WO2017073982A1 - Three-dimensional scanning system - Google Patents

Three-dimensional scanning system Download PDF

Info

Publication number
WO2017073982A1
WO2017073982A1 PCT/KR2016/012015 KR2016012015W WO2017073982A1 WO 2017073982 A1 WO2017073982 A1 WO 2017073982A1 KR 2016012015 W KR2016012015 W KR 2016012015W WO 2017073982 A1 WO2017073982 A1 WO 2017073982A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflected
optical
point output
mirror
Prior art date
Application number
PCT/KR2016/012015
Other languages
French (fr)
Korean (ko)
Inventor
백승호
서형근
조국
박병윤
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150151629A external-priority patent/KR101744610B1/en
Priority claimed from KR1020150170694A external-priority patent/KR101884781B1/en
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2017073982A1 publication Critical patent/WO2017073982A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems

Definitions

  • the present invention relates to a three-dimensional scanning system using a pulsed laser light, and more particularly, a scanning mechanism or a curved surface or planar mirror having a structure in which the curved surface or planar mirror quickly resonates at a predetermined angle.
  • the transmission and reception optical system is configured so that the optical axis of the output light emitted from the optical transmission module and the optical axis of the reflected light received by the optical reception module coincide with each other.
  • the arrangement of the optical transmission module and the optical reception module for scanning has the advantage that the device configuration can be compactly implemented, thereby significantly reducing the overall weight of the device and enabling three-dimensional scanning to realize a fast three-dimensional image acquisition speed. It's about the system.
  • the three-dimensional image sensor called LIDAR (Light Detection And Ranging) or Radar (LADAR-Laser Detection And Ranging), emits pulsed laser light toward the target and then returns the light energy that is reflected back to the target.
  • LIDAR Light Detection And Ranging
  • Radar Radar
  • the system can calculate distances to targets and moving speeds of targets by capturing them and converting them into electrical signals.
  • lidar systems are widely applied in various fields such as sensors for detecting obstacles in front of robots and unmanned vehicles, radar guns for speed measurement, aviation geo-mapping devices, three-dimensional ground surveys, and underwater scanning.
  • the lidar system is a driving assistance application that allows the driver to automatically warn the driver or to automatically adjust the speed of the vehicle in the event of a dangerous situation, such as an obstacle in front or side, or a tractor without a driver.
  • the field of application is expanding with automatic driving devices.
  • the three-dimensional scanning system is a scanning system for obtaining a three-dimensional image by calculating the distance of the target by receiving the reflected light reflected from the target after emitting the pulsed light, the light source device for generating pulsed laser light, and the pulsed laser
  • a light transmitting and receiving means comprising a light transmitting and receiving module for emitting light and receiving reflected light of the emitted pulsed laser light, a rotating driving device for rotating and driving the optical transmitting and receiving means, and controlling the light source device, the optical transmitting and receiving means and the rotating driving device.
  • the optical transmission and reception means comprises two or more optical transmission and reception modules, and is configured such that at least one or more light emission angles of the two or more optical transmission and reception modules are different from other optical transmission and reception modules.
  • the three-dimensional scanning system as described above has a structure that rotates by mounting both the pulse laser source module and the optical transmission and reception means on the upper part of the rotary drive device, so that a three-dimensional image having a wide angle of view of 360 ° in a multichannel configuration It has the advantage that it can be obtained, but the rotation of the large capacity is required because all components such as optical receiving module, optical component, signal processing module, pulse laser source module and power supply and signal transmission module located in the rotating part of the 3D scanning system must be rotated. There is a need for a motor, which in turn has the problem of increasing the weight and volume of the scanning system.
  • a source of laser pulsed light used in order to obtain a high level of scanning information at a distance of several tens of meters or hundreds of meters using a solid line laser, a source of laser pulsed light used must be several hundred watts to several thousand watts.
  • a light source device which is a laser source
  • a large amount of power consumed Accordingly, there are many disadvantages in designing a scanning sensor due to a large amount of heat generated.
  • optical axis of the output light emitted from the optical transmission module and the optical axis of the reflected light received by the optical reception module do not coincide with each other, objects located in close proximity within a few m are not detected, and the device components increase and the volume becomes large. there was.
  • Patent Application Publication No. 104644641 (2004-04-08), filed in Germany, discloses' Optoelectronic position monitoring system for road vehicle has two pulsed lasers, sensor and mechanical scanner with mirror at 45 degrees on shaft with calibration disk driven by is disclosed for the electric motor '.
  • This publication discloses an electro-optic sensor using the same optical deflection means in the form of a rotating planar mirror and having at least one light receiving means at the center and a plurality of light transmitting means at both ends. .
  • the electro-optical sensor disclosed in the published patent is configured to obtain a multi-channel distance image signal by using one plane mirror, but the light emitting axis and the light receiving axis are separated so that the object of the near distance cannot be detected.
  • There is a limit in expanding the number of channels because of using a plurality of spatially separated optical transmission means.
  • An object of the present invention for solving the problems according to the prior art, the scanning mechanism or the mirror rotation of the resonance type so that the optical axis of the output light emitted from the optical transmission module and the optical axis of the reflected light received by the optical reception module are in the same direction
  • the arrangement of the optical transmission module and the optical reception module to steer transmit / receive pulse laser light by using the scanning mechanism of the method enables the device configuration to be simplified and realized in a compact manner, thereby dramatically reducing the weight of the entire device.
  • the present invention provides a three-dimensional scanning system that can reduce manufacturing costs and can quickly realize three-dimensional image acquisition speed and improve precision.
  • another object of the present invention after receiving the multi-point output light in the form of a dot line (not a solid line), the reflected light reflected from the target and returned to the optical detector module of the line array type 3D scanning system to obtain high level image by increasing the density of light received per unit scanning pixel while using low output light source by reducing output quantity of optical transmission module by forming 3D point cloud data image In providing.
  • the three-dimensional scanning system of the present invention for solving the above technical problem, a light splitting unit for dividing the incident light into a multi-point output light, and a light scanning unit for scanning the multi-point output light divided by the light splitting unit in a predetermined viewing angle form
  • Optical transmission module comprising; An optical receiving module for receiving reflected light reflected from a target after being emitted from the optical transmitting module; And a controller configured to generate an image of a target based on the reflected light received by the light receiving module.
  • the light splitter may be configured to split the disadvantaged incident light into a multi-point output light having a dot line spread at a predetermined angle.
  • the optical scanning unit may be configured to reflect the dot line type multi-point output light in a direction perpendicular to the dot line type multi-point output light at a predetermined range angle.
  • the optical scanning unit may be configured as a resonant mirror that can repeatedly scan a predetermined angle quickly.
  • the light splitter may be configured to split the disadvantaged incident light into multi-point output light through a diffractive optical element having a diffraction pattern formed thereon.
  • the light splitter comprises: a collimator for aligning the optical axis of the disadvantaged incident light provided from the light source; An incident light reflecting member configured to switch a path of incident light by the collimator, the optical axis being aligned; And a diffraction optical element disposed on a path of the disadvantaged incident light reflected by the incident light reflecting member and splitting the disadvantaged incident light into a multi-point output light in the form of a dot line as it passes through the disadvantaged incident light.
  • the optical scanning part is disposed on a path of the multi-point output light in the form of a dot line divided by the diffractive optical element to angle the multi-point output light in the form of a dot line in a direction perpendicular to the multi-point output light in the form of a dot line. It may be configured to include; a resonant mirror reflecting to.
  • the reflected light emitted from the optical transmitting module and reflected from the target and received by the optical receiving module is reflected by the resonant mirror and the path is primarily switched, and reflected light reflected by the resonant mirror The path is secondarily switched by the reflected light reflecting member disposed on the path of the light receiving module.
  • the optical scanning unit may be composed of a rotating mirror that rotates to cover the predetermined viewing angle described above.
  • the rotatable mirror may be provided with a planar mirror on both surfaces, or a curved mirror bent in the rotational direction on both surfaces.
  • the light splitter comprises: a collimator for aligning the optical axis of the disadvantaged incident light provided from the light source; An incident light reflecting member configured to switch a path of incident light by the collimator, the optical axis being aligned; And a diffraction optical element disposed on a path of the disadvantaged incident light reflected by the incident light reflecting member and splitting the disadvantaged incident light into a multi-point output light in the form of a dot line as it passes through the disadvantaged incident light.
  • the optical scanning part is disposed on a path of the multi-point output light in the form of a dot line divided by the diffractive optical element to angle the multi-point output light in the form of a dot line in a direction perpendicular to the multi-point output light in the form of a dot line. It may be configured to include; a rotating mirror to reflect to.
  • the reflected light emitted from the optical transmitting module and reflected from the target and received by the optical receiving module is reflected by the rotating mirror, and the path is primarily switched, and the reflected light reflected by the rotating mirror The path is secondarily switched by the reflected light reflecting member disposed on the path of the light receiving module.
  • a passage hole for passing the multi-point output light in the form of a dot line divided by the diffractive optical element may be formed.
  • the light splitting unit, the light conversion housing is formed in the L-shape formed with the A-shaped through-holes; One end is provided at one end of the light conversion housing, the mirror holder formed with an inclined portion at the other end; wherein the collimator is provided at the other end of the light conversion housing, the incident light reflecting member is the light conversion It is provided in the corner portion of the L-shaped passage hole formed inside the housing, the reflective light reflecting member may be provided on the inclined portion of the mirror holder.
  • the device configuration is simplified by arranging the optical transmission module and the optical reception module so that the optical axis of the output light emitted from the optical transmission module and the optical axis of the reflected light received by the optical reception module are in the same direction. It is advantageous in that it can be compactly implemented, and a fast three-dimensional image of several tens of Hz or more can be obtained by using a scanner consisting of a mirror that resonates a predetermined angle at high speed or a plane or curved reflection mirror that rotates at high speed. In addition to this, it is possible to significantly reduce the weight of the entire device and to minimize the size.
  • the reflected light reflected from the target is detected by a light receiving module, which is a line array type optical detector, to detect 3D point cloud data.
  • the output of the light source may be reduced to obtain a distance image signal having a high density of light received per unit scanning pixel in multiple channels while using low output optical power.
  • a simple method of changing the diffraction pattern of the diffractive optical element is to select various number of dot lines, such as 8 dot lines, 16 dot lines, 32 dot lines, as well as disadvantages. Since it can be set to the degree, the optical spreading angle can be easily changed by making it suitable for the vertical precision requirements of the 3D scanning sensor.
  • FIG. 1 is a perspective view showing a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 3 is a partially exploded perspective view showing a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 4 is a view showing a path in which light is emitted through a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 5 is a view showing a path through which light is received through a three-dimensional scanning system according to an embodiment of the present invention.
  • FIG. 6 illustrates a structure of a DOE mask pattern (15 mm ⁇ 15 mm size).
  • FIG. 9 is a diagram illustrating the distribution of light for each dot of a multi-point dot line.
  • FIG. 10 is a perspective view showing a three-dimensional scanning system according to another embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a three-dimensional scanning system according to another embodiment of the present invention.
  • FIG. 12 is an exploded perspective view illustrating a light scanning unit of a 3D scanning system according to another exemplary embodiment of the present invention.
  • FIG. 13 is an exploded perspective view of a portion of a three-dimensional scanning system according to another embodiment of the present invention.
  • FIG. 14 is a view showing a path through which light is emitted through a three-dimensional scanning system according to another embodiment of the present invention.
  • 15 is a view showing a path through which light is received through a three-dimensional scanning system according to another embodiment of the present invention.
  • 16 is a view showing another embodiment of a three-dimensional scanning system according to another embodiment of the present invention.
  • the terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • a three-dimensional scanning system is a system for obtaining a three-dimensional image by calculating the distance of the target by receiving the reflected light reflected from the target after emitting the pulsed laser light in a predetermined viewing angle shape,
  • the optical transmission module 100 includes the optical transmission module 100, the optical reception module 200, and the controller 300.
  • the three-dimensional scanning system of the present embodiment is a driving assistance application or a tractor running without a driver, which enables the driver to automatically warn the driver or to automatically adjust the speed of the vehicle when a dangerous situation occurs due to an obstacle in front or side. It can be applied to various fields such as automatic driving device.
  • optical transmission module 100 First, the optical transmission module 100 will be described.
  • the optical transmission module 100 emits pulsed laser light for three-dimensional scanning. As shown in FIG. 2, the optical transmission module 100 includes a light splitting unit 110 and a light scanning unit 120.
  • the light splitter 110 divides the disadvantaged incident light L1 (pulse laser light) provided from a light source (not shown), and, for example, the optical axis of the disadvantaged incident light L1 provided from a light source such as a laser diode. And then divide into multi-point output light L2.
  • a light source not shown
  • the light splitter 110 switches the path of the collimator 111 for aligning the optical axis of the defect incident light L1 provided from the light source, and the defect incident light L1 with the optical axis aligned by the collimator 111.
  • the incident light reflecting member 112 which is disposed on the path of the disadvantaged incident light L1 reflected by the incident light reflecting member 112, passes through the disadvantaged incident light L1, and outputs the shortcoming incident light L1.
  • a diffractive optical element 113 for dividing into light L2.
  • the collimator 111, the incident light reflecting member 112, the diffraction optical element 113 can be arranged in a relationship as described above, the light splitting portion 110 is formed in a letter 'B' shaped inside
  • the light conversion housing 115 having a through hole 115h formed therein, and may further include a mirror holder 116 having one end disposed at one end of the light conversion housing 115 and having an inclined portion at the other end thereof.
  • the holder housings m1 and m2 for mounting the optical element 113 and the fixing frame m3 for mounting the reflected light reflecting member 210 to the inclined portion of the mirror holder 116 may be further provided.
  • the collimator 111 provided at the other end of the light conversion housing 115 is provided with a disadvantage of the incident light (L1) provided from the light source to align the optical axis and transmit to the incident light reflecting member 112, the light
  • the incident light reflecting member 112 provided at the corner of the L-shaped through hole 115h formed inside the switching housing 115 reflects the incident light L1 at about 90 ° toward the diffractive optical element 113.
  • the diffraction optical element 113 splits the shortcoming incident light L1 into a multi-point output light L2 to face the optical scanning unit 120 through a slit-shaped hole 116h formed in the mirror holder 116. Will be sent to.
  • the diffractive optical element 113 is a filter for diffraction of the light is formed by the diffraction pattern is formed, the disadvantage incident light (L1) transmitted from the collimator 111 at a predetermined angle
  • the multi-point output light L2 in the form of unfolded dot lines is divided.
  • the diffractive optical element 113 may etch a defect point L1 of a multi-point output light by etching a diffractive optical element (DOE) mask pattern through a photolithography manufacturing process on a quartz or fused silica wafer material. It can be configured to divide into (L2), as shown in Figures 7 and 8 by applying a variety of diffraction patterns, as shown in Figure 7 and 8, the incident light (L1) incident to the diffraction optical element 113 is 8 dots
  • the multi-point output light L2 of various numbers of dot lines such as lines, 16 dot lines, and 32 dot lines, as well as disadvantages, can easily adjust the spread angle divided into the dot lines from the incident light L1 to several tens of degrees.
  • the optical scanning unit 120 scans the multi-point output light L2 in the form of a dot line divided by the light splitter 110 in a predetermined viewing angle shape, and the multi-point output light L2 in the dot line form. Is configured to reflect the multi-point output light L2 in the form of a dot line in a direction perpendicular to the predetermined range angle (about 60 ° to 90 °), thereby scanning the range of the field of view (FOV). To be done.
  • the optical scanning part 120 may be disposed to be positioned on a traveling path of the multi-point output light L2 divided into a dot line through the diffractive optical element 113.
  • the dot line form is preferably composed of a resonant mirror 114 which can be scanned at a predetermined viewing angle shape as it is driven at a predetermined angular velocity to reflect the multi-point output light L2 having a predetermined range angle.
  • the multi-point output light L2 can be scanned by reflecting at a predetermined range angle, it can be made in various configurations such as a general scan mirror.
  • the short-point output in the form of a dot line after aligning the optical axis of the incident light (L1) provided from the light source By dividing into the light L2, it can scan in the form of a predetermined viewing angle.
  • the multi-point output light L2 in the form of a dot line rather than a solid line is used for three-dimensional scanning, thereby increasing the density of the received light per unit scanning pixel while using a low power laser light output.
  • the level of image can be obtained, through which the weight of the optical transmission module 100 can be significantly reduced, as well as the structure can be simplified.
  • optical receiving module 200 and the controller 300 will be described.
  • the light receiving module 200 is a part for receiving the reflected light L3 reflected from the target after being emitted from the light transmitting module 100, and receives the reflected light L3 to be transmitted to the controller 300 side. It may be configured to include a lens 220 and a receiver 230 for receiving the reflected light (L3).
  • the reflected light L3 emitted from the optical transmission module 100 and reflected from the target and received by the optical reception module 200 is reflected by the resonant mirror 114, and the path is primarily switched.
  • the path is secondarily switched by the reflected light reflecting member 210 disposed on the path of the reflected light L3 reflected by the resonant mirror 114, such that the lens 220 and the cylinder of the light receiving module 200 are changed. It may be received by the receiver 230 through the lens lens 225, the reflected light reflecting member 210 is provided on the inclined portion of the mirror holder 116, the reflected light (L3) is a light receiving module 200 Will be reflected to be received.
  • the lens 220 is an aspheric lens
  • the cylindrical lens 225 is a lens whose surface is formed in a circumferential side shape, for example, by the resonant mirror 114.
  • the reflected light L3 received by the 230 is corrected to shake in the left and right directions so that the reflected light L3 may be received at a specific position of the receiver 230.
  • a slit type through hole 210h for passing the multi-point output light (L2) of the dot line divided by the diffraction optical element 113 can be formed.
  • the optical receiving module 200 According to the configuration of the optical receiving module 200 as described above, and receives the reflected light (L3) of which the path is switched by the resonant mirror 114 and the reflected light reflecting member 210, to the received reflected light (L3) Information is transmitted to the controller 300, and the controller 300 generates an image of the target based on the reflected light L3 received by the light receiving module 200.
  • the lens 220 or the receiver 230 may be supplemented by applying an amplification circuit.
  • the vertical axis represents light quantity and the horizontal axis represents length of dot line.
  • the disadvantage of incident light L1 using the diffractive optical element 113 is performed by dividing the multi-point output light L2 in the form of a dot line rather than a solid line to emit 3D scans per unit scanning pixel while using a low output laser output light.
  • 3D scanning is performed by dividing the multi-point output light L2 in the form of a dot line rather than a solid line to emit 3D scans per unit scanning pixel while using a low output laser output light.
  • a three-dimensional scanning system rotates and scans a pulsed laser light to cover a predetermined viewing angle range, and then receives reflected light reflected from a target to calculate a distance of the three-dimensional image.
  • the optical transmission module 100, the optical reception module 200 and the controller 300 are configured.
  • the three-dimensional scanning system of the present embodiment is a driving assistance application or a tractor running without a driver, which enables the driver to automatically warn the driver or to automatically adjust the speed of the vehicle when a dangerous situation occurs due to an obstacle in front or side. It can be applied to various fields such as automatic driving device.
  • optical transmission module 100 First, the optical transmission module 100 will be described.
  • the optical transmitter module 100 emits pulsed laser light for three-dimensional scanning. As shown in FIG. 11, the optical transmitter module 100 includes a light splitter 110 and a light scanning unit 120.
  • the light splitter 110 divides the disadvantaged incident light L1 (pulse laser light) provided from a light source (not shown), and, for example, the optical axis of the disadvantaged incident light L1 provided from a light source such as a laser diode. And then divide into multi-point output light L2.
  • a light source not shown
  • the light splitter 110 switches the path of the collimator 111 for aligning the optical axis of the defect incident light L1 provided from the light source, and the defect incident light L1 with the optical axis aligned by the collimator 111.
  • the incident light reflecting member 112 which is disposed on the path of the disadvantaged incident light L1 reflected by the incident light reflecting member 112, passes through the disadvantaged incident light L1, and outputs the shortcoming incident light L1.
  • a diffractive optical element 113 for dividing into light L2.
  • the collimator 111, the incident light reflecting member 112, the diffraction optical element 113 can be arranged in a relationship as described above, the light splitting portion 110 is formed in a letter 'B' shaped inside
  • the light conversion housing 115 having a through hole 115h formed therein, and may further include a mirror holder 116 having one end disposed at one end of the light conversion housing 115 and having an inclined portion at the other end thereof.
  • the holder housings m1 and m2 for mounting the optical element 113 and the fixing frame m3 for mounting the reflected light reflecting member 210 to the inclined portion of the mirror holder 116 may be further provided.
  • the collimator 111 provided at the other end of the light conversion housing 115 is provided with a disadvantage of the incident light (L1) provided from the light source to align the optical axis and transmit to the incident light reflecting member 112, the light
  • the incident light reflecting member 112 provided at the corner of the L-shaped through hole 115h formed inside the switching housing 115 reflects the incident light L1 at about 90 ° toward the diffractive optical element 113.
  • the diffraction optical element 113 splits the shortcoming incident light L1 into a multi-point output light L2 to face the optical scanning unit 120 through a slit-shaped hole 116h formed in the mirror holder 116. Will be sent to.
  • the diffractive optical element 113 is a filter for diffraction of the light is formed by the diffraction pattern is formed, the disadvantage incident light (L1) transmitted from the collimator 111 at a predetermined angle
  • the multi-point output light L2 in the form of unfolded dot lines is divided.
  • the diffractive optical element 113 etches a defect point incident light L1 by multi-point output light by etching a diffractive optical element (DOE) mask pattern through a photolithography providing crystal on a quartz or fused silica wafer material. It can be configured to divide into (L2), as shown in Figures 7 and 8 by applying a variety of diffraction patterns, as shown in Figs.
  • the optical scanning unit 120 rotates and scans the multi-point output light L2 in the form of a dot line divided vertically by the light splitter 110 to cover a predetermined viewing angle range, and the multi-point in the form of the dot line. Reflects while rotating the dot line shaped multi-point output light L2 in a direction perpendicular to the output light L2 so as to cover a predetermined viewing angle range ( ⁇ ° range, approximately 60 ° to 90 °) in FIG. 14. It is configured to allow scanning of at least a range of the field of view (FOV).
  • FOV field of view
  • the optical scanning part 120 may be disposed to pass on the path of the multi-point output light L2 divided into a dot line through the diffraction optical element 113, and the It comprises a rotating mirror 114 ⁇ of a planar structure to reflect the dot line-shaped multi-point output light (L2) while rotating, the housing 121a, 121b for mounting the rotary mirror 114 ⁇ And a driving motor 122 for rotating the rotatable mirror 114 'in one direction as the housings 121a and 121b are rotated.
  • the rotating mirror 114 ⁇ is formed twice so that the two sides are symmetrically reflective surface with respect to the axis of rotation of the drive motor 122, so as to transmit and receive light in the same direction twice in one rotation two times faster speed It can be produced to obtain a three-dimensional image.
  • the light L2 is vertically divided and rotated to reflect the light
  • the multi-point output light L2 in the form of a dot line rather than a solid line for 3D scanning, a high level of reflected light is obtained by increasing the density of light received per unit scanning pixel while using a low power light source.
  • a signal can be obtained, through which the weight of the optical transmission module 100 can be drastically reduced, as well as the structure can be simplified.
  • optical receiving module 200 and the controller 300 will be described.
  • the light receiving module 200 is a part for receiving the reflected light L3 reflected from the target after being emitted from the light transmitting module 100, and receives the reflected light L3 to be transmitted to the controller 300 side.
  • a lens 220 for receiving the reflected light L3 and a photo detector 230 may be included.
  • the reflected light L3 emitted from the optical transmitting module 100 and reflected from the target and received by the optical receiving module 200 is reflected by the rotatable mirror 114 ′, and the path is primarily switched.
  • the path is secondarily switched by the reflected light reflecting member 210 disposed on the path of the reflected light L3 reflected by the rotatable mirror 114 ′ so that the lens 220 of the light receiving module 200 is changed.
  • the light detecting element 230 through the cylindrical lens 225
  • the reflected light reflecting member 210 is provided on the inclined portion of the mirror holder 116, the reflected light (L3) is a light receiving module Reflected to be received at (200).
  • the lens 220 is an aspheric lens
  • the cylindrical lens 225 is a lens whose surface is formed in a circumferential side shape, for example, the optical sword by the rotatable mirror 114 ′.
  • the reflected light L3 received by the output device 230 is collected in a straight line shape so that the reflected light L3 may be collected in the light detection area of the photodetector 230.
  • a slit type through hole 210h for passing the multi-point output light (L2) of the dot line divided by the diffraction optical element 113 can be formed.
  • the surface of the reflective light reflecting member 210 may be formed in the shape of a curved surface having a curvature in the same direction as the through hole 210h of the slit type, and through this shape to form a small pass hole 210h. While forming, it is possible to maximize the amount of light received by the photodetector 230.
  • the reflected light (L3) is converted to the path by the rotating mirror 114 ⁇ and the reflected light reflecting member 210, the received reflected light (L3) Information on the controller 300 is transmitted to the controller 300, and the controller 300 generates an image of the target based on the reflected light L3 received by the light receiving module 200.
  • the output signal of the lens 220 or the photodetector 230 may be compensated by applying a differential amplifier circuit.
  • the vertical axis represents light quantity and the horizontal axis represents state positions of vertical dot lines.
  • the disadvantage of incident light L1 using the diffractive optical element 113 is performed by dividing the multi-point output light L2 in the form of a dot line instead of a solid line to emit 3D scans.
  • 3D scanning is performed by dividing the multi-point output light L2 in the form of a dot line instead of a solid line to emit 3D scans.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention relates to a three-dimensional scanning system capable of obtaining a high-level image signal by increasing the density of light received per unit scanning pixel while using a low output light source by reducing the output of a light source of a light receiving module as a multi-point output light in the form of a dotted line and not of a solid line is emitted and reflected light reflected from a target is detected by means of a light receiving module, which is an optical detector in the form of a line array, to thereby form a three-dimensional cloud data image. To this end, the three-dimensional scanning system according to the present invention comprises: a light transmission module including a light splitting part for splitting a single point incident light into multi-point output light and an optical scanning part for scanning the multi-point output light split by the light splitting part into a predetermined viewing angle; a light receiving module for receiving reflected light reflected from a target after being emitted from the optical transmission module; and a controller for generating an image of the target on the basis of the reflected light received by the light receiving module.

Description

3차원 스캐닝 시스템3D scanning system
본 발명은 펄스 레이저광을 이용한 3차원 스캐닝 시스템에 관한 것으로서, 더욱 상세하게는, 곡면 또는 평면형태의 미러가 소정의 각도로 빠르게 공진하는 구조의 스캐닝 메커니즘이나 곡면 또는 평면형태의 미러가 일정한 속도로 빠르게 일방향으로 회전하는 방식의 스캐닝 메커니즘을 사용하여 광송신모듈에서 방출되는 출력광의 광축과 광수신모듈로 수신되는 반사광의 광축이 서로 일치되도록 송수신 광학계를 구성하고 송수신 펄스 레이저 광을 소정의 각도로 빠르게 스캐닝 하도록 광송신모듈과 광수신모듈을 배치 구성함에 따라 장치 구성을 콤팩트하게 구현할 수 있는 장점이 있으며, 이를 통해 장치 전체의 무게를 획기적으로 줄이고, 빠른 3차원 영상 획득 속도를 구현할 수 있는 3차원 스캐닝 시스템에 관한 것이다. The present invention relates to a three-dimensional scanning system using a pulsed laser light, and more particularly, a scanning mechanism or a curved surface or planar mirror having a structure in which the curved surface or planar mirror quickly resonates at a predetermined angle. Using a scanning mechanism that rotates quickly in one direction, the transmission and reception optical system is configured so that the optical axis of the output light emitted from the optical transmission module and the optical axis of the reflected light received by the optical reception module coincide with each other. The arrangement of the optical transmission module and the optical reception module for scanning has the advantage that the device configuration can be compactly implemented, thereby significantly reducing the overall weight of the device and enabling three-dimensional scanning to realize a fast three-dimensional image acquisition speed. It's about the system.
라이다(LIDAR - Light Detection And Ranging) 또는 레이다(LADAR - Laser Detection And Ranging)로 불리는 3차원 영상센서는 목표물을 향해 펄스레이저광를 방출한 후 목표물에 반사되어 돌아오는 빛 에너지를 광 수신소자(element)를 사용하여 포착하고 이를 전기적 신호로 변환함으로써, 목표물까지의 거리나 목표물의 이동속도 등을 산출할 수 있는 시스템이다. The three-dimensional image sensor, called LIDAR (Light Detection And Ranging) or Radar (LADAR-Laser Detection And Ranging), emits pulsed laser light toward the target and then returns the light energy that is reflected back to the target. The system can calculate distances to targets and moving speeds of targets by capturing them and converting them into electrical signals.
이러한 라이다 시스템은 로봇 및 무인자동차의 전방 장애물 검출용 센서, 속도측정용 레이더 건, 항공 지오-맵핑장치, 3차원 지상조사, 수중 스캐닝 등 다양한 분야에서 널리 적용되고 있다. Such lidar systems are widely applied in various fields such as sensors for detecting obstacles in front of robots and unmanned vehicles, radar guns for speed measurement, aviation geo-mapping devices, three-dimensional ground surveys, and underwater scanning.
최근, 라이다 시스템은 전방 또는 측방의 장애물 등에 의한 위험 상황이 발생할 경우 운전자에게 경고하거나 자동차의 속도를 조절하는 조치를 자동적으로 수행할 수 있게 하는 운전 보조용 애플리케이션이나, 운전자 없이 운행하는 트랙터와 같은 자동 운전장치로 그 적용 분야가 확대되고 있다. Recently, the lidar system is a driving assistance application that allows the driver to automatically warn the driver or to automatically adjust the speed of the vehicle in the event of a dangerous situation, such as an obstacle in front or side, or a tractor without a driver. The field of application is expanding with automatic driving devices.
상술한 바와 같은 라이다 시스템의 일예로서, 본 출원인이 출원하여 등록받은 등록특허 제10-1357051호에 '3차원 스캐닝 시스템 및 이를 이용한 3차원 영상획득방법'이 개시된 바 있다. As an example of the lidar system as described above, the 'three-dimensional scanning system and a three-dimensional image acquisition method using the same' has been disclosed in the registered patent No. 10-1357051 filed by the applicant.
상기 3차원 스캐닝 시스템은, 펄스광을 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물의 거리를 산출하여 3차원 영상을 획득하는 스캐닝 시스템으로, 펄스레이저광을 생성하는 광원장치와, 상기 펄스레이저광을 방출하고 방출된 펄스레이저광의 반사광을 수신하는 광송수신모듈을 포함하는 광송수신수단와, 상기 광송수신수단를 회전구동시키는 회전구동장치와, 상기 광원장치, 광송수신수단 및 회전구동장치를 제어하는 제어장치를 포함하고, 상기 광송수신수단는 2 이상의 광송수신모듈로 이루어지고, 상기 2 이상의 광송수신모듈 중 적어도 하나 이상의 광 방출각도가 다른 광송수신모듈과 상이하도록 구성된다. The three-dimensional scanning system is a scanning system for obtaining a three-dimensional image by calculating the distance of the target by receiving the reflected light reflected from the target after emitting the pulsed light, the light source device for generating pulsed laser light, and the pulsed laser A light transmitting and receiving means comprising a light transmitting and receiving module for emitting light and receiving reflected light of the emitted pulsed laser light, a rotating driving device for rotating and driving the optical transmitting and receiving means, and controlling the light source device, the optical transmitting and receiving means and the rotating driving device. And an apparatus, wherein the optical transmission and reception means comprises two or more optical transmission and reception modules, and is configured such that at least one or more light emission angles of the two or more optical transmission and reception modules are different from other optical transmission and reception modules.
그런데, 상술한 바와 같은 상기 3차원 스캐닝 시스템은, 회전구동장치 상부에 펄스레이저 소스모듈과 광송수신수단을 모두 장착하여 회전시키는 구조로 되어 있어 다채널 구성으로 360°의 넓은 화각의 3차원 영상을 얻을 수 있다는 장점이 있으나, 3차원 스캐닝시스템의 회전부에 위치한 광수신 모듈, 광학계 부품, 신호처리 모듈, 펄스레이저 소스모듈과 전원공급 및 신호전송모듈 등 모든 구성부품들을 회전시켜야 하기 때문에 용량이 큰 회전모터가 필요하게 되고, 이는 결과적으로 스캐닝 시스템의 무게와 부피를 증가시키는 문제점이 있었다. However, the three-dimensional scanning system as described above has a structure that rotates by mounting both the pulse laser source module and the optical transmission and reception means on the upper part of the rotary drive device, so that a three-dimensional image having a wide angle of view of 360 ° in a multichannel configuration It has the advantage that it can be obtained, but the rotation of the large capacity is required because all components such as optical receiving module, optical component, signal processing module, pulse laser source module and power supply and signal transmission module located in the rotating part of the 3D scanning system must be rotated. There is a need for a motor, which in turn has the problem of increasing the weight and volume of the scanning system.
또한, 실선의 라인 레이저를 사용하여 조사거리가 수십 m 또는 수백 m 거리에서 높은 수준의 스캐닝 정보를 얻기 위해서는 사용하는 레이저 펄스광의 소스를 수백 와트에서 수천 와트 이상인 것을 사용하여야 하며, 이와 같이 높은 출력의 레이저 광을 생성하기 위해서는 레이저 소스인 광원장치의 크기와 무게가 커지는 문제점 및 소모되는 전원의 양의 많은 문제점이 있으며, 이로 인한 발열량도 많아 스캐닝 센서를 설계하는데 있어서 많은 제약이 따르는 단점이 있었다. In addition, in order to obtain a high level of scanning information at a distance of several tens of meters or hundreds of meters using a solid line laser, a source of laser pulsed light used must be several hundred watts to several thousand watts. In order to generate laser light, there are many problems such as an increase in size and weight of a light source device, which is a laser source, and a large amount of power consumed. Accordingly, there are many disadvantages in designing a scanning sensor due to a large amount of heat generated.
또한, 광송신모듈에서 방출되는 출력광의 광축과 광수신모듈로 수신되는 반사광의 광축이 서로 일치되지 않아 수 m이내의 근접거리에 위치한 물체가 검출되지 않고 장치 구성요소가 증가햐여 부피가 커지는 문제점이 있었다. In addition, since the optical axis of the output light emitted from the optical transmission module and the optical axis of the reflected light received by the optical reception module do not coincide with each other, objects located in close proximity within a few m are not detected, and the device components increase and the volume becomes large. there was.
한편, 독일에서 출원되어 공개된 공개특허 제10244641호(2004-04-08)에는 'Optoelectronic position monitoring system for road vehicle has two pulsed lasers, sensor and mechanical scanner with mirror at 45 degrees on shaft with calibration disk driven by electric motor'에 대해 개시되어 있다. Meanwhile, Patent Application Publication No. 104644641 (2004-04-08), filed in Germany, discloses' Optoelectronic position monitoring system for road vehicle has two pulsed lasers, sensor and mechanical scanner with mirror at 45 degrees on shaft with calibration disk driven by is disclosed for the electric motor '.
상기 공개특허에는 회전형의 평면 미러를 사용하고 중심에 하나 이상의 광수신수단을 위치시키고 양 끝단에 다수의 광송신수단을 위치시키는 형태의 동일한 광편향수단을 사용하는 전자광학 센서에 대해 개시되어 있다. This publication discloses an electro-optic sensor using the same optical deflection means in the form of a rotating planar mirror and having at least one light receiving means at the center and a plurality of light transmitting means at both ends. .
하지만, 상기 공개특허에 개시된 상기 전자광학센서는 하나의 평면 미러를 사용하여 다채널의 거리영상신호를 얻을 수 있도록 구성되어 있으나, 발광축과 수광축이 분리되어 있어 근접거리의 물체를 검지하지 못하고 공간적으로 분리된 다수개의 광송신수단을 사용하기 때문에 채널수를 확장하는데 한계를 가지고 있다. However, the electro-optical sensor disclosed in the published patent is configured to obtain a multi-channel distance image signal by using one plane mirror, but the light emitting axis and the light receiving axis are separated so that the object of the near distance cannot be detected. There is a limit in expanding the number of channels because of using a plurality of spatially separated optical transmission means.
[선행기술문헌][Preceding technical literature]
한국등록특허 제10-1357051호(등록일자 2014.01.23)Korea Patent Registration No. 10-1357051 (Registration date 2014.01.23)
독일공개특허 제10244641호(공개일자:2004년 4월 8일)German Patent Publication No. 10464464 (published: April 8, 2004)
상기 종래 기술에 따른 문제점을 해결하기 위한 본 발명의 목적은, 광송신모듈에서 방출되는 출력광의 광축과 광수신모듈로 수신되는 반사광의 광축이 서로 동일한 방향이 되도록 공진형 방식의 스캐닝 메커니즘 또는 미러 회전방식의 스캐닝 메커니즘을 사용하여 송수신 펄스 레이저 광을 스티어링하도록 광송신모듈과 광수신모듈을 배치 구성함에 따라 장치 구성을 간소화하여 컴팩트하게 구현할 수 있다는 이점이 있으며, 이를 통해 장치 전체의 무게를 획기적으로 줄이고, 제조원가를 줄일 수 있음은 물론 3차원 영상 획득 속도를 빠르게 구현하고 정밀도를 향상시킬 수 있는 3차원 스캐닝 시스템을 제공함에 있다. An object of the present invention for solving the problems according to the prior art, the scanning mechanism or the mirror rotation of the resonance type so that the optical axis of the output light emitted from the optical transmission module and the optical axis of the reflected light received by the optical reception module are in the same direction The arrangement of the optical transmission module and the optical reception module to steer transmit / receive pulse laser light by using the scanning mechanism of the method enables the device configuration to be simplified and realized in a compact manner, thereby dramatically reducing the weight of the entire device. In addition, the present invention provides a three-dimensional scanning system that can reduce manufacturing costs and can quickly realize three-dimensional image acquisition speed and improve precision.
또한, 본 발명의 또다른 목적은, 실선(Solid Line)이 아닌 도트 라인(Dot Line) 형태의 다점 출력광을 방출한 후 목표물로부터 반사되어 돌아오는 반사광을 라인 배열형태의 광학 검출기인 광수신모듈로 검출하여 3차원 포인트 클라우드 데이터 영상을 형성하는 함에 따라 광송신모듈의 출력광량을 줄여 저출력 광원을 이용하면서도 단위 스캐닝 픽셀 당 수신되는 광의 밀도를 높여 높은 수준의 영상을 얻을 수 있는 3차원 스캐닝 시스템을 제공함에 있다. In addition, another object of the present invention, after receiving the multi-point output light in the form of a dot line (not a solid line), the reflected light reflected from the target and returned to the optical detector module of the line array type 3D scanning system to obtain high level image by increasing the density of light received per unit scanning pixel while using low output light source by reducing output quantity of optical transmission module by forming 3D point cloud data image In providing.
상기 기술적 과제를 해결하기 위한 본 발명의 3차원 스캐닝 시스템은, 단점 입사광을 다점 출력광으로 분할하는 광분할부와, 상기 광분할부에 의해 분할된 다점 출력광을 소정의 시야각 형태로 주사하는 광주사부를 포함하는 광송신모듈; 상기 광송신모듈에서 방출된 후 목표물로부터 반사된 반사광을 수신하기 위한 광수신모듈; 및 상기 광수신모듈로 수신된 반사광에 근거하여 목표물의 화상을 생성하는 제어기;를 포함하여 구성된다. The three-dimensional scanning system of the present invention for solving the above technical problem, a light splitting unit for dividing the incident light into a multi-point output light, and a light scanning unit for scanning the multi-point output light divided by the light splitting unit in a predetermined viewing angle form Optical transmission module comprising; An optical receiving module for receiving reflected light reflected from a target after being emitted from the optical transmitting module; And a controller configured to generate an image of a target based on the reflected light received by the light receiving module.
바람직하게, 상기 광분할부는, 상기 단점 입사광을 소정 각도로 펼쳐진 도트 라인 형태의 다점 출력광으로 분할하도록 구성될 수 있다. Preferably, the light splitter may be configured to split the disadvantaged incident light into a multi-point output light having a dot line spread at a predetermined angle.
바람직하게, 상기 광주사부는, 상기 도트 라인 형태의 다점 출력광에 대해 수직인 방향으로 상기 도트 라인 형태의 다점 출력광을 소정 범위 각도로 반사시키도록 구성될 수 있다. Preferably, the optical scanning unit may be configured to reflect the dot line type multi-point output light in a direction perpendicular to the dot line type multi-point output light at a predetermined range angle.
바람직하게, 상기 광주사부는, 소정의 각도를 반복적으로 빠르게 스캐닝할 수 있는 공진형 미러로 구성될 수 있다. Preferably, the optical scanning unit may be configured as a resonant mirror that can repeatedly scan a predetermined angle quickly.
바람직하게, 상기 광분할부는, 회절용 패턴이 형성된 회절광학소자를 통해 상기 단점 입사광을 다점 출력광으로 분할하도록 구성될 수 있다. Preferably, the light splitter may be configured to split the disadvantaged incident light into multi-point output light through a diffractive optical element having a diffraction pattern formed thereon.
바람직하게, 상기 광분할부는, 광원으로부터 제공된 단점 입사광의 광축을 정렬시키는 콜리메이터; 상기 콜리메이터에 의해 광축이 정렬된 단점 입사광의 경로를 전환시키는 입사광 반사부재; 및 상기 입사광 반사부재에 의해 반사된 단점 입사광의 경로 상에 배치되어 상기 단점 입사광을 통과시킴에 따라 상기 단점 입사광을 도트 라인 형태의 다점 출력광으로 분할시키는 회절광학소자;를 포함하여 구성되고, 상기 광주사부는, 상기 회절광학소자에 의해 분할된 도트 라인 형태의 다점 출력광의 경로 상에 배치되어 상기 도트 라인 형태의 다점 출력광에 대해 수직인 방향으로 상기 도트 라인 형태의 다점 출력광을 소정 범위 각도로 반사시키는 공진형 미러;를 포함하여 구성될 수 있다. Preferably, the light splitter comprises: a collimator for aligning the optical axis of the disadvantaged incident light provided from the light source; An incident light reflecting member configured to switch a path of incident light by the collimator, the optical axis being aligned; And a diffraction optical element disposed on a path of the disadvantaged incident light reflected by the incident light reflecting member and splitting the disadvantaged incident light into a multi-point output light in the form of a dot line as it passes through the disadvantaged incident light. The optical scanning part is disposed on a path of the multi-point output light in the form of a dot line divided by the diffractive optical element to angle the multi-point output light in the form of a dot line in a direction perpendicular to the multi-point output light in the form of a dot line. It may be configured to include; a resonant mirror reflecting to.
바람직하게, 상기 광송신모듈에서 방출된 후 목표물로부터 반사되어 상기 광수신모듈로 수신되는 반사광은, 상기 공진형 미러에 의해 반사되어 1차적으로 경로가 전환되고, 상기 공진형 미러에 의해 반사된 반사광의 경로 상에 배치된 반사광 반사부재에 의해 2차적으로 경로가 전환되어 상기 광수신모듈로 수신될 수 있다. Preferably, the reflected light emitted from the optical transmitting module and reflected from the target and received by the optical receiving module is reflected by the resonant mirror and the path is primarily switched, and reflected light reflected by the resonant mirror The path is secondarily switched by the reflected light reflecting member disposed on the path of the light receiving module.
바람직하게, 상기 광주사부는, 상술한 소정의 시야각을 커버하도록 회전하는 회전형 미러로 구성될 수 있다. Preferably, the optical scanning unit may be composed of a rotating mirror that rotates to cover the predetermined viewing angle described above.
바람직하게, 상기 회전형 미러는, 양측 표면에 평면 미러가 구비되거나, 양측 표면에 회전 방향으로 굴곡진 곡면 미러가 구비될 수 있다. Preferably, the rotatable mirror may be provided with a planar mirror on both surfaces, or a curved mirror bent in the rotational direction on both surfaces.
바람직하게, 상기 광분할부는, 광원으로부터 제공된 단점 입사광의 광축을 정렬시키는 콜리메이터; 상기 콜리메이터에 의해 광축이 정렬된 단점 입사광의 경로를 전환시키는 입사광 반사부재; 및 상기 입사광 반사부재에 의해 반사된 단점 입사광의 경로 상에 배치되어 상기 단점 입사광을 통과시킴에 따라 상기 단점 입사광을 도트 라인 형태의 다점 출력광으로 분할시키는 회절광학소자;를 포함하여 구성되고, 상기 광주사부는, 상기 회절광학소자에 의해 분할된 도트 라인 형태의 다점 출력광의 경로 상에 배치되어 상기 도트 라인 형태의 다점 출력광에 대해 수직인 방향으로 상기 도트 라인 형태의 다점 출력광을 소정 범위 각도로 반사시키는 회전형 미러;를 포함하여 구성될 수 있다. Preferably, the light splitter comprises: a collimator for aligning the optical axis of the disadvantaged incident light provided from the light source; An incident light reflecting member configured to switch a path of incident light by the collimator, the optical axis being aligned; And a diffraction optical element disposed on a path of the disadvantaged incident light reflected by the incident light reflecting member and splitting the disadvantaged incident light into a multi-point output light in the form of a dot line as it passes through the disadvantaged incident light. The optical scanning part is disposed on a path of the multi-point output light in the form of a dot line divided by the diffractive optical element to angle the multi-point output light in the form of a dot line in a direction perpendicular to the multi-point output light in the form of a dot line. It may be configured to include; a rotating mirror to reflect to.
바람직하게, 상기 광송신모듈에서 방출된 후 목표물로부터 반사되어 상기 광수신모듈로 수신되는 반사광은, 상기 회전형 미러에 의해 반사되어 1차적으로 경로가 전환되고, 상기 회전형 미러에 의해 반사된 반사광의 경로 상에 배치된 반사광 반사부재에 의해 2차적으로 경로가 전환되어 상기 광수신모듈로 수신될 수 있다. Preferably, the reflected light emitted from the optical transmitting module and reflected from the target and received by the optical receiving module is reflected by the rotating mirror, and the path is primarily switched, and the reflected light reflected by the rotating mirror The path is secondarily switched by the reflected light reflecting member disposed on the path of the light receiving module.
바람직하게, 상기 반사광 반사부재의 중앙측에는, 상기 회절광학소자에 의해 분할된 도트 라인 형태의 다점 출력광을 통과시키기 위한 통과홀이 형성될 수 있다. Preferably, at the center of the reflective light reflecting member, a passage hole for passing the multi-point output light in the form of a dot line divided by the diffractive optical element may be formed.
바람직하게, 상기 광분할부는, ㄱ자형으로 형성되어 내부에 ㄱ자형 통과홀이 형성된 광전환하우징; 일단이 상기 광전환하우징의 일측단에 구비되고, 타단에 경사부가 형성된 미러홀더;를 더 포함하여 구성되며, 상기 콜리메이터는 상기 광전환하우징의 타측단에 구비되고, 상기 입사광 반사부재는 상기 광전환하우징의 내부에 형성된 ㄱ자형 통과홀의 코너부에 구비되며, 상기 반사광 반사부재는 상기 미러홀더의 경사부 상에 구비될 수 있다. Preferably, the light splitting unit, the light conversion housing is formed in the L-shape formed with the A-shaped through-holes; One end is provided at one end of the light conversion housing, the mirror holder formed with an inclined portion at the other end; wherein the collimator is provided at the other end of the light conversion housing, the incident light reflecting member is the light conversion It is provided in the corner portion of the L-shaped passage hole formed inside the housing, the reflective light reflecting member may be provided on the inclined portion of the mirror holder.
상술한 바와 같은 본 발명은, 광송신모듈에서 방출되는 출력광의 광축과 광수신모듈로 수신되는 반사광의 광축이 서로 동일한 방향이 되도록 광송신모듈과 광수신모듈을 배치 구성함에 따라 장치 구성을 간소화하여 콤팩트하게 구현할 수 있다는 이점이 있으며, 소정의 각도를 반복적으로 고속으로 공진하는 미러 또는 고속으로 회전하는 평면 또는 곡면형태의 반사미러로 구성되는 스캐너를 사용하여 수십 Hz이상으로 빠른 3차원 영상을 획득할 수 있을 뿐만 아니라, 이를 통해 장치 전체의 무게를 획기적으로 줄이고, 사이즈를 최소화할 수 있다는 이점이 있다. The present invention as described above, the device configuration is simplified by arranging the optical transmission module and the optical reception module so that the optical axis of the output light emitted from the optical transmission module and the optical axis of the reflected light received by the optical reception module are in the same direction. It is advantageous in that it can be compactly implemented, and a fast three-dimensional image of several tens of Hz or more can be obtained by using a scanner consisting of a mirror that resonates a predetermined angle at high speed or a plane or curved reflection mirror that rotates at high speed. In addition to this, it is possible to significantly reduce the weight of the entire device and to minimize the size.
또한, 실선(Solid Line)이 아닌 도트 라인(Dot Line) 형태의 다점 출력광을 방출한 후 목표물로부터 반사되어 돌아오는 반사광을 라인 배열형태의 광학검출기인 광수신모듈로 검출하여 3차원 포인트 클라우드 데이터 영상을 형성함에 따라 광원의 출력을 줄여 저출력 광파워를 이용하면서도 다채널로 단위 스캐닝 픽셀 당 수신되는 광의 밀도가 높은 거리영상신호를 얻을 수 있는 이점이 있다. In addition, after emitting multi-point output light in the form of a dot line rather than a solid line, the reflected light reflected from the target is detected by a light receiving module, which is a line array type optical detector, to detect 3D point cloud data. As the image is formed, the output of the light source may be reduced to obtain a distance image signal having a high density of light received per unit scanning pixel in multiple channels while using low output optical power.
또한, 회절광학소자의 회절용 패턴을 변경하는 간단한 방식으로, 8 도트 라인, 16 도트 라인, 32 도트 라인 등 다양한 수의 도트 라인을 선택함은 물론 단점 입사광에서 도트 라인으로 분할되는 퍼짐 각도를 수십 도까지 설정할 수 있어 3차원 스캐닝 센서의 수직 정밀도 요구에 맞게 제작하여 광 퍼짐각을 쉽게 변경할 수 있는 이점이 있다. In addition, a simple method of changing the diffraction pattern of the diffractive optical element is to select various number of dot lines, such as 8 dot lines, 16 dot lines, 32 dot lines, as well as disadvantages. Since it can be set to the degree, the optical spreading angle can be easily changed by making it suitable for the vertical precision requirements of the 3D scanning sensor.
도 1은 본 발명의 일실시예에 따른 3차원 스캐닝 시스템을 도시한 사시도이다. 1 is a perspective view showing a three-dimensional scanning system according to an embodiment of the present invention.
도 2는 본 발명의 일실시예에 따른 3차원 스캐닝 시스템을 도시한 단면도이다. 2 is a cross-sectional view showing a three-dimensional scanning system according to an embodiment of the present invention.
도 3은 본 발명의 일실시예에 따른 3차원 스캐닝 시스템을 도시한 일부 분해사시도이다. 3 is a partially exploded perspective view showing a three-dimensional scanning system according to an embodiment of the present invention.
도 4는 본 발명의 일실시예에 따른 3차원 스캐닝 시스템을 통해 광이 방출되는 경로를 표시한 도면이다. 4 is a view showing a path in which light is emitted through a three-dimensional scanning system according to an embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 3차원 스캐닝 시스템을 통해 광이 수신되는 경로를 표시한 도면이다. 5 is a view showing a path through which light is received through a three-dimensional scanning system according to an embodiment of the present invention.
도 6은 회절광학소자(DOE) 마스크 패턴(15mm X 15mm 사이즈) 구조를 예시한 도면이다. FIG. 6 illustrates a structure of a DOE mask pattern (15 mm × 15 mm size).
도 7 및 도 8은 회절광학소자에 의해 단점 입사광이 다점 입사광으로 분할되는 것을 예시한 도면이다. 7 and 8 illustrate the disadvantage that incident light is divided into multi-point incident light by the diffractive optical element.
도 9는 다점 도트 라인의 도트별 광의 분포를 예시한 도면이다. 9 is a diagram illustrating the distribution of light for each dot of a multi-point dot line.
도 10은 본 발명의 다른 일실시예에 따른 3차원 스캐닝 시스템을 도시한 사시도이다. 10 is a perspective view showing a three-dimensional scanning system according to another embodiment of the present invention.
도 11은 본 발명의 다른 일실시예에 따른 3차원 스캐닝 시스템을 도시한 단면도이다. 11 is a cross-sectional view showing a three-dimensional scanning system according to another embodiment of the present invention.
도 12는 본 발명의 다른 일실시예에 따른 3차원 스캐닝 시스템의 광주사부를 도시한 분해사시도이다. 12 is an exploded perspective view illustrating a light scanning unit of a 3D scanning system according to another exemplary embodiment of the present invention.
도 13은 본 발명의 다른 일실시예에 따른 3차원 스캐닝 시스템을 도시한 일부 분해사시도이다. 13 is an exploded perspective view of a portion of a three-dimensional scanning system according to another embodiment of the present invention.
도 14는 본 발명의 다른 일실시예에 따른 3차원 스캐닝 시스템을 통해 광이 방출되는 경로를 표시한 도면이다. 14 is a view showing a path through which light is emitted through a three-dimensional scanning system according to another embodiment of the present invention.
도 15는 본 발명의 다른 일실시예에 따른 3차원 스캐닝 시스템을 통해 광이 수신되는 경로를 표시한 도면이다. 15 is a view showing a path through which light is received through a three-dimensional scanning system according to another embodiment of the present invention.
도 16은 본 발명의 다른 일실시예에 따른 3차원 스캐닝 시스템의 다른 실시예를 도시한 도면이다. 16 is a view showing another embodiment of a three-dimensional scanning system according to another embodiment of the present invention.
본 발명은 그 기술적 사상 또는 주요한 특징으로부터 벗어남이 없이 다른 여러가지 형태로 실시될 수 있다. 따라서, 본 발명의 실시예들은 모든 점에서 단순한 예시에 지나지 않으며 한정적으로 해석되어서는 안된다.The present invention can be embodied in many other forms without departing from the spirit or main features thereof. Therefore, the embodiments of the present invention are merely examples in all respects and should not be interpreted limitedly.
제1, 제2등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. Terms such as first and second may be used to describe various components, but the components should not be limited by the terms.
상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1구성요소는 제2구성요소로 명명될 수 있고, 유사하게 제2구성요소도 제1구성요소로 명명될 수 있다. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.The term and / or includes a combination of a plurality of related items or any item of a plurality of related items.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. When a component is referred to as being "connected" or "connected" to another component, it may be directly connected to or connected to that other component, but it may be understood that other components may be present in between. Should be.
반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.On the other hand, when a component is said to be "directly connected" or "directly connected" to another component, it should be understood that there is no other component in between.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
본 출원에서, "포함하다" 또는 "구비하다", "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In this application, the terms "comprise", "comprise", "have", and the like are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification. Or other features or numbers, steps, operations, components, parts or combinations thereof in any way should not be excluded in advance.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art.
일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and are not construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings, and the same or corresponding components will be denoted by the same reference numerals regardless of the reference numerals and redundant description thereof will be omitted.
본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
[제1실시예][First Embodiment]
본 발명의 일실시예에 따른 3차원 스캐닝 시스템은, 펄스 레이저 광을 소정의 시야각 형태로 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물의 거리를 산출하여 3차원 영상을 획득하는 시스템으로서, 도 1 및 도 2에 도시된 바와 같이, 광송신모듈(100), 광수신모듈(200) 및 제어기(300)를 포함하여 구성된다. A three-dimensional scanning system according to an embodiment of the present invention is a system for obtaining a three-dimensional image by calculating the distance of the target by receiving the reflected light reflected from the target after emitting the pulsed laser light in a predetermined viewing angle shape, As shown in FIG. 1 and FIG. 2, the optical transmission module 100 includes the optical transmission module 100, the optical reception module 200, and the controller 300.
본 실시예의 3차원 스캐닝 시스템은 전방 또는 측방의 장애물 등에 의한 위험 상황이 발생할 경우 운전자에게 경고하거나 자동차의 속도를 조절하는 조치를 자동적으로 수행할 수 있게 하는 운전 보조용 애플리케이션이나, 운전자 없이 운행하는 트랙터와 같은 자동 운전장치 등 다양한 분야에 적용될 수 있다. The three-dimensional scanning system of the present embodiment is a driving assistance application or a tractor running without a driver, which enables the driver to automatically warn the driver or to automatically adjust the speed of the vehicle when a dangerous situation occurs due to an obstacle in front or side. It can be applied to various fields such as automatic driving device.
먼저, 상기 광송신모듈(100)에 대하여 설명하도록 한다. First, the optical transmission module 100 will be described.
상기 광송신모듈(100)은 3차원 스캐닝을 위한 펄스 레이저 광을 방출하는 부분으로서, 도 2에 도시된 바와 같이, 광분할부(110)와 광주사부(120)를 포함하여 구성된다. The optical transmission module 100 emits pulsed laser light for three-dimensional scanning. As shown in FIG. 2, the optical transmission module 100 includes a light splitting unit 110 and a light scanning unit 120.
상기 광분할부(110)는 광원(미도시)으로부터 제공되는 단점 입사광(L1, 펄스 레이저 광)을 분할하는 부분으로서, 예를 들어, 레이저 다이오드 등과 같은 광원으로부터 제공되는 단점 입사광(L1)의 광축을 정렬한 후 다점 출력광(L2)으로 분할하도록 구성될 수 있다. The light splitter 110 divides the disadvantaged incident light L1 (pulse laser light) provided from a light source (not shown), and, for example, the optical axis of the disadvantaged incident light L1 provided from a light source such as a laser diode. And then divide into multi-point output light L2.
구체적으로, 상기 광분할부(110)는, 광원으로부터 제공되는 단점 입사광(L1)의 광축을 정렬시키는 콜리메이터(111), 상기 콜리메이터(111)에 의해 광축이 정렬된 단점 입사광(L1)의 경로를 전환시키는 입사광 반사부재(112), 상기 입사광 반사부재(112)에 의해 반사된 단점 입사광(L1)의 경로 상에 배치되어 상기 단점 입사광(L1)을 통과시킴에 따라 상기 단점 입사광(L1)을 다점 출력광(L2)으로 분할시키는 회절광학소자(113)를 포함하여 구성된다. Specifically, the light splitter 110 switches the path of the collimator 111 for aligning the optical axis of the defect incident light L1 provided from the light source, and the defect incident light L1 with the optical axis aligned by the collimator 111. The incident light reflecting member 112, which is disposed on the path of the disadvantaged incident light L1 reflected by the incident light reflecting member 112, passes through the disadvantaged incident light L1, and outputs the shortcoming incident light L1. And a diffractive optical element 113 for dividing into light L2.
한편, 상기 콜리메이터(111), 입사광 반사부재(112), 회절광학소자(113)가 상기에서 설명한 바와 같은 관계로 배열될 수 있도록, 상기 광분할부(110)는 ㄱ자형으로 형성되어 내부에 ㄱ자형 통과홀(115h)이 형성된 광전환하우징(115), 일단이 상기 광전환하우징(115)의 일측단에 구비되고 타단에 경사부가 형성된 미러홀더(116)를 더 포함하여 구성될 수 있으며, 상기 회절광학소자(113)를 장착하기 위한 홀더하우징(m1, m2)와 반사광 반사부재(210)를 상기 미러홀더(116)의 경사부에 장착하기 위한 고정프레임(m3) 등이 더욱 구비될 수 있다. On the other hand, the collimator 111, the incident light reflecting member 112, the diffraction optical element 113 can be arranged in a relationship as described above, the light splitting portion 110 is formed in a letter 'B' shaped inside The light conversion housing 115 having a through hole 115h formed therein, and may further include a mirror holder 116 having one end disposed at one end of the light conversion housing 115 and having an inclined portion at the other end thereof. The holder housings m1 and m2 for mounting the optical element 113 and the fixing frame m3 for mounting the reflected light reflecting member 210 to the inclined portion of the mirror holder 116 may be further provided.
즉, 상기 광전환하우징(115)의 타측단에 구비된 콜리메이터(111)가 광원으로부터 제공되는 단점 입사광(L1)을 제공받아 광축을 정렬시킨 후 상기 입사광 반사부재(112)로 송신하고, 상기 광전환하우징(115)의 내부에 형성된 ㄱ자형 통과홀(115h)의 코너부에 구비된 상기 입사광 반사부재(112)가 단점 입사광(L1)을 대략 90°정도로 반사시켜 회절광학소자(113)를 향하여 송신하며, 상기 회절광학소자(113)는 상기 단점 입사광(L1)을 다점 출력광(L2)으로 분할하여 상기 미러홀더(116)에 형성된 슬릿형 홀(116h)을 통하여 광주사부(120)를 향하도록 송신하게 된다. That is, the collimator 111 provided at the other end of the light conversion housing 115 is provided with a disadvantage of the incident light (L1) provided from the light source to align the optical axis and transmit to the incident light reflecting member 112, the light The incident light reflecting member 112 provided at the corner of the L-shaped through hole 115h formed inside the switching housing 115 reflects the incident light L1 at about 90 ° toward the diffractive optical element 113. The diffraction optical element 113 splits the shortcoming incident light L1 into a multi-point output light L2 to face the optical scanning unit 120 through a slit-shaped hole 116h formed in the mirror holder 116. Will be sent to.
한편, 도 6에 도시된 바와 같이, 상기 회절광학소자(113)는 회절용 패턴이 형성되어 광의 회절이 이뤄지도록 하는 필터로서, 상기 콜리메이터(111)로부터 송신되는 단점 입사광(L1)을 소정 각도로 펼쳐진 도트 라인 형태의 다점 출력광(L2)으로 분할하게 된다. On the other hand, as shown in Figure 6, the diffractive optical element 113 is a filter for diffraction of the light is formed by the diffraction pattern is formed, the disadvantage incident light (L1) transmitted from the collimator 111 at a predetermined angle The multi-point output light L2 in the form of unfolded dot lines is divided.
예를 들어, 상기 회절광학소자(113)는, Quartz 또는 Fused Silica Wafer 소재에 포토 리소그라피 제조공정을 통해 회절광학소자(DOE, Diffractive Optical Element) 마스크 패턴을 식각함으로써 단점 입사광(L1)을 다점 출력광(L2)으로 분할하도록 구성될 수 있으며, 회절용 패턴을 다양하게 적용함에 따라, 도 7 및 도 8에 도시된 바와 같이, 상기 회절광학소자(113)로 입사된 단점 입사광(L1)이 8 도트 라인, 16 도트 라인, 32 도트 라인 등 다양한 수의 도트 라인의 다점 출력광(L2)이 되도록 함은 물론 단점 입사광(L1)에서 도트 라인으로 분할되는 퍼짐 각도를 수십도까지 쉽게 조절할 수 있다. For example, the diffractive optical element 113 may etch a defect point L1 of a multi-point output light by etching a diffractive optical element (DOE) mask pattern through a photolithography manufacturing process on a quartz or fused silica wafer material. It can be configured to divide into (L2), as shown in Figures 7 and 8 by applying a variety of diffraction patterns, as shown in Figure 7 and 8, the incident light (L1) incident to the diffraction optical element 113 is 8 dots The multi-point output light L2 of various numbers of dot lines such as lines, 16 dot lines, and 32 dot lines, as well as disadvantages, can easily adjust the spread angle divided into the dot lines from the incident light L1 to several tens of degrees.
상기 광주사부(120)는 상기 광분할부(110)에 의해 분할된 도트 라인 형태의 다점 출력광(L2)을 소정의 시야각 형태로 주사하는 부분으로서, 상기 도트 라인 형태의 다점 출력광(L2)에 대해 수직인 방향으로 상기 도트 라인 형태의 다점 출력광(L2)을 소정 범위 각도(대략 60° 내지 90°)로 반사시키도록 구성되어 상기 시야각(FOV, Field Of View)의 범위 구간에 대한 스캐닝이 이뤄지도록 한다. The optical scanning unit 120 scans the multi-point output light L2 in the form of a dot line divided by the light splitter 110 in a predetermined viewing angle shape, and the multi-point output light L2 in the dot line form. Is configured to reflect the multi-point output light L2 in the form of a dot line in a direction perpendicular to the predetermined range angle (about 60 ° to 90 °), thereby scanning the range of the field of view (FOV). To be done.
도 4에 도시된 바와 같이, 상기 광주사부(120)는 상기 회절광학소자(113)를 통과하여 도트 라인 형태로 분할된 다점 출력광(L2)의 진행 경로 상에 위치하도록 배치될 수 있으며, 상기 도트 라인 형태의 다점 출력광(L2)을 소정 범위 각도로 반사시키도록 소정 각속도로 구동됨에 따라 소정의 시야각 형태로 주사할 수 있는 공진형 미러(114)로 구성되는 것이 바람직하지만, 상기 도트 라인 형태의 다점 출력광(L2)을 소정 범위 각도로 반사시켜 주사할 수 있다면 일반 주사 미러 등 다양한 구성으로 이뤄질 수 있음은 물론이다. As shown in FIG. 4, the optical scanning part 120 may be disposed to be positioned on a traveling path of the multi-point output light L2 divided into a dot line through the diffractive optical element 113. The dot line form is preferably composed of a resonant mirror 114 which can be scanned at a predetermined viewing angle shape as it is driven at a predetermined angular velocity to reflect the multi-point output light L2 having a predetermined range angle. Of course, if the multi-point output light L2 can be scanned by reflecting at a predetermined range angle, it can be made in various configurations such as a general scan mirror.
상술한 바와 같이, 광분할부(110)와 광주사부(120)로 구성된 광송신모듈(100)의 구성에 따르면, 광원으로부터 제공되는 단점 입사광(L1)의 광축을 정렬한 후 도트 라인 형태의 다점 출력광(L2)으로 분할하여 소정의 시야각 형태로 주사할 수 있게 된다. As described above, according to the configuration of the optical transmission module 100 composed of the light splitting unit 110 and the optical scanning unit 120, the short-point output in the form of a dot line after aligning the optical axis of the incident light (L1) provided from the light source By dividing into the light L2, it can scan in the form of a predetermined viewing angle.
특히, 실선(Solid Line)이 아닌 도트 라인(Dot Line) 형태의 다점 출력광(L2)을 3차원 스캔을 위해 사용함으로써 저출력의 레이저 광출력을 이용하면서도 단위 스캐닝 픽셀 당 수신되는 광의 밀도를 높여 높은 수준의 영상을 얻을 수 있고, 이를 통해 광송신모듈(100)의 무게를 획기적으로 줄일 수 있음은 물론 구조를 간소화할 수 있게 된다. In particular, the multi-point output light L2 in the form of a dot line rather than a solid line is used for three-dimensional scanning, thereby increasing the density of the received light per unit scanning pixel while using a low power laser light output. The level of image can be obtained, through which the weight of the optical transmission module 100 can be significantly reduced, as well as the structure can be simplified.
다음으로, 상기 광수신모듈(200) 및 제어기(300)에 대하여 설명하도록 한다. Next, the optical receiving module 200 and the controller 300 will be described.
상기 광수신모듈(200)은 상기 광송신모듈(100)에서 방출된 후 목표물로부터 반사된 반사광(L3)을 수신하기 위한 부분으로서, 반사광(L3)을 수신하여 상기 제어기(300) 측으로 송신되도록 하며, 반사광(L3)을 수신하기 위한 렌즈(220) 및 리시버(230, receiver) 등을 포함하여 구성될 수 있다. The light receiving module 200 is a part for receiving the reflected light L3 reflected from the target after being emitted from the light transmitting module 100, and receives the reflected light L3 to be transmitted to the controller 300 side. It may be configured to include a lens 220 and a receiver 230 for receiving the reflected light (L3).
상기 광송신모듈(100)에서 방출된 후 목표물로부터 반사되어 상기 광수신모듈(200)로 수신되는 반사광(L3)은, 상기 공진형 미러(114)에 의해 반사되어 1차적으로 경로가 전환되고, 상기 공진형 미러(114)에 의해 반사된 반사광(L3)의 경로 상에 배치된 반사광 반사부재(210)에 의해 2차적으로 경로가 전환되어 상기 광수신모듈(200)의 렌즈(220) 및 실린더리컬렌즈(225)를 통과하여 리시버(230)로 수신될 수 있으며, 상기 반사광 반사부재(210)는 상기 미러홀더(116)의 경사부 상에 구비되어 반사광(L3)이 광수신모듈(200)로 수신될 수 있도록 반사하게 된다. The reflected light L3 emitted from the optical transmission module 100 and reflected from the target and received by the optical reception module 200 is reflected by the resonant mirror 114, and the path is primarily switched. The path is secondarily switched by the reflected light reflecting member 210 disposed on the path of the reflected light L3 reflected by the resonant mirror 114, such that the lens 220 and the cylinder of the light receiving module 200 are changed. It may be received by the receiver 230 through the lens lens 225, the reflected light reflecting member 210 is provided on the inclined portion of the mirror holder 116, the reflected light (L3) is a light receiving module 200 Will be reflected to be received.
상기 렌즈(220)는 비구면렌즈(Aspheric Lens)이고, 상기 실린더리컬렌즈(225)는 렌즈 표면이 원주의 측면 형태로 형성된 렌즈로서, 예를 들어, 상기 공진형 미러(114)에 의해 상기 리시버(230)로 수신되는 반사광(L3)이 좌우 방향으로 흔들리는 것을 보정하여 상기 리시버(230)의 특정위치로 반사광(L3)이 수신될 수 있도록 한다. The lens 220 is an aspheric lens, and the cylindrical lens 225 is a lens whose surface is formed in a circumferential side shape, for example, by the resonant mirror 114. The reflected light L3 received by the 230 is corrected to shake in the left and right directions so that the reflected light L3 may be received at a specific position of the receiver 230.
한편, 상기 반사광 반사부재(210)의 중앙측에는, 상기 회절광학소자(113)에 의해 분할된 도트 라인 형태의 다점 출력광(L2)을 통과시키기 위한 슬릿 형태의 통과홀(210h)이 형성될 수 있다. On the other hand, at the central side of the reflective light reflecting member 210, a slit type through hole 210h for passing the multi-point output light (L2) of the dot line divided by the diffraction optical element 113 can be formed. have.
상술한 바와 같은 광수신모듈(200)의 구성에 따르면, 공진형 미러(114)와 반사광 반사부재(210)에 의해 경로가 전환된 반사광(L3)을 수신하게 되며, 수신된 반사광(L3)에 대한 정보를 제어기(300)로 전송하게 되고, 상기 제어기(300)는 상기 광수신모듈(200)로 수신된 반사광(L3)에 근거하여 목표물의 화상을 생성하게 된다. According to the configuration of the optical receiving module 200 as described above, and receives the reflected light (L3) of which the path is switched by the resonant mirror 114 and the reflected light reflecting member 210, to the received reflected light (L3) Information is transmitted to the controller 300, and the controller 300 generates an image of the target based on the reflected light L3 received by the light receiving module 200.
한편, 상기 회절광학소자(113)에 의해 분할된 도트 라인 형태의 다점 출력광(L2)은, 도 9에 도시된 바와 같이, 양 단부 측을 향할수록 광량이 적을 수 있는데, 이를 보완하기 위한 수광렌즈(220)나 리시버(230) 증폭회로를 적용하여 보완할 수 있다. 도 9의 세로축은 광량, 가로축은 도트 라인의 길이를 의미한다. On the other hand, the multi-point output light (L2) in the form of a dot line divided by the diffractive optical element 113, as shown in Figure 9, the amount of light toward the both end side may be less, the light receiving to compensate for this The lens 220 or the receiver 230 may be supplemented by applying an amplification circuit. 9, the vertical axis represents light quantity and the horizontal axis represents length of dot line.
상술한 바와 같이, 광송신모듈(100), 광수신모듈(200) 및 제어기(300)를 포함하는 3차원 레이저 스캐닝 시스템의 구성에 따르면, 회절광학소자(113)를 이용하여 단점 입사광(L1)을 실선(Solid Line)이 아닌 도트 라인(Dot Line) 형태의 다점 출력광(L2)을 분할하여 방출하는 방식으로 3차원 스캔이 이뤄지도록 구성됨에 따라 저출력의 레이저 출력광을 이용하면서도 단위 스캐닝 픽셀 당 수신되는 광의 밀도를 높여 높은 수준의 영상신호를 얻을 수 있으며, 또한, 회절광학소자(113)의 회절용 패턴을 변경하는 방식으로 다점 출력광(L2)의 갯수와 퍼짐 각도를 간단하게 조절할 수 있어 정밀도 요구에 맞도록 광 퍼짐각을 쉽게 변경할 수 있는 이점이 있다. As described above, according to the configuration of the three-dimensional laser scanning system including the optical transmitting module 100, the optical receiving module 200, and the controller 300, the disadvantage of incident light L1 using the diffractive optical element 113. 3D scanning is performed by dividing the multi-point output light L2 in the form of a dot line rather than a solid line to emit 3D scans per unit scanning pixel while using a low output laser output light. By increasing the density of the received light, a high level image signal can be obtained, and the number and spreading angle of the multi-point output light L2 can be easily adjusted by changing the diffraction pattern of the diffractive optical element 113. There is an advantage that the light spread angle can be easily changed to meet the precision requirements.
[제2실시예]Second Embodiment
본 발명의 다른 일실시예에 따른 3차원 스캐닝 시스템은, 펄스 레이저 광을 소정의 시야각 범위를 커버하도록 회전시켜 주사하여 방출한 후 목표물로부터 반사된 반사광을 수신하여 목표물의 거리를 산출하여 3차원 영상을 획득하는 시스템으로서, 도 10 및 도 11에 도시된 바와 같이, 광송신모듈(100), 광수신모듈(200) 및 제어기(300)를 포함하여 구성된다. According to another embodiment of the present invention, a three-dimensional scanning system rotates and scans a pulsed laser light to cover a predetermined viewing angle range, and then receives reflected light reflected from a target to calculate a distance of the three-dimensional image. 10 and 11, the optical transmission module 100, the optical reception module 200 and the controller 300 are configured.
본 실시예의 3차원 스캐닝 시스템은 전방 또는 측방의 장애물 등에 의한 위험 상황이 발생할 경우 운전자에게 경고하거나 자동차의 속도를 조절하는 조치를 자동적으로 수행할 수 있게 하는 운전 보조용 애플리케이션이나, 운전자 없이 운행하는 트랙터와 같은 자동 운전장치 등 다양한 분야에 적용될 수 있다. The three-dimensional scanning system of the present embodiment is a driving assistance application or a tractor running without a driver, which enables the driver to automatically warn the driver or to automatically adjust the speed of the vehicle when a dangerous situation occurs due to an obstacle in front or side. It can be applied to various fields such as automatic driving device.
먼저, 상기 광송신모듈(100)에 대하여 설명하도록 한다. First, the optical transmission module 100 will be described.
상기 광송신모듈(100)은 3차원 스캐닝을 위한 펄스 레이저 광을 방출하는 부분으로서, 도 11에 도시된 바와 같이, 광분할부(110)와 광주사부(120)를 포함하여 구성된다. The optical transmitter module 100 emits pulsed laser light for three-dimensional scanning. As shown in FIG. 11, the optical transmitter module 100 includes a light splitter 110 and a light scanning unit 120.
상기 광분할부(110)는 광원(미도시)으로부터 제공되는 단점 입사광(L1, 펄스 레이저 광)을 분할하는 부분으로서, 예를 들어, 레이저 다이오드 등과 같은 광원으로부터 제공되는 단점 입사광(L1)의 광축을 정렬한 후 다점 출력광(L2)으로 분할하도록 구성될 수 있다. The light splitter 110 divides the disadvantaged incident light L1 (pulse laser light) provided from a light source (not shown), and, for example, the optical axis of the disadvantaged incident light L1 provided from a light source such as a laser diode. And then divide into multi-point output light L2.
구체적으로, 상기 광분할부(110)는, 광원으로부터 제공되는 단점 입사광(L1)의 광축을 정렬시키는 콜리메이터(111), 상기 콜리메이터(111)에 의해 광축이 정렬된 단점 입사광(L1)의 경로를 전환시키는 입사광 반사부재(112), 상기 입사광 반사부재(112)에 의해 반사된 단점 입사광(L1)의 경로 상에 배치되어 상기 단점 입사광(L1)을 통과시킴에 따라 상기 단점 입사광(L1)을 다점 출력광(L2)으로 분할시키는 회절광학소자(113)를 포함하여 구성된다. Specifically, the light splitter 110 switches the path of the collimator 111 for aligning the optical axis of the defect incident light L1 provided from the light source, and the defect incident light L1 with the optical axis aligned by the collimator 111. The incident light reflecting member 112, which is disposed on the path of the disadvantaged incident light L1 reflected by the incident light reflecting member 112, passes through the disadvantaged incident light L1, and outputs the shortcoming incident light L1. And a diffractive optical element 113 for dividing into light L2.
한편, 상기 콜리메이터(111), 입사광 반사부재(112), 회절광학소자(113)가 상기에서 설명한 바와 같은 관계로 배열될 수 있도록, 상기 광분할부(110)는 ㄱ자형으로 형성되어 내부에 ㄱ자형 통과홀(115h)이 형성된 광전환하우징(115), 일단이 상기 광전환하우징(115)의 일측단에 구비되고 타단에 경사부가 형성된 미러홀더(116)를 더 포함하여 구성될 수 있으며, 상기 회절광학소자(113)를 장착하기 위한 홀더하우징(m1, m2)와 반사광 반사부재(210)를 상기 미러홀더(116)의 경사부에 장착하기 위한 고정프레임(m3) 등이 더욱 구비될 수 있다. On the other hand, the collimator 111, the incident light reflecting member 112, the diffraction optical element 113 can be arranged in a relationship as described above, the light splitting portion 110 is formed in a letter 'B' shaped inside The light conversion housing 115 having a through hole 115h formed therein, and may further include a mirror holder 116 having one end disposed at one end of the light conversion housing 115 and having an inclined portion at the other end thereof. The holder housings m1 and m2 for mounting the optical element 113 and the fixing frame m3 for mounting the reflected light reflecting member 210 to the inclined portion of the mirror holder 116 may be further provided.
즉, 상기 광전환하우징(115)의 타측단에 구비된 콜리메이터(111)가 광원으로부터 제공되는 단점 입사광(L1)을 제공받아 광축을 정렬시킨 후 상기 입사광 반사부재(112)로 송신하고, 상기 광전환하우징(115)의 내부에 형성된 ㄱ자형 통과홀(115h)의 코너부에 구비된 상기 입사광 반사부재(112)가 단점 입사광(L1)을 대략 90°정도로 반사시켜 회절광학소자(113)를 향하여 송신하며, 상기 회절광학소자(113)는 상기 단점 입사광(L1)을 다점 출력광(L2)으로 분할하여 상기 미러홀더(116)에 형성된 슬릿형 홀(116h)을 통하여 광주사부(120)를 향하도록 송신하게 된다. That is, the collimator 111 provided at the other end of the light conversion housing 115 is provided with a disadvantage of the incident light (L1) provided from the light source to align the optical axis and transmit to the incident light reflecting member 112, the light The incident light reflecting member 112 provided at the corner of the L-shaped through hole 115h formed inside the switching housing 115 reflects the incident light L1 at about 90 ° toward the diffractive optical element 113. The diffraction optical element 113 splits the shortcoming incident light L1 into a multi-point output light L2 to face the optical scanning unit 120 through a slit-shaped hole 116h formed in the mirror holder 116. Will be sent to.
한편, 도 6에 도시된 바와 같이, 상기 회절광학소자(113)는 회절용 패턴이 형성되어 광의 회절이 이뤄지도록 하는 필터로서, 상기 콜리메이터(111)로부터 송신되는 단점 입사광(L1)을 소정 각도로 펼쳐진 도트 라인 형태의 다점 출력광(L2)으로 분할하게 된다. On the other hand, as shown in Figure 6, the diffractive optical element 113 is a filter for diffraction of the light is formed by the diffraction pattern is formed, the disadvantage incident light (L1) transmitted from the collimator 111 at a predetermined angle The multi-point output light L2 in the form of unfolded dot lines is divided.
예를 들어, 상기 회절광학소자(113)는, Quartz 또는 Fused Silica Wafer 소재에 포토 리소그라피 제공정을 통해 회절광학소자(DOE, Diffractive Optical Element) 마스크 패턴을 식각함으로써 단점 입사광(L1)을 다점 출력광(L2)으로 분할하도록 구성될 수 있으며, 회절용 패턴을 다양하게 적용함에 따라, 도 7 및 도 8에 도시된 바와 같이, 상기 회절광학소자(113)로 입사된 단점 입사광(L1)이 8 도트 라인, 16 도트 라인, 32 도트 라인 등 다양한 수의 도트 라인의 다점 출력광(L2)이 되도록 함은 물론 단점 입사광(L1)에서 도트 라인으로 분할되는 퍼짐 각도를 수십 도까지 쉽게 조절할 수 있다. For example, the diffractive optical element 113 etches a defect point incident light L1 by multi-point output light by etching a diffractive optical element (DOE) mask pattern through a photolithography providing crystal on a quartz or fused silica wafer material. It can be configured to divide into (L2), as shown in Figures 7 and 8 by applying a variety of diffraction patterns, as shown in Figs. The multi-point output light L2 of various numbers of dot lines such as lines, 16 dot lines, 32 dot lines, and the like, as well as disadvantages, the spread angle divided into the dot lines in the incident light L1 can be easily adjusted to several tens of degrees.
상기 광주사부(120)는 상기 광분할부(110)에 의해 수직으로 분할된 도트 라인 형태의 다점 출력광(L2)을 소정의 시야각 범위를 커버하도록 회전시켜 주사하는 부분으로서, 상기 도트 라인 형태의 다점 출력광(L2)에 대해 수직인 방향으로 상기 도트 라인 형태의 다점 출력광(L2)을 소정의 시야각 범위(도 14의 α° 범위, 대략 60° 내지 90°)를 커버할 수 있도록 회전하면서 반사시키도록 구성되어, 적어도 상기 시야각(FOV, Field Of View)의 범위 구간에 대한 스캐닝이 이뤄질 수 있도록 한다. The optical scanning unit 120 rotates and scans the multi-point output light L2 in the form of a dot line divided vertically by the light splitter 110 to cover a predetermined viewing angle range, and the multi-point in the form of the dot line. Reflects while rotating the dot line shaped multi-point output light L2 in a direction perpendicular to the output light L2 so as to cover a predetermined viewing angle range (α ° range, approximately 60 ° to 90 °) in FIG. 14. It is configured to allow scanning of at least a range of the field of view (FOV).
도 14에 도시된 바와 같이, 상기 광주사부(120)는 상기 회절광학소자(113)를 통과하여 도트 라인 형태로 분할된 다점 출력광(L2)의 진행 경로 상에 위치하도록 배치될 수 있으며, 상기 도트 라인 형태의 다점 출력광(L2)을 회전하면서 반사시킬 수 있도록 평면구조의 회전형 미러(114`)를 포함하여 구성되며, 상기 회전형 미러(114`)를 장착하기 위한 하우징(121a, 121b)과, 상기 하우징(121a, 121b)을 회전시킴에 따라 상기 회전형 미러(114`)를 일방향으로 회전시키기 위한 구동모터(122)가 구비된다. As shown in FIG. 14, the optical scanning part 120 may be disposed to pass on the path of the multi-point output light L2 divided into a dot line through the diffraction optical element 113, and the It comprises a rotating mirror 114` of a planar structure to reflect the dot line-shaped multi-point output light (L2) while rotating, the housing 121a, 121b for mounting the rotary mirror 114` And a driving motor 122 for rotating the rotatable mirror 114 'in one direction as the housings 121a and 121b are rotated.
한편, 광 주사각도를 높이고, 리시버(230)의 수신광량을 높이며, 상기 도트 라인 형태의 다점 출력광(L2)을 보다 넓은 범위 각도로 반사시켜 주사할 수 있도록, 상기 평면구조의 회전형 미러(114`)를 대체하여, 도 16에 도시된 바와 같이, 곡면구조의 회전형 미러(114`)로 구성할 수도 있음은 물론이다. On the other hand, to increase the light scanning angle, to increase the amount of light received by the receiver 230, and to reflect and scan the multi-point output light (L2) of the dot line form at a wider range angle, the rotating mirror of the planar structure ( 114 '), as shown in FIG. 16, of course, it can also be configured as a rotating mirror 114` of a curved structure.
또한, 상기 회전형 미러(114`)는 구동모터(122)의 회전축에 대해 양측면이 대칭으로 반사면을 형성하여 한 번의 회전으로 두 번 동일한 방향으로 광을 송수신할 수 있도록 구성함으로써 2배 빠른 속도로 3차원 영상을 획득할 수 있도록 제작할 수 있다. In addition, the rotating mirror 114` is formed twice so that the two sides are symmetrically reflective surface with respect to the axis of rotation of the drive motor 122, so as to transmit and receive light in the same direction twice in one rotation two times faster speed It can be produced to obtain a three-dimensional image.
상술한 바와 같이, 광분할부(110)와 광주사부(120)로 구성된 광송신모듈(100)의 구성에 따르면, 광원으로부터 제공되는 단점 입사광(L1)의 광축을 정렬한 후 도트 라인 형태의 다점 출력광(L2)으로 수직 분할하여 회전하면서 반사시킴에 따라 일정한 각도로 스캐닝을 하는 목표물을 향한 방향에 대한 소정의 수평의 시야각 범위를 커버할 수 있는 형태로 주사할 수 있게 된다. As described above, according to the configuration of the optical transmission module 100 composed of the light splitting unit 110 and the optical scanning unit 120, the short-point output in the form of a dot line after aligning the optical axis of the incident light (L1) provided from the light source As the light L2 is vertically divided and rotated to reflect the light, it is possible to scan in a form that can cover a predetermined horizontal viewing angle range with respect to the direction toward the target to be scanned at a predetermined angle.
특히, 실선(Solid Line)이 아닌 도트 라인(Dot Line) 형태의 다점 출력광(L2)을 3차원 스캔을 위해 사용함으로써 저출력 광원을 이용하면서도 단위 스캐닝 픽셀 당 수신되는 광의 밀도를 높여 높은 수준의 반사광 신호를 얻을 수 있고, 이를 통해 광송신모듈(100)의 무게를 획기적으로 줄일 수 있음은 물론 구조를 간소화할 수 있게 된다. In particular, by using the multi-point output light L2 in the form of a dot line rather than a solid line for 3D scanning, a high level of reflected light is obtained by increasing the density of light received per unit scanning pixel while using a low power light source. A signal can be obtained, through which the weight of the optical transmission module 100 can be drastically reduced, as well as the structure can be simplified.
다음으로, 상기 광수신모듈(200) 및 제어기(300)에 대하여 설명하도록 한다. Next, the optical receiving module 200 and the controller 300 will be described.
상기 광수신모듈(200)은 상기 광송신모듈(100)에서 방출된 후 목표물로부터 반사된 반사광(L3)을 수신하기 위한 부분으로서, 반사광(L3)을 수신하여 상기 제어기(300) 측으로 송신되도록 하며, 반사광(L3)을 수신하기 위한 렌즈(220) 및 광검출소자(230, Photo Detector)등을 포함하여 구성될 수 있다. The light receiving module 200 is a part for receiving the reflected light L3 reflected from the target after being emitted from the light transmitting module 100, and receives the reflected light L3 to be transmitted to the controller 300 side. , A lens 220 for receiving the reflected light L3 and a photo detector 230 may be included.
상기 광송신모듈(100)에서 방출된 후 목표물로부터 반사되어 상기 광수신모듈(200)로 수신되는 반사광(L3)은, 상기 회전형 미러(114`)에 의해 반사되어 1차적으로 경로가 전환되고, 상기 회전형 미러(114`)에 의해 반사된 반사광(L3)의 경로 상에 배치된 반사광 반사부재(210)에 의해 2차적으로 경로가 전환되어 상기 광수신모듈(200)의 렌즈(220) 및 실린더리컬렌즈(225)를 통과하여 광검출소자(230)로 수신될 수 있으며, 상기 반사광 반사부재(210)는 상기 미러홀더(116)의 경사부 상에 구비되어 반사광(L3)이 광수신모듈(200)로 수신될 수 있도록 반사하게 된다. The reflected light L3 emitted from the optical transmitting module 100 and reflected from the target and received by the optical receiving module 200 is reflected by the rotatable mirror 114 ′, and the path is primarily switched. The path is secondarily switched by the reflected light reflecting member 210 disposed on the path of the reflected light L3 reflected by the rotatable mirror 114 ′ so that the lens 220 of the light receiving module 200 is changed. And it may be received by the light detecting element 230 through the cylindrical lens 225, the reflected light reflecting member 210 is provided on the inclined portion of the mirror holder 116, the reflected light (L3) is a light receiving module Reflected to be received at (200).
상기 렌즈(220)는 비구면렌즈(Aspheric Lens)이고, 상기 실린더리컬렌즈(225)는 렌즈 표면이 원주의 측면 형태로 형성된 렌즈로서, 예를 들어, 상기 회전형 미러(114`)에 의해 상기 광검출소자(230)로 수신되는 반사광(L3)을 직선라인 형태로 집광하여 상기 광검출소자(230)의 광검출 영역으로 반사광(L3)이 모일 수 있도록 한다. The lens 220 is an aspheric lens, and the cylindrical lens 225 is a lens whose surface is formed in a circumferential side shape, for example, the optical sword by the rotatable mirror 114 ′. The reflected light L3 received by the output device 230 is collected in a straight line shape so that the reflected light L3 may be collected in the light detection area of the photodetector 230.
한편, 상기 반사광 반사부재(210)의 중앙측에는, 상기 회절광학소자(113)에 의해 분할된 도트 라인 형태의 다점 출력광(L2)을 통과시키기 위한 슬릿 형태의 통과홀(210h)이 형성될 수 있다. On the other hand, at the central side of the reflective light reflecting member 210, a slit type through hole 210h for passing the multi-point output light (L2) of the dot line divided by the diffraction optical element 113 can be formed. have.
그리고, 상기 반사광 반사부재(210)의 표면은 상기 슬릿형태의 통과홀(210h)과 같은 방향으로 곡률을 가지는 곡면의 형태로 형성될 수 있으며, 이러한 형상을 통해 작은 크기의 통과홀(210h)을 형성하면서도 광검출소자(230)로 수신되는 광량을 극대화할 수 있게 된다. In addition, the surface of the reflective light reflecting member 210 may be formed in the shape of a curved surface having a curvature in the same direction as the through hole 210h of the slit type, and through this shape to form a small pass hole 210h. While forming, it is possible to maximize the amount of light received by the photodetector 230.
상술한 바와 같은 광수신모듈(200)의 구성에 따르면, 회전형 미러(114`)와 반사광 반사부재(210)에 의해 경로가 전환된 반사광(L3)을 수신하게 되며, 수신된 반사광(L3)에 대한 정보를 제어기(300)로 전송하게 되고, 상기 제어기(300)는 상기 광수신모듈(200)로 수신된 반사광(L3)에 근거하여 목표물의 화상을 생성하게 된다. According to the configuration of the optical receiving module 200 as described above, the reflected light (L3) is converted to the path by the rotating mirror 114` and the reflected light reflecting member 210, the received reflected light (L3) Information on the controller 300 is transmitted to the controller 300, and the controller 300 generates an image of the target based on the reflected light L3 received by the light receiving module 200.
한편, 상기 회절광학소자(113)에 의해 분할된 도트 라인 형태의 다점 출력광(L2)은, 도 9에 도시된 바와 같이, 양 단부 측을 향할수록 광량이 적을 수 있는데, 이를 보완하기 위한 수광렌즈(220)나 광검출소자(230)의 출력신호를 차등 증폭회로를 적용하여 보완할 수 있다. 도 9의 세로축은 광량, 가로축은 수직 도트 라인의 상태위치를 의미한다. On the other hand, the multi-point output light (L2) in the form of a dot line divided by the diffractive optical element 113, as shown in Figure 9, the amount of light toward the both end side may be less, the light receiving to compensate for this The output signal of the lens 220 or the photodetector 230 may be compensated by applying a differential amplifier circuit. 9, the vertical axis represents light quantity and the horizontal axis represents state positions of vertical dot lines.
상술한 바와 같이, 광송신모듈(100), 광수신모듈(200) 및 제어기(300)를 포함하는 3차원 레이저 스캐닝 시스템의 구성에 따르면, 회절광학소자(113)를 이용하여 단점 입사광(L1)을 실선(Solid Line)이 아닌 도트 라인(Dot Line) 형태의 다점 출력광(L2)을 분할하여 방출하는 방식으로 3차원 스캔이 이뤄지도록 구성됨에 따라 저출력의 레이저 광파워를 이용하면서도 단위 스캐닝 픽셀 당 수신되는 광의 밀도를 높여 높은 수준의 거리영상신호를 얻을 수 있으며, 또한, 회절광학소자(113)의 회절용 패턴을 변경하는 방식으로 다점 출력광(L2)의 갯수와 퍼짐 각도를 간단하게 조절할 수 있어 정밀도 요구에 맞도록 쉽게 변경할 수 있는 이점이 있다. As described above, according to the configuration of the three-dimensional laser scanning system including the optical transmitting module 100, the optical receiving module 200, and the controller 300, the disadvantage of incident light L1 using the diffractive optical element 113. 3D scanning is performed by dividing the multi-point output light L2 in the form of a dot line instead of a solid line to emit 3D scans. By increasing the density of the received light, a high level distance image signal can be obtained, and the number and spreading angle of the multi-point output light L2 can be easily adjusted by changing the diffraction pattern of the diffractive optical element 113. There is an advantage that can be easily changed to meet the precision requirements.
본 발명은 첨부된 도면을 참조하여 바람직한 실시예를 중심으로 기술되었지만 당업자라면 이러한 기재로부터 본 발명의 범주를 벗어남이 없이 많은 다양하고 자명한 변형이 가능하다는 것은 명백하다. 따라서 본 발명의 범주는 이러한 많은 변형예들을 포함하도록 기술된 특허청구범위에 의해서 해석돼야 한다.Although the present invention has been described with reference to the accompanying drawings, it will be apparent to those skilled in the art that many different and obvious modifications are possible without departing from the scope of the invention from this description. Therefore, the scope of the invention should be construed by the claims described to include many such variations.

Claims (15)

  1. 단점 입사광을 다점 출력광으로 분할하는 광분할부와, 상기 광분할부에 의해 분할된 다점 출력광을 소정의 시야각 형태로 주사하는 광주사부를 포함하는 광송신모듈; Disadvantages The optical transmission module includes a light splitting unit for dividing incident light into multi-point output light, and a light scanning unit for scanning the multi-point output light divided by the light splitting unit in a predetermined viewing angle;
    상기 광송신모듈에서 방출된 후 목표물로부터 반사된 반사광을 수신하기 위한 광수신모듈; 및 An optical receiving module for receiving reflected light reflected from a target after being emitted from the optical transmitting module; And
    상기 광수신모듈로 수신된 반사광에 근거하여 목표물의 화상을 생성하는 제어기;를 포함하여 구성되는 3차원 스캐닝 시스템. And a controller configured to generate an image of a target based on the reflected light received by the light receiving module.
  2. 제1항에 있어서, The method of claim 1,
    상기 광분할부는, The light splitter,
    상기 단점 입사광을 소정 각도로 펼쳐진 도트 라인 형태의 다점 출력광으로 분할하도록 구성된 것을 특징으로 하는 3차원 스캐닝 시스템. The disadvantaged three-dimensional scanning system, characterized in that configured to split the incident light into a multi-point output light in the form of a dot line spread at a predetermined angle.
  3. 제2항에 있어서, The method of claim 2,
    상기 광주사부는, The Guangzhou Gwangsabu,
    상기 도트 라인 형태의 다점 출력광에 대해 수직인 방향으로 상기 도트 라인 형태의 다점 출력광을 소정 범위 각도로 반사시키도록 구성된 것을 특징으로 하는 3차원 스캐닝 시스템. And reflecting the dot line shaped multi-point output light at a predetermined range angle in a direction perpendicular to the dot line shaped multi-point output light.
  4. 제3항에 있어서, The method of claim 3,
    상기 광주사부는, The Guangzhou Gwangsabu,
    공진형 미러로 구성된 것을 특징으로 하는 3차원 스캐닝 시스템. 3D scanning system, characterized in that consisting of a resonant mirror.
  5. 제1항에 있어서, The method of claim 1,
    상기 광분할부는, The light splitter,
    회절용 패턴이 형성된 회절광학소자를 통해 상기 단점 입사광을 다점 출력광으로 분할하도록 구성된 것을 특징으로 하는 3차원 스캐닝 시스템. And a diffraction optical element having a diffraction pattern formed thereon, the three-dimensional scanning system configured to split the disadvantaged incident light into multi-point output light.
  6. 제1항에 있어서, The method of claim 1,
    상기 광분할부는, The light splitter,
    광원으로부터 제공된 단점 입사광의 광축을 정렬시키는 콜리메이터; Disadvantages provided from the light source collimator to align the optical axis of incident light;
    상기 콜리메이터에 의해 광축이 정렬된 단점 입사광의 경로를 전환시키는 입사광 반사부재; 및 An incident light reflecting member configured to switch a path of incident light by the collimator, the optical axis being aligned; And
    상기 입사광 반사부재에 의해 반사된 단점 입사광의 경로 상에 배치되어 상기 단점 입사광을 통과시킴에 따라 상기 단점 입사광을 도트 라인 형태의 다점 출력광으로 분할시키는 회절광학소자;를 포함하여 구성되고, And a diffraction optical element disposed on a path of the disadvantaged incident light reflected by the incident light reflecting member and splitting the disadvantaged incident light into a multi-point output light in the form of a dot line as it passes the disadvantaged incident light.
    상기 광주사부는, The Guangzhou Gwangsabu,
    상기 회절광학소자에 의해 분할된 도트 라인 형태의 다점 출력광의 경로 상에 배치되어 상기 도트 라인 형태의 다점 출력광에 대해 수직인 방향으로 상기 도트 라인 형태의 다점 출력광을 소정 범위 각도로 반사시키는 공진형 미러;를 포함하여 구성된 것을 특징으로 하는 3차원 스캐닝 시스템. Resonance arranged on the path of the multi-point output light of the dot line form divided by the diffraction optical element to reflect the multi-point output light of the dot line form in a direction perpendicular to the multi-point output light of the dot line form at a predetermined range angle 3D scanning system comprising a mirror;
  7. 제6항에 있어서, The method of claim 6,
    상기 광송신모듈에서 방출된 후 목표물로부터 반사되어 상기 광수신모듈로 수신되는 반사광은, The reflected light emitted from the optical transmission module and reflected from the target and received by the optical reception module,
    상기 공진형 미러에 의해 반사되어 1차적으로 경로가 전환되고, 상기 공진형 미러에 의해 반사된 반사광의 경로 상에 배치된 반사광 반사부재에 의해 2차적으로 경로가 전환되어 상기 광수신모듈로 수신되는 것을 특징으로 하는 3차원 스캐닝 시스템. The path is primarily reflected by the resonant mirror and the path is primarily switched, and the path is secondarily switched by the reflected light reflecting member disposed on the path of the reflected light reflected by the resonant mirror and received by the optical receiving module. 3D scanning system, characterized in that.
  8. 제6항에 있어서, The method of claim 6,
    상기 반사광 반사부재는 상기 광분할부에 배치되어,The reflected light reflecting member is disposed in the light splitter,
    상기 광주사부에서 상기 공진형 미러로 출력되는 다점 출력광과,Multi-point output light output from the optical scanning part to the resonance mirror;
    상기 공진형 미러에서 반사되는 반사광의 광축이 동일하게 형성된 것을 특징으로 하는 3차원 스캐닝 시스템.3D scanning system, characterized in that the same optical axis of the reflected light reflected from the resonant mirror.
  9. 제3항에 있어서, The method of claim 3,
    상기 광주사부는, The Guangzhou Gwangsabu,
    상술한 소정의 시야각을 커버하도록 회전하는 회전형 미러로 구성된 것을 특징으로 하는 3차원 스캐닝 시스템. And a rotating mirror rotating to cover the predetermined viewing angle described above.
  10. 제9항에 있어서, The method of claim 9,
    상기 회전형 미러는, The rotating mirror,
    양측 표면에 평면 미러가 구비되거나, 양측 표면에 회전 방향으로 굴곡진 곡면 미러가 구비된 것을 특징으로 하는 3차원 스캐닝 시스템. A planar mirror is provided on both surfaces, or a curved surface mirror curved in a rotational direction on both surfaces.
  11. 제1항에 있어서, The method of claim 1,
    상기 광분할부는, The light splitter,
    광원으로부터 제공된 단점 입사광의 광축을 정렬시키는 콜리메이터; Disadvantages provided from the light source collimator to align the optical axis of incident light;
    상기 콜리메이터에 의해 광축이 정렬된 단점 입사광의 경로를 전환시키는 입사광 반사부재; 및 An incident light reflecting member configured to switch a path of incident light by the collimator, the optical axis being aligned; And
    상기 입사광 반사부재에 의해 반사된 단점 입사광의 경로 상에 배치되어 상기 단점 입사광을 통과시킴에 따라 상기 단점 입사광을 도트 라인 형태의 다점 출력광으로 분할시키는 회절광학소자;를 포함하여 구성되고, And a diffraction optical element disposed on a path of the disadvantaged incident light reflected by the incident light reflecting member and splitting the disadvantaged incident light into a multi-point output light in the form of a dot line as it passes the disadvantaged incident light.
    상기 광주사부는, The Guangzhou Gwangsabu,
    상기 회절광학소자에 의해 분할된 도트 라인 형태의 다점 출력광의 경로 상에 배치되어 상기 도트 라인 형태의 다점 출력광에 대해 수직인 방향으로 상기 도트 라인 형태의 다점 출력광을 소정 범위 각도로 반사시키는 회전형 미러;를 포함하여 구성된 것을 특징으로 하는 3차원 스캐닝 시스템. The circuit is arranged on the path of the multi-point output light in the form of a dot line divided by the diffraction optical element and reflects the multi-point output light in the form of a dot line at a predetermined range angle in a direction perpendicular to the multi-point output light of the dot line. 3D scanning system comprising a; typical mirror.
  12. 제11항에 있어서, The method of claim 11,
    상기 광송신모듈에서 방출된 후 목표물로부터 반사되어 상기 광수신모듈로 수신되는 반사광은, The reflected light emitted from the optical transmission module and reflected from the target and received by the optical reception module,
    상기 회전형 미러에 의해 반사되어 1차적으로 경로가 전환되고, 상기 회전형 미러에 의해 반사된 반사광의 경로 상에 배치된 반사광 반사부재에 의해 2차적으로 경로가 전환되어 상기 광수신모듈로 수신되는 것을 특징으로 하는 3차원 스캐닝 시스템. The path is primarily reflected by the rotating mirror, and the path is secondarily switched by the reflected light reflecting member disposed on the path of the reflected light reflected by the rotating mirror and received by the optical receiving module. 3D scanning system, characterized in that.
  13. 제11항에 있어서, The method of claim 11,
    상기 반사광 반사부재는 상기 광분할부에 배치되어,The reflected light reflecting member is disposed in the light splitter,
    상기 광주사부에서 상기 회전형 미러로 출력되는 다점 출력광과,A multi-point output light output from the optical scanning part to the rotating mirror,
    상기 회진형 미러에서 반사되는 반사광의 광축이 동일하게 형성된 것을 특징으로 하는 3차원 스캐닝 시스템.3D scanning system, characterized in that the optical axis of the reflected light reflected from the revolving mirror is formed the same.
  14. 제7항 또는 제12항에 있어서, The method according to claim 7 or 12, wherein
    상기 반사광 반사부재의 중앙측에는, On the central side of the reflected light reflecting member,
    상기 회절광학소자에 의해 분할된 도트 라인 형태의 다점 출력광을 통과시키기 위한 통과홀이 형성된 것을 특징으로 하는 3차원 스캐닝 시스템. And a through hole for passing the multi-point output light in the form of a dot line divided by the diffractive optical element.
  15. 제7항 또는 제12항에 있어서, The method according to claim 7 or 12, wherein
    상기 광분할부는, The light splitter,
    ㄱ자형으로 형성되어 내부에 ㄱ자형 통과홀이 형성된 광전환하우징; A light conversion housing formed in an A-shape and having an A-shaped passage hole formed therein;
    일단이 상기 광전환하우징의 일측단에 구비되고, 타단에 경사부가 형성된 미러홀더;를 더 포함하여 구성되며, One end is provided on one side end of the optical conversion housing, the other end is a mirror holder formed with a slope;
    상기 콜리메이터는 상기 광전환하우징의 타측단에 구비되고, 상기 입사광 반사부재는 상기 광전환하우징의 내부에 형성된 ㄱ자형 통과홀의 코너부에 구비되며, 상기 반사광 반사부재는 상기 미러홀더의 경사부 상에 구비되는 것을 특징으로 하는 3차원 스캐닝 시스템. The collimator is provided at the other end of the light conversion housing, the incident light reflecting member is provided in the corner portion of the L-shaped through-hole formed in the light conversion housing, the reflected light reflecting member on the inclined portion of the mirror holder 3D scanning system, characterized in that provided.
PCT/KR2016/012015 2015-10-30 2016-10-25 Three-dimensional scanning system WO2017073982A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0151629 2015-10-30
KR1020150151629A KR101744610B1 (en) 2015-10-30 2015-10-30 Three dimensional scanning system
KR1020150170694A KR101884781B1 (en) 2015-12-02 2015-12-02 Three dimensional scanning system
KR10-2015-0170694 2015-12-02

Publications (1)

Publication Number Publication Date
WO2017073982A1 true WO2017073982A1 (en) 2017-05-04

Family

ID=58630775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012015 WO2017073982A1 (en) 2015-10-30 2016-10-25 Three-dimensional scanning system

Country Status (1)

Country Link
WO (1) WO2017073982A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318873A (en) * 2018-03-20 2018-07-24 深圳市速腾聚创科技有限公司 A kind of solid-state laser radar
CN108761421A (en) * 2018-03-20 2018-11-06 深圳市速腾聚创科技有限公司 A kind of solid-state laser radar
CN109443237A (en) * 2018-11-30 2019-03-08 广西师范大学 A kind of remote structured light three-dimensional measurement device
CN109471126A (en) * 2017-09-07 2019-03-15 南京理工大学 A kind of vibration for linear array laser radar turns to combine circumferential scanning device
CN110231608A (en) * 2019-08-07 2019-09-13 深圳市速腾聚创科技有限公司 Laser radar and intelligent-induction equipment
CN110988893A (en) * 2019-12-11 2020-04-10 武汉万集信息技术有限公司 Laser radar device
EP3742199A4 (en) * 2018-01-15 2021-06-23 Hesai Photonics Technology Co., Ltd Laser radar and operation method therefor
CN114609625A (en) * 2022-01-18 2022-06-10 北京锐达仪表有限公司 Reflective continuous rotation radar scanning device, measuring system and material measuring method
US12019187B2 (en) 2017-06-19 2024-06-25 Hesai Technology Co., Ltd. Lidar system and method
US12055661B2 (en) 2017-06-19 2024-08-06 Hesai Technology Co., Ltd. Lidar system and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576444B2 (en) * 1988-06-20 1997-01-29 オムロン株式会社 Multi-beam projector and shape recognition device using the same
JPH10170264A (en) * 1996-12-10 1998-06-26 Calsonic Corp Distance measuring device and accident avoiding device using it
KR20030049913A (en) * 2001-12-17 2003-06-25 엘지전자 주식회사 Light Source Device with a Multi-Path and Operating Method for the Same
KR20050108193A (en) * 2004-05-12 2005-11-16 주식회사 탑 엔지니어링 Sealant dispenser and method for controlling the same
KR20150012803A (en) * 2013-07-26 2015-02-04 한국철도기술연구원 Sensing appratus for using diffraction grating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2576444B2 (en) * 1988-06-20 1997-01-29 オムロン株式会社 Multi-beam projector and shape recognition device using the same
JPH10170264A (en) * 1996-12-10 1998-06-26 Calsonic Corp Distance measuring device and accident avoiding device using it
KR20030049913A (en) * 2001-12-17 2003-06-25 엘지전자 주식회사 Light Source Device with a Multi-Path and Operating Method for the Same
KR20050108193A (en) * 2004-05-12 2005-11-16 주식회사 탑 엔지니어링 Sealant dispenser and method for controlling the same
KR20150012803A (en) * 2013-07-26 2015-02-04 한국철도기술연구원 Sensing appratus for using diffraction grating

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12019187B2 (en) 2017-06-19 2024-06-25 Hesai Technology Co., Ltd. Lidar system and method
US12055661B2 (en) 2017-06-19 2024-08-06 Hesai Technology Co., Ltd. Lidar system and method
CN109471126B (en) * 2017-09-07 2022-12-02 南京理工大学 Vibration-rotation combined circumferential scanning device for linear array laser radar
CN109471126A (en) * 2017-09-07 2019-03-15 南京理工大学 A kind of vibration for linear array laser radar turns to combine circumferential scanning device
EP3742199A4 (en) * 2018-01-15 2021-06-23 Hesai Photonics Technology Co., Ltd Laser radar and operation method therefor
CN108318873A (en) * 2018-03-20 2018-07-24 深圳市速腾聚创科技有限公司 A kind of solid-state laser radar
CN108761421A (en) * 2018-03-20 2018-11-06 深圳市速腾聚创科技有限公司 A kind of solid-state laser radar
CN109443237B (en) * 2018-11-30 2023-09-22 广西师范大学 Remote structured light three-dimensional measuring device
CN109443237A (en) * 2018-11-30 2019-03-08 广西师范大学 A kind of remote structured light three-dimensional measurement device
CN110231608A (en) * 2019-08-07 2019-09-13 深圳市速腾聚创科技有限公司 Laser radar and intelligent-induction equipment
CN110988893A (en) * 2019-12-11 2020-04-10 武汉万集信息技术有限公司 Laser radar device
CN110988893B (en) * 2019-12-11 2022-04-12 武汉万集信息技术有限公司 Laser radar device
CN114609625A (en) * 2022-01-18 2022-06-10 北京锐达仪表有限公司 Reflective continuous rotation radar scanning device, measuring system and material measuring method

Similar Documents

Publication Publication Date Title
WO2017073982A1 (en) Three-dimensional scanning system
WO2013176362A1 (en) 3d scanning system, and method for obtaining 3d images using said system
WO2018124413A1 (en) Integrated light transmission/reception optical system module and scanning lidar having same
US20230384430A1 (en) Multi-Wavelength LIDAR System
US11448735B2 (en) LiDAR with malfunction detection
WO2018212395A1 (en) Lidar device and lidar system including the same
WO2016153233A1 (en) Lidar device
WO2020040390A1 (en) Apparatus and method for generating three-dimensional image
KR101884781B1 (en) Three dimensional scanning system
US20100296077A1 (en) Three-dimensional range imaging apparatus and method
WO2018056516A1 (en) Optical-system module and scanning lidar including same
WO2019112164A1 (en) Three-dimensional lidar device and distance measuring method
WO2017171140A1 (en) Scanning lidar device having concave reflecting mirror
WO2021261809A1 (en) Lidar apparatus
WO2013094791A1 (en) Distance measurement apparatus
WO2017204459A1 (en) Lidar optical apparatus having improved structure
WO2021060919A1 (en) Lidar optical device and scanning method therefor
EP3591436A1 (en) Lidar system and lidar method for a motor vehicle
US20210382150A1 (en) Wide fov lidar and vehicle with multiple galvanometer scanners
WO2019078401A1 (en) Lidar device and system comprising the same
US20220179047A1 (en) Lidar assembly with modularized components
KR101744610B1 (en) Three dimensional scanning system
CN113740827A (en) Laser radar system
WO2021095904A1 (en) Lidar device using dual wavelengths
KR102511118B1 (en) Lidar optical apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16860165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16860165

Country of ref document: EP

Kind code of ref document: A1