WO2024062931A1 - 神経変性疾患のリスク判定方法及び判定装置 - Google Patents

神経変性疾患のリスク判定方法及び判定装置 Download PDF

Info

Publication number
WO2024062931A1
WO2024062931A1 PCT/JP2023/032629 JP2023032629W WO2024062931A1 WO 2024062931 A1 WO2024062931 A1 WO 2024062931A1 JP 2023032629 W JP2023032629 W JP 2023032629W WO 2024062931 A1 WO2024062931 A1 WO 2024062931A1
Authority
WO
WIPO (PCT)
Prior art keywords
streptococcus
prevotella
diseases
bacteria
expression levels
Prior art date
Application number
PCT/JP2023/032629
Other languages
English (en)
French (fr)
Inventor
智宏 赤澤
正平 服部
大介 久松
信孝 服部
亙 須田
勇亮 緒方
隆 朝田
Original Assignee
学校法人順天堂
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人順天堂, 国立研究開発法人理化学研究所 filed Critical 学校法人順天堂
Priority to JP2023556884A priority Critical patent/JPWO2024062931A1/ja
Publication of WO2024062931A1 publication Critical patent/WO2024062931A1/ja

Links

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to a method and device for determining the risk of neurodegenerative diseases.
  • Neurodegenerative diseases are a group of diseases of the central nervous system that are caused by damage or loss of a specific group of nerve cells, and clinically, they are diseases of unknown cause that develop latently and cause psychiatric and neurological symptoms to progress slowly. Point.
  • proteins have been classified based on the concept of proteinopathy, in which the same pathogenic protein causes a common pathological condition, based on the main abnormal proteins that accumulate in nerve cells or glial cells and their accumulation patterns.
  • Tauopathy such as Alzheimer's disease (AD), TDP43 proteinopathy such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy (MSA) ) is classified as a synucleinopathy.
  • Non-Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 2 uses a logistic regression analysis method based on microbiome genus and species data from salivary RNA sequencing to distinguish between early Parkinson's disease (PD) patients and healthy individuals from data on 11 bacterial groups.
  • an object of the present invention is to provide a risk determination method that can stratify and evaluate the risk of neurodegenerative diseases into a plurality of diseases using easily collected saliva samples.
  • the present inventor used the expression levels of multiple types of bacteria obtained from analysis of the salivary microbiota of healthy subjects and patients with multiple diseases belonging to neurodegenerative diseases as explanatory variables. Using a predictive model generated by machine learning using an algorithm obtained as the objective variable to obtain the disease status of patients stratified by disease as training data, multiple types obtained from analysis of the salivary flora of the subjects were used. The inventors have discovered that by applying the expression level of bacteria in the above prediction model, it is possible to stratify and evaluate the risk of neurodegenerative diseases of the subject into a plurality of diseases, and have completed the present invention.
  • the present invention provides the following inventions [1] to [8].
  • [1] A method executed by a processor of a computer, the method comprising: obtaining the expression levels of multiple types of bacteria from analysis of the salivary flora of the subject; Inputting the obtained expression levels of the plurality of types of bacteria into a prediction model to stratify and evaluate the risk of neurodegenerative diseases of the subject into a plurality of diseases,
  • the above prediction model uses the expression levels of multiple types of bacteria obtained from analysis of the salivary flora of healthy subjects and patients with multiple diseases belonging to neurodegenerative diseases as explanatory variables, and uses the expression levels of multiple types of bacteria as explanatory variables, and It is generated by machine learning using an algorithm as training data to obtain the disease status of patients stratified by the objective variables.
  • the plurality of types of bacteria are bacterial species with high expression levels in the analysis of the salivary flora of the stratified patients, and/or patients with different diseases in the analysis of the stratified patients' salivary flora.
  • a risk determination method for stratifying and evaluating the risk of neurodegenerative diseases into multiple diseases characterized by including bacterial species with significant differences in expression levels among them.
  • the above-mentioned stratification of multiple diseases includes stratification of healthy elderly people, mild cognitive impairment (MCI) and dementia (DE), and stratification of healthy elderly people, mild cognitive impairment (MCI) and dementia (DE). and stratification of dementia with Lewy bodies (DLB), or stratification of Parkinson's disease (PD) and dementia with Lewy bodies (DLB), the risk determination method according to [1].
  • the plurality of types of bacteria are [Eubacterium] brachy, Porphyromonas endodontalis, Alloprevotella tannerae, Capnocytophaga leadbetteri, Streptococcus gordonii, Campylobacter concisus, Tannerella forsythia, Filifactor alocis, [Eubacterium] nodatum, Streptococcus cristatus, Neisseria elongata, Treponema denticola, Actinomyces oris, [Eubacterium] saphenum, Streptococcus constellatus, Parvimonas micra, Prevotella denticola, Leptotrichia hofstadii, Fusobacterium nucleatum, Catonella morbi, Lac
  • a processor a storage device that stores a computer program executed by the processor; Equipped with a communication circuit that accepts the expression levels of multiple types of bacteria from analysis of salivary flora obtained from subjects, The processor executes the computer program to obtain the expression levels of the plurality of types of bacteria received by the communication circuit, inputting the obtained expression levels of the plurality of types of bacteria into a prediction model, stratifying and evaluating the risk of neurodegenerative diseases of the subject into a plurality of diseases;
  • the above prediction model uses the expression levels of multiple types of bacteria obtained from analysis of the salivary flora of healthy subjects and patients with multiple diseases belonging to neurodegenerative diseases as explanatory variables, and uses the expression levels of multiple types of bacteria as explanatory variables, and It is generated by machine learning using an algorithm as training data to obtain the disease status of patients stratified by the objective variables.
  • the plurality of types of bacteria are bacterial species with high expression levels in the analysis of the salivary flora of the stratified patients, and/or patients with different diseases in the analysis of the stratified patients' salivary flora.
  • a risk determination device that stratifies and evaluates the risk of neurodegenerative diseases into multiple diseases, characterized by including bacterial species with significant differences in expression levels between the two.
  • the above-mentioned stratification of multiple diseases includes stratification between healthy elderly, mild cognitive impairment (MCI) and dementia (DE), and stratification between healthy elderly and mild cognitive impairment (MCI) and dementia (DE). and stratification of dementia with Lewy bodies (DLB), or stratification of Parkinson's disease (PD) and dementia with Lewy bodies (DLB), the risk assessment device according to [5].
  • the risk determination device wherein the plurality of diseases include dementia with Lewy bodies (DLB) and Parkinson's disease (PD).
  • the plurality of types of bacteria are [Eubacterium] brachy, Porphyromonas endodontalis, Alloprevotella tannerae, Capnocytophaga leadbetteri, Streptococcus gordonii, Campylobacter concisus, Tannerella forsythia, Filifactor alocis, [Eubacterium] nodatum, Streptococcus cristatus, Neisseria elongata, Treponema denticola, Actinomyces oris, [Eubacterium] saphenum, Streptococcus constellatus, Parvimonas micra, Prevotella denticola, Leptotrichia hofstadii, Fusobacterium nucleatum, Catonella morbi, Lac
  • multiple diseases such as healthy subjects, MCI, dementia, AD and DLB, and DLB and PD can be classified using a small amount of easily collected saliva sample. stratification to accurately determine neurodegenerative disease risk. Therefore, it is useful as a means for determining the risk of neurodegenerative diseases in regular medical examinations, and contributes to stratified early diagnosis of neurodegenerative diseases.
  • FIG. 1 is a diagram showing the configuration of a determination method of the present invention.
  • FIG. 2 is a diagram illustrating an example of the configuration of a risk assessment device.
  • 2 is a flowchart illustrating the operation of the determination process in the determination method and risk determination device of the present invention.
  • 2 is a flowchart illustrating the operation of training processing in the determination method and risk determination device of the present invention.
  • FIG. 3 is a diagram showing the AUC-RF obtained by constructing a prediction model by performing machine learning based on the expression levels of 94 types of bacteria (Table 1) with high expression levels at the species level.
  • FIG. 3 is a diagram showing the AUC-RF obtained by constructing a prediction model by performing machine learning based on the expression levels of 95 types of bacteria (Table 2) with high expression levels at the species level.
  • FIG. 4 is a diagram showing the AUC-RF obtained by constructing a prediction model by performing machine learning based on the expression levels of 74 types of bacteria (Table 4) with high expression levels at the species level.
  • the present invention provides a risk determination method and a determination device for stratifying and evaluating the risk of neurodegenerative diseases into a plurality of diseases.
  • neurodegenerative diseases refers to a group of diseases in which each region of the nervous system is affected and exhibits various degenerative changes mainly in nerve cells.
  • tauopathies such as Alzheimer's disease (AD); TDP43 proteinopathies such as amyotrophic lateral sclerosis (ALS); Parkinson's disease (PD), dementia with Lewy bodies (DLB), multiple system atrophy ( Examples include synucleinopathy such as MSA).
  • the neurodegenerative diseases of the present invention include mild cognitive impairment (MCI).
  • tauopathies that indicate cognitive decline, including AD.
  • AD Alzheimer's disease
  • tauopathies include primary age-related tauopathies, chronic traumatic encephalopathy, progressive supranuclear palsy, corticobasal degeneration, FTDP-17, and Lytiko-Podig disease.
  • stratification means grouping. Therefore, in the present invention, any plurality of these neurodegenerative diseases can be stratified and evaluated. Examples include stratification between healthy elderly, MCI, and dementia (DE), stratification between healthy elderly, MCI, dementia (DE), and DLB, and stratification between PD and DLB.
  • stratification into healthy subjects, MCI, dementia, and DLB, and stratification into PD and DLB are more preferable.
  • both PD and DLB are synucleinopathies, being able to stratify these diseases would be extremely useful.
  • dementia (DE) can be stratified into tauopathy and synucleinopathy.
  • saliva usually refers to the secreted fluid secreted into the oral cavity from the salivary glands.
  • the saliva to be measured in the present invention is saliva collected from healthy individuals and patients with neurodegenerative diseases.
  • salivary microbiota refers to a collection of living bacteria in saliva, and their genetic information is sometimes called the microbiome.
  • the salivary microbiota is preferably determined by measuring the genetic information of bacteria, specifically 16S rRNA, and therefore is preferably the microbiome.
  • One aspect of the risk assessment method of the present invention is A method performed by a processor of a computer, the method comprising: obtaining the expression levels of multiple types of bacteria from analysis of the salivary flora of the subject; Inputting the obtained expression levels of the plurality of types of bacteria into a prediction model to stratify and evaluate the risk of neurodegenerative diseases of the subject into a plurality of diseases,
  • the above prediction model uses the expression levels of multiple types of bacteria obtained from analysis of the salivary flora of healthy subjects and patients with multiple diseases belonging to neurodegenerative diseases as explanatory variables, and uses the expression levels of multiple types of bacteria as explanatory variables, and It is generated by machine learning using an algorithm as training data to obtain the disease status of patients stratified by the objective variables.
  • the plurality of types of bacteria are bacterial species with high expression levels in the analysis of the salivary flora of the stratified patients, and/or patients with different diseases in the analysis of the stratified patients' salivary flora. This is a risk determination method that stratifies and evaluates the risk of neurodegenerative diseases into multiple diseases, which is characterized by including bacterial species that have significant differences in expression levels among them.
  • the method of the present invention includes a step 1 in which the bacterial expression level acquisition device 10 acquires the expression levels of multiple types of bacteria from analysis of the salivary flora of the subject, and a determination device in the processor of the computer.
  • step 2 of inputting the obtained expression levels of the plurality of types of bacteria into a prediction model according to No. 20, and stratifying and evaluating the risk of neurodegenerative diseases of the subject into a plurality of diseases.
  • step 1 can be carried out, for example, as follows.
  • the V1-V2 region of 16S rRNA is amplified by PCR, and the fragments amplified by PCR are sequenced using a next-generation sequencer.
  • the determined sequences (reads) that pass a quality check are clustered at a similarity of 97% to form operational taxonomic units (OTUs).
  • the OTU sequences are identified by referring to the 16S rRNA sequences registered in the genome database.
  • the expression level of each species can be identified from the number of reads for each OTU.
  • the process of obtaining the expression levels of multiple types of bacteria from the analysis of the salivary bacterial flora in order to construct a prediction model is also carried out in a similar manner.
  • Step 2 is to stratify the risk of neurodegenerative diseases of the subject into a plurality of diseases by inputting the obtained expression levels of the plurality of types of bacteria into a prediction model by the determination device 20 in the processor of the computer. This is done by evaluating. Since the prediction model is input in advance to the processor of the computer that performs step 2, as shown in FIG. It is possible to stratify and evaluate the risks of multiple diseases, and output prediction results.
  • the prediction model uses the expression levels of multiple types of bacteria obtained from analysis of the salivary flora of healthy subjects and patients with multiple neurodegenerative diseases as explanatory variables. It is generated by machine learning using an algorithm obtained as the objective variable to obtain stratified patient disease states as training data. For example, as shown in Figure 4, the expression levels of multiple types of bacteria obtained from analysis of the salivary flora of healthy subjects and patients with multiple diseases belonging to neurodegenerative diseases, which are explanatory variables, are obtained and used. Then, a predictive model is generated by machine learning using an algorithm as training data, which uses an algorithm obtained as a target variable to obtain the disease status of patients stratified into healthy subjects and multiple diseases belonging to neurodegenerative diseases. Can be done.
  • the above-mentioned bacterial species and their expression levels are analyzed for a cohort consisting of healthy elderly (HC), patients with mild cognitive impairment (MCI), and patients with dementia (DE). From the analysis of bacterial species and their expression levels, we identify bacterial species with high expression levels and characteristic bacterial species (bacterial species that serve as markers with significant differences). Then, using the expression levels of multiple types of bacteria obtained from analysis of the salivary flora of healthy subjects and patients with multiple diseases belonging to neurodegenerative diseases as explanatory variables, we stratified them into healthy subjects and patients with multiple diseases belonging to neurodegenerative diseases.
  • a predictive model can be constructed by machine learning using an algorithm obtained as training data to obtain the patient's disease state as a target variable.
  • the machine learning for example, random forest can be adopted.
  • the plurality of types of bacteria are bacterial species that have a high expression level in the analysis of the salivary flora of the stratified patients, and/or the analysis of the stratified salivary flora of the patients.
  • stratifying bacteria to include bacterial species that have significant differences in expression levels between patients with different diseases, it is possible to stratify and evaluate the risk of neurodegenerative diseases into multiple diseases.
  • stratification into healthy subjects, MCI, dementia, DLB, PD and DLB, etc. can be performed.
  • stratification into healthy subjects, MCI, dementia, and DLB, and stratification into PD and DLB are more preferable.
  • both PD and DLB are synucleinopathies, being able to stratify these diseases would be extremely useful.
  • PD can be classified according to severity.
  • PD is classified into mild (Horn & Yahr severity level 1 or 2) and severe disease (Horn & Yahr severity 3 or higher) based on Horn & Yahr severity.
  • mild PD mild PD
  • severe PD severe PD
  • early stage 5 years or less from onset
  • late stage 6 years or more
  • examples of bacteria that can be used to stratify the risk of neurodegenerative diseases into multiple diseases include one or more of the bacteria shown in Table 1 below.
  • the bacterial species in Table 1 are those used for stratification between healthy subjects, MCI, DE, and DLB.
  • the bacterial species used for healthy subjects, DLB, and PD were one or more selected from the bacterial species shown in Table 2.
  • the bacterial species used for healthy subjects, DLB, and PD were one or more selected from the bacterial species shown in Table 3.
  • the bacterial species used for healthy subjects, DLB, and PD were one or more selected from Table 4.
  • One aspect of the determination device of the present invention is a processor; a storage device that stores a computer program executed by the processor; Equipped with a communication circuit that accepts the expression levels of multiple types of bacteria from analysis of salivary flora obtained from subjects, The processor executes the computer program to obtain the expression levels of the plurality of types of bacteria received by the communication circuit, inputting the obtained expression levels of the plurality of types of bacteria into a prediction model, stratifying and evaluating the risk of neurodegenerative diseases of the subject into a plurality of diseases;
  • the above prediction model uses the expression levels of multiple types of bacteria obtained from analysis of the salivary flora of healthy subjects and patients with multiple diseases belonging to neurodegenerative diseases as explanatory variables, and uses the expression levels of multiple types of bacteria as explanatory variables, and It is generated by machine learning using an algorithm as training data to obtain the disease status of patients stratified by the objective variables.
  • the plurality of types of bacteria are bacterial species with high expression levels in the analysis of the salivary flora of the stratified patients, and/or patients with different diseases in the analysis of the stratified patients' salivary flora.
  • This is a risk determination device that stratifies and evaluates the risk of neurodegenerative diseases into multiple diseases, which is characterized by including bacterial species that have significant differences in expression levels among them.
  • FIG. 2 shows an outline of the determination device of the present invention.
  • the determination device 20 is configured with an information processing device such as a computer, for example.
  • the determination device 20 includes a CPU 21 that performs calculation processing, a storage device 22 that stores various data and computer programs, and an input/output interface (I/F) 26 that communicates with other devices.
  • I/F input/output interface
  • the prediction model 21 is generated by machine learning using as training data an algorithm obtained as an explanatory variable the expression levels of multiple types of bacteria obtained from the analysis of the salivary bacterial flora of healthy individuals and patients with multiple neurodegenerative diseases, and as a target variable obtaining the disease state of patients stratified into healthy individuals and multiple neurodegenerative diseases.
  • the explanatory variables are the expression levels of multiple types of bacteria obtained from the analysis of the salivary microbiota of healthy individuals and patients with multiple neurodegenerative diseases
  • a prediction model can be generated by performing machine learning on the training data of an algorithm that uses the explanatory variables to obtain the disease state of patients stratified into healthy individuals and multiple neurodegenerative diseases.
  • the above-mentioned bacterial species and their expression levels are analyzed for a cohort consisting of healthy elderly people (HC), patients with mild cognitive impairment (MCI), and patients with dementia (DE). From the analysis of the bacterial species and their expression levels, bacterial species with high expression levels and characteristic bacterial species (bacterial species that serve as markers with significant differences) are identified. Then, a prediction model can be constructed by machine learning using an algorithm obtained as training data, with the expression levels of multiple types of bacteria obtained from the analysis of the salivary microbiota of healthy people and patients with multiple diseases belonging to neurodegenerative diseases as explanatory variables, and the objective variable being to obtain the disease state of patients stratified into healthy people and multiple diseases belonging to neurodegenerative diseases.
  • random forests can be adopted as the machine learning.
  • the plurality of types of bacteria are bacterial species that have a high expression level in the analysis of the salivary flora of the stratified patients, and/or the analysis of the stratified salivary flora of the patients.
  • stratifying bacteria to include bacterial species that have significant differences in expression levels between patients with different diseases, it is possible to stratify and evaluate the risk of neurodegenerative diseases into multiple diseases.
  • stratification into healthy subjects, MCI, dementia, DLB, PD and DLB, etc. can be performed.
  • stratification into healthy subjects, MCI, dementia, and DLB, and stratification into PD and DLB are more preferable.
  • both PD and DLB are synucleinopathies, being able to stratify these diseases would be extremely useful.
  • the processor executes the computer program to obtain the expression levels of the plurality of types of bacteria received by the communication circuit.
  • Step 1 This is performed by inputting the obtained expression levels of the plurality of types of bacteria into the prediction model 21 and stratifying and evaluating the risk of neurodegenerative diseases of the subject into a plurality of diseases (step 2).
  • step 1 can be performed, for example, as follows.
  • the V1-V2 region of 16S rRNA is amplified by PCR, and the base sequence of the PCR-amplified fragment is determined using a next-generation sequencer.
  • the base sequence of the PCR-amplified fragment is determined using a next-generation sequencer.
  • reads that have passed the quality check are clustered with a degree of similarity of 97% to form operational classification units (OTUs).
  • the bacterial species of each OTU is identified by referring to the base sequence of the OTU and the base sequence of 16S rRNA registered in a genome database.
  • the expression level of each bacterial species can be identified from the number of reads for each OTU. Note that the step of obtaining the expression levels of a plurality of types of bacteria from the analysis of salivary bacterial flora for constructing a predictive model is also performed in the same manner.
  • Step 2 is performed by inputting the acquired expression levels of the multiple types of bacteria into a prediction model by a determination device 20 in a computer processor, and stratifying and evaluating the subject's risk of neurodegenerative disease into multiple diseases.
  • a prediction model has been input in advance into the processor of the computer performing step 2. Therefore, by inputting the expression levels of the multiple types of bacteria obtained in step 1, as shown in Figure 3, the subject's risk of neurodegenerative disease can be stratified into multiple diseases and evaluated, and the prediction results are output.
  • Example 1 (Stratification of HC, MCI, DE, and DLB) In multiple cohorts, saliva (0.5-1 .0 mL) was collected. Since it has been suggested that the microbiome may differ depending on the living environment and diet, healthy subjects were chosen to have a spouse or cohabitant with similar lifestyle habits whenever possible. Additionally, patients receiving antibiotics were excluded to minimize drug effects.
  • Bacterial deoxyribonucleic acid (DNA) is extracted from the collected saliva using lysozyme and achromopeptidase. The extracted DNA is purified using a phenol-chloroform solution or the like. Using this DNA solution as a template, amplification was performed by PCR using primers designed for the V1-V2 region of the 16S rRNA gene. The nucleotide sequence was obtained from the obtained amplification product using a next generation sequencer such as MiSeq.
  • a next generation sequencer such as MiSeq.
  • a quality check was performed on the obtained sequence data, primer sequences were removed, and OTU analysis was performed by clustering with a degree of similarity of 97%.
  • the OTU base sequence was referenced to the 16S rRNA base sequence registered in the genome database to identify the bacterial species and analyze the bacterial species composition.
  • MCI and Machine learning is used to identify these diseases with high accuracy using multiple types of highly expressed bacterial species and characteristic bacterial species (bacterial species that serve as markers with significant differences) between two groups: DE, MCI and DLB, and DE and DLB. We determined combinations of multiple bacteria that could be stratified.
  • the constructed prediction model was verified using a different cohort of patients from the patient cohort used for model construction. Alternatively, the prediction accuracy was verified by cross-validation of the constructed prediction model in the cohort used for model construction.
  • a prediction model was constructed by performing machine learning based on the expression levels of 94 types of bacteria (Table 1) with high expression levels at the species level.
  • the obtained AUC-RF is shown in FIG.
  • HC and MCI, HC and DE tauopathy
  • MCI and DE semucleinopathy
  • MCI and DE tauopathy
  • MCI and DLB semucleinopathy
  • DE tauopathy
  • Example 2 (Stratification of HC, DLB, and PD) In the same manner as in Example 1, stratification of HC, DLB, and PD was attempted. A prediction model was constructed by performing machine learning based on the expression levels of 95 types of bacteria (Table 2) with high expression levels at the species level. The obtained AUC-RF is shown in FIG. 2. As is clear from Figure 6, it was found that the risks of neurodegenerative diseases of HC, DLB, and PD can be stratified and predicted with high accuracy.
  • Example 3 (Stratification of HC, DLB, mild PD, and severe PD) In the same manner as in Example 1, an attempt was made to stratify HC, DLB, mild PD, and severe PD. A prediction model was constructed by performing machine learning based on the expression levels of 34 types of bacteria (Table 3) with high expression levels at the species level. The obtained AUC-RF is shown in FIG. As is clear from Figure 7, it was found that the risks of neurodegenerative diseases of HC, DLB, mild PD, and severe PD can be stratified and predicted with high accuracy.
  • Example 4 (Stratification of HC, DLB, early PD, and late PD) In the same manner as in Example 1, an attempt was made to stratify HC, DLB, early PD, and late PD. A prediction model was constructed by performing machine learning based on the expression levels of 74 types of bacteria (Table 4) with high expression levels at the species level. The obtained AUC-RF is shown in FIG. As is clear from Figure 8, it was found that the risk of neurodegenerative diseases of HC, DLB, early PD, and late PD can be stratified and predicted with high accuracy.
  • multiple diseases such as healthy subjects, MCI, dementia, AD and DLB, and DLB and PD can be classified using a small amount of easily collected saliva sample. stratification to accurately determine neurodegenerative disease risk. Therefore, it is useful as a means for determining the risk of neurodegenerative diseases in regular medical examinations, and contributes to stratified early diagnosis of neurodegenerative diseases.

Landscapes

  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Biomedical Technology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

容易に採取できる唾液検体を用いる、神経変性疾患のリスクを複数の疾患に層別化して評価できるリスク判定方法及び判定装置を提供する。 本発明は、コンピュータのプロセッサによって実行される方法であって、 被験者の唾液細菌叢の分析から複数種類の細菌の発現量を取得する工程と、 予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価する工程を含み、 前記予測モデルは、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成されており、 前記複数種類の細菌が、前記層別化された患者の唾液細菌叢の分析において発現量の多い菌種、及び/又は、前記層別化された患者の唾液細菌叢の分析において異なる疾患の患者の間で発現量に有意差のある菌種を含むことを特徴とする、神経変性疾患のリスクを複数の疾患に層別化して評価するリスク判定方法である。

Description

神経変性疾患のリスク判定方法及び判定装置
 本発明は、神経変性疾患のリスク判定方法及び判定装置に関する。
 神経変性疾患は、それぞれ特有の神経細胞群の障害・脱落によって生じる中枢神経系の疾患群であり、臨床的には潜在的に発症し、精神・神経症状が緩徐に進行する原因不明の疾患を指す。近年は、神経細胞あるいはグリア細胞内に蓄積する主要な異常タンパク質や蓄積パターンをもとに、同一の病原タンパク質が共通の病態を惹起するというプロテイノパチーという概念に基づいた分類がされている。アルツハイマー病(Alzheimer's disease:AD)などのタウオパチー、筋委縮性側索硬化症(ALS)などのTDP43プロテイノパチー、パーキンソン病(PD)、レビー小体型認知症(DLB)、多系統萎縮症(MSA)などのシヌクレイノパチーに分類される。
 これらの神経変性疾患に対する根本的治療薬は、いまだに存在しない。これらの神経変性疾患は、臨床症状が現れたときには、病理学的には治療が困難なところまで進行していることが多い。従って、これらの神経変性疾患の早期診断法、リスク判定法の開発、またこれらの原疾患の早期層別化が望まれている。
 最近、腸や口腔内に常在する細菌叢(マイクロバイオーム)が宿主の免疫システムをはじめ、生理状態や病態形成と密接に関与するという報告がある。アルツハイマー病をはじめとした認知症においても、認知機能低下と細菌叢の変化に相関があることが明らかになりつつあり、マイクロバイオームが神経変性疾患のバイオマーカーになる可能性が示唆されている。また、唾液マイクロバイオームのプロファイリングに基づくロジスティック回帰分析により、いくつかの菌種による予測モデルを構築し、軽度認知障害(MCI)とアルツハイマー病を判別できることが報告されている(非特許文献1)。また、唾液RNAのシークエンシングによるマイクロバイオームの属と種のデータに基づくロジスティック回帰分析の手法により、11種の細菌群のデータから、初期のパーキンソン病(PD)患者と健常者を識別できたことも報告されている(非特許文献2)。
Alzheimer's Dementia,2020,vol.12,e12000 PlosOne 2019 vol.14,No.6,e0218252
 しかしながら、いずれの手段によっても、健常者と複数の疾患との層別化はできておらず、種々の神経変性疾患の層別化バイオマーカーは開発されていなかった。
 従って、本発明の課題は、容易に採取できる唾液検体を用いる、神経変性疾患のリスクを複数の疾患に層別化して評価できるリスク判定方法を提供することにある。
 そこで本発明者は、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成された予測モデルを用い、被験者の唾液細菌叢の分析から得られた複数種類の細菌の発現量を、前記予測モデルに適用すれば、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価できることを見出し、本発明を完成した。
 すなわち、本発明は、次の発明[1]~[8]を提供するものである。
[1]コンピュータのプロセッサによって実行される方法であって、
 被験者の唾液細菌叢の分析から複数種類の細菌の発現量を取得する工程と、
 予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価する工程を含み、
 前記予測モデルは、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成されており、
 前記複数種類の細菌が、前記層別化された患者の唾液細菌叢の分析において発現量の多い菌種、及び/又は、前記層別化された患者の唾液細菌叢の分析において異なる疾患の患者の間で発現量に有意差のある菌種を含むことを特徴とする、神経変性疾患のリスクを複数の疾患に層別化して評価するリスク判定方法。
[2]前記複数の疾患の層別化が、健常高齢者と軽度認知障害(MCI)と認知症(DE)の層別化、健常高齢者と軽度認知障害(MCI)と認知症(DE)とレビー小体型認知症(DLB)の層別化、又はパーキンソン病(PD)とレビー小体型認知症(DLB)の層別化を含むことを特徴とする、[1]に記載のリスク判定方法。
[3]前記複数の疾患が、レビー小体型認知症(DLB)及びパーキンソン病(PD)を含むことを特徴とする、[1]に記載のリスク判定方法。
[4]前記複数種類の細菌が、[Eubacterium] brachy、Porphyromonas endodontalis、Alloprevotella tannerae、Capnocytophaga leadbetteri、Streptococcus gordonii、Campylobacter concisus、Tannerella forsythia、Filifactor alocis、[Eubacterium] nodatum、Streptococcus cristatus、Neisseria elongata、Treponema denticola、Actinomyces oris、[Eubacterium] saphenum、Streptococcus constellatus、Parvimonas micra、Prevotella denticola、Leptotrichia hofstadii、Fusobacterium nucleatum、Catonella morbi、Lactobacillus antri、Alloprevotella rava、Streptococcus anginosus、Prevotella jejuni、Streptococcus mitis、Gemella haemolysans、Neisseria macacae、Prevotella multiformis、Abiotrophia defectiva、Streptococcus salivarius、Streptococcus lactarius、Corynebacterium matruchotii、Oribacterium asaccharolyticum、Prevotella loescheii、Aggregatibacter segnis、Peptostreptococcus stomatis、Veillonella infantium、Capnocytophaga granulosa、Leptotrichia buccalis、Veillonella atypica、Streptococcus pseudopneumoniae、Corynebacterium durum、Granulicatella adiacens、[Eubacterium] sulci、Selenomonas infelix、Capnocytophaga sputigena、Lactobacillus crispatus、Streptococcus parasanguinis、Rothia mucilaginosa、Streptococcus sobrinus、Atopobium parvulum、Solobacterium moorei、Neisseria perflava、Bifidobacterium dentium、Actinomyces graevenitzii、Streptococcus mutans、Prevotella pallens、Porphyromonas gingivalis、Rothia dentocariosa、Fusobacterium periodonticum、Lactobacillus fermentum、Prevotella melaninogenica、Leptotrichia wadei、Lautropia mirabilis、Streptococcus infantis、Neisseria oralis、Prevotella pleuritidis、Prevotella oris、Lactobacillus paracasei、Lachnoanaerobaculum orale、Haemophilus parahaemolyticus、Prevotella nanceiensis、Lactobacillus salivarius、Streptococcus sanguinis、Haemophilus parainfluenzae、Lactobacillus vaginalis、Bacteroides heparinolyticus、Prevotella salivae、Gemella morbillorum、Gemella sanguinis、Prevotella shahii、Haemophilus haemolyticus、Schaalia odontolytica、Lactobacillus gasseri、Streptococcus australis、Streptococcus oralis、Prevotella histicola、Schaalia meyeri、Porphyromonas pasteri、Prevotella intermedia、Granulicatella elegans、Streptococcus downei、Parascardovia denticolens、Staphylococcus aureus、Haemophilus sputorum、及びPrevotella oulorumからなる群から選択される1以上の種の細菌を含むことを特徴とする、[1]~[3]のいずれかに記載のリスク判定方法。
[5]プロセッサと、
 前記プロセッサによって実行されるコンピュータプログラムを格納する記憶装置と、
 被験者から取得される唾液細菌叢の分析から複数種類の細菌の発現量を受け付ける通信回路とを備え、
 前記プロセッサは、前記コンピュータプログラムを実行することにより、前記通信回路により受け付けられた前記複数種類の細菌の発現量を取得し、
 予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価し、
 前記予測モデルは、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成されており、
 前記複数種類の細菌が、前記層別化された患者の唾液細菌叢の分析において発現量の多い菌種、及び/又は、前記層別化された患者の唾液細菌叢の分析において異なる疾患の患者の間で発現量に有意差のある菌種を含むことを特徴とする、神経変性疾患のリスクを複数の疾患に層別化して評価するリスク判定装置。
[6]前記複数の疾患の層別化が、健常高齢者と軽度認知障害(MCI)と認知症(DE)の層別化、健常高齢者と軽度認知障害(MCI)と認知症(DE)とレビー小体型認知症(DLB)の層別化、又はパーキンソン病(PD)とレビー小体型認知症(DLB)の層別化を含むことを特徴とする、[5]に記載のリスク判定装置。
[7]前記複数の疾患が、レビー小体型認知症(DLB)及びパーキンソン病(PD)を含むことを特徴とする、[5]に記載のリスク判定装置。
[8]前記複数種類の細菌が、[Eubacterium] brachy、Porphyromonas endodontalis、Alloprevotella tannerae、Capnocytophaga leadbetteri、Streptococcus gordonii、Campylobacter concisus、Tannerella forsythia、Filifactor alocis、[Eubacterium] nodatum、Streptococcus cristatus、Neisseria elongata、Treponema denticola、Actinomyces oris、[Eubacterium] saphenum、Streptococcus constellatus、Parvimonas micra、Prevotella denticola、Leptotrichia hofstadii、Fusobacterium nucleatum、Catonella morbi、Lactobacillus antri、Alloprevotella rava、Streptococcus anginosus、Prevotella jejuni、Streptococcus mitis、Gemella haemolysans、Neisseria macacae、Prevotella multiformis、Abiotrophia defectiva、Streptococcus salivarius、Streptococcus lactarius、Corynebacterium matruchotii、Oribacterium asaccharolyticum、Prevotella loescheii、Aggregatibacter segnis、Peptostreptococcus stomatis、Veillonella infantium、Capnocytophaga granulosa、Leptotrichia buccalis、Veillonella atypica、Streptococcus pseudopneumoniae、Corynebacterium durum、Granulicatella adiacens、[Eubacterium] sulci、Selenomonas infelix、Capnocytophaga sputigena、Lactobacillus crispatus、Streptococcus parasanguinis、Rothia mucilaginosa、Streptococcus sobrinus、Atopobium parvulum、Solobacterium moorei、Neisseria perflava、Bifidobacterium dentium、Actinomyces graevenitzii、Streptococcus mutans、Prevotella pallens、Porphyromonas gingivalis、Rothia dentocariosa、Fusobacterium periodonticum、Lactobacillus fermentum、Prevotella melaninogenica、Leptotrichia wadei、Lautropia mirabilis、Streptococcus infantis、Neisseria oralis、Prevotella pleuritidis、Prevotella oris、Lactobacillus paracasei、Lachnoanaerobaculum orale、Haemophilus parahaemolyticus、Prevotella nanceiensis、Lactobacillus salivarius、Streptococcus sanguinis、Haemophilus parainfluenzae、Lactobacillus vaginalis、Bacteroides heparinolyticus、Prevotella salivae、Gemella morbillorum、Gemella sanguinis、Prevotella shahii、Haemophilus haemolyticus、Schaalia odontolytica、Lactobacillus gasseri、Streptococcus australis、Streptococcus oralis、Prevotella histicola、Schaalia meyeri、Porphyromonas pasteri、Prevotella intermedia、Granulicatella elegans、Streptococcus downei、Parascardovia denticolens、Staphylococcus aureus、Haemophilus sputorum、及びPrevotella oulorumからなる群から選択される1以上の種の細菌を含むことを特徴とする、[5]~[7]のいずれかに記載のリスク判定装置。
 本発明方法及び装置によれば、容易に採取可能な少量の唾液サンプルを用いて、健常者とMCIと認知症、ADとDLBなどのプロテイノパチーの分類、DLBとPDなどのように、複数の疾患に層別化して神経変性疾患リスクの判定が正確にできる。従って、通常の健康診断における神経変性疾患のリスク判定手段として有用であり、層別化された神経変性疾患の早期診断に資するものである。
本発明の判定方法の構成を示す図である。 リスク判定装置の構成を例示する図である。 本発明の判定方法及びリスク判定装置における判定処理の動作を例示するフローチャートである。 本発明の判定方法及びリスク判定装置における訓練処理の動作を例示するフローチャートである。 種レベルにおける発現量の多い94種類の菌(表1)の発現量をもとにした機械学習を行うことにより、予測モデルを構築し、得られたAUC-RFを示す図である。 種レベルにおける発現量の多い95種類の菌(表2)の発現量をもとにした機械学習を行うことにより、予測モデルを構築し、得られたAUC-RFを示す図である。 種レベルにおける発現量の多い34種類の菌(表3)の発現量をもとにした機械学習を行うことにより、予測モデルを構築し、得られたAUC-RFを示す図である。 種レベルにおける発現量の多い74種類の菌(表4)の発現量をもとにした機械学習を行うことにより、予測モデルを構築し、得られたAUC-RFを示す図である。
 本発明は、神経変性疾患のリスクを複数の疾患に層別化して評価するリスク判定方法及び判定装置である。
 本明細書において「神経変性疾患」とは、前記のように、それぞれ特有の領域の神経系が侵され、神経細胞を中心とする様々な退行性変化を呈する疾患群であり、具体的には、アルツハイマー病(Alzheimer's disease:AD)などのタウオパチー;筋委縮性側索硬化症(ALS)などのTDP43プロテイノパチー;パーキンソン病(PD)、レビー小体認知症(DLB)、多系統萎縮症(MSA)などのシヌクレイノパチーが挙げられる。また、本発明の神経変性疾患には、軽度認知障害(MCI)が含まれる。本明細書で、単に認知症(DE)というときは、ADを含む認知機能低下を示すタウオパチーの総称とする。
 タウオパチーには、アルツハイマー病の他、原発性年齢関連タウオパチー、慢性外傷性脳症、進行性核上性麻痺、大脳皮質基底核変性症、FTDP-17、リティコ-ポディグ病などが挙げられる。
 本明細書において、層別化とは、グループ分けすることを意味する。従って、本発明においては、これらの神経変性疾患のうちの任意の複数の疾患を層別化して評価することができる。例えば、健常高齢者とMCIと認知症(DE)の層別化、健常高齢者とMCIと認知症(DE)とDLBの層別化、PDとDLBの層別化などが挙げられる。
 ここで、健常者とMCIと認知症とDLBの層別化、PDとDLBの層別化がより好ましい。PDとDLBはいずれもシヌクレイノパチーであるにもかかわらず、これらの疾患を層別化できることは、極めて有用である。また、認知症(DE)をタウオパチーとシヌクレイノパチーとして層別化できる。
 「唾液」とは、通常、唾液腺から口腔内に分泌される分泌液をいう。本発明で測定対象となる唾液は、健常者及び神経変性疾患患者から採取される唾液である。
 「唾液細菌叢」とは、唾液中における生きた細菌の集合を意味し、それらの遺伝情報をマイクロバイオームと呼ぶこともある。本発明においては、唾液細菌叢は、細菌の遺伝情報、具体的には16S rRNAを測定して行うのが好ましいので、マイクロバイオームであるのが好ましい。
 本発明リスク判定方法の一態様は、
 コンピュータのプロセッサによって実行される方法であって、
 被験者の唾液細菌叢の分析から複数種類の細菌の発現量を取得する工程と、
 予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価する工程を含み、
 前記予測モデルは、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成されており、
 前記複数種類の細菌が、前記層別化された患者の唾液細菌叢の分析において発現量の多い菌種、及び/又は、前記層別化された患者の唾液細菌叢の分析において異なる疾患の患者の間で発現量に有意差のある菌種を含むことを特徴とする、神経変性疾患のリスクを複数の疾患に層別化して評価するリスク判定方法である。
 本発明方法は、図1に示すように、細菌の発現量取得装置10による、被験者の唾液細菌叢の分析から複数種類の細菌の発現量を取得する工程1と、コンピュータのプロセッサ中の判定装置20による、予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価する工程2とを含む。
 ここで、工程1は、例えば、次のようにして行うことができる。
 唾液検体中の細菌について、16S rRNAのV1-V2領域をPCRにより増幅し、PCRにより増幅した断片について、次世代シークエンサーを用いて塩基配列を決定する。次に、決定した塩基配列(リード)のうちクオリティチェックをパスしたリードを、97%の類似度でクラスタリングして、操作上の分類単位(OTU)とする。OTUの塩基配列を、ゲノムデータベースに登録されている16S rRNAの塩基配列を参照して、各OTUの菌種を同定する。各OTUのリードの数から、各菌種の発現量を同定することができる。
 なお、予測モデルを構築するための唾液細菌叢の分析から複数種類の細菌の発現量を取得する工程も同様にして行われる。
 工程2は、コンピュータのプロセッサ中の判定装置20による、予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価することにより行われる。
 工程2を行うコンピュータのプロセッサには、予め予測モデルが入力されているので、図3のように、工程1で取得した前記複数種類の細菌の発現量を入力すれば、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価することができ、予測結果が出力される。
 次に、予測モデルの構築について説明する。
 予測モデルは、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成される。
 例えば、図4に示すように、説明変数である、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を取得し、これを用いて、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習させることにより、予測モデルを生成させることができる。
 より具体的には、例えば、健常高齢者(HC)、軽度認知障害(MCI)の患者、認知症(DE)の患者からなるコホートに対して、前記の菌種とその発現量を分析する。菌種とその発現量の分析から、発現量の多い菌種や、特徴菌種(有意差のあるマーカーとなる菌種)を特定する。そして、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により、予測モデルを構築することができる。
 ここで、機械学習としては、例えば、ランダムフォレストを採用することができる。
 本発明においては、前記複数種類の細菌が、前記層別化された患者の唾液細菌叢の分析において発現量の多い菌種、及び/又は、前記層別化された患者の唾液細菌叢の分析において異なる疾患の患者の間で発現量に有意差のある菌種を含むように層別化することにより、神経変性疾患のリスクを複数の疾患に層別化して評価することができる。
 具体的には、健常者とMCIと認知症とDLBの層別化、PDとDLBの層別化などを行うことができる。ここで、健常者とMCIと認知症とDLBの層別化、PDとDLBの層別化がより好ましい。PDとDLBはいずれもシヌクレイノパチーであるにもかかわらず、これらの疾患を層別化できることは、極めて有用である。
 PDは重症度によって分類ができる。ここでは、ホーン&ヤール重症度を基準にPDを軽症(ホーン&ヤール重症度 1度または2度)、重症(ホーン&ヤール重症度 3度以上)に分類する。具体的には、健常者とDLBと軽症PDと重症PDの層別化を行うことができる。また、PDを罹患期間で早期(発症から5年以下)と後期(6年以上)に分類する。健常者とDLBと早期PDと後期PDの層別化を行うことができる。
 ここで、神経変性疾患のリスクを複数の疾患に層別化に用いることのできる細菌としては、下記表1に示す細菌の1種又は2種以上が挙げられる。表1の菌種は、健常者とMCIとDEとDLBの層別化に用いた菌種である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-I000002
Figure JPOXMLDOC01-appb-I000003
 健常者とDLBとPDに用いた菌種は、表2の菌種から選ばれる1種又は2種以上である。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-I000005
Figure JPOXMLDOC01-appb-I000006
 健常者とDLBとPD(重症度層別)に用いた菌種は、表3の菌種から選ばれる1種又は2種以上である。
Figure JPOXMLDOC01-appb-T000007
 健常者とDLBとPD(罹患期間層別)に用いた菌種は、表4から選ばれる1種又は2種以上である。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-I000009
 本発明の判定装置の一態様は、
 プロセッサと、
 前記プロセッサによって実行されるコンピュータプログラムを格納する記憶装置と、
 被験者から取得される唾液細菌叢の分析から複数種類の細菌の発現量を受け付ける通信回路とを備え、
 前記プロセッサは、前記コンピュータプログラムを実行することにより、前記通信回路により受け付けられた前記複数種類の細菌の発現量を取得し、
 予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価し、
 前記予測モデルは、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成されており、
 前記複数種類の細菌が、前記層別化された患者の唾液細菌叢の分析において発現量の多い菌種、及び/又は、前記層別化された患者の唾液細菌叢の分析において異なる疾患の患者の間で発現量に有意差のある菌種を含むことを特徴とする、神経変性疾患のリスクを複数の疾患に層別化して評価するリスク判定装置である。
 本発明判定装置の概略を図2に示す。判定装置20は、例えばコンピュータのような情報処理装置で構成される。判定装置20は、演算の処理を行うCPU21と、各種データ及びコンピュータプログラムを記憶する記憶装置22と、他の機器と通信を行うための入出力インタフェース(I/F)26とを備える。
 予測モデル21は、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成される。
 例えば、図4に示すように、説明変数である、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を取得し、これを用いて、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習させることにより、予測モデルを生成させることができる。
 より具体的には、例えば、健常高齢者(HC)、軽度認知障害(MCI)の患者、認知症(DE)の患者からなるコホートに対して、前記の菌種とその発現量を分析する。菌種とその発現量の分析から、発現量の多い菌種や、特徴菌種(有意差のあるマーカーとなる菌種)を特定する。そして、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により、予測モデルを構築することができる。
 ここで、機械学習としては、例えば、ランダムフォレストを採用することができる。
 本発明においては、前記複数種類の細菌が、前記層別化された患者の唾液細菌叢の分析において発現量の多い菌種、及び/又は、前記層別化された患者の唾液細菌叢の分析において異なる疾患の患者の間で発現量に有意差のある菌種を含むように層別化することにより、神経変性疾患のリスクを複数の疾患に層別化して評価することができる。
 具体的には、健常者とMCIと認知症とDLBの層別化、PDとDLBの層別化などを行うことができる。ここで、健常者とMCIと認知症とDLBの層別化、PDとDLBの層別化がより好ましい。PDとDLBはいずれもシヌクレイノパチーであるにもかかわらず、これらの疾患を層別化できることは、極めて有用である。
 本発明判定装置を用いて、神経変性疾患のリスクを判定するには、前記プロセッサにおいて、前記コンピュータプログラムを実行することにより、前記通信回路により受け付けられた前記複数種類の細菌の発現量を取得し(工程1)、
 予測モデル21に、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価すること(工程2)により行われる。
 ここで、工程1は、例えば、次のようにして行うことができる。
 唾液検体中の細菌について、16S rRNAのV1-V2領域をPCRにより増幅し、PCRにより増幅した断片について、次世代シークエンサーを用いて塩基配列を決定する。次に、決定した塩基配列(リード)のうちクオリティチェックをパスしたリードを、97%の類似度でクラスタリングして、操作上の分類単位(OTU)とする。OTUの塩基配列を、ゲノムデータベースに登録されている16S rRNAの塩基配列を参照して、各OTUの菌種を同定する。各OTUのリードの数から、各菌種の発現量を同定することができる。
 なお、予測モデルを構築するための唾液細菌叢の分析から複数種類の細菌の発現量を取得する工程も同様にして行われる。
 工程2は、コンピュータのプロセッサ中の判定装置20による、予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価することにより行われる。
 工程2を行うコンピュータのプロセッサには、予め予測モデルが入力されているので、図3のように、工程1で取得した前記複数種類の細菌の発現量を入力すれば、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価することができ、予測結果が出力される。
 次に実施例を挙げて本発明を、さらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
実施例1(HCとMCIとDEとDLBの層別化)
 複数のコホートにおいて、MMSEやHDS-Rなどの認知機能テスト、脳画像解析(MRI/SPECT)からMCI、DE、DLBと診断された患者、および健常者(HC)から唾液(0.5~1.0mL)を採取した。マイクロバイオームは、生活環境や食生活で異なる可能性が示唆されているため、可能な限り健常者は生活習慣の近い配偶者あるいは同居人とした。さらに、薬剤の影響を最小限にするため、抗生剤を投与中の患者は除外した。採取した唾液からリゾチーム、アクロモペプチダーゼを用いて細菌のデオキシリボ核酸(DNA)を抽出する。抽出したDNAをフェノールクロロホルム溶液などを用いて精製する。このDNA溶液を鋳型に、16S rRNA遺伝子のV1-V2領域に設計したプライマーを用いてPCR法により増幅した。得られた増幅産物からMiSeqなどの次世代シークエンサーを用いて塩基配列を取得した。
 取得したシーケンスデータからクオリティチェック、プライマー配列の除去を行い、97%の類似度でクラスタリングしOTU解析を行なった。OTUの塩基配列を、ゲノムデータベースに登録されている16S rRNAの塩基配列を参照して、菌種の特定、菌種組成の解析などを行なった。HC、MCI、DE、DLBの各群において全リード数の0.1%以上発現している菌群(門・属・種レベル)から、HCとMCI、HCとDE、HCとDLB、MCIとDE、MCIとDLB、DEとDLBの各2群間において、複数種類の発現量の多い菌種及び特徴菌種(有意差のあるマーカーとなる菌種)から機械学習によってこれらの疾患を高精度に層別化可能な複数の菌の組み合わせを決定した。
 モデル構築に用いた患者コホートとは別の集団のコホートを用いて、構築した予測モデルの検証を行なった。あるいはモデル構築に用いたコホートにおいて、構築した予測モデルの交差検証(クロスバリデーション)により予測精度の検証を行なった。
 種レベルにおける発現量の多い94種類の菌(表1)の発現量をもとにした機械学習を行うことにより、予測モデルを構築した。得られたAUC-RFを図1に示す。
 図5から明らかなように、HCとMCI、HCとDE(タウオパチー)、MCIとDE(シヌクレイノパチー)、MCIとDE(タウオパチー)、MCIとDLB(シヌクレイノパチ―)、DE(タウオパチー)とDLB(シヌクレイノパチー)の神経変性疾患のリスクが高精度で層別化して予測できることが判明した。
実施例2(HCとDLBとPDの層別化)
 実施例1と同様にして、HCとDLBとPDの層別化を試みた。
 種レベルにおける発現量の多い95種類の菌(表2)の発現量をもとにした機械学習を行うことにより、予測モデルを構築した。得られたAUC-RFを図2に示す。
 図6から明らかなように、HCとDLBとPDの神経変性疾患のリスクが高精度で層別化して予測できることが判明した。
実施例3(HCとDLBと軽症PDと重症PDの層別化)
 実施例1と同様にして、HCとDLBと軽症PDと重症PDの層別化を試みた。
 種レベルにおける発現量の多い34種類の菌(表3)の発現量をもとにした機械学習を行うことにより、予測モデルを構築した。得られたAUC-RFを図3に示す。
 図7から明らかなように、HCとDLBと軽症PDと重症PDの神経変性疾患のリスクが高精度で層別化して予測できることが判明した。
実施例4(HCとDLBと早期PDと後期PDの層別化)
 実施例1と同様にして、HCとDLBと早期PDと後期PDの層別化を試みた。
 種レベルにおける発現量の多い74種類の菌(表4)の発現量をもとにした機械学習を行うことにより、予測モデルを構築した。得られたAUC-RFを図8に示す。
 図8から明らかなように、HCとDLBと早期PDと後期PDの神経変性疾患のリスクが高精度で層別化して予測できることが判明した。
 本発明方法及び装置によれば、容易に採取可能な少量の唾液サンプルを用いて、健常者とMCIと認知症、ADとDLBなどのプロテイノパチーの分類、DLBとPDなどのように、複数の疾患に層別化して神経変性疾患リスクの判定が正確にできる。従って、通常の健康診断における神経変性疾患のリスク判定手段として有用であり、層別化された神経変性疾患の早期診断に資するものである。
 100 判定方法
 10  取得装置
 20  判定装置
 21  CPU
 22  記憶装置
 23  制御プログラム
 24  予測モデル
 26  入出力インタフェース
 200 通信ネットワーク

Claims (8)

  1.  コンピュータのプロセッサによって実行される方法であって、
     被験者の唾液細菌叢の分析から複数種類の細菌の発現量を取得する工程と、
     予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価する工程を含み、
     前記予測モデルは、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成されており、
     前記複数種類の細菌が、前記層別化された患者の唾液細菌叢の分析において発現量の多い菌種、及び/又は、前記層別化された患者の唾液細菌叢の分析において異なる疾患の患者の間で発現量に有意差のある菌種を含むことを特徴とする、神経変性疾患のリスクを複数の疾患に層別化して評価するリスク判定方法。
  2.  前記複数の疾患の層別化が、健常高齢者と軽度認知障害(MCI)と認知症(DE)の層別化、健常高齢者と軽度認知障害(MCI)と認知症(DE)とレビー小体型認知症(DLB)の層別化、又はパーキンソン病(PD)とレビー小体型認知症(DLB)の層別化を含むことを特徴とする、請求項1に記載のリスク判定方法。
  3.  前記複数の疾患が、レビー小体型認知症(DLB)及びパーキンソン病(PD)を含むことを特徴とする、請求項1に記載のリスク判定方法。
  4.  前記複数種類の細菌が、[Eubacterium] brachy、Porphyromonas endodontalis、Alloprevotella tannerae、Capnocytophaga leadbetteri、Streptococcus gordonii、Campylobacter concisus、Tannerella forsythia、Filifactor alocis、[Eubacterium] nodatum、Streptococcus cristatus、Neisseria elongata、Treponema denticola、Actinomyces oris、[Eubacterium] saphenum、Streptococcus constellatus、Parvimonas micra、Prevotella denticola、Leptotrichia hofstadii、Fusobacterium nucleatum、Catonella morbi、Lactobacillus antri、Alloprevotella rava、Streptococcus anginosus、Prevotella jejuni、Streptococcus mitis、Gemella haemolysans、Neisseria macacae、Prevotella multiformis、Abiotrophia defectiva、Streptococcus salivarius、Streptococcus lactarius、Corynebacterium matruchotii、Oribacterium asaccharolyticum、Prevotella loescheii、Aggregatibacter segnis、Peptostreptococcus stomatis、Veillonella infantium、Capnocytophaga granulosa、Leptotrichia buccalis、Veillonella atypica、Streptococcus pseudopneumoniae、Corynebacterium durum、Granulicatella adiacens、[Eubacterium] sulci、Selenomonas infelix、Capnocytophaga sputigena、Lactobacillus crispatus、Streptococcus parasanguinis、Rothia mucilaginosa、Streptococcus sobrinus、Atopobium parvulum、Solobacterium moorei、Neisseria perflava、Bifidobacterium dentium、Actinomyces graevenitzii、Streptococcus mutans、Prevotella pallens、Porphyromonas gingivalis、Rothia dentocariosa、Fusobacterium periodonticum、Lactobacillus fermentum、Prevotella melaninogenica、Leptotrichia wadei、Lautropia mirabilis、Streptococcus infantis、Neisseria oralis、Prevotella pleuritidis、Prevotella oris、Lactobacillus paracasei、Lachnoanaerobaculum orale、Haemophilus parahaemolyticus、Prevotella nanceiensis、Lactobacillus salivarius、Streptococcus sanguinis、Haemophilus parainfluenzae、Lactobacillus vaginalis、Bacteroides heparinolyticus、Prevotella salivae、Gemella morbillorum、Gemella sanguinis、Prevotella shahii、Haemophilus haemolyticus、Schaalia odontolytica、Lactobacillus gasseri、Streptococcus australis、Streptococcus oralis、Prevotella histicola、Schaalia meyeri、Porphyromonas pasteri、Prevotella intermedia、Granulicatella elegans、Streptococcus downei、Parascardovia denticolens、Staphylococcus aureus、Haemophilus sputorum、及びPrevotella oulorumからなる群から選択される1以上の種の細菌を含むことを特徴とする、請求項1~3のいずれか1項に記載のリスク判定方法。
  5.  プロセッサと、
     前記プロセッサによって実行されるコンピュータプログラムを格納する記憶装置と、
     被験者から取得される唾液細菌叢の分析から複数種類の細菌の発現量を受け付ける通信回路とを備え、
     前記プロセッサは、前記コンピュータプログラムを実行することにより、前記通信回路により受け付けられた前記複数種類の細菌の発現量を取得し、
     予測モデルに、取得した前記複数種類の細菌の発現量を入力して、前記被験者の神経変性疾患のリスクを複数の疾患に層別化して評価し、
     前記予測モデルは、健常者と神経変性疾患に属する複数の疾患の患者の唾液細菌叢の分析から得られる複数種類の細菌の発現量を説明変数とし、健常者と神経変性疾患に属する複数の疾患に層別化された患者の疾患状態を得ることを目的変数として得られるアルゴリズムを教師データとした機械学習により生成されており、
     前記複数種類の細菌が、前記層別化された患者の唾液細菌叢の分析において発現量の多い菌種、及び/又は、前記層別化された患者の唾液細菌叢の分析において異なる疾患の患者の間で発現量に有意差のある菌種を含むことを特徴とする、神経変性疾患のリスクを複数の疾患に層別化して評価するリスク判定装置。
  6.  前記複数の疾患の層別化が、健常高齢者と軽度認知障害(MCI)と認知症(DE)の層別化、健常高齢者と軽度認知障害(MCI)と認知症(DE)とレビー小体型認知症(DLB)の層別化、又はパーキンソン病(PD)とレビー小体型認知症(DLB)の層別化を含むことを特徴とする、請求項5に記載のリスク判定装置。
  7.  前記複数の疾患が、レビー小体型認知症(DLB)及びパーキンソン病(PD)を含むことを特徴とする、請求項5に記載のリスク判定装置。
  8.  前記複数種類の細菌が、[Eubacterium] brachy、Porphyromonas endodontalis、Alloprevotella tannerae、Capnocytophaga leadbetteri、Streptococcus gordonii、Campylobacter concisus、Tannerella forsythia、Filifactor alocis、[Eubacterium] nodatum、Streptococcus cristatus、Neisseria elongata、Treponema denticola、Actinomyces oris、[Eubacterium] saphenum、Streptococcus constellatus、Parvimonas micra、Prevotella denticola、Leptotrichia hofstadii、Fusobacterium nucleatum、Catonella morbi、Lactobacillus antri、Alloprevotella rava、Streptococcus anginosus、Prevotella jejuni、Streptococcus mitis、Gemella haemolysans、Neisseria macacae、Prevotella multiformis、Abiotrophia defectiva、Streptococcus salivarius、Streptococcus lactarius、Corynebacterium matruchotii、Oribacterium asaccharolyticum、Prevotella loescheii、Aggregatibacter segnis、Peptostreptococcus stomatis、Veillonella infantium、Capnocytophaga granulosa、Leptotrichia buccalis、Veillonella atypica、Streptococcus pseudopneumoniae、Corynebacterium durum、Granulicatella adiacens、[Eubacterium] sulci、Selenomonas infelix、Capnocytophaga sputigena、Lactobacillus crispatus、Streptococcus parasanguinis、Rothia mucilaginosa、Streptococcus sobrinus、Atopobium parvulum、Solobacterium moorei、Neisseria perflava、Bifidobacterium dentium、Actinomyces graevenitzii、Streptococcus mutans、Prevotella pallens、Porphyromonas gingivalis、Rothia dentocariosa、Fusobacterium periodonticum、Lactobacillus fermentum、Prevotella melaninogenica、Leptotrichia wadei、Lautropia mirabilis、Streptococcus infantis、Neisseria oralis、Prevotella pleuritidis、Prevotella oris、Lactobacillus paracasei、Lachnoanaerobaculum orale、Haemophilus parahaemolyticus、Prevotella nanceiensis、Lactobacillus salivarius、Streptococcus sanguinis、Haemophilus parainfluenzae、Lactobacillus vaginalis、Bacteroides heparinolyticus、Prevotella salivae、Gemella morbillorum、Gemella sanguinis、Prevotella shahii、Haemophilus haemolyticus、Schaalia odontolytica、Lactobacillus gasseri、Streptococcus australis、Streptococcus oralis、Prevotella histicola、Schaalia meyeri、Porphyromonas pasteri、Prevotella intermedia、Granulicatella elegans、Streptococcus downei、Parascardovia denticolens、Staphylococcus aureus、Haemophilus sputorum、及びPrevotella oulorumからなる群から選択される1以上の種の細菌を含むことを特徴とする、請求項5~7のいずれか1項に記載のリスク判定装置。
PCT/JP2023/032629 2022-09-20 2023-09-07 神経変性疾患のリスク判定方法及び判定装置 WO2024062931A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023556884A JPWO2024062931A1 (ja) 2022-09-20 2023-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-149488 2022-09-20
JP2022149488 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024062931A1 true WO2024062931A1 (ja) 2024-03-28

Family

ID=90454260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032629 WO2024062931A1 (ja) 2022-09-20 2023-09-07 神経変性疾患のリスク判定方法及び判定装置

Country Status (2)

Country Link
JP (1) JPWO2024062931A1 (ja)
WO (1) WO2024062931A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020198A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 情報処理装置、プログラム、学習済みモデル、診断支援装置、学習装置及び予測モデルの生成方法
JP2021516054A (ja) * 2018-03-05 2021-07-01 エムディー ヘルスケア インコーポレイテッドMd Healthcare Inc. ラクトバチルス属細菌由来のナノ小胞及びその用途
JP2022516988A (ja) * 2019-01-09 2022-03-03 エムディー ヘルスケア インコーポレイテッド デイノコッカス属細菌由来ナノ小胞及びその用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021516054A (ja) * 2018-03-05 2021-07-01 エムディー ヘルスケア インコーポレイテッドMd Healthcare Inc. ラクトバチルス属細菌由来のナノ小胞及びその用途
JP2022516988A (ja) * 2019-01-09 2022-03-03 エムディー ヘルスケア インコーポレイテッド デイノコッカス属細菌由来ナノ小胞及びその用途
WO2021020198A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 情報処理装置、プログラム、学習済みモデル、診断支援装置、学習装置及び予測モデルの生成方法

Also Published As

Publication number Publication date
JPWO2024062931A1 (ja) 2024-03-28

Similar Documents

Publication Publication Date Title
Earl et al. Species-level bacterial community profiling of the healthy sinonasal microbiome using Pacific Biosciences sequencing of full-length 16S rRNA genes
CN105209918B (zh) 生物标记鉴定方法和系统
CN105368944B (zh) 可检测疾病的生物标志物及其用途
CN107075563B (zh) 用于冠状动脉疾病的生物标记物
Xu et al. Changes of saliva microbiota in nasopharyngeal carcinoma patients under chemoradiation therapy
CN105324670B (zh) 用于评估健康状况的方法和系统
US20140335534A1 (en) Method And System For Identifying A Biomarker Indicative Of Health Condition
EP4163391A1 (en) Method of quantifying product impact on human microbiome
KR102024857B1 (ko) 소음인 진단용 조성물 및 이를 이용한 소음인 진단방법
Davila-Velderrain et al. Single-cell anatomical analysis of human hippocampus and entorhinal cortex uncovers early-stage molecular pathology in Alzheimer’s disease
KR101983985B1 (ko) 사상체질 진단용 조성물 및 이를 이용한 사상체질 진단방법
WO2024062931A1 (ja) 神経変性疾患のリスク判定方法及び判定装置
CN114657270B (zh) 一种基于肠道菌群的阿尔茨海默病生物标志物及其应用
WO2020018954A1 (en) Methods and systems for oral microbiome analysis
Cebrián et al. Optimization of genotypic and biochemical methods to profile P. acnes isolates from a patient population
KR102024856B1 (ko) 소양인 진단용 조성물 및 이를 이용한 소양인 진단방법
CN111261222B (zh) 口腔微生物群落检测模型的构建方法
CN113930526A (zh) 用于鉴别甲基苯丙胺涉毒人群的方法、组合物及其应用
KR102612258B1 (ko) 남성의 탈모 진단을 위한 두피 마이크로바이옴 기반 바이오 마커, 이를 이용한 남성의 탈모를 진단하는 방법, 및 기계 학습을 이용한 마이크로바이옴 기반 바이오 마커를 선별하는 방법
KR20190059882A (ko) 태음인 진단용 조성물 및 이를 이용한 태음인 진단방법
RU2607046C2 (ru) Способ оценки обсемененности пародонта патогенными бактериями с применением полимеразной цепной реакции в реальном времени
WO2024090455A1 (ja) 多発性硬化症の診断方法及び診断用バイオマーカー
CN109182577A (zh) 自闭症生物标志物及其应用
CN112410443B (zh) 一种用于鉴别高龄个体的生物种群标志物及其获得方法和应用
CN117385066B (zh) 一种高血压诊断标志物及其应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023556884

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23868054

Country of ref document: EP

Kind code of ref document: A1