WO2024062516A1 - 基板接合システムおよび基板接合方法 - Google Patents

基板接合システムおよび基板接合方法 Download PDF

Info

Publication number
WO2024062516A1
WO2024062516A1 PCT/JP2022/034913 JP2022034913W WO2024062516A1 WO 2024062516 A1 WO2024062516 A1 WO 2024062516A1 JP 2022034913 W JP2022034913 W JP 2022034913W WO 2024062516 A1 WO2024062516 A1 WO 2024062516A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
alignment marks
positional deviation
amount
bonding
Prior art date
Application number
PCT/JP2022/034913
Other languages
English (en)
French (fr)
Inventor
朗 山内
Original Assignee
ボンドテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボンドテック株式会社 filed Critical ボンドテック株式会社
Priority to PCT/JP2022/034913 priority Critical patent/WO2024062516A1/ja
Publication of WO2024062516A1 publication Critical patent/WO2024062516A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Definitions

  • the present invention relates to a substrate bonding system and a substrate bonding method.
  • Patent Document 1 An apparatus for bonding two substrates to each other has been proposed that includes a mounting device to which the substrates are attached during bonding (for example, see Patent Document 1).
  • the mounting device described in Patent Document 1 includes an outer annular portion that holds the peripheral portion of the substrate with a vacuum chuck, and a deforming means that deforms the substrate so that the center portion of the substrate protrudes from the mounting device. Then, this device brings the two substrates into a state in which the central portions of their joint surfaces are brought into contact with each other, and then releases the suction and holding of the peripheral portion of one substrate by the vacuum chuck.
  • the contact portion spreads radially outward from the center of one substrate until it reaches the peripheral surface of one substrate. In this way, the two substrates are bonded together.
  • the present invention has been made in view of the above reasons, and an object of the present invention is to provide a substrate bonding system and a substrate bonding method that can improve bonding position accuracy in the entire substrates bonded to each other.
  • the substrate bonding system includes: A substrate bonding system for bonding a first substrate and a second substrate, a first substrate holding section that holds the first substrate; a second substrate holder that holds the second substrate with the bonding surface of the second substrate facing the bonding surface of the first substrate; at least one first electrostatic chuck provided in a first region facing a peripheral portion of the first substrate disposed at a preset substrate holding position in the first substrate holding section; at least one second station provided in a second region inside the first region of the first substrate holding section and holding a portion of the first substrate facing the second region disposed at the substrate holding position; electric chuck and a chuck driving unit that separately drives the first electrostatic chuck and the second electrostatic chuck; a gas discharge section that is provided in the second region of the first substrate holding section and discharges gas toward the first substrate side; a gas supply section that supplies gas to the gas discharge section; Before bringing the center portion of the bonding surface of the first substrate into contact with the center portion of the bond
  • a substrate bonding method for bonding a first substrate and a second substrate comprising: The circumferential portion of the first substrate is held by a first electrostatic chuck provided in a first region facing the circumferential portion of the first substrate, which is disposed at a preset substrate holding position in the first substrate holding section.
  • the method includes the step of, after discharging gas into the first recess, bringing a center portion of a bonding surface of the first substrate into contact with a center portion of a bonding surface of the second substrate.
  • the first substrate holding section has the first recess provided in the second region and communicating with the gas discharge section, and the first substrate holding section has the first recessed section that is provided in the second region and communicates with the gas discharge section, and the first substrate holding section has the first recessed section that is connected to the first substrate and the second substrate.
  • the first substrate is discharged from the first concave portion against the force that brings the first substrate into close contact with the first substrate holding portion due to the residual electrostatic force remaining in the second electrostatic chuck after the holding by the second electrostatic chuck is released.
  • the first substrate becomes free from the force that brings it into close contact with the first substrate holding section.
  • the adhesion of the first substrate to the first substrate holding part is not affected. Since the bonding can proceed from the central portion of the first substrate and the second substrate toward the peripheral portions in this state, the first substrate and the second substrate can be bonded with high positional accuracy over the entire surface without distortion.
  • FIG. 1 is a schematic configuration diagram of a substrate bonding system according to a first embodiment of the present invention
  • 1 is a schematic front view of an activation processing apparatus according to Embodiment 1.
  • FIG. 1 is a schematic front view of a substrate bonding apparatus according to Embodiment 1.
  • FIG. 2 is a schematic perspective view showing the vicinity of the stage and head according to the first embodiment.
  • FIG. 3 is a diagram illustrating a method of finely adjusting the head according to the first embodiment.
  • 2 is a schematic plan view of a stage and a head according to Embodiment 1.
  • FIG. FIG. 3 is an enlarged view of a part of the stage and head according to the first embodiment.
  • FIG. 3 is a plan view of a portion of the first region of the stage and head according to the first embodiment.
  • FIG. 3 is a plan view of a portion of the second region of the stage and head according to the first embodiment.
  • 5A is a schematic cross-sectional view taken along line BB in FIG. 5A of the stage and head according to Embodiment 1.
  • FIG. 5A is a schematic cross-sectional view taken along line AA in FIG. 5A of the stage and head according to Embodiment 1.
  • FIG. FIG. 3 is a schematic plan view of the position measuring section according to the first embodiment.
  • FIG. 3 is a diagram showing three alignment marks provided on one of two substrates to be joined.
  • 13A and 13B are diagrams showing three alignment marks provided on the other of the two substrates to be joined;
  • FIG. 3 is a schematic diagram showing a photographed image of an alignment mark.
  • FIG. 3 is a schematic diagram showing a photographed image of an alignment mark.
  • FIG. 3 is a schematic diagram showing a state in which alignment marks are shifted from each other.
  • 1 is a schematic diagram of an inspection device according to Embodiment 1.
  • FIG. 3 is a flowchart showing the flow of a substrate bonding method executed by the substrate bonding system according to the first embodiment.
  • FIG. 2 is a schematic plan view showing an electrostatic chuck and an alignment mark according to Embodiment 1, and showing a state in which the electrostatic chuck and the alignment mark overlap.
  • FIG. 2 is a schematic plan view showing an electrostatic chuck and an alignment mark according to Embodiment 1, and showing a state where the electrostatic chuck and the alignment mark do not overlap.
  • 3 is a flowchart showing the flow of a substrate bonding process executed by the substrate bonding apparatus according to the first embodiment.
  • FIG. 1 is a schematic diagram of an inspection device according to Embodiment 1.
  • FIG. 3 is a flowchart showing the flow of a substrate bonding method executed by the substrate bonding system according to the first
  • FIG. 2 is a schematic cross-sectional view showing how the central portion of the substrate held by the stage and head is freed from the stage and head according to the first embodiment.
  • 5 is a schematic cross-sectional view showing a state in which central portions of bonding surfaces of substrates held by a stage and a head in accordance with the first embodiment are brought into contact with each other.
  • FIG. FIG. 2 is a schematic cross-sectional view showing how substrates held by a stage and a head are brought closer to each other according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing how substrates held by a stage and a head are brought closer to each other according to the first embodiment.
  • FIG. 1 is a schematic cross-sectional view showing how substrates held by a stage and a head are brought closer to each other according to the first embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a state in which peripheral portions of joint surfaces of substrates held by a stage and a head are in contact with each other according to an embodiment.
  • FIG. 2 is a schematic cross-sectional view showing how the head according to Embodiment 1 is removed from the stage.
  • FIG. 2 is a diagram showing the distribution of positional deviation vectors obtained from images captured by the inspection apparatus according to Embodiment 1, and shows a case where the horizontal offset vector and the protrusion offset amount are not corrected when bonding the substrates; ) is a diagram showing a positional deviation vector indicating the positional deviation amount and positional deviation direction of each alignment mark, (B) is a diagram showing the XY direction components of the positional deviation vector, and (C) is a diagram showing the rotation of the positional deviation vector.
  • FIG. 4 is a diagram showing directional components, (D) is a diagram showing a warp component of a positional deviation vector, and (E) is a diagram showing a distortion component of a positional deviation vector.
  • FIG. 3 is a diagram for explaining an offset vector of an alignment mark.
  • FIG. 3 is a diagram for explaining an offset vector of an alignment mark.
  • FIG. 3 is a diagram for explaining an offset vector of an alignment mark.
  • FIG. 3 is a diagram for explaining an offset vector of an alignment mark.
  • FIG. 3 is a diagram for explaining an offset vector of an alignment mark.
  • FIG. 7 is a schematic plan view showing a state in which an electrostatic chuck and an alignment mark according to a comparative example overlap.
  • FIG. 7 is a schematic plan view showing an electrostatic chuck and an alignment mark according to a comparative example, and showing a state after changing the posture of the substrate.
  • 11 is a schematic plan view of a stage and a head according to a second embodiment.
  • FIG. 21A is a cross-sectional view taken along line CC in FIG. 21A of the stage and head according to Embodiment 2.
  • FIG. FIG. 7 is a schematic cross-sectional view showing a state in which the central portions of bonding surfaces of substrates held by a stage and a head are in contact with each other according to a second embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a state in which a pressing member is brought into contact with a substrate held by a stage and a head, respectively, according to Embodiment 2;
  • FIG. 7 is a schematic cross-sectional view showing how substrates held by a stage and a head are brought closer to each other according to a second embodiment.
  • FIG. 7 is a schematic cross-sectional view showing a state in which peripheral portions of joint surfaces of substrates held by a stage and a head are in contact with each other according to a second embodiment.
  • FIG. 7 is a schematic plan view of a stage and a head according to a modified example. It is an enlarged view of a stage and a part of a head concerning a modification.
  • FIG. 7 is a schematic plan view of a stage and a head according to a modified example. It is an enlarged view of a stage and a part of a head concerning a modification.
  • FIG. 7 is a schematic plan view of a stage and a head according to a modified example. 26A is a schematic cross-sectional view taken along line DD in FIG.
  • FIG. 7 is a plan view of a part of the second region of the stage and head according to a modification.
  • 26A is a schematic cross-sectional view taken along line EE in FIG. 26A of a stage and a head according to a modified example.
  • FIG. FIG. 7 is a schematic plan view of a stage and a head according to a modified example. It is a sectional view of a stage and a head concerning a modification.
  • FIG. 7 is a schematic plan view of an imaging unit according to a modified example.
  • the substrate bonding system includes introduction ports 811, 812, an unloading port 813, transport devices 82, 84, 86, a cleaning device 3, an activation processing device 2, a substrate bonding device 1, load lock units 83, 85, an inspection device 7, and a control unit 9 that controls the operations of the transport devices 82, 84, 86, the cleaning device 3, the activation processing device 2, the substrate bonding device 1, the load lock units 83, 85, and the inspection device 7.
  • the transport device 82 includes a transport robot 821 having an arm with a holding unit at the tip thereof for holding a substrate.
  • the transport robot 821 is movable along the direction in which the introduction ports 811, 812 and the unloading port 813 are aligned, and can change the orientation of the tip of the arm by rotating.
  • the transport device 82 is provided with a HEPA (High Efficiency Particulate Air) filter (not shown). This creates an atmospheric pressure environment with extremely few particles inside the transport device 82.
  • HEPA High Efficiency Particulate Air
  • the cleaning device 3 cleans the transported substrate while discharging water, cleaning liquid, or N 2 gas.
  • the cleaning device 3 includes a stage (not shown) that supports the substrate, a rotation drive unit (not shown) that rotates the stage in a plane orthogonal to the vertical direction, and water that has been subjected to ultrasonic or megasonic vibrations. It has a cleaning nozzle (not shown) that discharges cleaning liquid or N 2 gas. Then, the cleaning device 3 rotates the stage to rotate the substrate W1, W2 while swinging the cleaning nozzle in the radial direction of the substrate W1, W2 and spraying water to which ultrasonic waves have been applied from the cleaning nozzle onto the bonding surface of the substrate. Clean the entire joint surface. Then, the cleaning device 3 spin-dries the substrates W1 and W2 by rotating the stage while stopping water discharge from the cleaning nozzles.
  • the cleaning device 3 is also provided with a HEPA filter (not shown) similarly to the conveying device 82.
  • the load lock section 83 includes a chamber 831, an exhaust pipe (not shown) that communicates with the inside of the chamber 831, a vacuum pump (not shown) that exhausts gas in the chamber 831 through the exhaust pipe, and a vacuum pump (not shown) that is inserted into the exhaust pipe. and an exhaust valve (not shown).
  • the load lock unit 83 opens the exhaust valve, operates the vacuum pump, and discharges the gas inside the chamber 831 to the outside of the chamber 831 through the exhaust pipe, thereby reducing the pressure inside the chamber 831 (depressurization).
  • the load lock unit 83 also includes a gate 8331 disposed on the transfer device 82 side of the chamber 831, a gate 8321 disposed on the transfer device 84 side of the chamber 831, and a gate that opens and closes each of the gates 8331 and 8321.
  • Drive units 8332 and 8322 are provided.
  • the load lock section 83 also includes an alignment mechanism (not shown) that adjusts the postures of the substrates W1 and W2 within the chamber 831.
  • the gates 8331 and 8321 are provided so as to cover an opening (not shown) provided through the chamber 831 on the transfer device 82 side and an opening (not shown) provided through the transfer device 84 side, respectively. There is.
  • the load lock unit 83 also includes a chamber 831, an exhaust pipe (not shown) that communicates with the inside of the chamber 831, a vacuum pump (not shown) that exhausts gas in the chamber 831 through the exhaust pipe, and an exhaust pipe that communicates with the chamber 831. and an interposed exhaust valve (not shown).
  • the load lock unit 83 opens the exhaust valve, operates the vacuum pump, and discharges the gas inside the chamber 831 to the outside of the chamber 831 through the exhaust pipe, thereby reducing the pressure inside the chamber 831 (depressurization).
  • the chamber 831 is connected to the transfer device 82 via a gate 8331 and to the transfer device 84 via a gate 8321.
  • the load lock section 85 also includes a chamber 851, an exhaust pipe (not shown), a vacuum pump (not shown), and an exhaust valve (not shown).
  • the chamber 851 is connected to the transfer device 82 via a gate 8531 and to the transfer device 86 via a gate 8521.
  • the transfer device 84 includes a chamber 843, an exhaust pipe (not shown) communicating with the chamber 843, a vacuum pump (not shown) that exhausts gas in the chamber 843 through the exhaust pipe, and a vacuum pump (not shown) inserted into the exhaust pipe.
  • the transfer robot 841 includes an exhaust valve (not shown) and a transfer robot 841 that transfers the substrates W1 and W2.
  • the transfer device 84 maintains the inside of the chamber 843 in a reduced pressure state by opening the exhaust valve and operating the vacuum pump to exhaust the gas inside the chamber 843 to the outside of the chamber 843 through the exhaust pipe.
  • the chamber 843 is connected to the substrate bonding apparatus 1 via the gate 1211 and to the load lock section 83 via the gate 8321.
  • the gate 1211 is opened when the transfer robot 841 transfers the substrates W1 and W2 into the substrate bonding apparatus 1.
  • the transfer robot 841 has an arm provided with a holding part for holding a substrate at the tip thereof, and can change the direction of the tip of the arm by rotating.
  • the holding section is, for example, an electrostatic chuck, and holds the substrates W1 and W2 by suction on the side opposite to the bonding surface side.
  • the transport device 84 includes a transport device imaging unit 844 that images multiple locations around the periphery of the substrates W1 and W2.
  • the transfer device 86 like the transfer device 84, includes a chamber 863, an exhaust pipe (not shown), a vacuum pump (not shown), an exhaust valve (not shown), and a transfer robot 861.
  • the chamber 863 is connected to the activation processing device 2 via a gate 8621 and to the load lock section 85 via a gate 8521.
  • the transfer robot 861 like the transfer robot 841, has an arm provided with a holding part for holding a substrate at the tip thereof, and can change the direction of the tip of the arm by rotating. Further, the holding section is, for example, an electrostatic chuck, and holds the substrates W1 and W2 by suction on the side opposite to the bonding surface side.
  • the activation processing apparatus 2 performs an activation process on the bonding surface of the substrate by performing at least one of reactive ion etching using nitrogen gas and irradiation with nitrogen radicals to activate the bonding surface.
  • the activation processing device 2 is a device that generates inductively coupled plasma (ICP), and as shown in FIG.
  • the induction coil 215 has an induction coil 215 wound around the induction coil 215, and a high frequency power supply 216 that supplies a high frequency current to the induction coil 215.
  • the plasma chamber 213 is made of quartz glass, for example.
  • the activation processing apparatus 2 includes a nitrogen gas supply section 220A and an oxygen gas supply section 220B.
  • the nitrogen gas supply section 220A includes a nitrogen gas storage section 221A, a supply valve 222A, and a supply pipe 223A.
  • the oxygen gas supply section 220B includes an oxygen gas storage section 221B, a supply valve 222B, and a supply pipe 223B.
  • Substrates W1 and W2 are placed on the stage 210.
  • Processing chamber 212 communicates within plasma chamber 213 .
  • the processing chamber 212 is connected to the vacuum pump 201a via an exhaust pipe 201b and an exhaust valve 201c.
  • the activation processing apparatus 2 opens the exhaust valve 201c, operates the vacuum pump 201a, and exhausts the gas inside the processing chamber 212 to the outside of the processing chamber 212 through the exhaust pipe 201b, thereby reducing the atmospheric pressure inside the processing chamber 212. (depressurize).
  • the high frequency power source 216 one that supplies a high frequency current of, for example, 27 MHz to the induction coil 215 can be adopted. Then, when a high frequency current is supplied to the induction coil 215 while N 2 gas is introduced into the plasma chamber 213, a plasma PLM is formed within the plasma chamber 213.
  • ions contained in the plasma are trapped in the plasma chamber 213 by the induction coil 215, a configuration may be adopted in which there is no trap plate in the portion between the plasma chamber 213 and the processing chamber 212.
  • a plasma PLM is generated in the plasma chamber 213 from the induction coil 215, the high frequency power supply 216, and the nitrogen gas supply section 220A, and N2 radicals in the plasma are supplied to the joint surface of the substrates W1 and W2 supported on the stage 210.
  • a plasma generation source is constructed.
  • the activation processing device 2 is a device that generates ICP and includes an induction coil 215 and a high-frequency power source 216, but is not limited to this, and a plasma chamber may be used instead.
  • a flat plate electrode placed outside the plasma chamber 213, a high frequency power source electrically connected to the flat plate electrode, and a trap plate placed between the plasma chamber 213 and the processing chamber 212 to trap ions in the plasma.
  • the high frequency power source may be one that applies a high frequency bias of, for example, 27 MHz.
  • the power supplied from the high frequency power source into the plasma chamber is set to, for example, 250W.
  • the bias application unit 217 is a high frequency power source that applies a high frequency bias to the substrates W1 and W2 supported by the stage 210. As this bias application section 217, for example, one that generates a high frequency bias of 13.56 MHz can be adopted.
  • a sheath region is generated near the bonding surface of the substrates W1 and W2, where ions having kinetic energy repeatedly collide with the substrates W1 and W2. do. Then, the bonding surface of the substrates W1 and W2 is etched by ions having kinetic energy existing in this sheath region.
  • the substrate bonding apparatus 1 includes a chamber 120, a stage 141 as a first substrate holding section, a head 142 as a second substrate holding section, a stage driving section 143, a head driving section 144, and a substrate heating section 1481. , 1482 and a position measuring section 500. Further, the substrate bonding apparatus 1 includes a distance measuring section 1493 that measures the distance between the stage 141 and the head 142.
  • the ⁇ Z directions in FIG. 1 will be referred to as vertical directions, and the XY directions will be referred to as horizontal directions.
  • the chamber 120 maintains a region S1 where the substrates W1 and W2 are arranged at a degree of vacuum equal to or higher than a preset reference degree of vacuum.
  • the chamber 120 is connected to a vacuum pump 121a via an exhaust pipe 121b and an exhaust valve 121c.
  • the exhaust valve 121c is opened and the vacuum pump 121a is operated, the gas inside the chamber 120 is exhausted to the outside of the chamber 120 through the exhaust pipe 121b, and the inside of the chamber 120 is maintained in a reduced pressure atmosphere.
  • the air pressure (degree of vacuum) in the chamber 120 can be adjusted by varying the opening/closing amount of the exhaust valve 121c to adjust the exhaust amount.
  • a window portion 120a is provided in a part of the chamber 120, which is used by the position measurement unit 500 to measure the relative position between the substrates W1 and W2.
  • the stage drive unit 143 is a holding unit drive unit that can move the stage 141 in the XY directions and rotate it around the Z axis.
  • the head drive section 144 includes an elevation drive section 146 that moves the head 142 vertically upward or downward (see arrow AR1 in FIG. 1), an XY direction drive section 145 that moves the head 142 in the XY direction, and an XY direction drive section 145 that moves the head 142 in the XY direction. It has a rotation drive unit 147 that rotates in a rotation direction around the Z axis (see arrow AR2 in FIG. 1).
  • the XY direction drive unit 145 and the rotation drive unit 147 constitute a holding unit drive unit that moves the head 142 in a direction perpendicular to the vertical direction (XY direction, rotation direction around the Z axis).
  • the head drive unit 144 also includes a piezo actuator 1456 for adjusting the inclination of the head 142 with respect to the stage 141, and a first pressure sensor 1457 for measuring the pressure applied to the head 142.
  • the XY direction drive section 145 and the rotation drive section 147 move the head 142 relative to the stage 141 in the X direction, the Y direction, and the rotation direction around the Z axis, thereby moving the substrate W1 held on the stage 141. It becomes possible to align the position and the substrate W2 held by the head 142.
  • the elevating drive unit 146 moves the head 142 in the vertical direction, thereby bringing the stage 141 and the head 142 closer to each other or moving the head 142 away from the stage 141.
  • the lift drive unit 146 moves the head 142 vertically downward, the substrate W1 held on the stage 141 and the substrate W2 held on the head 142 come into contact.
  • the elevating drive unit 146 applies a driving force to the head 142 in a direction toward the stage 141, the substrate W2 is pressed against the substrate W1.
  • the elevation drive unit 146 is provided with a pressure sensor 148 that measures the driving force that the elevation drive unit 146 exerts on the head 142 in a direction toward the stage 141.
  • the pressure sensor 148 is composed of, for example, a load cell.
  • the three piezo actuators 1456 and the three first pressure sensors 1457 are arranged between the head 142 and the XY direction drive section 145.
  • the three piezo actuators 1456 are arranged at three positions on the top surface of the head 142 that are not on the same straight line, and at three positions arranged at approximately equal intervals along the circumferential direction of the head 142 on the periphery of the top surface of the head 142, which is approximately circular in plan view. Fixed in position.
  • the three first pressure sensors 1457 each connect the upper end of the piezo actuator 1456 and the lower surface of the XY direction drive section 145.
  • Each of the three piezo actuators 1456 can be expanded and contracted in the vertical direction. By expanding and contracting the three piezo actuators 1456, the inclination of the head 142 around the X-axis and the Y-axis and the vertical position of the head 142 are finely adjusted. For example, as shown by the broken line in FIG. 4B, when the head 142 is tilted with respect to the stage 141, one of the three piezo actuators 1456 is extended (see arrow AR3 in FIG. 4B) to adjust the posture of the head 142. By making fine adjustments, the lower surface of the head 142 and the upper surface of the stage 141 can be brought into a substantially parallel state.
  • the three pressure sensors 1457 measure the pressing force at three positions on the lower surface of the head 142.
  • the three piezo actuators 1456 By driving each of the three piezo actuators 1456 so that the pressing forces measured by the three pressure sensors 1457 are equal, the lower surface of the head 142 and the upper surface of the stage 141 are maintained substantially parallel, and the substrate W1 W2 can be brought into contact with each other.
  • the stage 141 and the head 142 are arranged to face each other in the vertical direction within the chamber 120.
  • the stage 141 is a first substrate holder that holds the substrate W1 on its upper surface
  • the head 142 is a second substrate holder that holds the substrate W2 on its lower surface.
  • the stage 141 supports the substrate W1 with its upper surface in surface contact with the entire substrate W1
  • the head 142 supports the substrate W2 with its lower surface in surface contact with the entire substrate W2.
  • the stage 141 and the head 142 are made of a light-transmitting material such as a light-transmitting glass. As shown in FIGS.
  • the stage 141 and head 142 are provided with electrostatic chucks 1411, 1412, 1413, 1421, 1422, and 1423 that hold substrates W1 and W2. Electrostatic chucks 1411 and 1421 hold the peripheral portions of substrates W1 and W2. Furthermore, in the center of the stage 141 and head 142, through holes 141b and 142b are provided which are circular in plan view. Further, the stage 141 and the head 142 include an air pressure detection unit (atmospheric pressure detection unit) that detects the air pressure in the area between the stage 141 and the head 142 and the substrates W1 and W2 when gas is ejected from the gas ejection holes 1411c and 1421c, which will be described later. (not shown) is provided.
  • air pressure detection unit atmospheric pressure detection unit
  • the electrostatic chucks 1411, 1412, 1421, and 1422 are provided with a first annular chuck facing the circumference of the substrates W1 and W2 on the stage 141 and the head 142 while the substrates W1 and W2 are held on the stage 141 and the head 142.
  • This is a first electrostatic chuck provided in area A1.
  • the electrostatic chucks 1411 and 1412 are provided in two preset sub-annular areas A11 and A12 centered on the center of the stage 141 in the first area A1 of the stage 141, respectively.
  • the electrostatic chucks 1411 and 1412 each hold a portion of the substrate W1 placed at a preset substrate holding position on the stage 141 that faces the two sub-annular regions A11 and A12, respectively.
  • the electrostatic chucks 1421 and 1422 are also respectively provided in two preset sub-annular areas A11 and A12 centered on the center of the head 142 in the first area A1 of the head 142.
  • the electrostatic chucks 1421 and 1422 each hold a portion of the substrate W2 placed at a preset substrate holding position in the head 142 that faces the two sub-annular regions A11 and A12, respectively.
  • the substrate holding position is set to a position that coincides with the first area A1, for example, if the external dimensions of the substrates W1 and W2 are the same as the first area A1.
  • the electrostatic chucks 1411 and 1421 each include a plurality of electrode elements 1411b and 1412b extending radially from the center of the stage 141 and the head 142 toward the periphery of the stage 141 and the head 142 in the first region A1, respectively; It has two annular terminal electrodes 1411a and 1421a arranged along the circumferential direction of the stage 141 and the head 142.
  • the plurality of electrode elements 1411b, 1412b are first electrodes extending from each of the two terminal electrodes 1411a, 1421a toward the other terminal electrode 1421a, 1411a along the radial direction of each of the two terminal electrodes 1411a, 1421a. It is a child.
  • the terminal electrodes 1411a and 1421a correspond to a third terminal electrode and a fourth terminal electrode, and the terminal electrode 1411a has a smaller diameter than the terminal electrode 1421a, and is arranged near the center of the stage 141 and the head 142. has been done.
  • the plurality of long electrode elements 1411b and 1421b are arranged in the first area A1 of the stage 141 and the head 142 so as to be alternately lined up along the circumferential direction of the first area A1. Furthermore, as shown in FIG.
  • the terminal electrodes 1411a and 1421a each have bent portions 1411ab and 1421ab that are bent so as to protrude in a direction away from the other terminal electrode 1411a and 1421a in plan view, a stage 141, and a head 142. It has elongated connecting parts 1411aa and 1421aa that extend along the circumferential direction of the stage 141 and the head 142 and connect the ends of two circumferentially adjacent bending parts 1411ab and 1421ab.
  • the maximum width Wi4 between the bending portions 1411ab, 1421ab and the connecting portions 1411aa, 1421aa in the radial direction of the stage 141 and head 142 is set to be longer than, for example, the width of an alignment mark described later.
  • the electrostatic chucks 1412 and 1422 also have a plurality of electrode elements 1412b and 1422b extending radially from the center of the stage 141 and the head 142 toward the periphery of the stage 141 and the head 142 in the first region A1, respectively. and two annular terminal electrodes 1412a and 1422a disposed along the circumferential direction of the stage 141 and head 142.
  • the plurality of electrode elements 1412b, 1422b are first electrodes extending from each of the two terminal electrodes 1412a, 1422a toward the other terminal electrodes 1422a, 1412a along the radial direction of each of the two terminal electrodes 1412a, 1422a. It is a child.
  • the terminal electrodes 1412a and 1422a correspond to a third terminal electrode and a fourth terminal electrode, and the terminal electrode 1412a has a smaller diameter than the terminal electrode 1422a, and is arranged near the center of the stage 141 and the head 142. . Further, in the first region A1, the electrostatic chucks 1412 and 1422 are arranged inside the electrostatic chucks 1411 and 1421. The plurality of elongated electrode elements 1412b and 1422b are arranged in the first area A1 of the stage 141 and the head 142 so as to be alternately lined up along the circumferential direction of the first area A1.
  • the terminal electrodes 1411a, 1421a, 1422a, 1412a and the plurality of electrode elements 1411b, 1421b, 1412b, 1422b are made of metal, for example.
  • a plurality of electrostatic chucks 1411, 1412, 1421, and 1422 extend radially from the center of the stage 141 and the head 142 toward the periphery of the stage 141 and the head 142 in the first region A1. It has electrode elements 1411b, 1412b, 1421b, and 1422b.
  • the substrate bonding apparatus 1 uses the imaging units 501A, 501B, and 501C, which will be described later, to detect alignment marks MK1a and MK1b provided on the substrates W1 and W2, which will be described later, from the gaps between the plurality of electrode elements 1411b, 1412b, 1421b, and 1422b. , MK1c, MK2a, MK2b, and MK2c.
  • a portion extends radially from the center of the stage 141 and the head 142 toward the periphery of the stage 141 and the head 142.
  • Grooves 1411d and 1421d are formed.
  • gas discharge holes 1411c and 1421c connected to the gas supply section 1492 are provided in some of the grooves 1411d and 1421d.
  • the gas discharge holes 1411c and 1421c correspond to a gas discharge section that discharges gas
  • the grooves 1411d and 1421d correspond to second recesses that communicate with the gas discharge holes 1411c and 1412c.
  • the width of the grooves 1411d and 1421d is set to about 0.2 mm, for example.
  • the grooves 1411d and 1421d have portions extending along the respective extending directions of the plurality of electrode elements 1411b and 1412b.
  • the grooves 1411d and 1421d are provided between the plurality of electrode elements 1411b electrically connected to the terminal electrode 1411a and the plurality of electrode elements 1412b connected to the terminal electrode 1421a in the electrostatic chucks 1411 and 1412. ing.
  • a portion of the sub-annular region A12 of the first region A1 of the stage 141 and head 142 extends radially from the center of the stage 141 and head 142 toward the periphery of the stage 141 and head 142.
  • a groove (not shown) is formed therein. Moreover, a gas discharge hole (not shown) connected to the gas supply section 1492 is provided in a part of the grooves 1411d and 1421d.
  • the gas discharge hole provided in this sub-annular area A12 also corresponds to a gas discharge part that discharges gas
  • the groove provided in the sub-annular area A12 also corresponds to a gas discharge hole provided in the sub-annular area A12. This corresponds to a second groove forming two recesses.
  • This groove also has a portion extending along the direction in which each of the plurality of electrode elements 1411b and 1412b extends.
  • the grooves 1411d and 1421d are provided between the plurality of electrode elements 1421b electrically connected to the terminal electrode 1411a and the plurality of electrode elements 1412b connected to the terminal electrode 1421a in the electrostatic chucks 1421 and 1422. ing.
  • the electrostatic chucks 1413 and 1423 are second electrostatic chucks provided in the second area A2 inside the first area A1 on the stage 141 and head 142. As shown in FIG. 5B, the electrostatic chucks 1413 and 1423 have a plurality of electrode elements extending radially from the center of the stage 141 and the head 142 toward the periphery of the stage 141 and the head 142 in the second region A2. 1413b and 1423b, and two annular terminal electrodes 1413a and 1423a disposed along the circumferential direction of the stage 141 and head 142.
  • the plurality of electrode elements 1413b and 1423b are second electrode elements extending from the two terminal electrodes 1413a and 1423a respectively toward the other terminal electrodes 1423a and 1413a along the radial direction of the stage 141 and the head 142. . Further, as shown in FIG. 6B, each of the plurality of electrode elements 1413b and 1423b has a wedge-shaped width in a plan view in which the width in a direction perpendicular to the extending direction becomes wider toward the periphery of the stage 141 and the head 142. It has a shape.
  • the terminal electrodes 1413a and 1423a correspond to a first terminal electrode electrically connected to the plurality of electrode elements 1413b and a second terminal electrode electrically connected to the plurality of electrode elements 1423b, respectively.
  • grooves 1413d and 1423d each have a portion that extends radially from the center of the stage 141 and head 142 toward the periphery of the stage 141 and head 142. is formed. Furthermore, gas discharge holes 1413c and 1423c connected to the gas supply section 1492 are provided in some of the grooves 1413d and 1423d in the stage 141 and the head 142.
  • the gas discharge holes 1413c and 1423c correspond to a gas discharge section that discharges gas, and the grooves 1413d and 1423d correspond to a first groove forming a first recess communicating with the gas discharge holes 1413c and 1423c.
  • the width Wi1 of the grooves 1413d and 1423d is set to about 0.2 mm, for example.
  • the grooves 1413d and 1423d have portions extending along the respective extending directions of the plurality of electrode elements 1413b and 1423b.
  • the grooves 1413d and 1423d are provided between the plurality of electrode elements 1413b electrically connected to the terminal electrode 1413a and the plurality of electrode elements 1423b connected to the terminal electrode 1423a in the electrostatic chucks 1413 and 1423. ing.
  • the width Wi3 between the stage 141 and the surface of the head 142 of the electrostatic chucks 1413 and 1423 is set shorter than the depth Wi2 of the grooves 1413d and 1423d.
  • W2 is set to 0.05 mm or more and 0.1 mm or less in the case of a sapphire substrate or a glass substrate. Further, when the substrates W1 and W2 are Si substrates, the thickness can be set to about 5 mm.
  • the terminal electrodes 1413a, 1423a and the plurality of electrode elements 1413b, 1423b are formed of a transparent conductive film containing a transparent conductive material such as ITO, for example.
  • the electrostatic chucks 1411, 1412, 1413, 1421, 1422, and 1423 are connected to a chuck drive unit 1491.
  • the chuck driving unit 1491 applies a voltage to each electrostatic chuck 1411 , 1412 , 1413 , 1421 , 1422 , 1423 based on a control signal input from the control unit 9 .
  • 1421, 1422, and 1423 are driven.
  • the chuck driving unit 1491 drives the electrostatic chucks 1411 , 1412 , 1413 , 1421 , 1422 , and 1423 independently of each other based on a control signal input from the control unit 9 .
  • the chuck driving unit 1491 When removing the substrates W1 and W2 from the electrostatic chucks 1411 and 1412, the chuck driving unit 1491 applies a pulse voltage to the two terminal electrodes 1411a and 1412a of the electrostatic chucks 1411 and 1412. When removing the substrates W1 and W2 from the electrostatic chucks 1421 and 1422, the chuck driving unit 1491 also applies a pulse voltage between the two terminal electrodes 1421a and 1422a of the electrostatic chucks 1421 and 1422. When removing the substrates W1 and W2 from the electrostatic chucks 1431 and 1432, the chuck driving unit 1491 also applies a pulse voltage between the two terminal electrodes 1431a and 1432a of the electrostatic chucks 1413 and 1423.
  • the chuck driving unit 1491 gradually reduces the amplitude of the pulse voltage while alternately applying pulse voltages of different polarities between the terminal electrodes 1411a, 1412a (1421a, 1422a, 1431a, 1432a).
  • the pulse intervals of the pulse voltages are determined in consideration of the discharge time of the stage 141 and the head 142.
  • the pulse widths of the pulse voltages may be set to be equal to each other, or may be set to become longer over time. Alternatively, the pulse widths of five or less arbitrarily selected pulse voltages may be set to be equal. Furthermore, the pulse intervals may be set to be equal to each other, or may be set to become longer over time.
  • the pulse intervals of four or less arbitrarily selected pulse voltages may be set to be equal.
  • the gas supply unit 1492 supplies gas to the gas discharge holes 1411c, 1421c, 1412c, 1422c, 1413c, and 1423c separately based on a control signal input from the control unit 9, thereby discharging gas from the gas discharge holes 1411c, 1421c, 1412c, 1422c, 1413c, and 1423c.
  • the stage 141 and the head 142 include a pressing mechanism 1441 that presses the center of the substrate W1 and a pressing mechanism 1442 that presses the center of the substrate W2.
  • the pressing mechanism 1441 is provided at the center of the stage 141, and the pressing mechanism 1442 is provided at the center of the head 142.
  • the pressing mechanism 1441 includes a pressing part 1441a that can move in and out toward the head 142 through the through hole 141b of the stage 141, and a pressing driving part 1441b that drives the pressing part 1441a.
  • the pressing mechanism 1442 includes a pressing part 1442a that can move in and out toward the stage 141 through the through hole 142b of the head 142, and a pressing driving part 1442b that drives the pressing part 1442a.
  • the pressing drive units 1441b and 1442b include, for example, voice coil motors.
  • the pressing parts 1441a and 1442a perform pressure control to maintain a constant pressure applied to the substrates W1 and W2, and position control to control to maintain a constant contact position of the substrates W1 and W2. Either is done. For example, by controlling the position of the pressing part 1441a and controlling the pressure of the pressing part 1442a, the substrates W1 and W2 are pressed at a certain position with a certain pressure.
  • distance measuring section 1493 is, for example, a laser distance meter, and measures the distance between stage 141 and head 142 without contacting stage 141 and head 142.
  • the distance measuring unit 1493 determines the distance between the stage 141 and the head based on the difference between the light reflected from the upper surface of the stage 141 and the light reflected from the lower surface of the head 142 when a laser beam is irradiated toward the stage 141 from above the transparent head 142. 142.
  • the distance measuring unit 1493 measures three parts P11, P12, and P13 on the upper surface of the stage 141, and three parts on the lower surface of the head 142 that are opposite to the parts P11, P12, and P13 in the Z direction. Measure the distance between sites P21, P22, and P23.
  • the position measurement unit 500 includes three imaging units 501A, 501B, and 501C, a reflection member 502, and imaging unit position adjustment units 503A, 503B, and 503C, and the positions are perpendicular to each other in the vertical direction.
  • the amount of positional deviation between the substrates W1 and W2 in the directions is measured.
  • the three imaging units 501A, 501B, and 501C are arranged around the reflecting member 502 at an acute angle DAB formed by two optical axes JLA and JLB (JLB, JLC and JLC, JLA) that are adjacent to each other in the circumferential direction of the reflecting member 502.
  • the reflective member 502 has reflective surfaces 502a, 502b, and 502c formed in portions facing the three imaging units 501A, 501B, and 501C, respectively.
  • the imaging units 501A, 501B, and 501C and the reflecting member 502 are arranged on the opposite side of the stage 141 from the side that holds the substrate W1.
  • the imaging units 501A, 501B, and 501C are all first imaging units that have imaging elements 511A, 511B, and 511C and a coaxial illumination system (not shown).
  • a light source of the coaxial illumination system a light source that emits light (for example, infrared light) that passes through the substrates W1 and W2, the stage 141, and the window 120a provided in the chamber 120 is used.
  • At least three alignment marks MK1a, MK1b, and MK1c are provided on substrate W1, and at least three alignment marks MK2a, MK2b, and MK2c are provided on substrate W2.
  • One of these alignment marks MK1a, MK1b, and MK1c and the alignment marks MK2a, MK2b, and MK2c corresponds to the first alignment mark, and the other corresponds to the second alignment mark.
  • Substrate bonding apparatus 1 performs an alignment operation (alignment operation) of both substrates W1 and W2 while recognizing the positions of each alignment mark MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c provided on both substrates W1 and W2 by position measurement unit 500. More specifically, the substrate bonding apparatus 1 first performs a rough alignment operation (rough alignment operation) on the substrates W1 and W2 while recognizing the alignment marks MK1a, MK1b, NK1c, MK2a, MK2b, and NK2c provided on the substrates W1 and W2 with the position measurement unit 500, and positions the two substrates W1 and W2 opposite each other.
  • a rough alignment operation rough alignment operation
  • the substrate bonding apparatus 1 performs a more precise alignment operation (fine alignment operation) while simultaneously recognizing the alignment marks MK1a, MK2a, (MK1b, MK2b and MK1c, MK2c) provided on the two substrates W1 and W2 with the position measurement unit 500.
  • the light transmits through the window portion 120a and part or all of the substrates W1 and W2.
  • the light that has passed through part or all of the substrates W1 and W2 is reflected by the alignment marks MK1a and MK2a of the substrates W1 and W2, travels downward, is transmitted through the window 120a, and is reflected by the reflective surface 502a of the reflective member 502. and enters the imaging element 511A of the imaging unit 501A.
  • the light emitted from the light source of the coaxial illumination system of the imaging unit 501B is reflected by the reflective surface 502b of the reflective member 502 and travels upward, and the light is transmitted upward to the window 120a of the chamber 120 and part or all of the substrates W1 and W2. Transmit.
  • the light that has passed through part or all of the substrates W1 and W2 is reflected by the alignment marks MK1b and MK2b of the substrates W1 and W2, travels downward, is transmitted through the window 120a, and is reflected by the reflective surface 502b of the reflective member 502. and enters the imaging element 511B of the imaging unit 501B.
  • the light transmits through the window portion 120a and part or all of the substrates W1 and W2.
  • the light that has passed through part or all of the substrates W1 and W2 is reflected by the alignment marks MK1c and MK2c of the substrates W1 and W2, travels downward, is transmitted through the window 120a, and is reflected by the reflective surface 502c of the reflective member 502. and enters the imaging element 511C of the imaging unit 501C.
  • the position measurement unit 500 generates a photographed image GAa including alignment marks MK1a and MK2a of the two substrates W1 and W2, and an alignment mark MK1b of the two substrates W1 and W2, as shown in FIGS. 10A and 10B. , MK2b, and a captured image GAc including alignment marks MK1c, MK2b of the two substrates W1, W2. Note that the photographing operations of the photographed images GAa, GAb, and GAc by the photographing units 501A, 501B, and 501C are performed substantially simultaneously.
  • the three imaging units 501A, 501B, and 501C image alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c in a first area A1 consisting of two sub-annular areas A11 and A12 of the stage 141 and head 142. do.
  • the imaging unit position adjustment units 503A, 503B, and 503C move the imaging units 501A, 501B, and 501C in the vertical direction or in the horizontal direction perpendicular to the optical axis and vertical direction of the imaging units 501A, 501B, and 501C, respectively.
  • the imaging unit position adjustment units 503A, 503B, and 503C each include an imaging unit holding unit (not shown) that holds the imaging units 501A, 501B, and 501C, and an actuator (not shown) that drives the imaging unit holding unit in the vertical direction and the horizontal direction. (not shown).
  • the imaging unit position adjustment units 503A, 503B, and 503C move the imaging units 501A, 501B, and 501C vertically or horizontally, respectively, to adjust the imaging positions on the substrates W1 and W2 in the thickness direction of the substrates W1 and W2. It can be moved in orthogonal directions.
  • the substrate heating units 1481 and 1482 are, for example, electric heaters, and are provided on the stage 141 and the head 142, respectively, as shown in FIG. 7B.
  • the substrate heating units 1481 and 1482 heat the substrates W1 and W2 by transmitting heat to the substrates W1 and W2 held by the stage 141 and the head 142. Furthermore, by adjusting the amount of heat generated by the substrate heating units 1481 and 1482, the temperature of the substrates W1 and W2 and their bonding surfaces can be adjusted.
  • the substrate heating sections 1481 and 1482 are connected to a heating section driving section (not shown), and the heating section driving section heats the substrate based on a control signal input from the control section 9 shown in FIG. By supplying current to the parts 1481 and 1482, the substrate heating parts 1481 and 1482 generate heat.
  • the inspection device 7 detects the amount of positional deviation of all the alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c provided on the mutually bonded substrates W1 and W2.
  • the inspection device 7 includes, for example, as shown in FIG. 11, a stage 71 on which substrates W1 and W2 bonded to each other are placed, a light source 72, an imaging section 73, and a horizontal drive section 74.
  • the stage 71 is made of a material that is transparent to the light emitted from the light source 72.
  • the light source 72 emits light toward the substrates W1 and W2 from the side of the stage 71 opposite to the side on which the substrates W1 and W2 are placed.
  • the imaging unit 73 is a second imaging unit that includes an imaging element 731 into which light that has passed through the stage 71 and the substrates W1 and W2, out of the light emitted from the light source 72, is incident.
  • the horizontal drive unit 74 moves the stage 71 in a horizontal direction perpendicular to the thickness direction of the stage 71, as shown by an arrow AR3.
  • control unit 9 is a control system including, for example, a personal computer, and includes a CPU (Central Processing Unit) and a memory.
  • the memory stores programs executed by the CPU.
  • the control unit 9 converts measurement signals input from the pressure sensor 148 and the position measurement unit 150 into measurement information and acquires the measurement information. Further, the control unit 9 converts captured image signals inputted from the imaging units 501A, 501B, and 501C of the substrate bonding apparatus 1, the imaging unit 73 of the inspection device 7, and the transport device imaging unit 844 of the transport device 84 into captured image information. and get it.
  • CPU Central Processing Unit
  • control unit 9 controls the chuck drive unit 1491, gas supply unit 1492, imaging unit position adjustment units 503A, 503B, 503C, piezo actuator 1456, press drive units 1441b, 1432b, heating unit drive unit, and stage of the substrate bonding apparatus 1. These operations are controlled by outputting control signals to each of the drive unit 143 and head drive unit 144. As shown in FIG. 10B, the control unit 9 determines the positional deviation amount dxa, dya between the pair of alignment marks MK1a, MK2a provided on the substrates W1, W2 based on the captured image GAa acquired from the imaging unit 501A. Calculate. Note that FIG.
  • the control unit 9 controls the alignment marks MK1b, MK2b, MK1c, and MK2c provided on the substrates W1 and W2 based on the captured images GAb and GAc acquired from the imaging units 501B and 501C. Calculate positional deviation amounts dxb, dyb, dxc, and dyc.
  • control unit 9 controls the X direction, the Y direction, and the Z direction based on the positional deviation amounts dxa, dya, dxb, dyb, dxc, and dyc of these three sets of alignment marks and the geometric relationship of the three sets of marks.
  • the relative positional deviation amounts dx, dy, and d ⁇ of the two substrates W1 and W2 in the rotational direction around the axis are calculated.
  • the control unit 9 moves the head 142 in the X direction and the Y direction or rotates it around the Z axis so that the calculated positional deviation amounts dx, dy, and d ⁇ are reduced.
  • the substrate bonding apparatus 1 performs an alignment operation that corrects the horizontal positional deviation amounts dx, dy, and d ⁇ of the two substrates W1 and W2. Further, the control unit 9 outputs control signals to the activation processing device 2 , the transport devices 82 , 84 , 86 , the cleaning device 3 , and the inspection device 7 to control their operations.
  • control unit 9 brings the substrates W1 and W2 into contact with each other over their entire surfaces while the central portions of the bonding surfaces of the substrates W1 and W2 are in contact with each other and the peripheral portions of the substrates W1 and W2 are held by the electrostatic chucks 1411, 1412, 1421, and 1422
  • the control unit 9 first fills the entire groove provided in the sub-annular region A12 with gas from the gas discharge holes provided in the sub-annular region A12 of the first region A1, and then controls the chuck driving unit 1491 and the gas supply unit 1492 to release the substrates W1 and W2 from the electrostatic chucks 1421 and 1422.
  • the control unit 9 fills the entire grooves 1411d, 1412d provided in the sub-annular region A11 of the first region A1 with gas from the gas discharge holes 1411c, 1412c provided in the sub-annular region A11, and then controls the chuck drive unit 1491 and the gas supply unit 1492 to release the substrates W1, W2 from the electrostatic chucks 1411, 1412, 1421, 1422.
  • the control unit 9 controls the flow rate of gas discharged from the gas discharge holes 1411c, 1421c, 1421c, 1422c based on the air pressure detected by the air pressure detection unit described above so that the air pressure is less than the critical pressure. As a result, the substrates W1, W2 come into contact with each other on their entire surfaces.
  • control unit 9 determines the amount and direction of positional deviation of each of the plurality of alignment marks on the substrates W1 and W2 based on the captured image obtained by imaging the plurality of alignment marks on the substrates W1 and W2 by the imaging unit 73. Calculate. Then, the control unit 9 separates the axial direction components along each of the two mutually intersecting axial directions, that is, the XY direction component and the rotational direction component, of the positional deviation vector determined by the calculated positional deviation amount and positional deviation direction.
  • a horizontal offset vector that is a vector reflecting the amount of offset is calculated.
  • control unit 9 separates the warpage component of the positional deviation vector determined by the calculated positional deviation amount and positional deviation direction, and based on the separated warp component, the control unit 9 separates the warpage component of the positional deviation vector determined by the calculated positional deviation amount and positional deviation direction, and based on the separated warp component, the control unit 9
  • a protrusion offset amount which is an offset amount of the protrusion amount toward the substrate W2 side with respect to the peripheral portion of the substrate W1 at the center, is calculated.
  • the control unit 9 controls the amount of positional deviation obtained for the plurality of mutually bonded substrates W1, W2, and A horizontal offset vector and a protrusion offset amount are calculated based on statistical values (for example, an average value or an intermediate value) in the positional deviation direction. Further, the control unit 9 calculates a horizontal offset vector so that the amount of positional deviation of each set of alignment marks imaged by the imaging unit 73 is minimized. Then, the control unit 9 stores information indicating the calculated horizontal offset vector and protrusion offset amount in the memory.
  • the control unit 9 also captures images obtained by capturing alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c with the substrates W1 and W2 separated by the image capturing units 501A, 501B, and 501C, and the image capturing unit 501A. , 501B, and 501C, alignment marks MK1a, MK1b, and MK1c are obtained by capturing alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c of substrates W1 and W2 joined to each other by 501B and 501C, respectively.
  • the control unit 9 updates the horizontal offset vector based on the calculated positional deviation amount and positional deviation direction. Specifically, the control unit 9 detects the positional deviation from the captured image obtained by capturing the alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c after the substrates W1 and W2 are separated and the alignment of the substrates W1 and W2 is completed. Calculate the quantity error.
  • the control unit 9 calculates the above-mentioned positional deviation based on the positional deviation amount calculated from the captured image obtained by capturing the alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c of the substrates W1 and W2 that are bonded to each other. By subtracting the amount error, the amount of positional deviation during bonding of the substrates W1 and W2 is calculated.
  • the positional deviation amount error is not 0, the offset direction and offset amount corresponding to the plurality of alignment marks calculated from the captured image captured by the imaging unit 73 of the inspection device 7 cannot be directly adopted.
  • the above-mentioned horizontal offset vector is calculated for each set of alignment marks MK1a, MK2a (MK1b, MK2b, MK1c, MK2c).
  • the control unit 9 obtains information on the amount and direction of positional deviation of the alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c of the mutually bonded substrates W1 and W2 from the inspection device 7, and determines the above-mentioned positions. A deviation amount error may also be calculated. Further, calculation of the horizontal offset vector may be performed by the inspection device 7 or may be performed by the substrate bonding device 1.
  • the inspection device 7 may be notified of information indicating the positional deviation amount error. Further, the offset direction and offset amount calculated based on the captured image captured by the imaging unit 73 of the inspection device 7 are the offset direction and offset amount common to all the sets of alignment marks on the substrates W1 and W2; A horizontal offset vector reflecting the offset direction and offset amount corrected based on the above-mentioned positional deviation amount error is determined separately for each set of alignment marks MK1a, MK2a (MK1b, MK2b, MK1c, MK2c).
  • the substrate bonding system As will be explained with reference to 17B.
  • the substrates W1 and W2 are placed in the introduction ports 811 and 812 in advance.
  • the substrates W1 and W2 include Si substrates, glass substrates, oxide substrates (e.g., silicon oxide (SiO2) substrates, alumina substrates (Al2O3), etc.), and nitride substrates (e.g., silicon nitride (SiN), aluminum nitride).
  • At least one of the substrates W1 and W2 may have a metal portion and an insulating film exposed on its bonding surface.
  • at least one of the substrates W1 and W2 may have an exposed insulating film formed by depositing oxide or nitride on the bonding surface thereof.
  • the description will be made assuming that the substrate W1 is a glass substrate or an oxide substrate, and the substrate W2 is a Si substrate or a nitride substrate.
  • a substrate W2 held by the head 142 in the substrate bonding apparatus 1 is arranged, and in the introduction port 812, for example, a substrate W1 to be placed on the stage 141 in the substrate bonding apparatus 1 is arranged. Ru.
  • the substrate bonding system transfers the substrates W1 and W2 from the introduction ports 811 and 812 to the load lock unit 85 by the transfer robot 821 of the transfer device 82 (step S101).
  • the substrate bonding system transfers the substrates W1 and W2 from the load lock unit 85 to the activation treatment device 2 by the transfer robot 861 of the transfer device 86 (step S102).
  • the activation treatment device 2 performs an activation treatment process to activate the bonding surfaces by performing at least one of reactive ion etching using nitrogen gas and irradiation with nitrogen radicals on at least one of the bonding surfaces of the substrates W1 and W2 to be bonded to each other (step S103).
  • the activation treatment device 2 has a different treatment sequence depending on the type of substrate to be activated for the bonding surface.
  • the activation treatment device 2 When activating the bonding surface of the substrate W1, i.e., a glass substrate or an oxide substrate, the activation treatment device 2 first introduces N2 gas from the nitrogen gas storage unit 221A through the supply pipe 223A into the treatment chamber 212 by opening the supply valve 222A shown in FIG. 2.
  • the activation processing device 2 applies a high-frequency bias to the substrates W1 and W2 placed on the stage 210 by the bias application unit 217 while stopping the supply of high-frequency current from the high-frequency power supply 216 to the induction coil 215.
  • the activation processing device 2 starts supplying a high-frequency current from the high-frequency power supply 216 to the induction coil 215 to generate plasma with N2 gas. At this time, the activation processing device 2 stops applying the high-frequency bias to the substrate W1 by the bias application unit 217. In this way, N2 radicals are irradiated onto the bonding surface of the substrate W1.
  • RIE reactive ion etching
  • the activation processing apparatus 2 when activating the bonding surface of the substrate W2, that is, the Si or nitride substrate, the activation processing apparatus 2 first opens the supply valve 222B to pass the oxygen gas from the oxygen gas storage section 221B to the processing chamber through the supply pipe 223B. O2 gas is introduced into 212. Next, the activation processing apparatus 2 applies a high frequency bias to the substrate W2 placed on the stage 210 by the bias application unit 217 while stopping the supply of high frequency current from the high frequency power supply 216 to the induction coil 215. . As a result, reactive ion etching (RIE) using O2 gas is performed on the bonding surface of the substrate W2.
  • RIE reactive ion etching
  • the activation processing apparatus 2 exhausts the O2 gas in the processing chamber 212 by closing the supply valve 222B and stopping the supply of O2 gas from the oxygen gas storage section 221B into the processing chamber 212. Thereafter, the activation processing apparatus 2 introduces N2 gas into the processing chamber 212 from the nitrogen gas storage section 221A through the supply pipe 223A by opening the supply valve 222A. Thereafter, the activation processing apparatus 2 starts supplying high frequency current from the high frequency power supply 216 to the induction coil 215 to generate plasma using N2 gas. At this time, the activation processing apparatus 2 stops the bias application unit 217 from applying the high frequency bias to the substrate W2. In this way, the bonding surface of the substrate W2 is irradiated with N2 radicals.
  • the transport device 86 then transports the substrates W1 and W2 from the activation processing device to the load lock section 85 (step S104).
  • the transport robot 821 of the transport device 82 transports the substrates W1 and W2 from the load lock section 85 to the cleaning device 3 (step S105).
  • the cleaning device 3 executes a water cleaning process of cleaning the joint surfaces of the substrates W1 and W2 while spraying water onto the joint surfaces (step S106).
  • the cleaning device 3 scans the stage on which the substrates W1 and W2 are placed in the XY direction while spraying water to which ultrasonic waves have been applied from the cleaning head onto the bonding surface of the substrates W1 and W2. Clean the entire joint surface.
  • the cleaning device 3 stops discharging water from the cleaning head, and then spin-dries the substrate by rotating the stage, thereby completing the cleaning process.
  • the transport device 82 transports the substrates W1 and W2 from the cleaning device 3 to the load lock section 83 (step S107).
  • the transport device 84 takes out the substrates W1 and W2 from the load lock section 83, and the transport device imaging section 844 images the peripheral portions of the substrates W1 and W2 (step S108).
  • control unit 9 determines that the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c used for calculating the amount of positional deviation are the electrostatic chucks 1411, 1412, It is determined whether or not they overlap with 1421 and 1422 (step S109). Specifically, the control unit 9 controls in advance the relative positions of the stage 141 of the substrate bonding apparatus 1, the electrostatic chucks 1411, 1421 of the head 142, and the positions of the substrates W1, W2 held by the transfer device 84.
  • the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c used for calculating the amount of positional deviation are aligned with the electrostatic chucks 1411, 1412, 1421, and 1422. Determine whether they overlap.
  • the control unit 9 determines that all of the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c used for calculating the amount of positional deviation do not overlap with the electrostatic chucks 1411, 1412, 1421, and 1422 (step S109: No)
  • the processing from step S111 onwards is executed.
  • control unit 9 determines that at least one of the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c used for calculating the amount of positional deviation overlaps with the electrostatic chucks 1411, 1412, 1421, and 1422 (step S109: Yes).
  • the control unit 9 determines that at least one of the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c used for calculating the amount of positional deviation overlaps with the electrostatic chucks 1411, 1412, 1421, and 1422 (step S109: Yes).
  • alignment marks MK1a and MK2a partially overlap electrostatic chucks 1411 and 1421, as shown in FIG. 13A. In this case, as shown in FIG.
  • the control unit 9 rotates the stage 141 and then receives the substrates W1, W2, thereby aligning marks MK1a, MK2a, MK1b used for calculating the amount of positional deviation of the substrates W1, W2.
  • MK2b, MK1c, and MK2c are all rotated so that they are in a posture that does not overlap the electrostatic chucks 1411, 1412, 1421, and 1422 (step S110). For example, from the state shown in FIG. 13A, the stage 141 is rotated in the rotation direction shown by the arrow AR10 in FIG. 13A, and then the substrates W1 and W2 are received.
  • the control unit 9 determines that the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c are all located between the plurality of electrodes 1411b, 1412b, 1421b, and 1422b of the electrostatic chucks 1411, 1412, 1421, and 1422.
  • the stage 141 is rotated as follows. Thereby, the substrates W1 and W2 are brought into a state where alignment marks MK1a and MK2a used for calculating the amount of positional deviation of the substrates W1 and W2 do not overlap with the electrostatic chucks 1411 and 1421, for example, as shown in FIG. 13B.
  • control unit 9 controls the imaging unit position adjustment units 503A, 503B, and 503C to adjust the imaging units 501A, 501B, and 501C to alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c of the substrates W1 and W2, respectively. move it to a position where it can be imaged.
  • the transport device 84 then transports the substrates W1 and W2 to the substrate bonding apparatus 1 (step S111).
  • the substrate bonding apparatus 1 executes a substrate bonding process (step S112).
  • the substrate bonding process executed by the substrate bonding system will be described in detail with reference to FIG. 14.
  • the substrate bonding apparatus 1 has already stored the measurement results of the thicknesses of the substrates W1 and W2 in the memory of the control unit 9.
  • the substrate bonding apparatus 1 executes a distance measuring process in which the distance measuring unit 1493 measures the distance between the stage 141 and the head 142 at three locations, the stage 141 and the head 142 (step S1).
  • the substrate bonding apparatus 1 connects the bonding surface of the substrate W1 and the substrate W2 based on the measured distances between the stage 141 and the head 142 at three locations, the stage 141 and the head 142, and the thicknesses of the substrates W1 and W2. Calculate the distance between the joint surface and the joint surface. Then, the substrate bonding apparatus 1 moves the head 142 vertically downward to bring the substrates W1 and W2 closer to each other (step S2). Subsequently, the substrate bonding apparatus 1 calculates the amount of positional deviation of the substrate W1 with respect to the substrate W2 in a state where the substrates W1 and W2 are separated from each other (step S3).
  • the control unit 9 first detects alignment marks provided in the portions of the two substrates W1 and W2 facing the first area A1 in a non-contact state from the imaging units 501A, 501B, and 501C of the position measurement unit 500, respectively. Captured images GAa, GAb, and GAc (see FIG. 10A) of MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c are acquired. Then, as described above, the control unit 9 determines the positional deviation amount dx of the two substrates W1 and W2 in the X direction, the Y direction, and the rotational direction around the Z axis, based on the three captured images GAa, GAb, and GAc.
  • the substrate bonding apparatus 1 executes alignment by moving the substrate W2 relative to the substrate W1 so as to correct the calculated positional deviation amounts dx, dy, and d ⁇ (step S4).
  • the substrate bonding apparatus 1 moves the stage 141 in the X direction, the Y direction, and the rotation direction around the Z axis so that the positional deviation amounts dx, dy, and d ⁇ are reduced.
  • the substrate bonding apparatus 1 further brings the head 142 closer to the stage 141, thereby bringing the substrates W1 and W2 closer together (step S5).
  • the substrate bonding apparatus 1 arranges the head 142 at a position where the gap between the substrates W1 and W2 is the optimum gap for bringing the central portions of the substrates W1 and W2 into contact with each other while the substrates W1 and W2 are bent. do.
  • the peripheral portions of the substrates W1 and W2 are spaced apart by about 50 ⁇ m.
  • the substrate bonding apparatus 1 performs a first contact step of bringing the center portion of the substrate W1 into contact with the center portion of the substrate W2 by bending the substrates W1 and W2 while the substrates W1 and W2 are spaced apart from each other.
  • Execute step S6.
  • the substrate bonding apparatus 1 first, as shown by arrow AR11 in FIG. 15A, gas discharge holes 1413c and 1423c provided in the second area A2 of the stage 141 and head 142, and a groove 1413d provided in the second area A2. The entire 1423d is filled with gas. Thereafter, the substrate bonding apparatus 1 releases the holding of the substrate W1 by the electrostatic chucks 1413 and 1423 of the stage 141 and the head 142.
  • control unit 9 controls the gas supply unit 1492 so that the gas is discharged from the gas discharge hole 1413c so that the pressure at which the substrate W1 contacts the substrate W2 is less than the critical pressure at which the substrates W1 and W2 are temporarily bonded. control. Specifically, the control unit 9 controls the flow rate of gas discharged from the gas discharge holes 1413c and 1423c based on the atmospheric pressure detected by the above-mentioned atmospheric pressure detection unit so that the atmospheric pressure becomes less than the critical pressure. Next, the substrate bonding apparatus 1 presses the center portion of the substrate W1 toward the substrate W2 using the pressing portion 1441a, with the peripheral portion of the substrate W1 being held by the electrostatic chucks 1411 and 1412 of the stage 141.
  • the state in which the circumferential portion of the substrate W1 is held by the electrostatic chucks 1411 and 1412 refers not only to the case where a voltage is applied from the chuck drive unit 1491 to the electrostatic chucks 1411 and 1412 of the stage 141, but also when the electrostatic chucks 1411 and 1412 are It also includes a state in which no voltage is applied to the electrostatic chucks 1411 and 1412 and the peripheral portion of the substrate W1 is in close contact with the electrostatic chucks 1411 and 1412 due to residual electrostatic force of the electrostatic chucks 1411 and 1412. As a result, the substrate W1 is bent so that its central portion W1c protrudes toward the substrate W2, as shown in FIG. 15B.
  • the substrate bonding apparatus 1 presses the center portion of the substrate W2 toward the substrate W1 using the pressing portion 1442a, with the peripheral portion of the substrate W2 being held by the electrostatic chucks 1421 and 1422 of the head 142.
  • the substrate W2 is bent so that its center portion protrudes toward the substrate W1, as shown in FIG. 15B.
  • the force that brings the substrates W1 and W2 into close contact with the stage 141 and the head 142 due to the residual electrostatic force remaining between the electrodes 1413b and 1423b after the electrostatic chucks 1413 and 1413 release the holding force is reduced.
  • the substrates W1 and W2 become free from the force that brings them into close contact with the stage 141 and head 142.
  • the center portions of the substrates W1 and W2 are brought into contact with each other without being affected by the adhesion force to the stage 141 and the head 142. Since the bonding can proceed from the area toward the periphery, the substrates W1 and W2 can be bonded with high positional accuracy over the entire surface without distortion.
  • the control unit 9 controls the pressing portions so that the amount of projection of one of the pressing portions 1441a and 1432a increases by the amount of offset of the pressing portions relative to the other, based on information indicating the amount of offset of projection stored in the memory. 1441a and 1432a are made to protrude from the stage 141 and head 142. Thereby, the amount of warpage of the substrates W1 and W2 when the substrates W1 and W2 are bonded to each other can be reduced.
  • the substrate bonding apparatus 1 performs a second contact step in which the contact portion of the substrates W1, W2 is expanded from the center portions W1c, W2c of the substrates W1, W2 toward the peripheral portions W1s, W2s.
  • Step S7 the substrate bonding apparatus 1 moves the pressing part 1441a in the direction of recessing into the stage 141 and moves the pressing part 1442a in the direction of recessing into the head 142, as shown by arrow AR12 in FIG. 16A.
  • the substrate bonding apparatus 1 moves the head 142 in a direction approaching the stage 141, as shown by an arrow AR13.
  • the contact portion of the substrates W1 and W2 is caused by an intermolecular force (van der Waals It spreads from the center to the periphery of the substrates W1, W2 due to the bonding force caused by water or OH groups present on the bonding surfaces of the substrates W1, W2. Then, when the head 142 approaches a position separated by a preset distance from the stage 141, the substrate bonding apparatus 1 stops holding the substrates W1 and W2 by the electrostatic chucks 1421 and 1422, as shown in FIG. 16B. unlock.
  • the substrate bonding apparatus 1 first fills the entire groove provided in the sub-annular region A12 with gas from the gas discharge hole provided in the sub-annular region A12 of the first region A1, and then the electrostatic chuck 1421 , 1422 to release the holding of the substrates W1 and W2.
  • the control section 9 controls the flow rate of the gas discharged from the gas discharge holes 1412c and 1422c based on the atmospheric pressure detected by the above-mentioned atmospheric pressure detection section so that the atmospheric pressure becomes less than the critical pressure.
  • the substrate bonding apparatus 1 fills the entire grooves 1411d and 1412d provided in the sub-annular region A11 with gas from the gas discharge holes 1411c and 1412c provided in the sub-annular region A11 of the first region A1.
  • the holding of the substrates W1 and W2 by the electrostatic chucks 1411, 1412, 1421, and 1422 is released.
  • the holding of the substrates W1 and W2 by the electrostatic chucks 1421 and 1422 is released.
  • the contact portion between the substrates W1 and W2 further spreads from the center to the periphery of the substrates W1 and W2.
  • the bonding surfaces of the substrates W1 and W2 come into contact with each other, so that the substrates W1 and W2 are temporarily bonded to each other by hydrogen bonds between OH groups or water molecules.
  • the substrate bonding apparatus 1 measures the amount of positional deviation of the substrate W2 with respect to the substrate W1 with the bonding surface of the substrate W1 in contact with the bonding surface of the substrate W2 (step S8). At this time, the substrate bonding apparatus 1 measures the amount of positional deviation between the substrates W1 and W2 in a state where the movement of the substrate W2 relative to the substrate W1 is restricted due to the widening of the contact portion between the substrates W1 and W2.
  • the substrate bonding apparatus 1 determines whether all of the calculated positional deviation amounts dx, dy, and d ⁇ are less than or equal to preset positional deviation amount thresholds dxth, dyth, and d ⁇ th (step S9).
  • the substrate bonding apparatus 1 determines that any one of the calculated positional deviation amounts dx, dy, and d ⁇ is larger than the preset positional deviation amount thresholds dxth, dyth, and d ⁇ th (Step S9: No ).
  • the substrate bonding apparatus 1 separates the substrate W2 from the substrate W1 by raising the head 142 (step S10). At this time, the substrate bonding apparatus 1 raises the head 142 to widen the distance between the substrates W1 and W2, moves the pressing part 1441a in the direction of immersing it in the stage 141, and embeds the pressing part 1442a in the head 142. move in the direction you want.
  • the substrate bonding apparatus 1 controls the elevation of the head 142 so that the tensile pressure of the substrate W2 when peeling the substrate W2 from the substrate W1 is constant. As a result, the substrate W2 is separated from the substrate W1, and the contact state between the substrates W1 and W2 is released.
  • the substrate bonding apparatus 1 calculates the corrected movement amount of the substrates W1 and W2 to make the calculated positional deviation amounts dx, dy, and d ⁇ all below the positional deviation amount thresholds dxth, dyth, and d ⁇ th (step S11).
  • the control unit 9 determines the amount of positional deviation dx, dy, d ⁇ between the substrates W1 and W2 when the substrate W2 is in contact with the substrate W1, and the amount of displacement dx, dy, d ⁇ between the substrates W2 and the substrate W2 when the substrate W2 is not in contact with the substrate W1.
  • a corrected movement amount is calculated so as to move the substrate W1 and the substrate W2 by a movement amount corresponding to the difference in positional deviation amount between the substrates W1 and W2. Then, the control unit 9 further adds to the corrected movement amount the amount of offset in the XY direction and rotational direction indicated by the horizontal offset vector in the XY direction and rotational direction stored in the memory. By offsetting and aligning by this corrected movement amount, when the substrates W1 and W2 come into contact with each other again, if a similar positional deviation occurs due to contact between the substrates W1 and W2, the positional deviation of the substrates W1 and W2 will be eliminated. Become.
  • the substrate bonding apparatus 1 executes alignment so as to correct the relative positional deviations dx, dy, and d ⁇ of the two substrates W1 and W2 while the two substrates W1 and W2 are not in contact with each other.
  • Step S12 the substrate bonding apparatus 1 moves the stage 141 in the X direction, the Y direction, and the rotational direction around the Z axis by the corrected movement amount calculated in step S111. In this way, the substrate bonding apparatus 1 adjusts the relative position of the substrate W2 with respect to the substrate W1 so that the displacement amounts dx, dy, and d ⁇ are reduced while the substrates W1 and W2 are separated from each other. Then, the substrate bonding apparatus 1 executes the process of step S9 again.
  • step S9 Yes
  • the substrate bonding apparatus 1 further expands the contact area between the substrates W1 and W2 from the center toward the periphery of the substrates W1 and W2, so that the substrates W1 and W2 come into contact with each other over their entire surfaces (step S13).
  • step S13 As shown in FIG.
  • the substrate bonding apparatus 1 moves the pressing portion 1441a of the pressing mechanism 1441 in a direction to immerse it in the stage 141 and moves the pressing portion 1442a of the pressing mechanism 1442 in a direction to immerse it in the head 142, while at the same time further moving the head 142 in a direction approaching the stage 141 as shown by the arrow AR16, thereby reducing the distance between the peripheries of the substrates W1 and W2.
  • the substrate bonding apparatus 1 brings the periphery of substrate W1 into contact with the periphery of substrate W2, bringing the bonding surfaces of substrates W1 and W2 into contact over their entire surfaces.
  • the substrate bonding apparatus 1 presses the substrates W1 and W2 together by pressing the substrates W1 and W2 against each other with the entire surface of the substrates W1 and W2 in contact with each other, and then heats the substrates.
  • a main joining step of joining W1 and W2 is performed (step S14).
  • the substrate bonding apparatus 1 releases the holding of the substrate W2 by stopping the electrostatic chuck 1421 of the head 142 (step S15). Subsequently, the substrate bonding apparatus 1 causes the head 142 to separate from the substrate W2 by raising the head 142, as shown by arrow AR17 in FIG. 17B.
  • the substrate bonding apparatus 1 measures the amount of positional deviation of the substrate W2 with respect to the substrate W1 again with the substrates W1 and W2 bonded to each other (step S16).
  • the control unit 9 determines the horizontal offset vector and pressing force of the substrate W2 relative to the substrate W1, which is used when calculating the correction amount movement amount in the next bonding of the substrates W1 and W2.
  • a protrusion offset amount for the protrusion amount of the pressing portions 1441a, 1432a of the mechanisms 1441, 1432 is calculated (step S17).
  • the control unit 9 stores information indicating the calculated horizontal offset vector and protrusion offset amount in the memory.
  • the transport device 84 transports the bonded substrates W1 and W2 from the substrate bonding device 1 to the load lock section 83 (step S113). Subsequently, the transport device 82 takes out the bonded substrates W1 and W2 from the load lock section 83 and transports them to the inspection device 7 (step S114). After that, the inspection device 7 images all the alignment marks including the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c provided on the mutually bonded substrates W1 and W2 (step S115).
  • the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c are used for alignment in the substrate bonding device 1, and the inspection device 7 uses these alignment marks MK1a, MK2a, MK1b, MK2b, and MK1c. , MK2c as well as all other alignment marks are imaged.
  • the other alignment mark on either one of the substrates W1, W2 corresponds to the third alignment mark
  • the other alignment mark on the other substrate corresponds to the fourth alignment mark.
  • the inspection device 7 uses the imaging unit 73 to sequentially image all the alignment marks including the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c provided on the substrates W1 and W2 that are bonded to each other.
  • the control unit 9 calculates the amount and direction of positional deviation in each alignment mark from the image captured by the imaging unit 73 of the inspection device 7 (step S116).
  • the control unit 9 calculates the horizontal offset vector and pressing force of the substrate W2 relative to the substrate W1, which is used when calculating the correction amount movement amount in the next bonding of the substrates W1 and W2.
  • a protrusion offset amount for the protrusion amount of the pressing portions 1441a, 1432a of the mechanisms 1441, 1432 is calculated (step S117). Specifically, the control unit 9 separates the positional deviation vector in each alignment mark specified by the calculated positional deviation amount and positional deviation direction into an XY direction component, a rotational direction component, a warp component, and a distortion component.
  • the control unit 9 controls the distribution of the positional deviation vectors in the X and Y directions as shown in FIGS. component, rotational direction component, warpage component, and distortion component. That is, the combination of the XY direction component, rotational direction component, warp component, and distortion component shown in FIGS. 18(B) to 18(E) is in a relationship that matches the positional deviation vector. Then, the control unit 9 calculates the offset amount in the axial direction along each of the two mutually intersecting axes of the substrate W2 with respect to the substrate W1, that is, in the XY direction, from only the XY direction components and rotational direction components obtained by separation. A horizontal offset vector is calculated, which is a vector reflecting the axial offset amount and the rotational direction offset amount, which is the offset amount in the rotational direction.
  • this calculated offset amount is calculated in the axial direction along each of the two mutually intersecting axes of the substrate W2 relative to the substrate W1 at each position of the alignment marks MK1a, Mk1b, MK2a, MK2b, MK3a, and MK3b used in the bonding apparatus 1; That is, it is converted into a horizontal offset vector that is a vector that reflects the axial offset amount, which is the offset amount in the XY direction, and the rotational direction offset amount, which is the rotational direction offset amount, and in the joining device 1, this converted horizontal offset vector It is preferable to execute the alignment using the above method from the viewpoint of improving alignment accuracy because the horizontal offset amount in the alignment marks MK1a, Mk1b, MK2a, MK2b, MK3a, and MK3b that are actually used is better reflected.
  • the representative positions CE1a and CE2a of the alignment marks MK1a and MK2a shown in FIG. 19A are set so that they match when the two alignment marks MK1a and MK1b are arranged so that their centers match, as shown in FIG. 19B. Ru.
  • FIG. 19C it is assumed that the representative position CE2a of the alignment mark MK2a is moved by an amount that reflects the direction and magnitude indicated by the horizontal offset vector VEoffa.
  • the alignment marks MK1a and MK2a are aligned while being shifted by the horizontal offset vector VEoffa. As shown in FIG.
  • the horizontal offset vector VEoffa corresponding to the set of alignment marks MK1a and MK2a imaged by the imaging unit 501A is expressed as a vector starting from the representative position CE1a of the alignment mark MK1a and ending at the representative position CE2a of the alignment mark MK2a.
  • the horizontal offset vector VEoffb corresponding to the set of alignment marks MK1b and MK2b imaged by the imaging unit 501B is represented by a vector starting from the representative position CE1b of the alignment mark MK1b and ending at the representative position CE2b of the alignment mark MK2b. Ru. Further, the horizontal offset vector VEoffc corresponding to the set of alignment marks MK1c and MK2c imaged by the imaging unit 501C is expressed as a vector starting from the representative position CE1c of the alignment mark MK1c and ending at the representative position CE2c of the alignment mark MK2c. Ru.
  • the horizontal offset vectors VEoffa, VEoffb, and VEoffc are expressed as vectors having mutually different directions and sizes.
  • the control unit 9 calculates each horizontal offset vector VEoffa, VEoffb, and VEoffc. Then, the control unit 9 aligns the substrates W1 and W2 using representative positions CE2a, CE2b, and CE2c obtained by shifting the alignment marks MK1b, MK2b, and MK2c by the aforementioned horizontal offset vectors VEoffa, VEoffb, and VEoffc.
  • control unit 9 calculates the amount of protrusion offset of the pressing portions 1441a and 1432a of the pressing mechanisms 1441 and 1432 based only on the warp component.
  • the control unit 9 controls the amount of positional deviation obtained for the plurality of mutually bonded substrates W1, W2, and A horizontal offset vector and a protrusion offset amount are calculated based on the average value or intermediate value in the positional shift direction.
  • the control unit 9 stores information indicating the calculated horizontal offset vector and protrusion offset amount in the memory. Thereby, the substrate bonding apparatus 1 corrects the calculated horizontal offset vector and protrusion offset amount when bonding the substrates W1 and W2.
  • the transport device 82 transports the substrates W1 and W2 bonded together after measurement from the inspection device 7 to the take-out port 813 (step S118).
  • the series of processes from steps S101 to S104, the series of processes from steps S105 to S107, the series of processes from steps S108 to S113, and the series of processes from steps S115 to S117. may be performed in parallel on different substrates W1 and W2.
  • the central portion W1c of the substrate W1 and the central portion W2c of the substrate W2 are in contact with each other, and the peripheral portion W1s of the substrate W1 is connected to the electrostatic chuck 1411, 1412, the substrates W1 and W2 are brought into contact with each other while discharging gas between the stage 141 and the substrate W1 from the gas discharge hole 1413c and the groove 1413d.
  • the gas discharge hole 1413c resists the force that brings the substrates W1 and W2 into close contact with the stage 141 and the head 142 due to the residual electrostatic force remaining in the electrostatic chucks 1413 and 1423 after the holding by the electrostatic chucks 1413 and 1423 is released.
  • the substrates W1 and W2 become free from the force that brings them into close contact with the stage 141 and the head 142.
  • the central parts of the substrates W1 and W2 are brought into contact with each other by applying pressure equal to or higher than the critical pressure. Since bonding can proceed from the center of W1 and W2 toward the periphery, substrates W1 and W2 can be bonded with high positional accuracy over the entire surface without distortion.
  • the stage 141 and the head 142 do not have the grooves 1413d and 1423d, only a portion of the substrates W1 and W2 will be separated from the stage 141 and the head 142, and the substrates W1 and W2 will be in close contact with the stage 141 and the head 142. There is a risk that some parts may remain. In this case, there is a possibility that the entire portions of the substrates W1 and W2 other than the peripheral portions may not be free from the force that brings them into close contact with the stage 141 and the head 142.
  • the stage 141 and the head 142 are provided with the grooves 1413d and 1423d, so that the entirety of the substrates W1 and W2 except for the peripheral portions can be brought into close contact with the stage 141 and the head 142. Since the substrates W1 and W2 can be in a free state from the center to the periphery without being affected by the adhesion of the substrates W1 and W2 to the stage 141 and the head 142 be able to.
  • the grooves 1413d and 1423d formed in the second region A2 of the stage 141 and head 142 according to this embodiment have portions extending along the respective extending directions of the plurality of electrode elements 1413b and 1423b.
  • the grooves 1413d and 1423d are provided between the plurality of electrode elements 1413b electrically connected to the terminal electrode 1413a of the stage 141 and the head 142 and the plurality of electrode elements 1423b electrically connected to the terminal electrode 1423a.
  • the substrates W1 and W2 are moved to the stage 141 and the head 142 by the gas discharged from the gas discharge holes 1413c and 1423c through the grooves 1413d and 1423d against the force of the electrostatic chucks 1413 and 1423 to bring them into close contact with the stage 141 and the head 142.
  • the force in the peeling direction from the head 142 can be applied uniformly to the entire substrates W1 and W2.
  • the grooves 1413d and 1423d are provided between the electrodes 1413b and 1423b to which voltages of different polarities are applied, the substrates W1 and W2 are moved between the stage 141 and the head by electrostatic force generated between the electrodes 1413b and 1423b.
  • the pressure of the gas discharged from the grooves 1413d and 1423d can be effectively applied to the force that brings the grooves 142 into close contact with each other. Therefore, the speed at which the contact portions of the substrates W1 and W2 spread can be made uniform.
  • the stage 141 and head 142 have grooves 1411d and 1421d that are provided in the sub-annular region A11 of the first region A1 and communicate with the gas discharge holes 1411c and 1411d. Furthermore, the stage 141 and the head 142 are provided in the sub-annular region A12 of the first region A1, and also have a groove communicating with the gas discharge hole. Then, the control unit 9 controls the substrates W1, W2 from a state in which the central portions of the joint surfaces of the substrates W1, W2 are in contact with each other and the peripheral portions of the substrates W1, W2 are held by the electrostatic chucks 1411, 1412, 1421, 1422.
  • the entire groove provided in the sub-annular region A12 is filled with gas from the gas discharge hole provided in the sub-annular region A12 of the first region A1, and then the electrostatic chucks 1421, 1422
  • the chuck drive unit 1491 and the gas supply unit 1492 are controlled so as to release the holding of the substrates W1 and W2.
  • control unit 9 fills the entire grooves 1411d and 1412d provided in the sub-annular region A11 with gas from the gas discharge holes 1411c and 1412c provided in the sub-annular region A11 of the first region A1, and then statically
  • the chuck drive unit 1491 and the gas supply unit 1492 are controlled to release the holding of the substrates W1 and W2 by the electric chucks 1411, 1412, 1421, and 1422.
  • the peripheral portions of the substrates W1 and W2 are removed by the electrostatic chucks 1411, 1412, 1421, and 1422 while a force is applied to the substrates W1 and W2 in the direction in which the entire grooves 1411d and 1412d are peeled off from the stage 141 and the head 142.
  • the held state is released. Therefore, by applying a force to the entire substrates W1 and W2 in the direction of peeling from the stage 141 and the head 142, it is possible to suppress parts of the substrates W1 and W2 from being preferentially peeled off from the stage 141 and the head 142. , W2 can spread at a uniform speed.
  • the entire groove provided in the sub-annular region A12 of the first region A1 is By filling the entire grooves 1411d and 1412d provided in the sub-annular region A11 of the first region A1 with gas, a part of the gas filled in the grooves 1411d and 1412d can be ionized.
  • the residual electrostatic force of the electrostatic chucks 1411, 1421, 1412, and 1422 is neutralized by the ions contained in the gas, so that the substrates W1 and W2 are easily peeled off from the stage 141 and the head 142.
  • the stage and the head are equipped with electrostatic chucks 9411 and 9421, which have straight terminal electrodes 9411a and 9421a without bent parts and electrode elements 9411b and 9421b, as shown in FIG. 20A, for example. do.
  • the alignment marks MK1a' and MK2a' used for calculating the amount of positional deviation of the substrates W1 and W2 overlap with the electrodes 9411b and 9421b of the electrostatic chucks 9411 and 9421, do.
  • the substrate bonding apparatus 1 rotates the stage 141 and then receives the substrates W1 and W2, so that the alignment marks MK1a' and MK2a' are aligned with the electrodes 9411b of the electrostatic chucks 9411 and 9421, as shown in FIG. 20B. , 9421b.
  • the substrate bonding apparatus 1 rotates the stage 141 and then receives the substrates W1 and W2, so that the alignment marks MK1a' and MK2a' are aligned with the electrodes 9411b of the electrostatic chucks 9411 and 9421, as shown in FIG. 20B. , 9421b.
  • the alignment marks MK1a and MK2a used for calculating the amount of positional deviation of the substrates W1 and W2 overlap with the terminal electrodes 9411a and 9421a of the electrostatic chucks 9411 and 9421, the substrate bonding
  • the alignment marks MK1a and MK2a do not align with the terminals of the electrostatic chucks 1411 and 1421, as shown in FIG. 20B.
  • the electrodes 9411a and 9421a overlap.
  • the substrates W1 and W2 are pressed by the pressing mechanism.
  • the terminal electrode 1411a is adjacent in the circumferential direction to a plurality of bent portions 1411ab that are bent so as to protrude in a direction away from the other in plan view. It has a connecting portion 1411aa that connects the ends of the two bent portions 1411ab.
  • the substrate bonding apparatus 1 rotates the stage 141 and then receives the substrates W1 and W2, so that the alignment used for calculating the positional deviation amount of the substrates W1 and W2 can be achieved without moving the stage 141 and the head 142 in parallel. It is possible to make the marks MK1a and MK2a not overlap with the electrostatic chucks 1411 and 1421. Therefore, the substrates W1 and W2 can be bonded to each other with high positional accuracy, and distortions occurring in the bonded substrates W1 and W2 can be reduced.
  • the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c of the substrates W1 and W2 are provided at the corner portions of the chip base regions on the substrates W1 and W2, that is, at the periphery of the chip base regions. This is often the case.
  • the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c need to be arranged so as not to overlap with the dicing lines provided between the base regions of adjacent chips. It is necessary to provide the chip inside the region, which increases the area of the base region of the chip.
  • the positions of the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c are arranged closer to the center than the periphery of the substrates W1 and W2 by the increased area of the chip base region.
  • the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c are arranged at positions facing the first area A1 with the substrates W1 and W2 arranged at the substrate holding positions of the stage 141 and the head 142, respectively. need to be done.
  • the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c are arranged closer to the center than the periphery of the substrates W1 and W2, it is necessary to set the width of the first region A1 wider accordingly.
  • the bond between the substrates W1 and W2 faces the first area A1.
  • the bonding between the substrates W1 and W2 may not sufficiently extend to the vicinity of the periphery, and there is a possibility that distortion may occur in the periphery of the substrates W1 and W2.
  • two sub-annular regions A11 and A12 are set in advance in the first region A1, and electrostatic chucks are provided in the sub-annular regions A11 and A12, respectively. 1411, 1412, 1421, and 1422 are provided.
  • the electrostatic chucks 1412 and 1422 provided in the sub-annular region A12 may be driven simultaneously with the electrostatic chucks 1413 and 1423 provided in the second region A2.
  • the electrostatic chucks 1412, 1422 and the electrostatic chucks 1413, 1423 can use a common power source, so the configuration of the substrate bonding apparatus 1 can be simplified.
  • the substrate bonding system includes an inspection device 7 having an imaging section 73 that captures images of all of the plurality of alignment marks on each of the mutually bonded substrates W1 and W2.
  • the control unit 9 also controls the positional deviation amount and the positional deviation direction of each of the plurality of alignment marks on the substrates W1 and W2 based on the captured image obtained by imaging the plurality of alignment marks on the substrates W1 and W2 by the imaging unit 73. Calculate. Then, the control unit 9 separates the axial direction components along each of the two mutually intersecting axial directions, that is, the XY direction component and the rotational direction component, of the positional deviation vector determined by the calculated positional deviation amount and positional deviation direction.
  • a horizontal offset vector is calculated, which is a vector reflecting the axial offset amount and the rotational direction offset amount, which is the offset amount in the rotational direction.
  • control unit 9 separates the warpage component of the positional deviation vector determined by the calculated positional deviation amount and positional deviation direction, and based on the separated warp component, the control unit 9 separates the warpage component of the positional deviation vector determined by the calculated positional deviation amount and positional deviation direction, and based on the separated warp component, the control unit 9
  • a protrusion offset amount which is an offset amount of the protrusion amount toward the substrate W2 side with respect to the peripheral portion of the substrate W1 at the center, is calculated.
  • the horizontal offset vector calculated based on the amount of positional deviation of the alignment mark after the past substrate bonding process indicates The relative positions of substrates W1 and W2 are corrected in the offset direction by an offset amount corresponding to the absolute value of the horizontal offset vector. Therefore, the accuracy of the bonding position between the substrates W1 and W2 can be improved.
  • the pressing mechanism on the head 142 side is position control and the pressing mechanism on the stage 141 side is pressure control, increasing the protrusion offset amount on the head 142 side will cause the periphery of the bonded substrates W1 and W2 to increase.
  • the portion is warped toward the head 142 with respect to the center portion.
  • the peripheral portions of the substrates W1 and W2 bonded to each other are warped toward the stage side 141 with respect to the center portion.
  • the alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c are misaligned by the amount of misalignment in the substrate bonding apparatus 1.
  • the alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c before and after bonding of the substrates W1 and W2 in the substrate bonding apparatus 1 are offset in the offset direction by the amount of positional deviation error. Then, the horizontal offset vector is calculated by correcting the offset amount. Thereby, the accuracy of the horizontal offset vector required when bonding the substrates W1 and W2 can be improved.
  • the substrate bonding apparatus has an annular shape with different inner diameters, and the center of the second region inside the first region of the first substrate holder is aligned with the center of the first substrate holder.
  • This embodiment differs from the first embodiment in that it includes a plurality of pressing members arranged concentrically in the substrate holding position and pressing a portion of the first substrate facing the second region that is placed at the substrate holding position.
  • the plurality of pressing members The first substrate and the second substrate are brought into contact while the first substrate is pressed preferentially from the pressing member located on the center side of the first substrate holder.
  • the substrate bonding apparatus has substantially the same structure as the substrate bonding apparatus 1 configuring the substrate bonding system described in Embodiment 1, and as shown in FIGS. 21A and 21B, a stage 2141, Only the structure of the head 2142 differs from the first embodiment. Note that in FIGS. 21A and 21B, the same components as in Embodiment 1 are given the same reference numerals as in FIGS. 5A and 5B.
  • the substrate bonding apparatus includes a chamber 120, a stage 2141, a head 2142, a stage drive section 143, a head drive section 144, a substrate heating section 1481, 1482, a position measuring section 500, and a distance measuring section 1493.
  • a chamber 120 Similar to the substrate bonding apparatus 1 described in Embodiment 1, the substrate bonding apparatus according to the present embodiment includes a chamber 120, a stage 2141, a head 2142, a stage drive section 143, a head drive section 144, a substrate heating section 1481, 1482, a position measuring section 500, and a distance measuring section 1493.
  • the stage 2141 and the head 2142 are arranged to face each other in the vertical direction within the chamber 120.
  • the stage 2141 is a first substrate holder that holds the substrate W1 on its upper surface
  • the head 2142 is a second substrate holder that holds the substrate W2 on its lower surface.
  • the stage 2141 supports the substrate W1 with its upper surface in surface contact with the entire substrate W1
  • the head 2142 supports the substrate W2 with its lower surface in surface contact with the entire substrate W2.
  • the stage 2141 and the head 2142 are made of a light-transmitting material such as a light-transmitting glass. As shown in FIG.
  • the stage 2141 includes an electrostatic chuck 1411 that holds the substrate W1, a pressing mechanism 1441 that presses the center of the substrate W1, and a plurality of (32 in FIG. 21A) circular pressing members in plan view. 21511, 21512, 21513, and 21514 are provided. Furthermore, as shown in FIG. 21B, the stage 2141 is provided with piezo actuators 21611, 21612, 21613, and 21614. As shown in FIG. 21A, the head 2142 includes an electrostatic chuck 1421 that holds the substrate W2, a pressing mechanism 1442 that presses the center of the substrate W2, and a plurality of (32 in FIG. 21A) circular pressing members in plan view.
  • the head 2142 is provided with piezo actuators 21621, 21622, 21623, and 21624, as shown in FIG. 21B.
  • the electrostatic chucks 1411 and 1421 are provided in an annular first area A1 facing the circumferential portions of the substrates W1 and W2 on the stage 141 and the head 142 with the substrates W1 and W2 being held on the stage 2141 and the head 2142. It is being The electrostatic chucks 1411 and 1421 hold the peripheral portions of the substrates W1 and W2, respectively.
  • through holes 141b and 142b are provided which are circular in plan view.
  • Pressing members 21511, 21512, 21513, and 21514 are arranged along four imaginary circles VC1, VC2, VC3, and VC4 whose centers coincide with the center of stage 2141 in second region A2 of stage 2141. Pressing members 21511, 21512, 21513, and 21514 press a portion of substrate W1 that faces second region A2 and is arranged at a preset substrate holding position on stage 2141.
  • Piezo actuators 21611, 21612, 21613, and 21614 are pressing member driving units that drive pressing members 21511, 21512, 21513, and 21514 in a direction protruding from stage 2141 or in a direction retracting into stage 2141, respectively.
  • the pressing members 21521, 21522, 21523, and 21524 are also arranged along four imaginary circles VC1, VC2, VC3, and VC4 whose centers coincide with the center of the head 2142 in the second region A2 of the head 2142.
  • the pressing members 21521, 21522, 21523, and 21524 press a portion of the substrate W2 that faces the second region A2 and is placed at a preset substrate holding position in the head 2142.
  • the piezoelectric actuators 21621, 21622, 21623, and 21624 are pressing member driving units that drive the pressing members 21521, 21522, 21523, and 21524 in a direction protruding from the head 2142 or in a direction retracting into the head 2142, respectively.
  • the control unit 9 controls the amount of movement of each of the pressing members 21511, 21512, 21513, and 21514 by controlling the amount of change in length of the piezo actuators 21611, 21612, 21613, and 21614 in the direction in which the stage 2141 and the head 2142 face each other. Control.
  • the control unit 9 controls the speed at which the plurality of pressing members 21511, 21512, 21513, and 21514 contact the substrate W1 in order from the one closest to the center of the stage 2141 to the center of the bonding surface of the substrates W1 and W2.
  • the piezo actuators 21611, 21612, 21613, and 21614 are controlled to be faster than the speed at which the temporary bonding with the substrates W1, W2 progresses from the state where the parts are in contact with each other toward the circumferential parts of the substrates W1, W2. Further, the control unit 9 controls the amount of change in length of the piezo actuators 21621, 21622, 21623, and 21624 in the direction in which the stage 2141 and the head 2142 face each other, thereby moving each of the pressing members 21521, 21522, 21523, and 21524. Control quantity.
  • the control unit 9 controls the speed at which the plurality of pressing members 21521, 21522, 21523, and 21524 bring the substrates W2 into contact with each other in order from the one closest to the center of the head 2142 to the bonding surface of the substrates W1 and W2.
  • the piezo actuators 21611, 21612, 21613, and 21614 are controlled to be faster than the speed at which temporary bonding with the substrates W1 and W2 progresses from the state where the central portions are in contact with each other toward the peripheral portions of the substrates W1 and W2.
  • the flow of a series of operations in the substrate bonding system according to the present embodiment from when the substrates W1 and W2 are input until the substrates W1 and W2 are bonded and taken out from the substrate bonding system is substantially the same as that in the first embodiment. , and only a part of the operation in the substrate bonding process is different from the first embodiment. Therefore, the substrate bonding process executed by the substrate bonding system according to this embodiment will be described with reference to FIGS. 14 and 22A to 23B.
  • the substrate bonding apparatus executes a series of operations from steps S1 to S4.
  • the substrate bonding apparatus further brings the head 142 closer to the stage 141, thereby bringing the substrates W1 and W2 closer together (step S5).
  • the substrate bonding apparatus executes a first contact step of bringing the center portion of the substrate W1 into contact with the center portion of the substrate W2 by bending the substrates W1 and W2 while the substrates W1 and W2 are separated from each other. (Step S6).
  • Step S6 At this time, as shown in FIG.
  • the substrate bonding apparatus presses the central portion of the substrate W1 toward the substrate W2 using the pressing portion 1441a while the peripheral portion of the substrate W1 is held by the electrostatic chuck 1411.
  • the substrate W1 is bent so that the center portion W1c of the substrate W1 protrudes toward the substrate W2.
  • the substrate bonding apparatus presses the center of the substrate W2 toward the substrate W1 using the pressing portion 1442a while the electrostatic chuck 1422 holds the circumferential portion of the substrate W2.
  • the substrate W2 is bent so as to protrude toward the substrate W1.
  • the substrate bonding apparatus causes the pressing members 21511, 21512, 21513, and 21514 to contact the substrate W1 using the piezo actuators 21611, 21612, 21613, and 21614, as shown in FIG. 22B. Further, the substrate bonding apparatus causes the pressing members 21521, 21522, 21523, and 21524 to contact the substrate W2 using the piezo actuators 21621, 21622, 21623, and 21624.
  • the substrate bonding apparatus performs a second contacting step in which the contact portion of the substrates W1, W2 is expanded from the center portions W1c, W2c of the substrates W1, W2 toward the peripheral portions W1s, W2s.
  • Execute step S7).
  • the substrate bonding apparatus moves the pressing part 1441a in the direction of immersing it in the stage 2141 and moves the pressing part 1442a in the direction of immersing it in the head 2142, as shown by arrow AR22 in FIG. 23A.
  • the substrate bonding apparatus moves the head 2142 in a direction approaching the stage 2141, as shown by an arrow AR21.
  • the substrate bonding apparatus presses the substrate W1 preferentially from among the pressing members 21511, 21512, 21513, and 21514 located closer to the center of the stage 2141. Further, the substrate bonding apparatus preferentially presses the substrate W2 from among the pressing members 21521, 21522, 21523, and 21524 located closer to the center of the head 2142. As a result, as shown by the arrow AR23, the contact portion of the substrates W1, W2 spreads from the central portion of the substrates W1, W2 toward the periphery, starting from the central portion that is point-pressed by the pressing mechanisms 1441, 1432. go.
  • step S9 Yes
  • the substrate bonding apparatus 1 further widens the contact portion of the substrates W1, W2 from the center toward the periphery, bringing the substrates W1, W2 into contact with each other over the entire surface (step S13).
  • the substrate bonding apparatus 1 moves the pressing part 1441a of the pressing mechanism 1441 in the direction of immersing it in the stage 2141, and moves the pressing part 1442a of the pressing mechanism 1442 in the direction of immersing it in the head 2142.
  • the distance between the circumferences of the substrates W1 and W2 is reduced by further moving the head 142 in the direction closer to the stage 141 as shown by arrow AR24.
  • the substrate bonding apparatus 1 brings the circumferential portion of the substrate W1 into contact with the circumferential portion of the substrate W2, and brings the bonding surfaces of the substrates W1 and W2 into full contact with each other.
  • the substrate bonding apparatus 1 executes the main bonding process of bonding the substrates W1 and W2 (step S14), and holds the substrate W2 by stopping the electrostatic chuck 1421 of the head 2142. is released (step S15). Subsequently, the substrate bonding apparatus 1 executes the processes from step S16 onwards.
  • the substrate bonding apparatus in a state where the center portion of the substrate W1 and the center portion of the substrate W2 are in contact with each other and the peripheral portion of the substrate W1 is held on the stage 2141, Among the pressing members 21511, 21512, 21513, and 21514, the substrate W1 and W2 are brought into contact with each other while pressing the substrate W1 preferentially from the one located closer to the center of the stage 2141. At this time, the substrate bonding apparatus preferentially presses the substrate W2 from among the pressing members 21521, 21522, 21523, and 21524 located closer to the center of the head 2142.
  • the grooves 1413d and 1423d are able to resist the force that brings the substrates W1 and W2 into close contact with the stage 141 and the head 142 due to the residual electrostatic force remaining between the electrodes 1413b and 1423b after the electrostatic chucks 1413 and 1413 release the holding force.
  • the substrates W1 and W2 become free from the force that brings them into close contact with the stage 141 and head 142.
  • the center portions of the substrates W1 and W2 are brought into contact with each other without being affected by the adhesion force to the stage 141 and the head 142. Since the bonding can proceed from the area toward the periphery, the substrates W1 and W2 can be bonded with high positional accuracy over the entire surface without distortion.
  • the present invention is not limited to the configuration of each of the above-described embodiments.
  • the stage 3141 and the head 3142 have grooves 3413d and 3423d each having a plurality of arcuate sub-grooves 34131d and 34231d extending concentrically and having different diameters, and grooves 3413d and 3423d, respectively. It may also have gas discharge holes 3413c and 3423c communicating with.
  • the same components as in Embodiment 1 are given the same reference numerals as in FIG. 5A.
  • the plurality of sub-grooves 34131d, 34231d are connected to other sub-grooves 34131d, 34231d adjacent to each other in the radial direction of the stage 4141 and the head 3142 at both ends thereof. are communicated via sub-grooves 34132d and 34232d extending in the radial direction.
  • the electrostatic chucks 3413 and 3423 have a plurality of electrode elements 3413b and 3423b extending in an arc shape centered on the central part of the stage 4141 and the head 4142 in the second region A2, respectively. terminal electrodes 3413a and 3423a.
  • the plurality of electrode elements 3413b and 3423b are arranged concentrically around the center of the stage 4141 and the head 4142, and arranged alternately in the radial direction.
  • the plurality of terminal electrodes 3413a each extend in the radial direction of the stage 4141 and the head 4142, and are connected to one side of each of two electrodes 3413b that are adjacent to each other with one electrode 3423b in between in the radial direction of the stage 4141 and the head 4142. Connect the ends.
  • the plurality of terminal electrodes 3423a also extend in the radial direction of the stage 4141 and the head 4142, respectively, and each of the two electrodes 3423b that are adjacent to each other with one electrode 3413b in between in the radial direction of the stage 4141 and the head 4142. Connect one end to the other.
  • the stage 4141 and the head 4142 may each have a spiral groove 4413d, 4423d, and a plurality of gas discharge holes 4413c, 4423c that communicate with the grooves 4413d, 4423d.
  • the same components as those in the first embodiment are denoted by the same reference numerals as those in FIG. 5A.
  • the electrostatic chucks 4413 and 4423 have two electrode elements 4413b extending spirally around the center of the stage 4141 and the head 4142 in the second region A2, respectively. , 4423b.
  • the other one of the two electrodes 4413b and 4423b is arranged on at least one side in the radial direction of the stage 4141 and the head 4142.
  • a second area A2 inside the first area A1 in the stage 5141 and the head 5142 has a plurality of radially extending elongated grooves 5413d and 5423d, and each groove 5413d and 5423d. Gas discharge holes 5413c and 5423c that open at the bottom of the end of the stage 5141 and the head 5142 on the center side may be provided. Further, as shown in FIG. 26B, the first region A1 may not be provided with a groove. Note that in FIGS. 26A and 26B, the same components as in Embodiment 1 are given the same reference numerals as in FIGS. 5A and 7A.
  • the electrostatic chucks 5413 and 5423 are arranged between two grooves 5413d and 5423d that are adjacent in the circumferential direction of the stage 5141 and the head 5142.
  • the width Wi51 of the grooves 5413d and 5423d is set to about 0.2 mm, for example.
  • the electrostatic chucks 5413 and 5423 each have two arc-shaped terminal electrodes 5413a and 5423a extending in the circumferential direction of the stage 5141 and the head 5142, and two arcuate terminal electrodes 5413a and 5423a extending in the radial direction of the stage 5141 and the head 5142.
  • Electrode elements 5413b and 5423b each have a wedge-shaped shape in a plan view, with the width increasing toward the periphery of the stage 5141 and head 5142. Further, as shown in FIG. 27B, a width Wi53 between the electrostatic chucks 5413 and 5423 and the surface of the stage 5141 and head 5142 is set shorter than the depth Wi52 of the grooves 5413d and 5423d.
  • annular sub-annular regions A11 and A12 are set in the first region A1 of the stage 141 and the head 142, and electrostatic chucks 1411, 1421, 1412, 1422 are provided in each of the sub-annular regions A11 and A12.
  • electrostatic chucks 1411, 1421, 1412, 1422 are provided in each of the sub-annular regions A11 and A12.
  • the number of sub-annular regions set in the first region A1 is not limited to two.
  • three or more annular sub-annular regions may be set in the first region A1, and an electrostatic chuck may be provided in each sub-annular region.
  • the substrate bonding apparatus 1 first fills the entire groove 1413d provided in the second region A2 with gas from the gas discharge hole 1413c provided in the second region A2 of the stage 141 and the head 142. Afterwards, an example of releasing the holding of the substrates W1 and W2 by the electrostatic chucks 1413 and 1423 was explained. However, the present invention is not limited to this. For example, after the substrate bonding apparatus 1 releases the holding of the substrates W1 and W2 by the electrostatic chucks 1413 and 1423, the gas discharge hole 1413c provided in the second area A2 of the stage 141 and the head 142 , 1423c may discharge gas toward grooves 1413d and 1423d provided in the second region A2.
  • the control unit 9 supplies the gas so that the gas is discharged from the gas discharge holes 1413c and 1423c so that the pressure at which the substrates W1 and W2 come into contact with each other is less than the critical pressure at which the substrates W1 and W2 are temporarily bonded. 1492 may be controlled.
  • the gas discharge hole 1413c resists the force that brings the substrates W1 and W2 into close contact with the stage 141 and the head 142 due to the residual electrostatic force remaining between the electrodes 1413b and 1423b after the electrostatic chucks 1413 and 1413 release the holding.
  • the substrates W1, W2 become free from the force that brings them into close contact with the stage 141 and head 142.
  • the center portions of the substrates W1 and W2 are brought into contact with each other without being affected by the adhesion force to the stage 141 and the head 142. Since the bonding can proceed from the area toward the periphery, the substrates W1 and W2 can be bonded with high positional accuracy over the entire surface without distortion.
  • control unit 9 may calculate the horizontal offset vector without using the captured image of the alignment mark captured by the imaging unit 73 of the inspection device 7. In this case, the control unit 9 images the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c after the substrates W1 and W2 are separated and the alignment of the substrates W1 and W2 is completed by the imaging units 501A, 501B, and 501C.
  • the alignment marks MK1a, MK2a, MK1b, MK2b are based on the captured image obtained by capturing the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c of the substrates W1 and W2 bonded to each other. , MK1c, and MK2c, the amount and direction of positional deviation are calculated. Specifically, the control unit 9 detects the positional deviation from the captured image obtained by capturing the alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c after the substrates W1 and W2 are separated and the alignment of the substrates W1 and W2 is completed. Calculate the quantity error.
  • the control unit 9 calculates the above-mentioned positional deviation based on the positional deviation amount calculated from the captured image obtained by capturing the alignment marks MK1a, MK1b, MK1c, MK2a, MK2b, and MK2c of the substrates W1 and W2 bonded to each other. By subtracting the amount error, the amount of positional deviation during bonding of the substrates W1 and W2 is calculated. Then, the control unit 9 may calculate a horizontal offset vector of the substrate W2 with respect to the substrate W1 when bonding the substrates W1 and W2, based on the calculated positional deviation amount and positional deviation direction. Here, the horizontal offset amount is calculated for each set of alignment marks MK1a, MK2a (MK1b, MK2b, MK1c, MK2c).
  • a plurality of pressing members 21511, 21512, 21513, and 21514 are arranged along four virtual circles whose centers coincide with the center of the stage 2141 in the second area A2 of the stage 2141, and a plurality of An example has been described in which the pressing members 21521, 21522, 21523, and 21524 are arranged along each of four virtual circles whose centers coincide with the center of the head 2142 in the second region A2 of the head 2142.
  • the present invention is not limited to this.
  • a plurality of (four in FIG. 28) pressing members 61511, 61512, 61513, and 61514 disposed on the stage 6141 may have an annular shape with different inner diameters.
  • the plurality of pressing members 61511, 61512, 61513, and 61514 disposed on the head 6142 may also have annular shapes having mutually different inner diameters.
  • the four pressing members 61511, 61512, 61513, and 61514 are arranged concentrically in the second area A2 of the stage 6141 so that their centers coincide with the center of the stage 6141.
  • the four pressing members 61521, 61522, 61523, and 61524 are also arranged concentrically in the second region A2 of the head 6142 so that their centers coincide with the central portion of the head 6142.
  • piezo actuators 21611, 21612, 21613, and 21614 drive pressing members 21511, 21512, 21513, and 21514, respectively
  • piezo actuators 21621, 21622, 21623, and 21624 drive pressing members 21521 and 21522, respectively.
  • 21523, and 21524 have been described.
  • the means for driving the pressing members 21511, 21512, 21513, 21514, 21521, 21522, 21523, 21524 is not limited to this. For example, like a stage 7141 shown in FIG.
  • pressing members 71511, 71512, 71513, and 71514 may constitute pistons driven by air cylinders 71611, 71612, 71613, and 71614, respectively. Further, as in a head 7142 shown in FIG. 29, pressing members 71521, 71522, 71523, and 71524 may constitute pistons driven by air cylinders 71621, 71622, 71623, and 71624, respectively.
  • the air cylinders 71611, 71612, 71613, and 71614 move the pressing members 21511, 21512, 21513, and 21514 individually toward the head 2142 or away from the head 2142 using air pressure. Further, the air cylinders 71621, 71622, 71623, and 71624 move the pressing members 21521, 21522, 21523, and 21524 individually toward the stage 2141 or away from the head 2142 using air pressure.
  • control unit 9 causes the pressing members 21511, 21512, 21513, and 21514 to press the substrate W1 so that the pressure at which the substrate W1 contacts the substrate W2 is less than the critical pressure at which the substrates W1 and W2 are temporarily joined.
  • the air cylinders 71621, 71622, 71623, and 71624 may be controlled to do so.
  • the substrate bonding apparatus first uses pressing members 21511, 21512, 21513, 21514, 21521, 21522, 21523 and 21524 press the substrates W1 and W2.
  • the substrate bonding apparatus applies a voltage from the chuck drive unit 1491 to the electrostatic chucks 1411 and 1412 of the stage 141 and the head 142, so that the electrostatic chucks 1411 and 1412 hold the circumferences of the substrates W1 and W2. Then, the center portions of the substrates W1 and W2 may be pressed by the pressing portions 1441a and 1432a.
  • the position measurement unit 500 has three imaging units 501A, 501B, and 501C, but the number of imaging units is not limited to three.
  • the position measurement unit 8500 shown in FIG. 30 four imaging units 501A, 501B, 501C, and 501D, and four reflective surfaces 6502a, 6502b, and 6502c corresponding to the four imaging units 501A, 501B, 501C, and 501D, respectively.
  • 6502d may be formed.
  • the four imaging units 501A, 501B, 501C, and 501D are located around the reflective member 6502 and have two optical axes JLA, JLB (JLB, JLC, JLC, JLD and JLD, JLA) are arranged so that the acute angles DAB, DBC, DCD, and DDA are equal.
  • Each embodiment may include, for example, a water gas supply unit (not shown) that supplies water gas into the chamber 851 of the load lock unit 85 or the chamber 863 of the transport device 86.
  • the water gas supply unit generates and supplies water gas by mixing vaporized water with a carrier gas such as argon (Ar), nitrogen (N2), helium (He), or oxygen (O2).
  • the water gas supply section is connected to the chamber 851 of the load lock section 85 via a supply valve and a supply pipe.
  • the flow rates of water gas and carrier gas introduced into chamber 851 are adjusted by controlling the opening degree of the supply valve.
  • the water gas supply unit may be configured to accelerate molecules, clusters, etc.
  • the water gas supply may consist of a particle beam source that emits accelerated water (H2O) particles.
  • the particle beam source may be configured to generate water gas using, for example, an ultrasonic generating element.
  • a water particle beam is generated by introducing a mixed gas of carrier gas and water (H2O) generated by the above-mentioned bubbling, ultrasonic vibration, etc. into the above-mentioned particle beam source, and the substrates W1, W2 are The structure may be such that the beam is irradiated onto the joint surface of the .
  • the substrate bonding system for example, in the process of step S104 in FIG.
  • the joint surface of W2 is exposed to water gas.
  • the substrate bonding system opens the gate 8531 of the chamber 851 on the transfer device 82 side to expose the inside of the chamber 851 to the atmosphere.
  • a gas supply section (not shown) is provided that supplies gas containing H and OH groups into the chamber 851 of the load lock section 85 or the chamber 863 of the transfer device 86. It's okay.
  • the substrate bonding system includes a particle beam source that activates the bonding surface of the substrates W1, W2 by irradiating the substrates W1, W2 with a particle beam, as shown in FIG. 31, for example. It may be equipped with a conversion processing device 10002.
  • the activation processing apparatus 10002 includes a chamber 10212, a stage 10210 that holds substrates W1 and W2, a particle beam source 10061, and a beam source transport section 10063. Note that in FIG. 31, the same components as in each embodiment are given the same reference numerals as in FIG. 2.
  • the activation processing apparatus 10002 includes a plasma chamber 10213, an induction coil 215, and a high frequency power source 216.
  • the activation processing apparatus 10002 includes a stage drive unit 10623 that rotates the stage 10210 around one axis perpendicular to its thickness direction, as shown by arrow AR1003 in FIG. Furthermore, the stage 10210 has, for example, a vacuum chuck, and when the substrates W1 and W2 are loaded, it attracts and holds the substrates W1 and W2.
  • the particle beam source 10061 is, for example, a fast atom beam (FAB) source, and includes a discharge chamber 10612, an electrode 10611 disposed in the discharge chamber 10612, a beam source driver 10613, and a nitrogen gas source that drives nitrogen gas into the discharge chamber. 10612 .
  • the peripheral wall of the discharge chamber 10612 is provided with an FAB radiation port 10612a that emits neutral atoms.
  • the discharge chamber 10612 is made of carbon material.
  • the discharge chamber 10612 has a long box shape, and a plurality of FAB radiation ports 10612a are arranged in a straight line along the longitudinal direction of the discharge chamber 10612.
  • the beam source driver 10613 includes a plasma generator (not shown) that generates nitrogen gas plasma in the discharge chamber 10612 and a DC power supply (not shown) that applies a DC voltage between the electrode 10611 and the peripheral wall of the discharge chamber 10612. (not shown).
  • the beam source driver 10613 applies a DC voltage between the peripheral wall of the discharge chamber 10612 and the electrode 10611 while generating nitrogen gas plasma in the discharge chamber 10612 . At this time, nitrogen ions in the plasma are attracted to the peripheral wall of the discharge chamber 10612.
  • the nitrogen ions heading toward the FAB radiation port 10612a receive electrons from the peripheral wall of the discharge chamber 10612 formed from a carbon material at the outer periphery of the FAB radiation port 10612a when passing through the FAB radiation port 10612a.
  • the nitrogen ions then become electrically neutralized nitrogen atoms and are emitted to the outside of the discharge chamber 10612.
  • some of the nitrogen ions cannot receive electrons from the peripheral wall of the discharge chamber 10612 and are emitted outside the discharge chamber 10612 as nitrogen ions.
  • part or all of the inside of the FAB housing may be formed of Si. By doing so, Si particles are emitted at the same time as the Ar beam, so Si is implanted into the interface and OH groups are attached to the implanted Si, so more OH groups can be generated and the bond strength can be increased. can.
  • the beam source transport unit 10063 includes a long support rod 10631 that is inserted into a hole 10212a provided in the chamber 10212 and supports the particle beam source 10061 at one end, and supports the support rod 10631 at the other end of the support rod 10631. and a support drive unit 10633 that drives the support body 10632.
  • the beam source transport section 10063 has a bellows 10634 interposed between the outer periphery of the hole 10212a of the chamber 10212 and the support 10632 in order to maintain the degree of vacuum within the chamber 10212.
  • the support body driving unit 10633 drives the support body 10632 in the direction in which the support rod 10631 is inserted into and removed from the chamber 10212 as shown by the arrow AR1001 in FIG. The position of the particle beam source 10061 within 10212 is changed.
  • the beam source transport unit 10063 moves the particle beam source 10061 in a direction perpendicular to the direction in which the plurality of FAB radiation ports 10612a are arranged.
  • the activation processing apparatus 10002 also includes a nitrogen gas supply section 220A that supplies nitrogen gas into the chamber 10212 via a supply pipe 223A. Then, when a high frequency current is supplied to the induction coil 215 while N 2 gas is introduced into the plasma chamber 10213, a plasma PLM2 is formed within the plasma chamber 10213. At this time, only the radicals contained in the plasma PLM2 generated within the plasma chamber 10213 flow down to the lower part of the plasma chamber 10213.
  • the pressure inside the chamber 10212 is evacuated to about 10 -3 Pa using, for example, a turbo molecular pump, but during radical treatment, the pressure inside the chamber 10212 is reduced to about several tens of Pa. Do it by raising it.
  • This activation processing apparatus 10002 first moves the particle beam source 10061 in the X-axis direction while irradiating the bonding surface of the substrates W1 and W2 with a particle beam.
  • the activation processing apparatus 10002 irradiates the bonding surface of the substrates W1 and W2 with a particle beam while moving the particle beam source 10061 in the +X direction, and then irradiates the bonding surface of the substrates W1 and W2 with the particle beam while moving the particle beam source 10061 in the -X direction.
  • a particle beam is irradiated onto the joint surface of W1 and W2.
  • the moving speed of the particle beam source 10061 is set to, for example, 1.2 to 14.0 mm/sec.
  • the power supplied to the particle beam source 10061 is set to, for example, 1 kV and 100 mA.
  • the flow rate of nitrogen gas or oxygen gas introduced into the discharge chamber 10612 of the particle beam source 10061 is set to, for example, 100 sccm.
  • the activation processing apparatus 10002 inverts the stage 10210 so that the joint surfaces of the substrates W1 and W2 face vertically upward.
  • the activation processing apparatus 10002 then irradiates the bonding surface of the substrates W1 and W2 with nitrogen radicals generated within the plasma chamber 10213.
  • the imaging units 501A, 501B, and 501C are of a so-called reflective type each having an imaging element and a coaxial illumination system, but the configuration of the imaging unit is not limited to this.
  • the imaging unit includes an imaging element (not shown) and a light source (not shown) disposed at positions facing each other across the substrates W1 and W2 in the thickness direction of the substrates W1 and W2, and It may be a so-called transmission type configuration in which the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c are imaged in an arrangement in which the light transmitted through the emission substrates W1 and W2 is received by an image sensor.
  • the substrate bonding apparatus 1 images the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c provided on the substrates W1 and W2 with three imaging units 501A, 501B, and 501C.
  • imaging units 501A, 501B, and 501C An example was explained.
  • the number of imaging units is not limited to three; for example, a substrate bonding apparatus may include two imaging units, and the two imaging units may image two alignment marks provided on each of the substrates W1 and W2. It may be something that does.
  • the substrate bonding apparatus is provided with an imaging unit position adjustment unit that moves each of the two imaging units in a vertical direction and in a horizontal direction perpendicular to the optical axis direction and the vertical direction of each of the two imaging units. There may be.
  • the substrate bonding apparatus rotates the stage 141 so that the two alignment marks are positioned between the plurality of electrodes 1411b, 1412b, 1421b, 1422b of the electrostatic chucks 1411, 1412, 1421, 1422, and then Receive W1 and W2. Then, the substrate bonding apparatus may move the two imaging units to a position where the alignment marks of each of the substrates W1 and W2 can be imaged, and then allow the two imaging units to image the alignment marks.
  • the substrate bonding apparatus may include one imaging section and an imaging section position adjustment section that moves one imaging section in the horizontal direction.
  • a light source position adjustment section (not shown) that moves the light source according to the positions of the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c is provided. ) may be provided.
  • the gas supply unit 1492 may supply a gas containing ions, and the gas discharge holes 1411c, 1412c, 1421c, 1422c, 1431c, and 1432c may discharge the gas containing ions.
  • the residual electrostatic force of the electrostatic chucks 1411, 1421, 1412, and 1422 is neutralized by the ions contained in the gas, so there is an advantage that the substrates W1 and W2 are easily peeled off from the stage 141 and the head 142.
  • the substrate bonding apparatus 1 it is determined whether at least one of the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c overlaps with any of the electrostatic chucks 1411, 1412, 1421, and 1422. It may be something to judge.
  • the substrate bonding process executed by the substrate bonding system according to this modification will be described in detail with reference to FIG. 32. Note that in FIG. 32, the same processes as in Embodiment 1 are given the same reference numerals as in FIG.
  • the substrate bonding apparatus 1 executes a distance measuring process in which the distance measuring unit 1493 measures the distance between the stage 141 and the head 142 at three locations, the stage 141 and the head 142 (step S1).
  • the substrate bonding apparatus 1 connects the bonding surface of the substrate W1 and the substrate W2 based on the measured distances between the stage 141 and the head 142 at three locations, the stage 141 and the head 142, and the thicknesses of the substrates W1 and W2. Calculate the distance between the joint surface and the joint surface.
  • the substrate bonding apparatus 1 moves the head 142 vertically downward to bring the substrates W1 and W2 closer to each other (step S2).
  • the substrate bonding apparatus 1 acquires captured images of the two substrates W1 and W2 from the imaging units 501A, 501B, and 501C of the position measurement unit 500. Based on the acquired captured image, the substrate bonding apparatus 1 determines that at least one of the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c used for calculating the amount of positional deviation is the electrostatic chuck 1411, 1412, 1421. , 1422 (step S11001).
  • step S11001: No the processes from step S3 onwards are executed.
  • the substrate bonding apparatus 1 determines that at least one of the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c used for calculating the amount of positional deviation overlaps with the electrostatic chucks 1411, 1412, 1421, and 1422.
  • Step S11001 Yes).
  • the transport device 84 takes out the substrates W1 and W2 from the substrate bonding device 1 (step S11002). Subsequently, the substrate bonding apparatus 1 rotates the stage 141 and head 142 by a preset angle (step S11003). After that, the transport device 84 retransports the substrates W1 and W2 to the substrate bonding apparatus 1 (step S11004). Then, the process of step S1 is executed again.
  • control unit 9 calculates the horizontal offset vector so that the amount of positional deviation of each set of a plurality of alignment marks imaged by the imaging unit 73 of the inspection device 7 is minimized.
  • the present invention is not limited to this, and if at least one of the substrates W1 and W2 has a plurality of chip formation regions that serve as the base of the chip, the control unit 9 controls the relative relationship between the substrates W1 and W2 among the plurality of chip formation regions.
  • the horizontal offset vector may be calculated so that the proportion of chip formation areas that become defective due to positional deviation is minimized.
  • the control unit 9 detects a defect due to a misalignment of the substrate W2 with respect to the substrate W1 among the plurality of chip formation areas.
  • the amount of positional deviation and the direction of positional deviation in each of the chip forming areas other than the chip forming area are calculated, and the positional deviation vector determined by the calculated amount of positional deviation and the positional deviation direction is calculated along each of the two axes directions that intersect with each other.
  • the horizontal offset vector may be calculated based on the separated axial direction components, that is, the XY direction components and the rotational direction components, and the separated XY direction components and the rotational direction components.
  • both the stage 141 and the head 142 have the pressing mechanisms 1441 and 1432, respectively.
  • the present invention is not limited to this, and only one of the stage 141 and the head 142 has the pressing mechanism. It may be.
  • the holding force of the electrostatic chuck 1413 provided on the stage 141 can be set low because the weight of the substrate W1 acts in a direction to bring it into close contact with the stage 141. Therefore, when the pressing mechanism 1441 is provided only on the stage 141, when pressing the center part of the substrate W1, sticking of the substrate W1 to the stage 141 due to the residual electrostatic force of the electrostatic chuck 1431 can be suppressed. preferable.
  • the substrate bonding system may perform so-called heat-pressure bonding in which the substrates W1 and W2 are bonded together through a solder portion and a metal portion, or may apply a voltage between the substrates W1 and W2. By doing so, so-called anodic bonding may be performed to bond the substrates W1 and W2 together.
  • the corrected movement amount may be calculated by directly taking the calculated horizontal offset amount into consideration when calculating the alignment between the substrate W1 and the substrate W2.
  • the inspection device 7 images all of the plurality of alignment marks including the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c.
  • the present invention is not limited to this, and the inspection device 7 may image all other alignment marks different from the alignment marks MK1a, MK2a, MK1b, MK2b, MK1c, and MK2c used for alignment in the substrate bonding device 1. Good too.
  • the bonding apparatus 1 uses the representative positions of the alignment marks MK2a, MK2b, and MK2c that are shifted by an amount that reflects the direction and magnitude indicated by the above-described horizontal offset vector calculated in advance, to bond the substrate W1. It may also be one that executes alignment of the substrate W2.
  • the present invention is suitable for manufacturing, for example, CMOS image sensors, memories, arithmetic elements, and MEMS.
  • Substrate bonding device 2,10002: Activation processing device, 3: Cleaning device, 7: Inspection device, 9: Control unit, 71, 141, 210, 2141, 3141, 3210, 4141, 5141, 6141, 7141, 10210: stage, 72: light source, 73, 501A, 501B, 501C, 501D: imaging section, 74: horizontal drive section, 82, 84, 86: transport device, 83, 85: load lock section, 120, 831, 843 , 851, 863, 10212: Chamber, 120a: Window, 121a, 201a: Vacuum pump, 121b, 201b: Exhaust pipe, 121c, 201c: Exhaust valve, 141b, 142b: Through hole, 142, 2142, 3142, 4142, 5142, 6142, 7142: Head, 143, 10623: Stage drive unit, 144: Head drive unit, 145: XY direction drive unit, 146: Lifting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

基板接合装置は、ステージ、ヘッドにおける第2領域に設けられた気体吐出孔(1413c、1423c)と、基板の中央部同士を接触させる前に、基板の周部が静電チャックに保持された状態で、静電チャック(1413、1423)による基板の保持を解除するとともに、気体吐出孔(1413c、1423c)から気体を吐出させるようにチャック駆動部および気体供給部(1492)を制御する制御部と、を備える。そして、ステージ、ヘッドは、第2領域に設けられ、気体吐出孔(1413c、1423c)に連通する溝(1413d、1423d)を有する。

Description

基板接合システムおよび基板接合方法
 本発明は、基板接合システムおよび基板接合方法に関する。
 2つの基板同士をボンディングするための装置であって、ボンディング時において基板が取り付けられる取付装置を備えた装置が提案されている(例えば特許文献1参照)。特許文献1に記載された取付装置は、基板の周部を真空チャックにより保持する外側の環状部分と、基板の中央部を取付装置から突出させるように基板を変形させる変形手段と、を有する。そして、この装置は、2つの基板の接合面の中央部同士を接触させた状態にしてから、一方の基板の周部の真空チャックによる吸着保持を解除する。これにより、一方の基板の周部に作用する復元力および重力により一方の基板の中心を起点として半径方向外側に向かって接触部分が広がっていき一方の基板の周面に至る。このようにして、2つの基板同士をボンディングする。
国際公開第2013/023708号
 しかしながら、特許文献1に記載されている装置の場合、一方の基板の周部の吸着保持を解除する際、一方の基板の周部を吸着保持する真空チャックを停止させたとしても基板の周部に生じる静電力により取付装置の基板の取付面に貼り付いてしまう場合がある。この場合、一方の基板に作用する力の大きさが不均一となり、基板同士の接触部分が広がる速度にばらつきが生じてしまい、その結果、互いに接合された2つの基板全体における接合位置精度が低下してしまう虞がある。
 本発明は、上記事由に鑑みてなされたものであり、互いに接合された基板全体における接合位置精度を高めることができる基板接合システムおよび基板接合方法を提供することを目的とする。
 上記目的を達成するため、本発明に係る基板接合システムは、
 第1基板と第2基板とを接合する基板接合システムであって、
 前記第1基板を保持する第1基板保持部と、
 前記第2基板の接合面を前記第1基板の接合面に対向させた状態で前記第2基板を保持する第2基板保持部と、
 前記第1基板保持部における予め設定された基板保持位置に配置された前記第1基板の周部に対向する第1領域に設けられた少なくとも1つの 第1静電チャックと、
 前記第1基板保持部における前記第1領域の内側の第2領域に設けられ前記基板保持位置に配置された前記第1基板における前記第2領域に対向する部分を保持する少なくとも1つの第2静電チャックと、
 前記第1静電チャックと前記第2静電チャックとを各別に駆動するチャック駆動部と、
 前記第1基板保持部における前記第2領域に設けられ前記第1基板側に向かって気体を吐出する気体吐出部と、
 前記気体吐出部に気体を供給する気体供給部と、
 前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とを接触させる前に、前記第1基板の周部が前記第1静電チャックに保持された状態で、前記第2静電チャックによる前記第1基板の保持を解除するとともに、前記気体吐出部から気体を吐出させるように前記チャック駆動部および前記気体供給部を制御する制御部と、を備え、
 前記第1基板保持部は、前記第2領域に設けられ、前記気体吐出部に連通する第1凹部を有する。
 他の観点から見た本発明に係る基板接合方法は、
 第1基板と第2基板とを接合する基板接合方法であって、
 第1基板保持部における予め設定された基板保持位置に配置された前記第1基板の周部に対向する第1領域に設けられた第1静電チャックに、前記第1基板の周部を保持させるステップと、
 前記第2基板の接合面を前記第1基板の接合面に対向させた状態で前記第2基板を第2基板保持部に保持させるステップと、
 前記第1基板の周部が前記第1静電チャックに保持された状態で、前記第1領域の内側の第2領域に設けられ気体吐出部に連通する第1凹部を有する前記第1基板保持部における前記気体吐出部に前記第1凹部へ気体を吐出させるステップと、
 前記第1凹部へ気体を吐出した後、前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とを接触させるステップと、を含む。
 本発明によれば、第1基板保持部が、第2領域に設けられ気体吐出部に連通する第1凹部を有し、第1基板の接合面の中央部と第2基板の接合面の中央部とが接触し且つ第1基板の周部が前記第1静電チャックに保持された状態で、気体吐出部から第1凹部を通じて第1基板保持部と第1基板との間に気体を吐出しつつ、第1基板と第2基板とを接触させる。これにより、第2静電チャックによる保持を解除した後において第2静電チャックに残る残留静電力による第1基板を第1基板保持部に密着させる力に対して、第1凹部から吐出される気体の圧力を有効に作用させることで、第1基板が、第1基板保持部に密着させる力に対してフリーな状態となる。そして、この状態で、第1基板と第2基板との中央部同士を臨界圧力以上の圧力で加圧して接触させることで、第1基板の第1基板保持部への密着力の影響の無い状態で第1基板、第2基板の中央部から周部に向かって接合を進めさせることができるので、第1基板、第2基板を歪み無く全面で高い位置精度で接合することができる。
本発明の実施の形態1に係る基板接合システムの概略構成図である。 実施の形態1に係る活性化処理装置の概略正面図である。 実施の形態1に係る基板接合装置の概略正面図である。 実施の形態1に係るステージおよびヘッド付近を示す概略斜視図である。 実施の形態1に係るヘッドを微調整する方法を説明する図である。 実施の形態1に係るステージおよびヘッドの概略平面図である。 実施の形態1に係るステージおよびヘッドの一部の拡大図である。 実施の形態1に係るステージおよびヘッドの第1領域の一部の平面図である。 実施の形態1に係るステージおよびヘッドの第2領域の一部の平面図である。 実施の形態1に係るステージおよびヘッドの図5AのB-B線における概略断面矢視図である。 実施の形態1に係るステージおよびヘッドの図5AのA-A線における概略断面矢視図である。 実施の形態1に係る位置測定部の概略平面図である。 接合する2つの基板の一方に設けられた3つのアライメントマークを示す図である。 接合する2つの基板の他方に設けられた3つのアライメントマークを示す図である。 アライメントマークの撮影画像を示す概略図である。 アライメントマークが互いにずれている状態を示す概略図である。 実施の形態1に係る検査装置の概略図である。 実施の形態1に係る基板接合システムが実行する基板接合方法の流れを示すフローチャートである。 実施の形態1に係る静電チャックとアライメントマークとを示し、静電チャックとアライメントマークとが重なった状態を示す概略平面図である。 実施の形態1に係る静電チャックとアライメントマークとを示し、静電チャックとアライメントマークとが重なっていない状態を示す概略平面図である。 実施の形態1に係る基板接合装置が実行する基板接合工程の流れを示すフローチャートである。 実施の形態1に係るステージおよびヘッドに保持された基板の中央部をステージおよびヘッドからフリーな状態にする様子を示す概略断面図である。 実施の形態1に係るステージおよびヘッドに保持された基板の接合面の中央部同士を接触させた状態を示す概略断面図である。 実施の形態1に係るステージおよびヘッドに保持された基板同士を近づける様子を示す概略断面図である。 実施の形態1に係るステージおよびヘッドに保持された基板同士を近づける様子を示す概略断面図である。 実施の形態に係るステージおよびヘッドに保持された基板の接合面の周部同士を接触させた状態を示す概略断面図である。 実施の形態1に係るヘッドをステージから離脱させる様子を示す概略断面図である。 実施の形態1に係る検査装置での撮像画像から得られる位置ずれベクトルの分布を示す図であって、基板同士の接合時に水平オフセットベクトルおよび突出オフセット量の補正を行わない場合を示し、(A)は各アライメントマークの位置ずれ量および位置ずれ方向を示す位置ずれベクトルを示す図であり、(B)は位置ずれベクトルのXY方向成分を示す図であり、(C)は位置ずれベクトルの回転方向成分を示す図であり、(D)は位置ずれベクトルの反り成分を示す図であり、(E)は位置ずれベクトルの歪み成分を示す図である。 アライメントマークのオフセットベクトルを説明するための図である。 アライメントマークのオフセットベクトルを説明するための図である。 アライメントマークのオフセットベクトルを説明するための図である。 アライメントマークのオフセットベクトルを説明するための図である。 アライメントマークのオフセットベクトルを説明するための図である。 比較例に係る静電チャックとアライメントマークとが重なった状態を示す概略平面図である。 比較例に係る静電チャックとアライメントマークとを示し、基板の姿勢を変更した後の状態を示す概略平面図である。 実施の形態2に係るステージおよびヘッドの概略平面図である。 実施の形態2に係るステージおよびヘッドの図21AのC-C線における断面矢視図である。 実施の形態2に係るステージおよびヘッドに保持された基板の接合面の中央部同士を接触させた状態を示す概略断面図である。 実施の形態2に係るステージおよびヘッドに保持された基板それぞれに押圧部材を当接させた様子を示す概略断面図である。 実施の形態2に係るステージおよびヘッドに保持された基板同士を近づける様子を示す概略断面図である。 実施の形態2に係るステージおよびヘッドに保持された基板の接合面の周部同士を接触させた状態を示す概略断面図である。 変形例に係るに係るステージおよびヘッドの概略平面図である。 変形例に係るステージおよびヘッドの一部の拡大図である。 変形例に係るに係るステージおよびヘッドの概略平面図である。 変形例に係るステージおよびヘッドの一部の拡大図である。 変形例に係るに係るステージおよびヘッドの概略平面図である。 変形例に係るステージおよびヘッドの図26AのD-D線における概略断面矢視図である。 変形例に係るステージおよびヘッドの第2領域の一部の平面図である。 変形例に係るステージおよびヘッドの図26AのE-E線における概略断面矢視図である。 変形例に係るに係るステージおよびヘッドの概略平面図である。 変形例に係るステージおよびヘッドの断面図である。 変形例に係る撮像部の概略平面図である。 変形例に係る活性化処理装置の概略正面図である。 変形例に係る基板接合装置が実行する基板接合工程の流れを示すフローチャートである。
(実施の形態1)
 以下、本発明の実施の形態に係る基板接合装置について、図を参照しながら説明する。本実施の形態に係る基板接合装置は、2つの基板同士を予め設定された基準真空度以上の真空度の真空チャンバ内で、互いに接合される接合面に対して活性化処理が施された2つの基板同士を接触させることにより、2つの基板を接合する。
 本実施の形態に係る基板接合システムは、図1に示すように、導入ポート811、812と、取り出しポート813と、搬送装置82、84、86と、洗浄装置3と、活性化処理装置2と、基板接合装置1と、ロードロック部83、85と、検査装置7と、搬送装置82、84、86、洗浄装置3、活性化処理装置2、基板接合装置1、ロードロック部83、85および検査装置7の動作を制御する制御部9と、を備える。搬送装置82は、先端部に基板を保持する保持部が設けられたアームを有する搬送ロボット821を備える。搬送ロボット821は、導入ポート811、812および取り出しポート813の並び方向に沿って移動可能であるとともに、旋回することによりアームの先端部の向きを変更することができる。搬送装置82には、HEPA(High Efficiency Particulate Air)フィルタ(図示せず)が設けられている。これにより、搬送装置82内はパーティクルが極めて少ない大気圧環境になっている。
 洗浄装置3は、搬送されてきた基板に向けて水、洗浄液またはNガスを吐出しながら洗浄する。洗浄装置3は、基板を支持するステージ(図示せず)と、ステージを鉛直方向に直交する面内で回転させる回転駆動部(図示せず)と、超音波またはメガソニック振動を与えた水、洗浄液またはNガスを吐出する洗浄ノズル(図示せず)と、を有する。そして、洗浄装置3は、洗浄ノズルを基板W1、W2の径方向へ揺動させながら洗浄ノズルから超音波を印加した水を基板の接合面に吹き付けながら、ステージを回転させることにより基板W1、W2の接合面全面を洗浄する。そして、洗浄装置3は、洗浄ノズルによる水の吐出を停止させた状態でステージを回転させることにより基板W1、W2をスピン乾燥する。洗浄装置3にも、搬送装置82と同様に、HEPAフィルタ(図示せず)が設けられている。
 ロードロック部83は、チャンバ831と、チャンバ831内に連通する排気管(図示せず)と、排気管を通じてチャンバ831内の気体を排出する真空ポンプ(図示せず)と、排気管に介挿された排気弁(図示せず)と、を備える。ロードロック部83は、排気弁を開状態にして真空ポンプを作動させてチャンバ831内の気体を、排気管を通してチャンバ831外へ排出することにより、チャンバ831内の気圧を低減(減圧)する。また、ロードロック部83は、チャンバ831における搬送装置82側に配設されたゲート8331と、チャンバ831における搬送装置84側に配設されたゲート8321と、ゲート8331、8321それぞれを開閉駆動するゲート駆動部8332、8322と、を備える。また、ロードロック部83は、チャンバ831内において基板W1、W2の姿勢を調整するアライメント機構(図示せず)を備える。ゲート8331、8321は、それぞれ、チャンバ831における搬送装置82側に貫設された開口(図示せず)と搬送装置84側に貫設された開口(図示せず)とを覆うように設けられている。また、ロードロック部83は、チャンバ831と、チャンバ831内に連通する排気管(図示せず)と、排気管を通じてチャンバ831内の気体を排出する真空ポンプ(図示せず)と、排気管に介挿された排気弁(図示せず)と、を備える。ロードロック部83は、排気弁を開状態にして真空ポンプを作動させてチャンバ831内の気体を、排気管を通してチャンバ831外へ排出することにより、チャンバ831内の気圧を低減(減圧)する。また、チャンバ831は、ゲート8331を介して搬送装置82に接続され、ゲート8321を介して搬送装置84に接続されている。また、ロードロック部85も、ロードロック部83と同様に、チャンバ851と排気管(図示せず)と真空ポンプ(図示せず)と排気弁(図示せず)とを備える。チャンバ851は、ゲート8531を介して搬送装置82に接続され、ゲート8521を介して搬送装置86に接続されている。
 搬送装置84は、チャンバ843と、チャンバ843内に連通する排気管(図示せず)と、排気管を通じてチャンバ843内の気体を排出する真空ポンプ(図示せず)と、排気管に介挿された排気弁(図示せず)と、基板W1、W2を搬送する搬送ロボット841と、を備える。搬送装置84は、排気弁を開状態にして真空ポンプを作動させてチャンバ843内の気体を、排気管を通してチャンバ843外へ排出することにより、チャンバ843内を減圧状態で維持する。チャンバ843は、ゲート1211を介して基板接合装置1に接続され、ゲート8321を介してロードロック部83に接続されている。ゲート1211は、搬送ロボット841が基板W1、W2を基板接合装置1内へ搬送する際、開状態となる。搬送ロボット841は、先端部に基板を保持する保持部が設けられたアームを有し、旋回することによりアームの先端部の向きを変更することができる。また、保持部は、例えば静電チャックであり、基板W1、W2における接合面側とは反対側を吸着保持する。また、搬送装置84は、基板W1、W2の周部の複数箇所を撮像する搬送装置撮像部844を有する。
 搬送装置86は、搬送装置84と同様に、チャンバ863と排気管(図示せず)と真空ポンプ(図示せず)と排気弁(図示せず)と搬送ロボット861と、を備える。チャンバ863は、ゲート8621を介して活性化処理装置2に接続され、ゲート8521を介してロードロック部85に接続されている。搬送ロボット861は、搬送ロボット841と同様に、先端部に基板を保持する保持部が設けられたアームを有し、旋回することによりアームの先端部の向きを変更することができる。また、保持部は、例えば静電チャックであり、基板W1、W2における接合面側とは反対側を吸着保持する。
 活性化処理装置2は、基板の接合面に対して、窒素ガスを用いた反応性イオンエッチングと窒素ラジカルの照射との少なくとも一方を行うことにより接合面を活性化する活性化処理を行う。活性化処理装置2は、誘導結合プラズマ(ICP:Inductively Coupled Plasma)を発生させる装置であり、図2に示すように、ステージ210と、処理チャンバ212と、プラズマチャンバ213と、プラズマチャンバ213の外側に巻回された誘導コイル215と、誘導コイル215へ高周波電流を供給する高周波電源216と、を有する。プラズマチャンバ213は、例えば石英ガラスから形成されている。また、活性化処理装置2は、窒素ガス供給部220Aと、酸素ガス供給部220Bと、を有する。窒素ガス供給部220Aは、窒素ガス貯留部221Aと、供給弁222Aと、供給管223Aと、を有する。酸素ガス供給部220Bは、酸素ガス貯留部221Bと、供給弁222Bと、供給管223Bと、を有する。ステージ210には、基板W1、W2が載置される。処理チャンバ212は、プラズマチャンバ213内に連通している。処理チャンバ212は、排気管201bと排気弁201cとを介して真空ポンプ201aに接続されている。活性化処理装置2は、排気弁201cを開状態にして真空ポンプ201aを作動させて処理チャンバ212内の気体を、排気管201bを通して処理チャンバ212外へ排出することにより、処理チャンバ212内の気圧を低減(減圧)する。
 高周波電源216としては、誘導コイル215へ例えば27MHzの高周波電流を供給するものを採用することができる。そして、プラズマチャンバ213内にNガスが導入された状態で、高周波電流が誘導コイル215へ供給されると、プラズマチャンバ213内にプラズマPLMが形成される。ここで、誘導コイル215によりプラズマチャンバ213内にプラズマ中に含まれるイオンがトラップされるため、プラズマチャンバ213と処理チャンバ212との間の部分にトラップ板が無い構成であってもよい。誘導コイル215と、高周波電源216と、窒素ガス供給部220Aとから、プラズマチャンバ213内にプラズマPLMを発生させステージ210に支持された基板W1、W2の接合面へプラズマ中のNラジカルを供給するプラズマ発生源が構成される。なお、ここでは、活性化処理装置2として、誘導コイル215と、高周波電源216と、を備えるICPを発生させる装置である例について説明したが、これに限定されるものではなく、代わりにプラズマチャンバ213の外側に配置された平板電極と平板電極に電気的に接続された高周波電源と、プラズマチャンバ213と処理チャンバ212との間の部分に配置されプラズマ中のイオンをトラップするトラップ板と、を備える容量結合プラズマ(CCP:Capacitively Coupled Plasma)を発生させる装置であってもよい。この場合、高周波電源としては、例えば27MHzの高周波バイアスを印加するものを採用することができる。そして、高周波電源からプラズマチャンバ内へ供給される電力は、例えば250Wに設定される。バイアス印加部217は、ステージ210に支持された基板W1、W2に高周波バイアスを印加する高周波電源である。このバイアス印加部217としては、例えば13.56MHzの高周波バイアスを発生させるものを採用することができる。このように、バイアス印加部217により基板W1、W2に高周波バイアスを印加することにより、基板W1、W2の接合面の近傍に運動エネルギを有するイオンが繰り返し基板W1、W2に衝突するシース領域が発生する。そして、このシース領域に存在する運動エネルギを有するイオンにより基板W1、W2の接合面がエッチングされる。
 基板接合装置1は、図3に示すように、チャンバ120と第1基板保持部であるステージ141と第2基板保持部であるヘッド142とステージ駆動部143とヘッド駆動部144と基板加熱部1481、1482と位置測定部500とを備える。また、基板接合装置1は、ステージ141とヘッド142との間の距離を測定する距離測定部1493を備える。なお、以下の説明において、適宜図1の±Z方向を上下方向、XY方向を水平方向として説明する。チャンバ120は、基板W1、W2が配置される領域S1を予め設定された基準真空度以上の真空度で維持する。チャンバ120は、排気管121bと排気弁121cとを介して真空ポンプ121aに接続されている。排気弁121cを開状態にして真空ポンプ121aを作動させると、チャンバ120内の気体が、排気管121bを通してチャンバ120外へ排出され、チャンバ120内が減圧雰囲気で維持される。また、排気弁121cの開閉量を変動させて排気量を調節することにより、チャンバ120内の気圧(真空度)を調節することができる。また、チャンバ120の一部には、位置測定部500により基板W1、W2間における相対位置を測定するために使用される窓部120aが設けられている。
 ステージ駆動部143は、ステージ141をXY方向へ移動させたり、Z軸周りに回転させたりすることができる保持部駆動部である。
 ヘッド駆動部144は、ヘッド142を鉛直上方または鉛直下向(図1の矢印AR1参照)へ昇降させる昇降駆動部146と、ヘッド142をXY方向へ移動させるXY方向駆動部145と、ヘッド142をZ軸周りの回転方向(図1の矢印AR2参照)に回転させる回転駆動部147と、を有する。XY方向駆動部145と回転駆動部147とから、ヘッド142を鉛直方向に直交する方向(XY方向、Z軸周りの回転方向)へ移動させる保持部駆動部を構成する。また、ヘッド駆動部144は、ヘッド142のステージ141に対する傾きを調整するためのピエゾアクチュエータ1456と、ヘッド142に加わる圧力を測定するための第1圧力センサ1457と、を有する。XY方向駆動部145および回転駆動部147が、X方向、Y方向、Z軸周りの回転方向において、ヘッド142をステージ141に対して相対的に移動させることにより、ステージ141に保持された基板W1とヘッド142に保持された基板W2とのアライメントが可能となる。
 昇降駆動部146は、ヘッド142を鉛直方向へ移動させることにより、ステージ141とヘッド142とを互いに近づけたり、ヘッド142をステージ141から遠ざけたりする。昇降駆動部146がヘッド142を鉛直下方へ移動させることにより、ステージ141に保持された基板W1とヘッド142に保持された基板W2とが接触する。そして、基板W1、W2同士が接触した状態において昇降駆動部146がヘッド142に対してステージ141に近づく方向への駆動力を作用させると、基板W2が基板W1に押し付けられる。また、昇降駆動部146には、昇降駆動部146がヘッド142に対してステージ141に近づく方向へ作用させる駆動力を測定する圧力センサ148が設けられている。圧力センサ148の測定値から、昇降駆動部146により基板W2が基板W1に押し付けられたときに基板W1、W2の接合面に作用する圧力が検出できる。圧力センサ148は、例えばロードセルから構成される。
 ピエゾアクチュエータ1456、第1圧力センサ1457は、それぞれ図4Aに示すように、3つずつ存在する。3つのピエゾアクチュエータ1456と3つの第1圧力センサ1457とは、ヘッド142とXY方向駆動部145との間に配置されている。3つのピエゾアクチュエータ1456は、ヘッド142の上面における同一直線上ではない3つの位置、平面視略円形のヘッド142の上面の周部においてヘッド142の周方向に沿って略等間隔に並んだ3つの位置に固定されている。3つの第1圧力センサ1457は、それぞれピエゾアクチュエータ1456の上端部とXY方向駆動部145の下面とを接続している。3つのピエゾアクチュエータ1456は、各別に上下方向に伸縮可能である。そして、3つのピエゾアクチュエータ1456が伸縮することにより、ヘッド142のX軸周りおよびY軸周りの傾きとヘッド142の上下方向の位置とが微調整される。例えば図4Bの破線で示すように、ヘッド142がステージ141に対して傾いている場合、3つのピエゾアクチュエータ1456のうちの1つを伸長させて(図4Bの矢印AR3参照)ヘッド142の姿勢を微調整することにより、ヘッド142の下面とステージ141の上面とが略平行な状態にすることができる。また、3つの圧力センサ1457は、ヘッド142の下面における3つの位置での加圧力を測定する。そして、3つの圧力センサ1457で測定された加圧力が等しくなるように3つのピエゾアクチュエータ1456それぞれを駆動することにより、ヘッド142の下面とステージ141の上面とを略平行に維持しつつ基板W1、W2同士を接触させることができる。
 ステージ141とヘッド142とは、チャンバ120内において、鉛直方向で互いに対向するように配置されている。ステージ141は、その上面で基板W1を保持する第1基板保持部であり、ヘッド142は、その下面で基板W2を保持する第2基板保持部である。ここで、ステージ141は、その上面が基板W1全体に面接触した状態で基板W1を支持し、ヘッド142は、その下面が基板W2全体に面接触した状態で基板W2を支持する。ステージ141とヘッド142とは、例えば透光性を有するガラスのような透光性材料から形成されている。ステージ141およびヘッド142には、図5Aおよび図5Bに示すように、基板W1、W2を保持する静電チャック1411、1412、1413、1421、1422、1423が設けられている。静電チャック1411、1421は、基板W1、W2の周部を保持する。また、ステージ141、ヘッド142の中央部には、平面視円形の貫通孔141b、142bが設けられている。更に、ステージ141、ヘッド142には、後述の気体吐出孔1411c、1421cから気体が吐出されたときのステージ141、ヘッド142と基板W1、W2との間の領域の気圧を検出する気圧検出部(図示せず)が設けられている。
 静電チャック1411、1412、1421、1422は、ステージ141、ヘッド142に基板W1、W2が保持された状態で、ステージ141、ヘッド142における基板W1、W2の周部に対向する円環状の第1領域A1に設けられている第1静電チャックである。静電チャック1411、1412は、それぞれ、ステージ141における第1領域A1においてステージ141の中央部を中心とした予め設定された2つのサブ環状領域A11、A12それぞれに設けられている。そして、静電チャック1411、1412は、それぞれ、ステージ141における予め設定された基板保持位置に配置された基板W1における2つのサブ環状領域A11、A12それぞれに対向する部分を保持する。また、静電チャック1421、1422も、それぞれ、ヘッド142における第1領域A1においてヘッド142の中央部を中心とした予め設定された2つのサブ環状領域A11、A12それぞれに設けられている。そして、静電チャック1421、1422は、それぞれ、ヘッド142における予め設定された基板保持位置に配置された基板W2における2つのサブ環状領域A11、A12それぞれに対向する部分を保持する。ここで、基板保持位置は、例えば基板W1、W2の外形寸法が第1領域A1と同一であれば第1領域A1と一致する位置に設定される。
 静電チャック1411、1421は、それぞれ、第1領域A1において、ステージ141、ヘッド142の中央部からステージ141、ヘッド142の周縁に向かう方向へ放射状に延在する複数の電極子1411b、1412bと、ステージ141、ヘッド142の周方向に沿って配設された2つの円環状の端子電極1411a、1421aと、を有する。複数の電極子1411b、1412bは、2つの端子電極1411a、1421aそれぞれの径方向に沿って2つの端子電極1411a、1421aそれぞれから他方の端子電極1421a、1411aに向かって延在している第1電極子である。ここで、端子電極1411a、1421aは、第3端子電極、第4端子電極に相当し、端子電極1411aは、端子電極1421aに比べて小径であり、ステージ141、ヘッド142の中央部側に配設されている。複数の長尺の電極子1411b、1421bは、ステージ141、ヘッド142における第1領域A1において第1領域A1の周方向に沿って交互に並ぶように配置されている。また、端子電極1411a、1421aは、それぞれ、図6Aに示すように、平面視で他方の端子電極1411a,1421aから離れる方向へ突出するように屈曲した屈曲部1411ab、1421abと、ステージ141、ヘッド142の周方向に沿って延在しステージ141、ヘッド142の周方向で隣り合う2つの屈曲部1411ab、1421abの端部同士を連結する細長の連結部1411aa、1421aaと、を有する。ステージ141、ヘッド142の径方向における屈曲部1411ab、1421abと連結部1411aa,1421aaとの間の最大幅Wi4は、例えば後述のアライメントマークの幅よりも長くなるように設定されている。
 また、静電チャック1412、1422も、それぞれ、第1領域A1において、ステージ141、ヘッド142の中央部からステージ141、ヘッド142の周縁に向かう方向へ放射状に延在する複数の電極子1412b、1422bと、ステージ141、ヘッド142の周方向に沿って配設された2つの円環状の端子電極1412a、1422aと、を有する。複数の電極子1412b、1422bは、2つの端子電極1412a、1422aそれぞれの径方向に沿って2つの端子電極1412a、1422aそれぞれから他の端子電極1422a、1412aに向かって延在している第1電極子である。端子電極1412a、1422aは、第3端子電極、第4端子電極に相当し、端子電極1412aは、端子電極1422aに比べて小径であり、ステージ141、ヘッド142の中央部側に配設されている。また、第1領域A1において、静電チャック1412、1422は、静電チャック1411、1421の内側に配設されている。複数の長尺の電極子1412b、1422bは、ステージ141、ヘッド142における第1領域A1において第1領域A1の周方向に沿って交互に並ぶように配置されている。端子電極1411a、1421a、1422a、1412aと複数の電極子1411b、1421b、1412b、1422bとは、例えば金属から形成されている。このように、静電チャック1411、1412、1421、1422が、それぞれ、第1領域A1において、ステージ141、ヘッド142の中央部からステージ141、ヘッド142の周縁に向かう方向へ放射状に延在する複数の電極子1411b、1412b、1421b、1422bを有する。これにより、基板接合装置1は、後述する撮像部501A、501B、501Cにより、複数の電極子1411b、1412b、1421b、1422bの隙間から、後述する基板W1、W2に設けられたアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cを撮像することが可能となっている。
 また、ステージ141、ヘッド142における第1領域A1のサブ環状領域A11には、一部がステージ141、ヘッド142の中央部からステージ141、ヘッド142の周縁に向かう方向へ放射状に延在する部分を有する溝1411d、1421dが形成されている。また、この溝1411d、1421dの一部には、気体供給部1492に接続された気体吐出孔1411c、1421cが設けられている。この気体吐出孔1411c、1421cが気体を吐出する気体吐出部に相当し、溝1411d、1421dが、気体吐出孔1411c、1412cに連通する第2凹部に相当する。ここで、溝1411d、1421dの幅は、例えば0.2mm程度に設定される。溝1411d、1421dは、複数の電極子1411b、1412bそれぞれの延在方向に沿って延在する部分を有する。そして、溝1411d、1421dは、静電チャック1411、1412における、端子電極1411aに電気的に接続された複数の電極子1411bと端子電極1421aに接続された複数の電極子1412bとの間に設けられている。また、ステージ141、ヘッド142における第1領域A1のサブ環状領域A12にも、一部がステージ141、ヘッド142の中央部からステージ141、ヘッド142の周縁に向かう方向へ放射状に延在する部分を有する溝(図示せず)が形成されている。また、この溝1411d、1421dの一部には、気体供給部1492に接続された気体吐出孔(図示せず)が設けられている。このサブ環状領域A12に設けられた気体吐出孔も気体を吐出する気体吐出部に相当し、サブ環状領域A12に設けられた溝も、サブ環状領域A12に設けられた気体吐出孔に連通する第2凹部を構成する第2溝に相当する。この溝も、複数の電極子1411b、1412bそれぞれの延在方向に沿って延在する部分を有する。そして、溝1411d、1421dは、静電チャック1421、1422における、端子電極1411aに電気的に接続された複数の電極子1421bと端子電極1421aに接続された複数の電極子1412bとの間に設けられている。
 静電チャック1413、1423は、ステージ141、ヘッド142における第1領域A1の内側の第2領域A2に設けられた第2静電チャックである。静電チャック1413、1423は、図5Bに示すように、第2領域A2において、ステージ141、ヘッド142の中央部からステージ141、ヘッド142の周縁に向かう方向へ放射状に延在する複数の電極子1413b、1423bと、ステージ141、ヘッド142の周方向に沿って配設された2つの円環状の端子電極1413a、1423aと、を有する。複数の電極子1413b、1423bは、ステージ141、ヘッド142の径方向に沿って2つの端子電極1413a、1423aそれぞれから他の端子電極1423a、1413aに向かって延在している第2電極子である。また、複数の電極子1413b、1423bは、それぞれ、図6Bに示すように、平面視におけるその延在方向に直交する方向の幅がステージ141、ヘッド142の周縁側ほど広くなる平面視楔型の形状を有する。端子電極1413a、1423aは、それぞれ、複数の電極子1413bに電気的に接続された第1端子電極と、複数の電極子1423bに電気的に接続された第2端子電極と、に相当する。
 また、ステージ141、ヘッド142の第2領域A2には、一部がステージ141、ヘッド142の中央部からステージ141、ヘッド142の周縁に向かう方向へ放射状に延在する部分を有する溝1413d、1423dが形成されている。また、ステージ141、ヘッド142における溝1413d、1423dの一部には、気体供給部1492に接続された気体吐出孔1413c、1423cが設けられている。この気体吐出孔1413c、1423cが気体を吐出する気体吐出部に相当し、溝1413d、1423dが、気体吐出孔1413c、1423cに連通する第1凹部を構成する第1溝に相当する。ここで、溝1413d、1423dの幅Wi1は、例えば0.2mm程度に設定される。溝1413d、1423dは、複数の電極子1413b、1423bそれぞれの延在方向に沿って延在する部分を有する。そして、溝1413d、1423dは、静電チャック1413、1423における、端子電極1413aに電気的に接続された複数の電極子1413bと端子電極1423aに接続された複数の電極子1423bとの間に設けられている。また、図7Aに示すように、静電チャック1413、1423のステージ141、ヘッド142の表面との間の幅Wi3は、溝1413d、1423dの深さWi2よりも短く設定されており、例えば基板W1、W2がサファイヤ基板、ガラス基板の場合、0.05mm以上0.1mm以下に設定される。また、基板W1、W2がSi基板の場合、5mm程度に設定することができる。端子電極1413a、1423aと複数の電極子1413b、1423bとは、例えばITOのような透明な導電性材料を含む透明導電膜から形成されている。
 静電チャック1411、1412、1413、1421、1422、1423は、チャック駆動部1491に接続されている。チャック駆動部1491は、制御部9から入力される制御信号に基づいて、各静電チャック1411、1412、1413、1421、1422、1423へ電圧を印加することにより静電チャック1411、1412、1413、1421、1422、1423を駆動する。また、チャック駆動部1491は、制御部9から入力される制御信号に基づいて、静電チャック1411、1412、1413、1421、1422、1423を互いに独立して駆動する。
 チャック駆動部1491は、基板W1、W2を静電チャック1411、1412から離脱させる際、静電チャック1411、1412の2つの端子電極1411a,1412aにパルス電圧を印加する。また、チャック駆動部1491は、基板W1、W2を静電チャック1421、1422から離脱させる際も、静電チャック1421、1422の2つの端子電極1421a、1422a間にパルス電圧を印加する。更に、チャック駆動部1491は、基板W1、W2を静電チャック1431、1432から離脱させる際も、静電チャック1413、1423の2つの端子電極間1431a、1432a間にパルス電圧を印加する。ここで、チャック駆動部1491は、端子電極1411a,1412a(1421a、1422a、1431a、1432a)間に互いに極性の異なるパルス電圧を交互に印加しつつ、パルス電圧の振幅を漸減させる。また、各パルス電圧のパルス間隔は、ステージ141、ヘッド142の放電時間を考慮して決定される。また、各パルス電圧のパルス幅は、互いに等しく設定されていてもよいし、経時的に長くなるように設定されていてもよい。或いは、任意に選択した5つ以下のパルス電圧のパルス幅が等しくなるように設定されていてもよい。更に、パルス間隔は、互いに等しく設定されていてもよいし、経時的に長くなるように設定されていてもよい。或いは、任意に選択した4つ以下のパルス間隔が等しくなるように設定されていてもよい。気体供給部1492は、制御部9から入力される制御信号に基づいて、気体吐出孔1411c、1421c、1412c、1422c、1413c、1423cへ各別に気体を供給することにより、気体吐出孔1411c、1421c、1412c、1422c、1413c、1423cから気体を吐出させる。
 更に、ステージ141、ヘッド142は、図7Bに示すように、基板W1の中央部を押圧する押圧機構1441と、基板W2の中央部を押圧する押圧機構1442と、を有する。押圧機構1441は、ステージ141の中央部に設けられ、押圧機構1442は、ヘッド142の中央部に設けられている。押圧機構1441は、ステージ141の貫通孔141bを通じてヘッド142側へ出没可能な押圧部1441aと、押圧部1441aを駆動する押圧駆動部1441bと、を有する。押圧機構1442は、ヘッド142の貫通孔142bを通じてステージ141側へ出没可能な押圧部1442aと、押圧部1442aを駆動する押圧駆動部1442bと、を有する。押圧駆動部1441b、1442bは、例えばボイスコイルモータを有する。また、押圧部1441a、1442aは、基板W1、W2に印加する圧力を一定に維持するよう制御する圧力制御と、基板W1、W2の接触位置を一定に維持するように制御する位置制御と、のいずれかがなされる。例えば、押圧部1441aが位置制御され、押圧部1442aが圧力制御されることにより、基板W1、W2が一定の位置で一定の圧力で押圧される。
 図1に戻って、距離測定部1493は、例えばレーザ距離計であり、ステージ141およびヘッド142に接触せずにステージ141とヘッド142との間の距離を測定する。距離測定部1493は、透明なヘッド142の上方からステージ141に向かってレーザ光を照射したときのステージ141の上面での反射光とヘッド142の下面での反射光との差分からステージ141とヘッド142との間の距離を測定する。距離測定部1493は、図4Aに示すように、ステージ141の上面における3箇所の部位P11、P12、P13と、ヘッド142の下面における、Z方向において部位P11、P12、P13に対向する3箇所の部位P21、P22、P23との間の距離を測定する。
 位置測定部500は、例えば図8に示すように、3つの撮像部501A、501B、501Cと、反射部材502と、撮像部位置調整部503A、503B、503Cと、を有し、鉛直方向に直交する方向(XY方向、Z軸周りの回転方向)における、基板W1と基板W2との位置ずれ量を測定する。3つの撮像部501A、501B、501Cは、反射部材502の周囲において、反射部材502の周方向で隣り合う2つの光軸JLA、JLB(JLB、JLCおよびJLC、JLA)のなす鋭角側の角度DAB、DBC、DCAが等しくなるように配設されている。反射部材502は、3つの撮像部501A、501B、501Cそれぞれに対向する部分に反射面502a、502b、502cが形成されている。撮像部501A、501B、501Cおよび反射部材502は、ステージ141における基板W1を保持する側とは反対側に配置されている。撮像部501A、501B、501Cは、いずれも、撮像素子511A、511B、511Cと同軸照明系(図示せず)とを有する第1撮像部である。同軸照明系の光源としては、基板W1、W2およびステージ141、チャンバ120に設けられた窓部120aを透過する光(例えば赤外光)を出射する光源が用いられる。
 例えば図9Aおよび図9Bに示すように、基板W1には、少なくとも3つのアライメントマークMK1a、MK1b、MK1cが設けられ、基板W2にも、少なくとも3つのアライメントマークMK2a、MK2b、MK2cが設けられている。これらのアライメントマークMK1a、MK1b、MK1cとアライメントマークMK2a、MK2b、MK2cのいずれか一方が、第1アライメントマークに相当し、他方が第2アライメントマークに相当する。基板接合装置1は、位置測定部500により両基板W1、W2に設けられた各アライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cの位置を認識しながら、両基板W1、W2の位置合わせ動作(アライメント動作)を実行する。より詳細には、基板接合装置1は、まず、位置測定部500により基板W1、W2に設けられたアライメントマークMK1a、MK1b、NK1c、MK2a、MK2b、NK2cを認識しながら、基板W1、W2の大まかなアライメント動作(ラフアライメント動作)を実行して、2つの基板W1、W2を対向させる。その後、基板接合装置1は、位置測定部500により2つの基板W1、W2に設けられたアライメントマークMK1a、MK2a、(MK1b、MK2bおよびMK1c、MK2c)を同時に認識しながら、更に精緻なアライメント動作(ファインアライメント動作)を実行する。
 ここで、図3の破線矢印SC1、SC2に示すように、撮像部501Aの同軸照明系の光源から出射された光は、反射部材502の反射面502aで反射されて上方に進行し、チャンバ120の窓部120aおよび基板W1、W2の一部あるいは全部を透過する。基板W1、W2の一部あるいは全部を透過した光は、基板W1、W2のアライメントマークMK1a,MK2aで反射され、下向きに進行し、窓部120aを透過して反射部材502の反射面502aで反射されて撮像部501Aの撮像素子511Aに入射する。また、撮像部501Bの同軸照明系の光源から出射された光は、反射部材502の反射面502bで反射されて上方に進行し、チャンバ120の窓部120aおよび基板W1、W2の一部あるいは全部を透過する。基板W1、W2の一部あるいは全部を透過した光は、基板W1、W2のアライメントマークMK1b,MK2bで反射され、下向きに進行し、窓部120aを透過して反射部材502の反射面502bで反射されて撮像部501Bの撮像素子511Bに入射する。なお、図3には記載されていないが、図8に示す撮像部501Cの同軸照明系の光源から出射された光は、反射部材502の反射面502cで反射されて上方に進行し、チャンバ120の窓部120aおよび基板W1、W2の一部あるいは全部を透過する。基板W1、W2の一部あるいは全部を透過した光は、基板W1、W2のアライメントマークMK1c,MK2cで反射され、下向きに進行し、窓部120aを透過して反射部材502の反射面502cで反射されて撮像部501Cの撮像素子511Cに入射する。このようにして、位置測定部500は、図10Aおよび図10Bに示すように、2つの基板W1、W2のアライメントマークMK1a、MK2aを含む撮影画像GAaと、2つの基板W1、W2のアライメントマークMK1b,MK2bを含む撮影画像GAbと、2つの基板W1、W2のアライメントマークMK1c,MK2bを含む撮影画像GAcと、を取得する。なお、撮像部501A、501B、501Cによる撮影画像GAa、GAb、GAcの撮影動作は、略同時に実行される。また、3つの撮像部501A、501B、501Cは、ステージ141、ヘッド142の2つのサブ環状領域A11,A12からなる第1領域A1において、アライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cを撮像する。
 撮像部位置調整部503A、503B、503Cは、それぞれ、撮像部501A、501B、501Cを、鉛直方向または撮像部501A、501B、501Cの光軸および鉛直方向に直交する水平方向へ移動させる。撮像部位置調整部503A、503B、503Cは、それぞれ、撮像部501A、501B、501Cを保持する撮像部保持部(図示せず)と、撮像部保持部を鉛直方向、水平方向へ駆動するアクチュエータ(図示せず)と、を有する。撮像部位置調整部503A、503B、503Cは、それぞれ、撮像部501A、501B、501Cを鉛直方向または水平方向へ移動させることにより、基板W1、W2における撮像位置を基板W1、W2の厚さ方向と直交する方向へ移動させることができる。
 図3に戻って、基板加熱部1481、1482は、例えば電熱ヒータであり、図7Bに示すように、それぞれステージ141、ヘッド142に設けられている。基板加熱部1481、1482は、ステージ141およびヘッド142に保持されている基板W1,W2に熱を伝達することにより基板W1、W2を加熱する。また、基板加熱部1481、1482の発熱量を調節することにより、基板W1,W2やそれらの接合面の温度を調節できる。また、基板加熱部1481、1482は、加熱部駆動部(図示せず)に接続されており、加熱部駆動部は、図1に示す制御部9から入力される制御信号に基づいて、基板加熱部1481、1482へ電流を供給することにより基板加熱部1481、1482を発熱させる。
 検査装置7は、互いに接合された基板W1、W2に設けられたアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2c全ての位置ずれ量を検出する。検査装置7は、例えば図11に示すように、互いに接合された基板W1、W2が載置されるステージ71と、光源72と、撮像部73と、水平方向駆動部74と、を有する。ステージ71は、光源72から出射される光に対して透明な材料から形成されている。そして、光源72は、ステージ71における基板W1、W2が載置される側とは反対側から基板W1、W2に向けて光を出射する。撮像部73は、光源72から出射された光のうちステージ71おおび基板W1、W2を透過してきた光が入射される撮像素子731を有する第2撮像部である。水平方向駆動部74は、矢印AR3に示すように、ステージ71をステージ71の厚さ方向に直交する水平方向へ移動させる。
 図1に戻って、制御部9は、例えばパーソナルコンピュータを有する制御システムであり、CPU(Central Processing Unit)とメモリとを有する。メモリは、CPUが実行するプログラムを記憶する。制御部9は、圧力センサ148および位置測定部150から入力される計測信号を計測情報に変換して取得する。また、制御部9は、基板接合装置1の撮像部501A、501B、501C、検査装置7の撮像部73および搬送装置84の搬送装置撮像部844から入力される撮影画像信号を撮影画像情報に変換して取得する。更に、制御部9は、基板接合装置1のチャック駆動部1491、気体供給部1492、撮像部位置調整部503A、503B、503C、ピエゾアクチュエータ1456、押圧駆動部1441b、1432b、加熱部駆動部、ステージ駆動部143、ヘッド駆動部144それぞれへ制御信号を出力することによりこれらの動作を制御する。制御部9は、図10Bに示すように、撮像部501Aから取得した撮影画像GAaに基づいて、基板W1、W2に設けられた1組のアライメントマークMK1a,MK2a相互間の位置ずれ量dxa、dyaを算出する。なお、図10Bは、1組のアライメントマークMK1a,MK2aが互いにずれている状態を示している。同様に、制御部9は、撮像部501B、501Cから取得した撮影画像GAb、GAcに基づいて、基板W1、W2に設けられた他の2組のアライメントマークMK1b,MK2b、MK1c、MK2c相互間の位置ずれ量dxb、dyb、dxc、dycを算出する。その後、制御部9は、これら3組のアライメントマークの位置ずれ量dxa、dya、dxb、dyb、dxc、dycと3組のマークの幾何学的関係とに基づいて、X方向、Y方向およびZ軸周りの回転方向における2つの基板W1、W2の相対的な位置ずれ量dx、dy、dθを算出する。そして、制御部9は、算出した位置ずれ量dx、dy、dθが低減されるように、ヘッド142をX方向およびY方向へ移動させたり、Z軸周りに回転させたりする。このようにして、基板接合装置1は、2つの基板W1、W2の水平方向における位置ずれ量dx、dy、dθを補正するアライメント動作を実行する。また、制御部9は、活性化処理装置2、搬送装置82、84、86、洗浄装置3、検査装置7へ制御信号を出力することによりこれらの動作を制御する。
 また、制御部9は、基板W1、W2の接合面の中央部同士が接触し且つ基板W1、W2の周部が静電チャック1411、1412、1421、1422に保持された状態で、基板W1、W2を全面で接触させる場合、まず、第1領域A1のサブ環状領域A12に設けられた気体吐出孔からサブ環状領域A12に設けられた溝全体に気体を充填させた後、静電チャック1421、1422による基板W1、W2の保持を解除するようにチャック駆動部1491および気体供給部1492を制御する。次に、制御部9は、第1領域A1のサブ環状領域A11に設けられた気体吐出孔1411c、1412cからサブ環状領域A11に設けられた溝1411d、1412d全体に気体を充填させた後、静電チャック1411、1412、1421、1422による基板W1、W2の保持を解除するようにチャック駆動部1491および気体供給部1492を制御する。このとき、制御部9は、前述の気圧検出部により検出される気圧に基づいて、気圧が臨界圧力未満となるように気体吐出孔1411c、1421c、1421c、1422cから吐出される気体の流量を制御する。これにより、基板W1、W2同士が全面で接触する。
 更に、制御部9は、撮像部73により基板W1、W2の複数のアライメントマークを撮像して得られる撮像画像に基づいて、基板W1、W2の複数のアライメントマークそれぞれの位置ずれ量および位置ずれ方向を算出する。そして、制御部9は、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分、即ち、XY方向成分および回転方向成分を分離し、分離したXY方向成分および回転方向成分に基づいて、基板W1、W2を接合する際の基板W1に対する基板W2のXY方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映したベクトルである水平オフセットベクトルを算出する。また、制御部9は、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの反り成分を分離し、分離した反り成分に基づいて、基板W1、W2を接合する際の基板W1の中央部の基板W1の周部に対する基板W2側への突出量のオフセット量である突出オフセット量を算出する。ここで、制御部9は、予め設定された複数枚の互いに接合された基板W1、W2が作製される毎に、それら複数枚の互いに接合された基板W1、W2について得られた位置ずれ量および位置ずれ方向の統計値(例えば平均値或いは中間値)に基づいて、水平オフセットベクトルおよび突出オフセット量を算出する。また、制御部9が、撮像部73により撮像される複数のアライメントマークの組それぞれの位置ずれ量が最小となるように、水平オフセットベクトルを算出する。そして、制御部9は、算出した水平オフセットベクトルおよび突出オフセット量を示す情報をメモリに記憶させる。
 また、制御部9は、撮像部501A、501B、501Cにより基板W1、W2が離間した状態でアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cを撮像して得られる撮像画像と、撮像部501A、501B、501Cにより互いに接合された基板W1、W2のアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cを撮像して得られる撮像画像と、のそれぞれに基づいて、アライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cの位置ずれ量および位置ずれ方向を算出する。そして、制御部9は、算出した位置ずれ量および位置ずれ方向に基づいて、水平オフセットベクトルを更新する。具体的には、制御部9は、基板W1、W2が離間し且つ基板W1、W2のアライメント終了後にアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cを撮像して得られる撮像画像から位置ずれ量誤差を算出する。そして、制御部9は、互いに接合された基板W1、W2のアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cを撮像して得られる撮像画像から算出された位置ずれ量から、前述の位置ずれ量誤差を差し引くことにより、基板W1、W2の接合時の位置ずれ量が算出される。ここで、位置ずれ量誤差は0ではないため、検査装置7の撮像部73で撮像された撮像画像から算出された複数のアライメントマークに対応するオフセット方向およびオフセット量をそのまま採用することはできない。ここで、前述の水平オフセットベクトルは、アライメントマークMK1a、MK2a(MK1b、MK2b、MK1c、MK2c)の組毎に算出される。なお、制御部9は、互いに接合された基板W1,W2のアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cの位置ずれ量および位置ずれ方向の情報を検査装置7から取得して前述の位置ずれ量誤差を算出してもよい。また、水平オフセットベクトルの算出は、検査装置7で実行されてもよいし、基板接合装置1で実行されてもよい。検査装置7で水平オフセットベクトルを算出する場合、検査装置7に位置ずれ量誤差を示す情報を通知するようにすればよい。また、検査装置7の撮像部73により撮像された撮像画像に基づいて算出されるオフセット方向およびオフセット量は、基板W1、W2のアライメントマークの組全てに共通するオフセット方向およびオフセット量であり、一方、前述の位置ずれ量誤差に基づいて補正されたオフセット方向およびオフセット量を反映した水平オフセットベクトルは、アライメントマークMK1a、MK2a(MK1b、MK2b、MK1c、MK2c)の組毎に各別に決定される。
 次に、本実施の形態に係る基板接合システムについて、基板W1、W2が接合システムに投入されてから基板W1、W2が接合されて基板接合システムから取り出されるまでの動作の流れを図12乃至図17Bを参照しながら説明する。ここで、基板W1、W2は、予め導入ポート811、812に配置されているものとする。基板W1、W2としては、例えば、Si基板、ガラス基板、酸化物基板(例えば、酸化ケイ素(SiO2)基板、アルミナ基板(Al2O3)等)、窒化物基板(例えば、窒化ケイ素(SiN)、窒化アルミニウム(AlN))のいずれかからなる。なお、基板W1、W2の少なくとも一方は、その接合面に金属部分と絶縁膜とが露出しているものであってもよい。或いは、基板W1、W2の少なくとも一方は、その接合面に酸化物または窒化物を堆積することにより形成された絶縁膜が露出しているものであってもよい。ここでは、基板W1がガラス基板または酸化物基板であり、基板W2がSi基板または窒化物基板であるとして説明する。また、導入ポート811には、例えば基板接合装置1においてヘッド142に保持される基板W2が配置され、導入ポート812には、例えば基板接合装置1においてステージ141に載置される基板W1が配置される。
 まず、図12に示すように、基板接合システムは、搬送装置82の搬送ロボット821により基板W1、W2を導入ポート811、812からロードロック部85へ搬送する(ステップS101)。次に、基板接合システムは、搬送装置86の搬送ロボット861により基板W1、W2をロードロック部85から活性化処理装置2へ搬送する(ステップS102)。続いて、活性化処理装置2は、基板W1、W2それぞれの互いに接合される接合面の少なくとも一方に対して、窒素ガスを用いた反応性イオンエッチングと窒素ラジカルの照射との少なくとも一方を行うことにより接合面を活性化する活性化処理工程を行う(ステップS103)。ここにおいて、活性化処理装置2は、接合面を活性化処理する対象となる基板の種類によって処理シーケンスが異なる。活性化処理装置2は、基板W1、即ち、ガラス基板または酸化物基板の接合面を活性化処理する場合、まず、図2に示す供給弁222Aを開くことにより窒素ガス貯留部221Aから供給管223Aを通じて処理チャンバ212内にN2ガスを導入する。次に、活性化処理装置2は、高周波電源216から誘導コイル215への高周波電流の供給を停止させた状態で、バイアス印加部217によりステージ210に載置された基板W1、W2に高周波バイアスを印加する。これにより、基板W1の接合面に対して、N2ガスを用いた反応性イオンエッチング(RIE)が行われる。続いて、活性化処理装置2は、高周波電源216から誘導コイル215への高周波電流の供給を開始して、N2ガスでプラズマを発生させる。このとき、活性化処理装置2は、バイアス印加部217による基板W1への高周波バイアスの印加を停止する。このようにして、基板W1の接合面にN2ラジカルが照射される。
 一方、活性化処理装置2は、基板W2、即ち、Siまたは窒化物基板の接合面を活性化処理する場合、まず、供給弁222Bを開くことにより酸素ガス貯留部221Bから供給管223Bを通じて処理チャンバ212内にO2ガスを導入する。次に、活性化処理装置2は、高周波電源216から誘導コイル215への高周波電流の供給を停止させた状態で、バイアス印加部217によりステージ210に載置された基板W2に高周波バイアスを印加する。これにより、基板W2の接合面に対して、O2ガスを用いた反応性イオンエッチング(RIE)が行われる。続いて、活性化処理装置2は、供給弁222Bを閉じて酸素ガス貯留部221Bから処理チャンバ212内へのO2ガスの供給を停止することにより、処理チャンバ212内のO2ガスを排気する。その後、活性化処理装置2は、供給弁222Aを開くことにより窒素ガス貯留部221Aから供給管223Aを通じて処理チャンバ212内にN2ガスを導入する。その後、活性化処理装置2は、高周波電源216から誘導コイル215への高周波電流の供給を開始して、N2ガスでプラズマを発生させる。このとき、活性化処理装置2は、バイアス印加部217による基板W2への高周波バイアスの印加を停止する。このようにして、基板W2の接合面にN2ラジカルが照射される。
 図12に戻って、その後、搬送装置86が、基板W1、W2を活性化処理装置からロードロック部85へ搬送する(ステップS104)。次に、搬送装置82の搬送ロボット821が、基板W1、W2をロードロック部85から洗浄装置3へ搬送する(ステップS105)。続いて、洗浄装置3は、水を基板W1、W2の接合面に吹き付けながら接合面を洗浄する水洗浄工程を実行する(ステップS106)。ここで、洗浄装置3は、洗浄ヘッドから超音波を印加した水を基板W1、W2の接合面に吹き付けながら、基板W1、W2が載置されたステージをXY方向へスキャンさせて基板W1、W2の接合面全面を洗浄する。これにより、基板W1、W2の接合面に付着した異物が除去される。続いて、洗浄装置3は、洗浄ヘッドによる水の吐出を停止させてから、ステージを回転させることにより基板をスピン乾燥することにより洗浄処理を完了する。その後、搬送装置82が、基板W1、W2を洗浄装置3からロードロック部83へ搬送する(ステップS107)。次に、搬送装置84が、基板W1、W2をロードロック部83から取り出し、搬送装置撮像部844が基板W1、W2の周部を撮像する(ステップS108)。
 続いて、制御部9は、搬送装置撮像部844から取得した撮像画像に基づいて、位置ずれ量の算出に用いるアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cが静電チャック1411、1412、1421、1422と重なるか否かを判定する(ステップS109)。具体的には、制御部9は、予め基板接合装置1のステージ141、ヘッド142の静電チャック1411、1421の位置と搬送装置84で保持された基板W1、W2の位置との間の相対的な位置関係を示す情報を取得しており、この情報に基づいて、位置ずれ量の算出に用いるアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cが静電チャック1411、1412、1421、1422と重なるか否かを判定する。ここで、制御部9が、位置ずれ量の算出に用いるアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2c全てが静電チャック1411、1412、1421、1422と重ならないと判定すると(ステップS109:No)、そのままステップS111以降の処理が実行される。
 一方、制御部9が、位置ずれ量の算出に用いるアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cの少なくとも1つが静電チャック1411、1412、1421、1422と重なると判定したとする(ステップS109:Yes)。例えば図13Aに示すように、アライメントマークMK1a、MK2aが静電チャック1411、1421の一部に重なると判定したとする。この場合、制御部9は、図12に示すように、ステージ141を回転させてから基板W1、W2を受け取ることにより、基板W1,W2の位置ずれ量の算出に用いるアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2c全てが静電チャック1411、1412、1421、1422と重ならない姿勢となるようにステージ141を回転させる(ステップS110)。例えば図13Aに示す状態から、図13Aの矢印AR10に示す回転方向へステージ141を回転させてから基板W1、W2を受け取る。ここで、制御部9は、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2c全てが静電チャック1411、1412、1421、1422の複数の電極子1411b、1412b、1421b、1422bの間に位置するようにステージ141を回転させる。これにより、基板W1、W2は、例えば図13Bに示すように、基板W1,W2の位置ずれ量の算出に用いるアライメントマークMK1a、MK2aが静電チャック1411、1421と重ならない状態となる。また、制御部9は、撮像部位置調整部503A、503B、503Cを制御して、撮像部501A、501B、501Cを、基板W1、W2それぞれのアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cの撮像が可能な位置へ移動させる。図12に戻って、その後、搬送装置84は、基板W1、W2を基板接合装置1へ搬送する(ステップS111)。次に、基板接合装置1が、基板接合工程を実行する(ステップS112)。
 ここで、基板接合システムが実行する基板接合工程について、図14を参照しながら詳細に説明する。なお、図14において、基板接合装置1は、基板W1、W2の厚さの測定結果が既に制御部9のメモリに記憶されているものとする。まず、基板接合装置1は、距離測定部1493により、ステージ141、ヘッド142の3箇所におけるステージ141とヘッド142との間の距離を測定する距離測定工程を実行する(ステップS1)。
 次に、基板接合装置1は、測定したステージ141、ヘッド142の3箇所におけるステージ141とヘッド142との間の距離と基板W1、W2の厚さとに基づいて、基板W1の接合面と基板W2の接合面との間の距離を算出する。そして、基板接合装置1は、算出した距離に基づいて、ヘッド142を鉛直下方へ移動させて基板W1、W2同士を近づける(ステップS2)。続いて、基板接合装置1は、基板W1、W2同士が離間した状態で、基板W1の基板W2に対する位置ずれ量を算出する(ステップS3)。ここにおいて、制御部9は、まず、位置測定部500の撮像部501A、501B、501Cそれぞれから、非接触状態における2つの基板W1、W2における第1領域A1に対向する部分に設けられたアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cの撮影画像GAa、GAb、GAc(図10A参照)を取得する。そして、制御部9は、前述のように、3つの撮影画像GAa、GAb、GAcに基づいて、2つの基板W1、W2のX方向、Y方向およびZ軸周りの回転方向の位置ずれ量dx、dy、dθそれぞれを算出する。続いて、基板接合装置1は、算出した位置ずれ量dx、dy、dθを補正するように基板W2を基板W1に対して相対的に移動させることにより、位置合わせを実行する(ステップS4)。ここにおいて、基板接合装置1は、位置ずれ量dx、dy、dθが低減するように、ステージ141をX方向、Y方向およびZ軸周りの回転方向へ移動させる。
 その後、基板接合装置1は、更にヘッド142をステージ141に近づけることにより、基板W1、W2同士を近づける(ステップS5)。ここで、基板接合装置1は、ヘッド142を、基板W1、W2の間の隙間が基板W1、W2を撓ませた状態でそれらの中央部同士を接触させるのに最適な隙間となる位置に配置する。この状態で、基板W1、W2の周部同士が50μm程度離間した状態となるようにする。
 次に、基板接合装置1は、基板W1、W2が互いに離間した状態で、基板W1、W2を撓ませることにより、基板W1の中央部と基板W2の中央部とを接触させる第1接触工程を実行する(ステップS6)。基板接合装置1は、まず、図15Aの矢印AR11に示すように、ステージ141、ヘッド142の第2領域A2に設けられた気体吐出孔1413c、1423cから第2領域A2に設けられた溝1413d、1423d全体に気体を充填させる。その後、基板接合装置1は、ステージ141、ヘッド142の静電チャック1413、1423による基板W1の保持を解除する。このとき、制御部9は、基板W1が基板W2に接触する圧力が基板W1、W2が仮接合される臨界圧力未満となるように気体吐出孔1413cから気体が吐出されるように気体供給部1492を制御する。具体的には、制御部9は、前述の気圧検出部により検出される気圧に基づいて、気圧が臨界圧力未満となるように気体吐出孔1413c、1423cから吐出される気体の流量を制御する。次に、基板接合装置1は、ステージ141の静電チャック1411、1412に基板W1の周部を保持させた状態で、押圧部1441aにより基板W1の中央部を基板W2に向けて押圧する。ここで、静電チャック1411、1412に基板W1の周部を保持させた状態とは、チャック駆動部1491からステージ141の静電チャック1411、1412へ電圧を印加している場合のみならず、静電チャック1411、1412に電圧が印加されておらず、静電チャック1411、1412の残留静電力により基板W1の周部が静電チャック1411、1412に密着している状態も含む。これにより、基板W1は、図15Bに示すように、その中央部W1cが基板W2に向かって突出するように撓む。また、基板接合装置1は、ヘッド142の静電チャック1421、1422に基板W2の周部を保持させた状態で、押圧部1442aにより基板W2の中央部を基板W1に向けて押圧する。これにより、基板W2は、図15Bに示すように、その中央部が基板W1に向かって突出するように撓む。このようにすることで、静電チャック1413、1413による保持を解除した後において電極子1413b、1423b間に残る残留静電力による基板W1、W2をステージ141、ヘッド142に密着させる力に対して、溝1413d、1423dから吐出される気体の圧力を有効に作用させることで、基板W1、W2が、ステージ141、ヘッド142に密着させる力に対してフリーな状態となる。そして、この状態で、基板W1、W2の中央部同士を臨界圧力以上の圧力で加圧して接触させることで、ステージ141、ヘッド142への密着力の影響の無い状態で基板W1、W2の中央部から周部に向かって接合を進めさせることができるので、基板W1、W2を歪み無く全面で高い位置精度で接合することができる。また、基板W1、W2が、ステージ141、ヘッド142に密着させる力に対してフリーな状態となる前に押圧部1441a、1432aにより基板W1、W2の中央部を押圧すると、ステージ141、ヘッド142への密着力の影響により基板W1、W2に生じる歪みが大きくなってしまう。また、制御部9は、メモリに記憶されている突出オフセット量を示す情報に基づいて、押圧部1441a、1432aのいずれか一方が他方に対して突出オフセット量だけ突出量が大きくなるように押圧部1441a、1432aをステージ141、ヘッド142から突出させる。これにより、基板W1、W2同士が互いに接合されたときの基板W1、W2の反り量を低減することができる。
 続いて、図14に示すように、基板接合装置1は、基板W1、W2の中央部W1c、W2cから周部W1s、W2sに向かって基板W1、W2の接触部分を広げていく第2接触工程を実行する(ステップS7)。ここで、基板接合装置1は、図16Aの矢印AR12に示すように、押圧部1441aをステージ141に没入させる方向へ移動させ且つ押圧部1442aをヘッド142に没入させる方向へ移動させる。同時に、基板接合装置1は、矢印AR13に示すように、ヘッド142をステージ141に近づく方向へ移動させる。これにより、矢印AR14に示すように、基板W1、W2の接触部分が、押圧機構1441、1432により点加圧された中央部を起点として基板W1、W2の間に生じる分子間力(ファンデルワールス力)または基板W1、W2の接合面に存在する水またはOH基による接合力により、基板W1、W2の中央部から周部に向かって広がっていく。そして、基板接合装置1は、ヘッド142を、ステージ141から予め設定された距離だけ離間した位置にまで近づけると、図16Bに示すように、静電チャック1421、1422による基板W1、W2の保持を解除する。このとき、基板接合装置1は、まず、第1領域A1のサブ環状領域A12に設けられた気体吐出孔からサブ環状領域A12に設けられた溝全体に気体を充填させた後、静電チャック1421、1422による基板W1、W2の保持を解除する。このとき、制御部9は、前述の気圧検出部により検出される気圧に基づいて、気圧が臨界圧力未満となるように気体吐出孔1412c、1422cから吐出される気体の流量を制御する。次に、基板接合装置1は、第1領域A1のサブ環状領域A11に設けられた気体吐出孔1411c、1412cからサブ環状領域A11に設けられた溝1411d、1412d全体に気体を充填させた後、静電チャック1411、1412、1421、1422による基板W1、W2の保持を解除する。これにより、静電チャック1421、1422による基板W1、W2の保持が解除される。そして、基板W1、W2の接触部分が、更に、基板W1、W2の中央部から周部へ広がる。ここでは、基板W1、W2の接合面同士が互いに接触することにより、基板W1、W2同士が、OH基間または水分子間の水素結合により仮接合された状態となる。
 その後、図14に示すように、基板接合装置1は、基板W1の接合面が基板W2の接合面に接触した状態で、基板W2の基板W1に対する位置ずれ量を測定する(ステップS8)。このとき、基板接合装置1は、基板W1、W2同士の接触部分が広がることにより基板W2の基板W1に対する移動が規制された状態で、基板W1、W2の位置ずれ量を測定する。続いて、基板接合装置1は、算出した位置ずれ量dx、dy、dθの全てが予め設定された位置ずれ量閾値dxth、dyth、dθth以下であるか否かを判定する(ステップS9)。
 ここで、基板接合装置1が、算出した位置ずれ量dx、dy、dθのいずれかが、予め設定された位置ずれ量閾値dxth、dyth、dθthよりも大きいと判定したとする(ステップS9:No)。この場合、基板接合装置1は、ヘッド142を上昇させることにより、基板W2を基板W1から離脱させる(ステップS10)。このとき、基板接合装置1は、ヘッド142を上昇させて基板W1、W2の間の距離を広げつつ、押圧部1441aをステージ141に没入させる方向へ移動させるとともに、押圧部1442aをヘッド142に埋没させる方向へ移動させる。ここにおいて、基板接合装置1は、基板W2を基板W1から剥がす際の基板W2の引っ張り圧力が一定となるようにヘッド142の上昇を制御する。これにより、基板W2が基板W1から離脱し、基板W1、W2の接触状態が解除される。
 次に、基板接合装置1は、算出した位置ずれ量dx、dy、dθを全て位置ずれ量閾値dxth、dyth、dθth以下にするための基板W1、W2の補正移動量を算出する(ステップS11)。ここにおいて、制御部9は、基板W2を基板W1に接触させた状態での基板W1と基板W2との位置ずれ量dx、dy、dθと、基板W2が基板W1に接触していない状態での基板W1と基板W2との位置ずれ量との差分に相当する移動量だけ移動させるような補正移動量を算出する。そして、制御部9は、メモリに記憶されているXY方向および回転方向それぞれの水平オフセットベクトルが示すXY方向および回転方向へのオフセット量だけ更に補正移動量に加算する。この補正移動量だけオフセットしてアライメントすることにより、再度基板W1、W2同士が接触したときに同様の基板W1、W2の接触による位置ずれが発生すれば基板W1、W2の位置ずれが無くなることになる。
 続いて、基板接合装置1は、2つの基板W1、W2が接触していない状態で2つの基板W1、W2の相対的な位置ずれ量dx、dy、dθを補正するように、位置合わせを実行する(ステップS12)。ここにおいて、基板接合装置1は、ステージ141をステップS111で算出された補正移動量だけX方向、Y方向およびZ軸周りの回転方向に移動させる。このようにして、基板接合装置1は、基板W1、W2が互いに離間した状態で、位置ずれ量dx、dy、dθが低減するように基板W2の基板W1に対する相対位置を調整する。そして、基板接合装置1は、再びステップS9の処理を実行する。
 一方、基板接合装置1により、算出した位置ずれ量dx、dy、dθの全てが、予め設定された位置ずれ量閾値dxth、dyth、dθth以下であると判定されたとする(ステップS9:Yes)。この場合、基板接合装置1は、基板W1、W2の中央部から周部に向かって基板W1、W2の接触部分を更に広げていき基板W1、W2同士を全面で接触させる(ステップS13)。ここでは、基板接合装置1は、図17Aに示すように、押圧機構1441の押圧部1441aをステージ141に没入させる方向へ移動させ且つ押圧機構1442の押圧部1442aをヘッド142に没入させる方向へ移動させると同時に、矢印AR16に示すようにヘッド142をステージ141に近づく方向へ更に移動させることにより基板W1、W2の周部同士の距離を縮める。このようにして、基板接合装置1は、基板W1の周部を基板W2の周部に接触させて基板W1、W2の接合面同士を全面で接触させる。
 図14に戻って、その後、基板接合装置1は、基板W1、W2が全面で接触した状態で、基板W1を基板W2に押し付けることにより基板W1、W2同士を加圧してから加熱することにより基板W1、W2同士を接合する本接合工程を実行する(ステップS14)。次に、基板接合装置1は、ヘッド142の静電チャック1421を停止させることにより基板W2の保持を解除する(ステップS15)。続いて、基板接合装置1は、図17Bの矢印AR17に示すように、ヘッド142を上昇させることによりヘッド142を基板W2から離脱させる。次に、基板接合装置1は、基板W1、W2同士が互いに接合された状態で、再度基板W2の基板W1に対する位置ずれ量を測定する(ステップS16)。続いて、制御部9は、算出された位置ずれ量に基づいて、次の基板W1、W2同士の接合において補正量移動量を算出する際に用いられる基板W2の基板W1に対する水平オフセットベクトルおよび押圧機構1441、1432の押圧部1441a、1432aの突出量についての突出オフセット量を算出する(ステップS17)。ここで、制御部9は、算出した水平オフセットベクトルおよび突出オフセット量を示す情報をメモリに記憶させる。
 図12に戻って、続いて、搬送装置84が、互いに接合された基板W1、W2を基板接合装置1からロードロック部83へ搬送する(ステップS113)。続いて、搬送装置82が、互いに接合された基板W1、W2をロードロック部83から取り出して検査装置7へ搬送する(ステップS114)。その後、検査装置7は、互いに接合された基板W1、W2に設けられたアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cを含む全てのアライメントマークを撮像する(ステップS115)。ここで、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cは、基板接合装置1でのアライメントに使用するものであり、検査装置7は、これらのアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cのみならず他のアライメントマークも全て撮像する。この基板W1、W2のいずれか一方の他のアライメントマークが第3アライメントマークに相当し、他方の他のアライメントマークが第4アライメントマークに相当する。ここでは、検査装置7が、撮像部73により、互いに接合された基板W1、W2に設けられたアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cを含む全てのアライメントマークを順次撮像していく。次に、制御部9は、検査装置7の撮像部73により撮像された画像から各アライメントマークにおける位置ずれ量および位置ずれ方向を算出する(ステップS116)。
 続いて、制御部9は、算出された位置ずれ量に基づいて、次の基板W1、W2同士の接合において補正量移動量を算出する際に用いられる基板W2の基板W1に対する水平オフセットベクトルおよび押圧機構1441、1432の押圧部1441a、1432aの突出量についての突出オフセット量を算出する(ステップS117)。具体的には、制御部9は、算出した位置ずれ量および位置ずれ方向により特定される各アライメントマークにおける位置ずれベクトルを、XY方向成分、回転方向成分、反り成分および歪み成分に分離する。ここで、制御部9は、例えば図18(A)に示すような位置ずれベクトルの分布が得られた場合、図18(B)乃至(E)それぞれに示すような、位置ずれベクトルのXY方向成分、回転方向成分、反り成分および歪み成分に分離する。即ち、図18(B)乃至(E)XY方向成分、回転方向成分、反り成分および歪み成分を合成したものが位置ずれベクトルと一致する関係にある。そして、制御部9は、分離して得られたXY方向成分および回転方向成分のみから、基板W1に対する基板W2の互いに交差する2軸それぞれに沿った軸方向、即ち、XY方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映したベクトルである水平オフセットベクトルを算出する。
 ところで、この算出したオフセット量を、接合装置1において使用するアライメントマークMK1a、Mk1b、MK2a、MK2b、MK3a、MK3bの位置それぞれにおける基板W1に対する基板W2の互いに交差する2軸それぞれに沿った軸方向、即ち、XY方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映したベクトルである水平オフセットベクトルに換算し、接合装置1において、この換算した水平オフセットベクトルを用いてアライメントを実行するほうが、実際に使用するアライメントマークMK1a、Mk1b、MK2a、MK2b、MK3a、MK3bにおける水平オフセット量がより反映されるのでアライメント精度向上の観点から好ましい。まず、図19Aに示すアライメントマークMK1a、MK2aの代表位置CE1a、CE2aは、図19Bに示すように2つのアライメントマークMK1a、MK1bそれぞれの中心が一致するように配置した状態で合致するように設定される。そして、図19Cに示すように、アライメントマークMK2aの代表位置CE2aを前述の水平オフセットベクトルVEoffaが示す方向および大きさを反映した量だけ移動させたとする。そうすると、図19Dに示すように、アライメントマークMK1a、MK2aが、水平オフセットベクトルVEoffaだけずれた状態でアライメントされる。そして、図19Eに示すように、基板W1に対する基板W2のXY方向のオフセット量が、それぞれ、Δxoff、Δyoffであり、回転方向オフセット量が、Δθoffであるとする。この場合、撮像部501Aで撮像されるアライメントマークMK1a、MK2aの組に対応する水平オフセットベクトルVEoffaは、アライメントマークMK1aの代表位置CE1aを始点としてアライメントマークMK2aの代表位置CE2aを終点とするベクトルで表され、撮像部501Bで撮像されるアライメントマークMK1b、MK2bの組に対応する水平オフセットベクトルVEoffbは、アライメントマークMK1bの代表位置CE1bを始点としてアライメントマークMK2bの代表位置CE2bを終点とするベクトルで表される。また、撮像部501Cで撮像されるアライメントマークMK1c、MK2cの組に対応する水平オフセットベクトルVEoffcは、アライメントマークMK1cの代表位置CE1cを始点としてアライメントマークMK2cの代表位置CE2cを終点とするベクトルで表される。ここで、各水平オフセットベクトルVEoffa、VEoffb、VEoffcは、互いに向きと大きさが異なるベクトルとして表されることになる。制御部9は、各水平オフセットベクトルVEoffa、VEoffb、VEoffcを算出する。そして、制御部9は、アライメンマークMK1b、MK2b、MK2cを前述の水平オフセットベクトルVEoffa、VEoffb、VEoffcだけずらした代表位置CE2a、CE2b、CE2cを用いて基板W1、W2同士のアライメントを実行する。
 また、制御部9は、反り成分のみに基づいて、押圧機構1441、1432の押圧部1441a、1432aの突出オフセット量を算出する。ここで、制御部9は、予め設定された複数枚の互いに接合された基板W1、W2が作製される毎に、それら複数枚の互いに接合された基板W1、W2について得られた位置ずれ量および位置ずれ方向の平均値或いは中間値に基づいて、水平オフセットベクトルおよび突出オフセット量を算出する。そして、制御部9は、算出した水平オフセットベクトルおよび突出オフセット量を示す情報をメモリに記憶させる。これにより、基板接合装置1は、基板W1、W2の接合時において、算出した水平オフセットベクトルおよび突出オフセット量の補正を行う。その後、搬送装置82は、測定後の互いに接合された基板W1、W2を、検査装置7から取り出しポート813へ搬送する(ステップS118)。なお、この基板接合方法において、ステップS101乃至S104の一連の処理、ステップS105乃至S107の一連の処理、ステップS108乃至S113の一連の処理、ステップS115乃至S117の一連処理のうちの少なくとも一部の処理が、異なる基板W1、W2に対して並行して実行されてもよい。
 以上説明したように、本実施の形態に係る基板接合装置1によれば、基板W1の中央部W1cと基板W2の中央部W2cとが接触し且つ基板W1の周部W1sが静電チャック1411、1412に保持された状態で、気体吐出孔1413cおよび溝1413dからステージ141と基板W1との間に気体を吐出しつつ、基板W1、W2同士を接触させる。これにより、静電チャック1413、1423による保持を解除した後において静電チャック1413、1423に残る残留静電力による基板W1、W2をステージ141、ヘッド142に密着させる力に対して、気体吐出孔1413c、1423cから溝1413d、1423d吐出される気体の圧力を有効に作用させることで、基板W1、W2が、ステージ141、ヘッド142に密着させる力に対してフリーな状態となる。そして、この状態で、基板W1、W2の中央部同士を臨界圧力以上の圧力で加圧して接触させることで、基板W1、W2のステージ141、ヘッド142への密着力の影響の無い状態で基板W1、W2の中央部から周部に向かって接合を進めさせることができるので、基板W1、W2を歪み無く全面で高い位置精度で接合することができる。
 ところで、ステージ141、ヘッド142に溝1413d、1423dが無い場合、基板W1、W2の一部のみがステージ141、ヘッド142から剥がれた状態となり、基板W1、W2内にステージ141、ヘッド142に密着した部分が残ってしまう虞がある。そうすると、基板W1、W2の周部を除く部分の全体をステージ141、ヘッド142に密着させる力に対してフリーな状態とすることができなくなる虞がある。特に、前述のように、静電チャック1413、1423の保持を解除する前に気体吐出孔1413c、1423cから気体を吐出させる場合において、静電チャック1413、1423の残留静電力が比較的小さいとき、気体吐出孔1413c、1423cの近傍だけがステージ141、ヘッド142から剥がれた状態となり基板W1、W2の周部を除く部分の全体に気体の圧力を有効に作用させることができず、基板W1、W2の周部を除く部分の全体をステージ141、ヘッド142からフリーな状態にすることができなくなる虞がある。これに対して、本実施の形態に係るステージ141、ヘッド142は、溝1413d、1423dが設けられていることにより、基板W1、W2の周部を除く全体をステージ141、ヘッド142に密着させる力に対してフリーな状態とすることができるので、基板W1、W2のステージ141、ヘッド142への密着力の影響の無い状態で基板W1、W2の中央部から周部に向かって接合を進めさせることができる。
 また、本実施の形態に係るステージ141、ヘッド142の第2領域A2に形成された溝1413d、1423dは、複数の電極子1413b、1423bそれぞれの延在方向に沿って延在する部分を有する。そして、溝1413d、1423dは、ステージ141、ヘッド142の端子電極1413aに電気的に接続された複数の電極子1413bと端子電極1423aに電気的に接続された複数の電極子1423bとの間に設けられている。これにより、静電チャック1413、1423によるステージ141、ヘッド142に密着させる力に対して、気体吐出孔1413c、1423cから溝1413d、1423dを介して吐出される気体による基板W1、W2をステージ141、ヘッド142から剥がす方向への力基板W1、W2全体に均一に作用させることができる。また、溝1413d、1423dが、極性の異なる電圧が印加される電極子1413b、1423bの間に設けられることにより、電極子1413b、1423b間で発生する静電力による基板W1、W2をステージ141、ヘッド142に密着させる力に対して、溝1413d、1423dから吐出される気体の圧力を有効に作用させることができる。従って、基板W1、W2同士の接触部分が広がる速度を均一にすることができる。
 更に、本実施の形態に係るステージ141、ヘッド142は、第1領域A1のサブ環状領域A11に設けられ、気体吐出孔1411c、1411dに連通する溝1411d、1421dを有する。また、ステージ141、ヘッド142は、第1領域A1のサブ環状領域A12に設けられ、気体吐出孔に連通する溝も有する。そして、制御部9は、基板W1、W2の接合面の中央部同士が接触し且つ基板W1、W2の周部が静電チャック1411、1412、1421、1422に保持された状態から基板W1、W2を全面で接触させる場合、まず、第1領域A1のサブ環状領域A12に設けられた気体吐出孔からサブ環状領域A12に設けられた溝全体に気体を充填させた後、静電チャック1421、1422による基板W1、W2の保持を解除するようにチャック駆動部1491および気体供給部1492を制御する。次に、制御部9は、第1領域A1のサブ環状領域A11に設けられた気体吐出孔1411c、1412cからサブ環状領域A11に設けられた溝1411d、1412d全体に気体を充填させた後、静電チャック1411、1412、1421、1422による基板W1、W2の保持を解除するようにチャック駆動部1491および気体供給部1492を制御する。これにより、基板W1、W2が溝1411d、1412d全体からステージ141、ヘッド142から剥がれる方向への力が作用した状態で、静電チャック1411、1412、1421、1422による基板W1、W2の周部を保持した状態が解除される。従って、基板W1、W2全体にステージ141、ヘッド142から剥がれる方向への力が作用することにより、基板W1、W2の一部が優先的にステージ141、ヘッド142から剥がれることを抑制でき、基板W1、W2同士の接触部分が広がる速度を均一にすることができる。
 また、静電チャック1411、1421、1412、1422それぞれの複数の電極子1411b、1421b、1412b、1422b間に電圧が印加された状態で、第1領域A1のサブ環状領域A12に設けられた溝全体および第1領域A1のサブ環状領域A11に設けられた溝1411d、1412d全体に気体を充填させることにより、溝1411d、1412dに充填された気体の一部をイオン化させることができる。これにより、気体に含まれるイオンにより静電チャック1411、1421、1412、1422の残留静電力が中和されるので、基板W1、W2がステージ141、ヘッド142から剥がれやすくなる。
 ところで、ステージ、ヘッドが、例えば図20Aに示すように、屈曲部が無く直線状の端子電極9411a、9421aと、電極子9411b、9421bと、を備える静電チャック9411、9421を備えるものであるとする。ここで、例えば図20Aに示すように、基板W1,W2の位置ずれ量の算出に用いるアライメントマークMK1a‘、MK2a’が静電チャック9411、9421の電極子9411b、9421bに重なった状態であるとする。この場合、基板接合装置1が、ステージ141を回転させてから基板W1、W2を受け取ることにより、図20Bに示すように、アライメントマークMK1a‘、MK2a’が静電チャック9411、9421の電極子9411b、9421bに重ならない状態にすることができる。しかしながら、例えば図20Aに示すように、基板W1,W2の位置ずれ量の算出に用いるアライメントマークMK1a、MK2aが静電チャック9411、9421の端子電極9411a、9421aに重なった状態である場合、基板接合装置1が、図20Aの矢印AR10に示す回転方向へステージ141を回転させから基板W1、W2を受け取っても、図20Bに示すように、アライメントマークMK1a、MK2aが静電チャック1411、1421の端子電極9411a、9421aと重なった状態となる。そして、基板W1,W2の位置ずれ量の算出に用いるアライメントマークMK1a、MK2aが静電チャック1411、1421と重ならないようにステージ、ヘッドを平行移動させると、基板W1、W2を押圧機構で押圧する位置が基板W1、W2の中央部からずれてしまい、その結果、互いに接合した基板W1、W2に歪みが発生し易くなる。
 これに対して、本実施の形態に係る静電チャック1411、1421では、端子電極1411aが、平面視で他方から離れる方向へ突出するように屈曲した複数の屈曲部1411abと、周方向で隣り合う2つの屈曲部1411abの端部同士を連結する連結部1411aaと、を有する。これにより、基板接合装置1が、ステージ141を回転させてから基板W1、W2を受け取ることにより、ステージ141、ヘッド142を平行移動させることなく、基板W1,W2の位置ずれ量の算出に用いるアライメントマークMK1a、MK2aが静電チャック1411、1421と重ならない状態にすることができる。従って、基板W1、W2同士を位置精度良く接合することができるとともに、互いに接合された基板W1、W2に生じる歪みを低減できる。
 また、基板W1、W2のアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cは、基板W1、W2におけるチップの基となる領域のコーナ部分、即ち、チップの基となる領域の周部に設けられることが多い。ここで、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cは、隣り合うチップの基となる領域の間に設けられたダイシングラインと重ならないように配置する必要があることから、チップの基となる領域の内側に設ける必要があり、その分、チップの基となる領域の面積が大きくなる。そうすると、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cの位置が、チップの基となる領域の面積が大きくなった分だけ基板W1、W2の周縁よりも中央部側に配置される。一方、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cは、それぞれ、基板W1、W2がステージ141、ヘッド142の基板保持位置に配置された状態で、第1領域A1に対向した位置に配置される必要がある。従って、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cの位置が、基板W1,W2の周縁よりも中央部側に配置されると、その分、第1領域A1の幅を広く設定する必要がある。ここで、第1領域A1に1つの静電チャックを設けた構成とした場合、基板W1、W2の中央部同士を接触させたときに基板W1、W2同士の接合が第1領域A1に対向する部分で止まってしまい、基板W1、W2同士の接合が周縁近傍まで十分に広がらず、基板W1、W2の周部に歪みが生じる虞がある。これに対して、本実施の形態に係るステージ141、ヘッド142は、第1領域A1に予め設定された2つのサブ環状領域A11、A12が設定され、サブ環状領域A11、A12それぞれに静電チャック1411、1412、1421、1422が設けられている。これにより、基板W1、W2のアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cの位置が基板W1,W2の周縁よりも中央部側に配置されている場合であってもこれらの撮像を可能としつつ、基板W1、W2の中央部同士を接触させて基板W1、W2同士の接合を進める場合にサブ環状領域A12に設けられた静電チャック1412、1422のみ保持を解除することで、基板W1、W2同士の接合を基板W1、W2の周縁近傍まで進めることが可能となる。なお、サブ環状領域A12に設けられた静電チャック1412、1422は、第2領域A2に設けられた静電チャック1413、1423と同時に駆動してもよい。この場合、静電チャック1412,1422と静電チャック1413、1423とで電源を共通化することができるので、基板接合装置1の構成の簡略化を図ることができる。
 更に、本実施の形態に係る基板接合システムは、互いに接合された基板W1、W2それぞれの複数のアライメントマーク全て撮像する撮像部73を有する検査装置7を備える。また、制御部9は、撮像部73により基板W1、W2の複数のアライメントマークを撮像して得られる撮像画像に基づいて、基板W1、W2の複数のアライメントマークそれぞれの位置ずれ量および位置ずれ方向を算出する。そして、制御部9は、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分、即ち、XY方向成分および回転方向成分を分離し、分離したXY方向成分および回転方向成分に基づいて、基板W1、W2を接合する際の基板W1に対する基板W2の互いに交差する2軸それぞれに沿った軸方向、即ち、XY方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映したベクトルである水平オフセットベクトルを算出する。また、制御部9は、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの反り成分を分離し、分離した反り成分に基づいて、基板W1、W2を接合する際の基板W1の中央部の基板W1の周部に対する基板W2側への突出量のオフセット量である突出オフセット量を算出する。これにより、例えば基板W1、W2を複数回繰り返し接合する場合において、基板W1、W2を接合する際、過去の基板接合工程後のアライメントマークの位置ずれ量に基づいて算出された水平オフセットベクトルが示すオフセット方向に水平オフセットベクトルの絶対値に相当するオフセット量だけ基板W1、W2の相対位置が補正される。従って、基板W1、W2同士の接合位置精度を高めることができる。ここで、ヘッド142側の押圧機構が位置制御であり、ステージ141側の押圧機構が圧力制御である場合、ヘッド142側の突出オフセット量を増加させると、互いに接合された基板W1、W2の周部が中央部に対してヘッド142側へ反る。一方ヘッド142側の突出オフセット量を減少させると、互いに接合された基板W1、W2の周部が中央部に対してステージ側141側へ反る。
 ところで、前述のアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cの位置ずれ量誤差を考慮せずに検査装置7の撮像部73による撮像画像のみに基づいてオフセット方向およびオフセット量を決めた場合、基板接合装置1での位置ずれ量誤差分だけアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cの位置ずれが生じてしまう。これに対して、本実施の形態では、基板接合装置1における基板W1、W2の接合前後におけるアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cの位置ずれ量の位置ずれ量誤差分だけオフセット方向およびオフセット量を補正して水平オフセットベクトルを算出する。これにより、基板W1、W2を接合する際に必要となる水平オフセットベクトルの精度を高めることができる。
(実施の形態2)
 本実施の形態に係る基板接合装置は、互いに内径が異なる円環状であり、第1基板保持部における第1領域の内側の第2領域において中心が第1基板保持部の中央部に一致するように同心円状に配置されるとともに、基板保持位置に配置された前記第1基板における前記第2領域に対向する部分を押圧する複数の押圧部材を備える点で、実施の形態1と相違する。本実施の形態に係る基板接合装置は、第1基板の中央部と第2基板の中央部とが接触し且つ第1基板の周部が基板保持部に保持された状態で、複数の押圧部材のうち第1基板保持部の中央部側に位置する押圧部材から優先的に第1基板を押圧させながら第1基板と第2基板とを接触させる。
 本実施の形態に係る基板接合装置は、実施の形態1で説明した基板接合システムを構成する基板接合装置1と略同様の構造を有し、図21Aおよび図21Bに示すように、ステージ2141、ヘッド2142の構造のみが、実施の形態1と相違する。なお、図21Aおよび図21Bにおいて実施の形態1と同様の構成については、図5Aおよび図5Bと同一の符号を付している。本実施の形態に係る基板接合装置は、実施の形態1で説明した基板接合装置1と同様に、チャンバ120とステージ2141とヘッド2142とステージ駆動部143とヘッド駆動部144と基板加熱部1481、1482と位置測定部500と距離測定部1493とを備える。なお、以下の説明において、実施の形態1と同様の構成については、適宜実施の形態1で使用した符号と同じ符号を用いて説明する。
 ステージ2141とヘッド2142とは、チャンバ120内において、鉛直方向で互いに対向するように配置されている。ステージ2141は、その上面で基板W1を保持する第1基板保持部であり、ヘッド2142は、その下面で基板W2を保持する第2基板保持部である。ここで、ステージ2141は、その上面が基板W1全体に面接触した状態で基板W1を支持し、ヘッド2142は、その下面が基板W2全体に面接触した状態で基板W2を支持する。ステージ2141とヘッド2142とは、例えば透光性を有するガラスのような透光性材料から形成されている。ステージ2141には、図21Aに示すように、基板W1を保持する静電チャック1411、基板W1の中央部を押圧する押圧機構1441と、複数(図21Aでは32個)の平面視円形の押圧部材21511、21512、21513、21514と、が設けられている。また、ステージ2141には、図21Bに示すように、ピエゾアクチュエータ21611、21612、21613、21614が設けられている。ヘッド2142には、図21Aに示すように、基板W2を保持する静電チャック1421、基板W2の中央部を押圧する押圧機構1442と、複数(図21Aでは32個)の平面視円形の押圧部材21521、21522、21523、21524と、が設けられている。また、ヘッド2142には、図21Bに示すように、ピエゾアクチュエータ21621、21622、21623、21624が設けられている。静電チャック1411、1421は、ステージ2141、ヘッド2142に基板W1、W2が保持された状態で、ステージ141、ヘッド142における基板W1、W2の周部に対向する円環状の第1領域A1に設けられている。そして、静電チャック1411、1421は、それぞれ、基板W1、W2の周部を保持する。また、ステージ141、ヘッド142の中央部には、平面視円形の貫通孔141b、142bが設けられている。
 押圧部材21511、21512、21513、21514は、ステージ2141における第2領域A2において中心がステージ2141の中央部に一致する4つの仮想円VC1、VC2、VC3、VC4それぞれに沿って配置されている。そして、押圧部材21511、21512、21513、21514は、ステージ2141における予め設定された基板保持位置に配置された基板W1における第2領域A2に対向する部分を押圧する。また、ピエゾアクチュエータ21611、21612、21613、21614は、ぞれぞれ、押圧部材21511、21512、21513、21514を、ステージ2141から突出する方向またはステージ2141に没入する方向へ駆動する押圧部材駆動部である。押圧部材21521、21522、21523、21524も、ヘッド2142における第2領域A2において中心がヘッド2142の中央部に一致する4つの仮想円VC1、VC2、VC3、VC4それぞれに沿って配置されている。そして、押圧部材21521、21522、21523、21524は、ヘッド2142における予め設定された基板保持位置に配置された基板W2における第2領域A2に対向する部分を押圧する。また、ピエゾアクチュエータ21621、21622、21623、21624は、ぞれぞれ、押圧部材21521、21522、21523、21524を、ヘッド2142から突出する方向またはヘッド2142に没入する方向へ駆動する押圧部材駆動部である。
 制御部9は、ピエゾアクチュエータ21611、21612、21613、21614のステージ2141とヘッド2142との対向方向における長さの変化量を制御することにより、押圧部材21511、21512、21513、21514それぞれの移動量を制御する。そして、制御部9は、複数の押圧部材21511、21512、21513、21514がステージ2141の中央部に近いほうから順に基板W1に接触していくときの速度が、基板W1、W2の接合面の中央部同士を接触させた状態から基板W1、W2の周部に向かって基板W1、W2との仮接合が進む速度に比べて早くなるようにピエゾアクチュエータ21611、21612、21613、21614を制御する。また、制御部9は、ピエゾアクチュエータ21621、21622、21623、21624のステージ2141とヘッド2142との対向方向における長さの変化量を制御することにより、押圧部材21521、21522、21523、21524それぞれの移動量を制御する。そして、制御部9は、複数の押圧部材21521、21522、21523、21524がヘッド2142の中央部に近いほうから順に基板W2同士が接触していくときの速度が、基板W1、W2の接合面の中央部同士を接触させた状態から基板W1、W2の周部に向かって基板W1、W2との仮接合が進む速度に比べて早くなるようにピエゾアクチュエータ21611、21612、21613、21614を制御する。
 本実施の形態に係る基板接合システムにおける、基板W1、W2が投入されてから基板W1、W2が接合されて基板接合システムから取り出されるまでの一連の動作の流れは、実施の形態1と略同様であり、基板接合工程における動作の一部のみが実施の形態1と相違する。そこで、本実施の形態に係る基板接合システムが実行する基板接合工程について、図14、図22A乃至図23Bを参照しながら説明する。
 まず、図14に示すように、基板接合装置は、ステップS1からS4までの一連の動作を実行する。次に、基板接合装置は、更にヘッド142をステージ141に近づけることにより、基板W1、W2同士を近づける(ステップS5)。続いて、基板接合装置は、基板W1、W2が互いに離間した状態で、基板W1、W2を撓ませることにより、基板W1の中央部と基板W2の中央部とを接触させる第1接触工程を実行する(ステップS6)。このとき、基板接合装置は、例えば図22Aに示すように、静電チャック1411に基板W1の周部を保持させた状態で、押圧部1441aにより基板W1の中央部を基板W2に向けて押圧することで、基板W1の中央部W1cが基板W2に向かって突出するように基板W1を撓ませる。また、基板接合装置は、静電チャック1422に基板W2の周部を保持させた状態で、押圧部1442aにより基板W2の中央部を基板W1に向けて押圧することで、基板W2の中央部が基板W1に向かって突出するように基板W2を撓ませる。そして、基板接合装置は、図22Bに示すように、ピエゾアクチュエータ21611、21612、21613、21614により、押圧部材21511、21512、21513、21514を基板W1に当接させる。また、基板接合装置は、ピエゾアクチュエータ21621、21622、21623、21624により、押圧部材21521、21522、21523、21524を基板W2に当接させる。
 続いて、基板接合装置は、図14に示すように、基板W1、W2の中央部W1c、W2cから周部W1s、W2sに向かって基板W1、W2の接触部分を広げていく第2接触工程を実行する(ステップS7)。ここで、基板接合装置は、図23Aの矢印AR22に示すように、押圧部1441aをステージ2141に没入させる方向へ移動させ且つ押圧部1442aをヘッド2142に没入させる方向へ移動させる。同時に、基板接合装置は、矢印AR21に示すように、ヘッド2142をステージ2141に近づく方向へ移動させる。そして、基板接合装置は、押圧部材21511、21512、21513、21514のうちステージ2141の中央部側に位置する方から優先的に基板W1を押圧させる。また、基板接合装置は、押圧部材21521、21522、21523、21524のうちヘッド2142の中央部側に位置する方から優先的に基板W2を押圧させる。これにより、矢印AR23に示すように、基板W1、W2の接触部分が、押圧機構1441、1432により点加圧された中央部を起点として基板W1、W2の中央部から周部に向かって広がっていく。
 その後、ステップS8からS12までの一連の処理が実行される。そして、基板接合装置により、算出した位置ずれ量dx、dy、dθの全てが、予め設定された位置ずれ量閾値dxth、dyth、dθth以下であると判定されたとする(ステップS9:Yes)。この場合、基板接合装置1は、基板W1、W2の中央部から周部に向かって基板W1、W2の接触部分を更に広げていき基板W1、W2同士を全面で接触させる(ステップS13)。ここでは、基板接合装置1は、図23Bに示すように、押圧機構1441の押圧部1441aをステージ2141に没入させる方向へ移動させ且つ押圧機構1442の押圧部1442aをヘッド2142に没入させる方向へ移動させると同時に、矢印AR24に示すようにヘッド142をステージ141に近づく方向へ更に移動させることにより基板W1、W2の周部同士の距離を縮める。このようにして、基板接合装置1は、基板W1の周部を基板W2の周部に接触させて基板W1、W2の接合面同士を全面で接触させる。
 図14に戻って、次に、基板接合装置1は、基板W1、W2同士を接合する本接合工程を実行し(ステップS14)、ヘッド2142の静電チャック1421を停止させることにより基板W2の保持を解除する(ステップS15)。続いて、基板接合装置1は、ステップS16以降の処理を実行する。
 以上説明したように、本実施の形態に係る基板接合装置によれば、基板W1の中央部と基板W2の中央部とが接触し且つ基板W1の周部がステージ2141に保持された状態で、押圧部材21511、21512、21513、21514のうちステージ2141の中央部側に位置する方から優先的に基板W1を押圧させながら基板W1、W2を接触させる。このとき、基板接合装置は、押圧部材21521、21522、21523、21524のうちヘッド2142の中央部側に位置する方から優先的に基板W2を押圧させる。これにより、静電チャック1413、1413による保持を解除した後において電極子1413b、1423b間に残る残留静電力による基板W1、W2をステージ141、ヘッド142に密着させる力に対して、溝1413d、1423dから吐出される気体の圧力を有効に作用させることで、基板W1、W2が、ステージ141、ヘッド142に密着させる力に対してフリーな状態となる。そして、この状態で、基板W1、W2の中央部同士を臨界圧力以上の圧力で加圧して接触させることで、ステージ141、ヘッド142への密着力の影響の無い状態で基板W1、W2の中央部から周部に向かって接合を進めさせることができるので、基板W1、W2を歪み無く全面で高い位置精度で接合することができる。
 以上、本発明の各実施の形態について説明したが、本発明は前述の各実施の形態の構成に限定されるものではない。例えば図24Aに示すように、ステージ3141、ヘッド3142が、それぞれ、同心円状に延在する互いに径の異なる複数の円弧状のサブ溝34131d、34231dを有する溝3413d、3423dと、溝3413d、3423d内に連通する気体吐出孔3413c、3423cと、を有するものであってもよい。なお、図24Aにおいて、実施の形態1と同様の構成については図5Aと同一の符号を付している。ここで、複数のサブ溝34131d、34231dは、図24Bに示すように、それらの両端部においてステージ4141、ヘッド3142の径方向における一方で隣り合う他のサブ溝34131d、34231dに、ステージ3141、4142の径方向に延在するサブ溝34132d、34232dを介して連通している。
 また、本変形例に係る静電チャック3413、3423は、それぞれ、第2領域A2において、ステージ4141、ヘッド4142の中央部を中心として円弧状に延在する複数の電極子3413b、3423bと、複数の端子電極3413a、3423aと、を有する。複数の電極子3413b、3423bは、ステージ4141、ヘッド4142の中央部を中心とした同心円状であり且つ径方向において交互に並ぶように配置されている。複数の端子電極3413aは、それぞれ、ステージ4141、ヘッド4142の径方向に延在し、ステージ4141、ヘッド4142の径方向において1つの電極子3423bを挟んで隣り合う2つの電極子3413bそれぞれの一方の端部同士を連結する。また、複数の端子電極3423aも、それぞれ、ステージ4141、ヘッド4142の径方向に延在し、ステージ4141、ヘッド4142の径方向において1つの電極子3413bを挟んで隣り合う2つの電極子3423bそれぞれの一方の端部同士を連結する。
 或いは、例えば図25Aに示すように、ステージ4141、ヘッド4142が、それぞれ、螺旋状の溝4413d、4423dと、溝4413d、4423d内に連通する複数の気体吐出孔4413c、4423cと、を有するものであってもよい。なお、図25Aにおいて、実施の形態1と同様の構成については図5Aと同一の符号を付している。
 本変形例に係る静電チャック4413、4423は、図25Bに示すように、それぞれ、第2領域A2において、ステージ4141、ヘッド4142の中央部を中心として螺旋状に延在する2つの電極子4413b、4423bを有する。2つの電極子4413b、4423bのうちの一方におけるステージ4141、ヘッド4142の径方向における少なくとも一方側には、他方が配置されている。
 また、例えば図26Aに示すように、ステージ5141、ヘッド5142における第1領域A1の内側の第2領域A2には、放射状に延在する複数の細長の溝5413d、5423dと、各溝5413d、5423dにおけるステージ5141、ヘッド5142の中央部側の端部の底に開口する気体吐出孔5413c、5423cと、が設けられているものであってもよい。また、図26Bに示すように、第1領域A1に溝が設けられていないものであってもよい。なお、図26Aおよび図26Bにおいて、実施の形態1と同様の構成については図5Aおよび図7Aと同一の符号を付している。本変形例に係るステージ5141、ヘッド5142では、第2領域A2において、静電チャック5413、5423が、ステージ5141、ヘッド5142の周方向において隣り合う2つの溝5413d、5423dの間に配設されている。ここで、溝5413d、5423dの幅Wi51は、例えば0.2mm程度に設定される。静電チャック5413、5423は、それぞれ、図27Aに示すように、ステージ5141、ヘッド5142の周方向に延在する2つの弧状の端子電極5413a、5423aと、ステージ5141、ヘッド5142の径方向に沿って2つの端子電極5413a、5423aそれぞれから他の端子電極5423a、5413aに向かって延在する複数の長尺の電極子5413b、5423bと、を有する。ここで、電極子5413b、5423bは、それぞれ、ステージ5141、ヘッド5142の周縁側ほど幅が広くなるような平面視楔型の形状を有する。また、図27Bに示すように、静電チャック5413、5423のステージ5141、ヘッド5142の表面との間の幅Wi53は、溝5413d、5423dの深さWi52よりも短く設定されている。
 実施の形態1では、ステージ141、ヘッド142の第1領域A1に2つの円環状のサブ環状領域A11、A12が設定され、各サブ環状領域A11、A12に静電チャック1411、1421、1412、1422が配設されている例について説明した。但し、第1領域A1に設定されるサブ環状領域の数は2つに限定されるものではない。例えば、第1領域A1に3つ以上の環状のサブ環状領域が設定され、各サブ環状領域に静電チャックが配設されているものであってもよい。
 実施の形態1では、基板接合装置1が、まず、ステージ141、ヘッド142の第2領域A2に設けられた気体吐出孔1413cから第2領域A2に設けられた溝1413d全体に気体を充填させた後、静電チャック1413、1423による基板W1、W2の保持を解除する例について説明した。但し、これに限らず、例えば基板接合装置1が、静電チャック1413、1423による基板W1、W2の保持を解除した後に、ステージ141、ヘッド142の第2領域A2に設けられた気体吐出孔1413c、1423cから第2領域A2に設けられた溝1413d、1423dに向かって気体を吐出するものであってもよい。このとき、制御部9は、基板W1、W2同士が接触する圧力が基板W1、W2が仮接合される臨界圧力未満となるように気体吐出孔1413c、1423cから気体が吐出されるように気体供給部1492を制御するようにすればよい。これにより、静電チャック1413、1413による保持を解除した後において電極子1413b、1423b間に残る残留静電力による基板W1、W2をステージ141、ヘッド142に密着させる力に対して、気体吐出孔1413c、1423cから溝1413d、1423dを介して吐出される気体の圧力を有効に作用させることで、基板W1、W2が、ステージ141、ヘッド142に密着させる力に対してフリーな状態となる。そして、この状態で、基板W1、W2の中央部同士を臨界圧力以上の圧力で加圧して接触させることで、ステージ141、ヘッド142への密着力の影響の無い状態で基板W1、W2の中央部から周部に向かって接合を進めさせることができるので、基板W1、W2を歪み無く全面で高い位置精度で接合することができる。
 実施の形態1において、制御部9が、検査装置7の撮像部73により撮像されたアライメントマークの撮像画像を用いずに、水平オフセットベクトルを算出するものであってもよい。この場合、制御部9は、撮像部501A、501B、501Cにより基板W1、W2が離間し且つ基板W1、W2のアライメント終了後にアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cを撮像して得られる撮像画像と、互いに接合された基板W1、W2のアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cを撮像して得られる撮像画像と、に基づいて、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cそれぞれの位置ずれ量および位置ずれ方向を算出する。具体的には、制御部9は、基板W1、W2が離間し且つ基板W1、W2のアライメント終了後にアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cを撮像して得られる撮像画像から位置ずれ量誤差を算出する。そして、制御部9は、互いに接合された基板W1、W2のアライメントマークMK1a、MK1b、MK1c、MK2a、MK2b、MK2cを撮像して得られる撮像画像から算出された位置ずれ量から、前述の位置ずれ量誤差を差し引くことにより、基板W1、W2の接合時の位置ずれ量を算出する。そして、制御部9は、算出した位置ずれ量と位置ずれ方向とに基づいて、基板W1、W2を接合する際の基板W1に対する基板W2の水平オフセットベクトルを算出するようにしてもよい。ここで、水平オフセット量は、アライメントマークMK1a、MK2a(MK1b、MK2b、MK1c、MK2c)の組毎に算出される。
 実施の形態2では、複数の押圧部材21511、21512、21513、21514が、ステージ2141における第2領域A2において中心がステージ2141の中央部に一致する4つの仮想円それぞれに沿って配置され、複数の押圧部材21521、21522、21523、21524が、ヘッド2142における第2領域A2において中心がヘッド2142の中央部に一致する4つの仮想円それぞれに沿って配置されている例について説明した。但し、これに限らず、例えば図28に示すように、ステージ6141に配設される複数(図28では4つ)の押圧部材61511、61512、61513、61514が、互いに内径が異なる円環状であり、ヘッド6142に配設される複数の押圧部材61511、61512、61513、61514も、互いに内径が異なる円環状であってもよい。ここで、4つの押圧部材61511、61512、61513、61514は、ステージ6141における第2領域A2において中心がステージ6141の中央部に一致するように同心円状に配置されている。また、4つの押圧部材61521、61522、61523、61524も、ヘッド6142における第2領域A2において中心がヘッド6142の中央部に一致するように同心円状に配置されている。
 実施の形態2では、ピエゾアクチュエータ21611、21612、21613、21614が、それぞれ、押圧部材21511、21512、21513、21514を駆動し、ピエゾアクチュエータ21621、21622、21623、21624が、それぞれ、押圧部材21521、21522、21523、21524を駆動する例について説明した。但し、押圧部材21511、21512、21513、21514、21521、21522、21523、21524を駆動する手段は、これに限定されるものではない。例えば図29に示すステージ7141のように、押圧部材71511、71512、71513、71514が、それぞれ、エアシリンダ71611、71612、71613、71614により駆動されるピストンを構成するものであってもよい。また、図29に示すヘッド7142のように、押圧部材71521、71522、71523、71524が、それぞれ、エアシリンダ71621、71622、71623、71624により駆動されるピストンを構成するものであってもよい。ここで、エアシリンダ71611、71612、71613、71614は、空気圧により押圧部材21511、21512、21513、21514を各別にヘッド2142に近づく方向またはヘッド2142から遠ざかる方向へ移動させる。また、エアシリンダ71621、71622、71623、71624は、空気圧により押圧部材21521、21522、21523、21524を各別にステージ2141に近づく方向またはヘッド2142から遠ざかる方向へ移動させる。
 また、この場合、制御部9が、基板W1が基板W2に接触する圧力が基板W1、W2が仮接合される臨界圧力未満となるように押圧部材21511、21512、21513、21514が基板W1を押圧するようにエアシリンダ71621、71622、71623、71624を制御するものであってもよい。この場合、基板接合装置は、まず、基板W1が基板W2に接触する圧力が基板W1、W2が仮接合される臨界圧力未満となるように押圧部材21511、21512、21513、21514、21521、21522、21523、21524、で基板W1、W2を押圧する。その後、基板接合装置は、チャック駆動部1491からステージ141、ヘッド142の静電チャック1411、1412へ電圧を印加させることにより静電チャック1411、1412に基板W1、W2の周部を保持させた状態で、押圧部1441a、1432aにより基板W1、W2の中央部を押圧するようにすればよい。
 実施の形態1では、位置測定部500が、3つの撮像部501A、501B、501Cを有する例について説明したが、撮像部の数は3つに限定されない。例えば図30に示す位置測定部8500のように、4つの撮像部501A、501B、501C、501Dと、4つの撮像部501A、501B、501C、501Dそれぞれに対応する4つの反射面6502a、6502b、6502c、6502dが形成された反射部材6502と、を有するものであってもよい。ここで、4つの撮像部501A、501B、501C、501Dは、反射部材6502の周囲において、反射部材6502の周方向で隣り合う2つの光軸JLA、JLB(JLB、JLC、JLC、JLDおよびJLD、JLA)のなす鋭角側の角度DAB、DBC、DCD、DDAが等しくなるように配設されている。
 各実施の形態の形態において、例えば、ロードロック部85のチャンバ851内または搬送装置86のチャンバ863内へ水ガスを供給する水ガス供給部(図示せず)を備えるものであってもよい。水ガス供給部は、アルゴン(Ar)や窒素(N2)、ヘリウム(He)、酸素(O2)等のキャリアガスと気化した水とを混合させることにより水ガスを生成して供給する。水ガス供給部は、供給弁および供給管を介してロードロック部85のチャンバ851に接続されている。チャンバ851内へ導入される水ガスおよびキャリアガスの流量は、供給弁の開度を制御することにより調整される。なお、水ガス供給部は、水(H2O)の分子やクラスタ等を加速して、基板W1、W2の接合面に向けて照射する構成であってもよい。ここにおいて、水ガス供給部は、加速された水(H2O)粒子を放射する粒子ビーム源から構成されていてもよい。この場合、粒子ビーム源として、例えば超音波発生素子を利用して水ガスを発生させる構成であってもよい。或いは、前述のバブリングや超音波振動などで生成したキャリアガスと水(H2O)との混合ガスを、前述の粒子ビーム源に導入することにより、水の粒子ビームを発生させて、基板W1、W2の接合面へ照射する構成とすればよい。また、基板接合システムは、例えば前述の図12のステップS104の工程において、基板W1、W2がロードロック部85のチャンバ851内に搬送された後、チャンバ851内を大気開放せずに基板W1、W2の接合面を水ガスに曝露する。そして、基板接合システムは、チャンバ851の搬送装置82側のゲート8531を開状態にしてチャンバ851内を大気開放する。また、水ガス供給部の代わりに、ロードロック部85のチャンバ851内または搬送装置86のチャンバ863内へH、OH基を含むガスを供給するガス供給部(図示せず)を備えるものであってもよい。
 各実施の形態において、基板接合システムが、例えば図31に示すような、基板W1、W2に対して粒子ビームを照射することにより基板W1、W2の接合面を活性化させる粒子ビーム源を有する活性化処理装置10002を備えるものであってもよい。活性化処理装置10002は、チャンバ10212と、基板W1、W2を保持するステージ10210と、粒子ビーム源10061と、ビーム源搬送部10063と、を有する。なお、図31において、各実施の形態と同様の構成については図2と同一の符号を付している。また、活性化処理装置10002は、プラズマチャンバ10213と、誘導コイル215と、高周波電源216と、を有する。更に、活性化処理装置10002は、図31の矢印AR1003に示すようにステージ10210をその厚さ方向に直交する1つの軸周りに回転駆動するステージ駆動部10623を有する。また、ステージ10210は、例えば真空チャックを有し、基板W1、W2が投入された場合、基板W1、W2を吸着保持する。
 粒子ビーム源10061は、例えば高速原子ビーム(FAB、Fast Atom Beam)源であり、放電室10612と、放電室10612内に配置される電極10611と、ビーム源駆動部10613と、窒素ガスを放電室10612内へ供給するガス供給部10614と、を有する。放電室10612の周壁には、中性原子を放出するFAB放射口10612aが設けられている。放電室10612は、炭素材料から形成されている。ここで、放電室10612は長尺箱状であり、その長手方向に沿って複数のFAB放射口10612aが一直線上に並設されている。ビーム源駆動部10613は、放電室10612内に窒素ガスのプラズマを発生させるプラズマ発生部(図示せず)と、電極10611と放電室10612の周壁との間に直流電圧を印加する直流電源(図示せず)と、を有する。ビーム源駆動部10613は、放電室10612内に窒素ガスのプラズマを発生させた状態で、放電室10612の周壁と電極10611との間に直流電圧を印加する。このとき、プラズマ中の窒素イオンが、放電室10612の周壁に引き寄せられる。このとき、FAB放射口10612aへ向かう窒素イオンは、FAB放射口10612aを通り抜ける際、FAB放射口10612aの外周部の、炭素材料から形成された放電室10612の周壁から電子を受け取る。そして、この窒素イオンは、電気的に中性化された窒素原子となって放電室10612外へ放出される。但し、窒素イオンの一部は、放電室10612の周壁から電子を受け取ることができず、窒素イオンのまま放電室10612の外へ放出される。また、FAB筐体内の一部または全部をSiで形成してもよい。そうすることでArビームと同時にSi粒子が放出されるため、界面にSiが打ち込まれ、打ち込まれたSiにもOH基が付くためより多くのOH基を生成でき、接合強度をアップすることができる。
 ビーム源搬送部10063は、長尺でありチャンバ10212に設けられた孔10212aに挿通され一端部で粒子ビーム源10061を支持する支持棒10631と、支持棒10631の他端部で支持棒10631を支持する支持体10632と、支持体10632を駆動する支持体駆動部10633と、を有する。また、ビーム源搬送部10063は、チャンバ10212内の真空度を維持するためにチャンバ10212の孔10212aの外周部と支持体10632との間に介在するベローズ10634を有する。支持体駆動部10633は、図31の矢印AR1001に示すように、支持体10632を支持棒10631がチャンバ10212内へ挿脱される方向へ駆動することにより、図31の矢印AR1002に示すようにチャンバ10212内において粒子ビーム源10061の位置を変化させる。ここで、ビーム源搬送部10063は、粒子ビーム源10061を、その複数のFAB放射口10612aの並び方向に直交する方向へ移動させる。
 また、活性化処理装置10002は、チャンバ10212内へ供給管223Aを介して窒素ガスを供給する窒素ガス供給部220Aを有する。そして、プラズマチャンバ10213内にNガスが導入された状態で、高周波電流が誘導コイル215へ供給されると、プラズマチャンバ10213内にプラズマPLM2が形成される。このとき、プラズマチャンバ10213内で発生したプラズマPLM2に含まれるラジカルのみがプラズマチャンバ10213の下方へダウンフローする。粒子ビームを照射する際、チャンバ10212内の圧力は、例えばターボ分子ポンプを使用して10-3Pa台まで真空引きされるが、ラジカル処理時においては、チャンバ10212内の圧力を数10Pa程度まで上昇させて行う。
 この活性化処理装置10002は、まず、粒子ビーム源10061を、基板W1、W2の接合面へ粒子ビームを照射させながらX軸方向へ移動させていく。ここで、活性化処理装置10002は、例えば粒子ビーム源10061を+X方向へ移動させながら粒子ビームを基板W1、W2の接合面に照射した後、粒子ビーム源10061を-X方向へ移動させながら基板W1、W2の接合面に粒子ビームを照射する。また、粒子ビーム源10061の移動速度は、例えば1.2乃至14.0mm/secに設定される。また、粒子ビーム源10061への供給電力は、例えば1kV、100mAに設定されている。そして、粒子ビーム源10061の放電室10612内へ導入される窒素ガスまたは酸素ガスの流量は、例えば100sccmに設定される。そして、活性化処理装置10002は、ステージ10210を反転させることにより、基板W1、W2の接合面が鉛直上方を向く姿勢にする。そして、活性化処理装置10002は、基板W1、W2の接合面にプラズマチャンバ10213内で生成された窒素ラジカルを照射する。
 各実施の形態では、撮像部501A、501B、501Cが、それぞれ撮像素子と同軸照明系とを有するいわゆる反射型である例について説明したが、撮像部の構成は、これに限定されない。例えば撮像部が、それぞれ、基板W1、W2の厚さ方向において基板W1、W2を挟んで対向する位置に配置された撮像素子(図示せず)と光源(図示せず)とを備え、光源から出射し基板W1、W2を透過した光を撮像素子で受光する配置でアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cを撮像するいわゆる透過型の構成であってもよい。
 また、各実施の形態では、基板接合装置1が基板W1、W2に3つずつ設けられたアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cを3つの撮像部501A、501B、501Cで撮像する例について説明した。但し、撮像部の数は3つに限定されるものではなく、例えば基板接合装置が、2つの撮像部を備え、2つの撮像部で基板W1、W2に2つずつ設けられたアライメントマークを撮像するものであってもよい。この場合、基板接合装置が、2つの撮像部それぞれについて、撮像部を鉛直方向および2つの撮像部それぞれの光軸方向および鉛直方向に直交する水平方向へ移動させる撮像部位置調整部を備えるものであってもよい。この場合、基板接合装置は、2つのアライメントマークが静電チャック1411、1412、1421、1422の複数の電極子1411b、1412b、1421b、1422bの間に位置するようにステージ141を回転させてから基板W1、W2を受け取る。そして、基板接合装置は、2つの撮像部を、基板W1、W2それぞれのアライメントマークの撮像が可能な位置へ移動させてから、2つの撮像部によりアライメントマークを撮像させるようにすればよい。また、基板接合装置が、1つの撮像部と、1つの撮像部を水平方向へ移動させる撮像部位置調整部と、を備えるものであってもよい。また、撮像部が、前述のようないわゆる透過型の構成である場合、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cの位置に応じて、光源を移動させる光源位置調整部(図示せず)備えるものであってもよい。
 実施の形態1において、気体供給部1492が、イオンを含む気体を供給し、気体吐出孔1411c,1412c,1421c,1422c,1431c,1432cが、イオンを含む気体を吐出するものであってもよい。この場合、気体に含まれるイオンにより静電チャック1411、1421、1412、1422の残留静電力が中和されるので、基板W1、W2がステージ141、ヘッド142から剥がれやすくなるという利点がある。
 各実施の形態において、基板接合装置1において、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cのうちの少なくとも1つが静電チャック1411、1412、1421、1422のいずれかと重なっているか否かを判定するものであってもよい。ここで、本変形例に係る基板接合システムが実行する基板接合工程について、図32を参照しながら詳細に説明する。なお、図32において、実施の形態1と同様の処理については図14と同一の符号を付している。まず、基板接合装置1は、距離測定部1493により、ステージ141、ヘッド142の3箇所におけるステージ141とヘッド142との間の距離を測定する距離測定工程を実行する(ステップS1)。次に、基板接合装置1は、測定したステージ141、ヘッド142の3箇所におけるステージ141とヘッド142との間の距離と基板W1、W2の厚さとに基づいて、基板W1の接合面と基板W2の接合面との間の距離を算出する。そして、基板接合装置1は、算出した距離に基づいて、ヘッド142を鉛直下方へ移動させて基板W1、W2同士を近づける(ステップS2)。続いて、基板接合装置1は、位置測定部500の撮像部501A、501B、501Cから2つの基板W1、W2の撮像画像を取得する。そして、基板接合装置1は、取得した撮像画像に基づいて、位置ずれ量の算出に用いるアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cのうちの少なくとも1つが静電チャック1411、1412、1421、1422のいずれかと重なっているか否かを判定する(ステップS11001)。ここで、基板接合装置1が、位置ずれ量の算出に用いるアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2c全てが静電チャック1411、1412、1421、1422と重なっていないと判定すると(ステップS11001:No)、ステップS3以降の処理が実行される。一方、基板接合装置1が、位置ずれ量の算出に用いるアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cのうちの少なくとも1つが静電チャック1411、1412、1421、1422と重なっていると判定したとする(ステップS11001:Yes)。この場合、搬送装置84が、基板W1、W2を基板接合装置1から取り出す(ステップS11002)。続いて、基板接合装置1は、ステージ141およびヘッド142を予め設定された角度だけ回転させる(ステップS11003)。その後、搬送装置84が、基板W1、W2を基板接合装置1へ再搬送する(ステップS11004)。そして、再びステップS1の処理が実行される。
 本構成によれば、搬送装置84が搬送装置撮像部844を備えていない場合であっても、位置ずれ量の算出に用いるアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2c全てが静電チャック1411、1412、1421、1422と重なっていない状態で基板W1,W2の接合を行うことができる。
 各実施の形態では、制御部9が、検査装置7の撮像部73により撮像される複数のアライメントマークの組それぞれの位置ずれ量が最小となるように、水平オフセットベクトルを算出する例について説明した。但し、これに限らず、基板W1,W2の少なくとも一方が、チップの基となる複数のチップ形成領域を有する場合、制御部9が、複数のチップ形成領域のうち基板W1、W2の相対的な位置ずれに起因して不良となるチップ形成領域の割合が最小となるように、水平オフセットベクトルを算出するものであってもよい。また、基板W1,W2の少なくとも一方が、チップの基となる複数のチップ形成領域を有する場合、制御部9が、複数のチップ形成領域のうち基板W1に対する基板W2の位置ずれに起因して不良となるチップ形成領域以外のチップ形成領域それぞれにおける位置ずれ量および位置ずれ方向とを算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分、即ち、XY方向成分および回転方向成分を分離し、分離したXY方向成分および回転方向成分に基づいて、前述の水平オフセットベクトルを算出するものであってもよい。
 各実施の形態では、ステージ141、ヘッド142の両方が、それぞれ押圧機構1441、1432を有する例について説明したが、これに限らず、ステージ141、ヘッド142のいずれか一方のみが押圧機構を有するものであってもよい。ここで、ステージ141に設けられた静電チャック1413は、基板W1の自重がステージ141に密着する方向へ作用するためその保持力を低く設定することができる。このため、ステージ141のみに押圧機構1441を設けた場合、基板W1の中央部を押圧する際、静電チャック1431の残留静電力による基板W1のステージ141への貼り付きを抑制することができるので好ましい。
 各実施の形態および前述の各変形例では、基板接合システムとして、基板W1、W2同士をいわゆる親水化接合する場合について説明したが、これに限定されない。例えば、基板接合システムが、いわゆる超高真空中において粒子ビームにより基板W1、W2の接合面を活性化処理した直後に、基板W1、W2の接合面同士を接触させることにより接合面に存在するダングリングボンドを介して接合するいわゆる常温接合を実行するものであってもよい。この場合でも、基板接合装置において、基板W1、W2がステージ、ヘッドへの密着力からフリーな状態で基板W1、W2の中央部から周部に向かって接合を進めることができる。従って、基板W1、W2を歪み無く全面で高い位置精度で接合することができる。また、基板接合システムが、基板W1、W2同士をハンダ部分、金属部分を介して接合するいわゆる加熱加圧接合を実行するものであってもよいし、或いは、基板W1、W2間に電圧を印加することにより基板W1、W2同士を接合するいわゆる陽極接合を実行するものであってもよい。
 実施の形態において、前述の図18(A)に示すような位置ずれベクトルの分布が得られた場合において、図18(B)乃至(E)それぞれに示すような、位置ずれベクトルのXY方向成分、回転方向成分、反り成分および歪み成分に分離し、分離して得られたXY方向成分および回転方向成分のみから、基板W1に対する基板W2の水平オフセット量を算出する。ここで、算出した水平オフセット量を、そのまま基板W1に対する基板W2に対するアライメント計算時に加味して補正移動量を算出してもよい。
 実施の形態1では、検査装置7が、アライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cを含む複数のアライメントマーク全てを撮像する例について説明した。但し、これに限らず、検査装置7が、基板接合装置1でのアライメントに使用するアライメントマークMK1a、MK2a、MK1b、MK2b、MK1c、MK2cとは異なる他のアライメントマークを全て撮像するものであってもよい。
 実施の形態1において、接合装置1が、予め算出された前述の水平オフセットベクトルが示す方向および大きさを反映した量だけずらしたアライメントマークMK2a、MK2b、MK2cの代表位置を用いて、基板W1に対する基板W2のアライメントを実行するものであってもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、本発明の範囲を限定するものではない。すなわち、本発明の範囲は、実施の形態ではなく、請求の範囲によって示される。そして、請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
 本発明は、例えばCMOSイメージセンサやメモリ、演算素子、MEMSの製造に好適である。
1:基板接合装置、2,10002:活性化処理装置、3:洗浄装置、7:検査装置、9:制御部、71,141,210,2141,3141,3210,4141,5141,6141,7141,10210:ステージ、72:光源、73,501A、501B、501C、501D:撮像部、74:水平方向駆動部、82,84,86:搬送装置、83,85:ロードロック部、120,831,843,851,863,10212:チャンバ、120a:窓部、121a,201a:真空ポンプ、121b,201b:排気管、121c,201c:排気弁、141b,142b:貫通孔、142,2142,3142,4142,5142,6142,7142:ヘッド、143,10623:ステージ駆動部、144:ヘッド駆動部、145:XY方向駆動部、146:昇降駆動部、147:回転駆動部、148,1457:圧力センサ、212:処理チャンバ、213,10213:プラズマチャンバ、215:誘導コイル、216:高周波電源、217:バイアス印加部、220A:窒素ガス供給部、220B:酸素ガス供給部、221A:窒素ガス貯留部、221B:酸素ガス貯留部、222A,222B:供給弁、223A,223B:供給管、500,8500:位置測定部、502,8502:反射部材、502a,502b,502c,8502a,8502b,8502c,8502d:反射面、503A,503B,503C:撮像部位置調整部、511A,511B,511C,731:撮像素子、811,812:導入ポート、813:取り出しポート、821,841,861:搬送ロボット、844:搬送装置撮像部、1211,8321,8331,8521,8531,8621:ゲート、1411,1412,1413,1421,1422,1423,3413,3423,4413,4423,5413,5423:静電チャック、1411a,1412a,1413a,1421a,1422a,1423a,3413a,3423a,5413a,5423a:端子電極、1411aa,1421aa:連結部、1411ab,1421ab:屈曲部、1411b,1412b,1413b,1421b、1422b,1423b,3413b,3423b,4413b,4423b,5413b,5423b:電極子、1411c,1421c,3413c,3423c,4413c,4423c,5413c,5423c:気体吐出孔、1411d,1413d,1423d,3413d,3423d,4413d,4423d,5413d,5423d:溝、1441,1442:押圧機構、1441a,1442a:押圧部、1441b,1442b:押圧部駆動部、1456,21611,21612,21613,21614,21621,21622,21623,21624:ピエゾアクチュエータ、1481,1482:基板加熱部、1491:チャック駆動部、1492:気体供給部、1493:距離測定部、10212a:孔、10061:粒子ビーム源、10063:ビーム源搬送部、10611:電極、10612:放電室、10612a:FAB放射口、10613:ビーム源駆動部、10614:ガス供給部、10631:支持棒、10632:支持体、10633:支持体駆動部、10634:ベローズ、21511,21512,21513,21514,21521,21522,21523,21524,61511,61512,61513,61514,61521,61522,61523,61524,71511,71512,71513,71514,71521,71522,71523,71524:押圧部材、34131d,34132d,34231d,34232d:サブ溝、71611,71612,71613,71614,71621,71622,71623,71624:エアシリンダ、A1:第1領域、A2:第2領域、A11,A12:サブ環状領域、GAa,GAb,GAc:撮像画像、JLA,JLB,JLC:光軸、MK1a,MK1b,MK1c,MK2a,MK2b,MK2c:アライメントマーク、P11,P12,P13,P21,P22,P23:部位、PLM,PLM2:プラズマ、VC1,VC2,VC3:仮想円、W1,W2:基板、W1c,W2c:中央部、W1s,W2s:周部

Claims (74)

  1.  第1基板と第2基板とを接合する基板接合システムであって、
     前記第1基板を保持する第1基板保持部と、
     前記第2基板の接合面を前記第1基板の接合面に対向させた状態で前記第2基板を保持する第2基板保持部と、
     前記第1基板保持部における予め設定された基板保持位置に配置された前記第1基板の周部に対向する第1領域に設けられた少なくとも1つの第1静電チャックと、
     前記第1基板保持部における前記第1領域の内側の第2領域に設けられ前記基板保持位置に配置された前記第1基板における前記第2領域に対向する部分を保持する少なくとも1つの第2静電チャックと、
     前記第1静電チャックと前記第2静電チャックとを各別に駆動するチャック駆動部と、
     前記第1基板保持部における前記第2領域に設けられ前記第1基板側に向かって気体を吐出する気体吐出部と、
     前記気体吐出部に気体を供給する気体供給部と、
     前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とを接触させる前に、前記第1基板の周部が前記第1静電チャックに保持された状態で、前記第2静電チャックによる前記第1基板の保持を解除するとともに、前記気体吐出部から気体を吐出させるように前記チャック駆動部および前記気体供給部を制御する制御部と、を備え、
     前記第1基板保持部は、前記第2領域に設けられ、前記気体吐出部に連通する第1凹部を有する、
     基板接合システム。
  2.  前記第1凹部は、前記第2領域において、少なくとも一部が前記第1基板保持部の中央部から前記第1基板保持部の周縁に向かう方向へ放射状に延在する部分を有する少なくとも1つの第1溝を含む、
     請求項1に記載の基板接合システム。
  3.  前記第1静電チャックは、前記第1領域において、前記第1基板保持部の中央部から前記第1基板保持部の周縁に向かう方向へ放射状に延在する複数の第1電極子を有し、
     前記第2静電チャックは、前記第2領域において、前記第1基板保持部の中央部から前記第1基板保持部の周縁に向かう方向へ放射状に延在する複数の第2電極子を有する、
     請求項2に記載の基板接合システム。
  4.  前記複数の第2電極子は、平面視における幅が前記第1基板保持部の周縁側ほど広くなる形状を有する、
     請求項3に記載の基板接合システム。
  5.  前記第1凹部は、前記第2領域において、前記第1基板保持部の中央部を中心として円弧状に延在する部分を有する少なくとも1つの第1溝を含む、
     請求項2に記載の基板接合システム。
  6.  前記第2静電チャックは、前記第2領域それぞれにおいて、前記第1基板保持部の中央部を中心として円弧状に延在する複数の第2電極子を有する、
     請求項5に記載の基板接合システム。
  7.  前記第1凹部は、前記第2領域において、前記第1基板保持部の中央部から螺旋状に延在する部分を有する少なくとも1つの第1溝を含む、
     請求項2に記載の基板接合システム。
  8.  前記第2静電チャックは、前記第2領域それぞれにおいて、前記第1基板保持部の中央部から螺旋状に延在する少なくとも1つの電極子を有する、
     請求項7に記載の基板接合システム。
  9.  前記少なくとも1つの第1溝は、前記複数の第2電極子それぞれの延在方向に沿って延在する部分を有する、
     請求項3または4に記載の基板接合システム。
  10.  前記複数の第2電極子のうちの一部の第2電極子は、第1端子電極に電気的に接続され、
     前記複数の第2電極子のうちの残りの第2電極子は、前記第1端子電極とは異なる第2端子電極に電気的に接続され、
     前記一部の第2電極子と前記残りの第2電極子とは、前記複数の第2電極子の延在方向と直交する方向に交互に並ぶように配置され、
     前記少なくとも1つの第1溝は、前記第1端子電極に電気的に接続された第1電極子と前記第2端子電極に電気的に接続された第2電極子との間に設けられている、
     請求項9に記載の基板接合システム。
  11.  前記制御部は、前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とを接触させる前に、前記第1基板が前記第2静電チャックに保持された状態で、前記気体吐出部から前記第1凹部全体に気体を充填させた後、前記第2静電チャックによる前記第1基板の保持を解除するように前記チャック駆動部および前記気体供給部を制御する、
     請求項1から10のいずれか1項に記載の基板接合システム。
  12.  前記気体吐出部は、イオンを含む気体を吐出する、
     請求項1から11のいずれか1項に記載の基板接合システム。
  13.  前記第1基板保持部は、前記第1領域に設けられ前記気体吐出部に連通する第2凹部を有する、
     請求項1から8のいずれか1項に記載の基板接合システム。
  14.  前記制御部は、前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とが接触し且つ前記第1基板の周部が前記第1静電チャックに保持された状態で、前記気体吐出部から前記第2凹部全体に気体を充填させた後、前記第1静電チャックによる前記第1基板の保持を解除するように前記チャック駆動部および前記気体供給部を制御して前記第1基板と前記第2基板とを接触させる、
     請求項13に記載の基板接合システム。
  15.  前記複数の第1電極子のうちの一部の第1電極子は、第3端子電極に電気的に接続され、
     前記複数の第1電極子のうちの残りの第1電極子は、前記第3端子電極とは異なる第4端子電極に電気的に接続され、
     前記一部の第1電極子と前記残りの第1電極子とは、前記複数の第1電極子の延在方向と直交する方向に交互に並ぶように配置され、
     前記第2凹部は、前記第1領域において、少なくとも一部が前記第1基板保持部の中央部から前記第1基板保持部の周縁に向かう方向へ放射状に延在する部分を有する少なくとも1つの第2溝を含み、
     前記少なくとも1つの第2溝は、前記第3端子電極に電気的に接続された第1電極子と前記第4端子電極に電気的に接続された第1電極子との間に設けられている、
     請求項13または14に記載の基板接合システム。
  16.  前記第1静電チャックは、
     前記第1領域において、前記第1基板保持部の中央部から前記第1基板保持部の周縁に向かう方向へ放射状に延在する複数の第1電極子と、
     前記第1領域において、前記複数の第1電極子のうちの一部の第1電極子に電気的に接続される環状の第3端子電極と、
     前記第1領域において、前記複数の第1電極子のうちの残りの第1電極子に電気的に接続される環状の第4端子電極と、を有し、
     前記第3端子電極と前記第4端子電極との少なくとも一方は、平面視で他方から離れる方向へ突出するように屈曲した複数の屈曲部と、周方向で隣り合う2つの屈曲部の端部同士を連結する連結部と、を有する、
     請求項1から15のいずれか1項に記載の基板接合システム。
  17.  前記第1基板保持部の中央部において前記第1基板の中央部を押圧する押圧機構を更に備え、
     前記制御部は、前記第1基板の周部が前記第1静電チャックに保持された状態で、前記第2静電チャックによる前記第1基板の保持が解除するとともに、前記気体吐出部から気体を吐出させるように前記チャック駆動部および前記気体供給部を制御した後、前記押圧機構により前記第1基板を押圧して前記第1基板の中央部が前記第1基板の周部に比べて前記第2基板側へ突出するように撓ませた状態で前記第1基板の接合面の中央部を前記第2基板の接合面の中央部に接触させて前記第1基板と前記第2基板との接合を進めるように前記押圧機構を制御する、
     請求項1から16のいずれか1項に記載の基板接合システム。
  18.  前記制御部は、前記第1基板が前記第2基板に接触する圧力が前記第1基板と前記第2基板とが仮接合される臨界圧力未満となるように前記気体吐出部から気体が吐出されるように前記気体供給部を制御する、
     請求項1から17のいずれか1項に記載の基板接合システム。
  19.  前記気体吐出部から気体が吐出されたときの前記第1基板保持部と前記第1基板との間の領域の気圧を検出する気圧検出部を更に備え、
     前記制御部は、前記気圧検出部により検出される気圧に基づいて、前記気圧が前記臨界圧力未満となるように前記気体吐出部から吐出される気体の流量を制御する、
     請求項18に記載の基板接合システム。
  20.  前記第1静電チャックは、複数の第1電極子を有し、
     前記第2静電チャックは、複数の第2電極子を有し、
     前記複数の第2電極子のうちの一部の第2電極子は、第1端子電極に電気的に接続され、
     前記複数の第2電極子のうちの残りの第2電極子は、前記第1端子電極とは異なる第2端子電極に電気的に接続され、
     前記複数の第1電極子のうちの一部の第1電極子は、第3端子電極に電気的に接続され、
     前記複数の第1電極子のうちの残りの第1電極子は、前記第3端子電極とは異なる第4端子電極に電気的に接続され、
     前記一部の第2電極子と前記残りの第2電極子とは、交互に並ぶように配置され、
     前記一部の第1電極子と前記残りの第1電極子とは、交互に並ぶように配置され、
     前記制御部は、前記第1静電チャックから前記第1基板の周部の保持を解除する際、前記第1端子電極と前記第2端子電極との間に極性の異なるパルス電圧を交互に印加しつつ、前記パルス電圧の振幅を漸減させるように前記チャック駆動部を制御する、
     請求項1から19のいずれか1項に記載の基板接合システム。
  21.  前記第1基板保持部における前記第1基板が支持される側とは反対側に配置された第1撮像部と、
     前記第1基板保持部と前記第2基板保持部との少なくとも一方を他方に対して前記第1基板保持部と前記第2基板保持部とが対向する方向と交差する方向へ相対的に移動させる保持部駆動部と、を更に備え、
     前記第1基板保持部は、透光性を有するガラスから形成され、
     前記第1基板は、複数の第1アライメントマークが設けられ、
     前記第2基板は、前記複数の第1アライメントマークと同数の複数の第2アライメントマークが設けられ、
     前記第1撮像部は、前記第1基板保持部を透過して前記複数の第1アライメントマークおよび前記複数の第2アライメントマークを撮像し、
     前記制御部は、更に、前記第1撮像部により撮像された前記複数の第1アライメントマークおよび前記複数の第2アライメントマークの撮影画像に基づいて、前記第1基板の前記第2基板に対する相対的な位置ずれ量が小さくなるように前記第1基板保持部と前記第2基板保持部との少なくとも一方を移動させるよう前記保持部駆動部を制御する、
     請求項1から20のいずれか1項に記載の基板接合システム。
  22.  前記第1静電チャックは、前記第1基板保持部における前記第1領域において前記第1基板保持部の中央部を中心とした予め設定された複数のサブ環状領域それぞれに設けられ、前記基板保持位置に配置された前記第1基板における前記複数のサブ環状領域それぞれに対向する部分を保持し、
     前記チャック駆動部は、前記複数のサブ環状領域それぞれに設けられた前記第1静電チャックを各別に駆動し、
     前記第1撮像部は、前記第1基板保持部の前記第1領域において、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークを撮像し、
     前記制御部は、前記第1基板の周部が前記第1静電チャックに保持された状態で、前記複数のサブ環状領域のうち前記第1基板保持部の中央部側に位置するサブ環状領域から優先的に、前記第1静電チャックによる前記第1基板の保持を解除するように前記チャック駆動部を制御する、
     請求項21に記載の基板接合システム。
  23.  前記複数の第1アライメントマークおよび前記複数の第2アライメントマークは、それぞれ、3つ以上存在し、
     前記制御部は、前記複数の第1アライメントマークと、前記複数の第1アライメントマークそれぞれに対応する第2アライメントマークと、の位置ずれ量が小さくなるように前記第1基板保持部と前記第2基板保持部との少なくとも一方を移動させるよう前記保持部駆動部を制御する、
     請求項21または22に記載の基板接合システム。
  24.  前記第1撮像部は、前記第1基板保持部における前記第1基板が支持される側とは反対側に配置された光源から前記第1基板および前記第2基板へ光が照射された状態で、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークの撮影画像を撮像する、
     請求項21から23のいずれか1項に記載の基板接合システム。
  25.  前記第1撮像部は、前記第2基板保持部における前記第2基板が支持される側とは反対側に配置された光源から前記第1基板および前記第2基板へ光が照射された状態で、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークの撮影画像を撮像する、
     請求項21から23のいずれか1項に記載の基板接合システム。
  26.  前記複数の第1アライメントマークおよび前記複数の第2アライメントマークの位置に応じて、前記光源を移動させる光源位置調整部を更に備える、
     請求項24または25に記載の基板接合システム。
  27.  前記第1撮像部は、前記第1アライメントマークと同数存在し、それぞれ、前記複数の第1アライメントマークのうちの1つの第1アライメントマークと、前記複数の第2アライメントマークのうちの前記1つの第1アライメントマークに対応する1つの第2アライメントマークとを撮像する、
     請求項21から26のいずれか1項に記載の基板接合システム。
  28.  前記複数の第1アライメントマークおよび前記複数の第2アライメントマークの位置に応じて、前記第1撮像部を移動させる撮像部位置調整部を更に備える、
     請求項21から27のいずれか1項に記載の基板接合システム。
  29.  前記複数の第1電極子と前記複数の第2電極子とのうちの少なくとも1つは、透明導電膜から形成されている、
     請求項21から28のいずれか1項に記載の基板接合システム。
  30.  第1基板と第2基板とを接合する基板接合システムであって、
     前記第1基板を支持する第1基板保持部と、
     前記第2基板の接合面を前記第1基板の接合面に対向させた状態で前記第2基板を支持する第2基板保持部と、
     前記第1基板保持部における前記第1基板が前記第1基板保持部の予め設定された基板保持位置に配置された前記第1基板の周部に対向する第1領域に設けられ前記第1基板を保持する静電チャックと、
     前記静電チャックを駆動するチャック駆動部と、
     前記第1基板保持部における前記第1領域の内側の第2領域において中心が前記第1基板保持部の中央部に一致する複数の仮想円それぞれに沿って配置されるとともに、前記基板保持位置に配置された前記第1基板における前記第2領域に対向する部分を押圧する複数の押圧部材と、
     前記複数の押圧部材を各別に駆動する押圧部材駆動部と、
     前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とが接触する前に、前記第1基板の周部が前記静電チャックに保持された状態で、前記複数の押圧部材のうち前記第1基板保持部の中央部側に位置する押圧部材が優先的に前記第1基板を押圧するように前記押圧部材駆動部を制御する制御部と、を備える、
     基板接合システム。
  31.  前記複数の押圧部材は、互いに内径が異なる円環状であり、前記第1基板保持部における前記第2領域において中心が前記第1基板保持部の中央部に一致するように同心円状に配置されている、
     請求項30に記載の基板接合システム。
  32.  前記第1基板保持部の中央部において前記第1基板の中央部を押圧する押圧機構を更に備え、
     前記制御部は、前記押圧機構により前記第1基板を押圧して前記第1基板の中央部が前記第1基板の周部に比べて前記第2基板側へ突出するように撓ませた状態で前記第1基板の接合面の中央部を前記第2基板の接合面の中央部に接触させて前記第1基板と前記第2基板との接合を進めるように前記押圧機構を制御する、
     請求項30または31に記載の基板接合システム。
  33.  前記制御部は、前記第1基板が前記第2基板に接触する圧力が前記第1基板と前記第2基板とが仮接合される臨界圧力未満となるように前記複数の押圧部材が前記第1基板を押圧するように前記押圧部材駆動部を制御する、
     請求項30から32のいずれか1項に記載の基板接合システム。
  34.  前記押圧部材駆動部は、前記複数の押圧部材を各別に前記第2基板保持部に近づく方向または前記第2基板保持部から遠ざかる方向へ移動させるピエゾアクチュエータを有する、
     請求項30から33のいずれか1項に記載の基板接合システム。
  35.  前記制御部は、前記ピエゾアクチュエータの前記第1基板保持部と前記第2基板保持部との対向方向における長さの変化量を制御することにより、前記複数の押圧部材それぞれの移動量を制御する、
     請求項34に移載の基板接合システム。
  36.  前記押圧部材駆動部は、空気圧により前記複数の押圧部材を各別に前記第2基板保持部に近づく方向または前記第2基板保持部から遠ざかる方向へ移動させる、
     請求項30から33のいずれか1項に記載の基板接合システム。
  37.  前記制御部は、前記空気圧を制御することにより、前記複数の押圧部材それぞれの移動量を制御する、
     請求項36に記載の基板接合システム。
  38.  前記制御部は、前記複数の押圧部材が前記第1基板保持部の中央部に近いほうから順に前記第1基板に接触していくときの速度が、前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とを接触させた状態から前記第1基板の周部および前記第2基板の周部に向かって前記第1基板と前記第2基板との仮接合が進む速度に比べて早くなるように前記押圧部材駆動部を制御する、
     請求項30から36のいずれか1項に記載の基板接合システム。
  39.  前記第1基板は、前記複数の第1アライメントマークとは異なる少なくとも1つの第3アライメントマークが設けられ、
     前記第2基板は、前記少なくとも1つの第3アライメントマークと同数の前記複数の第2アライメントマークとは異なる第4アライメントマークが設けられ、
     互いに接合された前記第1基板および前記第2基板それぞれの前記複数の第1アライメントマークと前記複数の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとの全てを撮像する第2撮像部を有する検査装置を更に備え、
     前記制御部は、前記第2撮像部により前記複数の第1アライメントマークと前記複数の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとを撮像して得られる撮像画像に基づいて、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向と前記少なくとも1つの第3アライメントマークおよび前記少なくとも1つの第4アライメントマークそれぞれの位置ずれ量および位置ずれ方向とを算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分および回転方向成分を分離し、分離した前記軸方向成分および前記回転方向成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板に対する前記第2基板の前記軸方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映した水平オフセット量を算出する、
     請求項1から38のいずれか1項に記載の基板接合システム。
  40.  前記第1基板は、前記複数の第1アライメントマークとは異なる少なくとも1つの第3アライメントマークが設けられ、
     前記第2基板は、前記少なくとも1つの第3アライメントマークと同数の前記複数の第2アライメントマークとは異なる第4アライメントマークが設けられ、
     互いに接合された前記第1基板および前記第2基板それぞれの前記複数の第1アライメントマークと前記複数の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとの全てを撮像する第2撮像部を有する検査装置を更に備え、
     前記制御部は、前記第2撮像部により前記複数の第1アライメントマークと前記複数の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとを撮像して得られる撮像画像に基づいて、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向と前記少なくとも1つの第3アライメントマークおよび前記少なくとも1つの第4アライメントマークそれぞれの位置ずれ量および位置ずれ方向とを算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの反り成分を分離し、分離した前記反り成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板の中央部の前記第1基板の周部に対する前記第2基板側への突出量のオフセット量である突出オフセット量を算出する、
     請求項1から39のいずれか1項に記載の基板接合システム。
  41.  複数の第1アライメントマークが設けられた第1基板と複数の第2アライメントマークが設けられた第2基板とを接合する基板接合システムであって、
     前記第1基板を保持する第1基板保持部と、前記第2基板の接合面を前記第1基板の接合面に対向させた状態で前記第2基板を保持する第2基板保持部と、第1撮像部と、前記第1基板保持部と前記第2基板保持部との少なくとも一方を他方に対して前記第1基板保持部と前記第2基板保持部とが対向する方向と交差する方向へ相対的に移動させる保持部駆動部と、を有する接合装置と、
     第2撮像部を有する検査装置と、
     制御部と、を備え、
     前記第1基板は、前記複数の第1アライメントマークとは異なる少なくとも1つの第3アライメントマークが設けられ、
     前記第2基板は、前記少なくとも1つの第3アライメントマークと同数の前記複数の第2アライメントマークとは異なる第4アライメントマークが設けられ、
     前記第2撮像部は、互いに接合された前記第1基板および前記第2基板それぞれの前記複数の第1アライメントマークと前記複数の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとの全てを撮像し、
     前記制御部は、前記第2撮像部により前記複数の第1アライメントマークと前記複数の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとを撮像して得られる撮像画像に基づいて、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向と前記少なくとも1つの第3アライメントマークおよび前記少なくとも1つの第4アライメントマークそれぞれの位置ずれ量および位置ずれ方向とを算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分および回転方向成分を分離し、分離した前記軸方向成分および前記回転方向成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板に対する前記第2基板の前記軸方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映した水平オフセット量を算出する、
     基板接合システム。
  42.  前記制御部は、予め設定された数の互いに接合された前記第1基板および前記第2基板について算出された前記位置ずれ量および前記位置ずれ方向の統計値に基づいて、前記水平オフセット量を算出する、
     請求項41に記載の基板接合システム。
  43.  前記制御部は、前記第1撮像部により撮像される複数の第1アライメントマークと第2アライメントマークの組毎に、各別に前記水平オフセット量を算出する、
     請求項41または42に記載の基板接合システム。
  44.  前記制御部は、前記第1撮像部により撮像される複数の第1アライメントマークと第2アライメントマークの組それぞれの位置ずれ量が最小となるように、前記水平オフセット量を算出する、
     請求項43に記載の基板接合システム。
  45.  前記第1基板と前記第2基板との少なくとも一方は、チップの基となる複数のチップ形成領域を有し、
     前記制御部は、前記複数のチップ形成領域のうち前記第1基板に対する前記第2基板の位置ずれに起因して不良となるチップ形成領域の割合が最小となるように、前記水平オフセット量を算出する、
     請求項43に記載の基板接合システム。
  46.  前記制御部は、前記複数のチップ形成領域のうち前記第1基板に対する前記第2基板の位置ずれに起因して不良となるチップ形成領域以外のチップ形成領域それぞれにおける前記位置ずれ量および前記位置ずれ方向とを算出し、算出した前記位置ずれ量および前記位置ずれ方向により決定される前記位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分および回転方向成分を分離し、分離した前記軸方向成分および前記回転方向成分に基づいて、前記水平オフセット量を算出する、
     請求項45に記載の基板接合システム。
  47.  前記制御部は、前記複数の第1アライメントマークと、前記複数の第1アライメントマークそれぞれに対応する第2アライメントマークと、の位置ずれ量が前記水平オフセット量だけオフセットした状態となるように前記第1基板保持部と前記第2基板保持部との少なくとも一方を移動させるよう前記保持部駆動部を制御する、
     請求項41から46のいずれか1項に記載の基板接合システム。
  48.  前記第1基板保持部における前記第1基板が支持される側とは反対側に配置された第1撮像部を更に備え、
     前記制御部は、前記第1撮像部により前記第1基板と前記第2基板とが離間し且つ前記第1基板と前記第2基板とのアライメント終了後に前記複数の第1アライメントマークおよび前記複数の第2アライメントマークを撮像して得られる撮像画像に基づいて、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークそれぞれの位置ずれ量の誤差である位置ずれ量誤差を算出し、算出した位置ずれ量誤差を用いて第1アライメントマークと第2アライメントマークとの組毎の前記水平オフセット量を更新する、
     請求項41から47のいずれか1項に記載の基板接合システム。
  49.  前記第1基板保持部における前記第1基板が支持される側とは反対側に配置された第1撮像部を更に備え、
     前記制御部は、前記第1撮像部により前記第1基板と前記第2基板とが離間した状態で前記複数の第1アライメントマークおよび前記複数の第2アライメントマークを撮像して得られる撮像画像と、前記第1撮像部により互いに接合された前記第1基板と前記第2基板との前記複数の第1アライメントマークおよび前記複数の第2アライメントマークを撮像して得られる撮像画像と、に基づいて、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向を算出し、算出した位置ずれ量および位置ずれ方向に基づいて、前記水平オフセット量を算出する、
     請求項41から48のいずれか1項に記載の基板接合システム。
  50.  前記制御部は、前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとを撮像して得られる撮像画像に基づいて、前記少なくとも1つの第3アライメントマークおよび前記少なくとも1つの第4アライメントマークそれぞれの位置ずれ量および位置ずれ方向とを算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分および回転方向成分を分離し、分離した前記軸方向成分および前記回転方向成分に基づいて、前記第1撮像部により撮像される前記第1アライメントマークと前記第2アライメントマークとの組に対応する前記水平オフセット量を算出する、
     請求項41から49のいずれか1項に記載の基板接合システム。
  51.  前記制御部は、前記水平オフセット量を反映した水平オフセットベクトルを算出する、
     請求項41から50のいずれか1項に記載の基板接合システム。
  52.  複数の第1アライメントマークが設けられた第1基板と複数の第2アライメントマークが設けられた第2基板とを接合する基板接合システムであって、
     前記第1基板を保持する第1基板保持部と、前記第2基板の接合面を前記第1基板の接合面に対向させた状態で前記第2基板を保持する第2基板保持部と、第1撮像部と、前記第1基板保持部と前記第2基板保持部との少なくとも一方を他方に対して前記第1基板保持部と前記第2基板保持部とが対向する方向と交差する方向へ相対的に移動させる保持部駆動部と、を有する接合装置と、
     制御部と、を備え、
     前記制御部は、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークそれぞれの算出された位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分および回転方向成分を分離し、分離した前記軸方向成分および前記回転方向成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板に対する前記第2基板の前記軸方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映した水平オフセットベクトルだけずらした前記複数の第2アライメントマークの代表位置を用いて、前記第1基板に対する前記第2基板のアライメントを実行する、
     基板接合システム。
  53.  複数の第1アライメントマークが設けられた第1基板と複数の第2アライメントマークが設けられた第2基板とを接合する基板接合システムであって、
     前記第1基板を保持する第1基板保持部と、前記第2基板の接合面を前記第1基板の接合面に対向させた状態で前記第2基板を保持する第2基板保持部と、第1撮像部と、前記第1基板保持部と前記第2基板保持部との少なくとも一方を他方に対して前記第1基板保持部と前記第2基板保持部とが対向する方向と交差する方向へ相対的に移動させる保持部駆動部と、を有する接合装置と、
     第2撮像部を有する検査装置と、
     制御部と、を備え、
     前記第1基板は、前記複数の第1アライメントマークとは異なる少なくとも1つの第3アライメントマークが設けられ、
     前記第2基板は、前記少なくとも1つの第3アライメントマークと同数の前記複数の第2アライメントマークとは異なる第4アライメントマークが設けられ、
     前記第2撮像部は、互いに接合された前記第1基板および前記第2基板それぞれの前記複数の第1アライメントマークと前記複数の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとの全てを撮像し、
     前記制御部は、前記第2撮像部により前記複数の第1アライメントマークと前記複数の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとを撮像して得られる撮像画像に基づいて、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向と前記少なくとも1つの第3アライメントマークおよび前記少なくとも1つの第4アライメントマークそれぞれの位置ずれ量および位置ずれ方向とを算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの反り成分を分離し、分離した前記反り成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板の中央部の前記第1基板の周部に対する前記第2基板側への突出量のオフセット量である突出オフセット量を算出する、
     基板接合システム。
  54.  前記制御部は、互いに接合された前記第1基板および前記第2基板の反り量が0となるように前記突出オフセット量を算出する、
     請求項53に記載の基板接合システム。
  55.  前記制御部は、予め設定された数の互いに接合された前記第1基板および前記第2基板について算出された前記位置ずれ量および前記位置ずれ方向の統計値に基づいて、前記突出オフセット量を算出する、
     請求項53または54に記載の基板接合システム。
  56.  第1基板と第2基板とを接合する基板接合方法であって、
     第1基板保持部における予め設定された基板保持位置に配置された前記第1基板の周部に対向する第1領域に設けられた第1静電チャックに、前記第1基板の周部を保持させるステップと、
     前記第2基板の接合面を前記第1基板の接合面に対向させた状態で前記第2基板を第2基板保持部に保持させるステップと、
     前記第1基板の周部が前記第1静電チャックに保持された状態で、前記第1領域の内側の第2領域に設けられ気体吐出部に連通する第1凹部を有する前記第1基板保持部における前記気体吐出部に前記第1凹部へ気体を吐出させるステップと、
     前記第1凹部へ気体を吐出した後、前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とを接触させるステップと、を含む、
     基板接合方法。
  57.  第1基板と第2基板とを接合する基板接合方法であって、
     前記第1基板を前記第1基板保持部における予め設定された基板保持位置に配置された前記第1基板の周部に対向する第1領域に設けられた基板保持部に保持させるステップと、
     前記第2基板の接合面を前記第1基板の接合面に対向させた状態で前記第2基板を第2基板保持部に保持させるステップと、
     前記第1基板の周部が前記基板保持部に保持された状態で、前記第1基板保持部における前記第1領域の内側の第2領域において中心が前記第1基板保持部の中央部に一致する複数の仮想円それぞれに沿って配置されるとともに、前記基板保持位置に配置された前記第1基板における前記第2領域に対向する部分を押圧する複数の押圧部材のうち前記第1基板保持部の中央部側に位置する押圧部材により優先的に前記第1基板を押圧するステップと、
     前記複数の押圧部材により前記第1基板を押圧した後、前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とを接触させるステップと、を含む、
     基板接合方法。
  58.  前記第1基板保持部は、透光性を有するガラスから形成され、
     前記第1基板は、3つ以上の第1アライメントマークが設けられ、
     前記第2基板は、前記3つ以上の第1アライメントマークと同数の3つ以上の第2アライメントマークが設けられ、
     前記第1基板保持部における前記第1基板が支持される側とは反対側に配置された第1撮像部により、前記第1基板保持部を透過して前記3つ以上の第1アライメントマークおよび前記3つ以上の第2アライメントマークを撮像するステップと、
     前記3つ以上の第1アライメントマークと、前記3つ以上の第1アライメントマークそれぞれに対応する第2アライメントマークと、の位置ずれ量が小さくなるように前記第1基板保持部と前記第2基板保持部との少なくとも一方を移動させるステップと、を更に含む、
     請求項56または57に記載の基板接合方法。
  59.  前記第1撮像部とは異なる第2撮像部により、互いに接合された前記第1基板および前記第2基板それぞれの前記3つ以上の第1アライメントマークと前記3つ以上の第2アライメントマークと前記3つ以上の第1アライメントマークとは異なる少なくとも1つの第3アライメントマークと前記少なくとも1つの第3アライメントマークと同数の前記3つ以上の第2アライメントマークとは異なる少なくとも1つの第4アライメントマークとを全て撮像するステップと、
     前記第2撮像部により前記3つ以上の第1アライメントマークと前記3つ以上の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとを撮像して得られる撮像画像に基づいて、前記3つ以上の第1アライメントマークおよび前記3つ以上の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向と前記少なくとも1つの第3アライメントマークおよび前記少なくとも1つの第4アライメントマークそれぞれの位置ずれ量および位置ずれ方向を算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分および回転方向成分を分離し、分離した前記軸方向成分および前記回転方向成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板に対する前記第2基板の前記軸方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映したベクトルである水平オフセット量を算出するステップと、を更に含む、
     請求項58に記載の基板接合方法。
  60.  前記第1撮像部とは異なる第2撮像部により、互いに接合された前記第1基板および前記第2基板それぞれの前記3つ以上の第1アライメントマークと前記3つ以上の第2アライメントマークと前記3つ以上の第1アライメントマークとは異なる少なくとも1つの第3アライメントマークと前記少なくとも1つの第3アライメントマークと同数の前記3つ以上の第2アライメントマークとは異なる第4アライメントマークとを全て撮像するステップと、
     前記第2撮像部により前記3つ以上の第1アライメントマークと前記3つ以上の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとを撮像して得られる撮像画像に基づいて、前記3つ以上の第1アライメントマークおよび前記3つ以上の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向と前記少なくとも1つの第3アライメントマークおよび前記少なくとも1つの第4アライメントマークそれぞれの位置ずれ量および位置ずれ方向を算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの反り成分を分離し、分離した前記反り成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板の中央部の前記第1基板の周部に対する前記第2基板側への突出量のオフセット量である突出オフセット量を算出するステップと、を含む、
     請求項58または59に記載の基板接合方法。
  61.  第1基板と第2基板とを接合する基板接合方法であって、
     前記第1基板は、3つ以上の第1アライメントマークが設けられ、
     前記第2基板は、前記3つ以上の第1アライメントマークと同数の3つ以上の第2アライメントマークが設けられ、
     第1撮像部により互いに接合された前記第1基板および前記第2基板それぞれの前記3つ以上の第1アライメントマークと前記3つ以上の第2アライメントマークと前記3つ以上の第1アライメントマークとは異なる少なくとも1つの第3アライメントマークと前記少なくとも1つの第3アライメントマークと同数の前記3つ以上の第2アライメントマークとは異なる少なくとも1つの第4アライメントマークとを全て撮像するステップと、
     前記第1撮像部とは異なる第2撮像部により前記3つ以上の第1アライメントマークと前記3つ以上の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとを撮像して得られる撮像画像に基づいて、前記3つ以上の第1アライメントマークおよび前記3つ以上の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向と前記少なくとも1つの第3アライメントマークおよび前記少なくとも1つの第4アライメントマークそれぞれの位置ずれ量および位置ずれ方向を算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分および回転方向成分を分離し、分離した前記軸方向成分および前記回転方向成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板に対する前記第2基板の前記軸方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映したベクトルである水平オフセットベクトルを算出するステップと、
     前記3つ以上の第1アライメントマークと、前記3つ以上の第1アライメントマークそれぞれに対応する第2アライメントマークと、の位置ずれ量が前記水平オフセット量だけオフセットした状態となるように前記第1基板保持部と前記第2基板保持部との少なくとも一方を移動させるステップと、を含む、
     基板接合方法。
  62.  前記水平オフセット量を算出するステップにおいて、予め設定された数の互いに接合された前記第1基板および前記第2基板について算出された前記位置ずれ量および前記位置ずれ方向の統計値に基づいて、前記水平オフセット量を算出する、
     請求項61に記載の基板接合方法。
  63.  前記水平オフセット量を算出するステップにおいて、前記第1撮像部により撮像される複数の第1アライメントマークと第2アライメントマークの組毎に、各別に前記水平オフセット量を算出する、
     請求項61または62に記載の基板接合方法。
  64.  前記水平オフセット量を算出するステップにおいて、前記第1撮像部により撮像される複数の第1アライメントマークと第2アライメントマークの組それぞれの位置ずれ量が最小となるように、前記水平オフセット量を算出する、
     請求項63に記載の基板接合方法。
  65.  前記第1基板と前記第2基板との少なくとも一方は、チップの基となる複数のチップ形成領域を有し、
     前記水平オフセット量を算出するステップにおいて、前記複数のチップ形成領域のうち前記第1基板に対する前記第2基板の位置ずれに起因して不良となるチップ形成領域の割合が最小となるように、前記水平オフセット量を算出する、
     請求項63に記載の基板接合方法。
  66.  前記複数のチップ形成領域のうち前記第1基板に対する前記第2基板の位置ずれに起因して不良となるチップ形成領域以外のチップ形成領域それぞれにおける前記位置ずれ量および前記位置ずれ方向とを算出し、算出した前記位置ずれ量および前記位置ずれ方向により決定される前記位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分および回転方向成分を分離し、分離した前記軸方向成分および前記回転方向成分に基づいて、前記水平オフセット量を算出する、
     請求項65に記載の基板接合方法。
  67.  前記複数の第1アライメントマークと、前記複数の第1アライメントマークそれぞれに対応する第2アライメントマークと、の位置ずれ量が前記水平オフセット量だけオフセットした状態となるように前記第1基板保持部と前記第2基板保持部との少なくとも一方を移動させるステップを更に含む、
     請求項61から66のいずれか1項に記載の基板接合方法。
  68.  前記水平オフセット量を算出するステップにおいて、前記第1基板保持部における前記第1基板が支持される側とは反対側に配置された第1撮像部により前記第1基板と前記第2基板とが離間し且つ前記第1基板と前記第2基板とのアライメント終了後に前記複数の第1アライメントマークおよび前記複数の第2アライメントマークを撮像して得られる撮像画像に基づいて、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークそれぞれの位置ずれ量の誤差である位置ずれ量誤差を算出し、算出した位置ずれ量誤差を用いて第1アライメントマークと第2アライメントマークとの組毎の前記水平オフセット量を更新する、
     請求項61から67のいずれか1項に記載の基板接合方法。
  69.  前記水平オフセット量を算出するステップにおいて、前記第1基板保持部における前記第1基板が支持される側とは反対側に配置された第1撮像部により前記第1基板と前記第2基板とが離間した状態で前記複数の第1アライメントマークおよび前記複数の第2アライメントマークを撮像して得られる撮像画像と、前記第1撮像部により互いに接合された前記第1基板と前記第2基板との前記複数の第1アライメントマークおよび前記複数の第2アライメントマークを撮像して得られる撮像画像と、に基づいて、前記複数の第1アライメントマークおよび前記複数の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向を算出し、算出した位置ずれ量および位置ずれ方向に基づいて、前記水平オフセット量を算出する、
     請求項61から68のいずれか1項に記載の基板接合方法。
  70.  前記水平オフセット量を算出するステップにおいて、前記水平オフセット量を反映した水平オフセットベクトルを算出する、
     請求項61から69のいずれか1項に記載の基板接合方法。
  71.  第1基板と第2基板とを接合する基板接合方法であって、
     前記第1基板は、3つ以上の第1アライメントマークが設けられ、
     前記第2基板は、前記3つ以上の第1アライメントマークと同数の3つ以上の第2アライメントマークが設けられ、
     第1撮像部により互いに接合された前記第1基板および前記第2基板それぞれの前記3つ以上の第1アライメントマークと前記3つ以上の第2アライメントマークとを全て撮像するステップと、
     前記3つ以上の第1アライメントマークおよび前記3つ以上の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの互いに交差する2軸方向それぞれに沿った軸方向成分および回転方向成分を分離し、分離した前記軸方向成分および前記回転方向成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板に対する前記第2基板の前記軸方向のオフセット量である軸方向オフセット量と回転方向のオフセット量である回転方向オフセット量とを反映したベクトルである水平オフセットベクトルだけずらした前記複数の第2アライメントマークの代表位置を用いて、前記第1基板に対する前記第2基板のアライメントを実行するステップと、を含む、
     基板接合方法。
  72.  第1基板と第2基板とを接合する基板接合方法であって、
     前記第1基板は、3つ以上の第1アライメントマークが設けられ、
     前記第2基板は、前記3つ以上の第1アライメントマークと同数の3つ以上の第2アライメントマークが設けられ、
     第1撮像部により、互いに接合された前記第1基板および前記第2基板それぞれの前記3つ以上の第1アライメントマークと前記3つ以上の第2アライメントマークと前記3つ以上の第1アライメントマークとは異なる少なくとも1つの第3アライメントマークと前記少なくとも1つの第3アライメントマークと同数の前記3つ以上の第2アライメントマークとは異なる第4アライメントマークとを全て撮像するステップと、
     前記撮像部により前記3つ以上の第1アライメントマークと前記3つ以上の第2アライメントマークと前記少なくとも1つの第3アライメントマークと前記少なくとも1つの第4アライメントマークとを撮像して得られる撮像画像に基づいて、前記3つ以上の第1アライメントマークおよび前記3つ以上の第2アライメントマークそれぞれの位置ずれ量および位置ずれ方向と前記少なくとも1つの第3アライメントマークおよび前記少なくとも1つの第4アライメントマークそれぞれの位置ずれ量および位置ずれ方向を算出し、算出した位置ずれ量および位置ずれ方向により決定される位置ずれベクトルの反り成分を分離し、分離した前記反り成分に基づいて、前記第1基板と前記第2基板とを接合する際の前記第1基板の中央部の前記第1基板の周部に対する前記第2基板側への突出量のオフセット量である突出オフセット量を算出するステップと、
     前記第1基板の中央部を前記第1基板の周部に対して前記第2基板側へ前記突出オフセット量だけ突出させた状態で、前記第1基板の接合面の中央部と前記第2基板の接合面の中央部とを接触させるステップと、を含む、
     基板接合方法。
  73.  前記突出オフセット量を算出するステップにおいて、互いに接合された前記第1基板および前記第2基板の反り量が0となるように前記突出オフセット量を算出する、
     請求項72に記載の基板接合方法。
  74.  前記突出オフセット量を算出するステップにおいて、予め設定された数の互いに接合された前記第1基板および前記第2基板について算出された前記位置ずれ量および前記位置ずれ方向の統計値に基づいて、前記突出オフセット量を算出する、
     請求項72または73に記載の基板接合方法。
PCT/JP2022/034913 2022-09-20 2022-09-20 基板接合システムおよび基板接合方法 WO2024062516A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034913 WO2024062516A1 (ja) 2022-09-20 2022-09-20 基板接合システムおよび基板接合方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/034913 WO2024062516A1 (ja) 2022-09-20 2022-09-20 基板接合システムおよび基板接合方法

Publications (1)

Publication Number Publication Date
WO2024062516A1 true WO2024062516A1 (ja) 2024-03-28

Family

ID=90453989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034913 WO2024062516A1 (ja) 2022-09-20 2022-09-20 基板接合システムおよび基板接合方法

Country Status (1)

Country Link
WO (1) WO2024062516A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062467A1 (ja) * 2016-09-30 2018-04-05 ボンドテック株式会社 基板接合方法および基板接合装置
WO2020017314A1 (ja) * 2018-07-19 2020-01-23 ボンドテック株式会社 基板接合装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062467A1 (ja) * 2016-09-30 2018-04-05 ボンドテック株式会社 基板接合方法および基板接合装置
WO2020017314A1 (ja) * 2018-07-19 2020-01-23 ボンドテック株式会社 基板接合装置

Similar Documents

Publication Publication Date Title
JP6448848B2 (ja) 基板接合方法
JP7146275B2 (ja) 部品実装システムおよび部品実装方法
TWI823598B (zh) 接合系統及接合方法
KR102445060B1 (ko) 기판끼리의 접합 방법, 기판 접합 장치
US11791223B2 (en) Substrate bonding apparatus and substrate bonding method
KR102146633B1 (ko) 접합 장치 및 접합 시스템
JP6448858B2 (ja) 基板接合方法および基板接合装置
JP2010166085A (ja) ウェハチャックおよびそれを用いた露光装置ならびに半導体装置の製造方法
JP2014041957A (ja) 検査装置、接合システム、検査方法、プログラム及びコンピュータ記憶媒体
JPWO2020017314A1 (ja) 基板接合装置
WO2024062516A1 (ja) 基板接合システムおよび基板接合方法
JP2023018531A (ja) 基板接合システムおよび基板接合方法
TW202414616A (zh) 基板接合系統以及基板接合方法
JP3972059B2 (ja) 基板接合装置および基板接合方法
WO2021070661A1 (ja) 接合システムおよび重合基板の検査方法
JP7268931B2 (ja) 接合方法、基板接合装置および基板接合システム
JP7156753B1 (ja) 接合装置、接合システムおよび接合方法
WO2022210839A1 (ja) 接合システムおよび接合方法
CN113784814A (zh) 接合装置、接合系统以及接合方法
CN113795906A (zh) 接合装置、接合系统以及接合方法
JP7297074B2 (ja) 検査装置の自己診断方法および検査装置
CN111418042A (zh) 层叠基板的制造方法以及制造装置
JP7183391B2 (ja) 接合装置および接合方法
JPH06275498A (ja) X線マスクの製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22959480

Country of ref document: EP

Kind code of ref document: A1