WO2024062992A1 - Dna配列のスクリーニング方法 - Google Patents

Dna配列のスクリーニング方法 Download PDF

Info

Publication number
WO2024062992A1
WO2024062992A1 PCT/JP2023/033405 JP2023033405W WO2024062992A1 WO 2024062992 A1 WO2024062992 A1 WO 2024062992A1 JP 2023033405 W JP2023033405 W JP 2023033405W WO 2024062992 A1 WO2024062992 A1 WO 2024062992A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasmid
host cell
ogab
dna
multimodular
Prior art date
Application number
PCT/JP2023/033405
Other languages
English (en)
French (fr)
Inventor
デイビッド リップス
ハイシュ ベルクレイ
Original Assignee
Spiber株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Spiber株式会社 filed Critical Spiber株式会社
Publication of WO2024062992A1 publication Critical patent/WO2024062992A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing

Definitions

  • the present invention relates to a method for screening DNA sequences.
  • Biosynthetic gene clusters can now be easily identified by decoding the genomes of producing bacteria. It is also becoming clear that there are many gene clusters of useful substances that are unused by humans. Among microbial secondary metabolites, research on biosynthetic gene clusters focused on industrially important polyketide compounds and peptide compounds.
  • multimodular biosynthetic enzymes are used to biosynthesize macrolide compounds such as erythromycin, FK-506 (tacrolimus), rapamycin, and avermectin, which are used clinically.
  • biosynthesize macrolide compounds such as erythromycin, FK-506 (tacrolimus), rapamycin, and avermectin, which are used clinically.
  • PKS type I polyketide synthase
  • An object of the present invention is to easily optimize the expression intensities of individual genes even if the optimal combination of expression intensities of individual genes in a cluster containing multiple genes encoding multimodular biosynthetic enzymes is unknown.
  • An object of the present invention is to provide a method for screening DNA sequences that can find unique combinations.
  • the present inventors carried out the following steps: (a) collecting DNA fragments using the OGAB method to prepare a plasmid containing multiple DNA fragments encoding a multimodular biosynthetic enzyme; and (b) transferring the plasmid to a host cell. and (c) screening the DNA sequence based on the properties of the produced multimodular biosynthetic enzyme or the properties of the transformed host cell.
  • a screening method that includes steps, it is possible to easily find the optimal combination of expression intensities of individual genes. The present invention is based on this new finding.
  • a DNA sequence screening method comprising at least the following steps (a) to (c).
  • [10] A plasmid obtained by the screening method according to any one of [1] to [9].
  • [11] A host cell containing the plasmid described in [10].
  • [12] A multimodular biosynthetic enzyme obtained using the plasmid described in [10] or the host cell described in [11].
  • the DNA sequence screening method of the present invention can easily identify individual genes even if the optimal combination of expression intensities of individual genes in a cluster containing multiple genes encoding multimodular biosynthetic enzymes is unknown. It has the advantage of being able to find the optimal combination of expression intensities.
  • FIG. 1 shows the plasmid map of OGAB vector 2.0.
  • FIG. 2 shows the flow of the plasmid production method and gene expression in a heterologous expression host cell.
  • FIG. 3 is a schematic diagram of the conventional combi-OGAB method.
  • Figure 4 is a schematic diagram of the Direct combi-OGAB method.
  • FIG. 5 is a diagram showing the results of digesting a plasmid assembled and purified using Direct combi-OGAB with NotI in an example.
  • FIG. 6 is a table showing the results of identifying the promoters of the combinatorial library and evaluating the diversity of the library in Examples.
  • multimodular biosynthetic enzyme examples include type I polyketide synthase (PKS) and non-ribosomal peptide synthetase.
  • PKS polyketide synthase
  • non-ribosomal peptide synthetase examples include type I polyketide synthase (PKS) and non-ribosomal peptide synthetase.
  • the DNA encoding PKS or non-ribosomal peptide synthetase contained in the plasmid of the present invention may be a wild type (gene encoding these enzymes or its cDNA) or a mutant DNA with altered codon usage. may be present, or may involve modification of one or more amino acids.
  • the PKS from Streptomyces bacteria contains the products of three open reading frames (ORF1, ORF2, ORF3).
  • PKS contains three types of domains: a keto synthase (KS) domain, an acyltransferase (AT) domain, and an acyl carrier protein (ACP), and these three domains can extend polyketide chains.
  • PKS may further have domains involved in main chain modification, such as a keto reductase (KR) domain, a dehydratase (DH) domain, and an enoyl reductase (ER) domain.
  • KR keto reductase
  • DH dehydratase
  • ER enoyl reductase
  • Compounds prepared by PKS include 6-deoxyerythronolide B (6-dEB), frenolicin, granaticin, tetrasenomycin, 6-methylsalicylic acid, oxytetracycline, tetracycline, erythromycin, griseucin, nanaomycin, medermycin, Examples include daunorubicin, tyrosine, carbomycin, spiramycin, avermectin, monensin, nonactin, clamycin, lipomycin, rifamycin, and candicidin.
  • Type I polyketide synthase is not particularly limited, but includes, for example, PKS encoded by the DNA sequence shown in SEQ ID NO: 1, and has a homology of 80% or more to 85% with SEQ ID NO: 1. In the above, 90% or more, 93% or more, 95% or more, 97% or more, or 99% or more of the DNA fragments encode a protein.
  • Non-ribosomal peptides refer to a class of peptides belonging to the family of complex natural products composed of, for example, but not limited to, simple amino acid monomers. It is synthesized in many bacteria and fungi by large multifunctional proteins called non-ribosomal peptide synthetases (NRPS).
  • NRPS non-ribosomal peptide synthetases
  • a feature of the NRPS system is its ability to synthesize peptides containing proteinogenic and non-proteinogenic amino acids.
  • Non-ribosomal peptide synthetase refers to a large multifunctional protein that is organized into cooperative groups of active sites, such as, but not limited to, modules, where each module is responsible for peptide elongation and functionalization. Required to catalyze one cycle of group modification.
  • the number and order of modules and the types of domains present within the modules on each NRPS can be determined by directing the number, order, selection of amino acids incorporated, and modifications associated with specific types of elongation. Determine structural variations of the product.
  • the DNA sequence screening method of the present invention includes at least the following steps (a) to (c): (a) A step of accumulating DNA fragments using the OGAB method and preparing a plasmid containing multiple DNA fragments encoding a multimodular biosynthetic enzyme; (b) transforming the plasmid into a host cell and causing the host cell to produce the multimodular biosynthetic enzyme; and (c) Screening for DNA sequences, screening plasmids containing DNA fragments based on the properties of the multimodular biosynthetic enzyme produced or the properties of the transformed host cell.
  • the above step (a) is a step of accumulating DNA fragments using the OGAB method
  • the above step (b) is a step of transforming a plasmid into a host cell
  • the above step (c) is a step of accumulating DNA fragments using the OGAB method. This is a plasmid screening step.
  • the OGAB method (Ordered Gene Assembly in Bacillus subtilis method) is a method for assembling multiple DNA fragments using a plasmid transformation system of Bacillus subtilis. Specifically, the DNA fragments to be integrated and the integrated plasmid vector are prepared with a specific overhang of 3 to 4 bases, and the DNA fragments to be ligated are assembled using the complementarity of the base sequences of this overhang. This is a method of concatenating by specifying the order and direction of .
  • Patent Document 4 there is a method described in Patent Document 4, in which multiple DNA fragments are arranged in a certain order and orientation by using the DNA uptake ability and homologous recombination ability of microorganisms such as bacteria of the genus Bacillus.
  • the 3-base protruding end generated by digestion of DNA with the restriction enzyme SfiI can be specified to any sequence, DNA fragments of the constituent elements to be assembled and a linear plasmid having an effective replication mechanism within Bacillus subtilis cells are produced. Design and prepare SfiI cleavage sites at each end of the vector fragments by generating ends that allow each fragment to be ligated once in a single DNA assembly unit in an orderly manner, and then divide these SfiI fragments into equimolar After mixing at a concentration such that By transforming B. subtilis competent cells, it is possible to ligate the DNA in the desired order and orientation into the Bacillus subtilis plasmid.
  • the combi-OGAB method is known as an example of the OGAB method.
  • the combi-OGAB method is, for example, as described in Patent Document 5, in a gene integration method (OGAB method) using a plasmid transformation system of Bacillus subtilis, the molar concentration of all DNA fragments used for the integration of a combinatorial library is The method is to make the ratio as close to 1 as possible.
  • a seed plasmid is constructed in which a set of alternative gene fragments to be subjected to combinatorialization are linked.
  • seed plasmids for other option gene fragments a number of seed plasmids equal to the maximum number of options are prepared.
  • Figure 3 shows, by way of example, the construction of a promoter library featuring three different promoters at each position.
  • three individual OGAB reactions are required to generate individual gene clusters with promoter candidates, and then an additional OGAB reaction is required to construct the library.
  • This method is characterized in that it is possible to extremely easily and reliably prepare equimolar concentrations of gene fragments necessary for constructing a combinatorial library, and the scale of library construction can be made larger than ever before.
  • the OGAB method of one embodiment may be the Direct combi-OGAB method, which is a further improvement of the conventional combi-OGAB method.
  • a schematic diagram of the Direct combi-OGAB method is shown in Figure 4.
  • the Direct combi-OGAB method requires only a single OGAB assembly reaction to construct a combinatorial library of any size, whereas the traditional combi-OGAB The method requires multiple OGAB assembly reactions, and the number of reactions required increases with library size. Therefore, constructing a combinatorial library using the Direct combi-OGAB method is much faster than using traditional combi-OGAB, which has the advantage of simplifying the construction of combinatorial libraries. can get.
  • An example of the Direct combi-OGAB method is shown in the Examples.
  • the plasmid contains control sequences operably linked to DNA encoding the desired multi-modular biosynthetic enzymes, such as PKS.
  • Suitable expression systems for use in the present invention include systems that function in eukaryotic and prokaryotic host cells. However, as explained above, prokaryotic systems are preferred, and of particular importance are systems that are compatible with bacteria of the genus Streptomyces. Control sequences for use in such systems include promoters, ribosome binding sites, terminators, enhancers, and the like. Useful promoters are those that function in Streptomyces host cells, such as, but not limited to, pGapdh, pErmE, pKasO, and the like.
  • a selectable marker may also be included in the plasmid.
  • markers are known that are useful in the selection of transformed cell lines, and generally include genes whose expression confers a selectable phenotype on transformed cells when the cells are grown in an appropriate selection medium. be. Such markers include, for example, genes that confer antibiotic resistance or sensitivity to the plasmid. Alternatively, some polyketides are naturally colored, a feature that provides a built-in marker for selecting cells that have been successfully transformed with the constructs of the invention.
  • a plasmid containing multiple genes encoding the multimodular biosynthetic enzyme of the present invention contains DNA encoding a domain included in the multimodular biosynthetic enzyme, and its type and size are not particularly limited.
  • the DNA fragment encoding the domain included in the multimodular biosynthetic enzyme is not particularly limited, and may be a wild-type gene of a microorganism or the like or its cDNA, or an artificially designed and synthesized DNA fragment.
  • gene clusters constituting PKS or NRPS are mentioned.
  • a wild-type DNA fragment primarily uses one codon depending on the organism to express the corresponding amino acid, but when expressed heterologously, it is necessary to match the codon usage frequency of the host.
  • GC content base guanine and cytosine content within the sequence
  • repetitive sequences etc.
  • Repeated sequences reduce genetic stability, pose a risk of erroneous hybridization, and inhibit the synthesis of repetitive segments. Therefore, synthetic genes need to be optimized in relation to codon usage and GC content. However, these requirements are usually difficult to optimally meet simultaneously. For example, codon optimization can lead to highly repetitive DNA fragments or high GC content.
  • the GC content is 30-70%. It is preferably 70% or less, 68% or less, 65% or less, or 60% or less.
  • a target plasmid can be synthesized with high efficiency even if the GC content is 50% or more, 52% or more, 55% or more, 58% or more, or 60% or more.
  • codons are optimized to avoid repeats of 20 bp or more in base sequence. It is preferable to avoid extreme differences in GC content within genes. For example, the difference in GC content between the highest and lowest 50 bp stretches is preferably 52% or less. It is preferable to use as little homopolymer as possible. It is preferred to minimize as much as possible the number/length of small repeats interspersed with DNA fragments.
  • the plasmids of the present invention contain a B. subtilis origin of replication, and may contain a non-B. a conjugation initiation sequence to a site-specific recombination system that allows integration of the vector into the genome of the recipient host at a defined location, one or more of which function in B. subtilis, E. coli, and Streptomyces expression hosts. may include a selection marker.
  • the plasmid of one embodiment may be a plasmid that includes a Bacillus subtilis origin of replication, an E. coli origin of replication, and a conjugation initiation sequence to Streptomyces.
  • the replication origin of Bacillus subtilis of the present invention is not particularly limited as long as it can exhibit its function.
  • the origin of replication for Bacillus subtilis is not particularly limited, but includes, for example, those shown by SEQ ID NO: 2, which have homology with SEQ ID NO: 2 of 80% or more, 85% or more, 90% or more, 93% or more, 95% or more. % or more, 97% or more, or 99% or more.
  • Origins of replication other than Bacillus subtilis are not particularly limited, but examples include origins of replication of Escherichia coli.
  • the origin of replication for E. coli of the present invention may be any origin of replication as long as it can exhibit its function, and examples thereof include, but are not limited to, RepA.
  • the replication origin of E. coli includes the one shown by SEQ ID NO: 3, which has homology with SEQ ID NO: 3 of 80% or more, 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, It may be 99% or more.
  • the prokaryotic F factor distribution system for single copy maintenance in E. coli is not particularly limited, but includes, for example, the system shown in SEQ ID NO: 4, which has a homology of 80% or more, 85% or more with SEQ ID NO: 4. , 90% or more, 93% or more, 95% or more, 97% or more, or 99% or more.
  • the conjugation initiation sequence for actinomycetes is not particularly limited as long as it can exhibit its function, but for example, the sequence shown by SEQ ID NO: 5 may be mentioned, and the sequence has 80% homology with SEQ ID NO: 5. It may be 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, or 99% or more.
  • Site-specific recombination systems that allow the integration of a vector into the genome of a recipient host at a defined location include, but are not particularly limited to, those shown in SEQ ID NO: 6, and those homologous to SEQ ID NO: 6. However, it may be 80% or more, 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, or 99% or more.
  • the one or more selection markers that function in the expression hosts of Bacillus subtilis, E. coli, and Streptomyces are not particularly limited, but include, for example, those shown in SEQ ID NO: 7, which have 80% homology to SEQ ID NO: 7. It may be 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, or 99% or more.
  • OGAB vector 1.0 (SEQ ID NO: 8), OGAB vector 2.0 (SEQ ID NO: 9), OGAB vector 2.1 (SEQ ID NO: 10), OGAB vector 2.2 (SEQ ID NO: 11) are mentioned. and has a homology of 80% or more, 85% or more, 90% or more, 93% or more, 95% or more, 97% or more, 99% or more with SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11. It's okay to have something.
  • the host cells used are Streptomyces, and the plasmid is modified for each host cell to be transformed. This is not necessary, and the risk of mutations such as insertions and deletions that occur during plasmid amplification can be reduced.
  • Plasmids of the invention may be introduced into host cells using conjugative transfer between bacteria.
  • the PKS-encoding base region is transferred to an E. coli plasmid, and transferred from E. coli to Streptomyces by conjugation.
  • the DNA encoding PKS is thereby integrated into the genome of a host cell such as Streptomyces.
  • the host cell is an actinomycete
  • the genus Streptomyces is preferred.
  • the biggest advantage of using host cells of the genus Streptomyces is that, compared to heterologous expression production using E. coli, the production titer is higher and that there is a post-translational modification system essential for the expression of type I PKS activity.
  • S. albus fradiae, S. galilaeus, S. glaucescens, S. hygroscopicus, S. lividans, S. parvulus, S. peucetius, S. rimosus, S. roseofulvus, S. thermotolerans, S. violaceoruber, etc., with S. albus being preferred.
  • a transformant in which a plasmid is introduced into a host cell is cultured, and a multimodular biosynthetic enzyme can be obtained from the culture.
  • Culture means any one of culture supernatant, cultured cells, cultured microbial cells, or crushed cells or microbial cells. The method for culturing the transformant of the present invention can be carried out according to conventional methods used for culturing hosts.
  • the medium for culturing the transformant of the present invention is a natural medium, as long as it contains carbon sources, nitrogen sources, inorganic salts, etc. that can be assimilated by the host, and can efficiently culture the transformant.
  • carbon sources include carbohydrates such as glucose, galactose, fructose, sucrose, raffinose, and starch, organic acids such as acetic acid and propionic acid, and alcohols such as ethanol and propanol.
  • the nitrogen source include ammonium salts of inorganic or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and other nitrogen-containing compounds.
  • peptone, meat extract, corn steep liquor, various amino acids, etc. may be used.
  • examples of the inorganic substances include primary potassium phosphate, secondary potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.
  • Cultivation is usually carried out at 28 to 38°C under aerobic conditions such as shaking culture or aerated agitation culture. Adjustment of pH is performed using an inorganic or organic acid, alkaline solution, etc.
  • multimodular biosynthetic enzymes When cultured under the above culture conditions, multimodular biosynthetic enzymes can be produced in high yield.
  • the expression product can be collected by disrupting the bacterial body or cells using a homogenizer treatment or the like.
  • the culture solution may be used as is, or the bacterial body or cells may be removed by centrifugation or the like. Thereafter, the expression product is collected from the culture by extraction using ammonium sulfate precipitation, and if necessary, further isolated and purified using various chromatography methods.
  • the screening method is based on the properties of the produced multimodular biosynthetic enzyme or at least one property of the transformed host cell. A combination of both the properties of the produced multimodular biosynthetic enzyme and the properties of the transformed host cell may be used as an indicator.
  • the properties of the produced multimodular biosynthetic enzyme are general properties possessed by multimodular biosynthetic enzymes and properties possessed by the multimodular biosynthetic enzyme produced in the present invention, and are not particularly limited. .
  • antibacterial activity can be mentioned, and the method for evaluating antibacterial activity may be any known method and is not particularly limited. Examples include the halo method (JIS L1902) and the film contact method (JIS Z2801).
  • Antibacterial activity means having a protein synthesis inhibiting effect on bacteria such as Staphylococcus, and is based on the properties of macrolide antibacterial drugs such as erythromycin.
  • the properties of the transformed host cell refer to the properties originally possessed by the host cell and the properties possessed by the transformed host cell in the present invention, and are not particularly limited. Examples include colony size of cultured cells, turbidity of bacterial cells, density of bacterial cells, drug resistance, etc. Evaluation methods for colony size, turbidity of bacterial cells, density of bacterial cells, drug resistance, etc. Any method may be used, and there are no particular limitations. Examples include a visual evaluation method and a method using a spectrophotometer. Drug resistance generally means having resistance to antibiotics such as erythromycin, tetracycline, streptomycin, penicillin, actinomycin, rifampicin, fosfomycin, vancomycin, chloramphenicol, and the like. Drug resistance is based on the native properties of the host cell or properties acquired by transformation of a plasmid into which drug resistance is introduced.
  • the screening step may be performed only once or multiple times. By performing screening multiple times, it is possible to screen for plasmids containing more optimized combinations of DNA fragments.
  • the term "multiple times" is not particularly limited, but may be, for example, 2 or more times, 3 or more times, 5 or more times, 10 or more times, 50 or more times, or 100 or more times. By increasing the number of screenings, plasmids containing more optimized combinations of DNA fragments can be obtained.
  • the combination of DNA fragments obtained through screening is industrially useful, but so are the plasmids, host cells, and multimodular biosynthetic enzymes produced during the screening process.
  • a multimodular biosynthetic enzyme can be produced using the plasmid obtained by the screening method or a host cell containing the plasmid.
  • Direct combi-OGAB integration efficiency was confirmed by digesting the plasmid that had been integrated and purified using Direct combi-OGAB using NotI restriction enzyme. The results are shown in FIG. The presence of the expected pattern of cleavage fragments indicates successful association. Lanes 1, 2, 4, and 7-16 in FIG. 5 have the expected pattern of enzyme-digested fragments, meaning that OGAB accumulation was successful in these samples. On the other hand, lanes 3, 5 and 6 differed from the expected pattern and therefore OGAB accumulation was not successful in these samples.
  • Sequencing results were used to identify the promoters of the combinatorial library and evaluate the diversity of the library. Twelve plasmids purified after Direct combi-OGAB were sequenced using Sanger sequencing to confirm their promoter identity at each promoter position and also show the promoter ratios of the five promoter positions (Fig. 6). A). The results of a combinatorial library assembled using the conventional combi-OGAB are also shown (B in Figure 6).

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Plant Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本発明のDNA配列のスクリーニング方法は、少なくとも、(a)OGAB法を用いてDNA断片の集積を行い、マルチモジュール型生合成酵素をコードする複数のDNA断片を含むプラスミドを調製する工程;(b)前記プラスミドを宿主細胞に形質転換し、前記マルチモジュール型生合成酵素を宿主細胞に生産させる工程;並びに(c)生産されたマルチモジュール型生合成酵素の性質又は形質転換された宿主細胞の性質に基づきDNA断片を含むプラスミドをスクリーニングする、DNA配列をスクリーニングする工程を含む。

Description

DNA配列のスクリーニング方法
 本発明は、DNA配列のスクリーニング方法に関するものである。
 放線菌や糸状菌などの微生物が生産する天然化合物は、多種多様な構造と生物活性を有する、有用物質として知られている。現在では生産菌ゲノムを解読することにより、生合成遺伝子クラスターの特定は容易となっている。また、人類が未利用の有用物質遺伝子クラスターが多数存在することも明らかになってきている。微生物二次代謝産物のうち、産業上重要なポリケチド系化合物及びペプチド系化合物を重点的に生合成遺伝子クラスターの研究が行われた。例えば、放線菌の生産する二次代謝産物の中で臨床応用されているerythromycin、FK-506(tacrolimus)、rapamycin及びavermectinなどのマクロライド系化合物の生合成に用いられるマルチモジュール型生合成酵素の一種であるI型ポリケチド合成酵素(PolyketideSynthase; PKS)などを挙げることができる。
 例えば、伝統的な化学的方法によるポリケチド化合物等の生産の困難さ、及び野生型細胞におけるポリケチドの通常の低生産を考えると、ポリケチド化合物を生産するための改良又は代替手段を見つけることにかなりの関心が集まっている。これらの理由により、元の菌株から生合成に必要な遺伝子クラスターをその他の細胞に導入し、化合物の異種生産が試されている。
 しかしながら、異種生産はしばしば低い生産性をもたらす。低生産性の理由の1つは、ターゲットとなるマルチモジュール型生合成酵素クラスター内の個々の遺伝子の発現強度の最適な組み合わせが通常不明だからである。したがって、生産性を最適化するための取り組みは、通常、さまざまな要素とその強みの可能な組み合わせの全体像を組み合わせて検索する必要がある。遺伝子クラスターの異種発現には例えばゲノムDNAサンプルから既存のクラスターをクローニングする方法、合成DNAフラグメントからのデノボアセンブリする方法などのアプローチが知られているが、その組み合わせを検索する項目が膨大であり、その作業を簡略化することが求められている。
米国特許出願公開第2010/0291633号明細書 米国特許第7723077号明細書 特表2011-512140号公報 特開2004-129654号公報 WO2020/203496
PLoS One,2009年,4(5),e5553 化学と生物,2016年,Vol.54,No.10,pp.740~746
 本発明の目的は、マルチモジュール型生合成酵素をコードする複数の遺伝子を含むクラスター内の個々の遺伝子の発現強度の最適な組み合わせが不明であっても、容易に個々の遺伝子の発現強度の最適な組み合わせを見つけることができるDNA配列のスクリーニング方法を提供することである。
 本発明者らは、(a)OGAB法を用いてDNA断片の集積を行い、マルチモジュール型生合成酵素をコードする複数のDNA断片を含むプラスミドを調製する工程と(b)前記プラスミドを宿主細胞に形質転換し、前記マルチモジュール型生合成酵素を宿主細胞に生産させる工程と(c)生産されたマルチモジュール型生合成酵素の性質又は形質転換された宿主細胞の性質に基づきDNA配列をスクリーニングする工程を含むスクリーニング方法を用いることにより、容易に個々の遺伝子の発現強度の最適な組み合わせを見つけることができることを見出した。本発明は、この新規な知見に基づくものである。
 本発明は、例えば、以下の発明を提供する。
[1]
 少なくとも以下の(a)~(c)の工程を含む、DNA配列のスクリーニング方法。
 (a)OGAB法を用いてDNA断片の集積を行い、マルチモジュール型生合成酵素をコードする複数のDNA断片を含むプラスミドを調製する工程
 (b)上記プラスミドを宿主細胞に形質転換し、上記マルチモジュール型生合成酵素を宿主細胞に生産させる工程
 (c)生産されたマルチモジュール型生合成酵素の性質又は形質転換された宿主細胞の性質に基づきDNA断片を含むプラスミドをスクリーニングする、DNA配列をスクリーニングする工程
[2]
 上記OGAB法がcombi-OGAB法である[1]に記載の方法。
[3]
 上記プラスミドが枯草菌の複製起点、大腸菌の複製起点及び放線菌への接合開始配列を含むプラスミドである[1]又は[2]に記載の方法。
[4]
 上記(b)工程が、(a)工程において調製したプラスミドを大腸菌から放線菌に接合伝達させることを含む[1]~[3]のいずれかに記載の方法。
[5]
 上記(b)工程における宿主細胞が放線菌である[1]~[4]のいずれかに記載の方法。
[6]
 上記マルチモジュール型生合成酵素がI型ポリケチド合成酵素(PKS)である[1]~[5]のいずれかに記載の方法。
[7]
 上記(c)工程におけるスクリーニングが、以下いずれか1つ以上の性質を指標とする[1]~[6]のいずれかに記載の方法。
 (i)培養された形質転換された宿主細胞のコロニーサイズ
 (ii)形質転換された宿主細胞の培養物の濁度又は密度
 (iii)抗菌活性
 (iv)薬剤耐性
[8]
 上記(c)工程におけるスクリーニングが、抗菌活性を指標とする[1]~[6]のいずれかに記載の方法。
[9]
 (c)工程を2回以上行う、[1]~[8]のいずれかに記載の方法。
[10]
 [1]~[9]のいずれかに記載のスクリーニング方法によって得られたプラスミド。
[11]
 [10]に記載のプラスミドを有する宿主細胞。
[12]
 [10]に記載のプラスミド又は[11]に記載の宿主細胞を用いて得られたマルチモジュール型生合成酵素。
 本発明のDNA配列のスクリーニング方法は、マルチモジュール型生合成酵素をコードする複数の遺伝子を含むクラスター内の個々の遺伝子の発現強度の最適な組み合わせが不明であっても、容易に個々の遺伝子の発現強度の最適な組み合わせを見つけることができるという利点がある。
図1はOGABベクター2.0のプラスミドマップを示す。 図2はプラスミド製造方法及び異種発現宿主細胞における遺伝子の発現のフローを示す。 図3は従来のcombi-OGAB法の模式図である。 図4はDirect combi-OGAB法の模式図である。 図5は実施例において、Direct combi-OGABを用いて集積し精製したプラスミドをNotIで消化した結果を示す図である。 図6は実施例において、コンビナトリアルライブラリーのプロモーターを特定し、ライブラリーの多様性を評価した結果を示す表である。
 以下、本発明を実施するための形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
〔マルチモジュール型生合成酵素〕
 本明細書において、マルチモジュール型生合成酵素としては、I型ポリケチド合成酵素(PolyketideSynthase ; PKS)と非リボソームペプチド合成酵素などが挙げられる。
 本発明のプラスミドに含まれるPKS又は非リボソームペプチド合成酵素をコードするDNAは、野生型(これらの酵素をコードする遺伝子又はそのcDNA)であってもよく、コドンユーセージを改変した変異型DNAであってもよく、1個又は2個以上のアミノ酸を改変をもたらすものであってもよい。1つの好ましい実施形態において、Streptomyces属細菌由来のPKSでは、3つのオープンリーディングフレーム(ORF1、ORF2、ORF3)の生成物を含む。PKSはケト合成酵素(KS)ドメイン、アシル転移酵素(AT)ドメイン、アシルキャリアープロテイン(ACP)の3種のドメインを含み、これら3つのドメインによりポリケチド鎖を伸長することができる。PKSはさらに、ケト還元酵素(KR)ドメイン、脱水酵素(DH)ドメイン、エノイル還元酵素(ER)ドメインなどの主鎖の修飾に関わるドメインを有していてもよい。PKSによって調製される化合物としては、6-デオキシエリスロノリドB(6-dEB)、フレノリシン、グラナチシン、テトラセノマイシン、6-メチルサリチル酸、オキシテトラサイクリン、テトラサイクリン、エリスロマイシン、グリセウシン、ナナオマイシン、メデルマイシン、ダウノルビシン、チロシン、カルボマイシン、スピラマイシン、アベルメクチン、モネンシン、ノナクチン、クラマイシン、リポマイシン、リファマイシン、カンジシジンが挙げられる。
 I型ポリケチド合成酵素(Polyketide Synthase ; PKS)は、特に限定されないが、例えば、配列番号1で示されるDNA配列がコードするPKSが挙げられ、配列番号1と相同性が、80%以上、85%以上、90%以上、93%以上、95%以上、97%以上、99%以上のDNA断片がコードするタンパク質であるものでも良い。
 非リボソームペプチドは、特に限定されないが、例えば、単純アミノ酸モノマーから構成される複雑な天然産物のファミリーに属するペプチドのクラスを意味する。これは非リボソームペプチド合成酵素(NRPS)と呼ばれる大型多機能タンパク質によって、多くの細菌又は真菌において合成される。NRPS系の特徴は、タンパク新生及び非タンパク新生アミノ酸を含むペプチドを合成できることである。
 非リボソームペプチド合成酵素(NRPS)は、特に限定されないが、例えば、モジュールと呼ばれる活性部位の協調的なグループに組織される、大型多機能タンパク質を意味し、ここで各モジュールは、ペプチド伸長及び官能基の修飾の1サイクルを触媒するために必要である。モジュールの数及び順序、並びに各NRPS上のモジュール内に存在するドメインのタイプは、取り込まれるアミノ酸の数、順序、選択、そして特定のタイプの伸長に関連した修飾を指示することによって、得られるペプチド産物の構造バリエーションを決定する。
〔DNA配列のスクリーニング方法〕
 本発明のDNA配列のスクリーニング方法は、少なくとも以下の(a)~(c)の工程を含む:
(a)OGAB法を用いてDNA断片の集積を行い、マルチモジュール型生合成酵素をコードする複数のDNA断片を含むプラスミドを調製する工程;
(b)前記プラスミドを宿主細胞に形質転換し、前記マルチモジュール型生合成酵素を宿主細胞に生産させる工程;並びに、
(c)生産されたマルチモジュール型生合成酵素の性質又は形質転換された宿主細胞の性質に基づきDNA断片を含むプラスミドをスクリーニングする、DNA配列をスクリーニングする工程。
 上記(a)工程は、OGAB法を用いたDNA断片の集積工程であり、上記(b)工程は、プラスミドの宿主細胞への形質転換工程であり、上記(c)工程は、DNA断片を含むプラスミドのスクリーニング工程である。以下、各工程について詳しく説明する。
(OGAB法を用いたDNA断片の集積工程)
 本明細書においてOGAB法(OrderedGene Assembly in Bacillus subtilis法)とは、枯草菌のプラスミド形質転換系を利用した多重DNA断片集積法である。具体的には、集積対象のDNA断片及び集積プラスミドベクターを3~4塩基の特異的な突出を持つように準備し、この突出の部分の塩基配列の相補性を利用して、連結するDNA断片の順序と向きを指定して連結する方法である。
 例えば、特許文献4などに記載されている方法が挙げられ、具体的にはBacillus属細菌等の微生物のDNA取り込み能力と相同組換え能力を用いることにより複数のDNA断片が一定の順序と向きを保って連結集積していて、かつ微生物中で増幅可能なプラスミドDNAを簡便に取得する方法、並びに、複数のDNA断片が一定の順序と向きを保って連結集積したDNA断片をゲノムDNA中に含む微生物を取得する方法である。
 DNAの制限酵素SfiIの消化により発生する3塩基の突出末端が任意の配列に指定できることを利用して、集積すべき構成要素のDNA断片と枯草菌菌体内で有効な複製機構を有する線状プラスミドベクター断片の各末端を、各断片が1つのDNA集積単位中で一回ずつ順序良く連結できるような末端を生成することによりSfiI切断部位を設計して調製し、これらのSfiIの断片を等モルとなるように濃度を合わせて混合した後、ポリエチレングリコールと塩存在下でライゲーション反応を行うことにより、このDNA連結単位が多重に繰り返した構造の直鎖の高分子DNAを生成させ、これを枯草菌コンピテント細胞に形質転換することで、枯草菌プラスミド中に望ましい順番と方向にDNAを連結することが可能である。また、該プラスミド中の配列と共通の配列をゲノムDNA中に挿入した枯草菌コンピテント細胞と上記で取得したDNA連結単位が多重に繰り返した構造の直鎖の高分子DNAとを共培養することにより、枯草菌ゲノムDNA中に望ましい順番と方向にDNAを連結することが可能である。
 OGAB法の例として、combi-OGAB法が知られている。combi-OGAB法とは、例えば特許文献5に記載のように、枯草菌のプラスミド形質転換系を利用した遺伝子集積法(OGAB法)において、コンビナトリアルライブラリーの集積に用いる全てのDNA断片のモル濃度の比率が可能な限り1に近づくようにする方法である。具体的には、コンビナトリアル化の対象となる選択肢遺伝子断片を一通り連結した種プラスミドを構築する。そして、別の選択肢遺伝子断片についても、別途種プラスミドを構築することで、選択肢の最大数に等しい数の種プラスミドを準備する。各種プラスミドを制限酵素で切断することで、一旦遺伝子断片が等モルに混合された溶液を得る。この溶液は、他の種プラスミドと混合しても等モル性が維持される。その後、これらの溶液が含む各種遺伝子断片を直線状に連結することにより、プラスミドベクター部分が周期的に出現する疑似タンデムリピート状態の高分子DNAを得て、これを用いて枯草菌を形質転換する。枯草菌体内でプラスミドベクター部分の相同性を利用して環状化することによりコンビナトリアルライブラリーを効率よく構築する。このcombi-OGAB法は、本明細書において従来のcombi-OGAB法(Traditional Combi-OGAB又はStandard Combi-OGAB)と呼び、その模式図を図3に示す。図3は例として、各位置に3つの異なるプロモーターを特徴とするプロモーターライブラリーの構築を示す。従来のcombi-OGABを用いる場合、プロモーター候補を有する個々の遺伝子クラスターを作製するために3つの個々のOGAB反応を必要とし、次いで、ライブラリーを構築するために、さらなるOGAB反応を必要とする。
 この方法によると、コンビナトリアルライブラリーの構築に必要な等モル濃度の遺伝子断片を極めて簡便にかつ確実に準備でき、ライブラリーの構築規模を従来になく大規模にできるという特徴がある。
 一実施形態のOGAB法は、従来のcombi-OGAB法をさらに改良したDirect combi-OGAB法であってもよい。Direct combi-OGAB法の模式図は図4に示す。Direct combi-OGAB法を用いる場合、コンビナトリアルライブラリーの構築は、すべての必要なライブラリー断片を適切な濃度及び条件で組み合わせる単一の反応において行われる。Direct combi-OGAB法は、コンビナトリアルライブラリーの構築において、任意のサイズのコンビナトリアルライブラリーを構築するために単一のOGAB集積(アセンブリ)反応のみを必要とするのに対して、従来のcombi-OGAB法は、複数のOGABアセンブリ反応を必要とし、必要な反応の数は、ライブラリーサイズと共に増加する。従って、Direct combi-OGAB法を用いてコンビナトリアルライブラリーを構築することは、従来のcombi-OGABを用いるよりもはるかに迅速であり、それによって、コンビナトリアルライブラリーの構築を簡素化できるとの利点が得られる。Direct combi-OGAB法の一例は実施例に示す。
 プラスミドは、所望のマルチモジュール型生合成酵素であるPKSなどをコードするDNAに作動可能に連結された制御配列を含む。本発明に使用するための適切な発現系は、真核生物宿主細胞及び原核生物宿主細胞において機能する系を含む。しかし、上記で説明したように、原核生物系が好適であり、そして特に、Streptomyces属細菌と適合する系が特に重要である。そのような系で使用するための制御配列は、プロモーター、リボソーム結合部位、ターミネーター、エンハンサーなどを含む。有用なプロモーターは、Streptomyces属の宿主細胞で機能するものであり、例えばpGapdh、pErmE、pKasOなどが挙げられるが、これらに限定されることはない。
 選択マーカーもまた、プラスミド中に含まれ得る。形質転換細胞株の選択において有用であり、そして一般に、細胞が適切な選択培地中で成長するとき、その発現が形質転換細胞上の選択可能な表現型を与える遺伝子を含む種々のマーカーが公知である。そのようなマーカーは、例えば、プラスミドに抗生物質の耐性又は感受性を付与する遺伝子を含む。あるいは、いくつかのポリケチドは、本来着色されており、この特徴は、本発明の構築物により首尾良く形質転換された細胞を選択するための生来の(built-in)マーカーを提供する。
 本発明のマルチモジュール型生合成酵素をコードする複数の遺伝子を含むプラスミドは、マルチモジュール型生合成酵素に含まれるドメインをコードするDNAを含み、その種類や大きさは特に限定されない。マルチモジュール型生合成酵素に含まれるドメインをコードするDNA断片としては、微生物などの野生型遺伝子又はそのcDNAであってもよく、人工設計・合成したDNA断片であってもよく、特に制限されない。好ましくは、PKS又はNRPSを構成する遺伝子クラスターが挙げられる。野生型のDNA断片は、所定の由来生物内には、対応するアミノ酸を発現するために生物によって主に一つのコドンが使用されるが、異種発現させる場合は、宿主のコドン使用頻度に合わせる必要がある。異種発現の結果に影響を与える可能性のあるその他の要因は、GC含有量(配列内のベースグアニン及びシトシン含有量)、繰り返し配列等を挙げることができる。繰り返し配列は遺伝的安定性を低下させ、誤ったハイブリダイゼーションのリスクが生じ、反復セグメントの合成を阻害する。したがって、合成遺伝子はコドン使用量とGC含量に関連して最適化する必要がある。ただし、これらの要件は通常、同時に最適に満たすことは困難である。例えば、コドンを最適化した結果、非常に反復的なDNA断片、又は高いGC含量につながる可能性がある。本発明において、GC含量は30~70%である。好ましく70%以下、68%以下、65%以下、60%以下である。本発明を用いることによって、GC含量が50%以上、52%以上、55%以上、58%以上、60%以上であっても、高い効率で目的プラスミドを合成することができる。好ましくは20 bp以上の塩基配列の繰り返しが現れないように、コドンを最適化する。遺伝子内のGC含量の極端な違いを避けることが好ましい。例えば、最高と最低の50bpストレッチ間のGC含量の差は52%以下であることが好ましい。ホモポリマーをできるだけ少なくすることが好ましい。DNA断片に散らばっている小さな繰り返しの数/長さを可能な限り最小化することが好ましい。
 本発明のプラスミドは、枯草菌の複製起点を含み、枯草菌以外の複製起点を含んでいても良く、複製起点以外の大腸菌でのシングルコピーメンテナンスのための原核生物のF因子分配システム、放線菌への接合開始配列、定義された場所でレシピエント宿主のゲノムにベクターを組み込むことを可能にする部位特異的組換えシステム、枯草菌、大腸菌、及び放線菌の発現宿主で機能する1つ又は複数の選択マーカーを含んでいても良い。一実施形態のプラスミドは、枯草菌の複製起点、大腸菌の複製起点及び放線菌への接合開始配列を含むプラスミドであってよい。
 本発明の枯草菌の複製起点はその機能を発揮できるものであれば良く、特に限定されない。枯草菌の複製起点としては特に限定されないが、例えば、配列番号2で示されるものが挙げられ、配列番号2と相同性が、80%以上、85%以上、90%以上、93%以上、95%以上、97%以上、99%以上であるものでも良い。
 枯草菌以外の複製起点としては特に限定されないが、大腸菌の複製起点が挙げられる。本発明の大腸菌の複製起点はその機能を発揮できるものであれば良く、特に限定されないが、例えば、RepAなどが挙げられる。例えば大腸菌の複製起点については配列番号3で示されるものが挙げられ、配列番号3と相同性が、80%以上、85%以上、90%以上、93%以上、95%以上、97%以上、99%以上であるものでも良い。
 大腸菌でのシングルコピーメンテナンスのための原核生物のF因子分配システムとしては特に限定されないが、例えば配列番号4で示されるものが挙げられ、配列番号4と相同性が、80%以上、85%以上、90%以上、93%以上、95%以上、97%以上、99%以上であるものでも良い。
 放線菌への接合(conjugation)開始配列としてはその機能を発揮できるものであれば良く、特に限定されないが、例えば配列番号5で示されるものが挙げられ、配列番号5と相同性が、80%以上、85%以上、90%以上、93%以上、95%以上、97%以上、99%以上であるものでも良い。
 定義された場所でレシピエント宿主のゲノムにベクターを組み込むことを可能にする部位特異的組換えシステムとしては特に限定されないが、例えば配列番号6で示されるものが挙げられ、配列番号6と相同性が、80%以上、85%以上、90%以上、93%以上、95%以上、97%以上、99%以上であるものでも良い。
 枯草菌、大腸菌、及び放線菌の発現宿主で機能する1つ又は複数の選択マーカーとしては特に限定されないが、例えば配列番号7で示されるものが挙げられ、配列番号7と相同性が、80%以上、85%以上、90%以上、93%以上、95%以上、97%以上、99%以上であるものでも良い。
 1つの実施形態においてOGABベクター1.0(配列番号8)、OGABベクター2.0(配列番号9)、OGABベクター2.1(配列番号10)、OGABベクター2.2(配列番号11)が挙げられ、配列番号8、配列番号9、配列番号10、配列番号11と相同性が、80%以上、85%以上、90%以上、93%以上、95%以上、97%以上、99%以上であるものでも良い。
 枯草菌、大腸菌、及び放線菌への接合開始配列を含むプラスミドを用いマルチモジュール型生合成酵素を生産させる宿主細胞を放線菌とすることで、形質転換を行う宿主細胞ごとにプラスミドの改変を行う必要が無く、プラスミドの増幅を行う際に生じる挿入、欠失などの変異リスクを低減することができる。
(宿主細胞への形質転換工程)
 本発明のプラスミドを適切な宿主中に導入する方法は、当業者に公知であり、そして代表的には、CaCl2又は2価のカチオン及びDMSOのようなその他の薬剤の使用を包含する。DNAはまた、エレクトロポレーションにより細菌細胞中に導入され得る。一旦マルチモジュール型生合成酵素であるPKSが発現されると、ポリケチド産生コロニーが同定され得、そして公知の技術を用いて単離され得る。本発明のプラスミドは細菌間の接合伝達を使用して宿主細胞に導入してもよい。本発明の好ましい1つの実施形態において、PKSをコードする塩基領域を大腸菌のプラスミドに移し、接合(conjugation)により大腸菌から放線菌に転送することで実施する。PKSをコードするDNAは、これにより放線菌のような宿主細胞のゲノムに組み込まれる。宿主細胞が放線菌である場合、Streptomyces属が好ましい。Streptomyces属の宿主細胞を用いる最大のメリットは、大腸菌を用いた異種発現生産と比較して、生産力価が高いこと、さらにI型PKSの活性発現に必須な翻訳後修飾系が存在することが挙げられる。具体的には、S. albus、S.ambofaciens、S.avermitilis、S.azureus、S.cinnamonensis、S.coelicolor、S.curacoi、S.erythraeus、S.fradiae、S.galilaeus、S.glaucescens、S.hygroscopicus、S.lividans、S.parvulus、S.peucetius、S.rimosus、S.roseofulvus、S.thermotolerans、S.violaceoruberなどが挙げられ、S. albusが好ましい。
 OGAB法を用いてDNA断片の集積を行い、マルチモジュール型生合成酵素をコードする複数のDNA断片を含むプラスミドを宿主細胞へ形質転換し宿主細胞にマルチモジュール型生合成酵素を生産させることができる。宿主細胞に生産させる方法は、公知の方法で良く、1つの実施形態において、プラスミドを宿主細胞に導入した形質転換体を培養し、その培養物からマルチモジュール型生合成酵素を得ることができる。「培養物」としては、培養上清、培養細胞、培養菌体、又は細胞若しくは菌体の破砕物のいずれかを意味するものである。本発明の形質転換体を培養する方法は、宿主の培養に用いられる通常の方法に従って行うことができる。
 本発明の形質転換体を培養する培地は、宿主が資化し得る炭素源、窒素源、無機塩類等を含有し、形質転換体の培養を効率的に行うことができる培地であれば、天然培地、合成培地のいずれを用いてもよい。炭素源としては、グルコース、ガラクトース、フラクトース、スクロース、ラフィノース、デンプン等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノール等のアルコール類が挙げられる。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム、リン酸アンモニウム等の無機酸若しくは有機酸のアンモニウム塩又はその他の含窒素化合物が挙げられる。その他、ペプトン、肉エキス、コーンスティープリカー、各種アミノ酸等を用いてもよい。無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等が挙げられる。
 培養は、通常、振とう培養又は通気攪拌培養などの好気的条件下、28~38℃で行う。pHの調整は、無機又は有機酸、アルカリ溶液等を用いて行う。
 上記培養条件で培養すると、高収率でマルチモジュール型生合成酵素を生産することができる。
 培養後、マルチモジュール型生合成酵素が菌体内又は細胞内に生産される場合には、ホモジナイザー処理などを施して菌体又は細胞を破砕することにより、当該発現産物を採取することができる。一方、ポリケチドが菌体外又は細胞外に輸送される場合には、培養液をそのまま使用するか、遠心分離等により菌体又は細胞を除去する。その後、硫安沈澱による抽出等により前記培養物中から当該発現産物を採取し、必要に応じてさらに各種クロマトグラフィー等を用いて単離精製する。
(スクリーニング工程)
 スクリーニング方法としては、生産されたマルチモジュール型生合成酵素の性質又は形質転換された宿主細胞の少なくも1つの性質に基づいて行う。生産されたマルチモジュール型生合成酵素の性質及び形質転換された宿主細胞の性質の両方の組み合わせを指標としてもよい。
 生産されたマルチモジュール型生合成酵素の性質とは、マルチモジュール型生合成酵素が有する一般的な性質及び本発明において生産されたマルチモジュール型生合成酵素が有する性質のことであり、特に限定されない。例えば、抗菌活性などが挙げられ、抗菌活性の評価方法としては、公知の方法でよく、特に限定されない。例えば、ハロー法(JIS L1902)、フィルム密着法(JIS Z2801)などが挙げられる。抗菌活性とは、例えばブドウ球菌属などの細菌に対して蛋白合成阻害作用を有することを意味し、例えばエリスロマイシンなどマクライド系抗菌薬の性質に基づいている。
 形質転換された宿主細胞の性質とは、宿主細胞が元々有する性質及び本発明において形質転換された宿主細胞が有する性質のことであり、特に限定されない。例えば、培養された細胞のコロニーサイズ、菌体の濁度、菌体密度、薬剤耐性などが挙げられ、コロニーサイズ、菌体の濁度、菌体密度、薬剤耐性に関する評価方法としては、公知の方法でよく、特に限定されない。例えば、目視による評価法、分光光度計などを用いる方法などが挙げられる。薬剤耐性とは、一般的に抗生物質、例えばエリスロマイシン、テトラサイクリン、ストレプトマイシン、ペニシリン、アクチノマイシン、リファンピシン、ホスホマイシン、バンコマイシン、クロラムフェニコール等に対して耐性を有することを意味する。薬剤耐性は、宿主細胞の元々性質又は薬剤耐性が導入されたプラスミドの形質転換によって獲得した性質に基づいている。
 スクリーニング工程は、1回のみ行ってもよく、複数回を行ってもよい。複数回のスクリーニングを行うことでより最適化されたDNA断片の組合せを含むプラスミドをスクリーニングすることができる。複数回とは、特に限定されないが、例えば、2回以上、3回以上、5回以上、10回以上、50回以上、100回以上であっても良い。スクリーニングの回数を増やすことにより、より最適化されたDNA断片の組合せを含むプラスミドを取得することができる。
 スクリーニングにより取得されたDNA断片の組合せは産業上有用なものであるが、スクリーニングの過程で生産されたプラスミド、宿主細胞、マルチモジュール型生合成酵素についても産業上有用なものである。スクリーニング方法によって得られたプラスミド、又は該プラスミドを有する宿主細胞を用いて、マルチモジュール型生合成酵素を製造することができる。
 以下、実施例等に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
〔Direct combi-OGAB法を用いた枯草菌におけるDNA断片の集積〕
 DNA断片の集積は以下のプロトコルで集積した。集積方法のスキームは図2に示す。
1)大腸菌を用いて、標的PKSクラスター構築物である、Kitasatospora aureofaciens由来のフラグメント1~23(配列番号12~34)の全てのDNA断片を増幅し、精製した。PKS骨格(バックボーン)DNA断片は、フラグメント02、04、05、07、08、10、11及び13であり、PKSプロモーターDNA断片は、フラグメント01、03、06、09、12、14、15、16、17、18、19、20、21、22及び23であった;
2)全DNA断片(フラグメント01~23)の濃度をUV分光光度計(Thermofisher Nanodrop)で測定し、等モルの断片混合物を生成するように調製した;
3) OGABベクター2.0プラスミドをPlasmid-SafeTM ATP-Dependent DNase E3101K (Lucigen Corporation)で処理し、Qiagen MinEluteでDNAを精製した;
4)各DNA断片の濃度を100 ng/μlに標準化した;
5)各バックボーンDNA断片900ngずつ(すなわち、フィラメント02、04、05、07、08、10、11及び13が900ngずつ)と、各プロモーターDNA断片300ngずつ(すなわち、フィラメント01、03、06、09、12、14、15、16、17、18、19、20、21、22及び23が300 ngずつ)とともにチューブに混合し、BsmbI-HFv2(NEB)で処理した;
6)消化されたDNAを精製するため、フェノール薬用クロロホルム処理、ブタノール処理、エタノール沈殿を行った;
7)透析チューブを用いたゲル抽出を行い、消化されたプラスミド混合物から標的断片を切り出し、切り出された標的断片をエタノール沈殿により精製した;
8)切り出された断片を、切断されたOGABベクター2.0(配列番号9)、1μlのT4 DNAリガーゼ(タカラバイオ社製)及び連結用緩衝液と混合し、37℃で3時間インキュベートして連結し、標的PKSクラスターをコードするDNAの縦列反復を含むDNA構築物を得た;
9)上記DNA構築物を含む反応液と枯草菌コンピテント細胞とを混合し、37℃で短時間混合した後、所定のインキュベート時間をおいて、テトラサイクリン選択皿上に広げた;
10)コロニー成長後、1枚の培養皿から形質転換体のコロニーをピックアップし、2mlのLB中で37℃で一晩増殖させた。残りの培養皿から細胞を削り取り、プラスミドライブラリーを従来のプロトコルに従って精製した;
11)従来のプロトコルに従って、一晩培養したものからプラスミドを抽出し、得られたDNAが制限酵素切断により予想通りに構築されたか否かを検証した。
〔Direct combi-OGABライブラリー多様性の評価〕
1)制限酵素切断にて正しく組み立てられたと確認されたプラスミドから、すべてのプロモーター領域をPCRを用いて増幅した;
2)増幅されたプロモーター領域をサンガー配列決定法を用いて配列決定した;
3)各プロモーターの同一性は、GeneeousPrimeを用いてサンガー配列決定した。
 Direct combi-OGAB集積効率は、NotI制限酵素を用いてDirect combi-OGABを用いて集積し精製したプラスミドを消化することにより確認した。その結果を図5に示す。切断断片の予想されるパターンの存在は、会合が成功したことを示す。図5中のレーン1、2、4及び7~16は、酵素で消化された断片のパターンが予想とおりであり、これらのサンプルではOGAB集積が成功したことを意味する。一方、レーン3、5及び6は、予期されたパターンと異なっており、したがって、これらのサンプルではOGAB集積は成功しなかった。
 配列決定の結果を使用してコンビナトリアルライブラリーのプロモーターを特定し、ライブラリーの多様性を評価した。Direct combi-OGAB後に精製した12個のプラスミドをSanger配列決定法を用いて配列決定し、各プロモーター位置におけるそれらのプロモーター同一性を確認し、5つのプロモーター位置のプロモーター比も示した(図6のA)。従来のcombi-OGABを用いて集積したコンビナトリアルライブラリーの結果も示した(図6のB)。

Claims (12)

  1.  (a)OGAB法を用いてDNA断片の集積を行い、マルチモジュール型生合成酵素をコードする複数のDNA断片を含むプラスミドを調製する工程、
     (b)前記プラスミドを宿主細胞に形質転換し、前記マルチモジュール型生合成酵素を宿主細胞に生産させる工程、及び
     (c)生産されたマルチモジュール型生合成酵素の性質又は形質転換された宿主細胞の性質に基づきDNA断片を含むプラスミドをスクリーニングする、DNA配列をスクリーニングする工程
    を含む、DNA配列のスクリーニング方法。
  2.  前記OGAB法がcombi-OGAB法である請求項1に記載の方法。
  3.  前記プラスミドが枯草菌の複製起点、大腸菌の複製起点及び放線菌への接合開始配列を含むプラスミドである請求項1又は2に記載の方法。
  4.  前記(b)工程が、前記(a)工程において調製したプラスミドを大腸菌から放線菌に接合伝達させる工程を含む請求項1又は1に記載の方法。
  5.  前記(b)工程における宿主細胞が放線菌である請求項1又は2に記載の方法。
  6.  前記マルチモジュール型生合成酵素がI型ポリケチド合成酵素(PKS)である請求項1又は2に記載の方法。
  7.  前記(c)工程におけるスクリーニングが、少なくとも以下いずれか1つ以上の性質を指標とする請求項1又は2に記載の方法。
     (i) 培養された形質転換された宿主細胞のコロニーサイズ
     (ii) 形質転換された宿主細胞の培養物の濁度又は密度
     (iii)抗菌活性
     (iv)薬剤耐性
  8.  前記(c)工程におけるスクリーニングが、抗菌活性を指標とする請求項1又は2に記載の方法。
  9.  (c)工程を2回以上行う、請求項1又は2に記載の方法。
  10.  請求項1に記載のスクリーニング方法によって得られたプラスミド。
  11.  請求項10に記載のプラスミドを有する宿主細胞。
  12.  請求項10に記載のプラスミド又は請求項11に記載の宿主細胞を用いて得られたマルチモジュール型生合成酵素。

     
PCT/JP2023/033405 2022-09-20 2023-09-13 Dna配列のスクリーニング方法 WO2024062992A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022149109 2022-09-20
JP2022-149109 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024062992A1 true WO2024062992A1 (ja) 2024-03-28

Family

ID=90454360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/033405 WO2024062992A1 (ja) 2022-09-20 2023-09-13 Dna配列のスクリーニング方法

Country Status (1)

Country Link
WO (1) WO2024062992A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525992A (ja) * 2015-09-01 2018-09-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア モジュールポリペプチドライブラリならびにその作製方法及びその使用
WO2021241593A1 (ja) * 2020-05-26 2021-12-02 Spiber株式会社 マルチモジュール型生合成酵素遺伝子のコンビナトリアルライブラリーの調製方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018525992A (ja) * 2015-09-01 2018-09-13 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア モジュールポリペプチドライブラリならびにその作製方法及びその使用
WO2021241593A1 (ja) * 2020-05-26 2021-12-02 Spiber株式会社 マルチモジュール型生合成酵素遺伝子のコンビナトリアルライブラリーの調製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUZAWA SATOSHI: "Toward the Construction of a Specialty Polyketide Library: Engineering a Bacterial Chemical Factory", KAGAKU TO SEIBUTSU, vol. 55, no. 9, 1 August 2017 (2017-08-01), pages 611 - 616, XP093150037 *

Similar Documents

Publication Publication Date Title
Adrio et al. Recombinant organisms for production of industrial products
EP4159862A1 (en) Method for preparing combinatorial library of multi-modular biosynthetic enzyme gene
Rodriguez et al. Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains
CN101983239A (zh) 使用聚酮化物合酶制备二元羧酸
Demain et al. Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation
US6265202B1 (en) DNA encoding methymycin and pikromycin
Hutchinson Drug synthesis by genetically engineered microorganisms
Diminic et al. Evolutionary concepts in natural products discovery: what actinomycetes have taught us
EP3938518A1 (en) Expression vector
US6838265B2 (en) Overproduction hosts for biosynthesis of polyketides
WO2024062992A1 (ja) Dna配列のスクリーニング方法
WO2021241584A1 (ja) I型ポリケチドシンターゼ遺伝子を含むプラスミドの調製方法
McDaniel et al. Process development and metabolic engineering for the overproduction of natural and unnatural polyketides
US9404107B2 (en) Integration of genes into the chromosome of Saccharopolyspora spinosa
JP7370121B2 (ja) プラスミドの製造方法及びプラスミド
Wilkinson et al. Biocatalysis in pharmaceutical preparation and alteration
US20060269528A1 (en) Production detection and use of transformant cells
CN101892186B (zh) 产表柔红霉素的天蓝淡红链霉菌的基因工程菌及其制备方法
JP2004049100A (ja) ミデカマイシンの生合成遺伝子
WO2004015088A2 (en) Transposon-based transformation system
US20030073824A1 (en) DNA encoding methymycin and pikromycin
US20030194784A1 (en) DNA encoding methymycin and pikromycin
Pelzer et al. Tool-box: tailoring enzymes for bio-combinatorial lead development and as markers for genome-based natural product lead discovery
Bechthold et al. Glycosyltransferases and other tailoring enzymes as tools for the generation of novel compounds
US20040241799A1 (en) Methods of directing C-O bond formation utilizing a type II polyketide synthase system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868115

Country of ref document: EP

Kind code of ref document: A1