WO2024062696A1 - 3d molding device - Google Patents

3d molding device Download PDF

Info

Publication number
WO2024062696A1
WO2024062696A1 PCT/JP2023/021413 JP2023021413W WO2024062696A1 WO 2024062696 A1 WO2024062696 A1 WO 2024062696A1 JP 2023021413 W JP2023021413 W JP 2023021413W WO 2024062696 A1 WO2024062696 A1 WO 2024062696A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
optical system
projection optical
magnification
light
Prior art date
Application number
PCT/JP2023/021413
Other languages
French (fr)
Japanese (ja)
Inventor
博文 水野
大輔 菱谷
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2024062696A1 publication Critical patent/WO2024062696A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/264Arrangements for irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor

Definitions

  • the present invention relates to a three-dimensional printing apparatus that forms a three-dimensional object using modulated light.
  • SLS Selective Laser
  • Sintering type three-dimensional printing device is used.
  • a flat beam is irradiated onto a diffraction grating light valve, and is then passed through a beam expander, a galvano scanner, and an F ⁇ lens to the surface of an object construction region.
  • a three-dimensional modeling device that emits modulated light is disclosed.
  • the processing area which is the area irradiated with light
  • a long working distance can be easily achieved by increasing the rear focal length of the magnifying optical system in a configuration in which the multi-spot line beam guided from the optical modulator is scanned and guided to the magnifying optical system.
  • the image of the multi-spot line beam on the processing area becomes large, making it difficult to obtain a large light intensity (so-called fluence) on the processing area. Therefore, low-speed scanning is required to ensure the exposure amount, which may reduce productivity.
  • the large size of the multi-spots on the processing area may reduce the shape accuracy of the modeled object.
  • the present invention is directed to a three-dimensional modeling device that utilizes a diffractive optical modulator, and an object of the present invention is to obtain a long working distance while suppressing a decrease in light intensity on a processing area. .
  • Aspect 1 of the present invention is a three-dimensional modeling apparatus, which includes a light source, a diffractive light modulator having a plurality of modulation elements, an illumination optical system that guides light from the light source to the light modulator, and a first projection optical system that forms an intermediate image of the light modulator at a predetermined intermediate position; a second projection optical system that forms a projection image of the intermediate image on a projection surface of the building material; and a layer of the building material.
  • the second projection optical system includes a scanning mechanism that scans the projection image on the projection surface, and the layer formation mechanism includes a layer formation mechanism that scans the projection image on the projection surface.
  • a long working distance can be obtained while suppressing a decrease in light intensity on a processing area.
  • a second aspect of the present invention is the three-dimensional modeling apparatus according to the first aspect, in which the projection magnification of the first projection optical system is a reduction magnification, and the projection magnification of the second projection optical system is an enlargement magnification.
  • a third aspect of the present invention is the three-dimensional modeling apparatus according to the first aspect (or the first aspect or the second aspect), in which the light modulator is a diffraction grating light valve or a plane light valve.
  • Aspect 4 of the present invention is the three-dimensional modeling apparatus according to aspect 1 (which may be any one of aspects 1 to 3), in which the projection magnification of the first projection optical system is The total projection magnification by the optical system and the second projection optical system is 1/4 or more and 1/2 or less.
  • a fifth aspect of the present invention is the three-dimensional modeling apparatus according to the fourth aspect, wherein the light modulator is a diffraction grating light valve or a plane light valve, and the overall projection magnification is 1 or more and 2 or less.
  • Aspect 6 of the present invention is the three-dimensional printing apparatus according to any one of aspects 1 to 5, in which the layer forming mechanism is located between the second projection optical system and the projection surface on which the projection image is scanned. a layer forming member that moves along the projection plane.
  • FIG. 1 is a diagram showing the configuration of a three-dimensional printing device.
  • FIG. 2 is a diagram showing a simplified structure of an optical modulator.
  • FIG. 3 is a diagram showing a simplified projection optical system.
  • FIG. 3 is a diagram for explaining how a projection plane of a material layer is irradiated with a multi-spot line beam.
  • FIG. 3 is a diagram showing a projection optical system according to a comparative example.
  • FIG. 1 is a diagram showing the configuration of a three-dimensional printing apparatus 1 according to one embodiment of the present invention.
  • the three-dimensional modeling device 1 is an SLS (Selective Laser Sintering) type device that performs three-dimensional modeling by irradiating modulated laser light onto a powder or paste-like modeling material and sintering or melting the modeling material. It is.
  • the modeling material include metals, engineering plastics, ceramics, and synthetic resins.
  • the modeling material may include multiple types of materials.
  • the three-dimensional modeling apparatus 1 includes an optical head 11 and a layer forming mechanism 12.
  • the layer forming mechanism 12 forms a material layer 92 that is a thin layer of a modeling material 91 in the modeling space 30 .
  • the layer forming mechanism 12 is shown in a longitudinal section, but parallel oblique lines indicating the cross section are partially omitted.
  • a plurality of material layers 92 are sequentially formed in a stacked manner.
  • the optical head 11 irradiates modulated light onto the processing area on the surface of the material layer 92 .
  • the optical head 11 includes a laser light source 21, an illumination optical system 22, a light modulator 23, and a projection optical system 24.
  • FIG. 1 shows a simplified structure of the optical head 11, and the arrangement of each component differs from the actual arrangement.
  • the laser light source 21 may be provided outside the optical head 11 , and in this case, the light emitted from the laser light source 21 is guided into the optical head 11 .
  • the projection optical system 24 includes a first projection optical system 241 and a second projection optical system 242.
  • the second projection optical system 242 includes a pair of galvano scanners (not shown), and scans the light irradiation position on the material layer 92 two-dimensionally in the horizontal X and Y directions.
  • the layer forming mechanism 12 includes a shaping section 31 and a supply section 32.
  • the modeling section 31 includes a first cylinder 311 and a first piston 312.
  • the first cylinder 311 is a cylindrical member that extends in the vertical direction.
  • the shape of the internal space of the first cylinder 311 in plan view is, for example, approximately rectangular.
  • the first piston 312 is a substantially flat or columnar member accommodated in the internal space of the first cylinder 311, and has substantially the same shape as the internal space of the first cylinder 311 in plan view.
  • the first piston 312 is movable in the vertical direction in the internal space of the first cylinder 311.
  • a three-dimensional space surrounded by the inner surface of the first cylinder 311 and the upper surface of the first piston 312 is the modeling space 30 in which three-dimensional modeling is performed.
  • the supply unit 32 includes a second cylinder 321, a second piston 322, and a layer forming member 323 that is a squeegee.
  • the second cylinder 321 is a cylindrical member extending in the vertical direction, and is disposed adjacent to the side of the first cylinder 311 .
  • the shape of the internal space of the second cylinder 321 in plan view is, for example, approximately rectangular.
  • the second piston 322 is a substantially flat or columnar member accommodated in the internal space of the second cylinder 321, and has substantially the same shape as the internal space of the second cylinder 321 in plan view.
  • the second piston 322 is movable in the vertical direction in the internal space of the second cylinder 321.
  • a three-dimensional space surrounded by the inner surface of the second cylinder 321 and the upper surface of the second piston 322 is a storage space in which the modeling material 91 to be supplied to the modeling section 31 is stored.
  • the layer forming member 323 is a rod-shaped (for example, substantially cylindrical) member that extends in the X direction across the upper opening of the second cylinder 321 .
  • the layer forming member 323 is horizontally movable in the Y direction along the upper end surface of the second cylinder 321.
  • the second piston 322 rises by a predetermined distance, and the modeling material 91 in the second cylinder 321 is lifted upward. At this time, the surface of the modeling material 91 in the modeling space 30 is lowered by one material layer 92 in advance by the first piston 312 .
  • the layer forming member 323 moves from above the second cylinder 321 to above the first cylinder 311, the modeling material 91 that protrudes above the upper end surface of the second cylinder 321 enters the modeling space 30 of the modeling section 31. Supplied.
  • the upper surface of the modeling material 91 held in the modeling space 30 is located at a predetermined height (for example, the same height as the upper end surface of the first cylinder 311). As a result, one material layer 92 is formed within the modeling space 30.
  • the modeling material 91 in the modeling space 30 is scanned with a multi-spot line beam 8, which is a projected image of an intermediate image of the optical modulator 23, which will be described later.
  • the modeling materials are combined in a predetermined region of the projection plane 95, which is the surface of the modeling material 91 in the modeling space 30, that is, the surface of the latest material layer 92.
  • a portion corresponding to one layer of the three-dimensional structure is formed.
  • the modeling material 91 is supplied from the supply unit 32 to the modeling space 30, A new material layer 92 is formed on the projection surface 95 scanned by the multi-spot line beam 8. That is, a new projection surface 95 is formed. Then, the next scanning of the multi-spot line beam 8 is performed.
  • a three-dimensional model 93 is formed in the modeling space 30 by repeating the formation of the material layer 92 in the modeling space 30 and the scanning of the multi-spot line beam 8 on the material layer 92. Ru.
  • the optical head 11 and layer formation mechanism 12 are controlled by a control unit (not shown) based on design data (e.g., CAD data) of the three-dimensional object to be produced.
  • the control unit is, for example, a normal computer equipped with a processor, memory, an input/output unit, and a bus. Note that the configuration of the control unit may be modified in various ways.
  • Laser light source 21 emits laser light 81 to illumination optical system 22 .
  • the laser light source 21 is, for example, a fiber laser light source.
  • the wavelength of the laser beam 81 is, for example, 1.070 ⁇ m. Note that the type of laser light source 21 and the wavelength of laser light 81 may be variously changed.
  • the illumination optical system 22 shapes the beam cross section of the laser beam 81 into a substantially rectangular shaped beam 82 that is long in one direction (hereinafter referred to as the "long axis direction") and guides it to the optical modulator 23.
  • the cross-sectional shape of the shaped beam 82 is a substantially rectangular shape that is long in the major axis direction and short in the minor axis direction perpendicular to the optical axis and the major axis direction.
  • the cross-sectional shape of the shaped beam 82 is the shape of the shaped beam 82 in a plane perpendicular to the optical axis.
  • the major axis direction and the minor axis direction are directions perpendicular to the direction of the optical axis, that is, the direction in which the shaped beam 82 travels.
  • light flux (including modulated light) is expressed as “light” or “beam”, but the "cross section” of "light” or “beam” refers to the light flux in a plane perpendicular to the optical axis.
  • the cross-sectional shape of the shaped beam 82 can also be considered to be a straight line extending in the major axis direction.
  • the shape of the shaped beam 82 on the optical modulator 23 is, for example, a substantially rectangular shape with a length in the long axis direction of about 27 mm and a length in the short axis direction of about 1 mm.
  • the light modulator 23 converts the shaped beam 82 from the illumination optical system 22 into modulated light 83 that is one-dimensionally spatially modulated.
  • the optical modulator 23 for example, a PLV (Planar Light Valve) is used that can perform high-speed modulation and can withstand kW class laser light.
  • the PLV is a two-dimensional spatial light modulator
  • the optical head 11 utilizes it as a one-dimensional spatial modulator.
  • FIG. 2 is a diagram showing a simplified structure of the optical modulator 23, which is a PLV.
  • the optical modulator 23 includes a plurality of substantially rectangular pixels 231 arranged in a matrix (that is, two-dimensionally arranged) on a substrate (not shown).
  • the surface of the plurality of pixels 231 becomes a modulation surface 234.
  • M pixels 231 are arranged in the vertical direction and N pixels 231 in the horizontal direction in the figure.
  • the horizontal direction in FIG. 2 corresponds to the long axis direction of the shaping beam 82 (see FIG. 1), and the vertical direction in FIG. 2 corresponds to the short axis direction of the shaping beam 82.
  • Each pixel 231 is a modulation mechanism including a fixed member 232 and a movable member 233.
  • the fixing member 232 is a planar, substantially rectangular member fixed to the substrate, and has a substantially circular opening in the center.
  • the movable member 233 is a substantially circular member provided in the opening of the fixed member 232 .
  • a fixed reflective surface is provided on the upper surface of the fixed member 232 (that is, the surface on the near side in the direction perpendicular to the paper plane in FIG. 2).
  • a movable reflective surface is provided on the upper surface of the movable member 233.
  • the movable member 233 is movable in a direction perpendicular to the plane of the paper in FIG.
  • each pixel 231 by changing the relative position of the fixed member 232 and the movable member 233 in the direction perpendicular to the plane of the paper in FIG. (specularly reflected light) and non-zero-order diffracted light.
  • light modulation using a diffraction grating is performed by moving the movable member 233 relative to the fixed member 232.
  • the zero-order light emitted from the optical modulator 23 is guided to the modeling space 30 by the projection optical system 24 (see FIG. 1). Further, the non-zero-order diffracted light (mainly the first-order diffracted light) emitted from the optical modulator 23 is appropriately blocked and does not reach the modeling space 30 .
  • the diffraction state of the reflected light from the M pixels 231 (hereinafter also referred to as "pixel row 230") arranged in a row in the vertical direction in FIG. 2 is the same. That is, when the reflected light from one pixel 231 is zero-order light, the reflection from all the other pixels 231 (that is, M-1 pixels 231) in the pixel row 230 that includes the one pixel 231 Light is also zero-order light. Furthermore, when the reflected light from one pixel 231 is non-zero-order diffracted light, the reflected light from all other pixels 231 in the pixel row 230 including the one pixel 231 is also non-zero-order diffracted light.
  • the optical modulator 23 does not perform modulation in the short axis direction of the shaped beam 82, but modulates it in the long axis direction.
  • the M pixels 231 of one pixel column 230 (that is, M modulation mechanisms) function as one modulation element corresponding to one unit space.
  • the optical modulator 23 functions as a one-dimensional spatial light modulator including N modulation elements arranged in a row in the long axis direction of the shaped beam 82. In a preferred example, N is 1000 or more.
  • the projection optical system 24 includes the first projection optical system 241 and the second projection optical system 242.
  • the first projection optical system 241 forms an intermediate image of the optical modulator 23 at a predetermined intermediate position.
  • the second projection optical system 242 scans this intermediate image and projects it onto the material layer 92, that is, onto the projection surface 95.
  • FIG. 3 is a simplified diagram showing the projection optical system 24. As shown in FIG. In FIG. 3, the vertical direction corresponds to the direction in which the modulation elements of the optical modulator 23 are arranged (hereinafter also referred to as the "long axis direction"). In reality, the optical axis is bent in the projection optical system 24, but in FIG. 3, the optical axis is shown expanded to be a straight line.
  • the first projection optical system 241 includes a first lens group 41 and a second lens group 42 in order from the optical modulator 23 side.
  • the first lens group 41 is at least one lens.
  • the second lens group 42 is also at least one lens.
  • the second projection optical system 242 includes, in order from the first projection optical system 241 side, a third lens group 43, a scanning mechanism 44, and a fourth lens group 45.
  • the third lens group 43 is at least one lens.
  • the scanning mechanism 44 is a combination of a galvano scanner that scans modulated light in the X direction and a galvano scanner that scans the modulated light in the Y direction. In FIG. 3, the scanning mechanism 44 is simplified and shown as two rectangles.
  • the fourth lens group 45 is at least one lens.
  • the first projection optical system 241 has a reduction magnification. That is, the first projection optical system 241 forms a reduced intermediate image 84 of the optical modulator 23 .
  • the first lens group 41 and the second lens group 42 may be composed of only spherical lenses, and the intermediate image 84 may be an image reduced by the same magnification in the major axis direction and the minor axis direction.
  • the modulation in the long axis direction determines the shape of the object, so the first projection optical system 241 includes a cylindrical lens or the like to make the intermediate image 84 shorter than the long axis direction. It may be greatly reduced in the axial direction.
  • the magnification in the first projection optical system 241 refers to the magnification in the direction corresponding to the direction in which the modulation elements of the light modulator 23 are arranged.
  • the second projection optical system 242 has an enlargement magnification.
  • the third lens group 43 is preferably a single lens or a laminated lens that suppresses aberrations.
  • the fourth lens group 45 is also preferably a single lens or a laminated lens that suppresses aberrations.
  • the second projection optical system 242 is preferably composed of only a spherical lens, and is a so-called f ⁇ lens.
  • the second projection optical system 242 may be image-side telecentric or image-side non-telecentric. Furthermore, the second projection optical system 242 may be a non-f ⁇ lens.
  • a projected image 85 of the intermediate image 84 is magnified and formed by the second projection optical system 242 on a projection plane 95 (that is, a powder surface) which is the surface of the material layer 92 .
  • the second projection optical system 242 irradiates the intermediate image 84 as a multi-spot line beam (see reference numeral 8 in FIG. 1) onto a projection surface 95 which is a processing area.
  • the projection image 85 is scanned on the projection surface 95 by the scanning mechanism 44 .
  • the manner in which the multi-spot line beam is scanned is simplified by branching the optical path from the scanning mechanism 44.
  • FIG. 4 is a diagram for explaining how the projection plane 95 of the material layer 92 is irradiated with a multi-spot line beam.
  • the Y direction corresponds to the major axis direction. That is, the ON (light irradiation) and OFF (light non-irradiation) spots of the multi-spot line beam are lined up in the Y direction.
  • Reference numeral 950 in FIG. 4 indicates the length of the spot row of the multi-spot line beam, and by moving the multi-spot line beam in the X direction by the scanning mechanism 44, one area 951 is drawn with modulated light.
  • the area 951 will be referred to as a "swath".
  • the scanning mechanism 44 performs drawing for the adjacent swath 951 in the +Y direction.
  • drawing on the projection surface 95 of the material layer 92 that is, exposure of the projection surface 95 by modulated light irradiation is completed.
  • FIG. 5 is a diagram showing a projection optical system 724 according to a comparative example, and corresponds to FIG. 3.
  • the basic structure of the projection optical system 724 is the same as that in FIG. 3, but the first projection optical system 7241 has equal magnification (or enlarged magnification), and the second projection optical system 7242 has equal magnification (or reduced magnification).
  • magnification of the entire projection optical system 24 is equal to the same magnification
  • the focal length of the fourth lens group 745 in FIG. 5 is shorter than the focal length of the fourth lens group 45 in FIG.
  • the distance from the fourth lens group 745 to the projection surface 95, that is, the working distance becomes shorter. This narrows the range in which the multi-spot line beam can be scanned on the material layer 92, making it impossible to increase the size of the fabricated object.
  • the modulation area of the optical modulator 23 is 27 mm in the long axis direction and 1 mm in the short axis direction
  • both the second projection optical system 7242 of the comparative example and the second projection optical system 242 of the present embodiment It is assumed that the optical system is telecentric on both sides with an object-to-image distance of 1000 mm.
  • the magnification of the first projection optical system 7241 of the comparative example is 1.25
  • the magnification of the second projection optical system 7242 is 0.8
  • the magnification of the first projection optical system 241 of the present embodiment is 0.25. 25.
  • the fourth lens group 745 of the comparative example The focal length of the lens is 222 mm, and the focal length of the fourth lens group 45 of this embodiment is 400 mm. Since the focal length of the fourth lens group is close to the working distance, this embodiment can ensure a sufficiently long working distance compared to the comparative example.
  • the first projection optical system 241 has a reduction magnification and the second projection optical system 242 has an enlargement magnification, thereby reducing the above-mentioned light irradiation intensity and improving productivity. It is possible to easily secure a long working distance while avoiding problems such as a decrease in image quality, a decrease in modeling resolution, and an increase in the length of the optical system.
  • the second projection optical system 242 has an enlargement magnification to ensure a long working distance, but the overall projection magnification of the projection optical system 24 becomes excessively large. can be avoided.
  • the projection magnification of the projection optical system 24 is not limited to 1. Since the modulation elements of the light modulator 23 are minute, the projection magnification of the projection optical system 24 is preferably designed to be 1 or more. Preferably, the projection magnification of the projection optical system 24 is 2 or less.
  • the overall projection magnification of the projection optical system 24 i.e., the The projection magnification by the first projection optical system 241 and the second projection optical system 242 does not need to be less than 1, and if it exceeds 2, the desired shape accuracy of the model cannot be obtained, so the overall projection magnification should be 1 or more and 2.
  • the overall projection magnification should be 1 or more and 2.
  • the modeling material 91 is nylon or PEEK (polyetheretherketone)
  • it is preferable that the overall projection magnification is 1 or more and 2 or less.
  • the projection magnification of the first projection optical system 241 by making the projection magnification of the first projection optical system 241 smaller than the projection magnification of the second projection optical system 242, it is possible to ensure a long working distance as described above. be done. It is also unnecessary to increase the distance between the intermediate image 84 and the second projection optical system 242.
  • the projection magnification of the first projection optical system 241 can be increased. A significantly longer working distance can be secured compared to the case where the size is equal to or larger than the same size.
  • the first The projection magnification of the projection optical system 241 is preferably 1/4 or more of the overall projection magnification. That is, the projection magnification of the first projection optical system 241 is preferably 1/4 or more and 1/2 or less of the overall projection magnification.
  • the projection magnification refers to the projection magnification in the long axis direction in which the modulation elements are arranged.
  • the first projection optical system 241 forms the intermediate image 84 of the light modulator 23 at a predetermined intermediate position, but when the light modulator 23 is a one-dimensional spatial modulator, the "intermediate image" is means an image in the long axis direction. That is, in the first projection optical system 241, the optical modulator 23 and the intermediate image 84 have a conjugate positional relationship in the long axis direction.
  • the projection magnification of the first projection optical system 241 is these projection magnifications.
  • the first projection optical system 241 may include only one lens.
  • the first projection optical system 241 may have one lens group or three or more lens groups.
  • the second projection optical system 242 forms a projection image 85 of the intermediate image 84 on the projection surface 95 of the modeling material 91. Further, the second projection optical system 242 uses the scanning mechanism 44 to scan the projected image 85 on the projection surface 95 . Since the second projection optical system 242 is provided for scanning the projection image 85, preferably the projection magnification is the same in the major axis direction and the minor axis direction. Of course, the projection magnification of the second projection optical system 242 may be determined as the projection magnification in the major axis direction. In the scanning mechanism 44, a scanning mechanism having another structure such as a polygon laser scanner may be provided instead of the galvano scanner.
  • the scanning by the scanning mechanism 44 does not necessarily need to be carried out two-dimensionally as long as it is carried out in a direction intersecting the long axis direction. That is, one material layer 92 may be scanned by the multi-spot line beam only once in one direction.
  • a projection image 85 of the intermediate image 84 is formed on the projection surface 95 by the second projection optical system 242, but in a strict sense, the intermediate position where the intermediate image 84 is formed and the projection surface 95 are optically conjugate. It doesn't have to be.
  • the projection plane 95 may be slightly shifted from a position conjugate to the intermediate position within the range in which three-dimensional modeling is possible.
  • the optical modulator 23 is not limited to a one-dimensional spatial modulator. It may also be a two-dimensional spatial light modulator, for example, a DMD (Digital Micromirror Device). Modulators based on various principles can be used as the optical modulator 23, as long as they can control the illumination and non-illumination of light at multiple positions in the projected image.
  • DMD Digital Micromirror Device
  • the light source of the optical head 11 is not limited to the laser light source 21. A variety of other known light sources may be employed. Various optical systems may be employed for the illumination optical system 22 as long as they can converge and guide light to the regions of the plurality of modulation elements of the light modulator 23.
  • the layer forming member 323 of the layer forming mechanism 12 is not limited to a squeegee.
  • a roller or a member that spreads the modeling material 91 may be used as the layer forming member.
  • the layer forming member 323 moves along the projection surface 95 between the second projection optical system 242 and the projection surface 95 on which the projected image 85 is scanned, it is particularly preferable to use an optical head 11 having the above structure that can obtain a long working distance.
  • the layer forming mechanism 12 may be a mechanism that does not have a layer forming member 323.
  • Various other mechanisms may be used as the layer forming mechanism 12 as long as a new projection surface 95 can be formed by forming a new material layer 92 of the modeling material 91 on the projection surface 95 on which the projected image 85 is scanned.

Abstract

This 3D molding device (1) comprises a laser light source (21), a diffractive optical modulator (23) having a plurality of modulating elements, a lighting optical system (22), a first projection optical system (241) forming an intermediate image of the optical modulator (23), a second projection optical system (242) for forming a projection image of the intermediate image on a projection surface (95) of a modeling material (91) constituting a processing region, and a layer forming mechanism (12). The second projection optical system (242) scans the projection image on the projection surface (95). The layer forming mechanism (12) forms a new material layer (92) on the projection surface (95) onto which the projection image was scanned to form a new projection surface (95). The projection magnification of the first projection optical system (241) is smaller than the projection magnification of the second projection optical system (242).

Description

3次元造形装置3D modeling device
 本発明は、変調された光を用いて3次元の造形物を形成する3次元造形装置に関連する。
[関連出願の参照]
 本願は、2022年9月21日に出願された日本国特許出願JP2022-149838からの優先権の利益を主張し、当該出願の全ての開示は、本願に組み込まれる。
The present invention relates to a three-dimensional printing apparatus that forms a three-dimensional object using modulated light.
[Reference to Related Applications]
This application claims the benefit of priority from Japanese Patent Application JP2022-149838, filed on September 21, 2022, the entire disclosure of which is incorporated herein by reference.
 近年、金属粉末や樹脂粉末等の造形材料の層に変調されたレーザ光を照射して造形材料を結合させ、層形成と造形材料の結合とを繰り返すことにより3次元造形を行うSLS(Selective Laser Sintering)式の3次元造形装置が使用されている。例えば、特表2021-509094号公報(文献1)には、回折格子光バルブ(Grating Light Valve)に平面ビームを照射し、ビームエキスパンダ、ガルバノスキャナ、Fθレンズを順に介して物体構築領域表面に変調された光を照射する3次元造形装置が開示されている。 In recent years, SLS (Selective Laser), which performs three-dimensional modeling by irradiating modulated laser light onto layers of building materials such as metal powder or resin powder to bond the building materials and repeating layer formation and bonding, has been developed. Sintering type three-dimensional printing device is used. For example, in Japanese Patent Publication No. 2021-509094 (Document 1), a flat beam is irradiated onto a diffraction grating light valve, and is then passed through a beam expander, a galvano scanner, and an Fθ lens to the surface of an object construction region. A three-dimensional modeling device that emits modulated light is disclosed.
 ところで、産業用の3次元造形装置では、生産性を向上するために、光の照射領域である加工領域の大型化が求められている。加工領域を大型化するには、加工領域に向けて光を出射するレンズと、加工領域との間の距離(いわゆる、ワーキングディスタンス)を長くする必要がある。長いワーキングディスタンスの確保は、光変調器から導かれるマルチスポットラインビームを走査させつつ拡大光学系に導く構成において、当該拡大光学系の後側焦点距離を長くすることにより容易に実現される。しかし、このような光学系では、加工領域上におけるマルチスポットラインビームの像が大きくなり、加工領域上で大きな光強度(いわゆる、フルエンス)を得ることが難しい。そのため、露光量の確保のために低速走査が必要となることで生産性が低下する虞がある。 また、加工領域上でのマルチスポットのサイズが大きいことで、造形物の形状精度が低下する虞がある。 Incidentally, in order to improve productivity in industrial three-dimensional printing apparatuses, it is required that the processing area, which is the area irradiated with light, be enlarged. In order to increase the size of the processing area, it is necessary to increase the distance (so-called working distance) between the lens that emits light toward the processing area and the processing area. A long working distance can be easily achieved by increasing the rear focal length of the magnifying optical system in a configuration in which the multi-spot line beam guided from the optical modulator is scanned and guided to the magnifying optical system. However, in such an optical system, the image of the multi-spot line beam on the processing area becomes large, making it difficult to obtain a large light intensity (so-called fluence) on the processing area. Therefore, low-speed scanning is required to ensure the exposure amount, which may reduce productivity. Moreover, the large size of the multi-spots on the processing area may reduce the shape accuracy of the modeled object.
 本発明は、回折型の光変調器を利用する3次元造形装置に向けられており、本発明の目的は、加工領域上での光強度の低下を抑制しつつ長いワーキングディスタンスを得ることである。 The present invention is directed to a three-dimensional modeling device that utilizes a diffractive optical modulator, and an object of the present invention is to obtain a long working distance while suppressing a decrease in light intensity on a processing area. .
 本発明の態様1は、3次元造形装置であって、光源と、複数の変調要素を有する回折型の光変調器と、前記光源からの光を前記光変調器に導く照明光学系と、前記光変調器の中間像を所定の中間位置に形成する第1投影光学系と、前記中間像の投影像を造形材料の投影面上に形成する第2投影光学系と、前記造形材料の層を形成する層形成機構とを備え、前記第2投影光学系が、前記投影像を前記投影面上にて走査する走査機構を含み、前記層形成機構は、前記投影像が走査された前記投影面上に、前記造形材料の新たな層を形成することにより、新たな投影面を形成し、前記第1投影光学系の投影倍率が、前記第2投影光学系の投影倍率よりも小さい。 Aspect 1 of the present invention is a three-dimensional modeling apparatus, which includes a light source, a diffractive light modulator having a plurality of modulation elements, an illumination optical system that guides light from the light source to the light modulator, and a first projection optical system that forms an intermediate image of the light modulator at a predetermined intermediate position; a second projection optical system that forms a projection image of the intermediate image on a projection surface of the building material; and a layer of the building material. the second projection optical system includes a scanning mechanism that scans the projection image on the projection surface, and the layer formation mechanism includes a layer formation mechanism that scans the projection image on the projection surface. By forming a new layer of the modeling material thereon, a new projection surface is formed, and the projection magnification of the first projection optical system is smaller than the projection magnification of the second projection optical system.
 本発明によれば、回折型の光変調器を利用する3次元造形装置において、加工領域上での光強度の低下を抑制しつつ長いワーキングディスタンスを得ることができる。 According to the present invention, in a three-dimensional modeling apparatus that uses a diffractive optical modulator, a long working distance can be obtained while suppressing a decrease in light intensity on a processing area.
 本発明の態様2は、態様1の3次元造形装置であって、前記第1投影光学系の投影倍率が縮小倍率であり、前記第2投影光学系の投影倍率が拡大倍率である。 A second aspect of the present invention is the three-dimensional modeling apparatus according to the first aspect, in which the projection magnification of the first projection optical system is a reduction magnification, and the projection magnification of the second projection optical system is an enlargement magnification.
 本発明の態様3は、態様1(態様1または2であってもよい。)の3次元造形装置であって、前記光変調器が、回折格子光バルブまたは平面光バルブである。 A third aspect of the present invention is the three-dimensional modeling apparatus according to the first aspect (or the first aspect or the second aspect), in which the light modulator is a diffraction grating light valve or a plane light valve.
 本発明の態様4は、態様1(態様1ないし3のいずれか1つであってもよい。)の3次元造形装置であって、前記第1投影光学系の投影倍率が、前記第1投影光学系および前記第2投影光学系による全体投影倍率の1/4以上1/2以下である。 Aspect 4 of the present invention is the three-dimensional modeling apparatus according to aspect 1 (which may be any one of aspects 1 to 3), in which the projection magnification of the first projection optical system is The total projection magnification by the optical system and the second projection optical system is 1/4 or more and 1/2 or less.
 本発明の態様5は、態様4の3次元造形装置であって、前記光変調器が、回折格子光バルブまたは平面光バルブであり、前記全体投影倍率が、1以上2以下である。 A fifth aspect of the present invention is the three-dimensional modeling apparatus according to the fourth aspect, wherein the light modulator is a diffraction grating light valve or a plane light valve, and the overall projection magnification is 1 or more and 2 or less.
 本発明の態様6は、態様1ないし5のいずれか1つの3次元造形装置であって、前記層形成機構が、前記第2投影光学系と前記投影像が走査された前記投影面との間を前記投影面に沿って移動する層形成部材を含む。 Aspect 6 of the present invention is the three-dimensional printing apparatus according to any one of aspects 1 to 5, in which the layer forming mechanism is located between the second projection optical system and the projection surface on which the projection image is scanned. a layer forming member that moves along the projection plane.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above objects and other objects, features, aspects and advantages will become apparent from the detailed description of the invention given below with reference to the accompanying drawings.
3次元造形装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of a three-dimensional printing device. 光変調器の構造を簡素化して示す図である。FIG. 2 is a diagram showing a simplified structure of an optical modulator. 投影光学系を簡略化して示す図である。FIG. 3 is a diagram showing a simplified projection optical system. 材料層の投影面にマルチスポットラインビームが照射される様子を説明するための図である。FIG. 3 is a diagram for explaining how a projection plane of a material layer is irradiated with a multi-spot line beam. 比較例に係る投影光学系を示す図である。FIG. 3 is a diagram showing a projection optical system according to a comparative example.
 図1は、本発明の一の実施の形態に係る3次元造形装置1の構成を示す図である。3次元造形装置1は、粉末状またはペースト状の造形材料に変調されたレーザ光を照射し、造形材料を焼結または溶融結合することにより3次元造形を行うSLS(Selective Laser Sintering)式の装置である。造形材料は、例えば、金属、エンジニアリングプラスチック、セラミックス、合成樹脂等である。当該造形材料は、複数種類の材料を含んでいてもよい。 FIG. 1 is a diagram showing the configuration of a three-dimensional printing apparatus 1 according to one embodiment of the present invention. The three-dimensional modeling device 1 is an SLS (Selective Laser Sintering) type device that performs three-dimensional modeling by irradiating modulated laser light onto a powder or paste-like modeling material and sintering or melting the modeling material. It is. Examples of the modeling material include metals, engineering plastics, ceramics, and synthetic resins. The modeling material may include multiple types of materials.
 3次元造形装置1は、光学ヘッド11と、層形成機構12とを備える。層形成機構12は、造形空間30に造形材料91の薄層である材料層92を形成する。図1では、層形成機構12を縦断面にて示すが、断面を示す平行斜線を部分的に省略している。造形空間30には、複数の材料層92が積層するように順次形成される。光学ヘッド11は、材料層92の表面の加工領域上に変調された光を照射する。 The three-dimensional modeling apparatus 1 includes an optical head 11 and a layer forming mechanism 12. The layer forming mechanism 12 forms a material layer 92 that is a thin layer of a modeling material 91 in the modeling space 30 . In FIG. 1, the layer forming mechanism 12 is shown in a longitudinal section, but parallel oblique lines indicating the cross section are partially omitted. In the modeling space 30, a plurality of material layers 92 are sequentially formed in a stacked manner. The optical head 11 irradiates modulated light onto the processing area on the surface of the material layer 92 .
 光学ヘッド11は、レーザ光源21と、照明光学系22と、光変調器23と、投影光学系24とを含む。図1では光学ヘッド11の構造を簡略化して示しており、各構成要素の配置は実際の配置とは異なる。レーザ光源21は、光学ヘッド11の外部に設けられてもよく、この場合、レーザ光源21から出射される光は光学ヘッド11内に導かれる。投影光学系24は、第1投影光学系241と、第2投影光学系242とを含む。第2投影光学系242は、図示省略の1対のガルバノスキャナを有し、材料層92上における光の照射位置を水平なXおよびY方向に2次元に走査する。 The optical head 11 includes a laser light source 21, an illumination optical system 22, a light modulator 23, and a projection optical system 24. FIG. 1 shows a simplified structure of the optical head 11, and the arrangement of each component differs from the actual arrangement. The laser light source 21 may be provided outside the optical head 11 , and in this case, the light emitted from the laser light source 21 is guided into the optical head 11 . The projection optical system 24 includes a first projection optical system 241 and a second projection optical system 242. The second projection optical system 242 includes a pair of galvano scanners (not shown), and scans the light irradiation position on the material layer 92 two-dimensionally in the horizontal X and Y directions.
 層形成機構12は、造形部31と、供給部32とを備える。造形部31は、第1シリンダ311と、第1ピストン312とを備える。第1シリンダ311は、上下方向に延びる筒状の部材である。第1シリンダ311の内部空間の平面視における形状は、例えば略矩形である。第1ピストン312は、第1シリンダ311の内部空間に収容される略平板状または略柱状の部材であり、平面視における形状は、第1シリンダ311の内部空間と略同じである。第1ピストン312は、第1シリンダ311の内部空間において、上下方向に移動可能である。造形部31では、第1シリンダ311の内側面と第1ピストン312の上面とにより囲まれる3次元空間が、3次元造形が行われる造形空間30である。 The layer forming mechanism 12 includes a shaping section 31 and a supply section 32. The modeling section 31 includes a first cylinder 311 and a first piston 312. The first cylinder 311 is a cylindrical member that extends in the vertical direction. The shape of the internal space of the first cylinder 311 in plan view is, for example, approximately rectangular. The first piston 312 is a substantially flat or columnar member accommodated in the internal space of the first cylinder 311, and has substantially the same shape as the internal space of the first cylinder 311 in plan view. The first piston 312 is movable in the vertical direction in the internal space of the first cylinder 311. In the modeling section 31, a three-dimensional space surrounded by the inner surface of the first cylinder 311 and the upper surface of the first piston 312 is the modeling space 30 in which three-dimensional modeling is performed.
 供給部32は、第2シリンダ321と、第2ピストン322と、スキージである層形成部材323とを備える。第2シリンダ321は、上下方向に延びる筒状の部材であり、第1シリンダ311の側方に隣接して配置される。第2シリンダ321の内部空間の平面視における形状は、例えば略矩形である。第2ピストン322は、第2シリンダ321の内部空間に収容される略平板状または略柱状の部材であり、平面視における形状は、第2シリンダ321の内部空間と略同じである。第2ピストン322は、第2シリンダ321の内部空間において、上下方向に移動可能である。供給部32では、第2シリンダ321の内側面と第2ピストン322の上面とにより囲まれる3次元空間が、造形部31に供給される予定の造形材料91が貯溜される貯溜空間である。層形成部材323は、第2シリンダ321の上部開口を横断してX方向に延びる棒状(例えば、略円柱状)の部材である。層形成部材323は、第2シリンダ321の上端面に沿ってY方向に水平に移動可能である。 The supply unit 32 includes a second cylinder 321, a second piston 322, and a layer forming member 323 that is a squeegee. The second cylinder 321 is a cylindrical member extending in the vertical direction, and is disposed adjacent to the side of the first cylinder 311 . The shape of the internal space of the second cylinder 321 in plan view is, for example, approximately rectangular. The second piston 322 is a substantially flat or columnar member accommodated in the internal space of the second cylinder 321, and has substantially the same shape as the internal space of the second cylinder 321 in plan view. The second piston 322 is movable in the vertical direction in the internal space of the second cylinder 321. In the supply section 32, a three-dimensional space surrounded by the inner surface of the second cylinder 321 and the upper surface of the second piston 322 is a storage space in which the modeling material 91 to be supplied to the modeling section 31 is stored. The layer forming member 323 is a rod-shaped (for example, substantially cylindrical) member that extends in the X direction across the upper opening of the second cylinder 321 . The layer forming member 323 is horizontally movable in the Y direction along the upper end surface of the second cylinder 321.
 供給部32では、第2ピストン322が所定距離だけ上昇し、第2シリンダ321内の造形材料91が上方へと持ち上げられる。このとき、事前に第1ピストン312により造形空間30内の造形材料91の表面が材料層92の1層分だけ下降している。層形成部材323が第2シリンダ321上から第1シリンダ311上へと移動することにより、第2シリンダ321の上端面よりも上側に突出する造形材料91が、造形部31の造形空間30内に供給される。造形空間30内に保持された造形材料91の上面は、所定の高さ(例えば、第1シリンダ311の上端面と同じ高さ)に位置する。これにより、造形空間30内に1つの材料層92が形成される。 In the supply section 32, the second piston 322 rises by a predetermined distance, and the modeling material 91 in the second cylinder 321 is lifted upward. At this time, the surface of the modeling material 91 in the modeling space 30 is lowered by one material layer 92 in advance by the first piston 312 . As the layer forming member 323 moves from above the second cylinder 321 to above the first cylinder 311, the modeling material 91 that protrudes above the upper end surface of the second cylinder 321 enters the modeling space 30 of the modeling section 31. Supplied. The upper surface of the modeling material 91 held in the modeling space 30 is located at a predetermined height (for example, the same height as the upper end surface of the first cylinder 311). As a result, one material layer 92 is formed within the modeling space 30.
 3次元造形装置1では、造形空間30内の造形材料91に対して、後述の光変調器23の中間像の投影像であるマルチスポットラインビーム8の走査が行われる。これにより、造形空間30内の造形材料91の表面、すなわち、最新の材料層92の表面である投影面95の所定の領域において造形材料が結合する。その結果、3次元造形物の1つの層に相当する部位が形成される。投影面95である加工領域上でのマルチスポットラインビーム8の走査が終了すると、第1ピストン312が材料層92の1層分の距離だけ下降する。その後、第2投影光学系242と投影面95との間を層形成部材323が投影面95に沿って移動することにより、供給部32から造形空間30への造形材料91の供給が行われ、マルチスポットラインビーム8が走査された投影面95上に新たな材料層92が形成される。すなわち、新たな投影面95が形成される。そして、次のマルチスポットラインビーム8の走査が行われる。3次元造形装置1では、造形空間30における材料層92の形成と、材料層92上におけるマルチスポットラインビーム8の走査とが繰り返されることにより、造形空間30内に3次元造形物93が形成される。 In the three-dimensional modeling apparatus 1, the modeling material 91 in the modeling space 30 is scanned with a multi-spot line beam 8, which is a projected image of an intermediate image of the optical modulator 23, which will be described later. As a result, the modeling materials are combined in a predetermined region of the projection plane 95, which is the surface of the modeling material 91 in the modeling space 30, that is, the surface of the latest material layer 92. As a result, a portion corresponding to one layer of the three-dimensional structure is formed. When the scanning of the multi-spot line beam 8 on the processing area, which is the projection plane 95, is completed, the first piston 312 descends by a distance corresponding to one material layer 92. Thereafter, by moving the layer forming member 323 along the projection surface 95 between the second projection optical system 242 and the projection surface 95, the modeling material 91 is supplied from the supply unit 32 to the modeling space 30, A new material layer 92 is formed on the projection surface 95 scanned by the multi-spot line beam 8. That is, a new projection surface 95 is formed. Then, the next scanning of the multi-spot line beam 8 is performed. In the three-dimensional modeling apparatus 1, a three-dimensional model 93 is formed in the modeling space 30 by repeating the formation of the material layer 92 in the modeling space 30 and the scanning of the multi-spot line beam 8 on the material layer 92. Ru.
 3次元造形装置1では、作製される予定の3次元造形物の設計データ(例えば、CADデータ)等に基づいて、光学ヘッド11および層形成機構12が、図示省略の制御部により制御される。当該制御部は、例えば、プロセッサと、メモリと、入出力部と、バスとを備える通常のコンピュータである。なお、制御部の構成は様々に変更されてよい。 In the three-dimensional modeling device 1, the optical head 11 and layer formation mechanism 12 are controlled by a control unit (not shown) based on design data (e.g., CAD data) of the three-dimensional object to be produced. The control unit is, for example, a normal computer equipped with a processor, memory, an input/output unit, and a bus. Note that the configuration of the control unit may be modified in various ways.
 次に、光学ヘッド11の詳細について説明する。レーザ光源21は、照明光学系22へとレーザ光81を出射する。レーザ光源21は、例えば、ファイバレーザ光源である。レーザ光81の波長は、例えば1.070μmである。なお、レーザ光源21の種類、および、レーザ光81の波長は、様々に変更されてよい。 Next, details of the optical head 11 will be explained. Laser light source 21 emits laser light 81 to illumination optical system 22 . The laser light source 21 is, for example, a fiber laser light source. The wavelength of the laser beam 81 is, for example, 1.070 μm. Note that the type of laser light source 21 and the wavelength of laser light 81 may be variously changed.
 照明光学系22は、レーザ光81の光束断面を、一の方向(以下、「長軸方向」と呼ぶ。)に長い略矩形状の整形ビーム82に整形して光変調器23へと導く。換言すれば、整形ビーム82の断面形状は、長軸方向に長く、光軸および長軸方向に垂直な短軸方向に短い略矩形である。整形ビーム82の断面形状とは、光軸に対して垂直な面における整形ビーム82の形状である。長軸方向および短軸方向は、光軸の方向、すなわち、整形ビーム82の進行方向に垂直な方向である。以下の説明において、光束(変調されたものを含む。)を「光」または「ビーム」と表現するが、「光」または「ビーム」の「断面」とは、光軸に垂直な面における光束の断面を意味する。整形ビーム82の断面形状は、長軸方向に延びる直線状と捉えることもできる。整形ビーム82の光変調器23上における形状は、例えば、長軸方向の長さが約27mm、短軸方向の長さが約1mmの略矩形である。 The illumination optical system 22 shapes the beam cross section of the laser beam 81 into a substantially rectangular shaped beam 82 that is long in one direction (hereinafter referred to as the "long axis direction") and guides it to the optical modulator 23. In other words, the cross-sectional shape of the shaped beam 82 is a substantially rectangular shape that is long in the major axis direction and short in the minor axis direction perpendicular to the optical axis and the major axis direction. The cross-sectional shape of the shaped beam 82 is the shape of the shaped beam 82 in a plane perpendicular to the optical axis. The major axis direction and the minor axis direction are directions perpendicular to the direction of the optical axis, that is, the direction in which the shaped beam 82 travels. In the following explanation, light flux (including modulated light) is expressed as "light" or "beam", but the "cross section" of "light" or "beam" refers to the light flux in a plane perpendicular to the optical axis. means the cross section of The cross-sectional shape of the shaped beam 82 can also be considered to be a straight line extending in the major axis direction. The shape of the shaped beam 82 on the optical modulator 23 is, for example, a substantially rectangular shape with a length in the long axis direction of about 27 mm and a length in the short axis direction of about 1 mm.
 光変調器23は、照明光学系22からの整形ビーム82を1次元の空間変調された変調光83に変換する。光変調器23としては、例えば、高速に変調を行うことができ、kWクラスのレーザ光に耐えることができるPLV(Planar Light Valve)が用いられる。PLVは2次元の空間光変調器であるが、光学ヘッド11では、これを1次元の空間変調器として利用する。 The light modulator 23 converts the shaped beam 82 from the illumination optical system 22 into modulated light 83 that is one-dimensionally spatially modulated. As the optical modulator 23, for example, a PLV (Planar Light Valve) is used that can perform high-speed modulation and can withstand kW class laser light. Although the PLV is a two-dimensional spatial light modulator, the optical head 11 utilizes it as a one-dimensional spatial modulator.
 図2は、PLVである光変調器23の構造を簡素化して示す図である。光変調器23は、図示省略の基板上にマトリクス状に配置された(すなわち、2次元配列された)複数の略矩形状のピクセル231を備える。光変調器23では、当該複数のピクセル231の表面が変調面234となる。図2に示す例では、図中の縦方向にM個かつ横方向にN個のピクセル231が配置される。図2中の横方向は、整形ビーム82(図1参照)の長軸方向に対応し、図2中の縦方向は、整形ビーム82の短軸方向に対応する。 FIG. 2 is a diagram showing a simplified structure of the optical modulator 23, which is a PLV. The optical modulator 23 includes a plurality of substantially rectangular pixels 231 arranged in a matrix (that is, two-dimensionally arranged) on a substrate (not shown). In the optical modulator 23, the surface of the plurality of pixels 231 becomes a modulation surface 234. In the example shown in FIG. 2, M pixels 231 are arranged in the vertical direction and N pixels 231 in the horizontal direction in the figure. The horizontal direction in FIG. 2 corresponds to the long axis direction of the shaping beam 82 (see FIG. 1), and the vertical direction in FIG. 2 corresponds to the short axis direction of the shaping beam 82.
 各ピクセル231は、固定部材232と、可動部材233とを備えた変調機構である。固定部材232は、上記基板に固定された平面状の略矩形の部材であり、中央に略円形の開口が設けられる。可動部材233は、固定部材232の当該開口に設けられる略円形の部材である。固定部材232の上面(すなわち、図2中の紙面に垂直な方向における手前側の面)には、固定反射面が設けられる。可動部材233の上面には、可動反射面が設けられる。可動部材233は、図2中の紙面に垂直な方向に移動可能である。 Each pixel 231 is a modulation mechanism including a fixed member 232 and a movable member 233. The fixing member 232 is a planar, substantially rectangular member fixed to the substrate, and has a substantially circular opening in the center. The movable member 233 is a substantially circular member provided in the opening of the fixed member 232 . A fixed reflective surface is provided on the upper surface of the fixed member 232 (that is, the surface on the near side in the direction perpendicular to the paper plane in FIG. 2). A movable reflective surface is provided on the upper surface of the movable member 233. The movable member 233 is movable in a direction perpendicular to the plane of the paper in FIG.
 各ピクセル231では、図2中の紙面に垂直な方向における固定部材232と可動部材233との相対位置が変更されることにより、ピクセル231からの反射光が、0次(回折)光(すなわち、正反射光)と非0次回折光との間で切り替えられる。換言すれば、ピクセル231では、可動部材233が固定部材232に対して相対移動することにより、回折格子を利用した光変調が行われる。光変調器23から出射された0次光は、投影光学系24(図1参照)により造形空間30へと導かれる。また、光変調器23から出射された非0次回折光(主として、1次回折光)は、適宜遮光されて造形空間30には到達しない。 In each pixel 231, by changing the relative position of the fixed member 232 and the movable member 233 in the direction perpendicular to the plane of the paper in FIG. (specularly reflected light) and non-zero-order diffracted light. In other words, in the pixel 231, light modulation using a diffraction grating is performed by moving the movable member 233 relative to the fixed member 232. The zero-order light emitted from the optical modulator 23 is guided to the modeling space 30 by the projection optical system 24 (see FIG. 1). Further, the non-zero-order diffracted light (mainly the first-order diffracted light) emitted from the optical modulator 23 is appropriately blocked and does not reach the modeling space 30 .
 光変調器23では、図2中の縦方向に1列に並ぶM個のピクセル231(以下、「ピクセル列230」とも呼ぶ。)からの反射光の回折状態は同じである。すなわち、一のピクセル231からの反射光が0次光である場合、当該一のピクセル231が含まれるピクセル列230の他の全てのピクセル231(すなわち、M-1個のピクセル231)からの反射光も0次光である。また、一のピクセル231からの反射光が非0次回折光である場合、当該一のピクセル231が含まれるピクセル列230の他の全てのピクセル231からの反射光も非0次回折光である。すなわち、光変調器23では、整形ビーム82の短軸方向において変調は行わず、長軸方向において変調を行う。このように、光変調器23では、1つのピクセル列230のM個のピクセル231(すなわち、M個の変調機構)が、1つの単位空間に対応する1つの変調要素として機能する。光変調器23は、整形ビーム82の長軸方向に1列に並ぶN個の変調要素を備える1次元の空間光変調器として機能する。好ましい例では、Nは、1000以上である。 In the light modulator 23, the diffraction state of the reflected light from the M pixels 231 (hereinafter also referred to as "pixel row 230") arranged in a row in the vertical direction in FIG. 2 is the same. That is, when the reflected light from one pixel 231 is zero-order light, the reflection from all the other pixels 231 (that is, M-1 pixels 231) in the pixel row 230 that includes the one pixel 231 Light is also zero-order light. Furthermore, when the reflected light from one pixel 231 is non-zero-order diffracted light, the reflected light from all other pixels 231 in the pixel row 230 including the one pixel 231 is also non-zero-order diffracted light. That is, the optical modulator 23 does not perform modulation in the short axis direction of the shaped beam 82, but modulates it in the long axis direction. In this way, in the light modulator 23, the M pixels 231 of one pixel column 230 (that is, M modulation mechanisms) function as one modulation element corresponding to one unit space. The optical modulator 23 functions as a one-dimensional spatial light modulator including N modulation elements arranged in a row in the long axis direction of the shaped beam 82. In a preferred example, N is 1000 or more.
 次に、投影光学系24について説明する。既に説明したように、投影光学系24は、第1投影光学系241と第2投影光学系242とを含む。第1投影光学系241は光変調器23の中間像を所定の中間位置に形成する。第2投影光学系242はこの中間像を走査しつつ材料層92上、すなわち、投影面95上に投影する。図3は投影光学系24を簡略化して示す図である。図3において、縦方向が光変調器23の変調素子が並ぶ方向(以下、「長軸方向」ともいう。)に対応する。実際には、投影光学系24において光軸は折れ曲がるが、図3では光軸が直線になるように展開して示している。 Next, the projection optical system 24 will be explained. As already explained, the projection optical system 24 includes the first projection optical system 241 and the second projection optical system 242. The first projection optical system 241 forms an intermediate image of the optical modulator 23 at a predetermined intermediate position. The second projection optical system 242 scans this intermediate image and projects it onto the material layer 92, that is, onto the projection surface 95. FIG. 3 is a simplified diagram showing the projection optical system 24. As shown in FIG. In FIG. 3, the vertical direction corresponds to the direction in which the modulation elements of the optical modulator 23 are arranged (hereinafter also referred to as the "long axis direction"). In reality, the optical axis is bent in the projection optical system 24, but in FIG. 3, the optical axis is shown expanded to be a straight line.
 第1投影光学系241は、光変調器23側から順に、第1レンズ群41と第2レンズ群42とを有する。第1レンズ群41は少なくとも1つのレンズである。第2レンズ群42も少なくとも1つのレンズである。第2投影光学系242は、第1投影光学系241側から順に、第3レンズ群43と、走査機構44と、第4レンズ群45とを有する。第3レンズ群43は少なくとも1つのレンズである。走査機構44は、本実施の形態では、変調光をX方向に走査するガルバノスキャナと、Y方向に走査するガルバノスキャナとを組み合わせたものである。図3では、走査機構44を2つの長方形にて簡略化して示している。第4レンズ群45は少なくとも1つのレンズである。 The first projection optical system 241 includes a first lens group 41 and a second lens group 42 in order from the optical modulator 23 side. The first lens group 41 is at least one lens. The second lens group 42 is also at least one lens. The second projection optical system 242 includes, in order from the first projection optical system 241 side, a third lens group 43, a scanning mechanism 44, and a fourth lens group 45. The third lens group 43 is at least one lens. In this embodiment, the scanning mechanism 44 is a combination of a galvano scanner that scans modulated light in the X direction and a galvano scanner that scans the modulated light in the Y direction. In FIG. 3, the scanning mechanism 44 is simplified and shown as two rectangles. The fourth lens group 45 is at least one lens.
 第1投影光学系241は縮小倍率である。すなわち、第1投影光学系241により、縮小された光変調器23の中間像84が形成される。第1レンズ群41および第2レンズ群42を球面レンズのみで構成して、中間像84は長軸方向および短軸方向に同じ倍率で縮小された像でもよい。しかし、1次元の変調光を生成する場合、長軸方向の変調が造形物の形状を決定するため、第1投影光学系241にシリンドリカルレンズ等を含めて中間像84を長軸方向よりも短軸方向に大きく縮小してもよい。1次元の変調光の場合、第1投影光学系241における倍率とは、光変調器23の変調要素が並ぶ方向に対応する方向における倍率を指すものとする。 The first projection optical system 241 has a reduction magnification. That is, the first projection optical system 241 forms a reduced intermediate image 84 of the optical modulator 23 . The first lens group 41 and the second lens group 42 may be composed of only spherical lenses, and the intermediate image 84 may be an image reduced by the same magnification in the major axis direction and the minor axis direction. However, when generating one-dimensional modulated light, the modulation in the long axis direction determines the shape of the object, so the first projection optical system 241 includes a cylindrical lens or the like to make the intermediate image 84 shorter than the long axis direction. It may be greatly reduced in the axial direction. In the case of one-dimensional modulated light, the magnification in the first projection optical system 241 refers to the magnification in the direction corresponding to the direction in which the modulation elements of the light modulator 23 are arranged.
 一方、第2投影光学系242は拡大倍率である。第3レンズ群43は、好ましくは1枚のレンズ、または、収差を抑制した貼り合わせレンズである。第4レンズ群45も、好ましくは1枚のレンズ、または、収差を抑制した貼り合わせレンズである。第2投影光学系242は、好ましくは球面レンズのみにより構成され、いわゆるfθレンズである。第2投影光学系242は、像側テレセントリックであっても像側非テレセントリックであってもよい。さらに、第2投影光学系242は非fθレンズであってもよい。第2投影光学系242により、中間像84の投影像85が材料層92の表面である投影面95(すなわち、粉末面)上に拡大されて形成される。第2投影光学系242により、中間像84がマルチスポットラインビーム(図1の符号8参照)となって加工領域である投影面95上に照射される。また、走査機構44により、投影像85が投影面95上にて走査される。図3では、マルチスポットラインビームが走査される様子を走査機構44から光路を分岐させることにより簡略化して示している。 On the other hand, the second projection optical system 242 has an enlargement magnification. The third lens group 43 is preferably a single lens or a laminated lens that suppresses aberrations. The fourth lens group 45 is also preferably a single lens or a laminated lens that suppresses aberrations. The second projection optical system 242 is preferably composed of only a spherical lens, and is a so-called fθ lens. The second projection optical system 242 may be image-side telecentric or image-side non-telecentric. Furthermore, the second projection optical system 242 may be a non-fθ lens. A projected image 85 of the intermediate image 84 is magnified and formed by the second projection optical system 242 on a projection plane 95 (that is, a powder surface) which is the surface of the material layer 92 . The second projection optical system 242 irradiates the intermediate image 84 as a multi-spot line beam (see reference numeral 8 in FIG. 1) onto a projection surface 95 which is a processing area. Further, the projection image 85 is scanned on the projection surface 95 by the scanning mechanism 44 . In FIG. 3, the manner in which the multi-spot line beam is scanned is simplified by branching the optical path from the scanning mechanism 44.
 図4は、材料層92の投影面95においてマルチスポットラインビームが照射される様子を説明するための図である。図4においてY方向が長軸方向に対応する。すなわち、マルチスポットラインビームのON(光照射)およびOFF(光非照射)のスポットがY方向に並ぶ。図4中の符号950はマルチスポットラインビームのスポット列の長さを示し、走査機構44によりマルチスポットラインビームがX方向に移動することにより、1つの領域951に変調光による描画が行われる。以下、領域951を「スワス」と呼ぶ。 FIG. 4 is a diagram for explaining how the projection plane 95 of the material layer 92 is irradiated with a multi-spot line beam. In FIG. 4, the Y direction corresponds to the major axis direction. That is, the ON (light irradiation) and OFF (light non-irradiation) spots of the multi-spot line beam are lined up in the Y direction. Reference numeral 950 in FIG. 4 indicates the length of the spot row of the multi-spot line beam, and by moving the multi-spot line beam in the X direction by the scanning mechanism 44, one area 951 is drawn with modulated light. Hereinafter, the area 951 will be referred to as a "swath".
 1つのスワス951に対する描画が完了すると、走査機構44により、+Y方向に隣接するスワス951への描画が行われる。隣接するスワス951への描画が順次行われることにより、材料層92の投影面95への描画、すなわち、変調された光の照射による投影面95の露光が完了する。 When the drawing for one swath 951 is completed, the scanning mechanism 44 performs drawing for the adjacent swath 951 in the +Y direction. By sequentially performing drawing on adjacent swaths 951, drawing on the projection surface 95 of the material layer 92, that is, exposure of the projection surface 95 by modulated light irradiation is completed.
 図5は、比較例に係る投影光学系724を示す図であり、図3に対応する。投影光学系724の基本構造は図3と同様であるが、第1投影光学系7241は等倍率(または拡大倍率)であり、第2投影光学系7242は等倍率(または縮小倍率)である。図3において投影光学系24全体の倍率が等倍である場合、図5の第4レンズ群745の焦点距離は図3の第4レンズ群45の焦点距離よりも短くなる。その結果、第4レンズ群745から投影面95までの距離、すなわち、ワーキングディスタンスが短くなる。これにより、材料層92上にてマルチスポットラインビームを走査することができる範囲が狭くなり、作製可能な造形物を大型化することができない。 FIG. 5 is a diagram showing a projection optical system 724 according to a comparative example, and corresponds to FIG. 3. The basic structure of the projection optical system 724 is the same as that in FIG. 3, but the first projection optical system 7241 has equal magnification (or enlarged magnification), and the second projection optical system 7242 has equal magnification (or reduced magnification). In FIG. 3, when the magnification of the entire projection optical system 24 is equal to the same magnification, the focal length of the fourth lens group 745 in FIG. 5 is shorter than the focal length of the fourth lens group 45 in FIG. As a result, the distance from the fourth lens group 745 to the projection surface 95, that is, the working distance becomes shorter. This narrows the range in which the multi-spot line beam can be scanned on the material layer 92, making it impossible to increase the size of the fabricated object.
 例えば、光変調器23の変調エリアが、長軸方向に27mm、短軸方向に1mmであり、比較例の第2投影光学系7242および本実施の形態の第2投影光学系242の双方が、物像間距離が1000mmの両側テレセントリック光学系であるものとする。ここで、比較例の第1投影光学系7241の倍率が1.25、第2投影光学系7242の倍率が0.8であり、本実施の形態の第1投影光学系241の倍率が0.25、第2投影光学系242の倍率が4であり、比較例においても本実施の形態においても投影面95でのビームサイズが27mm×1mmであるものとすると、比較例の第4レンズ群745の焦点距離は222mmとなり、本実施の形態の第4レンズ群45の焦点距離は400mmとなる。第4レンズ群の焦点距離はワーキングディスタンスに近いため、本実施の形態では比較例と比べて十分に長いワーキングディスタンスが確保できる。 For example, the modulation area of the optical modulator 23 is 27 mm in the long axis direction and 1 mm in the short axis direction, and both the second projection optical system 7242 of the comparative example and the second projection optical system 242 of the present embodiment It is assumed that the optical system is telecentric on both sides with an object-to-image distance of 1000 mm. Here, the magnification of the first projection optical system 7241 of the comparative example is 1.25, the magnification of the second projection optical system 7242 is 0.8, and the magnification of the first projection optical system 241 of the present embodiment is 0.25. 25. Assuming that the magnification of the second projection optical system 242 is 4 and the beam size at the projection surface 95 is 27 mm x 1 mm in both the comparative example and the present embodiment, the fourth lens group 745 of the comparative example The focal length of the lens is 222 mm, and the focal length of the fourth lens group 45 of this embodiment is 400 mm. Since the focal length of the fourth lens group is close to the working distance, this embodiment can ensure a sufficiently long working distance compared to the comparative example.
 図5の比較例において、第4レンズ群745の焦点距離を長くしてワーキングディスタンスを確保することも考えられるが、この場合、第2投影光学系7242の倍率が大きくなり、加工領域上での光の照射強度(いわゆる、フルエンス)が低下する。その結果、露光量の確保のため走査速度を低下させる必要が生じて生産性が低下することが考えられる。また、スポットサイズの増大により造形分解能が低下する等の問題が生じることも考えられる。第3レンズ群743および第4レンズ群745の双方の焦点距離を長くするという対策も考えられるが、この場合、第2投影光学系7242の光路長が長くなり、光学ヘッドの大型化につながるという問題が生じる。 In the comparative example shown in FIG. 5, it is possible to secure the working distance by increasing the focal length of the fourth lens group 745, but in this case, the magnification of the second projection optical system 7242 becomes large and the processing area is The intensity of light irradiation (so-called fluence) decreases. As a result, it may be necessary to reduce the scanning speed in order to secure the exposure amount, resulting in a decrease in productivity. Furthermore, problems such as a decrease in modeling resolution may occur due to an increase in spot size. One possible solution is to lengthen the focal lengths of both the third lens group 743 and the fourth lens group 745, but in this case, the optical path length of the second projection optical system 7242 becomes longer, leading to an increase in the size of the optical head. A problem arises.
 上記課題に対し、図3の投影光学系24では、第1投影光学系241を縮小倍率とし、第2投影光学系242を拡大倍率とすることにより、上記の光の照射強度の低下、生産性の低下、造形分解能の低下、光学系の長大化等の問題を回避しつつ、長いワーキングディスタンスを容易に確保することができる。あるいは、第1投影光学系241を縮小倍率とすることで、長いワーキングディスタンスを確保するために第2投影光学系242が拡大倍率としつつ、投影光学系24の全体投影倍率が過度に大きくなることを避けることができる。 To solve the above problems, in the projection optical system 24 of FIG. 3, the first projection optical system 241 has a reduction magnification and the second projection optical system 242 has an enlargement magnification, thereby reducing the above-mentioned light irradiation intensity and improving productivity. It is possible to easily secure a long working distance while avoiding problems such as a decrease in image quality, a decrease in modeling resolution, and an increase in the length of the optical system. Alternatively, by setting the first projection optical system 241 to a reduction magnification, the second projection optical system 242 has an enlargement magnification to ensure a long working distance, but the overall projection magnification of the projection optical system 24 becomes excessively large. can be avoided.
 上記説明では、投影光学系24の全体の投影倍率が1である場合を例として説明したが、もちろん、投影光学系24の投影倍率は1には限定されない。光変調器23の変調要素は微細であるため、好ましくは、投影光学系24の投影倍率は1以上に設計される。好ましくは、投影光学系24の投影倍率は2以下である。特に、光変調器23が、回折格子光バルブ(Grating Light Valve:GLV(登録商標))または平面光バルブ((Planar Light Valve:PLV)の場合、投影光学系24の全体投影倍率(すなわち、第1投影光学系241および第2投影光学系242による投影倍率)は、1未満にする必要はなく、2を超えると造形物の望ましい形状精度が得られないため、全体投影倍率は、1以上2以下であることが好ましい。また、造形材料91がナイロン、PEEK(ポリエーテルエーテルケトン)の場合においても、全体投影倍率が1以上2以下であることが好ましい。 In the above description, the case where the overall projection magnification of the projection optical system 24 is 1 has been described as an example, but of course, the projection magnification of the projection optical system 24 is not limited to 1. Since the modulation elements of the light modulator 23 are minute, the projection magnification of the projection optical system 24 is preferably designed to be 1 or more. Preferably, the projection magnification of the projection optical system 24 is 2 or less. In particular, when the light modulator 23 is a grating light valve (GLV (registered trademark)) or a planar light valve (PLV), the overall projection magnification of the projection optical system 24 (i.e., the The projection magnification by the first projection optical system 241 and the second projection optical system 242 does not need to be less than 1, and if it exceeds 2, the desired shape accuracy of the model cannot be obtained, so the overall projection magnification should be 1 or more and 2. The following is preferable.Also, when the modeling material 91 is nylon or PEEK (polyetheretherketone), it is preferable that the overall projection magnification is 1 or more and 2 or less.
 そして、このような投影光学系24において、第1投影光学系241の投影倍率を第2投影光学系242の投影倍率よりも小さくすることにより、上記の通り、長いワーキングディスタンスを確保することが実現される。中間像84と第2投影光学系242との間の距離を大きくすることも不要となる。特に、第1投影光学系241の投影倍率を、第1投影光学系241および第2投影光学系242による全体投影倍率の1/2以下とすることにより、第1投影光学系241の投影倍率を等倍以上とする場合に比べて顕著に長いワーキングディスタンスを確保することができる。また、第1投影光学系241の投影倍率が全体投影倍率の1/2よりも大幅に小さいことは造形において影響は小さいが、集光された光が光学素子に与えるダメージを考慮すると、第1投影光学系241の投影倍率は全体投影倍率の1/4以上であることが好ましい。すなわち、第1投影光学系241の投影倍率は、好ましくは全体投影倍率の1/4以上1/2以下である。 In such a projection optical system 24, by making the projection magnification of the first projection optical system 241 smaller than the projection magnification of the second projection optical system 242, it is possible to ensure a long working distance as described above. be done. It is also unnecessary to increase the distance between the intermediate image 84 and the second projection optical system 242. In particular, by setting the projection magnification of the first projection optical system 241 to 1/2 or less of the overall projection magnification of the first projection optical system 241 and the second projection optical system 242, the projection magnification of the first projection optical system 241 can be increased. A significantly longer working distance can be secured compared to the case where the size is equal to or larger than the same size. Furthermore, although the fact that the projection magnification of the first projection optical system 241 is significantly smaller than 1/2 of the overall projection magnification has little effect on modeling, when considering the damage that the condensed light causes to the optical elements, the first The projection magnification of the projection optical system 241 is preferably 1/4 or more of the overall projection magnification. That is, the projection magnification of the first projection optical system 241 is preferably 1/4 or more and 1/2 or less of the overall projection magnification.
 既述の通り、光変調器23が1次元の空間変調器の場合、投影倍率は、変調要素が並ぶ長軸方向における投影倍率を指す。上記説明では、第1投影光学系241は、光変調器23の中間像84を所定の中間位置に形成するが、光変調器23が1次元の空間変調器の場合、「中間像」とは長軸方向における像を意味する。すなわち、第1投影光学系241において長軸方向に関して光変調器23と中間像84とは共役な位置関係である。もちろん、第1投影光学系241が長軸方向および短軸方向に同じの投影倍率を有する場合、第1投影光学系241の投影倍率はこれらの投影倍率である。なお、第1投影光学系241は1つのレンズのみとすることも可能である。第1投影光学系241は、1つのレンズ群でもよく、3以上のレンズ群でもよい。 As described above, when the light modulator 23 is a one-dimensional spatial modulator, the projection magnification refers to the projection magnification in the long axis direction in which the modulation elements are arranged. In the above description, the first projection optical system 241 forms the intermediate image 84 of the light modulator 23 at a predetermined intermediate position, but when the light modulator 23 is a one-dimensional spatial modulator, the "intermediate image" is means an image in the long axis direction. That is, in the first projection optical system 241, the optical modulator 23 and the intermediate image 84 have a conjugate positional relationship in the long axis direction. Of course, when the first projection optical system 241 has the same projection magnification in the major axis direction and the minor axis direction, the projection magnification of the first projection optical system 241 is these projection magnifications. Note that the first projection optical system 241 may include only one lens. The first projection optical system 241 may have one lens group or three or more lens groups.
 第2投影光学系242は、中間像84の投影像85を造形材料91の投影面95上に形成する。また、第2投影光学系242は、走査機構44により、投影像85を投影面95上にて走査する。第2投影光学系242は、投影像85の走査のために設けられることから、好ましくは、長軸方向および短軸方向において投影倍率は同じである。もちろん、第2投影光学系242の投影倍率は、長軸方向における投影倍率を指すものとして定められてもよい。走査機構44では、ガルバノスキャナに代えて、ポリゴンレーザスキャナ等の他の構造を有する走査機構が設けられてもよい。走査機構44による走査は、長軸方向に対して交差する方向に行われるであれば、必ずしも2次元的に走査される必要はない。すなわち、1つの材料層92に対するマルチスポットラインビームの走査は、1方向に1回のみでもよい。第2投影光学系242により、中間像84の投影像85が投影面95上に形成されるが、厳密な意味で中間像84が形成される中間位置と投影面95とは光学的に共役である必要はない。3次元造形が可能な範囲内で、投影面95は中間位置と共役な位置から僅かにずれてもよい。 The second projection optical system 242 forms a projection image 85 of the intermediate image 84 on the projection surface 95 of the modeling material 91. Further, the second projection optical system 242 uses the scanning mechanism 44 to scan the projected image 85 on the projection surface 95 . Since the second projection optical system 242 is provided for scanning the projection image 85, preferably the projection magnification is the same in the major axis direction and the minor axis direction. Of course, the projection magnification of the second projection optical system 242 may be determined as the projection magnification in the major axis direction. In the scanning mechanism 44, a scanning mechanism having another structure such as a polygon laser scanner may be provided instead of the galvano scanner. The scanning by the scanning mechanism 44 does not necessarily need to be carried out two-dimensionally as long as it is carried out in a direction intersecting the long axis direction. That is, one material layer 92 may be scanned by the multi-spot line beam only once in one direction. A projection image 85 of the intermediate image 84 is formed on the projection surface 95 by the second projection optical system 242, but in a strict sense, the intermediate position where the intermediate image 84 is formed and the projection surface 95 are optically conjugate. It doesn't have to be. The projection plane 95 may be slightly shifted from a position conjugate to the intermediate position within the range in which three-dimensional modeling is possible.
 複数の変調要素を有する回折型の光変調器23としては、耐パワー性能が高いPLVが好ましい。光変調器23としては、1次元の空間変調器には限定されない。2次元の空間光変調器、例えば、DMD(Digital Micromirror Device)であってもよい。光変調器23としては、投影像中の複数の位置における光の照射および非照射を制御することができるのであれば様々な原理に基づく変調器が採用可能である。 As a diffractive optical modulator 23 having multiple modulation elements, a PLV with high power resistance is preferable. The optical modulator 23 is not limited to a one-dimensional spatial modulator. It may also be a two-dimensional spatial light modulator, for example, a DMD (Digital Micromirror Device). Modulators based on various principles can be used as the optical modulator 23, as long as they can control the illumination and non-illumination of light at multiple positions in the projected image.
 光学ヘッド11の光源は、レーザ光源21には限定されない。他の公知の様々な光源が採用されてよい。照明光学系22も光変調器23の複数の変調要素の領域に光を収束させて導くことができるのであれば様々な光学系が採用されてよい。 The light source of the optical head 11 is not limited to the laser light source 21. A variety of other known light sources may be employed. Various optical systems may be employed for the illumination optical system 22 as long as they can converge and guide light to the regions of the plurality of modulation elements of the light modulator 23.
 層形成機構12の層形成部材323は、スキージには限定されない。ローラや造形材料91を散布する部材が層形成部材として採用されてもよい。層形成部材323が第2投影光学系242と投影像85が走査された投影面95との間を当該投影面95に沿って移動する場合、長いワーキングディスタンスを得ることができる上記構造の光学ヘッド11の採用が特に好ましい。層形成機構12は、層形成部材323を有しない機構であってもよい。投影像85が走査された投影面95上に、造形材料91の新たな材料層92を形成することにより、新たな投影面95を形成することができるのであれば、層形成機構12として様々な他の機構が採用されてよい。 The layer forming member 323 of the layer forming mechanism 12 is not limited to a squeegee. A roller or a member that spreads the modeling material 91 may be used as the layer forming member. When the layer forming member 323 moves along the projection surface 95 between the second projection optical system 242 and the projection surface 95 on which the projected image 85 is scanned, it is particularly preferable to use an optical head 11 having the above structure that can obtain a long working distance. The layer forming mechanism 12 may be a mechanism that does not have a layer forming member 323. Various other mechanisms may be used as the layer forming mechanism 12 as long as a new projection surface 95 can be formed by forming a new material layer 92 of the modeling material 91 on the projection surface 95 on which the projected image 85 is scanned.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The configurations in the above embodiment and each modified example may be combined as appropriate as long as they are not mutually inconsistent.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described and described in detail, the above description is illustrative and not restrictive. Therefore, it can be said that many modifications and embodiments are possible without departing from the scope of the present invention.
 1  3次元造形装置
 12  層形成機構
 21  光源
 22  照明光学系
 23  光変調器
 44  走査機構
 84  中間像
 85  投影像
 91  造形材料
 92  材料層
 95  投影面
 230  ピクセル列(変調要素)
 241  第1投影光学系
 242  第2投影光学系
 323  層形成部材
REFERENCE SIGNS LIST 1 3D modeling device 12 Layer formation mechanism 21 Light source 22 Illumination optical system 23 Light modulator 44 Scanning mechanism 84 Intermediate image 85 Projected image 91 Modeling material 92 Material layer 95 Projection surface 230 Pixel row (modulation element)
241 First projection optical system 242 Second projection optical system 323 Layer forming member

Claims (6)

  1.  3次元造形装置であって、
     光源と、
     複数の変調要素を有する回折型の光変調器と、
     前記光源からの光を前記光変調器に導く照明光学系と、
     前記光変調器の中間像を所定の中間位置に形成する第1投影光学系と、
     前記中間像の投影像を造形材料の投影面上に形成する第2投影光学系と、
     前記造形材料の層を形成する層形成機構と、
    を備え、
     前記第2投影光学系が、前記投影像を前記投影面上にて走査する走査機構を含み、
     前記層形成機構は、前記投影像が走査された前記投影面上に、前記造形材料の新たな層を形成することにより、新たな投影面を形成し、
     前記第1投影光学系の投影倍率が、前記第2投影光学系の投影倍率よりも小さい3次元造形装置。
    A three-dimensional printing device,
    a light source and
    a diffractive optical modulator having a plurality of modulation elements;
    an illumination optical system that guides light from the light source to the light modulator;
    a first projection optical system that forms an intermediate image of the optical modulator at a predetermined intermediate position;
    a second projection optical system that forms a projected image of the intermediate image on a projection surface of the modeling material;
    a layer forming mechanism that forms a layer of the modeling material;
    Equipped with
    The second projection optical system includes a scanning mechanism that scans the projected image on the projection surface,
    The layer forming mechanism forms a new projection surface by forming a new layer of the modeling material on the projection surface on which the projection image has been scanned,
    A three-dimensional modeling apparatus in which a projection magnification of the first projection optical system is smaller than a projection magnification of the second projection optical system.
  2.  請求項1に記載の3次元造形装置であって、
     前記第1投影光学系の投影倍率が縮小倍率であり、
     前記第2投影光学系の投影倍率が拡大倍率である3次元造形装置。
    The three-dimensional printing device according to claim 1,
    The projection magnification of the first projection optical system is a reduction magnification,
    A three-dimensional modeling apparatus, wherein the projection magnification of the second projection optical system is an enlargement magnification.
  3.  請求項1に記載の3次元造形装置であって、
     前記光変調器が、回折格子光バルブまたは平面光バルブである3次元造形装置。
    The three-dimensional printing device according to claim 1,
    A three-dimensional modeling apparatus, wherein the light modulator is a diffraction grating light valve or a plane light valve.
  4.  請求項1に記載の3次元造形装置であって、
     前記第1投影光学系の投影倍率が、前記第1投影光学系および前記第2投影光学系による全体投影倍率の1/4以上1/2以下である3次元造形装置。
    The three-dimensional printing device according to claim 1,
    A three-dimensional modeling apparatus, wherein the projection magnification of the first projection optical system is 1/4 or more and 1/2 or less of the overall projection magnification of the first projection optical system and the second projection optical system.
  5.  請求項4に記載の3次元造形装置であって、
     前記光変調器が、回折格子光バルブまたは平面光バルブであり、
     前記全体投影倍率が、1以上2以下である3次元造形装置。
    The three-dimensional printing device according to claim 4,
    the light modulator is a grating light valve or a planar light valve;
    A three-dimensional modeling apparatus, wherein the overall projection magnification is 1 or more and 2 or less.
  6.  請求項1ないし5のいずれか1つに記載の3次元造形装置であって、
     前記層形成機構が、前記第2投影光学系と前記投影像が走査された前記投影面との間を前記投影面に沿って移動する層形成部材を含む3次元造形装置。
    The three-dimensional printing apparatus according to any one of claims 1 to 5,
    A three-dimensional modeling apparatus in which the layer forming mechanism includes a layer forming member that moves along the projection surface between the second projection optical system and the projection surface on which the projection image is scanned.
PCT/JP2023/021413 2022-09-21 2023-06-08 3d molding device WO2024062696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022149838A JP2024044353A (en) 2022-09-21 2022-09-21 3D modeling device
JP2022-149838 2022-09-21

Publications (1)

Publication Number Publication Date
WO2024062696A1 true WO2024062696A1 (en) 2024-03-28

Family

ID=90454328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021413 WO2024062696A1 (en) 2022-09-21 2023-06-08 3d molding device

Country Status (2)

Country Link
JP (1) JP2024044353A (en)
WO (1) WO2024062696A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227618B1 (en) * 2004-03-24 2007-06-05 Baokang Bi Pattern generating systems
US20170361530A1 (en) * 2016-06-16 2017-12-21 Xerox Corporation Line laser imager for thermoplastic selective laser sintering
WO2019082309A1 (en) * 2017-10-25 2019-05-02 株式会社ニコン Processing device, coating, processing method, and method for producing moving body
WO2021192988A1 (en) * 2020-03-25 2021-09-30 株式会社Screenホールディングス 3-dimensional shaping device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227618B1 (en) * 2004-03-24 2007-06-05 Baokang Bi Pattern generating systems
US20170361530A1 (en) * 2016-06-16 2017-12-21 Xerox Corporation Line laser imager for thermoplastic selective laser sintering
WO2019082309A1 (en) * 2017-10-25 2019-05-02 株式会社ニコン Processing device, coating, processing method, and method for producing moving body
WO2021192988A1 (en) * 2020-03-25 2021-09-30 株式会社Screenホールディングス 3-dimensional shaping device

Also Published As

Publication number Publication date
JP2024044353A (en) 2024-04-02

Similar Documents

Publication Publication Date Title
JP7395410B2 (en) Optical equipment and 3D printing equipment
EP2067607B1 (en) Optical shaping apparatus and optical shaping method
KR101313514B1 (en) exposure apparatus and light source
JP5393406B2 (en) Pattern projector, scanning confocal microscope, and pattern irradiation method
CN110325918B (en) Direct imaging exposure apparatus and direct imaging exposure method
JP2008070506A (en) Pattern drawing device and pattern drawing method
CZ20014712A3 (en) Method and apparatus for reducing banding effect when imaging a printing element
JP4679249B2 (en) Pattern drawing device
WO2024062696A1 (en) 3d molding device
KR20170051297A (en) Exposure head for exposure device and projection optical system for exposure device
JP2010134375A (en) Drawing apparatus and drawing method
JP2007033973A (en) Exposure head and exposure apparatus
JP2021151760A (en) Three-dimentional shaping apparatus
JP4524213B2 (en) Exposure apparatus and method
EP4324625A1 (en) Optical apparatus and three-dimensional modelling apparatus
JP2024062081A (en) Three-dimensional modeling device and three-dimensional modeling method
US20240131788A1 (en) Three-dimensional modeling apparatus and three-dimensional modeling method
JP2021151759A (en) Three-dimensional shaping apparatus
JP4209344B2 (en) Exposure head, image exposure apparatus, and image exposure method
US20240036344A1 (en) Optical apparatus and three-dimensional modeling apparatus
JP6633925B2 (en) Exposure apparatus and exposure method
JP2024045830A (en) Laser marker
JP4208141B2 (en) Image exposure method and apparatus
WO2024053194A1 (en) Light irradiation device and exposure device
JP4652155B2 (en) Exposure apparatus and exposure method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867825

Country of ref document: EP

Kind code of ref document: A1