WO2024063030A1 - Method for manufacturing nozzle plate - Google Patents

Method for manufacturing nozzle plate Download PDF

Info

Publication number
WO2024063030A1
WO2024063030A1 PCT/JP2023/033794 JP2023033794W WO2024063030A1 WO 2024063030 A1 WO2024063030 A1 WO 2024063030A1 JP 2023033794 W JP2023033794 W JP 2023033794W WO 2024063030 A1 WO2024063030 A1 WO 2024063030A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
hole
manufacturing
flow path
nozzle plate
Prior art date
Application number
PCT/JP2023/033794
Other languages
French (fr)
Japanese (ja)
Inventor
光 横山
幸一 鮫島
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2024063030A1 publication Critical patent/WO2024063030A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/16Production of nozzles

Definitions

  • the present invention relates to a method for manufacturing a nozzle plate.
  • Patent Document 1 it is known that a nozzle plate of a droplet ejection head of a droplet ejection device is manufactured from a single crystal silicon substrate. Nozzle channels are formed in this nozzle plate by anisotropic wet etching.
  • the present invention aims to provide a method for manufacturing a nozzle plate that can achieve both high density nozzle openings and suitable injection characteristics.
  • the invention according to claim 1 is a method for manufacturing a nozzle plate of a droplet ejection head, comprising: a first hole that communicates with a first surface of a single crystal silicon substrate whose surface crystal orientation is ⁇ 100 ⁇ plane and is longer in the [100] direction than in the [010] direction; and the first hole and the single crystal. a first step of forming a second hole that can communicate with the second surface of the silicon substrate; By enlarging the first hole and the second hole by anisotropic wet etching on the single crystal silicon substrate, a nozzle taper portion having a ⁇ 111 ⁇ plane and a straight communication portion continuous to the nozzle taper portion are formed; and a second step of forming a nozzle flow path.
  • the invention according to claim 2 is a method for manufacturing the nozzle plate according to claim 1, comprising: In the first step, the length of the second hole in the [001] direction is the length from the end of the second hole on the first surface side to the end of the first hole in the [100] direction. They are formed so that they are approximately equal.
  • the invention according to claim 3 is a method for manufacturing the nozzle plate according to claim 1, comprising: In the first step, the length of the second hole in the [001] direction is longer than the length from the end of the second hole on the first surface side to the end of the first hole in the [100] direction. Form it so that it is also long, A step surface is formed in the nozzle taper portion.
  • the invention described in claim 4 is a method for manufacturing the nozzle plate described in any one of claims 1 to 3, comprising the steps of: The first hole and the second hole are centered.
  • the invention according to claim 5 is a method for manufacturing the nozzle plate according to any one of claims 1 to 3, In the first step, the bottom of the first hole is formed into a stepped shape.
  • the invention according to claim 6 is a method for manufacturing the nozzle plate according to any one of claims 1 to 3,
  • the first step is forming a third hole by deep-drilling the single-crystal silicon substrate halfway from the first surface by dry etching;
  • Next forming a nozzle mask layer along the inner surface of the third hole,
  • Next the step of removing the nozzle mask layer formed at the bottom of the third hole,
  • the first hole is formed by further digging the third hole
  • a nozzle flow path including a nozzle straight portion continuous from the end of the nozzle tapered portion on the second surface side is formed.
  • the invention according to claim 7 is a method for manufacturing the nozzle plate according to any one of claims 1 to 3, A non-wet etching layer is formed on the second surface of the single crystal silicon substrate.
  • the invention according to claim 8 is a method for manufacturing the nozzle plate according to any one of claims 1 to 3, The method includes a third step of enlarging the diameter of the opening on the first surface side and/or the second surface side of the nozzle flow path.
  • FIG. 2 is a perspective view of a droplet ejection device equipped with a droplet ejection head formed by stacking nozzle plates.
  • FIG. 3 is a plan view of the nozzle plate viewed from the [0 0 1] direction.
  • FIG. 3 is a plan view of the nozzle plate viewed from the [0 0 -1] direction.
  • FIG. 2 is a cross-sectional view of the nozzle plate according to the first embodiment, viewed from the [0 1 0] direction.
  • FIG. 3 is a perspective cross-sectional view showing a nozzle flow path formed by the nozzle plate manufacturing method according to the first embodiment.
  • FIG. 3 is a cross-sectional view of the progress of etching in the second step, viewed from the [1 0 0] direction.
  • FIG. 3 is a cross-sectional view of the progress of etching in the second step, viewed from the [0 1 0] direction.
  • FIG. 3 is a cross-sectional view of a nozzle flow path formed by shifting the centers of the opening hole and the nozzle hole in the [1 0 0] direction, as seen from the [0 1 0] direction.
  • FIG. 7 is a cross-sectional view of a nozzle plate according to a third embodiment when viewed from the [0 1 0] direction.
  • FIG. 7 is a perspective cross-sectional view showing a nozzle flow path formed by a nozzle plate manufacturing method according to a third embodiment.
  • FIG. 2 is a cross-sectional view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 1, viewed from the [0 1 0] direction.
  • FIG. 2 is a plan view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 1, viewed from the [0 0 1] direction.
  • FIG. 3 is a cross-sectional view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 2, viewed from the [0 1 0] direction.
  • FIG. 2 is a cross-sectional view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 1, viewed from the [0 1 0] direction.
  • FIG. 7 is a plan view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 2, viewed from the [0 0 1] direction.
  • FIG. 7 is a cross-sectional view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 3, viewed from the [0 1 0] direction.
  • FIG. 7 is a plan view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 3, viewed from the [0 0 1] direction.
  • Adhesion side surface of wafer surface (0 0 1) surface Discharge side surface of wafer surface: (0 0 -1) surface, Four tapered surfaces of the surfaces that make up the nozzle taper part: (1 1 1) plane, (-1 1 1) plane, (1 -1 1) plane, and (-1 -1 1) plane.
  • the vertical surfaces that form the straight communication section the two opposing surfaces with long sides among the four side surfaces that form the straight communication section: (0 1 0) surface and (0 -1 0) surface
  • the four side surfaces that form the straight communication section The two opposing faces with the shortest sides are described as the (1 0 0) face and the (-1 0 0) face.
  • the description is not limited to this as long as the surface and direction are equivalent to the contents of the description.
  • the method for manufacturing the nozzle plate 110 according to the first embodiment is a method for manufacturing the nozzle plate 110 (see FIG. 2) of the droplet ejection head 2 attached to the droplet ejection device 1 as shown in FIG.
  • the nozzle plate 110 is formed from a single crystal silicon substrate B whose surface has a ⁇ 100 ⁇ crystal orientation.
  • 2A is a plan view showing the (001) plane of the nozzle plate 110
  • FIG. 2B is a plan view showing the (00-1) plane of the nozzle plate 110.
  • the nozzle plate 110 is provided with a plurality of nozzle openings N arranged in a row along the [010] direction on the discharge surface (second surface) Ba ((00-1) plane). It is being The nozzle plate 110 is provided with a plurality of nozzle channels 100 penetrating from the adhesive surface (first surface) Bb ((001) surface) to the discharge surface Ba. The nozzle plate 110 is bonded to its adhesive surface Bb with another plate having an ink flow path using an adhesive or the like. Then, the liquid that has flowed in from the ink flow path is discharged from the nozzle opening N via the nozzle flow path 100.
  • FIG. 2B shows only one row of nozzle openings N, a plurality of nozzle openings N may be arranged in the [100] direction.
  • FIG. 3 is a cross-sectional view of the nozzle plate 110 viewed from the [010] direction.
  • FIG. 4 is a perspective cross-sectional view of one nozzle flow path 100.
  • the nozzle channel 100 includes a straight communication section 10, a nozzle taper section 20, and a nozzle opening N in this order from the adhesive surface Bb.
  • the straight communication portion 10 is provided from the adhesive surface Bb to the end of the nozzle tapered portion 20 on the adhesive surface Bb side. That is, the straight communication portion 10 constitutes an opening on the adhesive surface Bb side of the nozzle flow path 100.
  • the straight communication portion 10 is constituted by a portion of four ⁇ 100 ⁇ crystal planes ((100) plane, (-100) plane, (010) plane, and (0-10) plane). Further, in the straight communication portion 10, as shown in FIGS. 2A and 4, a pair of opposing surfaces 10a are substantially parallel.
  • the faces that constitute the straight communicating portion 10 have, among the sides that intersect with the adhesive surface Bb, a length in the [100] direction along a pair of opposing faces 10a that is longer than the length in the [010] direction. That is, the side formed by the surface constituting the straight communicating part 10 and the surface constituting the adhesive surface Bb has an elongated shape as shown in Figures 2A and 4.
  • the straight communicating part 10 By forming the straight communicating part 10 in this manner, it is possible to arrange the nozzle openings N at a narrow pitch in the short side length of the elongated shape while ensuring the volume of the nozzle flow path 100. That is, the density of the nozzle openings N in the nozzle plate 110 can be increased.
  • FIGS. 2A and 4 illustrate a case where the opening on the adhesive surface Bb side of the nozzle flow path 100 in the nozzle plate 110 is rectangular, the shape is not limited to this.
  • the opening on the bonding surface Bb side of the nozzle flow path 100 is expanded by performing the third step (removal process) described later, the opening will always have a rectangular shape.
  • the third step is not an essential step. Therefore, the opening on the adhesive surface Bb side of the nozzle flow path 100 in the nozzle plate 110 may have any shape that corresponds to the shape of the opening pattern 303, which will be described later, as long as it is elongated.
  • the nozzle tapered portion 20 includes a tapered surface 20a having a substantially constant angle and whose flow path area gradually increases from the discharge surface Ba toward the adhesive surface Bb. More specifically, the nozzle taper part 20 has four crystal planes whose crystal planes are ⁇ 111 ⁇ planes ((111) plane, (-111) plane, (1-11) plane, and (-1-11) plane). It is constituted by a tapered surface 20a which is , and a portion 20b of the four surfaces whose crystal planes are ⁇ 100 ⁇ planes.
  • the "flow path area" in the present invention refers to a cross-sectional area in a direction perpendicular to the ink ejection direction.
  • the tapered surface 20a of the nozzle tapered portion 20 has an angle ⁇ 1 (see FIG. 3) of 15° or more with an axis parallel to the nozzle central axis.
  • the tapered surface 20a is formed by performing anisotropic wet etching on the single crystal silicon substrate B. Therefore, due to the etching characteristics of Si, the angle ⁇ 1 is 45°.
  • the nozzle tapered portion 20 By providing the nozzle tapered portion 20, even when the liquid meniscus retreats deep into the nozzle flow path 100 due to high-speed driving, the meniscus shape and droplet discharge can be stabilized.
  • the nozzle opening N is a circular, elliptical, or polygonal hole provided on the ejection surface Ba and through which droplets are ejected.
  • the nozzle opening N communicates with the end of the nozzle tapered portion 20 on the discharge surface Ba side.
  • the method for manufacturing the nozzle plate 110 includes, for example, the first to third steps shown in FIG.
  • an intermediate structure 300 including an opening hole (first hole) 305 and a nozzle hole (second hole) 306, which will be described later, is formed.
  • the nozzle channel 100 is formed by performing anisotropic wet etching on the intermediate structure 300 formed in the first step.
  • the nozzle plate 110 formed in the second step is appropriately removed.
  • Step 1-1 a mask layer is formed on the surface of single crystal silicon substrate B. Specifically, a surface mask layer 301 is formed on the bonding surface Bb of single crystal silicon whose surface crystal orientation is the ⁇ 100 ⁇ plane. Further, a back mask layer 302 is formed on the ejection surface Ba. In the following, unless a particular distinction is made between the front mask layer 301 and the back mask layer 302, they will be collectively referred to as "mask layers" as described above.
  • the single crystal silicon substrate B is a plate-like member with a thickness of approximately 100 ⁇ m to 725 ⁇ m.
  • the material for forming the mask layer may be any material as long as it can stop the progress of etching during anisotropic wet etching, which will be described later. Further, any material may be used as long as it cannot be removed by etching.
  • the material of the mask layer is not particularly limited as long as it satisfies these conditions, but for example, an oxide such as SiO 2 (silicon oxide) can be used for the mask layer.
  • a metal film made of Al (aluminum), Cr (chromium), etc., resin, or the like can be used for the mask layer. In the present invention, SiO 2 is used as a mask layer.
  • the thickness of the mask layer is not particularly limited, but is preferably 0.1 ⁇ m to 50 ⁇ m, and more preferably 0.5 ⁇ m to 20 ⁇ m. When the mask layer has a thickness of 0.5 ⁇ m or more, the etching stop effect is enhanced. When the mask layer has a thickness of 20 ⁇ m or less, it can be easily formed. However, when the mask layer is formed by the above-mentioned thermal oxidation method, the thickness of the mask layer is preferably set to 1 ⁇ m to 5 ⁇ m. Furthermore, the mask layer is not limited to the single layer structure as shown in the figure, but may have a multi-layer structure.
  • an elongated opening pattern 303 is formed in the front mask layer 301 to become an opening on the bonding surface Bb side of the nozzle channel 100.
  • the shape of the opening pattern 303 is a hexagonal shape having long sides along the ⁇ 100> direction, but the shape is not limited to this.
  • the shape of the opening pattern 303 may be an elongated shape that is longer in the [100] direction than in the [010] direction. Therefore, the shape of the opening pattern 303 may be, for example, a rectangular shape, an elliptical shape, or a shape in which a short side of a rectangle is combined with a semicircle with a diameter having the same width as the short side.
  • a resist pattern is formed on the surface mask layer 301 using a well-known photolithography technique.
  • a positive photoresist or a negative photoresist can be used to form the resist pattern.
  • Known materials can be used as the positive photoresist and the negative photoresist.
  • ZPN-1150-90 manufactured by Zeon Corporation can be used as the negative photoresist.
  • OFPR-800LB and OEBR-CAP112PM manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
  • the resist layer is formed by applying it to a predetermined thickness using a spin coater or the like. Thereafter, a prebaking process is performed at 110° C. for 90 seconds.
  • HMDS treatment may be performed before resist coating.
  • the HMDS treatment uses an organic material called hexamethyldisilazane, such as OAP (hexamethyldisilazane, manufactured by Tokyo Ohka Kogyo Co., Ltd.).
  • HMDS may be applied using a spin coater, similar to resist application. Further, HMDS can be expected to have an effect of improving adhesion even when exposed to hexamethyldisilazane vapor.
  • the resist layer is exposed to light using an aligner or the like using a predetermined mask.
  • a predetermined mask For example, in the case of contact aligners, exposure is performed with a light intensity of approximately 50 mJ/cm 2 .
  • the resist layer is immersed in a developer (for example, NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd. for 60 to 90 seconds) to remove the exposed areas of the resist layer. As a result, a resist pattern is formed on the surface mask layer 301.
  • a developer for example, NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd. for 60 to 90 seconds
  • the opening pattern 303 is formed by dry etching the surface mask layer 301 using the resist pattern as a mask. After forming the opening pattern 303, the resist pattern is removed.
  • a RIE (Reactive Ion Etching) device is used for dry etching.
  • a dry etching apparatus such as an ICP (Inductively Coupled Plasma)-RIE etching apparatus, which is a dry etching apparatus that employs an inductive coupling method as a discharge type, is used.
  • ICP Inductively Coupled Plasma
  • CF 4 tetrafluoromethane
  • RIE-100C a dry etching apparatus manufactured by Samco Corporation
  • the opening pattern 303 can be formed by etching for a predetermined time under the conditions of CHF 3 gas flow rate of 80 sccm, pressure of 3 Pa, and RF power of 90 W.
  • examples of methods for removing the resist pattern include a wet process using acetone or an acid solution, and a dry process using oxygen plasma.
  • Step 1-3 the single crystal silicon substrate B under the opening pattern 303 is deeply etched by dry etching to form an opening hole 305.
  • a nozzle pattern 304 which becomes the nozzle opening N is formed.
  • the method for forming the nozzle pattern 304 is substantially the same as the method for forming the opening pattern 303 in step 1-2.
  • the nozzle pattern 304 in this embodiment is a square (diamond) having sides in the ⁇ 110> direction.
  • the nozzle pattern 304 is formed so that, when viewed from the adhesive surface Bb or the ejection surface Ba, its center approximately coincides with the center of the opening pattern 303. In the following, this condition is referred to as "Condition 1.”
  • Step 1-5) the single crystal silicon substrate B under the nozzle pattern 304 is deeply etched by dry etching to form a nozzle hole 306.
  • the nozzle hole 306 is formed so that its length a in the [001] direction approximately matches the length b of the end of the opening hole 305 in the [100] direction from the end of the nozzle hole 306 on the adhesive surface Bb side. do. In the following, this condition will be referred to as "Condition 2.”
  • a nozzle hole 306 so as to communicate with the opening hole 305.
  • the fluidity of the anisotropic wet etching solution used in the second step is improved. Therefore, anisotropic wet etching is always performed using a fresh chemical solution.
  • hydrogen gas generated during anisotropic wet etching can escape uniformly and efficiently through each nozzle channel 100. As a result, the wet etching progresses in the same manner in each nozzle channel 100, and a uniform nozzle channel 100 can be formed.
  • the intermediate structure 300 in which the opening hole 305 and the nozzle hole 306 communicate with each other at the time of the first step.
  • the opening hole 305 and the nozzle hole 306 only need to be able to communicate with each other when anisotropic wet etching is performed in the second step.
  • step 1-1 the first step is carried out in the order of step 1-1, step 1-2, step 1-3, step 1-4, and step 1-5
  • step 1-5 the present invention is not limited to this. I can't do it. At least three steps are to be taken: performing step 1-1 first, performing step 1-2 before step 1-3, and performing step 1-4 before step 1-5. All you have to do is meet the conditions.
  • condition 1 may be rephrased as "the opening pattern 303 is formed so that its center substantially coincides with the center of the nozzle pattern 304 when viewed from the adhesive surface Bb or the ejection surface Ba".
  • Condition 2 is such that "the length b of the end of the nozzle hole 306 on the adhesive surface Bb side from the end in the [100] direction is approximately equal to the length a of the nozzle hole 306 in the [001] direction. It may also be stated as "forming an opening hole 305".
  • anisotropic wet etching is performed on both the adhesive surface Bb and the ejection surface Ba of the intermediate structural body 300 formed in the first step.
  • Fig. 6A is a cross-sectional view showing the progress of etching in the second step as viewed from the [100] direction which constitutes the short side of the opening hole 305.
  • Fig. 6B is a cross-sectional view showing the progress of etching in the second step as viewed from the [010] direction which constitutes the long side of the opening hole 305.
  • the opening hole 305 provided in the first-3 step and the nozzle hole 306 provided in the first-5 step are enlarged, thereby forming a nozzle flow path 100 including a nozzle taper portion 20 and a straight communicating portion 10.
  • An alkaline aqueous solution is used for anisotropic wet etching. Specifically, they include KOH (potassium hydroxide), TMAH (tetramethylammonium hydroxide), and EDP (ethylenediamine pyrocatechol).
  • the surfaces forming the opening hole 305 and the nozzle hole 306 are aligned in the [010] direction and the [0-10] direction. Etching progresses. Therefore, the distance between the (010) plane and the (0-10) plane after anisotropic wet etching is (diameter of nozzle pattern 304+2 ⁇ etching amount) ⁇ m (3).
  • the distance between the (100) plane and the (-100) plane after anisotropic wet etching is (diameter of nozzle pattern 304 + 6 x etching amount) ⁇ m (4).
  • the nozzle flow path 100 formed according to the present invention has an elongated shape in which the opening on the adhesive surface Bb side has a different dimension between the long side and the short side. This is preferable from the viewpoint of increasing the density of the nozzle openings N.
  • the distance between the (010) plane and the (0-10) plane is the same as the nozzle flow path. This is the short side dimension of the opening on the bonding surface Bb side of 100. Further, the distance between the (100) plane and the (-100) plane is the dimension on the long side.
  • the ratio of the interval between the (010) plane and the (0-10) plane and the interval between the (100) plane and the (-100) plane that is, the ratio of the interval between the (100) plane and the (-100) plane, that is, the The theoretical limit value of the ratio of the short side dimension to the long side dimension of the opening on the adhesive surface Bb side is 1:3.
  • Removal process Removal process
  • removal processing such as etching, grinding, or polishing is performed on the nozzle plate 110.
  • the removal process is performed so that the straight communication portion 10 becomes substantially vertical, and the diameter of the opening on the bonding surface Bb side of the nozzle channel 100 after anisotropic wet etching is expanded.
  • the thickness of the nozzle plate 110 is adjusted to a desired dimension.
  • the mask layer is removed.
  • the nozzle pattern 304 can be removed by performing removal processing such as photolithography, transfer to the back mask layer 302, and etching again from the ejection surface Ba side.
  • the diameter of the opening N can be expanded.
  • the third step is not an essential step, and may be performed as needed.
  • the method for manufacturing the nozzle plate 110 according to the first embodiment includes an opening hole (first hole) 305 that is elongated in the [100] direction, and a nozzle that can communicate with the opening hole 305 and the discharge surface Ba.
  • the method includes a first step of forming an intermediate structure 300 having a hole (second hole) 306 .
  • the method also includes a second step of enlarging the opening hole 305 and the nozzle hole 306 by anisotropic wet etching to form the nozzle flow path 100.
  • condition 1 and condition 2 are described as "approximately the same" above is because they may not be completely the same due to manufacturing errors.
  • Fig. 7A shows a case where condition 1 is not satisfied.
  • Fig. 7B shows a case where condition 2 is not satisfied, with a>b.
  • Fig. 7C shows a case where condition 2 is not satisfied, with a ⁇ b. All of Figs. 7A to 7C include a step in tapered surface 20a. As can be seen from a comparison of FIG. 5 with FIG. 7A to FIG. 7C, by satisfying condition 1 and condition 2, a nozzle flow channel 100 with a smooth tapered surface 20a is formed.
  • the nozzle opening N is the same as the nozzle opening N of the tapered surface 20a. Located at the symmetrical center of the plane between the steps. This is because at least the portion of the nozzle taper portion 20 that communicates with the nozzle opening N is enlarged from the nozzle hole 306 .
  • the nozzle tapered portion 20 is always formed from the nozzle hole 306.
  • the nozzle opening N is arranged without any positional deviation at the symmetrical center of the surface between the nozzle opening N and the step of the tapered surface 20a. Therefore, even if there is a manufacturing error in Condition 1 or Condition 2, it is possible to form a nozzle plate 110 that has no eccentricity, maintains the symmetry of the liquid flow, and has the nozzle flow path 100 with a stable injection angle. .
  • the nozzle plate 110 having a nozzle flow path 100 with an elongated opening on the adhesive surface Bb. Therefore, the nozzle openings N can be made denser in the nozzle plate 110. Furthermore, when the nozzle plate 110 is joined to another plate having an elongated cross-sectional shape of the ink flow path, the joint between the nozzle flow path 100 and the ink flow path matches in shape, resulting in favorable ejection characteristics.
  • the opening pattern 303 is not limited to a hexagon having a long side along the ⁇ 100> direction
  • the nozzle pattern 304 is not limited to a square having a side along the ⁇ 110> direction.
  • the opening pattern 303 and the nozzle pattern 304 have the above shapes, which makes it easier for anisotropic wet etching such as that shown in FIG.
  • FIGS. 7A to 7C illustrate cases where a manufacturing error related to condition 1 or condition 2 occurs in the first step.
  • FIG. 7B there is a nozzle flow path in which a>b and a hanging surface with a step in the nozzle taper portion 20 or an inclined surface (step surface) having an inclination steeper than the angle ⁇ 1 is formed.
  • 100 has better meniscus stability. This is because when the step surface is formed, even if the meniscus returns to the back side of the nozzle flow path 100, the expansion in the [100] direction is suppressed, and the width in the [100] direction and the width in the [010] direction are This is because the width and length can be made the same.
  • the step surface it is preferable to form the step surface so that the length from the ejection surface Ba to the end of the step surface on the adhesive surface Bb side is 20 ⁇ m or more and 60 ⁇ m or less. This is because it is rare for the liquid to be drawn in greater than 20 ⁇ m, and if the length is greater than 60 ⁇ m, the nozzle flow path 100 will not be able to ensure a sufficient volume.
  • FIG. 8 illustrates a method for manufacturing the nozzle plate 110 according to the second embodiment. Note that since the step 1-1 is the same as that in the first embodiment, detailed explanation thereof will be omitted.
  • Step 1-2a resist pattern formation and dry etching are performed twice as the 1-2a step. Specifically, after the opening pattern 303 is formed, a resist pattern having a size that surrounds the opening pattern 303 is formed. Further, dry etching is performed with an etching amount smaller than that of the opening pattern 303 to form the sub-pattern 303a. After forming the opening pattern 303 and the sub-pattern 303a, the resist pattern is removed.
  • Step 1-3 After the opening pattern 303 and the sub-pattern 303a are formed, the opening hole 305 is formed by deep drilling using dry etching. At this time, in the sub-pattern 303a, the surface mask layer 301 is first etched. Then, when the etching of the surface mask layer 301 is completed, the single crystal silicon substrate B is etched. On the other hand, in the opening pattern 303, there is no surface mask layer 301. Therefore, the single crystal silicon substrate B is immediately etched.
  • the amount of etching of the single crystal silicon substrate B is different between the opening pattern 303 and the sub-pattern 303a. That is, the single crystal silicon substrate B under the opening pattern 303 is etched more deeply. As a result, an open hole 305 with a stepped bottom is formed as shown in FIG.
  • Step 1-4, Step 1-5, Step 2, Step 3 After the opening hole 305 is formed, the nozzle hole 306 is formed in the 1-4th step and the 1-5th step. Then, in a second step, the nozzle channel 100 is formed by anisotropic wet etching. After the second step, appropriate removal processing is performed as a third step.
  • the method for manufacturing the nozzle plate 110 according to the second embodiment is to form the sub-pattern 303a having a different size and thickness from the opening pattern 303, thereby forming the opening holes 305 with stepped bottoms. Form. According to this configuration, the ratio of the short dimension to the long dimension of the opening on the bonding surface Bb side of the nozzle flow path 100 can be made even larger than 1:3. Therefore, it becomes possible to further increase the density of the nozzle openings N.
  • the sub-pattern 303a is formed after the opening pattern 303 is formed, but the order is not limited to this, and the order may be reversed.
  • the opening hole 305 having a plurality of steps may be formed by performing resist pattern formation and dry etching two or more times.
  • the present invention is not limited to this. That is, the aperture pattern 303 and the sub-pattern 303a may be formed at the same time by using a gray tone mask.
  • a method for manufacturing the nozzle plate 110 according to the third embodiment will be explained based on FIG. 11.
  • a nozzle flow path 100 including a nozzle straight portion 30 as shown in FIGS. 9 and 10 is formed.
  • the nozzle straight portion 30 is a flow path where the discharge surface Ba side is continuous with the nozzle opening N and the adhesive surface Bb side is continuous with the nozzle tapered portion 20.
  • a nozzle straight portion 30 formed by a surface that forms an angle of 0° with an axis parallel to the nozzle central axis as shown in FIG. 9A will be exemplified, but the present invention is not limited to this.
  • the angle ⁇ 2 between the surface constituting the nozzle straight section 30 and an axis parallel to the nozzle central axis is approximately constant at every point and is in the range of 0° ⁇ 2 ⁇ 15°.
  • steps 1-A to 1-C are sequentially executed after at least step 1-4 and before step 1-5.
  • 1-1 step is executed first
  • 1-2 step is executed before 1-3 step
  • the step The order is not particularly limited. However, in practice, it is preferable to perform steps 1-A to 1-C before step 1-3. This is because when step 1-B, which will be described later, is performed after step 1-3, a mask layer is also formed in the opening hole 305, and a step of removing the mask layer is required.
  • Step 1-A After forming the nozzle pattern 304 in step 1-4, in step 1-A, the single crystal silicon substrate B below the nozzle pattern 304 is dry etched by a predetermined amount. This forms a nozzle straight hole (third hole) 307. In this step, it is sufficient to etch only the length of the planned nozzle straight portion 30.
  • Step 1-B After the nozzle straight hole 307 is formed, in step 1-B, a nozzle mask layer 308 is formed along the inner surface of the nozzle straight hole 307.
  • the nozzle mask layer 308 is formed using the same material and method as the mask layer.
  • Step 1-C After forming the nozzle mask layer 308, the nozzle mask layer 308 formed at the bottom of the nozzle straight hole 307 is removed as a 1-C step.
  • the nozzle mask layer 308 at the bottom of the nozzle straight hole 307 can be removed by dry etching using an RIE apparatus or the like.
  • the nozzle mask layer 308 formed on the side surfaces is more difficult to remove than the bottom portion. Therefore, of the nozzle mask layer 308, the layer formed at the bottom of the nozzle straight hole 307 is etched first, and the layer formed at the side surface remains.
  • etching conditions in this step may be set to low pressure or high bias to make it more difficult for the nozzle mask layer 308 on the side surfaces to be etched.
  • Step 1-5 Step 1-2, Step 1-3
  • the single crystal silicon substrate B is dry etched to further dig the nozzle straight hole 307 to form a nozzle hole 306. Then, an opening hole 305 is provided in the 1-2nd step and the 1-3rd step.
  • anisotropic wet etching is performed as a second step.
  • the side surface of the nozzle straight hole 307 is protected by a nozzle mask layer 308. Therefore, the progress of etching on the side surface portion of the nozzle straight hole 307 is suppressed, and the side surface portion remains as the nozzle straight portion 30.
  • appropriate removal processing is performed as a third step. Note that in this embodiment, the nozzle mask layer 308 may also be removed together with the mask layer in the third step.
  • the method for manufacturing the nozzle plate according to the third embodiment includes steps 1-A to 1-C for forming the nozzle straight hole 307 and the nozzle mask layer 308 .
  • steps 1-A to 1-C for forming the nozzle straight hole 307 and the nozzle mask layer 308 .
  • the nozzle straight section 30 increases the resistance when droplets are ejected, suppresses the vibration of the meniscus, and makes the meniscus shape more stable. Therefore, it is possible to form a nozzle plate 110 that includes a nozzle flow path 100 with improved ejection stability.
  • the nozzle straight part 30 is formed by forming the nozzle straight hole 307 and the nozzle mask layer 308 was illustrated above, it is not limited to this.
  • the nozzle straight portion 30 can also be formed using a single crystal silicon substrate B provided with a non-wet etching layer having etching resistance.
  • the non-wet etching layer refers to a layer having etching resistance that can be formed, for example, by masking, thermal oxidation processing, or doping with high concentration B (boron).
  • a quartz layer formed by a method other than the above-mentioned thermal oxidation may be provided on the single crystal silicon substrate B, and the quartz layer may be used as the non-wet etching layer.
  • a non-wet etching layer having the same thickness as the nozzle plate 110 is provided on at least the ejection surface Ba side of the single crystal silicon substrate B. Then, when a nozzle hole 306 is formed using such a single crystal silicon substrate B and anisotropic wet etching is performed, the non-wet etching layer plays the same role as the nozzle mask layer 308. Therefore, the nozzle straight portion 30 can be formed in the nozzle flow path 100 even by using the single crystal silicon substrate B having a non-wet etching layer.
  • the "length a of the nozzle hole 306 in the [001] direction" according to condition 2 includes the length in the [001] direction of parts that have etching resistance, such as the nozzle mask layer 308 and non-wet etching layers. Of course not.
  • a step of forming at least one protective film may be added in order to use the nozzle plate 110 for a long period of time.
  • a step of forming a protective film covering at least a portion of the surface including the inside of the nozzle flow path 100 is performed after the second step or the third step.
  • the protective film is mainly made of a material that does not dissolve upon contact with the ink, such as a metal oxide film (tantalum pentoxide, hafnium oxide, niobium oxide, titanium oxide, zirconium oxide, etc.) or a metal oxide film containing silicon.
  • the materials used to form the mask layer include metal silicate films (tantalum silicate, hafnium silicate, niobium silicate, titanium silicate, zirconium silicate, etc.), SiC (silicon carbide) films, DLC (diamond-like carbon) films, etc. It can be used selectively.
  • an organic film such as polyimide, polyamide, parylene, etc. may be used as the protective film.
  • the thickness of the protective film is not particularly limited, but may be, for example, 0.05 ⁇ m to 20 ⁇ m.
  • Example creation A nozzle plate 110 having 1280 nozzle channels 100 formed according to the following Examples and Comparative Examples was manufactured. Then, the inkjet head, which is the droplet ejection head 2, is bonded to a piezoelectric plate having an ink flow path whose opening on the adhesive surface has the same shape as the opening on the adhesive surface Bb side of the nozzle flow path 100. Formed. Then, the inkjet head was mounted on an inkjet recording device, which is the droplet ejection device 1.
  • FIGS. 12 to 14 are diagrams showing one nozzle flow path 100 in the nozzle plate 110 according to each embodiment.
  • the dotted line portion indicates the intermediate structure 300 formed in the first step.
  • the solid line portion is anisotropic wet etching performed on the intermediate structure 300 in the second step, and removal processing is performed in the third step so that the straight communication portion 10 becomes approximately vertical, so that the bonding surface Bb side is A nozzle flow path 100 with a rectangular opening is shown.
  • Example 1 The nozzle plate 110 was formed based on the manufacturing method according to the second embodiment. That is, as shown in FIGS. 12A and 12B, an intermediate structure 300 was formed in which the bottom of the opening hole 305 was stepped. Then, a nozzle flow path 100A including a nozzle tapered portion 20A, a straight communication portion 10A, and a nozzle opening N was formed.
  • the shape of the opening pattern 303 is hexagonal in plan view. Further, the dimensions of the opening on the adhesive surface Bb side of the nozzle flow path 100A are 50 ⁇ m ⁇ 130 ⁇ m, and the nozzle opening N is circular with a diameter of 30 ⁇ m. Further, the intermediate structure 300 formed in the first step was designed so that a ⁇ b ⁇ c ⁇ d.
  • Example 2 The nozzle plate 110 was formed based on the manufacturing method according to the third embodiment. That is, as shown in FIGS. 13A and 13B, a nozzle flow path 100B including a nozzle straight section 30B, a nozzle tapered section 20B, a straight communication section 10B, and a nozzle opening N was formed.
  • the shape of the opening pattern 303 is a combination of a short side of a rectangle and a semicircle with a diameter that is the same width as the short side.
  • the dimensions of the opening on the adhesive surface Bb side of the nozzle flow path 100B are 50 ⁇ m ⁇ 130 ⁇ m.
  • the length of the nozzle straight portion 30B in the [001] direction is 30 ⁇ m.
  • a circular nozzle pattern 304 with a diameter of 10 ⁇ m is formed in the 1st-4th process, and the nozzle opening N is formed in a circular shape with a diameter of 30 ⁇ m in the 3rd process. Expanded to take shape.
  • condition 2 it was designed so that a>b. Therefore, a vertical surface (stepped surface) with a length of 10 ⁇ m in the [001] direction was formed, which provided a step on the tapered surface 20aB of the nozzle tapered portion 20B.
  • the nozzle plate 110 was formed based on the manufacturing method according to the third embodiment. That is, as shown in FIGS. 14A and 14B, a nozzle flow path 100C including a nozzle straight section 30C, a nozzle tapered section 20C, a straight communication section 10C, and a nozzle opening N was formed.
  • the opening pattern 303 has a rectangular shape in which the length in the [010] direction is longer than the length in the [100] direction. Further, the dimensions of the opening of the nozzle flow path 100C on the adhesive surface Bb side are 50 ⁇ m ⁇ 130 ⁇ m. Further, as shown in FIGS. 14A and 14B, in this example, a diamond-shaped nozzle pattern 304 with a diameter of 10 ⁇ m is formed in the 1st-4th process, and the nozzle opening N is formed in a circle with a diameter of 30 ⁇ m in the 3rd process. Expanded to take shape.
  • etching conditions were appropriately set in the nozzle opening expansion step. Therefore, the nozzle straight portion 30C had a tapered surface with an angle ⁇ 2 of 8°, a length in the [001] direction of 35 ⁇ m, and a diameter at the end on the adhesive surface Bb side of 40 ⁇ m.
  • the nozzle flow path 100 was formed by a conventionally known method. That is, although the nozzle tapered part 20 and the straight communication part 10 are provided, the opening of the nozzle flow path 100 on the adhesive surface Bb side has a square shape of 50 ⁇ m ⁇ 50 ⁇ m.
  • Test 1 The results of Test 1 and Test 2 are shown in Table I.
  • Example 1 has better meniscus stability and is less likely to cause injection failure. This is because in the first embodiment, the nozzle tapered portion 20A is formed such that the center of the nozzle opening N is located at the symmetrical center of the tapered surface 20aA.
  • Example 2 and 3 have improved injection angles and improved injection characteristics. This is because the nozzle straight portions 30B and 30C are formed in the nozzle flow path 100.
  • Example 2 has better meniscus stability and is less likely to cause injection defects. This is because a stepped surface is formed on the tapered surface 20aB of the nozzle tapered portion 20B.
  • the present invention can be used in a method for manufacturing a nozzle plate that can achieve both high density nozzle openings and suitable injection characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

This method for manufacturing a nozzle plate 110 comprises: a first step for forming a first hole 305 that is longer in the [100] direction as compared with in the [010] direction and that is connected to a first surface Bb of a monocrystalline silicon substrate B in which the surface crystal orientation is in the (100) plane, and a second hole 306 that is connectable to the first hole 305 and to a second surface Ba of the monocrystalline silicon substrate B; and a second step for enlarging the first hole 305 and the second hole 306 by performing anisotropic wet etching on the monocrystalline silicon substrate B to form a nozzle flow path 100 that comprises a nozzle taper portion 20 having the (111) plane and a straight connecting portion 10 contiguous to the nozzle taper portion 20.

Description

ノズルプレートの製造方法Manufacturing method of nozzle plate
 本発明は、ノズルプレートの製造方法に関する。 The present invention relates to a method for manufacturing a nozzle plate.
 従来、特許文献1に示すように、液滴吐出装置の液滴吐出ヘッドのノズルプレートを、単結晶シリコン基板により製造することが知られている。かかるノズルプレートには、異方性ウェットエッチングにより、ノズル流路が形成される。 Conventionally, as shown in Patent Document 1, it is known that a nozzle plate of a droplet ejection head of a droplet ejection device is manufactured from a single crystal silicon substrate. Nozzle channels are formed in this nozzle plate by anisotropic wet etching.
特許第5519263号公報Patent No. 5519263
 ところで、表面の結晶方位が{100}面である単結晶シリコン基板に対して異方性ウェットエッチングを実行する場合、腐食作用が一定方向に進む。そのため、液滴吐出面と対向する面の開口部が正方形状となるようなノズル流路しか形成することができない。このようなノズルプレートを、インク流路の断面形状が例えば長方形状である他のプレートと接合すると、インク流路とノズル流路の接合部が形状不一致となる。そのため、インク射出時の抵抗が強くなり、駆動電圧を上昇させる必要があった。また、メニスカスが不安定になって射出欠が生じるなど、射出特性が悪化してしまう。更に、ノズル流路の形状に制約があるため、ノズル流路の体積を確保しようとすると単結晶シリコン基板に一列に並設されるノズル開口部の高密度化が難しい。 By the way, when performing anisotropic wet etching on a single crystal silicon substrate whose surface crystal orientation is {100} plane, the corrosion action progresses in a fixed direction. Therefore, it is only possible to form a nozzle flow path in which the opening on the surface facing the droplet ejection surface has a square shape. If such a nozzle plate is joined to another plate whose ink flow path has a rectangular cross-sectional shape, for example, the shape of the joint between the ink flow path and the nozzle flow path will be mismatched. Therefore, the resistance during ink ejection becomes strong, and it is necessary to increase the driving voltage. In addition, the meniscus becomes unstable and injection defects occur, resulting in deterioration of injection characteristics. Further, since there are restrictions on the shape of the nozzle flow path, it is difficult to increase the density of the nozzle openings arranged in a row on the single crystal silicon substrate in order to secure the volume of the nozzle flow path.
 本発明はかかる課題を解決するために、ノズル開口部の高密度化と好適な射出特性を両立させることができるノズルプレートの製造方法を提供することを目的とする。 In order to solve these problems, the present invention aims to provide a method for manufacturing a nozzle plate that can achieve both high density nozzle openings and suitable injection characteristics.
 請求項1に記載の発明は、液滴吐出ヘッドのノズルプレートの製造方法であって、
 表面の結晶方位が{100}面である単結晶シリコン基板の第1面に連通し[010]方向に比べて[100]方向に長尺な第1穴と、前記第1穴と前記単結晶シリコン基板の第2面とに連通可能な第2穴と、を形成する第1工程と、
 前記単結晶シリコン基板に対する異方性ウェットエッチングにより前記第1穴及び前記第2穴を拡大することで、{111}面を有するノズルテーパー部と、当該ノズルテーパー部に連続するストレート連通部と、を備えるノズル流路を形成する第2工程と、を含む。
The invention according to claim 1 is a method for manufacturing a nozzle plate of a droplet ejection head, comprising:
a first hole that communicates with a first surface of a single crystal silicon substrate whose surface crystal orientation is {100} plane and is longer in the [100] direction than in the [010] direction; and the first hole and the single crystal. a first step of forming a second hole that can communicate with the second surface of the silicon substrate;
By enlarging the first hole and the second hole by anisotropic wet etching on the single crystal silicon substrate, a nozzle taper portion having a {111} plane and a straight communication portion continuous to the nozzle taper portion are formed; and a second step of forming a nozzle flow path.
 請求項2に記載の発明は、請求項1記載のノズルプレートの製造方法であって、
 前記第1工程において、前記第2穴の[001]方向の長さは、前記第2穴の前記第1面側の端部から前記第1穴の[100]方向の端部までの長さと略等しくなるように形成する。
The invention according to claim 2 is a method for manufacturing the nozzle plate according to claim 1, comprising:
In the first step, the length of the second hole in the [001] direction is the length from the end of the second hole on the first surface side to the end of the first hole in the [100] direction. They are formed so that they are approximately equal.
 請求項3に記載の発明は、請求項1記載のノズルプレートの製造方法であって、
 前記第1工程において、前記第2穴の[001]方向の長さは、前記第2穴の前記第1面側の端部から前記第1穴の[100]方向の端部までの長さよりも長くなるように形成し、
 前記ノズルテーパー部に段差面を形成する。
The invention according to claim 3 is a method for manufacturing the nozzle plate according to claim 1, comprising:
In the first step, the length of the second hole in the [001] direction is longer than the length from the end of the second hole on the first surface side to the end of the first hole in the [100] direction. Form it so that it is also long,
A step surface is formed in the nozzle taper portion.
 請求項4に記載の発明は、請求項1から3のいずれか一項に記載のノズルプレートの製造方法であって、
 前記第1穴と前記第2穴の中心が一致する。
The invention described in claim 4 is a method for manufacturing the nozzle plate described in any one of claims 1 to 3, comprising the steps of:
The first hole and the second hole are centered.
 請求項5に記載の発明は、請求項1から3のいずれか一項に記載のノズルプレートの製造方法であって、
 前記第1工程において、前記第1穴の底部を段状に形成する。
The invention according to claim 5 is a method for manufacturing the nozzle plate according to any one of claims 1 to 3,
In the first step, the bottom of the first hole is formed into a stepped shape.
 請求項6に記載の発明は、請求項1から3のいずれか一項に記載のノズルプレートの製造方法であって、
 前記第1工程は、
 前記単結晶シリコン基板を、前記第1面からドライエッチングにより途中まで深掘り加工することで、第3穴を形成し、
 次いで、前記第3穴の内面に沿ってノズルマスク層を形成し、
 次いで、前記第3穴の底部に形成された前記ノズルマスク層を除去する工程を含み、
 前記第1穴は、前記第3穴を更に深掘り加工することで形成し、
 前記第2工程により前記ノズルテーパー部の前記第2面側の端部から連続するノズルストレート部を備えるノズル流路を形成する。
The invention according to claim 6 is a method for manufacturing the nozzle plate according to any one of claims 1 to 3,
The first step is
forming a third hole by deep-drilling the single-crystal silicon substrate halfway from the first surface by dry etching;
Next, forming a nozzle mask layer along the inner surface of the third hole,
Next, the step of removing the nozzle mask layer formed at the bottom of the third hole,
The first hole is formed by further digging the third hole,
In the second step, a nozzle flow path including a nozzle straight portion continuous from the end of the nozzle tapered portion on the second surface side is formed.
 請求項7に記載の発明は、請求項1から3のいずれか一項に記載のノズルプレートの製造方法であって、
 前記単結晶シリコン基板は、前記第2面から非ウェットエッチング層が形成されている。
The invention according to claim 7 is a method for manufacturing the nozzle plate according to any one of claims 1 to 3,
A non-wet etching layer is formed on the second surface of the single crystal silicon substrate.
 請求項8に記載の発明は、請求項1から3のいずれか一項に記載のノズルプレートの製造方法であって、
 前記ノズル流路の前記第1面側及び/又は前記第2面側の開口部の径を拡大する第3工程を含む。
The invention according to claim 8 is a method for manufacturing the nozzle plate according to any one of claims 1 to 3,
The method includes a third step of enlarging the diameter of the opening on the first surface side and/or the second surface side of the nozzle flow path.
 本発明によれば、ノズル開口部の高密度化と好適な射出特性を両立させることができるノズルプレートの製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a nozzle plate that can achieve both high density nozzle openings and suitable injection characteristics.
ノズルプレートが積層して形成された液滴吐出ヘッドが搭載された液滴吐出装置の斜視図である。FIG. 2 is a perspective view of a droplet ejection device equipped with a droplet ejection head formed by stacking nozzle plates. ノズルプレートを[0 0 1]方向から見た平面図である。FIG. 3 is a plan view of the nozzle plate viewed from the [0 0 1] direction. ノズルプレートを[0 0 -1]方向から見た平面図である。FIG. 3 is a plan view of the nozzle plate viewed from the [0 0 -1] direction. 第1実施形態に係るノズルプレートを[0 1 0]方向から見た断面図である。FIG. 2 is a cross-sectional view of the nozzle plate according to the first embodiment, viewed from the [0 1 0] direction. 第1実施形態に係るノズルプレートの製造方法によって形成されるノズル流路を示す斜視断面図である。FIG. 3 is a perspective cross-sectional view showing a nozzle flow path formed by the nozzle plate manufacturing method according to the first embodiment. 第1実施形態に係るノズルプレートの製造方法を[0 1 0]方向から見た断面図と[0 0 1]方向からから見た平面図である。They are a cross-sectional view as seen from the [0 1 0] direction and a plan view as seen from the [0 0 1] direction of the nozzle plate manufacturing method according to the first embodiment. 第2工程におけるエッチングの進行を[1 0 0]方向から見た断面図である。FIG. 3 is a cross-sectional view of the progress of etching in the second step, viewed from the [1 0 0] direction. 第2工程におけるエッチングの進行を[0 1 0]方向から見た断面図である。FIG. 3 is a cross-sectional view of the progress of etching in the second step, viewed from the [0 1 0] direction. 開口穴とノズル穴の中心が[1 0 0]方向にズレて形成されたノズル流路を[0 1 0]方向から見た断面図である。FIG. 3 is a cross-sectional view of a nozzle flow path formed by shifting the centers of the opening hole and the nozzle hole in the [1 0 0] direction, as seen from the [0 1 0] direction. ノズル穴の[0 0 1]方向の長さが、開口穴の[1 0 0]方向の端部からノズル穴の接着面側の端部の長さよりも長くなるように形成されたノズル流路を[0 1 0]方向から見た断面図である。This is a cross-sectional view, viewed from the [0 0 1] direction, of a nozzle flow path formed so that the length of the nozzle hole in the [0 0 1] direction is longer than the length from the end of the opening hole in the [1 0 0] direction to the end of the nozzle hole on the adhesive surface side. ノズル穴の[0 0 1]方向の長さが、開口穴の[1 0 0]方向の端部からノズル穴の接着面側の端部の長さよりも短くなるように形成されたノズル流路を[0 1 0]方向から見た断面図である。This is a cross-sectional view, viewed from the [0 0 1] direction, of a nozzle flow path formed so that the length of the nozzle hole in the [0 0 1] direction is shorter than the length from the end of the opening hole in the [1 0 0] direction to the end of the nozzle hole on the adhesive surface side. 第2実施形態に係るノズルプレートの製造方法を[0 1 0]方向から見た断面図と[0 0 1]方向から見た平面図である。They are a cross-sectional view seen from the [0 1 0] direction and a plan view seen from the [0 0 1] direction of a method for manufacturing a nozzle plate according to the second embodiment. 第3実施形態に係るノズルプレートを[0 1 0]方向から見た断面図である。FIG. 7 is a cross-sectional view of a nozzle plate according to a third embodiment when viewed from the [0 1 0] direction. 第3実施形態の変形例に係るノズルプレートを[0 1 0]方向から見た断面図である。A cross-sectional view of a nozzle plate relating to a modified example of the third embodiment, viewed from the [0 1 0] direction. 第3実施形態に係るノズルプレートの製造方法によって形成されるノズル流路を示す斜視断面図である。FIG. 7 is a perspective cross-sectional view showing a nozzle flow path formed by a nozzle plate manufacturing method according to a third embodiment. 第3実施形態に係るノズルプレートの製造方法を[0 1 0]方向から見た断面図と[0 0 1]方向から見た平面図である。They are a cross-sectional view seen from the [0 1 0] direction and a plan view seen from the [0 0 1] direction of the nozzle plate manufacturing method according to the third embodiment. 実施例1に係る1つのノズル流路と当該ノズル流路となる中間構造体を[0 1 0]方向から見た断面図である。FIG. 2 is a cross-sectional view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 1, viewed from the [0 1 0] direction. 実施例1に係る1つのノズル流路と当該ノズル流路となる中間構造体を[0 0 1]方向から見た平面図である。FIG. 2 is a plan view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 1, viewed from the [0 0 1] direction. 実施例2に係る1つのノズル流路と当該ノズル流路となる中間構造体を[0 1 0]方向から見た断面図である。FIG. 3 is a cross-sectional view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 2, viewed from the [0 1 0] direction. 実施例2に係る1つのノズル流路と当該ノズル流路となる中間構造体を[0 0 1]方向から見た平面図である。FIG. 7 is a plan view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 2, viewed from the [0 0 1] direction. 実施例3に係る1つのノズル流路と当該ノズル流路となる中間構造体を[0 1 0]方向から見た断面図である。FIG. 7 is a cross-sectional view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 3, viewed from the [0 1 0] direction. 実施例3に係る1つのノズル流路と当該ノズル流路となる中間構造体を[0 0 1]方向から見た平面図である。FIG. 7 is a plan view of one nozzle flow path and an intermediate structure serving as the nozzle flow path according to Example 3, viewed from the [0 0 1] direction.
 以下、図面を参照しながら、本発明の好ましい実施形態について説明する。ただし、発明の範囲は図示例に限定されない。また、以下の説明において、同一の機能及び構成を有するものについては、同一の符号を付し、その説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. However, the scope of the invention is not limited to the illustrated example. Furthermore, in the following description, parts having the same functions and configurations will be denoted by the same reference numerals, and the description thereof will be omitted.
 また、結晶面や方向を記述するミラー指数については、一般的に以下の取り決めがあり、本明細書でもそれに準拠する。
 (h k l):特定の面
 [h k l]:等価な面
 [h k l]:特定の方向
 <h k l>:等価な方向
Furthermore, regarding Miller indices that describe crystal planes and directions, there are generally the following conventions, and this specification also conforms to them.
(h k l): Specific surface [h k l]: Equivalent surface [h k l]: Specific direction <h k l>: Equivalent direction
 また、特に断らない限りは、明細書の中の実施例においては、
 ウェハ面の接着側の面:(0 0 1)面
 ウェハ面の吐出側の面:(0 0 -1)面
 とし、
 ノズルテーパー部を構成する面のうちテーパー面4面:(1 1 1)面、(-1 1 1)面、(1 -1 1)面及び(-1 -1 1)面
 ノズルテーパー部を構成する面のうち垂直面およびストレート連通部を構成する側面4面のうち長い辺を持つ対向する2面:(0 1 0)面および(0 -1 0)面
 ストレート連通部を構成する側面4面のうち短い辺を持つ対向する2面:(1 0 0)面および(-1 0 0)面
 として記載する。ただし、当然のことながら、記載の内容と等価な面・方向であれば、この記載に限らない。
In addition, unless otherwise specified, in the examples in the specification,
Adhesion side surface of wafer surface: (0 0 1) surface Discharge side surface of wafer surface: (0 0 -1) surface,
Four tapered surfaces of the surfaces that make up the nozzle taper part: (1 1 1) plane, (-1 1 1) plane, (1 -1 1) plane, and (-1 -1 1) plane. Among the vertical surfaces that form the straight communication section, the two opposing surfaces with long sides among the four side surfaces that form the straight communication section: (0 1 0) surface and (0 -1 0) surface The four side surfaces that form the straight communication section The two opposing faces with the shortest sides are described as the (1 0 0) face and the (-1 0 0) face. However, as a matter of course, the description is not limited to this as long as the surface and direction are equivalent to the contents of the description.
 また、ミラー指数の表示法においては、下記数1の(1)及び(2)のように、負の指数を表す符号は指数の上にバーを付けるのが一般的である。ただし、本明細書においては、便宜的に下記の(1´)及び(2´)のように表すものとする。 In addition, in the display method of the Miller index, as in (1) and (2) of Equation 1 below, the code representing a negative index is generally marked with a bar above the index. However, in this specification, for convenience, they are expressed as (1') and (2') below.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 (h -k l)…(1´)
 [h -k l]…(2´)
(h -k l)...(1')
[h -k l]...(2')
[第1実施形態]
 本発明の第1実施形態に係るノズルプレート110の製造方法について説明を行う。
 第1実施形態に係るノズルプレート110の製造方法は、図1に示すような液滴吐出装置1に取り付けられる液滴吐出ヘッド2のノズルプレート110(図2参照)の製造方法である。
[First embodiment]
A method for manufacturing the nozzle plate 110 according to the first embodiment of the present invention will be explained.
The method for manufacturing the nozzle plate 110 according to the first embodiment is a method for manufacturing the nozzle plate 110 (see FIG. 2) of the droplet ejection head 2 attached to the droplet ejection device 1 as shown in FIG.
(ノズルプレート)
 ノズルプレート110は、表面の結晶方位が{100}面である単結晶シリコン基板Bから形成される。図2Aはノズルプレート110の(001)面を示す平面図であり、図2Bはノズルプレート110の(00-1)面を示す平面図である。
(nozzle plate)
The nozzle plate 110 is formed from a single crystal silicon substrate B whose surface has a {100} crystal orientation. 2A is a plan view showing the (001) plane of the nozzle plate 110, and FIG. 2B is a plan view showing the (00-1) plane of the nozzle plate 110.
 図2Bに示すように、ノズルプレート110には、吐出面(第2面)Ba((00-1)面)に複数のノズル開口部Nが[010]方向に沿って列をなすように設けられている。
 ノズルプレート110には、接着面(第1面)Bb((001)面)から吐出面Baに貫通したノズル流路100が複数設けられている。
 ノズルプレート110は、その接着面Bbに、インク流路を備える他のプレートが接着剤等によって接合される。そして、当該インク流路から流入してきた液体が、ノズル流路100を経由してノズル開口部Nから吐出される。
As shown in FIG. 2B, the nozzle plate 110 is provided with a plurality of nozzle openings N arranged in a row along the [010] direction on the discharge surface (second surface) Ba ((00-1) plane). It is being
The nozzle plate 110 is provided with a plurality of nozzle channels 100 penetrating from the adhesive surface (first surface) Bb ((001) surface) to the discharge surface Ba.
The nozzle plate 110 is bonded to its adhesive surface Bb with another plate having an ink flow path using an adhesive or the like. Then, the liquid that has flowed in from the ink flow path is discharged from the nozzle opening N via the nozzle flow path 100.
 なお、図2Bにおいては、1列のノズル開口部Nのみを示しているが、[100]方向に複数配列してよい。 Although FIG. 2B shows only one row of nozzle openings N, a plurality of nozzle openings N may be arranged in the [100] direction.
 図3はノズルプレート110を[010]方向から見た断面図である。また、図4は1つのノズル流路100の斜視断面図である。
 ノズル流路100は、図3及び図4に示すように、接着面Bbから順に、ストレート連通部10、ノズルテーパー部20及びノズル開口部Nを備える。
FIG. 3 is a cross-sectional view of the nozzle plate 110 viewed from the [010] direction. Further, FIG. 4 is a perspective cross-sectional view of one nozzle flow path 100.
As shown in FIGS. 3 and 4, the nozzle channel 100 includes a straight communication section 10, a nozzle taper section 20, and a nozzle opening N in this order from the adhesive surface Bb.
{ストレート連通部}
 ストレート連通部10は、接着面Bbからノズルテーパー部20の接着面Bb側の端部まで設けられる。すなわち、ストレート連通部10は、ノズル流路100の接着面Bb側の開口部を構成する。
 ストレート連通部10は、結晶面が{100}面の4つの面((100)面、(-100)面、(010)面及び(0-10)面)の一部によって構成される。また、ストレート連通部10は、図2A及び図4に示すように、対向する1組の面10aが略平行である。
{Straight communication part}
The straight communication portion 10 is provided from the adhesive surface Bb to the end of the nozzle tapered portion 20 on the adhesive surface Bb side. That is, the straight communication portion 10 constitutes an opening on the adhesive surface Bb side of the nozzle flow path 100.
The straight communication portion 10 is constituted by a portion of four {100} crystal planes ((100) plane, (-100) plane, (010) plane, and (0-10) plane). Further, in the straight communication portion 10, as shown in FIGS. 2A and 4, a pair of opposing surfaces 10a are substantially parallel.
 そして、図2A及び図4に示すように、ストレート連通部10を構成する面は、接着面Bbと交わる辺のうち、対向する1組の面10aに沿う[100]方向の長さが、[010]方向の長さよりも長い。
 すなわち、ストレート連通部10を構成する面と接着面Bbを構成する面がなす辺は、図2A及び図4に示すような細長形状をなす。このようにストレート連通部10を形成することで、ノズル流路100の体積を確保しつつ、当該細長形状の短辺長の狭いピッチでノズル開口部Nを配置できる。すなわち、ノズルプレート110におけるノズル開口部Nの密度を高められる。
As shown in Figures 2A and 4, the faces that constitute the straight communicating portion 10 have, among the sides that intersect with the adhesive surface Bb, a length in the [100] direction along a pair of opposing faces 10a that is longer than the length in the [010] direction.
That is, the side formed by the surface constituting the straight communicating part 10 and the surface constituting the adhesive surface Bb has an elongated shape as shown in Figures 2A and 4. By forming the straight communicating part 10 in this manner, it is possible to arrange the nozzle openings N at a narrow pitch in the short side length of the elongated shape while ensuring the volume of the nozzle flow path 100. That is, the density of the nozzle openings N in the nozzle plate 110 can be increased.
 なお、図2A及び図4においては、ノズルプレート110におけるノズル流路100の接着面Bb側の開口部が長方形状である場合を例示しているが、これに限られない。後述する第3工程(除去加工)を実行してノズル流路100の接着面Bb側の開口部を拡張した場合は、当該開口部は必ず長方形状となる。しかしながら、本発明において、第3工程は必須の工程ではない。そのため、ノズルプレート110におけるノズル流路100の接着面Bb側の開口部は、細長形状であれば、後述する開口パターン303の形状に応じた任意の形状であっても良い。 Note that although FIGS. 2A and 4 illustrate a case where the opening on the adhesive surface Bb side of the nozzle flow path 100 in the nozzle plate 110 is rectangular, the shape is not limited to this. When the opening on the bonding surface Bb side of the nozzle flow path 100 is expanded by performing the third step (removal process) described later, the opening will always have a rectangular shape. However, in the present invention, the third step is not an essential step. Therefore, the opening on the adhesive surface Bb side of the nozzle flow path 100 in the nozzle plate 110 may have any shape that corresponds to the shape of the opening pattern 303, which will be described later, as long as it is elongated.
{ノズルテーパー部}
 ノズルテーパー部20は、吐出面Baから接着面Bbに向かうにつれて流路面積が漸次広くなる略一定の角度のテーパー面20aを備える。より具体的には、ノズルテーパー部20は、結晶面が{111}面の4つの面((111)面、(-111)面、(1-11)面及び(-1-11)面)であるテーパー面20aと、上記した結晶面が{100}面である4つの面の一部20bによって構成される。
 なお、本発明における「流路面積」とは、インクの吐出方向に対して直交する方向の断面積を指す。
{Nozzle taper part}
The nozzle tapered portion 20 includes a tapered surface 20a having a substantially constant angle and whose flow path area gradually increases from the discharge surface Ba toward the adhesive surface Bb. More specifically, the nozzle taper part 20 has four crystal planes whose crystal planes are {111} planes ((111) plane, (-111) plane, (1-11) plane, and (-1-11) plane). It is constituted by a tapered surface 20a which is , and a portion 20b of the four surfaces whose crystal planes are {100} planes.
Note that the "flow path area" in the present invention refers to a cross-sectional area in a direction perpendicular to the ink ejection direction.
 ノズルテーパー部20のテーパー面20aは、ノズル中心軸に平行な軸となす角度θ1(図3参照)が15°以上である。本発明においては、単結晶シリコン基板Bに異方性ウェットエッチングをすることでテーパー面20aを形成する。そのため、Siのエッチング特性により、角度θ1は45°となる。 The tapered surface 20a of the nozzle tapered portion 20 has an angle θ 1 (see FIG. 3) of 15° or more with an axis parallel to the nozzle central axis. In the present invention, the tapered surface 20a is formed by performing anisotropic wet etching on the single crystal silicon substrate B. Therefore, due to the etching characteristics of Si, the angle θ 1 is 45°.
 ノズルテーパー部20を設けると、高速駆動により液体のメニスカスがノズル流路100の奥まで後退した際にも、メニスカス形状及び液滴吐出を安定させられる。 By providing the nozzle tapered portion 20, even when the liquid meniscus retreats deep into the nozzle flow path 100 due to high-speed driving, the meniscus shape and droplet discharge can be stabilized.
{ノズル開口部}
 ノズル開口部Nは、吐出面Baに設けられ、液滴が吐出される円形、楕円形又は多角形の孔である。ノズル開口部Nは、ノズルテーパー部20の吐出面Ba側の端部と連通している。
{Nozzle opening}
The nozzle opening N is a circular, elliptical, or polygonal hole provided on the ejection surface Ba and through which droplets are ejected. The nozzle opening N communicates with the end of the nozzle tapered portion 20 on the discharge surface Ba side.
(ノズルプレートの製造方法)
 ノズルプレート110の製造方法としては、例えば図5に示す第1工程から第3工程を含む。
 第1工程においては、後述する開口穴(第1穴)305とノズル穴(第2穴)306を備える中間構造体300を形成する。また、第2工程においては、第1工程で形成した中間構造体300に異方性ウェットエッチングを実行することでノズル流路100を形成する。また、第3工程においては、第2工程で形成したノズルプレート110に適宜除去加工をする。
(Method for manufacturing nozzle plate)
The method for manufacturing the nozzle plate 110 includes, for example, the first to third steps shown in FIG.
In the first step, an intermediate structure 300 including an opening hole (first hole) 305 and a nozzle hole (second hole) 306, which will be described later, is formed. Furthermore, in the second step, the nozzle channel 100 is formed by performing anisotropic wet etching on the intermediate structure 300 formed in the first step. Furthermore, in the third step, the nozzle plate 110 formed in the second step is appropriately removed.
{第1工程:中間構造体形成工程}
(第1-1工程)
 図5に示すように、第1工程は更に複数の工程に細分化される。
 初めに、第1-1工程として、単結晶シリコン基板Bの表面にマスク層を形成する。具体的には、表面の結晶方位が{100}面である単結晶シリコンの接着面Bbに表面マスク層301を形成する。また、吐出面Baに裏面マスク層302を形成する。
 以下においては、表面マスク層301と裏面マスク層302との間で特に区別を設けない場合は、上記したように「マスク層」と総称する。
{First step: intermediate structure formation step}
(Step 1-1)
As shown in FIG. 5, the first step is further subdivided into a plurality of steps.
First, in step 1-1, a mask layer is formed on the surface of single crystal silicon substrate B. Specifically, a surface mask layer 301 is formed on the bonding surface Bb of single crystal silicon whose surface crystal orientation is the {100} plane. Further, a back mask layer 302 is formed on the ejection surface Ba.
In the following, unless a particular distinction is made between the front mask layer 301 and the back mask layer 302, they will be collectively referred to as "mask layers" as described above.
 単結晶シリコン基板Bは、厚さが100μm~725μm程度の板状部材である。ノズルプレート110の基材として単結晶シリコンを用いることで、高精度に加工できる。結果、位置の誤差や形状のバラつきの少ないノズルプレート110を形成できる。 The single crystal silicon substrate B is a plate-like member with a thickness of approximately 100 μm to 725 μm. By using single crystal silicon as the base material of the nozzle plate 110, highly accurate processing is possible. As a result, the nozzle plate 110 can be formed with fewer errors in position and less variation in shape.
 また、マスク層を形成する材料としては、後述する異方性ウェットエッチングの際にエッチングの進行をストップできるものであればよい。また、エッチングによって除去されないものであればよい。
 これらの条件を満たすものであれば、マスク層の材料は特には限定されないが、例えば、SiO2(酸化ケイ素)等の酸化物をマスク層に用いることができる。また、Al(アルミニウム)、Cr(クロム)等による金属膜や樹脂等をマスク層に用いることができる。
 本発明においては、SiO2をマスク層として使用するものとする。
Further, the material for forming the mask layer may be any material as long as it can stop the progress of etching during anisotropic wet etching, which will be described later. Further, any material may be used as long as it cannot be removed by etching.
The material of the mask layer is not particularly limited as long as it satisfies these conditions, but for example, an oxide such as SiO 2 (silicon oxide) can be used for the mask layer. Further, a metal film made of Al (aluminum), Cr (chromium), etc., resin, or the like can be used for the mask layer.
In the present invention, SiO 2 is used as a mask layer.
 また、マスク層の厚さについても特には限定されないが、0.1μm~50μmであるのが好ましく、特に好ましくは0.5μm~20μmである。マスク層は、厚さが0.5μm以上であることでエッチングストップ効果が高まる。また、マスク層は、厚さが20μm以下であると容易に形成できる。
 ただし、上述した熱酸化法によってマスク層を形成する場合は、マスク層の厚さを1μm~5μmとするのが好ましい。また、マスク層は図示されるように単層構成に限られず、多層構成であってもよい。
The thickness of the mask layer is not particularly limited, but is preferably 0.1 μm to 50 μm, and more preferably 0.5 μm to 20 μm. When the mask layer has a thickness of 0.5 μm or more, the etching stop effect is enhanced. When the mask layer has a thickness of 20 μm or less, it can be easily formed.
However, when the mask layer is formed by the above-mentioned thermal oxidation method, the thickness of the mask layer is preferably set to 1 μm to 5 μm. Furthermore, the mask layer is not limited to the single layer structure as shown in the figure, but may have a multi-layer structure.
(第1-2工程)
 次に、第1-2工程として、表面マスク層301に、ノズル流路100の接着面Bb側の開口部となる細長形状の開口パターン303を形成する。
 なお、本実施形態においては、開口パターン303の形状は<100>方向に沿って長尺な辺を有する六角形状であるが、これに限られない。開口パターン303の形状は、[010]方向に比べて[100]方向に長尺な細長形状であればよい。そのため、開口パターン303の形状は、例えば、長方形状や楕円形状、あるいは長方形の短辺に、当該短辺と等幅な径の半円を組み合わせた形状などでもよい。
 具体的には、初めに周知のフォトリソグラフィ技法により表面マスク層301の上にレジストパターンを形成する。
(Step 1-2)
Next, as a 1-2 step, an elongated opening pattern 303 is formed in the front mask layer 301 to become an opening on the bonding surface Bb side of the nozzle channel 100.
Note that in this embodiment, the shape of the opening pattern 303 is a hexagonal shape having long sides along the <100> direction, but the shape is not limited to this. The shape of the opening pattern 303 may be an elongated shape that is longer in the [100] direction than in the [010] direction. Therefore, the shape of the opening pattern 303 may be, for example, a rectangular shape, an elliptical shape, or a shape in which a short side of a rectangle is combined with a semicircle with a diameter having the same width as the short side.
Specifically, first, a resist pattern is formed on the surface mask layer 301 using a well-known photolithography technique.
<レジストパターン>
 レジストパターンの形成には、ポジ型フォトレジスト又はネガ型フォトレジストを用いることができる。ポジ型フォトレジスト及びネガ型フォトレジストとしては、公知の材料を用いることができる。例えば、ネガ型フォトレジストとしては、日本ゼオン社製のZPN-1150-90を用いることができる。また、ポジ型フォトレジストとしては、東京応化工業社製のOFPR-800LB、同OEBR-CAP112PMを用いることができる。
<Resist pattern>
A positive photoresist or a negative photoresist can be used to form the resist pattern. Known materials can be used as the positive photoresist and the negative photoresist. For example, ZPN-1150-90 manufactured by Zeon Corporation can be used as the negative photoresist. Furthermore, as the positive photoresist, OFPR-800LB and OEBR-CAP112PM manufactured by Tokyo Ohka Kogyo Co., Ltd. can be used.
 レジスト層はスピンコーター等を用いて、所定の厚みになるように塗布して形成する。その後、110℃で90秒等の条件でプリベーク処理を行う。 The resist layer is formed by applying it to a predetermined thickness using a spin coater or the like. Thereafter, a prebaking process is performed at 110° C. for 90 seconds.
 密着性向上のため、レジスト塗布の前に、HMDS処理を施してもよい。HMDS処理とは、ヘキサメチルジシラザンと呼ばれる有機材料で、例えば、OAP(ヘキサメチルジシラザン、東京応化工業株式会社製)などが使用できる。HMDSは、レジスト塗布と同様に、スピンコーターで塗布しても良い。また、HMDSは、ヘキサメチルジシラザン蒸気に曝しても密着性向上の効果が期待できる。 In order to improve adhesion, HMDS treatment may be performed before resist coating. The HMDS treatment uses an organic material called hexamethyldisilazane, such as OAP (hexamethyldisilazane, manufactured by Tokyo Ohka Kogyo Co., Ltd.). HMDS may be applied using a spin coater, similar to resist application. Further, HMDS can be expected to have an effect of improving adhesion even when exposed to hexamethyldisilazane vapor.
 レジスト層の形成後、所定のマスクを使用し、アライナー等でレジスト層を露光する。例えば、コンタクトアライナーの場合、約50mJ/cm2の光量で露光する。その後、現像液(例えば、東京応化工業株式会社製NMD-3に60秒~90秒)に浸漬し、上記レジスト層の感光部を除去する。これにより、表面マスク層301の上に、レジストパターンを形成する。 After forming the resist layer, the resist layer is exposed to light using an aligner or the like using a predetermined mask. For example, in the case of contact aligners, exposure is performed with a light intensity of approximately 50 mJ/cm 2 . Thereafter, the resist layer is immersed in a developer (for example, NMD-3 manufactured by Tokyo Ohka Kogyo Co., Ltd. for 60 to 90 seconds) to remove the exposed areas of the resist layer. As a result, a resist pattern is formed on the surface mask layer 301.
 レジストパターンの形成後、当該レジストパターンをマスクとして表面マスク層301をドライエッチングすることで開口パターン303を形成する。開口パターン303の形成後、レジストパターンは除去する。 After forming the resist pattern, the opening pattern 303 is formed by dry etching the surface mask layer 301 using the resist pattern as a mask. After forming the opening pattern 303, the resist pattern is removed.
<ドライエッチング>
 ドライエッチングには、RIE(Reactive Ion Etching)装置が用いられる。また、放電形式に誘導結合方式を採用したドライエッチング装置であるICP(Inductively Coupled Plasma)-RIEエッチング装置等のドライエッチング装置が用いられる。また、プロセスガスとして、CHF3(トリフルオロメタン)やCF4(四フッ化メタン)等が用いられる。
<Dry etching>
A RIE (Reactive Ion Etching) device is used for dry etching. Further, a dry etching apparatus such as an ICP (Inductively Coupled Plasma)-RIE etching apparatus, which is a dry etching apparatus that employs an inductive coupling method as a discharge type, is used. Further, as a process gas, CHF 3 (trifluoromethane), CF 4 (tetrafluoromethane), etc. are used.
 一例としては、サムコ株式会社製のドライエッチング装置であるRIE-100Cを用いる。CHF3ガス流量を80sccm、圧力を3Pa、RFパワーを90Wの条件で、所定の時間でエッチングすることにより、開口パターン303を形成することができる。 As an example, RIE-100C, a dry etching apparatus manufactured by Samco Corporation, is used. The opening pattern 303 can be formed by etching for a predetermined time under the conditions of CHF 3 gas flow rate of 80 sccm, pressure of 3 Pa, and RF power of 90 W.
<レジストパターンの除去>
 また、レジストパターンの除去方法としては、例えば、アセトンや酸溶液を用いたウェットプロセスや、酸素プラズマを用いたドライプロセスが挙げられる。
<Removal of resist pattern>
Furthermore, examples of methods for removing the resist pattern include a wet process using acetone or an acid solution, and a dry process using oxygen plasma.
(第1-3工程)
 次に、第1-3工程として、開口パターン303下の単結晶シリコン基板Bをドライエッチングにより深掘り加工することで、開口穴305を形成する。
(Step 1-3)
Next, as a 1-3 step, the single crystal silicon substrate B under the opening pattern 303 is deeply etched by dry etching to form an opening hole 305.
(第1-4工程)
 次に、第1-4工程として、ノズル開口部Nとなるノズルパターン304を形成する。
 ノズルパターン304の形成方法としては、第1-2工程における開口パターン303の形成方法と略同様である。なお、本実施形態におけるノズルパターン304は、<110>方向に辺を有する正方形状(ひし形状)である。
 ノズルパターン304は、接着面Bbないし吐出面Baから見た際に、その中心が開口パターン303の中心と略一致するように形成する。以下においては、当該条件を「条件1」とする。
(Step 1-4)
Next, in step 1-4, a nozzle pattern 304 which becomes the nozzle opening N is formed.
The method for forming the nozzle pattern 304 is substantially the same as the method for forming the opening pattern 303 in step 1-2. Note that the nozzle pattern 304 in this embodiment is a square (diamond) having sides in the <110> direction.
The nozzle pattern 304 is formed so that, when viewed from the adhesive surface Bb or the ejection surface Ba, its center approximately coincides with the center of the opening pattern 303. In the following, this condition is referred to as "Condition 1."
(第1-5工程)
 次に、第1-5工程として、ノズルパターン304下の単結晶シリコン基板Bをドライエッチングにより深掘り加工することで、ノズル穴306を形成する。
 ノズル穴306は、その[001]方向の長さaが、ノズル穴306の接着面Bb側の端部から開口穴305の[100]方向の端部の長さbと略一致するように形成する。以下においては、当該条件を「条件2」とする。
(Step 1-5)
Next, in a 1-5 step, the single crystal silicon substrate B under the nozzle pattern 304 is deeply etched by dry etching to form a nozzle hole 306.
The nozzle hole 306 is formed so that its length a in the [001] direction approximately matches the length b of the end of the opening hole 305 in the [100] direction from the end of the nozzle hole 306 on the adhesive surface Bb side. do. In the following, this condition will be referred to as "Condition 2."
 第1-5工程においては、図5に示すように、開口穴305と連通するようにノズル穴306を形成するのが好ましい。第1工程の時点で開口穴305とノズル穴306とを連通させた中間構造体300を形成すると、第2工程で使用する異方性ウェットエッチング用の溶液の流動性が良くなる。そのため、常に新鮮な薬液によって異方性ウェットエッチングが実行される。また異方性ウェットエッチング時に生じる水素ガスが各ノズル流路100で一様に効率よく抜けるようになる。結果、各ノズル流路100でウェットエッチングの進行が揃うようになり、均一なノズル流路100を形成できる。 In the 1-5th step, as shown in FIG. 5, it is preferable to form a nozzle hole 306 so as to communicate with the opening hole 305. By forming the intermediate structure 300 in which the opening hole 305 and the nozzle hole 306 communicate with each other in the first step, the fluidity of the anisotropic wet etching solution used in the second step is improved. Therefore, anisotropic wet etching is always performed using a fresh chemical solution. Furthermore, hydrogen gas generated during anisotropic wet etching can escape uniformly and efficiently through each nozzle channel 100. As a result, the wet etching progresses in the same manner in each nozzle channel 100, and a uniform nozzle channel 100 can be formed.
 ただし、第1工程の時点で開口穴305とノズル穴306を連通させた中間構造体300を形成するのは必須ではない。開口穴305とノズル穴306は、第2工程で異方性ウェットエッチングを実行した際に連通可能であればよい。 However, it is not essential to form the intermediate structure 300 in which the opening hole 305 and the nozzle hole 306 communicate with each other at the time of the first step. The opening hole 305 and the nozzle hole 306 only need to be able to communicate with each other when anisotropic wet etching is performed in the second step.
 なお、上記においては第1-1工程、第1-2工程、第1-3工程、第1-4工程、第1-5工程の順に第1工程を進める場合を例示したが、これに限られない。少なくとも第1-1工程を最初に実行する、第1-3工程よりも前に第1-2工程を実行する、第1-5工程よりも前に第1-4工程を実行するという3つの条件を満たせばよい。 In addition, although the case where the first step is carried out in the order of step 1-1, step 1-2, step 1-3, step 1-4, and step 1-5 is illustrated above, the present invention is not limited to this. I can't do it. At least three steps are to be taken: performing step 1-1 first, performing step 1-2 before step 1-3, and performing step 1-4 before step 1-5. All you have to do is meet the conditions.
 したがって、条件1は、「接着面Bbないし吐出面Baから見た際に、その中心がノズルパターン304の中心と略一致するように開口パターン303を形成する」と換言してもよい。 Therefore, condition 1 may be rephrased as "the opening pattern 303 is formed so that its center substantially coincides with the center of the nozzle pattern 304 when viewed from the adhesive surface Bb or the ejection surface Ba".
 また、条件2は「その[100]方向の端部からノズル穴306の接着面Bb側の端部の長さbが、ノズル穴306の[001]方向の長さaと略一致するように開口穴305を形成する」と換言してもよい。 Condition 2 is such that "the length b of the end of the nozzle hole 306 on the adhesive surface Bb side from the end in the [100] direction is approximately equal to the length a of the nozzle hole 306 in the [001] direction. It may also be stated as "forming an opening hole 305".
{第2工程:異方性ウェットエッチング工程}
 次に第2工程として、第1工程で形成した中間構造体300に対して、接着面Bbと吐出面Baの両側から異方性ウェットエッチングを実行する。
 図6Aは、第2工程におけるエッチングの進行を、開口穴305の短尺側をなす[100]方向側から見た断面図である。また、図6Bは、第2工程におけるエッチングの進行を、開口穴305の長尺側をなす[010]方向から見た断面図である。
 図6A及び図6Bに示すように、第2工程では、第1-3工程で設けた開口穴305と第1-5工程で設けたノズル穴306をそれぞれ拡大する。これにより、ノズルテーパー部20とストレート連通部10とを備えるノズル流路100を形成する。
{Second step: anisotropic wet etching step}
Next, in a second step, anisotropic wet etching is performed on both the adhesive surface Bb and the ejection surface Ba of the intermediate structural body 300 formed in the first step.
Fig. 6A is a cross-sectional view showing the progress of etching in the second step as viewed from the [100] direction which constitutes the short side of the opening hole 305. Fig. 6B is a cross-sectional view showing the progress of etching in the second step as viewed from the [010] direction which constitutes the long side of the opening hole 305.
6A and 6B, in the second step, the opening hole 305 provided in the first-3 step and the nozzle hole 306 provided in the first-5 step are enlarged, thereby forming a nozzle flow path 100 including a nozzle taper portion 20 and a straight communicating portion 10.
<異方性ウェットエッチング>
 異方性ウェットエッチングには、アルカリ性水溶液を用いる。具体的には、KOH(水酸化カリウム)やTMAH(水酸化テトラメチルアンモニウム)、EDP(エチレンジアミンピロカテコール)等である。
<Anisotropic wet etching>
An alkaline aqueous solution is used for anisotropic wet etching. Specifically, they include KOH (potassium hydroxide), TMAH (tetramethylammonium hydroxide), and EDP (ethylenediamine pyrocatechol).
 第2工程においては、図6Aに示すように、[100]方向から見た場合、開口穴305及びノズル穴306を構成する各面に対して、[010]方向及び[0-10]方向にエッチングが進行する。
 したがって、異方性ウェットエッチング後の(010)面と(0-10)面の間隔は、(ノズルパターン304の径+2×エッチング量)μm…(3)となる。
In the second step, as shown in FIG. 6A, when viewed from the [100] direction, the surfaces forming the opening hole 305 and the nozzle hole 306 are aligned in the [010] direction and the [0-10] direction. Etching progresses.
Therefore, the distance between the (010) plane and the (0-10) plane after anisotropic wet etching is (diameter of nozzle pattern 304+2×etching amount) μm (3).
 また、図6Bに示すように、[010]方向から見た場合、開口穴305を構成する各面に対して、[100]方向及び[-100]方向にエッチングが進行する。また、ノズル穴306を構成する各面に対して、[100]方向又は[-100]方向にエッチングが進行する。
 したがって、異方性ウェットエッチング後の(100)面と(-100)面との間隔は、(ノズルパターン304の径+6×エッチング量)μm…(4)となる。
Further, as shown in FIG. 6B, when viewed from the [010] direction, etching progresses in the [100] direction and the [-100] direction with respect to each surface forming the opening hole 305. Further, etching progresses in the [100] direction or the [-100] direction with respect to each surface forming the nozzle hole 306.
Therefore, the distance between the (100) plane and the (-100) plane after anisotropic wet etching is (diameter of nozzle pattern 304 + 6 x etching amount) μm (4).
 ここで、具体的に、ノズルパターン304の径を10μm、エッチング量を20μmとする。すると、異方性ウェットエッチング後の(010)面と(0-10)面の間隔は、上記式(3)より、10μm+2×20μm=50μmとなる。
 また、異方性ウェットエッチング後の(100)面と(-100)面の間隔は、上記式(4)より、10μm+6×20μm=130μmとなる。
 これに対して、ノズルパターン304の径を30μm、異方性ウェットエッチング後の(010)面と(0-10)面との間隔を50μmとする。すると、上記式(3)より、30μm+2×xμm=50μmより、エッチング量xは10μmとなる。
 そして、異方性ウェットエッチング後の(100)面と(-100)面との間隔は、上記式(4)より、30μm+6×10μm=90μmとなる。
Here, specifically, the diameter of the nozzle pattern 304 is 10 μm, and the etching amount is 20 μm. Then, the distance between the (010) plane and the (0-10) plane after the anisotropic wet etching is 10 μm+2×20 μm=50 μm from the above equation (3).
Further, the distance between the (100) plane and the (-100) plane after the anisotropic wet etching is 10 μm+6×20 μm=130 μm from the above equation (4).
On the other hand, the diameter of the nozzle pattern 304 is 30 μm, and the distance between the (010) plane and the (0-10) plane after anisotropic wet etching is 50 μm. Then, from the above equation (3), the etching amount x becomes 10 μm since 30 μm+2×x μm=50 μm.
Then, the distance between the (100) plane and the (-100) plane after the anisotropic wet etching is 30 μm+6×10 μm=90 μm from the above equation (4).
 上記したように、本発明で形成されるノズル流路100は、接着面Bb側の開口部が、長尺側の寸法と短尺側の寸法とで差を設けられた細長形状であるのが、ノズル開口部Nの高密度化の観点から好ましい。
 後述するように、第2工程後、第3工程としてストレート連通部10が略垂直になるように除去加工を実行する場合、(010)面と(0-10)面の間隔が、ノズル流路100の接着面Bb側の開口部の短尺側の寸法となる。また、(100)面と(-100)面の間隔が、長尺側の寸法となる。
 したがって、上記試算より、ノズルパターン304は、その径をできるだけ小さく形成するのが好ましい。
 ただし、本実施形態においては、(010)面及び(0-10)面の間隔と、(100)面と(-100)面の間隔の比、すなわち、第3工程後のノズル流路100の接着面Bb側の開口部における、短尺側の寸法と長尺側の寸法の比は、1:3が理論限界値となる。
As described above, the nozzle flow path 100 formed according to the present invention has an elongated shape in which the opening on the adhesive surface Bb side has a different dimension between the long side and the short side. This is preferable from the viewpoint of increasing the density of the nozzle openings N.
As will be described later, when removing the straight communication portion 10 in the third step after the second step so that it becomes approximately vertical, the distance between the (010) plane and the (0-10) plane is the same as the nozzle flow path. This is the short side dimension of the opening on the bonding surface Bb side of 100. Further, the distance between the (100) plane and the (-100) plane is the dimension on the long side.
Therefore, based on the above calculation, it is preferable to form the nozzle pattern 304 with a diameter as small as possible.
However, in this embodiment, the ratio of the interval between the (010) plane and the (0-10) plane and the interval between the (100) plane and the (-100) plane, that is, the ratio of the interval between the (100) plane and the (-100) plane, that is, the The theoretical limit value of the ratio of the short side dimension to the long side dimension of the opening on the adhesive surface Bb side is 1:3.
{第3工程:除去加工工程}
 図5に戻って、第2工程後、第3工程として、ノズルプレート110にエッチング、研削加工あるいは研磨加工等の除去加工を実行する。具体的には例えば、ストレート連通部10が略垂直となるように除去加工を実行して、異方性ウェットエッチング後のノズル流路100の接着面Bb側の開口部の径を拡大する。あるいは、ノズルプレート110の厚みが所望の寸法となるように調整する。あるいは、マスク層を除去する。
 また、特に、上記したようにノズルパターン304の径を小さく形成しても、吐出面Ba側から再度フォトリソグラフィ技法、裏面マスク層302への転写及びエッチング等の除去加工を実行することで、ノズル開口部Nの径を拡張することができる。
 なお、第3工程は必須の工程ではなく、必要に応じて適宜実行すればよい。
{Third process: Removal process}
Returning to FIG. 5, after the second step, as a third step, removal processing such as etching, grinding, or polishing is performed on the nozzle plate 110. Specifically, for example, the removal process is performed so that the straight communication portion 10 becomes substantially vertical, and the diameter of the opening on the bonding surface Bb side of the nozzle channel 100 after anisotropic wet etching is expanded. Alternatively, the thickness of the nozzle plate 110 is adjusted to a desired dimension. Alternatively, the mask layer is removed.
In particular, even if the diameter of the nozzle pattern 304 is formed small as described above, the nozzle pattern 304 can be removed by performing removal processing such as photolithography, transfer to the back mask layer 302, and etching again from the ejection surface Ba side. The diameter of the opening N can be expanded.
Note that the third step is not an essential step, and may be performed as needed.
[技術的効果]
 以上に示すように、第1実施形態に係るノズルプレート110の製造方法は、[100]方向に長尺な開口穴(第1穴)305と、開口穴305と吐出面Baに連通可能なノズル穴(第2穴)306を備える中間構造体300を形成する第1工程を含む。また、異方性ウェットエッチングにより開口穴305とノズル穴306を拡大してノズル流路100を形成する第2工程を含む。
[Technical effect]
As described above, the method for manufacturing the nozzle plate 110 according to the first embodiment includes an opening hole (first hole) 305 that is elongated in the [100] direction, and a nozzle that can communicate with the opening hole 305 and the discharge surface Ba. The method includes a first step of forming an intermediate structure 300 having a hole (second hole) 306 . The method also includes a second step of enlarging the opening hole 305 and the nozzle hole 306 by anisotropic wet etching to form the nozzle flow path 100.
 上記において、条件1及び条件2につき、「略一致するように」と記載した理由は、いずれも製造誤差によって完全に一致しない場合もあるためである。図7Aは条件1を満たさなかった場合を示す。図7Bはa>bとなって条件2を満たさなかった場合を示す。また、図7Cはa<bとなって条件2を満たさなかった場合を示す。図7Aから図7Cは、いずれもテーパー面20aに段差を含む。
 図5と図7Aから図7Cの比較からわかるように、条件1及び条件2を満たすことで、テーパー面20aの平滑なノズル流路100が形成される。
The reason why condition 1 and condition 2 are described as "approximately the same" above is because they may not be completely the same due to manufacturing errors. Fig. 7A shows a case where condition 1 is not satisfied. Fig. 7B shows a case where condition 2 is not satisfied, with a>b. Fig. 7C shows a case where condition 2 is not satisfied, with a<b. All of Figs. 7A to 7C include a step in tapered surface 20a.
As can be seen from a comparison of FIG. 5 with FIG. 7A to FIG. 7C, by satisfying condition 1 and condition 2, a nozzle flow channel 100 with a smooth tapered surface 20a is formed.
 一方で、図7Aから図7Cに示されるように、第1工程で条件1又は条件2に係る製造誤差が生じていても、ノズル開口部Nは、テーパー面20aのうち、ノズル開口部Nと段差の間の面の対称中心部に位置する。これは、ノズルテーパー部20のうち、少なくともノズル開口部Nと連通する部分は、ノズル穴306から拡大されて形成されるからである。 On the other hand, as shown in FIGS. 7A to 7C, even if a manufacturing error related to condition 1 or condition 2 occurs in the first step, the nozzle opening N is the same as the nozzle opening N of the tapered surface 20a. Located at the symmetrical center of the plane between the steps. This is because at least the portion of the nozzle taper portion 20 that communicates with the nozzle opening N is enlarged from the nozzle hole 306 .
 このように、上記製造方法によれば、条件1又は条件2につき製造誤差があっても、必ずノズル穴306からノズルテーパー部20が形成される。そして、ノズル開口部Nが、テーパー面20aのうち、ノズル開口部Nと段差の間の面の対称中心部に位置ズレなく配置される。そのため、条件1又は条件2につき製造誤差があっても、偏芯が無く、液体の流れの対称性が保たれ、射出角度の安定したノズル流路100を備えるノズルプレート110を形成することができる。 As described above, according to the above manufacturing method, even if there is a manufacturing error under Condition 1 or Condition 2, the nozzle tapered portion 20 is always formed from the nozzle hole 306. The nozzle opening N is arranged without any positional deviation at the symmetrical center of the surface between the nozzle opening N and the step of the tapered surface 20a. Therefore, even if there is a manufacturing error in Condition 1 or Condition 2, it is possible to form a nozzle plate 110 that has no eccentricity, maintains the symmetry of the liquid flow, and has the nozzle flow path 100 with a stable injection angle. .
 また、上記製造方法によれば、接着面Bbにおける開口部が細長形状のノズル流路100を備えるノズルプレート110を形成できる。そのため、ノズルプレート110において、ノズル開口部Nを高密度化できる。また、ノズルプレート110をインク流路の断面形状が細長形状の他のプレートと接合した際に、ノズル流路100とインク流路の接合部が形状一致するため、好適な射出特性となる。 Furthermore, according to the above manufacturing method, it is possible to form a nozzle plate 110 having a nozzle flow path 100 with an elongated opening on the adhesive surface Bb. Therefore, the nozzle openings N can be made denser in the nozzle plate 110. Furthermore, when the nozzle plate 110 is joined to another plate having an elongated cross-sectional shape of the ink flow path, the joint between the nozzle flow path 100 and the ink flow path matches in shape, resulting in favorable ejection characteristics.
[その他の好ましい構成について]
 上記したように、開口パターン303は<100>方向に沿って長尺な辺を有する六角形状に限られない。また、ノズルパターン304も<110>方向に沿って辺を有する正方形状に限られない。
 ただし、異方性ウェットエッチングの結晶方位依存性を考慮すると、開口パターン303及びノズルパターン304は、上記形状とするのが特に好ましい。上記形状とすると、図5に示したような異方性ウェットエッチングが起こりやすくなる。
[Other preferred configurations]
As described above, the opening pattern 303 is not limited to a hexagon having a long side along the <100> direction, and the nozzle pattern 304 is not limited to a square having a side along the <110> direction.
However, in consideration of the crystal orientation dependency of anisotropic wet etching, it is particularly preferable that the opening pattern 303 and the nozzle pattern 304 have the above shapes, which makes it easier for anisotropic wet etching such as that shown in FIG.
 また、図7Aから図7Cとして、第1工程で条件1又は条件2に係る製造誤差が生じた場合を例示した。この中でも図7Bに示すように、a>bとなって、ノズルテーパー部20に段差を設ける垂下面ないし角度θ1よりも急な傾斜を有する傾斜面(段差面)が形成されたノズル流路100は、よりメニスカス安定性に優れる。
 これは、当該段差面が形成されていると、メニスカスがノズル流路100の奥側まで戻っても、[100]方向の広がりが抑制され、[100]方向の幅長と[010]方向の幅長を揃えられるからである。
Further, FIGS. 7A to 7C illustrate cases where a manufacturing error related to condition 1 or condition 2 occurs in the first step. Among these, as shown in FIG. 7B, there is a nozzle flow path in which a>b and a hanging surface with a step in the nozzle taper portion 20 or an inclined surface (step surface) having an inclination steeper than the angle θ 1 is formed. 100 has better meniscus stability.
This is because when the step surface is formed, even if the meniscus returns to the back side of the nozzle flow path 100, the expansion in the [100] direction is suppressed, and the width in the [100] direction and the width in the [010] direction are This is because the width and length can be made the same.
 なお、吐出面Baから段差面の接着面Bb側の端部までの長さが、20μm以上60μm以下となるように、当該段差面を形成するのが好ましい。
 これは、液体の引き込みが20μmより大きくなることは稀であるからである。また、上記長さが60μmより長いと、ノズル流路100が充分な体積を確保できなくなるからである。
It is preferable to form the step surface so that the length from the ejection surface Ba to the end of the step surface on the adhesive surface Bb side is 20 μm or more and 60 μm or less.
This is because it is rare for the liquid to be drawn in greater than 20 μm, and if the length is greater than 60 μm, the nozzle flow path 100 will not be able to ensure a sufficient volume.
[第2実施形態]
 次に、第2実施形態に係るノズルプレート110の製造方法について説明する。
 第2実施形態においては、開口パターン303の形成後に、大きさと厚さの異なるパターンを更に形成することで、底部が段状の開口穴305を形成する。
[Second embodiment]
Next, a method for manufacturing the nozzle plate 110 according to the second embodiment will be described.
In the second embodiment, after forming the opening pattern 303, patterns with different sizes and thicknesses are further formed to form the opening hole 305 with a stepped bottom.
 図8に第2実施形態に係るノズルプレート110の製造方法を図示する。
 なお、第1-1工程については、第1実施形態と同様であるため、その詳細な説明は省略する。
FIG. 8 illustrates a method for manufacturing the nozzle plate 110 according to the second embodiment.
Note that since the step 1-1 is the same as that in the first embodiment, detailed explanation thereof will be omitted.
(第1-2a工程)
 本実施形態においては、第1-2a工程としてレジストパターンの形成及びドライエッチングを2回実行する。具体的には、開口パターン303の形成後、開口パターン303を囲うような大きさのレジストパターンを形成する。また、開口パターン303よりも少ないエッチング量でドライエッチングを実行して、サブパターン303aを形成する。
 開口パターン303及びサブパターン303aの形成後、レジストパターンを除去する。
(Step 1-2a)
In this embodiment, resist pattern formation and dry etching are performed twice as the 1-2a step. Specifically, after the opening pattern 303 is formed, a resist pattern having a size that surrounds the opening pattern 303 is formed. Further, dry etching is performed with an etching amount smaller than that of the opening pattern 303 to form the sub-pattern 303a.
After forming the opening pattern 303 and the sub-pattern 303a, the resist pattern is removed.
(第1-3工程)
 開口パターン303及びサブパターン303aの形成後、ドライエッチングにより深掘り加工することで、開口穴305を形成する。
 この時、サブパターン303aにおいては、まず表面マスク層301がエッチングされる。そして、表面マスク層301のエッチングが完了すると、単結晶シリコン基板Bがエッチングされる。一方で、開口パターン303においては、表面マスク層301が無い。そのため、すぐに単結晶シリコン基板Bがエッチングされる。
(Step 1-3)
After the opening pattern 303 and the sub-pattern 303a are formed, the opening hole 305 is formed by deep drilling using dry etching.
At this time, in the sub-pattern 303a, the surface mask layer 301 is first etched. Then, when the etching of the surface mask layer 301 is completed, the single crystal silicon substrate B is etched. On the other hand, in the opening pattern 303, there is no surface mask layer 301. Therefore, the single crystal silicon substrate B is immediately etched.
 そのため、同一時間エッチングしても、開口パターン303と、サブパターン303aとでは単結晶シリコン基板Bのエッチング量が異なる。すなわち、開口パターン303下の単結晶シリコン基板Bの方が、より深くまでエッチングされる。結果、図8に示すような、底部が段状の開口穴305が形成される。
 なお、第1-3工程で形成される段につき、[001]方向の長さcと、[100]方向の長さdについて、a≒b≒c≒dとなるように設計するのが好ましい。第1実施形態と同様に、当該条件を満たすと、テーパー面20aの平滑なノズル流路100が形成される。
Therefore, even if etching is performed for the same time, the amount of etching of the single crystal silicon substrate B is different between the opening pattern 303 and the sub-pattern 303a. That is, the single crystal silicon substrate B under the opening pattern 303 is etched more deeply. As a result, an open hole 305 with a stepped bottom is formed as shown in FIG.
In addition, for the steps formed in the 1-3 steps, it is preferable to design the length c in the [001] direction and the length d in the [100] direction so that a≒b≒c≒d. . Similar to the first embodiment, when the conditions are met, a nozzle flow path 100 with a smooth tapered surface 20a is formed.
(第1-4、第1-5工程、第2工程、第3工程)
 開口穴305の形成後、第1-4工程及び第1-5工程でノズル穴306を形成する。そして、第2工程で異方性ウェットエッチングによりノズル流路100を形成する。
 第2工程後、第3工程として、適宜除去加工を行う。
(Step 1-4, Step 1-5, Step 2, Step 3)
After the opening hole 305 is formed, the nozzle hole 306 is formed in the 1-4th step and the 1-5th step. Then, in a second step, the nozzle channel 100 is formed by anisotropic wet etching.
After the second step, appropriate removal processing is performed as a third step.
[技術的効果]
 以上に示すように、第2実施形態に係るノズルプレート110の製造方法としては、開口パターン303とは大きさと厚さの異なるサブパターン303aを形成することで、底部が段状の開口穴305を形成する。
 当該構成によれば、ノズル流路100の接着面Bb側の開口部における短尺側の寸法と長尺側の寸法の比を、1:3よりも更に大きくできる。そのため、ノズル開口部Nをより高密度化できるようになる。
[Technical effect]
As described above, the method for manufacturing the nozzle plate 110 according to the second embodiment is to form the sub-pattern 303a having a different size and thickness from the opening pattern 303, thereby forming the opening holes 305 with stepped bottoms. Form.
According to this configuration, the ratio of the short dimension to the long dimension of the opening on the bonding surface Bb side of the nozzle flow path 100 can be made even larger than 1:3. Therefore, it becomes possible to further increase the density of the nozzle openings N.
[変形例]
 なお、上記においては開口パターン303の形成後にサブパターン303aを形成するとしたが、これに限られず、逆の順番であってもよい。
 また、上記においてはレジストパターンの形成及びドライエッチングを2回実行する場合を例示したが、これに限られない。すなわち、レジストパターンの形成及びドライエッチングを2回以上実行することで、複数の段を備える開口穴305を形成しても構わない。
 また、上記においてはレジストパターンの形成及びドライエッチングを複数回実行する場合を例示したが、これに限られない。すなわち、グレートーンマスクを用いることで一度に開口パターン303及びサブパターン303aを形成してもよい。
[Modified example]
Note that in the above description, the sub-pattern 303a is formed after the opening pattern 303 is formed, but the order is not limited to this, and the order may be reversed.
Moreover, although the case where formation of a resist pattern and dry etching are performed twice is illustrated above, it is not limited to this. That is, the opening hole 305 having a plurality of steps may be formed by performing resist pattern formation and dry etching two or more times.
Moreover, although the case where formation of a resist pattern and dry etching are performed multiple times is illustrated above, the present invention is not limited to this. That is, the aperture pattern 303 and the sub-pattern 303a may be formed at the same time by using a gray tone mask.
[第3実施形態]
 次に、第3実施形態に係るノズルプレート110の製造方法について、図11を元に説明を行う。
 第3実施形態に係るノズルプレート110の製造方法は、図9及び図10に示すようなノズルストレート部30を備えたノズル流路100を形成する。
[Third embodiment]
Next, a method for manufacturing the nozzle plate 110 according to the third embodiment will be explained based on FIG. 11.
In the method for manufacturing a nozzle plate 110 according to the third embodiment, a nozzle flow path 100 including a nozzle straight portion 30 as shown in FIGS. 9 and 10 is formed.
{ノズルストレート部}
 ノズルストレート部30は、吐出面Ba側がノズル開口部Nと連続し、接着面Bb側がノズルテーパー部20と連続した流路である。
{Nozzle straight part}
The nozzle straight portion 30 is a flow path where the discharge surface Ba side is continuous with the nozzle opening N and the adhesive surface Bb side is continuous with the nozzle tapered portion 20.
 なお、以下においては、図9Aに示すような、ノズル中心軸に平行な軸となす角度が0°である面によって構成されるノズルストレート部30を例示するが、これに限られない。
 図9Bに示すように、ノズルストレート部30を構成する面と、ノズル中心軸に平行な軸と、がなす角度θ2が、いずれの箇所においても略一定であり、かつ、0°≦θ2<15°であればよい。
In the following, a nozzle straight portion 30 formed by a surface that forms an angle of 0° with an axis parallel to the nozzle central axis as shown in FIG. 9A will be exemplified, but the present invention is not limited to this.
As shown in FIG. 9B , it is sufficient that the angle θ 2 between the surface constituting the nozzle straight section 30 and an axis parallel to the nozzle central axis is approximately constant at every point and is in the range of 0°≦θ 2 <15°.
 本実施形態においては、少なくとも第1-4工程より後であって、第1-5工程より前に、第1-A工程から第1-C工程を順に実行する。本実施形態においては、当該条件と、第1-1工程を最初に実行する、第1-3工程よりも前に第1-2工程を実行する、という3つの条件を満たしていれば、工程の順は特に限定されない。
 ただし、実務上は第1-3工程よりも前に第1-A工程から第1-C工程を実行するのが好ましい。これは、第1-3工程後に後述する第1-B工程を実行すると、開口穴305にもマスク層が形成され、当該マスク層を除去する工程が必要になるからである。
 したがって、以下においては、第1-1工程→第1-4工程→第1-A工程→第1-B工程→第1-C工程→第1-5工程→第1-2工程→第1-3工程→第2工程→第3工程の順に進めるものとする。
 また、第1-1工程から第1-5工程については、第1実施形態と同様であるため、その詳細な説明は省略する。
In the present embodiment, steps 1-A to 1-C are sequentially executed after at least step 1-4 and before step 1-5. In this embodiment, if the above conditions and the following three conditions are met: 1-1 step is executed first, and 1-2 step is executed before 1-3 step, the step The order is not particularly limited.
However, in practice, it is preferable to perform steps 1-A to 1-C before step 1-3. This is because when step 1-B, which will be described later, is performed after step 1-3, a mask layer is also formed in the opening hole 305, and a step of removing the mask layer is required.
Therefore, in the following, 1-1 process → 1-4 process → 1-A process → 1-B process → 1-C process → 1-5 process → 1-2 process → 1-1 process -Proceed in the order of 3rd process → 2nd process → 3rd process.
Further, since the steps 1-1 to 1-5 are the same as those in the first embodiment, detailed explanation thereof will be omitted.
(第1-A工程)
 第1-4工程でノズルパターン304を形成した後、第1-A工程として、ノズルパターン304下の単結晶シリコン基板Bを所定量ドライエッチングする。これにより、ノズルストレート穴(第3穴)307を形成する。当該工程においては、予定するノズルストレート部30の長さの分だけエッチングすればよい。
(Step 1-A)
After forming the nozzle pattern 304 in step 1-4, in step 1-A, the single crystal silicon substrate B below the nozzle pattern 304 is dry etched by a predetermined amount. This forms a nozzle straight hole (third hole) 307. In this step, it is sufficient to etch only the length of the planned nozzle straight portion 30.
(第1-B工程)
 ノズルストレート穴307の形成後、第1-B工程として、ノズルストレート穴307の内面に沿ってノズルマスク層308を形成する。ノズルマスク層308の形成方法は、マスク層の材料及び形成方法と同様である。
(Step 1-B)
After the nozzle straight hole 307 is formed, in step 1-B, a nozzle mask layer 308 is formed along the inner surface of the nozzle straight hole 307. The nozzle mask layer 308 is formed using the same material and method as the mask layer.
(第1-C工程)
 ノズルマスク層308の形成後、第1-C工程として、ノズルストレート穴307の底部に形成されたノズルマスク層308を除去する。ノズルストレート穴307の底部のノズルマスク層308は、RIE装置等によってドライエッチングを行うことで除去できる。しかし、RIE装置によるドライエッチングは、エッチャントの垂直性のため、側面部に形成されたノズルマスク層308はドライエッチングでは底部に比較して除去し難い。そのため、ノズルマスク層308のうち、ノズルストレート穴307の底部に形成されたものが先行してエッチングされ、側面部に形成されたものは残る。
(Step 1-C)
After forming the nozzle mask layer 308, the nozzle mask layer 308 formed at the bottom of the nozzle straight hole 307 is removed as a 1-C step. The nozzle mask layer 308 at the bottom of the nozzle straight hole 307 can be removed by dry etching using an RIE apparatus or the like. However, due to the vertical nature of the etchant in dry etching using an RIE apparatus, the nozzle mask layer 308 formed on the side surfaces is more difficult to remove than the bottom portion. Therefore, of the nozzle mask layer 308, the layer formed at the bottom of the nozzle straight hole 307 is etched first, and the layer formed at the side surface remains.
 なお、当該工程におけるエッチング条件を低圧力又は高バイアスとすることで、より側面部のノズルマスク層308がエッチングされ難くしてもよい。 Note that the etching conditions in this step may be set to low pressure or high bias to make it more difficult for the nozzle mask layer 308 on the side surfaces to be etched.
(第1-5工程、第1-2工程、第1-3工程)
 第1-C工程後、第1-5工程として、単結晶シリコン基板Bをドライエッチングして、ノズルストレート穴307を更に深掘り加工することでノズル穴306を形成する。そして、第1-2工程及び第1-3工程により開口穴305を設ける。
(Step 1-5, Step 1-2, Step 1-3)
After the 1-C process, as a 1-5 process, the single crystal silicon substrate B is dry etched to further dig the nozzle straight hole 307 to form a nozzle hole 306. Then, an opening hole 305 is provided in the 1-2nd step and the 1-3rd step.
(第2工程、第3工程)
 そして、第2工程として異方性ウェットエッチングを行う。このとき、ノズルストレート穴307の側面部はノズルマスク層308で護られている。そのため、ノズルストレート穴307の側面部は、エッチングの進行が抑制されて、ノズルストレート部30として残存する。
 第2工程後、第3工程として、適宜除去加工を実行する。なお、本実施形態においては、第3工程において、マスク層と合わせてノズルマスク層308も除去するようにしても構わない。
(2nd process, 3rd process)
Then, anisotropic wet etching is performed as a second step. At this time, the side surface of the nozzle straight hole 307 is protected by a nozzle mask layer 308. Therefore, the progress of etching on the side surface portion of the nozzle straight hole 307 is suppressed, and the side surface portion remains as the nozzle straight portion 30.
After the second step, appropriate removal processing is performed as a third step. Note that in this embodiment, the nozzle mask layer 308 may also be removed together with the mask layer in the third step.
[技術的効果]
 以上に示すように、第3実施形態に係るノズルプレートの製造方法としては、ノズルストレート穴307と、ノズルマスク層308を形成する第1-A工程から第1-C工程を含む。
 当該構成によれば、ノズルストレート部30を備えるノズル流路100を形成できる。ノズルストレート部30は、液滴吐出の際の抵抗を大きくして、メニスカスの振動を抑制させてメニスカス形状をより安定させられる。そのため、射出安定性の向上したノズル流路100を備えるノズルプレート110を形成できる。
[Technical effect]
As described above, the method for manufacturing the nozzle plate according to the third embodiment includes steps 1-A to 1-C for forming the nozzle straight hole 307 and the nozzle mask layer 308 .
According to this configuration, it is possible to form a nozzle flow path 100 that includes a nozzle straight section 30. The nozzle straight section 30 increases the resistance when droplets are ejected, suppresses the vibration of the meniscus, and makes the meniscus shape more stable. Therefore, it is possible to form a nozzle plate 110 that includes a nozzle flow path 100 with improved ejection stability.
[変形例]
 なお、上記においてはノズルストレート穴307とノズルマスク層308を形成することでノズルストレート部30を形成する場合を例示したが、これに限られない。
 エッチング耐性を有する非ウェットエッチング層を備える単結晶シリコン基板Bを用いてもノズルストレート部30を形成できる。
[Modified example]
In addition, although the case where the nozzle straight part 30 is formed by forming the nozzle straight hole 307 and the nozzle mask layer 308 was illustrated above, it is not limited to this.
The nozzle straight portion 30 can also be formed using a single crystal silicon substrate B provided with a non-wet etching layer having etching resistance.
 非ウェットエッチング層とは、例えばマスキング、熱酸化加工あるいは高濃度なB(ホウ素)のドープ等によって形成できる、エッチング耐性を有する層を指す。また、単結晶シリコン基板Bに前述の熱酸化以外の手段で成膜した石英層を設け、当該石英層を非ウェットエッチング層としてもよい。 The non-wet etching layer refers to a layer having etching resistance that can be formed, for example, by masking, thermal oxidation processing, or doping with high concentration B (boron). In addition, a quartz layer formed by a method other than the above-mentioned thermal oxidation may be provided on the single crystal silicon substrate B, and the quartz layer may be used as the non-wet etching layer.
 具体的には、初めに単結晶シリコン基板Bの少なくとも吐出面Ba側に、ノズルプレート110と同じ厚みの非ウェットエッチング層を設ける。そして、このような単結晶シリコン基板Bを用いてノズル穴306を形成し、異方性ウェットエッチングを実行すると、非ウェットエッチング層がノズルマスク層308と同等の役割を果たす。
 そのため、非ウェットエッチング層を備える単結晶シリコン基板Bを用いてもノズル流路100にノズルストレート部30を形成できる。
Specifically, first, a non-wet etching layer having the same thickness as the nozzle plate 110 is provided on at least the ejection surface Ba side of the single crystal silicon substrate B. Then, when a nozzle hole 306 is formed using such a single crystal silicon substrate B and anisotropic wet etching is performed, the non-wet etching layer plays the same role as the nozzle mask layer 308.
Therefore, the nozzle straight portion 30 can be formed in the nozzle flow path 100 even by using the single crystal silicon substrate B having a non-wet etching layer.
 なお、条件2に係る「ノズル穴306の[001]方向の長さa」には、ノズルマスク層308や、非ウェットエッチング層といった、エッチング耐性を有する箇所の[001]方向の長さは含まないのは勿論である。 Note that the "length a of the nozzle hole 306 in the [001] direction" according to condition 2 includes the length in the [001] direction of parts that have etching resistance, such as the nozzle mask layer 308 and non-wet etching layers. Of course not.
 また、各実施形態に係る製造工程において、ノズルプレート110を長期使用するために、少なくとも1層以上の保護膜を形成する工程を加えてもよい。
 この場合、第2工程又は第3工程後にノズル流路100内を含む表面の少なくとも一部を被覆する保護膜を形成する工程を実行する。
Further, in the manufacturing process according to each embodiment, a step of forming at least one protective film may be added in order to use the nozzle plate 110 for a long period of time.
In this case, a step of forming a protective film covering at least a portion of the surface including the inside of the nozzle flow path 100 is performed after the second step or the third step.
 保護膜としては、主にインクとの接触により溶解しない材質のもの、例えば、金属酸化膜(五酸化タンタル、酸化ハフニウム、酸化ニオブ、酸化チタン、酸化ジルコニウム等)や、金属酸化膜にシリコンを含有させた金属シリケート膜(タンタルシリケート、ハフニウムシリケート、ニオブシリケート、チタンシリケート、ジルコニウムシリケート等)や、SiC(シリコンカーバイド)膜や、DLC(ダイヤモンドライクカーボン)膜や、マスク層の形成に用いた材料を選択して用いることができる。また、保護膜として、ポリイミド、ポリアミド、パリレン等の有機膜を用いても良い。
 保護膜の厚さは、特に限定されないが、例えば0.05μm~20μmとすることができる。
The protective film is mainly made of a material that does not dissolve upon contact with the ink, such as a metal oxide film (tantalum pentoxide, hafnium oxide, niobium oxide, titanium oxide, zirconium oxide, etc.) or a metal oxide film containing silicon. The materials used to form the mask layer include metal silicate films (tantalum silicate, hafnium silicate, niobium silicate, titanium silicate, zirconium silicate, etc.), SiC (silicon carbide) films, DLC (diamond-like carbon) films, etc. It can be used selectively. Further, as the protective film, an organic film such as polyimide, polyamide, parylene, etc. may be used.
The thickness of the protective film is not particularly limited, but may be, for example, 0.05 μm to 20 μm.
 次に、本発明の実施例及び比較例について、好ましい構成を評価した結果を説明する。以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Next, the results of evaluating preferred configurations for Examples and Comparative Examples of the present invention will be described. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited thereto.
[サンプル作成]
 以下の各実施例、比較例の通りに形成したノズル流路100を1280個有するノズルプレート110を製造した。そして、接着面における開口部の形状がノズル流路100の接着面Bb側の開口部と同じ形状であるインク流路を有する圧電体プレートと接合して、液滴吐出ヘッド2であるインクジェットヘッドを形成した。そして、当該インクジェットヘッドを、液滴吐出装置1であるインクジェット記録装置に搭載した。
[Sample creation]
A nozzle plate 110 having 1280 nozzle channels 100 formed according to the following Examples and Comparative Examples was manufactured. Then, the inkjet head, which is the droplet ejection head 2, is bonded to a piezoelectric plate having an ink flow path whose opening on the adhesive surface has the same shape as the opening on the adhesive surface Bb side of the nozzle flow path 100. Formed. Then, the inkjet head was mounted on an inkjet recording device, which is the droplet ejection device 1.
 図12から図14は、各実施例に係るノズルプレート110における1つのノズル流路100を示す図である。各図において、点線部は第1工程で形成した中間構造体300を示す。また、実線部は第2工程で中間構造体300に異方性ウェットエッチングを実行し、第3工程でストレート連通部10が略垂直となるように除去加工を実行して、接着面Bb側の開口部を長方形状としたノズル流路100を示す。 12 to 14 are diagrams showing one nozzle flow path 100 in the nozzle plate 110 according to each embodiment. In each figure, the dotted line portion indicates the intermediate structure 300 formed in the first step. In addition, the solid line portion is anisotropic wet etching performed on the intermediate structure 300 in the second step, and removal processing is performed in the third step so that the straight communication portion 10 becomes approximately vertical, so that the bonding surface Bb side is A nozzle flow path 100 with a rectangular opening is shown.
(実施例1)
 第2実施形態に係る製造方法に基づいてノズルプレート110を形成した。すなわち、図12A及び図12Bに示すように、開口穴305の底部が段状である中間構造体300を形成した。そして、ノズルテーパー部20A、ストレート連通部10A及びノズル開口部Nを備えるノズル流路100Aを形成した。
(Example 1)
The nozzle plate 110 was formed based on the manufacturing method according to the second embodiment. That is, as shown in FIGS. 12A and 12B, an intermediate structure 300 was formed in which the bottom of the opening hole 305 was stepped. Then, a nozzle flow path 100A including a nozzle tapered portion 20A, a straight communication portion 10A, and a nozzle opening N was formed.
 なお、図12Bに示すように、開口パターン303の形状は平面視六角形状である。また、ノズル流路100Aの接着面Bb側の開口部の寸法は50μm×130μmであり、ノズル開口部Nは径30μmの円形である。また、第1工程で形成される中間構造体300につき、a≒b≒c≒dとなるように設計した。 Note that, as shown in FIG. 12B, the shape of the opening pattern 303 is hexagonal in plan view. Further, the dimensions of the opening on the adhesive surface Bb side of the nozzle flow path 100A are 50 μm×130 μm, and the nozzle opening N is circular with a diameter of 30 μm. Further, the intermediate structure 300 formed in the first step was designed so that a≒b≒c≒d.
(実施例2)
 第3実施形態に係る製造方法に基づいてノズルプレート110を形成した。すなわち、図13A及び図13Bに示すように、ノズルストレート部30B、ノズルテーパー部20B、ストレート連通部10B及びノズル開口部Nを備えるノズル流路100Bを形成した。
(Example 2)
The nozzle plate 110 was formed based on the manufacturing method according to the third embodiment. That is, as shown in FIGS. 13A and 13B, a nozzle flow path 100B including a nozzle straight section 30B, a nozzle tapered section 20B, a straight communication section 10B, and a nozzle opening N was formed.
 なお、図13Bに示すように、開口パターン303の形状は、長方形の短辺に、当該短辺と等幅な径の半円を組み合わせた形状である。また、ノズル流路100Bの接着面Bb側の開口部の寸法は50μm×130μmである。また、ノズルストレート部30Bの[001]方向の長さは30μmである。また、図13A及び図13Bに示すように、本実施例においては、第1-4工程で径10μmの円形状のノズルパターン304を形成し、第3工程でノズル開口部Nが径30μmの円形状となるように拡張した。 Note that, as shown in FIG. 13B, the shape of the opening pattern 303 is a combination of a short side of a rectangle and a semicircle with a diameter that is the same width as the short side. Further, the dimensions of the opening on the adhesive surface Bb side of the nozzle flow path 100B are 50 μm×130 μm. Further, the length of the nozzle straight portion 30B in the [001] direction is 30 μm. Further, as shown in FIGS. 13A and 13B, in this example, a circular nozzle pattern 304 with a diameter of 10 μm is formed in the 1st-4th process, and the nozzle opening N is formed in a circular shape with a diameter of 30 μm in the 3rd process. Expanded to take shape.
 また、条件2につき、a>bとなるように設計した。そのため、ノズルテーパー部20Bのテーパー面20aBに段差を設ける、[001]方向の長さが10μmの垂直面(段差面)が形成された。 Also, for condition 2, it was designed so that a>b. Therefore, a vertical surface (stepped surface) with a length of 10 μm in the [001] direction was formed, which provided a step on the tapered surface 20aB of the nozzle tapered portion 20B.
(実施例3)
 第3実施形態に係る製造方法に基づいてノズルプレート110を形成した。すなわち、図14A及び図14Bに示すように、ノズルストレート部30C、ノズルテーパー部20C、ストレート連通部10C及びノズル開口部Nを備えるノズル流路100Cを形成した。
(Example 3)
The nozzle plate 110 was formed based on the manufacturing method according to the third embodiment. That is, as shown in FIGS. 14A and 14B, a nozzle flow path 100C including a nozzle straight section 30C, a nozzle tapered section 20C, a straight communication section 10C, and a nozzle opening N was formed.
 なお、図14Bに示すように、開口パターン303の形状は[100]方向の長さに比して[010]方向の長さが長尺な長方形状である。また、ノズル流路100Cの接着面Bb側の開口部の寸法は50μm×130μmである。また、図14A及び図14Bに示すように、本実施例においては、第1-4工程で径10μmのひし形状のノズルパターン304を形成し、第3工程でノズル開口部Nが径30μmの円形状となるように拡張した。 Note that, as shown in FIG. 14B, the opening pattern 303 has a rectangular shape in which the length in the [010] direction is longer than the length in the [100] direction. Further, the dimensions of the opening of the nozzle flow path 100C on the adhesive surface Bb side are 50 μm×130 μm. Further, as shown in FIGS. 14A and 14B, in this example, a diamond-shaped nozzle pattern 304 with a diameter of 10 μm is formed in the 1st-4th process, and the nozzle opening N is formed in a circle with a diameter of 30 μm in the 3rd process. Expanded to take shape.
 また、条件2につき、a=bとなるように設計した。そのため、ノズルテーパー部20Cのテーパー面20aCに段差面は形成されていない。
 また、ノズルストレート部30Cは、ノズル開口部の拡張工程においてエッチング条件を適切に設定した。そのため、ノズルストレート部30Cは、角度θ2が8°のテーパー面を有し、[001]方向の長さが35μmかつ接着面Bb側端部における径が40μmとなった。
Furthermore, for condition 2, it was designed so that a=b. Therefore, no stepped surface is formed on the tapered surface 20aC of the nozzle tapered portion 20C.
Further, for the nozzle straight portion 30C, etching conditions were appropriately set in the nozzle opening expansion step. Therefore, the nozzle straight portion 30C had a tapered surface with an angle θ 2 of 8°, a length in the [001] direction of 35 μm, and a diameter at the end on the adhesive surface Bb side of 40 μm.
(比較例1)
 従来公知の方法によりノズル流路100を形成した。すなわち、ノズルテーパー部20と、ストレート連通部10は備えるが、ノズル流路100の接着面Bb側の開口部は、50μm×50μmの正方形状である。
(Comparative example 1)
The nozzle flow path 100 was formed by a conventionally known method. That is, although the nozzle tapered part 20 and the straight communication part 10 are provided, the opening of the nozzle flow path 100 on the adhesive surface Bb side has a square shape of 50 μm×50 μm.
 上記実施例1-3及び比較例1のノズルプレート110を備えるインクジェットヘッドが搭載されたインクジェット記録装置を用いて、以下の試験1及び試験2を行った。 Using an inkjet recording device equipped with an inkjet head equipped with the nozzle plate 110 of Examples 1-3 and Comparative Example 1, the following Tests 1 and 2 were conducted.
[試験1.射出角度試験]
 液滴速度が平均約6m/sとなる駆動電圧にて、粘度8cPとなるように加温したUVインクを射出した。このとき、ノズル中心軸と射出液とがなす角度である射出角度が±何°以内となるかを、1280ノズルに対して評価した。
[Test 1. Injection angle test]
UV ink heated to a viscosity of 8 cP was injected at a driving voltage such that the average droplet velocity was about 6 m/s. At this time, the injection angle, which is the angle between the nozzle central axis and the injection liquid, was evaluated for 1280 nozzles to see if it was within ± degrees.
[試験2.上限速度試験]
 駆動周波数40kHzで、粘度8cPとなるように加温したUVインクの射出速度を5m/sから上昇させた。そして、射出欠が発生するノズル開口部Nが100ノズル中5ノズル以上発生する射出速度を測定した。なお、当該射出速度が9m/s以上である場合は、射出速度が高くても射出欠が発生しにくい。また、当該射出速度が11m/sであるとなお射出欠が発生しにくいため望ましい。したがって、メニスカス安定性としては、9m/s未満を「C」、9m/s以上11m/s未満を「B」、11m/s以上を「A」として評価した。
[Test 2. Upper limit speed test]
At a driving frequency of 40 kHz, the ejection speed of UV ink heated to a viscosity of 8 cP was increased from 5 m/s. Then, the injection speed at which the number of nozzle openings N at which injection failure occurred occurred in 5 or more out of 100 nozzles was measured. Note that when the injection speed is 9 m/s or more, injection failure is unlikely to occur even if the injection speed is high. Further, it is preferable that the injection speed is 11 m/s because injection failure is less likely to occur. Therefore, the meniscus stability was evaluated as "C" if it was less than 9 m/s, "B" if it was 9 m/s or more and less than 11 m/s, and "A" if it was 11 m/s or more.
 試験1及び試験2の結果を表Iに示す。 The results of Test 1 and Test 2 are shown in Table I.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[評価]
 実施例1と比較例1を比較すると、実施例1の方がメニスカス安定性に優れ、射出欠が生じにくい。これは、実施例1はテーパー面20aAの対称中心部にノズル開口部Nの中心部が位置するようなノズルテーパー部20Aが形成されているからである。
[evaluation]
Comparing Example 1 and Comparative Example 1, Example 1 has better meniscus stability and is less likely to cause injection failure. This is because in the first embodiment, the nozzle tapered portion 20A is formed such that the center of the nozzle opening N is located at the symmetrical center of the tapered surface 20aA.
 また、実施例1と実施例2及び3を比較すると、実施例2及び3の方が、射出角度が向上し、射出特性が高まっている。これは、ノズル流路100にノズルストレート部30B、30Cを形成しているからである。 Furthermore, when comparing Example 1 with Examples 2 and 3, Examples 2 and 3 have improved injection angles and improved injection characteristics. This is because the nozzle straight portions 30B and 30C are formed in the nozzle flow path 100.
 また、実施例2と実施例3を比較すると、実施例2の方がメニスカス安定性に優れ、射出欠が生じにくい。これは、ノズルテーパー部20Bのテーパー面20aBに段差面が形成されているからである。 Further, when comparing Example 2 and Example 3, Example 2 has better meniscus stability and is less likely to cause injection defects. This is because a stepped surface is formed on the tapered surface 20aB of the nozzle tapered portion 20B.
 本発明は、ノズル開口部の高密度化と好適な射出特性を両立させることができるノズルプレートの製造方法に利用することができる。 The present invention can be used in a method for manufacturing a nozzle plate that can achieve both high density nozzle openings and suitable injection characteristics.
2 液滴吐出ヘッド
10 ストレート連通部
20 ノズルテーパー部
30 ノズルストレート部
100 ノズル流路
110 ノズルプレート
305 開口穴(第1穴)
306 ノズル穴(第2穴)
307 ノズルストレート穴(第3穴)
308 ノズルマスク層
N ノズル開口部
B 単結晶シリコン基板
Ba 吐出面(第2面)
Bb 接着面(第1面)
2 Droplet discharge head 10 Straight communication part 20 Nozzle tapered part 30 Nozzle straight part 100 Nozzle channel 110 Nozzle plate 305 Opening hole (first hole)
306 Nozzle hole (second hole)
307 Nozzle straight hole (3rd hole)
308 Nozzle mask layer N Nozzle opening B Single crystal silicon substrate Ba Ejection surface (second surface)
Bb Adhesive side (first side)

Claims (8)

  1.  液滴吐出ヘッドのノズルプレートの製造方法であって、
     表面の結晶方位が{100}面である単結晶シリコン基板の第1面に連通し[010]方向に比べて[100]方向に長尺な第1穴と、前記第1穴と前記単結晶シリコン基板の第2面とに連通可能な第2穴と、を形成する第1工程と、
     前記単結晶シリコン基板に対する異方性ウェットエッチングにより前記第1穴及び前記第2穴を拡大することで、{111}面を有するノズルテーパー部と、当該ノズルテーパー部に連続するストレート連通部と、を備えるノズル流路を形成する第2工程と、を含むノズルプレートの製造方法。
    A method for manufacturing a nozzle plate of a droplet ejection head, the method comprising:
    a first hole that communicates with a first surface of a single crystal silicon substrate whose surface crystal orientation is {100} plane and is longer in the [100] direction than in the [010] direction; and the first hole and the single crystal. a first step of forming a second hole that can communicate with the second surface of the silicon substrate;
    By enlarging the first hole and the second hole by anisotropic wet etching on the single crystal silicon substrate, a nozzle taper portion having a {111} plane and a straight communication portion continuous to the nozzle taper portion are formed; a second step of forming a nozzle flow path.
  2.  前記第1工程において、前記第2穴の[001]方向の長さは、前記第2穴の前記第1面側の端部から前記第1穴の[100]方向の端部までの長さと略等しくなるように形成する請求項1記載のノズルプレートの製造方法。 In the first step, the length of the second hole in the [001] direction is the length from the end of the second hole on the first surface side to the end of the first hole in the [100] direction. 2. The method of manufacturing a nozzle plate according to claim 1, wherein the nozzle plates are formed to be substantially equal.
  3.  前記第1工程において、前記第2穴の[001]方向の長さは、前記第2穴の前記第1面側の端部から前記第1穴の[100]方向の端部までの長さよりも長くなるように形成し、
     前記ノズルテーパー部に段差面を形成する請求項1記載のノズルプレートの製造方法。
    In the first step, the length of the second hole in the [001] direction is longer than the length from the end of the second hole on the first surface side to the end of the first hole in the [100] direction. Form it so that it is also long,
    2. The method of manufacturing a nozzle plate according to claim 1, wherein a stepped surface is formed in the nozzle tapered portion.
  4.  前記第1穴と前記第2穴の中心が一致する請求項1から3のいずれか一項に記載のノズルプレートの製造方法。 The method for manufacturing a nozzle plate according to any one of claims 1 to 3, wherein the centers of the first hole and the second hole coincide.
  5.  前記第1工程において、前記第1穴の底部を段状に形成する請求項1から3のいずれか一項に記載のノズルプレートの製造方法。 The method for manufacturing a nozzle plate according to any one of claims 1 to 3, wherein in the first step, the bottom of the first hole is formed in a stepped shape.
  6.  前記第1工程は、
     前記単結晶シリコン基板を、前記第1面からドライエッチングにより途中まで深掘り加工することで、第3穴を形成し、
     次いで、前記第3穴の内面に沿ってノズルマスク層を形成し、
     次いで、前記第3穴の底部に形成された前記ノズルマスク層を除去する工程を含み、
     前記第1穴は、前記第3穴を更に深掘り加工することで形成し、
     前記第2工程により前記ノズルテーパー部の前記第2面側の端部から連続するノズルストレート部を備えるノズル流路を形成する請求項1から3のいずれか一項に記載のノズルプレートの製造方法。
    The first step comprises:
    The single crystal silicon substrate is deep-drilled from the first surface to a middle portion thereof by dry etching to form a third hole;
    Next, a nozzle mask layer is formed along the inner surface of the third hole;
    Then, removing the nozzle mask layer formed on the bottom of the third hole,
    The first hole is formed by further deepening the third hole,
    The method for manufacturing a nozzle plate according to claim 1 , wherein the second step forms a nozzle flow path including a nozzle straight portion continuing from an end of the nozzle tapered portion on the second surface side.
  7.  前記単結晶シリコン基板は、前記第2面から非ウェットエッチング層が形成されている請求項1から3のいずれか一項に記載のノズルプレートの製造方法。 The method for manufacturing a nozzle plate according to any one of claims 1 to 3, wherein the single crystal silicon substrate has a non-wet etching layer formed from the second surface.
  8.  前記ノズル流路の前記第1面側及び/又は前記第2面側の開口部の径を拡大する第3工程を含む請求項1から3のいずれか一項に記載のノズルプレートの製造方法。 The method for manufacturing a nozzle plate according to any one of claims 1 to 3, including a third step of enlarging the diameter of the opening on the first surface side and/or the second surface side of the nozzle flow path.
PCT/JP2023/033794 2022-09-22 2023-09-15 Method for manufacturing nozzle plate WO2024063030A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-151245 2022-09-22
JP2022151245 2022-09-22

Publications (1)

Publication Number Publication Date
WO2024063030A1 true WO2024063030A1 (en) 2024-03-28

Family

ID=90454581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033794 WO2024063030A1 (en) 2022-09-22 2023-09-15 Method for manufacturing nozzle plate

Country Status (1)

Country Link
WO (1) WO2024063030A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067115A (en) * 1995-07-03 1998-03-10 Seiko Epson Corp Nozzle plate for ink-jet recording head, production thereof, and ink-jet recording head
JP2002321356A (en) * 2001-04-24 2002-11-05 Fuji Xerox Co Ltd Ink jet recording head and method for manufacturing it
JP2008307838A (en) * 2007-06-18 2008-12-25 Seiko Epson Corp Nozzle substrate, droplet discharge head, their manufacturing method and droplet discharge device
US20130135392A1 (en) * 2011-11-25 2013-05-30 Samsung Electronics Co., Ltd. Inkjet printing apparatus and method of forming nozzles
JP2014113822A (en) * 2012-12-06 2014-06-26 Samsung Electronics Co Ltd Inkjet printing apparatuses, and methods of forming nozzles
JP2018094860A (en) * 2016-12-16 2018-06-21 キヤノン株式会社 Liquid discharge head and manufacturing method of liquid discharge head
JP2020082503A (en) * 2018-11-26 2020-06-04 コニカミノルタ株式会社 Nozzle plate manufacturing method and ink jet head manufacturing method
WO2023008375A1 (en) * 2021-07-27 2023-02-02 コニカミノルタ株式会社 Nozzle plate, droplet discharge head, droplet discharge device, and method for manufacturing nozzle plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1067115A (en) * 1995-07-03 1998-03-10 Seiko Epson Corp Nozzle plate for ink-jet recording head, production thereof, and ink-jet recording head
JP2002321356A (en) * 2001-04-24 2002-11-05 Fuji Xerox Co Ltd Ink jet recording head and method for manufacturing it
JP2008307838A (en) * 2007-06-18 2008-12-25 Seiko Epson Corp Nozzle substrate, droplet discharge head, their manufacturing method and droplet discharge device
US20130135392A1 (en) * 2011-11-25 2013-05-30 Samsung Electronics Co., Ltd. Inkjet printing apparatus and method of forming nozzles
JP2014113822A (en) * 2012-12-06 2014-06-26 Samsung Electronics Co Ltd Inkjet printing apparatuses, and methods of forming nozzles
JP2018094860A (en) * 2016-12-16 2018-06-21 キヤノン株式会社 Liquid discharge head and manufacturing method of liquid discharge head
JP2020082503A (en) * 2018-11-26 2020-06-04 コニカミノルタ株式会社 Nozzle plate manufacturing method and ink jet head manufacturing method
WO2023008375A1 (en) * 2021-07-27 2023-02-02 コニカミノルタ株式会社 Nozzle plate, droplet discharge head, droplet discharge device, and method for manufacturing nozzle plate

Similar Documents

Publication Publication Date Title
US8613862B2 (en) Method for manufacturing liquid discharge head substrate
US7753495B2 (en) Ink jet recording head, manufacturing method therefor, and substrate for ink jet recording head manufacture
US20070195123A1 (en) Nozzle plate and method of manufacturing the same
US7517058B2 (en) Ink jet recording head having structural members in ink supply port
JP4656670B2 (en) Liquid discharge head and method of manufacturing liquid discharge head
WO2023008375A1 (en) Nozzle plate, droplet discharge head, droplet discharge device, and method for manufacturing nozzle plate
JP7119943B2 (en) Nozzle plate manufacturing method and inkjet head manufacturing method
WO2024063030A1 (en) Method for manufacturing nozzle plate
US8329047B2 (en) Method for producing liquid discharge head
US7083268B2 (en) Slotted substrates and methods of making
WO2023175817A1 (en) Nozzle plate, droplet discharge head, droplet discharge device, and production method for nozzle plate
TW202422688A (en) Manufacturing method of orifice plate
CN110461610A (en) Reduce the change in size of funnel nozzle
WO2022270237A1 (en) Nozzle plate, liquid ejection head, liquid ejection device, and nozzle plate manufacturing method
JP5932342B2 (en) Method for manufacturing liquid discharge head
US20160082731A1 (en) Liquid ejection head substrate, method of manufacturing the same, and method of processing silicon substrate
WO2022208701A1 (en) Nozzle plate production method, nozzle plate, and fluid discharge head
JP5862116B2 (en) Method for manufacturing flow path plate of liquid ejection device
US8052252B2 (en) Droplet deposition apparatus
JP4163075B2 (en) Nozzle plate manufacturing method
JP2008105418A (en) Method of manufacturing liquid ejection head
JP2008110560A (en) Nozzle plate for liquid delivery head, and method for manufacturing nozzle plate for liquid delivering head
JP2002326360A (en) Method for manufacturing liquid discharged head
JP2008155472A (en) Liquid discharge head and its manufacturing process
JPH04191054A (en) Ink jet record head and manufacture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868151

Country of ref document: EP

Kind code of ref document: A1