렌즈; 상기 렌즈를 통과한 후 상기 미러의 후면에서 반사되어 되돌아오는 광을 수광하는 감지기; 및 상기 광원과 상기 감지기가 실장되며, 상기 광원 및 상기 감지기와 각각 전기적으로 연결되는 제2 회로기판;을 포함하고, 상기 렌즈의 중심은 상기 광원의 발광 중심으로부터 수평 방향으로 이격되어 배치될 수 있다. 여기서, 상기 광원과 상기 렌즈의 간격을 일정하게 유지하도록 상기 광원과 상기 렌즈 사이에 배치되는 스페이서;를 더 포함할 수 있다.The MEMS scanner package according to the present invention includes a MEMS scanner element including a mirror; A first circuit board on which the MEMS scanner element is mounted; a light source disposed at a predetermined distance behind the mirror of the MEMS scanner element and emitting light toward the rear of the mirror; a lens located between the light source and the mirror through which light emitted from the light source passes; a detector that receives light that passes through the lens and is then reflected from the back of the mirror and returned; and a second circuit board on which the light source and the sensor are mounted, and are electrically connected to the light source and the sensor, respectively, and the center of the lens may be arranged to be horizontally spaced from the light emitting center of the light source. . Here, a spacer disposed between the light source and the lens to maintain a constant distance between the light source and the lens may be further included.
본 발명에 따른 구조체의 위치 센싱 장치의 다른 실시예는, 피측정체; 상기 피측정체의 후방으로 일정 간격 이격되게 배치되어 상기 피측정체의 후면으로 광을 발산하는 광원; 상기 광원으로부터 발산되어 상기 피측정체의 후면에서 반사되어 되돌아오는 광을 수광하는 감지기; 및 상기 광원을 지지하는 제1 면과 상기 감지기를 지지하는 제2 면을 가지며, 상기 제1 면과 상기 제2 면은 서로 마주보도록 일정 각도로 경사진 일체화된 지지대;를 포함하고, 상기 광원으로부터 발산되는 광은 상기 피측정체의 후면에 수직이 아닌 기울어진 각도로 입사될 수 있다.Another embodiment of the position sensing device of a structure according to the present invention includes: an object to be measured; a light source disposed at a predetermined interval behind the object to be measured and emitting light toward the rear of the object to be measured; a detector that receives light emitted from the light source and reflected from the back of the object to be measured and returned; and an integrated support having a first surface supporting the light source and a second surface supporting the sensor, wherein the first surface and the second surface are inclined at a predetermined angle to face each other, and from the light source. The emitted light may be incident on the rear of the object to be measured at an inclined angle rather than perpendicular.
여기서, 상기 광원과 상기 감지기에는 빛이 수직으로 각각 출사 및 입사가 되도록 일정 각도로 꺾인 지지대가 배치되며, 상기 광원 및 상기 감지기와 각각 전기적으로 연결되는 연성 회로기판이 더 포함될 수 있다.Here, supports bent at a certain angle are disposed on the light source and the sensor so that light is emitted and incident vertically, respectively, and a flexible circuit board electrically connected to the light source and the sensor may be further included.
본 발명에 따른 구조체의 위치 센싱 장치를 포함하는 멤스 스캐너 패키지의 다른 실시예는, 미러를 포함하는 멤스 스캐너 소자; 상기 멤스 스캐너 소자가 실장되는 회로기판; 상기 멤스 스캐너 소자의 미러의 후방으로 일정 간격 이격되게 배치되어 상기 미러의 후면으로 광을 발산하는 광원; 상기 광원으로부터 발산되어 상기 미러의 후면에서 반사되어 되돌아오는 광을 수광하는 감지기; 상기 광원을 지지하는 제1 면과 상기 감지기를 지지하는 제2 면을 가지며, 상기 제1 면과 상기 제2 면은 서로 마주보도록 일정 각도로 경사진 일체화된 지지대;를 포함하고, 상기 광원으로부터 발산되는 광은 상기 미러의 후면에 수직이 아닌 기울어진 각도로 입사될 수 있다.Another embodiment of the MEMS scanner package including the position sensing device of the structure according to the present invention includes a MEMS scanner element including a mirror; A circuit board on which the MEMS scanner element is mounted; a light source disposed at a predetermined distance behind the mirror of the MEMS scanner element and emitting light toward the rear of the mirror; a detector that receives light emitted from the light source and reflected from the back of the mirror and returned; An integrated support having a first surface supporting the light source and a second surface supporting the sensor, wherein the first surface and the second surface are inclined at a predetermined angle to face each other, and radiates from the light source. The light may be incident on the rear surface of the mirror at an inclined angle rather than perpendicular to the mirror.
상기와 같이 구성되는 본 발명은 멤스 스캐닝 미러의 실시간 회전각 정보를 구동 신호의 간섭이 없는 상태에서 정확하고 안정하게 센싱할 수 있는 효과가 있다.The present invention configured as described above has the effect of accurately and stably sensing real-time rotation angle information of the MEMS scanning mirror without interference from the driving signal.
또한, 본 발명에 따른 멤스 스캐너 패키지의 멤스 스캐너는 미러 위치에 따라 실시간 파형으로 얻어지는 회전각 정보를 활용하여 피드백 제어를 구성할 수 있으므로 안정적이고 정확한 구동이 가능해지는 효과가 있다.In addition, the MEMS scanner of the MEMS scanner package according to the present invention can configure feedback control using rotation angle information obtained as a real-time waveform according to the mirror position, which has the effect of enabling stable and accurate operation.
또한, 본 발명에 따른 멤스 스캐너 패키지는 소형화 및 저가 생산이 가능하기 때문에 이를 사용하는 시스템 설계가 용이할 뿐만 아니라 다양한 분야에 적용이 가능해지는 효과가 있다. In addition, since the MEMS scanner package according to the present invention can be miniaturized and produced at low cost, not only is it easy to design a system using it, but it can also be applied to various fields.
도 1은 멤스 미러의 구조 및 회전 작동 상태를 나타내며, 도 2는 미러의 회전각을 센싱하기 위하여 종래 멤스 구동기에 포함된 빗살모양의 전극 구조를 나타내는 도,Figure 1 shows the structure and rotational operation state of a MEMS mirror, and Figure 2 shows a comb-shaped electrode structure included in a conventional MEMS driver to sense the rotation angle of the mirror.
도 3은 멤스 스캐닝 미러의 전면 또는 후면에 레이저 빔을 입사하여 반사된 빛의 위치 변화를 감지하는 종래 디바이스를 나타내는 도,Figure 3 shows a conventional device that detects a change in the position of reflected light by incident a laser beam on the front or back of a MEMS scanning mirror;
도 4 및 도 5는 본 발명의 제1 실시예에 따른 구조체의 위치 센싱 장치를 포함하는 멤스 스캐너 패키지의 측면도 및 정면도, 4 and 5 are side and front views of a MEMS scanner package including a position sensing device for a structure according to a first embodiment of the present invention;
도 6 및 도 7은 본 발명의 제1 실시예에 따른 멤스 스캐너 패키지에서 광원과 렌즈의 배치를 나타내는 측면도 및 정면도, 6 and 7 are side and front views showing the arrangement of the light source and lens in the MEMS scanner package according to the first embodiment of the present invention;
도 8 내지 도 10은 도 4 및 도 5의 구조체의 위치 센싱 장치에서 스캐닝 미러의 회전에 따른 레이저 빔의 진행 경로를 나타내는 평면도, 정면도, 측면도,Figures 8 to 10 are a plan view, front view, and side view showing the path of the laser beam according to the rotation of the scanning mirror in the position sensing device of the structure of Figures 4 and 5;
도 11 및 도 12는 본 발명의 제1 실시예에 따른 멤스 스캐너 패키지의 스캐닝 미러 회전에 따른 광학적 수치해석 결과를 나타내는 그래프,11 and 12 are graphs showing the results of optical numerical analysis according to the rotation of the scanning mirror of the MEMS scanner package according to the first embodiment of the present invention;
도 13은 본 발명의 제2 실시예에 따른 멤스 스캐너 패키지에서 아래로 볼록인 렌즈의 구조를 나타내는 도,Figure 13 is a diagram showing the structure of a downwardly convex lens in the MEMS scanner package according to the second embodiment of the present invention;
도 14는 본 발명의 제3 실시예에 따른 멤스 스캐너 패키지에서 양면이 볼록인 볼록렌즈의 구조를 나타내는 도,Figure 14 is a diagram showing the structure of a convex lens having both sides convex in the MEMS scanner package according to the third embodiment of the present invention;
도 15는 본 발명의 제4 실시예에 따른 멤스 스캐너 패키지에서 볼록렌즈의 왼쪽 일부만 사용하는 구조를 나타내는 도,Figure 15 is a diagram showing a structure using only the left part of the convex lens in the MEMS scanner package according to the fourth embodiment of the present invention;
도 16 및 도 17은 본 발명의 제5 실시예에 따른 구조체의 위치 센싱 장치에서 지지대를 포함하는 멤스 스캐너 패키지의 측면도 및 정면도,16 and 17 are side and front views of a MEMS scanner package including a support in the position sensing device for a structure according to a fifth embodiment of the present invention;
도 18 내지 도 20은 도 16 및 도 17의 멤스 스캐너 패키지에서 스캐닝 미러의 회전에 따른 레이저 빔의 진행 경로를 나타내는 평면도, 정면도, 측면도,FIGS. 18 to 20 are a plan view, front view, and side view showing the path of the laser beam according to the rotation of the scanning mirror in the MEMS scanner package of FIGS. 16 and 17;
도 21 및 도 22는 본 발명의 제6 실시예에 따른 멤스 스캐너 패키지에서 단차 구조물이 포함된 측면도 및 정면도,21 and 22 are side and front views showing a step structure in a MEMS scanner package according to a sixth embodiment of the present invention;
도 23 및 도 24는 본 발명의 제7 실시예에 따른 멤스 스캐너 패키지를 나타내는 측면도 및 정면도,23 and 24 are side and front views showing a MEMS scanner package according to a seventh embodiment of the present invention;
도 25 및 도 26은 본 발명의 제8 실시예에 따른 멤스 스캐너 패키지를 나타내는 측면도 및 정면도,25 and 26 are side and front views showing a MEMS scanner package according to an eighth embodiment of the present invention;
도 27 및 도 28은 본 발명의 제9 실시예에 따른 멤스 스캐너 패키지를 나타내는 측면도 및 정면도.27 and 28 are side and front views of a MEMS scanner package according to a ninth embodiment of the present invention.
도 29 내지 도 31은 본 발명의 제1 실시예에 따른 멤스 스캐너 패키지에서 2차원 측정을 위한 위치 감지기의 배열을 나타내는 평면도.29 to 31 are plan views showing the arrangement of position sensors for two-dimensional measurement in a MEMS scanner package according to the first embodiment of the present invention.
이하에서는, 도 4 내지 도 31을 참조하여 본 발명의 실시예들을 자세히 설명한다.Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. 4 to 31.
도 4 및 도 5는 본 발명의 제1 실시예에 따른 구조체의 위치 센싱 장치를 포함하는 멤스 스캐너 패키지의 측면도 및 정면도를 나타내고, 도 6 및 도 7은 본 발명의 제1 실시예에 따른 멤스 스캐너 패키지에서 광원과 렌즈의 배치를 나타내는 측면도 및 정면도다.Figures 4 and 5 show a side view and a front view of a MEMS scanner package including a position sensing device of a structure according to a first embodiment of the present invention, and Figures 6 and 7 show a MEMS scanner according to a first embodiment of the present invention. Side and front views showing the arrangement of the light source and lens in the package.
도 4 내지 도 7을 참조하면, 본 발명의 제1 실시예에 따른 구조체의 위치 센싱 장치는, 피측정체로서 멤스 스캐너 소자(110)의 미러(111), 상기 멤스 스캐너 소자(110)의 미러(111)의 후방으로 일정 간격 이격되게 배치되어 상기 미러(111)의 후면으로 광을 발산하는 광원(130), 상기 광원(130)과 상기 미러(111) 사이에 위치하여 상기 광원(130)으로 부터 발산된 광의 주광선이 통과하는 렌즈(131), 상기 렌즈(131)를 통과한 후 상기 미러(111)의 후면에서 반사되어 되돌아오는 광을 수광하는 위치 감지기(140);를 포함한다.4 to 7, the position sensing device of the structure according to the first embodiment of the present invention includes a mirror 111 of the MEMS scanner element 110 and a mirror of the MEMS scanner element 110 as objects to be measured. A light source 130 is disposed at a predetermined distance behind the mirror 111 and emits light toward the rear of the mirror 111, and is located between the light source 130 and the mirror 111 to emit light to the light source 130. It includes a lens 131 through which the chief ray of light emitted from passes through, and a position sensor 140 that receives the light reflected from the back of the mirror 111 after passing through the lens 131 and returning.
상기 렌즈(131)를 통과하는 상기 광의 주광선은 상기 렌즈(131)의 중심으로부터 일정거리 이격된 렌즈(131)의 한쪽 부위를 통과한다. 예를 들면, 상기 광원(130)으로부터 발산된 광의 주광선이 렌즈 절반의 한쪽을 통과할 때, 상기 미러(111)의 후면에서 반사된 광의 주광선이 렌즈 절반의 다른 한쪽을 통과할 수 있다.The main ray of light passing through the lens 131 passes through one part of the lens 131 that is a certain distance away from the center of the lens 131. For example, when the chief ray of light emitted from the light source 130 passes through one half of the lens, the chief ray of light reflected from the back of the mirror 111 may pass through the other half of the lens.
상기 구조체의 위치 센싱 장치에서 상기 위치 감지기(140)에 의해 피측정체인 상기 멤스 스캐너 소자(110)의 미러(111)의 회전각이 측정된다. 도 5에서 미러(111)가 회전된 상태가 점선으로 표시되어 있다.In the position sensing device of the structure, the rotation angle of the mirror 111 of the MEMS scanner element 110, which is the object to be measured, is measured by the position detector 140. In Figure 5, the state in which the mirror 111 is rotated is indicated by a dotted line.
도 4 및 도 5를 참조하면, 본 발명의 제1 실시예에 따른 멤스 스캐너 패키지는 상기 구조체의 위치 센싱 장치를 포함하고, 상기 멤스 스캐너 소자(110)가 실장되는 제1 회로기판(120), 상기 광원(130)과 상기 위치 감지기(140)가 실장되며, 상기 광원(130) 및 상기 위치 감지기(140)와 각각 전기적으로 연결되는 제2 회로기판(121)을 포함한다. 4 and 5, the MEMS scanner package according to the first embodiment of the present invention includes a position sensing device for the structure, a first circuit board 120 on which the MEMS scanner element 110 is mounted, The light source 130 and the position sensor 140 are mounted, and include a second circuit board 121 that is electrically connected to the light source 130 and the position sensor 140, respectively.
또한, 상기 광원(130)과 상기 렌즈(131)의 간격을 일정하게 유지하도록 상기 광원(130)과 상기 렌즈(131) 사이에 스페이서(120)가 배치된다. 상기 스페이서(120)는 상기 제2 회로기판(121) 상에 배치되며, 상기 스페이서(120) 상부에 상기 렌즈(131)가 배치된다.Additionally, a spacer 120 is disposed between the light source 130 and the lens 131 to maintain a constant distance between the light source 130 and the lens 131. The spacer 120 is disposed on the second circuit board 121, and the lens 131 is disposed on the spacer 120.
상기 렌즈(131)가 볼록렌즈인 경우에, 렌즈의 중심은 상기 광원(130)의 발광 중심으로부터 상기 감지기를 향한 방향으로 이격되어 배치되므로, 상기 광원(130)으로부터 발산된 광은 수직이 아닌 기울어진 각도로 상기 미러(111)의 후면에 입사된다. 상기 렌즈(131)의 중심과 상기 광원(130)의 발광 중심 사이의 이격 거리는 상기 렌즈(131)의 중심으로부터 렌즈 유효 반경의 10 내지 90% 범위를 가질 수 있다.When the lens 131 is a convex lens, the center of the lens is arranged to be spaced apart from the light emitting center of the light source 130 in the direction toward the detector, so the light emitted from the light source 130 is tilted rather than vertical. It is incident on the back of the mirror 111 at a true angle. The separation distance between the center of the lens 131 and the light emitting center of the light source 130 may range from 10 to 90% of the effective radius of the lens from the center of the lens 131.
상기 광원(130)과 상기 위치 감지기(140)는 상기 제2 회로기판(121)의 수평면 상에 소정 간격으로 이격되어 나란히 배치된다.The light source 130 and the position sensor 140 are arranged side by side on the horizontal surface of the second circuit board 121 at a predetermined interval.
상기 광원(130)은 레이저 빔일 수 있다. 이 경우, 상기 광원(130)으로부터 발산된 레이저 빔은 상기 렌즈(131)를 통과하면서 주광선(chief ray)의 광 경로가 수평 방향으로 굴절되고(refraction), 동시에 레이저 빔이 포커싱되거나 평행광이 형성된다.The light source 130 may be a laser beam. In this case, as the laser beam emitted from the light source 130 passes through the lens 131, the optical path of the chief ray is refracted in the horizontal direction, and at the same time, the laser beam is focused or parallel light is formed. do.
스캐닝 미러(111)가 1축(도 4 및 도 5에서 y축)으로 회전할 때 상기 광원과 상기 감지기가 수평면 상에 미러의 회전축 방향과 나란한 방향으로 이격되어 배치되는 경우, 1축 위치 감지기(140)의 장축(x축)은 멤스 미러(111)의 회전축(y축)과 수직인 방향으로 배치된다.When the scanning mirror 111 rotates on one axis (y-axis in FIGS. 4 and 5) and the light source and the detector are arranged spaced apart in a direction parallel to the rotation axis of the mirror on a horizontal plane, a one-axis position sensor ( The long axis (x-axis) of 140) is arranged in a direction perpendicular to the rotation axis (y-axis) of the MEMS mirror 111.
즉, 상기 미러(111)가 y축을 중심으로 회전할 때, 상기 위치 감지기(140)는 상기 미러(111)의 회전축(y축)과 수직인 장축(x축) 방향으로 길게 배치되어 상기 미러(111)가 회전함에 따라 상기 광원(130)으로부터 발산된 광의 경로가 상기 위치 감지기(140)의 장축(x축)을 따라 변경된다.That is, when the mirror 111 rotates around the y-axis, the position sensor 140 is disposed long in the direction of the long axis (x-axis) perpendicular to the rotation axis (y-axis) of the mirror 111 and the mirror ( As 111) rotates, the path of light emitted from the light source 130 changes along the long axis (x-axis) of the position detector 140.
상기 미러(111)가 x축을 중심으로 회전하는 경우에는 상기 위치 감지기(140)는 회전축(x축)과 수직인 장축(y축) 방향으로 길게 배치된다.When the mirror 111 rotates around the x-axis, the position sensor 140 is arranged long in the long axis (y-axis) direction perpendicular to the rotation axis (x-axis).
상기 멤스 미러(111)가 회전함에 따라 상기 위치 감지기(140)로부터 위치 변화에 대한 전압 신호가 발생하며, 위치정보를 각도로 변환하는 과정을 거쳐 최종적으로 선형적인 회전 각도가 도출될 수 있다.As the MEMS mirror 111 rotates, a voltage signal corresponding to the change in position is generated from the position detector 140, and through a process of converting the position information into an angle, a linear rotation angle can be finally derived.
상기 광원(130)으로는 수직 캐비티 표면 광방출 레이저(VCSEL) 또는 LED가 사용될 수 있다. As the light source 130, a vertical cavity surface light emitting laser (VCSEL) or LED may be used.
상기 렌즈(131)는 유리 또는 플라스틱 소재로 형성될 수 있으며, 구면 또는 비구면 형상을 가질 수 있다.The lens 131 may be made of glass or plastic material and may have a spherical or aspherical shape.
상기 감지기는 광이 입사하는 위치에 따라 출력이 달라지는 위치 감지기이며, 1차원 또는 2차원 위치 감지기로 사용될 수 있다.The sensor is a position sensor whose output varies depending on the position at which light is incident, and can be used as a one-dimensional or two-dimensional position sensor.
도 8 내지 도 10은 도 4 및 도 5의 위치 센싱 장치에서 스캐닝 미러의 회전에 따른 레이저 빔의 진행 경로를 나타내는 평면도, 정면도, 측면도다. 여기서, θ_rotation은 회전축(y축)에 대한 미러(111)의 회전각을 나타내고, θ_refraction 은 상기 렌즈(131)에 의한 광의 굴절각을 나타내며, Disp_rotation 은 감지기 위에서의 회전각에 따른 광점의 변위를 나타낸다.Figures 8 to 10 are a top view, front view, and side view showing the path of the laser beam according to the rotation of the scanning mirror in the position sensing device of Figures 4 and 5. Here, θ_rotation represents the rotation angle of the mirror 111 with respect to the rotation axis (y-axis), θ_refraction represents the refraction angle of light by the lens 131, and Disp_rotation represents the displacement of the light spot according to the rotation angle on the detector.
상기 위치 감지기(140)는 감지기 표면상의 1차원 또는 2차원의 광점의 위치를 연속적으로 측정할 수 있다.The position sensor 140 can continuously measure the position of a one-dimensional or two-dimensional light spot on the detector surface.
도 11 및 도 12는 본 발명의 제1 실시예에 따른 멤스 스캐너 패키지의 스캐닝 미러 회전에 따른 광학적 수치해석 결과를 나타내는 그래프다. 도 11은 스캐닝 미러가 회전되지 않은 상태에서 위치 감지기에서 감지되는 장축(x축) 방향의 변위가 0임을 나타내며, 도 12는 스캐닝 미러가 회전축(y축)을 중심으로 10도 회전하였을 때 위치 감지기에서 감지되는 장축(x축) 방향의 변위가 약 -0.8mm 인 예시를 보여준다.Figures 11 and 12 are graphs showing the results of optical numerical analysis according to the rotation of the scanning mirror of the MEMS scanner package according to the first embodiment of the present invention. Figure 11 shows that the displacement in the direction of the long axis (x-axis) detected by the position sensor is 0 when the scanning mirror is not rotated, and Figure 12 shows the position sensor when the scanning mirror is rotated 10 degrees around the rotation axis (y-axis). An example is shown where the displacement in the long axis (x-axis) direction detected is approximately -0.8mm.
도 13은 본 발명의 제2 실시예에 따른 멤스 스캐너 패키지에서 렌즈의 구조를 나타낸다. 도 4 내지 도 7의 제1 실시예는 렌즈(131)가 위로 볼록한 볼록렌즈인 예시인데, 도 13의 제2 실시예에서는 렌즈(131a)가 아래로 볼록한 볼록렌즈이고 다른 구성요소들은 제1 실시예와 동일하다.Figure 13 shows the structure of a lens in a MEMS scanner package according to a second embodiment of the present invention. The first embodiment of FIGS. 4 to 7 is an example in which the lens 131 is a convex lens that is convex upward. In the second embodiment of FIG. 13, the lens 131a is a convex lens that is convex downward and other components are the same as those of the first embodiment. Same as example.
도 14는 본 발명의 제3 실시예에 따른 멤스 스캐너 패키지에서 렌즈의 구조를 나타낸다. 이 실시예에서는 렌즈(131b)가 상하로 볼록한 양면 볼록렌즈다.Figure 14 shows the structure of a lens in a MEMS scanner package according to a third embodiment of the present invention. In this embodiment, the lens 131b is a biconvex lens that is convex upward and downward.
도 15는 본 발명의 제4 실시예에 따른 멤스 스캐너 패키지에서 렌즈의 구조를 나타내며, 이 실시예에서 렌즈(131c)는 위로 볼록한 볼록렌즈의 일부이다. 여기서, 상기 렌즈(131c)는 실린더 형태의 볼록 렌즈를 사용할 수도 있다.Figure 15 shows the structure of the lens in the MEMS scanner package according to the fourth embodiment of the present invention, and in this embodiment, the lens 131c is a part of a convex lens that is convex upward. Here, the lens 131c may be a cylindrical convex lens.
또한 상기 렌즈가 반구형 또는 실린더 형태의 오목 렌즈일 경우, 상기 광원으로부터 발산된 빔은 피측정체 중앙에 가까운 쪽을 향해 오목렌즈를 투과한 후 기울어진 각도로 상기 피측정체 후면의 중앙 부위에 입사될 수도 있다. In addition, when the lens is a concave lens in the form of a hemisphere or cylinder, the beam emitted from the light source passes through the concave lens toward the side closer to the center of the object to be measured and then enters the central portion of the back of the object to be measured at an inclined angle. It could be.
도 16 및 도 17은 본 발명의 제5 실시예에 따른 구조체의 위치 센싱 장치를 포함하는 멤스 스캐너 패키지의 측면도 및 정면도를 나타낸다.Figures 16 and 17 show a side view and a front view of a MEMS scanner package including a position sensing device for a structure according to a fifth embodiment of the present invention.
도 16 및 도 17을 참조하면, 본 발명의 제5 실시예에 따른 구조체의 위치 센싱 장치는, 피측정체로서 멤스 스캐너 소자(210)의 미러(211), 상기 멤스 스캐너 소자(210)의 미러(211)의 후방으로 일정 간격 이격되게 배치되어 상기 미러(211)의 후면으로 광을 발산하는 광원(230), 상기 광원(230)으로부터 발산되어 상기 미러(211)의 후면에서 반사되어 되돌아오는 광을 수광하는 위치 감지기(240), 상기 광원(230)을 지지하는 제1 면(241a)과 상기 위치 감지기(240)를 지지하는 제2 면(241b)을 가지며, 상기 제1 면(241a)과 상기 제2 면(241b)은 서로를 향하도록 일정 각도로 경사진 지지대(241)를 포함한다. 상기 지지대(241)는 상기 제1 면(241a)과 상기 제2 면(241b)을 포함하도록 일체로 형성될 수 있다.16 and 17, the position sensing device of the structure according to the fifth embodiment of the present invention includes a mirror 211 of the MEMS scanner element 210 and a mirror of the MEMS scanner element 210 as objects to be measured. A light source 230 is disposed at a predetermined distance behind the mirror 211 and emits light to the rear of the mirror 211. Light radiated from the light source 230 is reflected from the rear of the mirror 211 and returns. It has a position sensor 240 that receives light, a first surface 241a supporting the light source 230, and a second surface 241b supporting the position sensor 240, and the first surface 241a and The second surface 241b includes supports 241 inclined at a certain angle to face each other. The support 241 may be integrally formed to include the first surface 241a and the second surface 241b.
상기 구조체의 위치 센싱 장치에서 상기 위치 감지기(240)에 의해 피측정체인 상기 멤스 스캐너 소자(210)의 미러(211)의 회전각이 측정된다.In the position sensing device of the structure, the rotation angle of the mirror 211 of the MEMS scanner element 210, which is the object to be measured, is measured by the position detector 240.
도 16 및 도 17을 참조하면, 본 발명의 제5 실시예에 따른 멤스 스캐너 패키지는, 상기 구조체의 위치 센싱 장치를 포함하고, 상기 멤스 스캐너 소자(210)가 실장되는 회로기판(220)을 더 포함한다. 상기 회로기판(220)에는 내재공간(226)이 형성되어 있고, 상기 내재공간(226)에 상기 위치 센싱 장치의 광원(230), 상기 위치 감지기(240), 상기 지지대(241)가 내설된다.16 and 17, the MEMS scanner package according to the fifth embodiment of the present invention includes a position sensing device for the structure, and further includes a circuit board 220 on which the MEMS scanner element 210 is mounted. Includes. An internal space 226 is formed in the circuit board 220, and the light source 230, the position sensor 240, and the support 241 of the position sensing device are installed in the internal space 226.
상기 광원(230)의 발광면은 상기 스캐닝 미러(211)의 회전축(y축)과 나란하지 않게 일정한 각도를 이루고 있어서 광이 상기 미러(211)에 비스듬히 입사한 후 반사되어 맞은편에 위치한 위치 감지기(240)에 수광된다.The light emitting surface of the light source 230 is not parallel to the rotation axis (y-axis) of the scanning mirror 211 and forms a certain angle, so that the light enters the mirror 211 at an angle and is then reflected to a position sensor located on the opposite side. It is received at (240).
상기 광원(230)과 상기 지지대(241) 사이 그리고 상기 위치 감지기(240)와 상기 지지대(241) 사이에 연성 회로기판(242)이 일정 각도로 꺾여서 배치되어 있으며, 상기 연성 회로기판(242)은 상기 광원(230) 및 상기 위치 감지기(240)와 각각 전기적으로 연결된다. 상기 연성 회로기판(242)은 폴리이미드 필름과 구리배선으로 형성될 수 있다.A flexible circuit board 242 is bent at a certain angle and disposed between the light source 230 and the support 241 and between the position sensor 240 and the support 241. They are electrically connected to the light source 230 and the position sensor 240, respectively. The flexible circuit board 242 may be formed of polyimide film and copper wiring.
상기 미러(211)는 회전축(y축)을 중심으로 회전하며, 상기 위치 감지기(240)는 상기 미러(211)의 회전축(y축)과 수직인 장축(x축) 방향으로 길게 배치되어 상기 미러(211)가 회전함에 따라 상기 광원(230)으로부터 발산된 광의 경로가 상기 위치 감지기(240)의 장축(x축)을 따라 변경된다. 이 방법은 미러가 y축을 중심으로 회전하는 경우에도 적용된다.The mirror 211 rotates around the rotation axis (y-axis), and the position sensor 240 is disposed long along the long axis (x-axis) perpendicular to the rotation axis (y-axis) of the mirror 211. As 211 rotates, the path of light emitted from the light source 230 changes along the long axis (x-axis) of the position detector 240. This method also applies when the mirror rotates around the y-axis.
도 18 내지 도 20은 도 16 및 도 17의 구조체의 위치 센싱 장치에서 스캐닝 미러의 회전에 따른 레이저 빔의 진행 경로를 나타내는 평면도, 정면도, 측면도이며, 이에 대한 자세한 설명은 생략한다.FIGS. 18 to 20 are plan, front, and side views showing the path of the laser beam according to the rotation of the scanning mirror in the position sensing device of the structure of FIGS. 16 and 17, and detailed descriptions thereof will be omitted.
도 21 및 도 22는 본 발명의 제6 실시예에 따른 멤스 스캐너 패키지를 나타내는 측면도 및 정면도이며, 이 실시예에서는 회로기판(220)의 내재공간(226) 내에 상기 구조체의 위치 센싱 장치를 둘러싸는 단차 구조물(221)이 더 형성되어 상기 위치 센싱 장치가 본딩되는 위치의 정렬이 쉬워진다. 또한, 본 발명의 제6 실시예는 상기 내재공간(226)에 의한 단차 외에 상기 단차 구조물(221)에 의해 추가적으로 단차가 형성되어 2단 단차 구조를 갖는 회로기판(220)을 가질 수 있다.21 and 22 are side and front views showing a MEMS scanner package according to a sixth embodiment of the present invention, and in this embodiment, the position sensing device of the structure is surrounded within the internal space 226 of the circuit board 220. The step structure 221 is further formed to facilitate alignment of the position where the position sensing device is bonded. Additionally, the sixth embodiment of the present invention may have a circuit board 220 having a two-stage stepped structure in which, in addition to the step caused by the internal space 226, an additional step is formed by the step structure 221.
도 23 및 도 24는 본 발명의 제7 실시예에 따른 멤스 스캐너 패키지를 나타내는 측면도 및 정면도다. 이 실시예에서는 회로기판(220a)에 내재공간(226)이 형성되고, 그 내재공간(226)에는 홀(222)이 형성되어 관통되어 있다. 멤스 스캐너 소자(210)는 상기 회로기판(220a) 상에 실장되며, 광원(230), 위치 감지기(240), 연성 회로기판(242) 및 이들을 지지하는 지지대(241)가 상기 홀(222)을 하부에서 덮도록 실장된다.Figures 23 and 24 are side and front views showing a MEMS scanner package according to a seventh embodiment of the present invention. In this embodiment, an internal space 226 is formed in the circuit board 220a, and a hole 222 is formed and penetrates the internal space 226. The MEMS scanner element 210 is mounted on the circuit board 220a, and the light source 230, the position sensor 240, the flexible circuit board 242, and the support 241 supporting them are positioned in the hole 222. It is mounted to cover from the bottom.
도 25 및 도 26은 본 발명의 제8 실시예에 따른 멤스 스캐너 패키지를 나타내는 측면도 및 정면도다. 이 실시예에서는 멤스 스캐너 소자(210)와 평판의 회로기판(220b) 사이에 광원(230), 위치 감지기(240), 연성 회로기판(242) 및 이들을 지지하는 지지대(241)가 상기 회로기판(220b) 상에 실장되고, 상기 멤스 스캐너 소자(210)와 상기 회로기판(220b) 사이에 스페이서(224)가 배치된다. 상기 지지대(241)는 도 16 및 도 17의 제5 실시예에서 설명한 바와 같이 상기 제1 면(241a)과 상기 제2 면(241b)을 포함하도록 일체로 형성될 수 있다.Figures 25 and 26 are side and front views showing a MEMS scanner package according to an eighth embodiment of the present invention. In this embodiment, a light source 230, a position sensor 240, a flexible circuit board 242, and a support 241 supporting them are placed between the MEMS scanner element 210 and the flat circuit board 220b. 220b), and a spacer 224 is disposed between the MEMS scanner element 210 and the circuit board 220b. The support 241 may be integrally formed to include the first surface 241a and the second surface 241b, as described in the fifth embodiment of FIGS. 16 and 17 .
도 27 및 도 28은 본 발명의 제9 실시예에 따른 멤스 스캐너 패키지를 나타내는 측면도 및 정면도다. 이 실시예에서는 회로기판(220c)에 내재공간이 형성되고 그 내재공간에 광원(230), 위치 감지기(240), 연성 회로기판(242) 및 이들을 지지하는 일체형 지지대(241)가 실장되는 점이 제8 실시예와 다르며 나머지 구성은 제8 실시예와 동일하다.Figures 27 and 28 are side and front views showing a MEMS scanner package according to a ninth embodiment of the present invention. In this embodiment, an internal space is formed in the circuit board 220c, and the light source 230, the position sensor 240, the flexible circuit board 242, and the integrated support 241 for supporting them are mounted in the internal space. It is different from the 8th embodiment, and the remaining configuration is the same as the 8th embodiment.
한편, 스캐너를 이용하는 3차원 이미지(image) 센서 및 디스플레이에서는 레이저 빔을 2차원으로 스캔하는 것이 필요하다. 이를 위하여 1축 스캐너를 2개 사용하거나 또는 소형화가 필요한 경우에는 미러 1개를 2축으로 스캔할 수 있다.Meanwhile, in 3D image sensors and displays using scanners, it is necessary to scan a laser beam in 2D. For this purpose, two 1-axis scanners can be used, or if miniaturization is required, one mirror can be scanned in 2 axes.
2축으로 움직이는 미러는 통상적으로 구동주파수가 낮은 slow축과 구동주파수가 높은 fast축이 복합되어 있다. 이 2차원 구동각을 정밀하게 측정하기 위하여 상기 렌즈와 함께 2차원 위치 감지기(PSD)를 사용하여 파형을 측정할 수 있으며. 이로부터 구동각의 크기와 위상을 추출할 수 있다. Mirrors that move on two axes typically have a slow axis with a low driving frequency and a fast axis with a high driving frequency. In order to precisely measure this two-dimensional driving angle, the waveform can be measured using a two-dimensional position detector (PSD) together with the lens. From this, the magnitude and phase of the driving angle can be extracted.
다른 방법으로 1차원 위치 감지기(PSD) 1개를 레이저 빔의 slow축 방향으로 배치한 경우에는 파형을 볼 수 없다는 단점이 있다. 이를 보완하기 위하여 도 29에 보인 바와 같이, 1차원 위치 감지기(341, 342) 2개를 서로 수직하게 배열하면, 수직 위치 감지기(341)로부터 fast축 파형을 얻을 수 있으며 수평 위치 감지기(342)로부터는 slow축 스캔에 대한 정보를 얻을 수 있다.Alternatively, if one 1-dimensional position detector (PSD) is placed in the slow axis direction of the laser beam, the disadvantage is that the waveform cannot be seen. To compensate for this, as shown in FIG. 29, if two one-dimensional position sensors (341, 342) are arranged perpendicularly to each other, a fast axis waveform can be obtained from the vertical position sensor (341) and from the horizontal position sensor (342) You can obtain information about slow axis scan.
또한, 도 30에 보인 바와 같이, 위치 감지기(343, 344) 2개를 fast축 방향인 수직으로 배열하면, 2개의 위치 감지기(343, 344)로부터 fast축 파형을 직접 얻을 수 있으며, 시차가 있는 2개의 출력으로부터 slow축에 대한 정보를 추출할 수 있다. 도 31에 보인 바와 같이, 위치 감지기(345, 346) 2개를 모두 수평으로 배열하면 fast축 및 slow축에 대한 정보를 얻을 수 있지만 파형을 얻을 수 없다는 단점이 있다.In addition, as shown in Figure 30, if two position sensors (343, 344) are arranged vertically in the fast axis direction, the fast axis waveform can be directly obtained from the two position sensors (343, 344), and the time difference Information about the slow axis can be extracted from the two outputs. As shown in FIG. 31, if both position sensors 345 and 346 are arranged horizontally, information about the fast axis and slow axis can be obtained, but there is a disadvantage in that waveforms cannot be obtained.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정, 변경 및 치환이 가능할 것이다. 따라서 본 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present invention, and those skilled in the art will be able to make various modifications, changes, and substitutions without departing from the essential characteristics of the present invention. . Therefore, this embodiment is not intended to limit the technical idea of the present invention, but rather to explain it, and the scope of the technical idea of the present invention is not limited by this example. The scope of protection of the present invention should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be construed as being included in the scope of rights of the present invention.
<부호의 설명><Explanation of symbols>
110, 210: 멤스 스캐너 소자110, 210: MEMS scanner element
111, 211: 미러 111, 211: Mirror
120: 제1 회로기판120: first circuit board
121: 제2 회로기판121: second circuit board
220, 220a, 220b, 220c: 회로기판220, 220a, 220b, 220c: Circuit board
221: 단차 구조물221: Step structure
222: 홀222: Hall
224: 스페이서224: spacer
130, 230: 광원130, 230: light source
131, 131a, 131b, 131c: 렌즈131, 131a, 131b, 131c: Lens
132: 스페이서132: spacer
140, 240, 341, 342, 343, 344, 345, 346: 위치 감지기140, 240, 341, 342, 343, 344, 345, 346: Position sensor
241: 지지대241: support
241a: 제1 면241a: side 1
241b: 제2 면241b: Side 2
242: 연성 회로기판242: Flexible circuit board
226: 내재공간226: Intrinsic space

Claims (19)

  1. 피측정체;object to be measured;
    상기 피측정체의 후방으로 일정 간격 이격되게 배치되어 상기 피측정체의 후면으로 광을 발산하는 광원;a light source disposed at a predetermined interval behind the object to be measured and emitting light toward the rear of the object to be measured;
    상기 광원과 상기 피측정체 사이에 위치하여 상기 광원으로부터 발산된 광이 통과하는 렌즈; 및a lens located between the light source and the object to be measured through which light emitted from the light source passes; and
    상기 렌즈를 통과한 후 상기 피측정체의 후면에서 반사되어 되돌아오는 광을 수광하는 감지기;를 포함하고,A detector that receives light that passes through the lens and is reflected from the back of the object to be measured and returned,
    상기 렌즈의 중심은 상기 광원의 발광 중심으로부터 이격되어 배치되는, 구조체의 위치 센싱 장치.The position sensing device of the structure, wherein the center of the lens is disposed to be spaced apart from the light emitting center of the light source.
  2. 제1항에 있어서,According to paragraph 1,
    상기 렌즈를 통과하는 상기 광의 주광선은 상기 렌즈의 중심으로부터 일정 거리 이격된 한쪽 부위를 통과하는, 구조체의 위치 센싱 장치.The position sensing device of the structure, wherein the main ray of light passing through the lens passes through one portion spaced a certain distance away from the center of the lens.
  3. 제2항에 있어서,According to paragraph 2,
    상기 광원으로부터 발산된 광은 상기 피측정체의 후면으로 수직이 아닌 기울어진 각도로 입사되는, 구조체의 위치 센싱 장치.A position sensing device for a structure in which the light emitted from the light source is incident on the back of the object to be measured at an inclined angle rather than vertically.
  4. 제2항에 있어서,According to paragraph 2,
    상기 광원과 상기 감지기는 수평면 상에 소정 간격 이격되어 나란히 배치된, 구조체의 위치 센싱 장치.A position sensing device for a structure in which the light source and the sensor are arranged side by side at a predetermined distance on a horizontal plane.
  5. 제4항에 있어서,According to paragraph 4,
    상기 광원과 상기 감지기의 이격 거리는 상기 렌즈의 중심으로부터 렌즈 유효 반경의 10 내지 90% 범위 내에 있는, 구조체의 위치 센싱 장치.The separation distance between the light source and the sensor is within a range of 10 to 90% of the effective radius of the lens from the center of the lens.
  6. 제1항에 있어서,According to paragraph 1,
    상기 광원은 수직 캐비티 표면 광방출 레이저(VCSEL) 또는 LED인, 구조체의 위치 센싱 장치.The light source is a vertical cavity surface light emitting laser (VCSEL) or an LED.
  7. 제1항에 있어서,According to paragraph 1,
    상기 렌즈는 볼록렌즈 또는 볼록 실린더 형태를 가진, 구조체의 위치 센싱 장치.The lens is a position sensing device of a structure having a convex lens or a convex cylinder shape.
  8. 제2항에 있어서In paragraph 2
    상기 렌즈의 한쪽 부위를 통과한 후 상기 피측정체의 후면에서 반사되어 되돌아오는 광의 주광선이 상기 렌즈의 다른 한쪽을 통과하는, 구조체의 위치 센싱 장치.A position sensing device for a structure in which the chief ray of light that passes through one part of the lens and then is reflected from the back of the object to be measured and returns passes through the other part of the lens.
  9. 제1항에 있어서,According to paragraph 1,
    상기 감지기는 1개의 2차원 위치 감지기 또는 적어도 2개의 1차원 감지기를 포함하는, 구조체의 위치 센싱 장치.A position sensing device for a structure, wherein the sensor includes one two-dimensional position sensor or at least two one-dimensional sensors.
  10. 제9항에 있어서,According to clause 9,
    상기 1차원 감지기 2개가 서로 수직하게 배열하거나, 상기 1차원 감지기 2개가 모두 수직 또는 수평으로 배열된, 구조체의 위치 센싱 장치.A position sensing device for a structure in which the two one-dimensional sensors are arranged perpendicularly to each other, or both the two one-dimensional sensors are arranged vertically or horizontally.
  11. 제9항에 있어서,According to clause 9,
    상기 피측정체는 회전축을 중심으로 회전하며,The object to be measured rotates around a rotation axis,
    상기 1차원 감지기의 장축은 상기 피측정체의 회전축과 수직 방향으로 배치되어 상기 피측정체가 회전함에 따라 상기 광원으로부터 발산된 광의 경로가 상기 감지기의 장축을 따라 변경되는, 구조체의 위치 센싱 장치.The long axis of the one-dimensional detector is arranged in a direction perpendicular to the rotation axis of the object to be measured, so that as the object to be measured rotates, the path of light emitted from the light source changes along the long axis of the detector.
  12. 미러를 포함하는 멤스 스캐너 소자;MEMS scanner element including a mirror;
    상기 멤스 스캐너 소자가 실장되는 제1 회로기판;A first circuit board on which the MEMS scanner element is mounted;
    상기 멤스 스캐너 소자의 미러의 후방으로 일정 간격 이격되게 배치되어 상기 미러의 후면으로 광을 발산하는 광원;a light source disposed at a predetermined distance behind the mirror of the MEMS scanner element and emitting light toward the rear of the mirror;
    상기 광원과 상기 미러 사이에 위치하여 상기 광원으로부터 발산된 광이 통과하는 렌즈;a lens located between the light source and the mirror through which light emitted from the light source passes;
    상기 렌즈를 통과한 후 상기 미러의 후면에서 반사되어 되돌아오는 광을 수광하는 감지기; 및a detector that receives light that passes through the lens and is then reflected from the back of the mirror and returned; and
    상기 광원과 상기 감지기가 실장되며, 상기 광원 및 상기 감지기와 각각 전기적으로 연결되는 제2 회로기판;을 포함하고,A second circuit board on which the light source and the sensor are mounted, and which is electrically connected to the light source and the sensor, respectively,
    상기 렌즈의 중심은 상기 광원의 발광 중심으로부터 이격되어 배치되는, 멤스 스캐너 패키지.A MEMS scanner package in which the center of the lens is arranged to be spaced apart from the luminous center of the light source.
  13. 제12항에 있어서,According to clause 12,
    상기 렌즈를 통과하는 상기 광의 주광선은 상기 렌즈의 중심으로부터 일정 거리 이격된 한쪽 부위를 통과하는, 멤스 스캐너 패키지.A MEMS scanner package in which the main ray of light passing through the lens passes through one area spaced a certain distance away from the center of the lens.
  14. 제13항에 있어서,According to clause 13,
    상기 광원과 상기 감지기는 상기 제2 회로기판의 수평면 상에 소정 간격 이격되어 나란히 배치된, 멤스 스캐너 패키지.A MEMS scanner package wherein the light source and the sensor are arranged side by side at a predetermined interval on the horizontal surface of the second circuit board.
  15. 제12항에 있어서,According to clause 12,
    상기 광원과 상기 렌즈의 간격을 일정하게 유지하도록 상기 광원과 상기 렌즈 사이에 배치되는 스페이서를 더 포함하는 멤스 스캐너 패키지.A MEMS scanner package further comprising a spacer disposed between the light source and the lens to maintain a constant distance between the light source and the lens.
  16. 피측정체;object to be measured;
    상기 피측정체의 후방으로 일정 간격 이격되게 배치되어 상기 피측정체의 후면으로 광을 발산하는 광원;a light source disposed at a predetermined interval behind the object to be measured and emitting light toward the rear of the object to be measured;
    상기 광원으로부터 발산되어 상기 피측정체의 후면에서 반사되어 되돌아오는 광을 수광하는 감지기; 및a detector that receives light emitted from the light source and reflected from the back of the object to be measured and returned; and
    상기 광원을 지지하는 제1 면과 상기 감지기를 지지하는 제2 면을 가지며, 상기 제1 면과 상기 제2 면은 서로를 향하도록 일정 각도로 경사진 일체화된 지지대;를 포함하고,An integrated support having a first surface supporting the light source and a second surface supporting the sensor, wherein the first surface and the second surface are inclined at a predetermined angle to face each other,
    상기 광원으로부터 발산되는 광은 상기 피측정체의 후면에 수직이 아닌 기울어진 각도로 입사되는, 구조체의 위치 센싱 장치.A position sensing device for a structure in which the light emitted from the light source is incident on the rear surface of the object to be measured at an inclined angle rather than perpendicular to the object to be measured.
  17. 제16항에 있어서,According to clause 16,
    상기 광원 및 상기 감지기와 각각 전기적으로 연결되는 연성 회로기판을 더 포함하는, 구조체의 위치 센싱 장치.A position sensing device for a structure, further comprising a flexible circuit board electrically connected to the light source and the sensor, respectively.
  18. 제17항에 있어서,According to clause 17,
    상기 피측정체는 회전축을 중심으로 회전하며,The object to be measured rotates around a rotation axis,
    상기 감지기는 적어도 1개의 1차원 감지기를 포함하고, 상기 1차원 감지기의 장축은 상기 피측정체의 회전축과 수직 방향으로 배치되어 상기 피측정체가 회전함에 따라 상기 광원으로부터 발산된 광의 경로가 상기 감지기의 장축을 따라 변경되는, 구조체의 위치 센싱 장치.The detector includes at least one one-dimensional detector, and the long axis of the one-dimensional detector is arranged in a direction perpendicular to the rotation axis of the object to be measured, so that as the object to be measured rotates, the path of light emitted from the light source is of the detector. A device for sensing the position of a structure that changes along the long axis.
  19. 미러를 포함하는 멤스 스캐너 소자;MEMS scanner element including a mirror;
    상기 멤스 스캐너 소자가 실장되는 회로기판;A circuit board on which the MEMS scanner element is mounted;
    상기 멤스 스캐너 소자의 미러의 후방으로 일정 간격 이격되게 배치되어 상기 미러의 후면으로 광을 발산하는 광원;a light source disposed at a predetermined distance behind the mirror of the MEMS scanner element and emitting light toward the rear of the mirror;
    상기 광원으로부터 발산되어 상기 미러의 후면에서 반사되어 되돌아오는 광을 수광하는 감지기;a detector that receives light emitted from the light source and reflected from the back of the mirror and returned;
    상기 광원을 지지하는 제1 면과 상기 위치 감지기를 지지하는 제2 면을 가지며, 상기 제1 면과 상기 제2 면은 서로를 향하도록 일정 각도로 경사진 일체화된 지지대;를 포함하고,An integrated support having a first surface supporting the light source and a second surface supporting the position sensor, wherein the first surface and the second surface are inclined at a predetermined angle to face each other,
    상기 광원으로부터 발산되는 광은 상기 미러의 후면에 수직이 아닌 기울어진 각도로 입사되는, 멤스 스캐너 패키지.A MEMS scanner package in which light emitted from the light source is incident on the back of the mirror at an inclined angle rather than perpendicular to the mirror.
PCT/KR2022/018596 2022-09-19 2022-11-23 Device for sensing position of structure and mems scanner package comprising same WO2024063203A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22944027.6A EP4372448A1 (en) 2022-09-19 2022-11-23 Device for sensing position of structure and mems scanner package comprising same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220117649 2022-09-19
KR10-2022-0117649 2022-09-19
KR10-2022-0142226 2022-10-31
KR1020220142226A KR20240133800A (en) 2022-09-19 2022-10-31 Structure Position Sensing Device And MEMS Scanner Package Including The Same

Publications (1)

Publication Number Publication Date
WO2024063203A1 true WO2024063203A1 (en) 2024-03-28

Family

ID=89072994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/018596 WO2024063203A1 (en) 2022-09-19 2022-11-23 Device for sensing position of structure and mems scanner package comprising same

Country Status (2)

Country Link
EP (1) EP4372448A1 (en)
WO (1) WO2024063203A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053742A1 (en) * 2001-04-25 2003-03-20 Olympus Optical Co., Ltd. Mirror angle detecting device, optical signal switching system, and optical signal switching method
KR20050109030A (en) * 2004-05-14 2005-11-17 후지쯔 가부시끼가이샤 Micro-mirror device
KR100682955B1 (en) * 2006-01-06 2007-02-15 삼성전자주식회사 Apparatus and method for evaluating driving characteristic of scanner
KR20100068953A (en) * 2008-12-15 2010-06-24 삼성전기주식회사 Apparatus and method for inspecting driving characteristic of scanner
US10324283B2 (en) 2016-06-24 2019-06-18 Stmicroelectronics Ltd Opening angle measurement of an oscillating MEMS mirror
KR20220097220A (en) * 2020-12-30 2022-07-07 (주)애니캐스팅 Light emitting device for LiDAR light source including plural channels having different beam angle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030053742A1 (en) * 2001-04-25 2003-03-20 Olympus Optical Co., Ltd. Mirror angle detecting device, optical signal switching system, and optical signal switching method
KR20050109030A (en) * 2004-05-14 2005-11-17 후지쯔 가부시끼가이샤 Micro-mirror device
KR100682955B1 (en) * 2006-01-06 2007-02-15 삼성전자주식회사 Apparatus and method for evaluating driving characteristic of scanner
KR20100068953A (en) * 2008-12-15 2010-06-24 삼성전기주식회사 Apparatus and method for inspecting driving characteristic of scanner
US10324283B2 (en) 2016-06-24 2019-06-18 Stmicroelectronics Ltd Opening angle measurement of an oscillating MEMS mirror
KR20220097220A (en) * 2020-12-30 2022-07-07 (주)애니캐스팅 Light emitting device for LiDAR light source including plural channels having different beam angle

Also Published As

Publication number Publication date
EP4372448A1 (en) 2024-05-22

Similar Documents

Publication Publication Date Title
WO2018124413A1 (en) Integrated light transmission/reception optical system module and scanning lidar having same
WO2016175395A2 (en) Multi-channel lidar scanner optical system using mirror rotation manner
WO2016153233A1 (en) Lidar device
WO2017073982A1 (en) Three-dimensional scanning system
US4518855A (en) Method and apparatus for statically aligning shafts and monitoring shaft alignment
US8427657B2 (en) Device for optical imaging, tracking, and position measurement with a scanning MEMS mirror
WO2018212395A1 (en) Lidar device and lidar system including the same
US8462358B2 (en) Device for detecting movement and forces
WO2018056516A1 (en) Optical-system module and scanning lidar including same
WO2020149614A1 (en) Light detection and ranging device
JPH09319501A (en) Coordinate detector
WO2019022549A1 (en) Lidar device
WO2013058422A1 (en) Distance measuring device
CN114812392B (en) Laser six-degree-of-freedom motion error synchronous measurement system
US5111056A (en) Optical measurement system determination of an object profile
WO2024063203A1 (en) Device for sensing position of structure and mems scanner package comprising same
WO2013094791A1 (en) Distance measurement apparatus
WO2021060919A1 (en) Lidar optical device and scanning method therefor
AU2003273489A1 (en) Device for detecting optical and optoelectronic objects
CN101988989A (en) Light scanning unit and electrophotographic image forming apparatus using the same
CN101118314A (en) Light path system detecting touch article coordinate using MEMS microscope
US6384913B1 (en) Active compensator damping in laser transmitters
EP0553698A1 (en) Optical scanning device
KR20240133800A (en) Structure Position Sensing Device And MEMS Scanner Package Including The Same
WO2020122278A1 (en) Mems scanner

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022944027

Country of ref document: EP

Effective date: 20231204