WO2024061139A1 - 数据传输方法、装置以及存储介质 - Google Patents

数据传输方法、装置以及存储介质 Download PDF

Info

Publication number
WO2024061139A1
WO2024061139A1 PCT/CN2023/119253 CN2023119253W WO2024061139A1 WO 2024061139 A1 WO2024061139 A1 WO 2024061139A1 CN 2023119253 W CN2023119253 W CN 2023119253W WO 2024061139 A1 WO2024061139 A1 WO 2024061139A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap
signal
terminal device
opportunities
frequency range
Prior art date
Application number
PCT/CN2023/119253
Other languages
English (en)
French (fr)
Inventor
薛祎凡
邝奕如
薛丽霞
李强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024061139A1 publication Critical patent/WO2024061139A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present application relates to the field of communication technology, and in particular, to a data transmission method, device and storage medium.
  • the network device can configure the measurement interval (GAP) to the terminal device.
  • the terminal device measures the reference signal of the neighboring cell in the measurement GAP without Data transmission with the serving cell.
  • the measurement GAP of network equipment configuration is often relatively dense, resulting in a high resource occupancy rate of the measurement GAP. Therefore, how to reduce the resource occupancy rate of the measurement GAP is an issue that needs to be solved urgently.
  • Embodiments of the present application provide a data transmission method, device and storage medium, in order to reduce the resource occupancy rate of measuring GAP.
  • an embodiment of the present application provides a data transmission method, including: a first terminal device determines N second GAP opportunities based on M first GAP opportunities, the M first GAP opportunities include the N second GAP opportunities, the M first GAP opportunities are periodic time domain positions of a first GAP configured for a first network device, M is greater than N, and M and N are both positive integers; at the N second GAP opportunities, the first terminal device stops receiving the first signal sent by the first network device.
  • some GAP timings are determined from multiple GAP timings configured by the first network device, so as to avoid that each GAP timing of the configured GAP takes effect on the first terminal device, resulting in more GAP occupation. resources and reduce the resource occupancy rate of GAP.
  • the method further includes: the first terminal device receiving configuration information sent by the first network device, where the configuration information is used to configure the periodic time domain position of the first GAP.
  • the periodic time domain position of the first GAP is configured to the first terminal device to facilitate determination of N second GAP opportunities therefrom.
  • the configuration information includes at least one of a period, an offset value, and a time domain length of the first GAP.
  • the N second GAP opportunities are determined from the M first GAP opportunities based on the identity of the first terminal device or the identity of the terminal device group in which the first terminal device is located. .
  • N second GAP opportunities are determined from the M first GAP opportunities, Improved efficiency in determining GAP timing.
  • the data transmission method provided by this embodiment facilitates the selection of N second GAP opportunities that can be used by the first terminal device from the M first GAP opportunities, thereby preventing GAP from occupying more communication resources of the first terminal device.
  • W is determined based on the period T of the first GAP and the measurement period L, which is the period during which the first terminal device measures the reference signal of the neighboring cell.
  • N second GAP opportunities are determined from the M first GAP opportunities, so that the N second GAP opportunities can better satisfy the first terminal device. measurement requirements.
  • the W is less than or equal to the quotient of the period T of the first GAP and the measurement period L.
  • the measurement time the higher the accuracy of the RRM measurement of the first terminal device.
  • the configuration information is carried in a broadcast message sent by the first network device.
  • the data transmission method provided by this embodiment facilitates the terminal device in the idle state or inactive state to receive the configuration information.
  • the first terminal device is in an idle state or an inactive state when receiving the broadcast message.
  • broadcast messages are sent to the first terminal device in the idle state or inactive state, which can solve the problem that the terminal device in the idle state or inactive state cannot determine the measured GAP.
  • the first signal includes at least one of the following: a low-power wake-up signal; a low-power measurement signal; and a low-power synchronization signal.
  • the data transmission method provided by this embodiment is suitable for responding to measurement requirements when the low-power wake-up circuit is working.
  • the first terminal device can stop receiving the first signal through the low-power wake-up circuit within N second GAP opportunities.
  • the first network device does not send the first signal, which can reduce the signaling overhead of the communication system.
  • the first terminal device stopping receiving the first signal sent by the first network device includes: the first terminal device stopping receiving the first signal in the first frequency range.
  • the first signal can be any signal within the first frequency range, so as to solve the problem that the first terminal equipment cannot perform inter-frequency measurement or inter-system measurement within the N second GAP opportunities.
  • the method further includes: at the N second GAP opportunities, the first terminal device receives a second signal in a second frequency range, and the second frequency range is different from the first frequency range, The second signal is used for radio resource management RRM measurement.
  • the first terminal device can implement RRM measurement at N second GAP opportunities, thereby reducing the impact on the communication service of the serving cell.
  • the first terminal device receiving the second signal in the second frequency range includes: the first terminal device receiving the second signal in the second frequency range through the first communication device, The second signal is the measurement reference signal of the neighboring cell; or, the first terminal equipment receives the second signal in the second frequency range through the second communication device, and the second signal is the measurement reference signal of the serving cell or the neighboring cell. Signal.
  • the first terminal device receives the second signal for RRM measurement in the second frequency range, thereby achieving measurement of the neighboring cell without affecting the communication reliability of the serving cell.
  • the time domain length of the first GAP is greater than or equal to the duration of measuring the reference signal of the neighboring cell; or, the time domain length of the first GAP is greater than or equal to the duration of measuring the reference signal of the neighboring cell. and the sum of at least one of the following: the duration of measuring frequency point switching; the duration of switching of the first communication device to the second communication device, the first communication device is used to receive the first signal in the first frequency range; the second communication The duration during which the device is turned on, and the second communication device is used to receive a second signal in a second frequency range; wherein the first frequency range is different from the second frequency range.
  • the duration of the first GAP can cover at least one of the duration of measurement frequency point switching, the duration of communication device switching, and the duration of turning on the second communication device, so that in different measurement scenarios , the first terminal equipment can completely receive the reference signal sent by one reference signal cycle of the neighboring cell in each second GAP opportunity.
  • embodiments of the present application provide a data transmission method, including: a first network device determines N second GAP opportunities based on M first GAP opportunities, where the M first GAP opportunities include the N second GAP opportunities.
  • GAP timing the M first GAP timing is the periodic time domain position of the first GAP configured for the first network device, M is greater than N, and M and N are both positive integers; at the N second GAP timing , the first network device stops sending the first signal to the first terminal device.
  • the method further includes: the first network device sending configuration information to the first terminal device, where the configuration information is used to configure the periodic time domain position of the first GAP.
  • the configuration information includes at least one of a period, an offset value, and a time domain length of the first GAP.
  • the N second GAP opportunities are determined from the M first GAP opportunities based on the identity of the first terminal device or the identity of the terminal device group in which the first terminal device is located. .
  • W is determined based on the period T of the first GAP and the measurement period L, which is the period during which the first terminal device measures the reference signal of the neighboring cell.
  • the W is less than or equal to the quotient of the period T of the first GAP and the measurement period L.
  • the configuration information is carried in a broadcast message.
  • the first terminal device is in an idle state or an inactive state when receiving the broadcast message.
  • the first signal includes at least one of the following: a low-power wake-up signal; a low-power measurement signal; and a low-power synchronization signal.
  • the first network device stopping sending the first signal to the first terminal device includes: the first network device stopping sending the first signal to the first terminal device in the first frequency range.
  • the time domain length of the first GAP is greater than or equal to the duration of measuring the reference signal of the neighboring cell; or, the time domain length of the first GAP is greater than or equal to the duration of measuring the reference signal of the neighboring cell. and the sum of at least one of the following: the duration of measuring frequency point switching; the duration of switching of the first communication device to the second communication device, the first communication device is used to receive the first signal in the first frequency range; the second communication The duration during which the device is turned on, and the second communication device is used to receive a second signal in a second frequency range; wherein the first frequency range is different from the second frequency range.
  • embodiments of the present application provide a communication device, including: a processing module configured to determine N second GAP opportunities based on M first interval GAP opportunities, where the M first GAP opportunities include the Nth Two GAP opportunities, the M first GAP opportunities are the periodic time domain positions of the first GAP configured by the first network device, M is greater than N, and M and N are both positive integers; the transceiver module is used to perform the N At the second GAP opportunity, stop receiving the first signal sent by the first network device.
  • the transceiver module is further configured to: receive configuration information sent by the first network device, where the configuration information is used to configure the periodic time domain position of the first GAP.
  • the configuration information includes at least one of a period, an offset value, and a time domain length of the first GAP.
  • the N second GAP opportunities are determined from the M first GAP opportunities based on the identification of the communication device or the identification of the group to which the communication device belongs.
  • W is determined based on a period T of the first GAP and a measurement period L, where the measurement period is a period for the communication device to measure a reference signal of a neighboring cell.
  • the W is less than or equal to the quotient of the period T of the first GAP and the measurement period L.
  • the configuration information is carried in a broadcast message sent by the first network device.
  • the communication device is in an idle state or an inactive state when receiving the broadcast message.
  • the first signal includes at least one of the following: a low-power wake-up signal; a low-power measurement signal; and a low-power synchronization signal.
  • the transceiver module is specifically configured to stop receiving the first signal within a first frequency range.
  • the transceiver module is further configured to: receive a second signal in a second frequency range at the N second GAP opportunities, the second frequency range being different from the first frequency range, the The second signal is used for radio resource management RRM measurement.
  • the transceiver module is specifically configured to: the first terminal equipment receives the second signal in the second frequency range through the first communication device, and the second signal is the measurement reference signal of the neighboring cell. ; Or, the first terminal equipment receives the second signal in the second frequency range through the second communication device.
  • the second signal is the measurement reference signal of the serving cell or the neighboring cell.
  • the time domain length of the first GAP is greater than or equal to the duration of measuring the reference signal of the neighboring cell; or, the time domain length of the first GAP is greater than or equal to the duration of measuring the reference signal of the neighboring cell. and the sum of at least one of the following: the duration of measuring frequency point switching; the duration of switching of the first communication device to the second communication device, the first communication device is used to receive the first signal in the first frequency range; the second communication The duration during which the device is turned on, and the second communication device is used to receive a second signal in a second frequency range; wherein the first frequency range is different from the second frequency range.
  • embodiments of the present application provide a communication device, including: a processing module configured to determine N second GAP opportunities based on M first GAP opportunities, where the M first GAP opportunities include the N second GAP opportunities.
  • GAP timing, the M first GAP timings are the periodic time domain positions of the first GAP configured for the communication device, M is greater than N, and M and N are both positive integers; the transceiver module is used to send and receive the Nth GAP timing in the periodic time domain.
  • the second GAP opportunity stop sending the first signal to the first terminal device.
  • the transceiver module is also configured to send configuration information to the first terminal device, where the configuration information is used to configure the periodic time domain position of the first GAP.
  • the configuration information includes at least one of a period, an offset value, and a time domain length of the first GAP.
  • the N second GAP opportunities are determined from the M first GAP opportunities based on the identity of the first terminal device or the identity of the terminal device group in which the first terminal device is located. .
  • W is determined based on the period T of the first GAP and the measurement period L, which is the period during which the first terminal device measures the reference signal of the neighboring cell.
  • the W is less than or equal to the quotient of the period T of the first GAP and the measurement period L.
  • the configuration information is carried in a broadcast message.
  • the first terminal device is in an idle state or an inactive state when receiving the broadcast message.
  • the first signal includes at least one of the following: a low-power wake-up signal; a low-power measurement signal; and a low-power synchronization signal.
  • the transceiver module is specifically configured to stop sending the first signal to the first terminal device in the first frequency range.
  • the time domain length of the first GAP is greater than or equal to the duration of measuring the reference signal of the neighboring cell; or, the time domain length of the first GAP is greater than or equal to the duration of measuring the reference signal of the neighboring cell. and the sum of at least one of the following: the duration of measuring frequency point switching; the duration of switching of the first communication device to the second communication device, the first communication device is used to receive the first signal in the first frequency range; the second communication The duration during which the device is turned on, and the second communication device is used to receive a second signal in a second frequency range; wherein the first frequency range is different from the second frequency range.
  • embodiments of the present application provide a communication device, including: a processor and a memory.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program stored in the memory to perform the above-mentioned first aspect. ,second aspects or methods in each possible implementation.
  • embodiments of the present application provide a chip, including: a processor, configured to call and run computer instructions from a memory, so that a device installed with the chip executes the first aspect, the second aspect, or each possible implementation. method within the method.
  • embodiments of the present application provide a computer-readable storage medium for storing computer program instructions.
  • the computer program causes the computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • embodiments of the present application provide a computer program product, including computer program instructions, which cause a computer to execute the method in the first aspect, the second aspect, or each possible implementation manner.
  • Figure 1 is a schematic diagram of a communication system provided by an embodiment of the present application.
  • Figure 2 is a schematic diagram of a low-power wake-up scenario provided by an embodiment of the present application.
  • Figure 3 is an architectural schematic diagram of a communication device provided by an embodiment of the present application.
  • Figure 4 is a schematic interactive flow chart of a data transmission method provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of an interval timing provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of another interval timing provided by the embodiment of the present application.
  • Figure 7 is a schematic interactive flow chart of another data transmission method provided by an embodiment of the present application.
  • Figure 8 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • Figure 9 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the communication method provided by this application can be applied to various communication systems, such as: Long Term Evolution,
  • LTE Long term evolution
  • LTE-A Advanced long term evolution
  • 5G 5th-Generation, 5G system
  • 6G 6th Generation
  • the terminal equipment involved in the embodiments of this application may also be called User Equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication equipment, user agent or user device, etc.
  • UE User Equipment
  • Terminal equipment can also be called terminal, user equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • Terminal equipment can be mobile phones, tablet computers, smart wearable devices, computers with wireless transceiver functions, virtual reality (VR) terminal equipment, augmented reality (AR) terminal equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, wireless terminals in smart grids, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • Network equipment is the access equipment that terminal equipment wirelessly accesses into the mobile communication system. It can be a base station such as NodeB, an evolved base station such as evolved NodeB eNodeB, or new radio access technology (NR). ) Base stations in mobile communication systems, base stations in future mobile communication systems or access nodes in WiFi systems, etc. Network equipment can provide services to terminal devices in the form of a central unit (CU) and a distributed unit (DU). The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • CU central unit
  • DU distributed unit
  • both terminal equipment and network equipment can be deployed on land, including indoors or outdoors, handheld, wearable or vehicle-mounted; they can also be deployed on water (such as ships, etc.); they can also be deployed in the air (such as wireless Man-machine, aircraft, balloons and satellites, etc.).
  • Network equipment and terminal equipment, and terminal equipment and terminal equipment can communicate through licensed spectrum (licensed spectrum), unlicensed spectrum (unlicensed spectrum), or both licensed spectrum and unlicensed spectrum. communication. Communication between network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through spectrum below 6 gigahertz (GHz), or through spectrum above 6GHz and above. To communicate simultaneously using spectrum below 6GHz and spectrum above 6GHz.
  • GHz gigahertz
  • the embodiments of the present application do not limit the spectrum resources used between the network device and the terminal device.
  • FIG. 1 shows a schematic diagram of a communication system suitable for the communication method according to the embodiment of the present application.
  • the communication system 100 may include network devices and terminal devices.
  • the number of network devices and terminal devices may be one or more, such as network devices 111 and 112 and terminal devices 121 to 123 shown in FIG. 1 .
  • the network device 111 can communicate with at least one of the terminal devices 121 and 122 through a wireless air interface.
  • the terminal devices 121 and 122 are in the same serving cell.
  • the network device 112 can communicate with the terminal device 123 through a wireless air interface.
  • the network device 111 is a network device of a cell adjacent to the terminal device 123
  • the network device 112 is a network device of a cell adjacent to the terminal devices 121 and 122.
  • the master in the terminal equipment can be used.
  • the receiver (main receiver, MR, or main circuit) completes these functions.
  • the terminal device uses the main receiver to receive signals, it is also called working on the main link, or it is also said that the main receiver is in a working state.
  • the name of the main circuit is only for differentiation, and its specific naming does not limit the protection scope of the present application. For the convenience of explanation below, they are collectively described as MR.
  • FIG. 2 is a schematic diagram of a low-power wake-up scenario provided by an embodiment of the present application. As shown in Figure 2, in order to reduce the power consumption of the terminal device, the terminal device can also receive signals by using a separate small circuit with low power consumption.
  • the low-power small circuit can be implemented using a separate small circuit or chip with a simple structure, and its power consumption is low.
  • This small low-power circuit can be called, for example, a wake up radio (WUR), or it can also be called a wake-up circuit, or it can also be called a low-power circuit, or it can also be called a wake-up receiver (wake up receiver) , WUR), or it can also be called a low power wake up receiver (LP-WUR), etc.
  • WUR wake up radio
  • LP-WUR low power wake up receiver
  • This application does not limit its naming.
  • this small low-power circuit is called a wake-up circuit. It can be understood that the name of the wake-up circuit is only for differentiation, and its specific naming does not limit the protection scope of the present application. For the convenience of explanation, the following is collectively described as a wake-up circuit.
  • the WUR module is used to receive the wake up signal (wake up signal, WUS, also known as low power wake up signal, LP-WUS) sent by the network device, and decode the information according to the information bits carried in WUS. Call up the wake-up indication information, thereby waking up the main receiver or main receiving module that is turned off (or in sleep state) in the terminal device.
  • WUS wake up signal
  • LP-WUS low power wake up signal
  • the wake-up signal can be used to wake up at least one terminal device or at least a group of terminal devices.
  • the wake-up signal includes wake-up information, and the wake-up information represents information related to waking up the terminal device.
  • the wake-up information is, for example, information related to paging.
  • the wake-up information can be used, for example, for the terminal device to determine whether to perform a paging reception process, or for the terminal device to determine whether to initiate random access.
  • the paging information carried by the wake-up signal indicates the paged terminal device, and the wake-up information may include information about one or more terminal devices that need to be awakened (such as UE ID), then the awakened terminal device can wake up after turning on MR.
  • the wake-up information carried by the wake-up signal indicates the paged terminal equipment group (UE group)
  • the wake-up information can include the group identifier of the terminal equipment group, then the terminal equipment in the awakened group You can continue to receive paging information on the PO after turning on MR to determine whether the terminal device itself is paged.
  • the wake-up signal can also carry scheduling information.
  • the terminal device is in the connected state.
  • the wake-up signal is used to indicate whether the terminal device needs to turn on MR to receive scheduling information (such as whether it needs to monitor the physical downlink control channel (PDCCH) )).
  • PDCCH physical downlink control channel
  • the terminal device can implement cell reselection through radio resource management (RRM) measurements.
  • RRM measurements may include serving cell measurements and neighbor cell measurements.
  • neighbor cell measurement includes intra-frequency measurement, inter-frequency measurement and inter-RAT measurement.
  • co-frequency measurement means that the serving cell of the terminal equipment and the neighboring cell to be measured are at the same carrier frequency
  • inter-frequency measurement means that the serving cell of the terminal equipment and the neighboring cell to be measured are not at the same carrier frequency
  • inter-system measurement It means that the serving cell of the terminal device and the neighboring cell to be measured are not in the same communication system or do not use the same communication standard.
  • the serving cell is a 5G system and the neighboring cell is not in the same communication system.
  • the community is a 4G communication system or uses the 4G communication standard.
  • the above-mentioned carrier frequency point of the serving cell may also be called the working frequency point of the serving cell, and the carrier frequency point of the neighboring cell may also be called the working frequency point of the neighboring cell.
  • the terminal device receives the reference signal at the working frequency point of the serving cell to implement the serving cell measurement.
  • the working frequency point of the serving cell can also be called the measurement frequency point of the serving cell; similarly, the terminal device receives the reference signal at the working frequency point of the serving cell.
  • the working frequency point of the cell receives the reference signal to implement the measurement of the neighboring cell, so the working frequency point of the neighboring cell can also be called the measurement frequency point of the neighboring cell.
  • the RRM measurement performed by the terminal device in this embodiment of the present application may include the following two possible scenarios:
  • Scenario 1 MR of the terminal device is turned on.
  • the terminal device can perform serving cell measurement and neighboring cell measurement through the MR.
  • the terminal device switches the measurement frequency of the MR to the measurement frequency of the neighboring cell.
  • Scenario 2 The MR of the terminal device is turned off.
  • the terminal equipment may perform measurements on the serving cell and neighboring cells in the following possible ways:
  • Method 1 The terminal equipment switches the current communication device from WUR to MR, and performs serving cell measurement and neighboring cell measurement through MR. Method 1 can be applied when the WUR does not support RRM measurement, or the WUR does not have the RRM measurement capability.
  • Method 2 The terminal device performs serving cell measurement through WUR and neighboring cell measurement through MR.
  • Method 2 can be applied to the situation where the WUR does not support neighbor cell measurement, or the WUR does not have the neighbor cell measurement capability.
  • the terminal equipment can switch from WUR to MR to perform neighboring cell measurements.
  • Method 3 The terminal device performs serving cell measurement and neighboring cell measurement through WUR. In this case, when the terminal equipment performs inter-frequency measurement, the terminal equipment switches the measurement frequency point (or working frequency point) of the WUR to the measurement frequency point (or working frequency point) of the neighboring cell.
  • the terminal equipment switches the current communication device from WUR to MR. This will be described below with reference to the schematic architecture diagram of the communication device shown in FIG. 3 .
  • the WUR receiving module and the MR receiving module may include a low-noise amplifier (low-noise amplifier) and a local oscillator (LO).
  • the low-noise amplifier performance and power consumption of the WUR receiving module are both Lower, the low noise amplifier performance and power consumption in MR's receiving module are higher, the LO accuracy and power consumption in WUR's receiving module are lower, for example, it can be based on a ring oscillator, the LO accuracy in MR's receiving module and power consumption are high, for example, it can be based on a phase-locked loop; optionally, WUR can further process the signal after receiving the signal through the receiving module. Similarly, MR can further process the signal after receiving the signal through the receiving module.
  • each module/component and the connection relationship between each module/component shown in Figure 3 is only an example and not a limiting description. In a specific implementation, more or fewer modules/components than shown in Figure 7 may also be included.
  • the received reference signal may be a synchronization signal block (SSB); when the terminal device performs RRM measurement through WUR, the received reference signal may include low power consumption measurement.
  • Reference signal low power measurement reference signal
  • the received reference signal may also include a synchronization signal (low power synchronization signal, LP-SS), where the low power synchronization signal may be sent periodically.
  • the terminal equipment when the terminal equipment performs inter-frequency measurement through MR in the above scenario one, or performs inter-frequency measurement through WUR in method three of the above scenario two, it needs to switch the measurement frequency point to the measurement frequency point of the neighboring cell. ;
  • the terminal equipment switches the current communication device from WUR to MR in Method 1 and Method 3 of the above scenario 2 to perform serving cell and/or neighboring cell measurements through MR.
  • the terminal equipment switches the measurement frequency point or the communication device, the communication of the terminal equipment at the original measurement frequency point (or working frequency point) or through the original communication device will be interrupted. Therefore, consider configuring the measurement GAP so that the terminal device can perform the above-mentioned inter-frequency measurement or inter-system measurement within the measurement GAP.
  • network devices are often configured with denser GAPs, resulting in a higher resource occupancy rate for measurement GAPs.
  • the terminal device determines part of the measurement GAP occasions from the measurement GAP occasions (occasion) of the configured measurement GAP, and does not receive the first signal sent by the network device in the determined part of the measurement GAP occasions, where the first signal may be a signal transmitted on the frequency before the frequency switching, or It can be a signal that the communication device can receive before the communication device switches, so as to avoid the configured GAP occupying too many resources.
  • the embodiment of this application only takes the measurement GAP and the terminal device performing inter-frequency measurement or inter-system measurement within the measurement GAP as an example.
  • this application does not limit the configured GAP to the measurement GAP.
  • it does not limit the terminal device to perform measurements within the GAP.
  • the GAP can be understood as the periodic time domain position at which the terminal device does not receive the first signal.
  • the terminal device determines part of the GAP timing from the multiple GAP timings of the configured GAP, or it can be expressed as selecting part of the GAP timing from the multiple GAP timings of the configured GAP.
  • “determine” and “select” are used interchangeably to express this. have the same meaning.
  • the network device when a GAP opportunity is adopted by a terminal device (or a GAP opportunity corresponds to a terminal device), the network device cannot send a first signal to the terminal device within this GAP opportunity. Therefore, the available resources of the network device to send the first signal to the terminal device will become less. The fewer the available resources for the network device to send the first signal, it can be understood that the GAP overhead is greater, that is, the higher the resource occupancy rate of the GAP.
  • some of the GAP opportunities determined by the terminal device from the multiple GAP opportunities of the configured GAP are the GAP opportunities used by the terminal device, and the GAP opportunities that are not selected among the multiple GAP opportunities of the configured GAP Within the opportunity, the network device can still send the first signal to the terminal device, that is, the GAP opportunity not used by the terminal device does not occupy available resources for communication between the terminal device and the network device.
  • the first terminal device may be, for example, the first terminal device 121 or 122 in Figure 1 , the first network device may be the network device 111 in Figure 1 ; or the first terminal device may be the first terminal device 123 in Figure 1 , the first network device may be the network device 112 in Figure 1 .
  • the method provided in the embodiment of the present application is further described by taking the interaction between the first terminal device and the second network device as an example.
  • the first terminal device may be the first terminal device 121 or 122 in FIG. 1
  • the second network device may be the network device 112 in FIG. 1 ; or the first terminal device may be the first terminal device 123 in FIG. 1
  • the second network device may be the network device 111 in FIG. 1 .
  • the first terminal device can be applied to a low-power wake-up scenario as shown in Figure 2.
  • the first terminal device shown in the embodiments below can also be replaced by components in the first terminal device, such as a chip, a chip system, or other functional modules capable of calling and executing a program;
  • the network device shown in the embodiments below can also be replaced It can be replaced by components in network equipment, such as chips, chip systems, or other functional modules that can call and execute programs.
  • Fig. 4 is a schematic interactive flow chart of a data transmission method 200 provided in an embodiment of the present application. As shown in Fig. 4, the method 200 may include part or all of the processes from S210 to S230. Each step in the method 200 is described below.
  • the first network device sends configuration information to the first terminal device, where the configuration information is used to configure the periodic time domain position of the first GAP.
  • the first terminal device receives the configuration information sent by the first network device.
  • the first terminal device and the first network device both determine N second GAP opportunities based on the M first GAP opportunities.
  • the M first GAP opportunities include N second GAP opportunities.
  • the M first GAP opportunities are The periodic time domain position of the first GAP configured by the first network device, M is greater than N, and M and N are both positive integers.
  • S230 Stop transmitting the first signal at N second GAP opportunities.
  • the first network device stops sending the first signal at N second GAP opportunities
  • the first terminal device stops receiving the first signal at N second GAP opportunities.
  • time domain position of the first GAP in each GAP cycle is a GAP opportunity.
  • the time domain position of the first GAP in each GAP cycle includes M first GAP opportunities.
  • the M first GAP opportunities may be all or part of the configured time domain positions of the first GAP, which is not limited in this application.
  • the M first GAP opportunities cover the GAP opportunities required by the first terminal device (such as N second GAP opportunities), and the M first GAP opportunities are more than the GAP opportunities required by the first terminal device.
  • the M first GAP opportunities may be relatively dense GAP opportunities configured by the network device in order to meet the measurement requirements of multiple terminal devices.
  • the devices may be all or part of the terminal devices in the serving cell of the first network device, and the first terminal device may be any one of multiple terminal devices.
  • the first network device may send the configuration information to multiple terminal devices including the first terminal device, so as to configure the first GAP for each terminal device.
  • Each terminal device can determine its own second GAP timing based on the periodic time domain position of the first GAP configured by the first network device.
  • the first network device can determine its own second GAP timing based on the configured periodic time domain of the first GAP. position to determine the second GAP opportunity of each terminal device.
  • the configuration information may include at least one of the period, offset value, and time domain length of the first GAP.
  • multiple GAP opportunities of the first GAP (such as M first GAP opportunities) can be determined, where the offset of the first GAP is The offset between the starting position of the first GAP and the reference point is used to determine the time domain starting position of the first GAP opportunity in combination with the period of the first GAP.
  • the N second GAP opportunities may be GAP opportunities that have a mapping relationship with the first terminal device among the M first GAP opportunities.
  • the mapping relationship may be, for example, the mapping relationship between the identification of the first terminal device (such as UE_ID) and the first GAP; for another example, it may be the identification of the terminal device group in which the first terminal device is located (such as group_ID) and the first GAP. mapping relationship between them.
  • M first GAP opportunities can be divided into W groups, where W is a positive integer.
  • the N second GAP opportunities may be part or all of the first GAP opportunities in one of the W groups.
  • W is equal to 4
  • the M first GAP opportunities are divided into 4 groups (such as GAP group 1 to GAP group 4) of GAP opportunities, and every 4 of the M first GAP opportunities are Including a second GAP opportunity corresponding to the first terminal device.
  • i is the identifier of the first GAP (for example, index), and mod represents the modulo (or remainder) operation.
  • D in the above formula may be the identity of the first terminal device (such as UE_ID).
  • M first GAP opportunities are divided into 4 groups, and the terminal device identified as 1 has a mapping relationship with the 1st first GAP opportunity, the 5th first GAP opportunity, the 9th first GAP opportunity... That is, when the identifier of the first terminal device is 1, its corresponding N second GAP opportunities include the 1st first GAP opportunity, the 5th first GAP opportunity, the 9th first GAP opportunity...
  • D in the above formula may be the identifier of the terminal device group in which the first terminal device is located (such as group_ID).
  • M first GAP opportunities are divided into 4 groups, and the group identified as 1 has a mapping relationship with the 1st first GAP opportunity, the 5th first GAP opportunity, the 9th first GAP opportunity..., that is, When the identifier of the group where the first terminal device is located is 1, the N second GAP opportunities corresponding to the first terminal device include the 1st first GAP opportunity, the 5th first GAP opportunity, the 9th first GAP opportunity... ...
  • the identity of the terminal device group (such as group_ID) in which the first terminal device is located can be configured by the network device, or can be calculated based on the identity of the first terminal device (such as UE_ID).
  • the M first GAP opportunities can be divided into W groups based on the measurement period L.
  • the measurement period L may be a measurement period that meets the measurement period requirement (requirement), and the measurement period requirement may be predefined (for example, defined in a protocol).
  • the measurement period L may be equal to the measurement period requirement, or the measurement period L
  • the measurement cycle can be determined by combining the transmission cycle of the reference signal of the network device and the communication quality requirements of the communication service.
  • W may be equal to the quotient of the period T of the first GAP and the measurement period L. For example, as shown in FIG. 6 , assuming that the period of the first GAP is 3.2 seconds (s) and the measurement period requirement is 12.8 s, W can be equal to 4. Furthermore, the N second GAP opportunities determined by the first terminal device based on the W can better meet the measurement requirements of the first terminal device and improve the reliability of RRM measurement.
  • W may be less than the quotient of the period T of the first GAP and the measurement period L.
  • the first terminal device can determine more intensive second GAP opportunities.
  • the period of the first GAP is 3.2s
  • the measurement period requirement is 12.8s
  • W is equal to 2
  • Increasing the density of second GAP opportunities can avoid the impact of fewer second GAP opportunities on the accuracy of the RRM measurement of the first terminal device.
  • the first network device determines N second GAP opportunities in the same manner as the above-mentioned first terminal device determines N
  • the implementation of the second GAP opportunity is similar and will not be described again here.
  • the embodiment of the present application does not limit the order in which the first network device performs S210 and S220.
  • the first network device may determine N second GAP opportunities before sending the configuration information, or the first network device may determine the N second GAP opportunities before sending the configuration information. After that, N second GAP opportunities are determined.
  • the first terminal device stops receiving the first signal sent by the first network device at N second GAP opportunities, or it can be expressed as the first terminal device does not receive the first signal sent by the first network device at N second GAP opportunities, Or it can also be expressed as the first terminal device deactivating (deactivating) receiving the first signal sent by the first network device at N second GAP opportunities.
  • the first terminal device does not expect to receive the first signal sent by the first network device, or the first terminal device does not expect to monitor the first signal sent by the first network device, Either the first terminal device does not need to receive the first signal sent by the first network device, or the first terminal device does not need to monitor the first signal sent by the first network device.
  • the first network device stops sending the first signal to the first terminal device at N second GAP opportunities, or expressed as the first network device does not send the first signal to the first terminal device at N second GAP opportunities, Or it can also be expressed as the first network device deactivating (deactivating) sending the first signal at N second GAP opportunities.
  • the embodiment of the present application determines some GAP timings from multiple GAP timings configured by the first network device to avoid the configured GAPs from occupying more resources and reduce the resource occupancy rate of the GAPs. .
  • the above configuration information can be carried in a broadcast message sent by the first network device, so that the terminal device in the idle state or the inactive state can receive the configuration information, so as to solve the problem that the terminal device currently in the idle state or the inactive state cannot Identify the problem of measuring GAP.
  • this application does not limit the first terminal device to be in the idle state or the inactive state when receiving the broadcast message.
  • the first terminal device may be in the connected state.
  • the broadcast message includes radio resource control (RRC) signaling, which includes the configuration information of the first GAP.
  • RRC radio resource control
  • SIB system information block
  • Figure 7 is a schematic interactive flow chart of another data transmission method provided by an embodiment of the present application.
  • the embodiment of the present application is illustrated in conjunction with FIG. 7 , taking the first GAP as the measurement GAP, that is, performing inter-frequency or inter-system measurement in N second GAPs of the first terminal device as an example.
  • this method provides a possible implementation method for S230 in Figure 5 based on the method shown in Figure 5, which specifically includes at least some of the following steps:
  • the first terminal device and the first network device stop transmitting the first signal in the first frequency range.
  • the second network device sends a second signal to the first terminal device in the second frequency range, and the second signal is used for RRM measurement.
  • the first terminal device receives the second signal sent by the second network device in the second frequency range.
  • the measurement frequency point of the serving cell can be the frequency domain position/frequency range of the SSB of the serving cell
  • the measurement frequency point of the neighboring cell can be the frequency domain position/frequency range of the SSB of the neighboring cell.
  • the measurement frequency point of the serving cell can be the frequency domain position/frequency range where the first signal of the serving cell is sent, or it can also be called the working frequency point of receiving the first signal in the serving cell, that is, The first frequency range;
  • the measurement frequency point of the neighboring cell may be the frequency domain position where the second signal is transmitted by the neighboring cell, and may also be called the working frequency point for receiving the second signal in the neighboring cell, that is, the second frequency range.
  • the first terminal device can receive the first signal sent by the first network device through WUR outside the N second GAP opportunities.
  • the first signal can include, for example, LP-WUS. , at least one of a low-power consumption measurement signal and a low-power synchronization signal.
  • the first terminal device can also receive configuration information sent by the first network device in the first frequency range through WUR. In this case, within the N second GAP opportunities, the first terminal equipment may be unable to receive the first signal due to switching of measurement frequency points or switching of communication devices.
  • the first signal can also be any signal received by the MR at the measurement frequency point (or working frequency point) of the serving cell.
  • the MR of the first terminal device is in the on state, The first terminal device may receive the first signal sent by the first network device in the first frequency range through the MR outside the N second GAP opportunities. In this case, within the N second GAP opportunities, the first terminal device may be unable to receive the first signal due to switching of measurement frequency points.
  • the first terminal device and the first network device stop transmitting the first signal in the first frequency range, including: the first terminal device stops transmitting the first signal in the first frequency range. Stop receiving the first signal within the first frequency range, and the first network device stops sending the first signal within the first frequency range. As mentioned above, stopping receiving can also be expressed as not receiving or deactivating receiving, and stopping sending can also be expressed as not sending or deactivating sending.
  • the first terminal equipment can perform neighboring cell measurements, such as inter-frequency measurement or inter-system measurement, within N second GAP opportunities.
  • the above-mentioned second frequency range may be the frequency range in which the measurement frequency point of the neighboring cell is located. This enables the first network device and the first terminal device to align the time domain positions occupied by adjacent cell measurements, thereby improving communication stability.
  • the first terminal device may receive the second signal in the second frequency range through the first communication device.
  • the first communication device may be a WUR.
  • the first terminal device may receive signals from the first network device and/or the second network device through the WUR.
  • the first terminal device is in N
  • the WUR is switched to the measurement frequency point of the neighboring cell, and then The second signal is received in a second frequency range where the measurement frequency point of the neighboring cell is located.
  • the second signal may include a measurement reference signal of a neighboring cell.
  • the first terminal device may receive the second signal in the second frequency range through the second communication device.
  • the second communication device may be an MR
  • the first terminal device may receive the first communication device (such as WUR) in the first frequency range where the frequency point of the serving cell is located outside the N second GAP opportunities.
  • WUR the first communication device
  • a signal the communication device is switched from WUR to MR within N second GAP opportunities, and the second signal is received through the second frequency range of the MR in the measurement frequency point of the neighboring cell.
  • the second signal may include the measurement reference signal of the serving cell or the measurement reference signal of the neighboring cell.
  • the first communication device when the second signal includes the measurement reference signal of the serving cell, the first communication device may be a communication device that does not support RRM measurement or does not have RRM measurement capability; when the second signal includes the measurement reference signal of the neighboring cell, the first communication device The device may be a communication device that does not support neighbor cell measurement or has no neighbor cell measurement capability.
  • the first terminal device receives the second signal for RRM measurement in the second frequency range, thereby achieving measurement of the neighboring cell without affecting the communication reliability of the serving cell.
  • the time domain length of the first GAP is greater than or equal to the duration of measuring the reference signal of the neighboring cell, so that the first terminal device can completely receive one reference signal cycle sent by the neighboring cell in each second GAP opportunity. reference signal.
  • the first terminal device when it needs to perform frequency switching. For example, if the measurement frequency point of the serving cell is switched to the measurement frequency point of the neighboring cell, then the time domain length of the first GAP is still It should include the switching time of the measured frequency point, such as the time for the radio frequency front-end switch to switch between different frequency points.
  • the time domain length of the first GAP can be several ms or tens of ms; or, the first terminal When the device needs to switch from the first communication device to the second communication device when receiving the second signal in the second frequency range, then the time domain length of the first GAP should also include the duration for the first communication device to switch to the second communication device.
  • the time domain length of the first GAP may be several milliseconds (ms) or tens of ms.
  • the first communication device is used to receive a first signal in a first frequency range
  • the second communication device is used to receive a second signal in a second frequency range.
  • the second communication device when the second communication device performs communication device switching (such as switching from the first communication device to the first communication device), the second communication device is not turned on, and the time domain length of the first GAP should also include the second communication device.
  • the duration of the first GAP does not include the duration of the second communication device being turned on. .
  • MR can be turned on when awakened by WUR.
  • WUR can wake up MR after receiving LP-WUS.
  • WUR can also periodically wake up MR. This application does not limit this.
  • the duration of the first GAP can cover at least one of the duration of measurement frequency point switching, the duration of communication device switching, and the duration of turning on the second communication device, so that in different measurement scenarios, the first terminal device can In each second GAP opportunity, the reference signal transmitted in one reference signal cycle of the neighboring cell is completely received.
  • FIG8 is a schematic block diagram of a communication device provided in an embodiment of the present application.
  • the device 300 may include: a processing module 310 and a transceiver module 320 .
  • the communication device 300 may correspond to the terminal device in the above method embodiment, for example, it may be a terminal device, or a component (such as a chip or chip system, etc.) configured in the terminal device.
  • the processing module 310 may be used to perform the method according to the M first intervals.
  • GAP timing determine N second GAP timing
  • the M first GAP timing include the N second GAP timing
  • the M first GAP timing is the periodic time domain of the first GAP configured by the first network device Position
  • M is greater than N
  • M and N are both positive integers
  • the transceiver module 320 can be configured to stop receiving the first signal sent by the first network device at the N second GAP opportunities.
  • the communication device 300 may correspond to the network device in the above method embodiment, for example, it may be a network device, or a component (such as a chip or chip system, etc.) configured in the network device.
  • the processing module 310 may be used to determine N second GAP opportunities based on the M first GAP opportunities, where the M first GAP opportunities include the N second GAP opportunities.
  • GAP timing the M first GAP timing is the periodic time domain position of the first GAP configured for the communication device, M is greater than N, and M and N are both positive integers; the transceiver module 320 can be used to perform At the second GAP opportunity, stop sending the first signal to the first terminal device.
  • the transceiver module 320 in the communication device 300 may be implemented by a transceiver, for example, corresponding to the transceiver 410 in the communication device 400 shown in FIG. 9 .
  • the processing module 310 in the communication device 300 may be implemented by at least one processor, for example, corresponding to the processor 420 in the communication device 400 shown in FIG. 9 .
  • the transceiver module 320 in the communication device 300 can be implemented through an input/output interface, a circuit, etc., the communication device 300
  • the processing module 310 in can be implemented by a processor, microprocessor or integrated circuit integrated on the chip or chip system.
  • FIG. 9 is a schematic block diagram of another communication device provided by an embodiment of the present application.
  • the communication device 400 may include: a transceiver 410 , a processor 420 and a memory 430 .
  • the transceiver 410, the processor 420 and the memory 430 communicate with each other through an internal connection path.
  • the memory 430 is used to store instructions
  • the processor 420 is used to execute the instructions stored in the memory 430 to control the transceiver 410 to send signals and /or receive a signal.
  • the communication device 400 may correspond to the terminal device or network device in the above method embodiment, and may be used to perform various steps and/or processes performed by the terminal device or network device in the above method embodiment.
  • the memory 430 may include read-only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include non-volatile random access memory.
  • the memory 430 can be a separate device or integrated into the processor 420 .
  • the processor 420 may be configured to execute instructions stored in the memory 430, and when the processor 420 executes the instructions stored in the memory, the processor 420 is configured to execute each of the above method embodiments corresponding to the terminal device or network device. steps and/or processes.
  • the communication device 400 is the terminal device in the previous embodiment.
  • the communication device 400 is the network device in the previous embodiment.
  • the transceiver 410 may include a transmitter and a receiver.
  • the transceiver 410 may further include an antenna, and the number of antennas may be one or more.
  • the processor 420, the memory 430 and the transceiver 410 may be components integrated on different chips.
  • the processor 420 and the memory 430 can be integrated in the baseband chip, and the transceiver 410 can be integrated in the radio frequency chip.
  • the processor 420, the memory 430 and the transceiver 410 may also be devices integrated on the same chip. This application does not limit this.
  • the communication device 400 is a component configured in a terminal device, such as a chip, a chip system, etc.
  • the communication device 400 is a component configured in a network device, such as a chip, a chip system, etc.
  • the transceiver 420 may also be a communication interface, such as an input/output interface, a circuit, etc.
  • the transceiver 420, the processor 410 and the memory 430 can be integrated in the same chip, such as a baseband chip.
  • This application also provides a processing device, including at least one processor, the at least one processor being used to execute a computer program stored in the memory, so that the processing device executes the steps performed by the terminal device or the network device in the above method embodiment. method.
  • An embodiment of the present application also provides a processing device, including a processor and an input and output interface.
  • the input and output interface is coupled to the processor.
  • the input and output interface is used to input and/or output information.
  • the information includes at least one of instructions and data.
  • the processor is used to execute a computer program, so that the processing device executes the method executed by the terminal device or the network device in the above method embodiment.
  • An embodiment of the present application also provides a processing device, including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the processing device executes the method executed by the terminal device or the network device in the above method embodiment.
  • the processing device may be one or more chips.
  • the processing device can be a field programmable gate array (FPGA), an application specific integrated circuit (ASIC), or a system on chip (SoC), or It can be a central processing unit (central processor unit, CPU), a network processor (network processor, NP), a digital signal processing circuit (digital signal processor, DSP), or a microcontroller unit (micro controller unit, MCU). , it can also be a programmable logic device (PLD) or other integrated chip.
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • microcontroller unit microcontroller unit
  • PLD programmable logic device
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor.
  • the steps of the methods disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip with signal processing capabilities.
  • each step of the above method embodiment can be completed through an integrated logic circuit of hardware in the processor or instructions in the form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, or discrete hardware components.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • non-volatile memory can be read-only memory (ROM), programmable ROM (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically removable memory. Erase electrically programmable read-only memory (EPROM, EEPROM) or flash memory. Volatile memory can be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous link dynamic random access memory
  • directrambus RAM direct memory bus random access memory
  • the present application also provides a computer program product.
  • the computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, the computer causes the computer to execute the terminal in the above method embodiment. A method performed by a device or network device.
  • the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores program code.
  • the program code When the program code is run on a computer, it causes the computer to execute the above method embodiment.
  • the present application also provides a communication system, which may include the aforementioned terminal equipment and network equipment.
  • a component may be, but is not limited to, a process, a processor, an object, an executable file, a thread of execution, a program and/or a computer running on a processor.
  • applications running on the computing device and the computing device may be components.
  • One or more components can reside in a process and/or thread of execution and a component can be localized on one computer and/or distributed between 2 or more computers. Additionally, these components can execute from various computer-readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (eg, data from two components interacting with another component, such as a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals) Communicate through local and/or remote processes.
  • data packets eg, data from two components interacting with another component, such as a local system, a distributed system, and/or a network, such as the Internet, which interacts with other systems via signals
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the computer software product is stored in a storage medium and includes a number of instructions to enable a A computer device (which may be a personal computer, a server, or a network device, etc.) executes all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种数据传输方法、装置以及存储介质。该方法包括:第一终端设备和第一网络设备根据M个第一间隔GAP时机,确定N个第二GAP时机,该M个第一GAP时机包括该N个第二GAP时机,M个第一GAP时机为第一网络设备配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数,并且在该N个第二GAP时机,第一终端设备和第二网络设备之间不传输第一信号,以避免配置的M个第一GAP时机均对第一终端设备生效,导致第一GAP占用较多的资源,降低GAP的资源占用率。

Description

数据传输方法、装置以及存储介质
本申请要求于2022年09月21日提交中国专利局、申请号为202211166569.6、申请名称为“一种LP-WUS测量方法”的中国专利申请的优先权,以及,于2022年10月29日提交中国专利局、申请号为202211340812.1、申请名称为“数据传输方法、装置以及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法、装置以及存储介质。
背景技术
在一些通信系统中,如第五代通信(5th-Generation,5G)系统,网络设备可以向终端设备配置测量间隔(GAP),终端设备在测量GAP中对邻小区的参考信号进行测量,而不与服务小区进行数据传输。
然而,网络设备配置的测量GAP往往比较密集,导致测量GAP的资源占用率较高,因此,如何降低测量GAP的资源占用率是当前亟待解决的问题。
发明内容
本申请实施例提供的一种数据传输方法、装置以及存储介质,以期降低测量GAP的资源占用率。
第一方面,本申请实施例提供一种数据传输方法,包括:第一终端设备根据M个第一GAP时机,确定N个第二GAP时机,该M个第一GAP时机包括该N个第二GAP时机,该M个第一GAP时机为第一网络设备配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;在该N个第二GAP时机,该第一终端设备停止接收该第一网络设备发送的第一信号。
通过第一方面提供的数据传输方法,通过从第一网络设备配置的多个GAP时机中确定部分GAP时机,以避免配置的GAP的各个GAP时机均对第一终端设备生效,导致GAP占用较多的资源,降低GAP的资源占用率。
在一种可能的实施方式中,还包括:该第一终端设备接收该第一网络设备发送的配置信息,该配置信息用于配置该第一GAP的周期性的时域位置。
通过该实施方式提供的数据传输方法,向第一终端设备配置第一GAP的周期性的时域位置,便于从中确定N个第二GAP时机。
在一种可能的实施方式中,该配置信息包括该第一GAP的周期、偏移值、时域长度中的至少之一。
通过该实施方式提供的数据传输方法,实现对第一GAP的灵活配置。
在一种可能的实施方式中,该N个第二GAP时机为基于该第一终端设备的标识或该第一终端设备所在的终端设备组的标识,从该M个第一GAP时机中确定的。
通过该实施方式提供的数据传输方法,基于第一终端设备的标识或者第一终端设备的组标识与第二GAP时机的映射关系,从M个第一GAP时机中确定N个第二GAP时机,提高了确定GAP时机的效率。
在一种可能的实施方式中,该M个第一GAP时机划分为W组GAP时机,该M个第一GAP时机中的第i个第一GAP时机为该第二GAP时机,i和W均为正整数,该i满足如下公式:D mod W=i mod W;其中,mod表示取模运算,该D为该第一终端设备的标识或该第一终端设备所在的终端设备组的标识。
通过该实施方式提供的数据传输方法,便于从M个第一GAP时机中选择出第一终端设备可采用的N个第二GAP时机,避免GAP占用较多的第一终端设备的通信资源。
在一种可能的实施方式中,该W基于该第一GAP的周期T和测量周期L确定,该测量周期为该第一终端设备测量邻小区的参考信号的周期。
通过该实施方式提供的数据传输方法,结合第一终端设备的测量周期,从M个第一GAP时机中确定N个第二GAP时机,使N个第二GAP时机更好的满足第一终端设备的测量需求。
在一种可能的实施方式中,该W小于或等于该第一GAP的周期T和该测量周期L之商。
通过该实施方式提供的数据传输方法,W的取值越小于第一GAP的周期T和该测量周期L之商,第二GAP时机越密集,第二GAP时机能够更好的覆盖参考信号的测量时间,第一终端设备的RRM测量的准确性越高。
在一种可能的实施方式中,该配置信息携带于该第一网络设备发送的广播消息。
通过该实施方式提供的数据传输方法,便于处于空闲态或者非激活态的终端设备接收该配置信息。
在一种可能的实施方式中,该第一终端设备接收该广播消息时处于空闲态或非激活态。
通过该实施方式提供的数据传输方法,向处于空闲态或非激活态的第一终端设备发送广播消息,可以解决目前处于空闲态或者非激活态的终端设备无法确定测量GAP的问题
在一种可能的实施方式中,该第一信号包括以下至少之一:低功耗唤醒信号;低功耗测量信号;低功耗同步信号。
通过该实施方式提供的数据传输方法,适用于低功耗唤醒电路工作时对测量需求的响应,第一终端设备可以在N个第二GAP时机内停止通过低功耗唤醒电路接收第一信号,同时第一网络设备不发送第一信号,可以降低通信系统的信令开销。
在一种可能的实施方式中,该第一终端设备停止接收该第一网络设备发送的第一信号,包括:该第一终端设备停止在第一频率范围内接收该第一信号。
通过该实施方式提供的数据传输方法,第一信号可以是第一频率范围内的任意一种信号,以解决第一终端设备在N个第二GAP时机内进行异频测量或者异系统测量而无法接收服务小区的频点发送的信号的情况。
在一种可能的实施方式中,还包括:在该N个第二GAP时机,该第一终端设备在第二频率范围内接收第二信号,该第二频率范围与该第一频率范围不同,该第二信号用于无线资源管理RRM测量。
通过该实施方式提供的数据传输方法,第一终端设备可以在N个第二GAP时机实现RRM测量,减少对服务小区的通信业务的影响。
在一种可能的实施方式中,该第一终端设备在第二频率范围内接收第二信号,包括:该第一终端设备通过第一通信装置在该第二频率范围内接收该第二信号,该第二信号为邻小区的测量参考信号;或者,该第一终端设备通过第二通信装置在该第二频率范围内接收该第二信号,该第二信号为服务小区或邻小区的测量参考信号。
通过该实施方式提供的数据传输方法,第一终端设备通过在第二频率范围内接收用于RRM测量的第二信号,在不影响服务小区的通信可靠性的同时,实现对邻小区的测量。
在一种可能的实施方式中,该第一GAP的时域长度大于或等于测量邻小区的参考信号的时长;或者,该第一GAP的时域长度大于或等于测量邻小区的参考信号的时长和以下至少之一之和:测量频点切换的时长;第一通信装置切换为第二通信装置的时长,该第一通信装置用于在第一频率范围内接收该第一信号;第二通信装置开启的时长,该第二通信装置用于在第二频率范围内接收第二信号;其中,该第一频率范围与该第二频率范围不同。
通过该实施方式提供的数据传输方法,第一GAP的时长能够覆盖测量频点切换的时长、通信装置切换的时长、第二通信装置开启的时长中的至少之一,以使在不同的测量场景中,第一终端设备均能够在每个第二GAP时机中完整接收邻小区的一个参考信号周期发送的参考信号。
第二方面,本申请实施例提供一种数据传输方法,包括:第一网络设备根据M个第一GAP时机,确定N个第二GAP时机,该M个第一GAP时机包括该N个第二GAP时机,该M个第一GAP时机为该第一网络设备配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;在该N个第二GAP时机,该第一网络设备停止向第一终端设备发送第一信号。
在一种可能的实施方式中,还包括:该第一网络设备向该第一终端设备发送配置信息,该配置信息用于配置第一GAP的周期性的时域位置。
在一种可能的实施方式中,该配置信息包括该第一GAP的周期、偏移值、时域长度中的至少之一。
在一种可能的实施方式中,该N个第二GAP时机为基于该第一终端设备的标识或该第一终端设备所在的终端设备组的标识,从该M个第一GAP时机中确定的。
在一种可能的实施方式中,该M个第一GAP时机划分为W组GAP时机,该M个第一GAP时机中的第i个第一GAP时机为该第二GAP时机,i和W均为正整数,该i满足如下公式:D mod W=i mod W;其中,mod表示取模运算,该D为该第一终端设备的标识或该第一终端设备所在的终端设备组的标识。
在一种可能的实施方式中,该W基于该第一GAP的周期T和测量周期L确定,该测量周期为该第一终端设备测量邻小区的参考信号的周期。
在一种可能的实施方式中,该W小于或等于该第一GAP的周期T和该测量周期L之商。
在一种可能的实施方式中,该配置信息携带于广播消息。
在一种可能的实施方式中,该第一终端设备接收该广播消息时处于空闲态或非激活态。
在一种可能的实施方式中,该第一信号包括以下至少之一:低功耗唤醒信号;低功耗测量信号;低功耗同步信号。
在一种可能的实施方式中,该第一网络设备停止向第一终端设备发送第一信号,包括:该第一网络设备停止在第一频率范围内向该第一终端设备发送该第一信号。
在一种可能的实施方式中,该第一GAP的时域长度大于或等于测量邻小区的参考信号的时长;或者,该第一GAP的时域长度大于或等于测量邻小区的参考信号的时长和以下至少之一之和:测量频点切换的时长;第一通信装置切换为第二通信装置的时长,该第一通信装置用于在第一频率范围内接收该第一信号;第二通信装置开启的时长,该第二通信装置用于在第二频率范围内接收第二信号;其中,该第一频率范围与该第二频率范围不同。
上述第二方面以及上述第二方面的各可能的实施方式所提供的数据传输方法,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第三方面,本申请实施例提供一种通信装置,包括:处理模块,用于根据M个第一间隔GAP时机,确定N个第二GAP时机,该M个第一GAP时机包括该N个第二GAP时机,该M个第一GAP时机为第一网络设备配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;收发模块,用于在该N个第二GAP时机,停止接收该第一网络设备发送的第一信号。
在一种可能的实施方式中,该收发模块还用于:接收该第一网络设备发送的配置信息,该配置信息用于配置该第一GAP的周期性的时域位置。
在一种可能的实施方式中,该配置信息包括该第一GAP的周期、偏移值、时域长度中的至少之一。
在一种可能的实施方式中,该N个第二GAP时机为基于该通信装置的标识或该通信装置所在组的标识,从该M个第一GAP时机中确定的。
在一种可能的实施方式中,该M个第一GAP时机划分为W组GAP时机,该M个第一GAP时机中的第i个第一GAP时机为该第二GAP时机,i和W均为正整数,该i满足如下公式:D mod W=i mod W;其中,mod表示取模运算,该D为该第一终端设备的标识或该第一终端设备所在的终端设备组的标识。
在一种可能的实施方式中,该W基于该第一GAP的周期T和测量周期L确定,该测量周期为该通信装置测量邻小区的参考信号的周期。
在一种可能的实施方式中,该W小于或等于该第一GAP的周期T和该测量周期L之商。
在一种可能的实施方式中,该配置信息携带于该第一网络设备发送的广播消息。
在一种可能的实施方式中,该通信装置接收该广播消息时处于空闲态或非激活态。
在一种可能的实施方式中,该第一信号包括以下至少之一:低功耗唤醒信号;低功耗测量信号;低功耗同步信号。
在一种可能的实施方式中,该收发模块具体用于:停止在第一频率范围内接收该第一信号。
在一种可能的实施方式中,该收发模块还用于:在该N个第二GAP时机,在第二频率范围内接收第二信号,该第二频率范围与该第一频率范围不同,该第二信号用于无线资源管理RRM测量。
在一种可能的实施方式中,该收发模块具体用于:该第一终端设备通过第一通信装置在该第二频率范围内接收该第二信号,该第二信号为邻小区的测量参考信号;或者,该第一终端设备通过第二通信装置在该第二频率范围内接收该第二信号该第二信号为服务小区或邻小区的测量参考信号。
在一种可能的实施方式中,该第一GAP的时域长度大于或等于测量邻小区的参考信号的时长;或者,该第一GAP的时域长度大于或等于测量邻小区的参考信号的时长和以下至少之一之和:测量频点切换的时长;第一通信装置切换为第二通信装置的时长,该第一通信装置用于在第一频率范围内接收该第一信号;第二通信装置开启的时长,该第二通信装置用于在第二频率范围内接收第二信号;其中,该第一频率范围与该第二频率范围不同。
上述第三方面以及上述第三方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第四方面,本申请实施例提供一种通信装置,包括:处理模块,用于根据M个第一GAP时机,确定N个第二GAP时机,该M个第一GAP时机包括该N个第二GAP时机,该M个第一GAP时机为该通信装置配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;收发模块,用于在该N个第二GAP时机,停止向第一终端设备发送第一信号。
在一种可能的实施方式中,该收发模块还用于向该第一终端设备发送配置信息,该配置信息用于配置第一GAP的周期性的时域位置。
在一种可能的实施方式中,该配置信息包括该第一GAP的周期、偏移值、时域长度中的至少之一。
在一种可能的实施方式中,该N个第二GAP时机为基于该第一终端设备的标识或该第一终端设备所在的终端设备组的标识,从该M个第一GAP时机中确定的。
在一种可能的实施方式中,该M个第一GAP时机划分为W组GAP时机,该M个第一GAP时机中的第i个第一GAP时机为该第二GAP时机,i和W均为正整数,该i满足如下公式:D mod W=i mod W;其中,mod表示取模运算,该D为该第一终端设备的标识或该第一终端设备所在的终端设备组的标识。
在一种可能的实施方式中,该W基于该第一GAP的周期T和测量周期L确定,该测量周期为该第一终端设备测量邻小区的参考信号的周期。
在一种可能的实施方式中,该W小于或等于该第一GAP的周期T和该测量周期L之商。
在一种可能的实施方式中,该配置信息携带于广播消息。
在一种可能的实施方式中,该第一终端设备接收该广播消息时处于空闲态或非激活态。
在一种可能的实施方式中,该第一信号包括以下至少之一:低功耗唤醒信号;低功耗测量信号;低功耗同步信号。
在一种可能的实施方式中,该收发模块具体用于:停止在第一频率范围内向该第一终端设备发送该第一信号。
在一种可能的实施方式中,该第一GAP的时域长度大于或等于测量邻小区的参考信号的时长;或者,该第一GAP的时域长度大于或等于测量邻小区的参考信号的时长和以下至少之一之和:测量频点切换的时长;第一通信装置切换为第二通信装置的时长,该第一通信装置用于在第一频率范围内接收该第一信号;第二通信装置开启的时长,该第二通信装置用于在第二频率范围内接收第二信号;其中,该第一频率范围与该第二频率范围不同。
上述第四方面以及上述第四方面的各可能的实施方式所提供的通信装置,其有益效果可以参见上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此处不再赘述。
第五方面,本申请实施例提供一种通信设备,包括:处理器和存储器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行如上述第一方面、第二 方面或各可能的实施方式中的方法。
第六方面,本申请实施例提供一种芯片,包括:处理器,用于从存储器中调用并运行计算机指令,使得安装有该芯片的设备执行如第一方面、第二方面或各可能的实现方式中的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,用于存储计算机程序指令,该计算机程序使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
第八方面,本申请实施例提供一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如第一方面、第二方面或各可能的实现方式中的方法。
附图说明
图1为本申请实施例提供的一种通信系统的示意图;
图2为本申请实施例提供的一种低功耗唤醒的场景示意图;
图3为本申请实施例提供的一种通信装置的架构示意图;
图4为本申请实施例提供的一种数据传输方法的示意性交互流程图;
图5为本申请实施例提供的一种间隔时机的示意图;
图6为本申请实施例提供的另一种间隔时机的示意图;
图7为本申请实施例提供的另一种数据传输方法的示意性交互流程图;
图8是本申请实施例提供的一种通信装置的示意性框图;
图9是本申请实施例提供的另一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请提供的通信方法可以应用于各种通信系统,例如:长期演进(Long Term Evolution,
LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、第五代通信
(5th-Generation,5G)系统、第六代(6th Generation,6G)移动通信系统或其他通信系统、或者未来的通信系统等。
本申请实施例中所涉及的终端设备,也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。
终端设备也可以称为终端Terminal、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、智能可穿戴设备、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(selfdriving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
网络设备是终端设备通过无线方式接入到该移动通信系统中的接入设备,可以是基站例如,NodeB、演进型基站,例如演进节点B eNodeB、新无线接入技术(new radio access technology,NR)移动通信系统中的基站、未来移动通信系统中的基站或WiFi系统中的接入节点等。网络设备可以以中心单元(central unit,CU)和分布式单元(distributed unit,DU)分离的形式为终端设备提供服务。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
在本申请实施例中,终端设备和网络设备均可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如无人机、飞机、气球和卫星上等)。
网络设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。网络设备和终端设备之间以及终端设备和终端设备之间可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz及6GHz以上的频谱进行通信,还可 以同时使用6GHz以下的频谱和6GHz及以上的频谱进行通信。本申请的实施例对网络设备和终端设备之间所使用的频谱资源不做限定。
为便于理解本申请实施例,首先结合图1详细说明适用于本申请实施例的通信系统。图1示出了适用于本申请实施例的通信方法的通信系统的示意图。如图1所示,通信系统100可以包括网络设备和终端设备,网络设备和终端设备的数量均可以是一个或者多个,例如图1中所示的网络设备111和112、终端设备121至123。在该通信系统100中,网络设备111可以与终端设备121和122中的至少一个终端设备通过无线空口通信,终端设备121和122处于同一服务小区,网络设备112可以与终端设备123通过无线空口通信。网络设备111为终端设备123的邻小区的网络设备,网络设备112为终端设备121和122的邻小区的网络设备。
应理解,通信系统101可以是通信系统100的子系统,或者独立于通信系统100的通信系统;通信系统102可以是通信系统100的子系统,或者独立于通信系统100的通信系统。
对于图1所示的通信系统中的终端设备,无论是在空闲(idle)态/非激活(inactive)态下执行接收寻呼,还是在连接态进行数据接收,都可以使用终端设备中的主接收机(main receiver,MR,或者称为主电路)完成这些功能。本实施例中,将终端设备使用主接收机接收信号也称为在主链路上工作,或者也称为主接收机处于工作状态。可以理解,主电路(或主接收机)仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。下文为便于说明,统一描述为MR。
终端设备使用主电路接收的信号可以被称为在主链路上传输,其中,主链路表征了终端设备和网络设备间的一种连接关系,是一个逻辑概念,而非一个物理实体。可以理解,主链路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。图2为本申请实施例提供的一种低功耗唤醒的场景示意图。如图2所示,为了降低终端设备的功耗,终端设备还可以通过使用一个单独的低功耗小电路接收信号。该低功耗小电路可以使用一个结构简单的单独的小电路或芯片实现,其功耗较低。该低功耗小电路例如可以称为唤醒无线电(wake up radio,WUR),或者也可以称为唤醒电路,或者也可以称为低功耗电路,或者也可以称为唤醒接收机(wake up receiver,WUR),或者也可以称为低功耗唤醒接收机(low power wake up receiver,LP-WUR)等等,关于其命名,本申请不予限制。在本申请中,为便于描述,将该低功耗小电路称为唤醒电路。可以理解,唤醒电路仅是为区分做的命名,其具体命名不对本申请的保护范围造成限定。下文为便于说明,统一描述为唤醒电路。
其中,该WUR模块用于接收网络设备发送的唤醒信号(wake up signal,WUS,也被称为低功耗唤醒信号low power wake up signal,LP-WUS),并根据WUS中承载的信息比特解调出唤醒指示信息,从而唤醒终端设备中关闭的(或处于睡眠状态的)主接收机或主接收模块。本实施例中,将终端设备使用WUR模块接收唤醒信号也称为在WUR链路上工作,或者也称为WUR模块处于工作状态。其中,唤醒信号,可用于唤醒至少一个终端设备或者至少一组终端设备。作为示例,唤醒信号中包括唤醒信息,唤醒信息表示与唤醒终端设备相关的信息,唤醒信息例如为与寻呼相关的信息。唤醒信息例如可以用于终端设备确定是否要执行寻呼接收的流程,又如可以用于终端设备确定是否要发起随机接入。当唤醒信号携带的寻呼信息指示被寻呼的终端设备,此时唤醒信息可以包括需要唤醒的一个或多个终端设备的信息(如UE ID),则被唤醒的终端设备可以在开启MR后直接发起随机接入;当唤醒信号携带的寻呼信息指示被寻呼的终端设备组(UE group),此时唤醒信息可以包括该终端设备组的组标识,则被唤醒的组内的终端设备可以在开启MR后在PO上继续接收寻呼信息,以确定终端设备自身是否被寻呼。在一些场景中唤醒信号还可以携带调度信息,此时终端设备处于连接态,唤醒信号用于指示终端设备是否需要开启MR接收调度信息(例如是否需要监测物理下行控制信道(physical downlink control channel,PDCCH))。
在NR系统中,终端设备可以通过无线资源管理(radio resource management,RRM)测量实现小区重选。RRM测量可以包括服务小区(serving cell)测量和邻小区(neighbor cell)测量。其中,邻小区测量包括同频(intra-frequency)测量、异频(inter-frequency)测量和异系统(inter-RAT)测量。应理解,同频测量是指终端设备的服务小区与待测量的邻小区在同一载波频点;异频测量是指终端设备的服务小区与待测量的邻小区不在同一载波频点;异系统测量是指终端设备的服务小区与待测量的邻小区不在同一通信系统或不使用同一通信制式,例如服务小区为5G系统,邻 小区为4G通信系统或使用4G通信制式。
上述服务小区的载波频点也可以称作服务小区的工作频点,邻小区的载波频点也可以称作邻小区的工作频点。在RRM测量的场景中,终端设备在服务小区的工作频点接收参考信号以实现服务小区测量,则服务小区的工作频点也可以称作服务小区的测量频点;类似的,终端设备在邻小区的工作频点接收参考信号以实现邻小区测量,则邻小区的工作频点也可以称作邻小区的测量频点。
基于上述图2所示的低功耗唤醒的场景示例,本申请实施例中终端设备进行RRM测量可以包括以下两种可能的场景:
场景一:终端设备的MR处于开启状态。
在场景一中,终端设备可以通过MR进行服务小区测量和邻小区测量。当终端设备进行异频测量时,终端设备将MR的测量频点切换至邻小区的测量频点。
场景二:终端设备的MR处于关闭状态。
在场景二中,终端设备进行服务小区的测量和邻小区的测量可以包括以下几种可能的方式:
方式一:终端设备将当前的通信装置由WUR切换为MR,并通过MR进行服务小区测量和邻小区测量。方式一可以适用于WUR不支持RRM测量,或者WUR不具备RRM测量能力的情况。
方式二:终端设备通过WUR进行服务小区测量,通过MR进行邻小区测量。方式二可以适用于WUR不支持邻小区测量,或者WUR不具备邻小区测量能力的情况。例如,异系统测量的情况下,终端设备可以由WUR切换至MR进行邻小区测量。
方式三:终端设备通过WUR进行服务小区测量和邻小区测量。此种情况下,当终端设备进行异频测量时,终端设备将WUR的测量频点(或工作频点)切换至邻小区的测量频点(或工作频点)。
针对上述方式一和方式二中,终端设备将当前的通信装置由WUR切换为MR,下面结合图3所示的通信装置的架构示意图进行说明。如图3所示,天线与滤波器连接后,通过天线开关连接到WUR的接收模块或者MR的接收模块。示例性的,WUR的接收模块和MR的接收模块均可以包括低噪放(low-noise amplifier)和本地振荡器(local oscillator,LO),WUR的接收模块中的低噪放性能和功耗均较低,MR的接收模块中的低噪放性能和功耗均较高,WUR的接收模块中的LO精度和功耗均较低,例如可以基于环形振荡器,MR的接收模块中的LO精度和功耗均较高,例如可以基于锁相环;可选的,WUR通过接收模块接收信号后可以对信号做进一步处理,类似的,MR通过接收模块接收信号后可以对信号做进一步处理。
图3所示的各模块/部件以及各模块/部件之间的连接关系仅为一种示例而非限制性的说明。在具体实现中,还可以包括比图7中所示更多或者更少的模块/部件。
应理解,终端设备通过MR进行RRM测量时,所接收的参考信号可以是同步信号块(synchronization signal block,SSB);终端设备通过WUR进行RRM测量时,所接收的参考信号可以包括低功耗测量参考信号(low power measurement reference signal),其中低功耗测量参考信号可以是周期性发送的。一种情况下,所接收的参考信号也可以包括同步信号(low power synchronization signal,LP-SS),其中低功耗同步信号可以是周期性发送的。
还应理解的是,终端设备在上述场景一中通过MR进行异频测量,或者在上述场景二的方式三中通过WUR进行异频测量,均需要将测量频点切换至邻小区的测量频点;终端设备在上述场景二的方式一和方式三中将当前的通信装置由WUR切换为MR,以通过MR进行服务小区和/或邻小区测量。无论终端设备进行测量频点的切换,还是通信装置的切换,均会中断终端设备在原测量频点(或工作频点)或者通过原通信装置的通信。因此,考虑通过配置测量GAP,使终端设备可以在测量GAP内进行上述异频测量或者异系统测量。
为了使所配置的测量GAP能够满足不同终端设备的测量需求,网络设备所配置的GAP往往比较密集,导致测量GAP的资源占用率较高。
针对上述测量GAP的资源占用率较高的问题,本申请实施例中,终端设备通过从配置的测量GAP的测量GAP时机(occasion)中确定部分测量GAP时机,并在确定出的部分测量GAP时机中不接收网络设备发送的第一信号,该第一信号可以是频点切换之前的频点上传输的信号,或者 可以是通信装置切换前的通信装置能够接收的信号。避免配置的GAP占用较多的资源。
需要说明的是,为便于理解,本申请实施例仅以测量GAP、终端设备在测量GAP内进行异频测量或者异系统测量为例进行说明,但本申请并不对限定所配置的GAP为测量GAP,也不限定终端设备在GAP内进行测量,该GAP可以理解为终端设备不接收第一信号的周期性的时域位置。
终端设备从配置的GAP的多个GAP时机中确定部分GAP时机,或者可以表述为从配置的GAP的多个GAP时机中选择部分GAP时机,本申请中“确定”和“选择”交替使用所表达的含义一致。
还应理解的是,当一个GAP时机被终端设备采用(或一个GAP时机与终端设备对应)时,网络设备无法在这个GAP时机内向该终端设备发送第一信号,因此网络设备向该终端设备发送第一信号的可用资源就会变少,网络设备发送第一信号的可用资源越少,则可以理解为GAP开销越大,也即GAP的资源占用率越高。
在本申请实施例中,终端设备从配置的GAP的多个GAP时机中确定的部分GAP时机,即为被终端设备采用的GAP时机,而配置的GAP的多个GAP时机中未被选择的GAP时机内,网络设备仍可以向该终端设备发送第一信号,也即未被终端设备采用的GAP时机不占用该终端设备与该网络设备之间通信的可用资源。
下面将结合附图对本申请实施例提供的通信方法进行说明。
应理解,下文仅为便于理解和说明,主要以第一终端设备和第一网络设备之间的交互为例对本申请实施例所提供的方法进行说明。该第一终端设备例如可以是图1中的第一终端设备121或122,第一网络设备可以是图1中的网络设备111;或者第一终端设备可以是图1中的第一终端设备123,第一网络设备可以是图1中的网络设备112。
在一些实施例中,以第一终端设备和第二网络设备之间的交互为例对本申请实施例所提供的方法进行进一步地说明。该第一终端设备可以是图1中的第一终端设备121或122,第二网络设备可以是图1中的网络设备112;或者第一终端设备可以是图1中的第一终端设备123,第二网络设备可以是图1中的网络设备111。
可选的,第一终端设备可以应用于如图2所示的低功耗唤醒的场景。
但应理解,这不应对本申请提供的方法的执行主体构成任何限定。只要能够通过运行有本申请实施例提供的方法的代码的程序,以执行本申请实施例提供的方法,便可以作为本申请实施例提供的方法的执行主体。例如,下文实施例所示的第一终端设备也可以替换为第一终端设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块;下文实施例所示的网络设备也可以替换为网络设备中的部件,比如芯片、芯片系统或其他能够调用程序并执行程序的功能模块。
图4为本申请实施例提供的一种数据传输方法200的示意性交互流程图。如图4所示,该方法200可以包括S210至S230中的部分或者全部过程。下面对方法200中的各个步骤进行说明。
S210,第一网络设备向第一终端设备发送配置信息,该配置信息用于配置第一GAP的周期性的时域位置。相应的,第一终端设备接收第一网络设备发送的配置信息。
S220,第一终端设备和第一网络设备,均根据M个第一GAP时机,确定N个第二GAP时机,M个第一GAP时机包括N个第二GAP时机,M个第一GAP时机为第一网络设备配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数。
S230,在N个第二GAP时机,停止传输第一信号。换言之,第一网络设备在N个第二GAP时机停止发送第一信号,第一终端设备在N个第二GAP时机停止接收第一信号。
需要说明的是,第一GAP在每个GAP周期内的时域位置为一个GAP时机。第一GAP在各GAP周期内的时域位置包括M个第一GAP时机。M个第一GAP时机可以是配置的第一GAP的全部或者部分时域位置,本申请对此不做限定。
还应理解,该M个第一GAP时机覆盖了第一终端设备所需的GAP时机(如N个第二GAP时机),且M个第一GAP时机多于第一终端设备所需的GAP时机。例如,M个第一GAP时机可以是网络设备为了满足多个终端设备的测量需求而配置的比较密集的GAP时机,该多个终端设 备可以是第一网络设备的服务小区中的全部或者部分终端设备,而第一终端设备为多个终端设备中的任意一个。
第一网络设备可以向包括第一终端设备在内的多个终端设备均发送的该配置信息,以实现对各终端设备进行第一GAP的配置。各终端设备可以基于第一网络设备配置的第一GAP的周期性的时域位置,确定各自的第二GAP时机,相应的,第一网络设备可以基于配置的第一GAP的周期性的时域位置,确定各终端设备的第二GAP时机。
可选的,配置信息可以包括第一GAP的周期、偏移值、时域长度中的至少之一。参见图5所示,基于第一GAP的周期、偏移量、时域长度,可以确定第一GAP的多个GAP时机(如M个第一GAP时机),其中第一GAP的偏移量为第一GAP的起始位置与基准点之间的偏移量,该偏移量用于结合第一GAP的周期确定第一GAP时机的时域起始位置。
N个第二GAP时机可以为M个第一GAP时机中与第一终端设备具有映射关系的GAP时机。该映射关系例如可以为第一终端设备的标识(如UE_ID)与第一GAP之间的映射关系;又例如,可以为第一终端设备所在的终端设备组的标识(如group_ID)与第一GAP之间的映射关系。
举例而言,可以将M个第一GAP时机划分为W组,W为正整数。N个第二GAP时机可以是W组中的一组中的部分或者全部第一GAP时机。结合图6所示,假设W等于4,即M个第一GAP时机划分为4组(如GAP组1至GAP组4)GAP时机,M个第一GAP时机中每4个第一GAP时机中包括一个第一终端设备对应的第二GAP时机。
上述第一终端设备与第一GAP之间的映射关系可以通过如下公式表示:
D mod W=i mod W
其中,i为第一GAP的标识(例如索引(index)),mod表示取模(或称作取余)运算。
在第一种实施例中,上述公式中的D可以是第一终端设备的标识(如UE_ID)。例如,M个第一GAP时机划分为4组,标识为1的终端设备与第1个第一GAP时机、第5个第一GAP时机、第9个第一GAP时机……具有映射关系,也即第一终端设备的标识为1时,其对应的N个第二GAP时机包括第1个第一GAP时机、第5个第一GAP时机、第9个第一GAP时机……
在第二种实施例中,上述公式中的D可以是第一终端设备所在的终端设备组的标识(如group_ID)。例如,M个第一GAP时机划分为4组,标识为1的组与第1个第一GAP时机、第5个第一GAP时机、第9个第一GAP时机……具有映射关系,也即第一终端设备所在的组的标识为1时,第一终端设备对应的N个第二GAP时机包括第1个第一GAP时机、第5个第一GAP时机、第9个第一GAP时机……
在上述第二种实施例中,第一终端设备所在的终端设备组的标识(如group_ID)可以由网络设备配置,或者可以通过第一终端设备的标识(如UE_ID)计算得到。
进一步地,为了使N个第二GAP时机更好的满足测量需求,M个第一GAP时机可以基于测量周期L划分为W组。其中,测量周期L可以是满足测量周期需求(requirement)的测量周期,该测量周期需求可以是预定义的(例如在协议中定义的),例如测量周期L可以等于测量周期需求,或者测量周期L在满足测量周期需求的情况下,可以结合网络设备的参考信号的发送周期和通信业务对通信质量的要求确定测量周期。
在基于测量周期L将M个第一GAP时机划分为W组的一种实现中,W可以等于第一GAP的周期T和测量周期L之商。示例性的,结合图6所示,假设第一GAP的周期为3.2秒(s),测量周期需求为12.8s,则W可以等于4。进而第一终端设备基于该W确定的N个第二GAP时机更好的满足第一终端设备的测量需求,提高RRM测量的可靠性。
在另一种实现中,W可以小于第一GAP的周期T和测量周期L之商。此种情况下,第一终端设备可以确定更为密集的第二GAP时机。例如,第一GAP的周期为3.2s,测量周期需求为12.8s,W等于2,每两个第一GAP时机中有一个第二GAP时机。提高第二GAP时机的密集度,可以避免第二GAP时机较少对第一终端设备的RRM测量的准确性的影响。
通过调整上述W小于第一GAP的周期T和测量周期L之商的程度,可以实现对GAP开销的灵活控制。
在上述S220中第一网络设备确定N个第二GAP时机的实现方式与上述第一终端设备确定N 个第二GAP时机的实现方式类似,此处不再赘述。本申请实施例对第一网络设备执行S210和S220的顺序不做限定,例如,第一网络设备可以在发送配置信息之前,确定N个第二GAP时机,或者第一网络设备可以在发送配置信息之后,确定N个第二GAP时机。
第一终端设备在N个第二GAP时机停止接收第一网络设备发送的第一信号,或者可以表述为第一终端设备在N个第二GAP时机不接收第一网络设备发送的第一信号,或者还可以表述为第一终端设备在N个第二GAP时机去激活(deactivate)接收第一网络设备发送的第一信号。
作为上述S230的一些示例,在N个第二GAP时机,第一终端设备不期待接收第一网络设备发送的第一信号,或者第一终端设备不期待监测第一网络设备发送的第一信号,或者第一终端设备不需要接收第一网络设备发送的第一信号,或者第一终端设备不需要监测第一网络设备发送的第一信号。
相应的,第一网络设备在N个第二GAP时机停止向第一终端设备发送第一信号,或者表述为第一网络设备在N个第二GAP时机不向第一终端设备发送第一信号,或者还可以表述为第一网络设备在N个第二GAP时机去激活(deactivate)发送第一信号。
因此,结合图5所示的方法200,本申请实施例通过从第一网络设备配置的多个GAP时机中确定部分GAP时机,以避免配置的GAP占用较多的资源,降低GAP的资源占用率。
在一些实施例中,上述配置信息可以携带于第一网络设备发送的广播消息,以便于处于idle态或者inactive态的终端设备接收该配置信息,以解决目前处于idle态或者inactive态的终端设备无法确定测量GAP的问题。当然,本申请并不限定第一终端设备接收该广播消息时处于idle态或者inactive态,例如第一终端设备可以处于连接(connected)态。
可选的,该广播消息包括无线资源控制(radio resource control,RRC)信令,该RRC信令包含第一GAP的配置信息,该RRC信令可以通过系统信息块(system information block,SIB)发送。
图7为本申请实施例提供的另一种数据传输方法的示意性交互流程图。本申请实施例结合图7所示,以第一GAP为测量GAP,也即第一终端设备的N个第二GAP中进行异频或异系统测量为例进行说明。如图7所示,该方法在图5所示方法的基础上,为图5中的S230提供一种可能的实现方式,具体包括以下至少部分步骤:
S231,在N个第二GAP时机,第一终端设备和第一网络设备停止在第一频率范围内传输第一信号。
S232,在N个第二GAP时机,第二网络设备在第二频率范围内向第一终端设备发送第二信号,该第二信号用于RRM测量。相应的,第一终端设备在第二频率范围内接收第二网络设备发送的第二信号。
需要说明的是,终端设备通过MR进行测量时,服务小区的测量频点可以为服务小区的SSB的频域位置/频率范围,邻小区的测量频点可以为邻小区的SSB的频域位置/频率范围。终端设备通过WUR进行测量时,服务小区的测量频点可以为服务小区的第一信号发送的频域位置/频率范围,也可以被称为服务小区内接收第一信号的工作频点,也即第一频率范围;邻小区的测量频点可以为邻小区的第二信号发送的频域位置,也可以被称为邻小区内接收第二信号的工作频点,也即第二频率范围。
结合前述图2所示的低功耗唤醒场景,第一终端设备可以在N个第二GAP时机之外通过WUR接收第一网络设备发送的第一信号,该第一信号例如可以包括LP-WUS、低功耗测量信号、低功耗同步信号中的至少一种,可选的,第一终端设备还可以通过WUR在第一频率范围接收第一网络设备发送的配置信息。此种情况下,在N个第二GAP时机内,第一终端设备可能由于切换测量频点或者切换通信装置,而无法接收第一信号。
当然,本申请并不对此进行限定,第一信号还可以是MR在服务小区的测量频点(或工作频点)下接收的任意一种信号,例如,第一终端设备的MR处于开启状态,第一终端设备在N个第二GAP时机之外,可以通过MR在第一频率范围接收第一网络设备发送的第一信号。此种情况下,在N个第二GAP时机内,第一终端设备可能由于切换测量频点,而无法接收第一信号。
第一终端设备和第一网络设备停止在第一频率范围内传输第一信号,包括:第一终端设备停 止在第一频率范围内接收第一信号,第一网络设备停止在第一频率范围内发送第一信号。如前所述,停止接收可以还表述为不接收或者去激活接收,停止发送可以还表述为不发送或者去激活发送。
前已述及,第一终端设备可以在N个第二GAP时机内进行邻小区测量,如异频测量或者异系统测量。上述第二频率范围可以是邻小区的测量频点所处的频率范围。以实现第一网络设备和第一终端设备对齐邻小区测量所占用的时域位置,提高通信的稳定性。
在上述S232的一种实现中,第一终端设备可以通过第一通信装置在第二频率范围内接收第二信号。第一通信装置可以为WUR,当第一终端设备的MR处于关闭状态时,第一终端设备可以通过WUR接收第一网络设备和/或第二网络设备的信号,例如,第一终端设备在N个第二GAP时机之外,在服务小区的频点所处的第一频率范围,通过WUR接收第一信号,并在N个第二GAP时机内将WUR切换至邻小区的测量频点,进而在邻小区的测量频点所处的第二频率范围接收第二信号。可选的,第二信号可以包括邻小区的测量参考信号。
在上述S232的另一种实现中,第一终端设备可以通过第二通信装置在第二频率范围内接收第二信号。例如,第二通信装置可以为MR,第一终端设备可以在N个第二GAP时机之外,在服务小区的频点所处的第一频率范围,通过第一通信装置(如WUR)接收第一信号,在N个第二GAP时机内将通信装置由WUR切换为MR,并通过MR在邻小区的测量频点所处的第二频率范围接收第二信号。可选的,第二信号可以包括服务小区的测量参考信号或者邻小区的测量参考信号。应理解,第二信号包括服务小区的测量参考信号时,第一通信装置可以是不支持RRM测量或者不具备RRM测量能力的通信装置;第二信号包括邻小区的测量参考信号时,第一通信装置可以是不支持邻小区测量的或者不具备邻小区测量能力的通信装置。
因此,图7所示的实施例中,第一终端设备通过在第二频率范围内接收用于RRM测量的第二信号,在不影响服务小区的通信可靠性的同时,实现对邻小区的测量。
在一些实施例中,第一GAP的时域长度大于或等于测量邻小区的参考信号的时长,以使第一终端设备能够在每个第二GAP时机中完整接收邻小区的一个参考信号周期发送的参考信号。
进一步地,第一终端设备在第二频率范围接收第二信号时,需要进行频点切换,如将服务小区的测量频点切换至邻小区的测量频点,那么第一GAP的时域长度还应包括测量频点的切换时长,例如射频前端的开关在不同频点之间切换的时间,此种情况下,第一GAP的时域长度可以为若干ms或者几十ms;或者,第一终端设备在第二频率范围接收第二信号时需要由第一通信装置切换至第二通信装置,那么第一GAP的时域长度还应包括第一通信装置切换为第二通信装置的时长,此种情况下,第一GAP的时域长度可以为若干毫秒(ms)或者几十ms。其中,第一通信装置用于在第一频率范围接收第一信号,第二通信装置用于在第二频率范围接收第二信号。
在一些实施例中,第二通信装置在进行通信装置切换(如由第一通信装置切换至第一通信装置)时,第二通信装置未开启,第一GAP的时域长度还应包括第二通信装置开启的时长,此种情况下,第一GAP的时域长度可以为若干ms或者若干s。当然,若第二通信装置在进行通信装置切换(如由第一通信装置切换至第一通信装置)之前,第二通信装置已经开启,第一GAP的时长不包括该第二通信装置开启的时长。
以第一通信装置为WUR、第二通信装置为MR为例,MR可以在WUR的唤醒下开启,如前所述,WUR可以在接收到LP-WUS后唤醒MR,除此之外,WUR还可以对MR进行周期性的唤醒,本申请对此不做限定。
考虑第一GAP的时长能够覆盖测量频点切换的时长、通信装置切换的时长、第二通信装置开启的时长中的至少之一,以使在不同的测量场景中,第一终端设备均能够在每个第二GAP时机中完整接收邻小区的一个参考信号周期发送的参考信号。
图8是本申请实施例提供的一种通信装置的示意性框图。如图8所示,该装置300可以包括:处理模块310和收发模块320。
可选地,该通信装置300可对应于上文方法实施例中的终端设备,例如,可以为终端设备,或者配置于终端设备中的部件(如,芯片或芯片系统等)。
其中,当通信装置300用于执行终端侧的方法时,处理模块310可以用于根据M个第一间隔 GAP时机,确定N个第二GAP时机,该M个第一GAP时机包括该N个第二GAP时机,该M个第一GAP时机为第一网络设备配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;收发模块320可以用于在该N个第二GAP时机,停止接收该第一网络设备发送的第一信号。
应理解,各模块执行的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
可选地,该通信装置300可对应于上文方法实施例中的网络设备,例如,可以为网络设备,或者配置于网络设备中的部件(如,芯片或芯片系统等)。
其中,当通信装置300用于执行网络侧的方法时,处理模块310可以用于根据M个第一GAP时机,确定N个第二GAP时机,该M个第一GAP时机包括该N个第二GAP时机,该M个第一GAP时机为该通信装置配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;收发模块320可以用于在该N个第二GAP时机,停止向第一终端设备发送第一信号。
应理解,各模块执行的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
该通信装置300中的收发模块320可以通过收发器实现,例如可对应于图9中所示的通信装置400中的收发器410,该通信装置300中的处理模块310可通过至少一个处理器实现,例如可对应于图9中示出的通信装置400中的处理器420。
当该通信装置300为配置于通信设备(如终端设备或网络设备)中的芯片或芯片系统时,该通信装置300中的收发模块320可以通过输入/输出接口、电路等实现,该通信装置300中的处理模块310可以通过该芯片或芯片系统上集成的处理器、微处理器或集成电路等实现。
图9是本申请实施例提供的另一种通信装置的示意性框图。如图9所示,该通信装置400可以包括:收发器410、处理器420和存储器430。其中,收发器410、处理器420和存储器430通过内部连接通路互相通信,该存储器430用于存储指令,该处理器420用于执行该存储器430存储的指令,以控制该收发器410发送信号和/或接收信号。
应理解,该通信装置400可以对应于上述方法实施例中的终端设备或网络设备,并且可以用于执行上述方法实施例中终端设备或网络设备执行的各个步骤和/或流程。可选地,该存储器430可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。存储器430可以是一个单独的器件,也可以集成在处理器420中。该处理器420可以用于执行存储器430中存储的指令,并且当该处理器420执行存储器中存储的指令时,该处理器420用于执行上述与终端设备或网络设备对应的方法实施例的各个步骤和/或流程。
可选地,该通信装置400是前文实施例中的终端设备。
可选地,该通信装置400是前文实施例中的网络设备。
其中,收发器410可以包括发射机和接收机。收发器410还可以进一步包括天线,天线的数量可以为一个或多个。该处理器420和存储器430与收发器410可以是集成在不同芯片上的器件。如,处理器420和存储器430可以集成在基带芯片中,收发器410可以集成在射频芯片中。该处理器420和存储器430与收发器410也可以是集成在同一个芯片上的器件。本申请对此不作限定。
可选地,该通信装置400是配置在终端设备中的部件,如芯片、芯片系统等。
可选地,该通信装置400是配置在网络设备中的部件,如芯片、芯片系统等。
其中,收发器420也可以是通信接口,如输入/输出接口、电路等。该收发器420与处理器410和存储器430都可以集成在同一个芯片中,如集成在基带芯片中。
本申请还提供了一种处理装置,包括至少一个处理器,所述至少一个处理器用于执行存储器中存储的计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和输入输出接口。所述输入输出接口与所述处理器耦合。所述输入输出接口用于输入和/或输出信息。所述信息包括指令和数据中的至少一项。所述处理器用于执行计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
本申请实施例还提供了一种处理装置,包括处理器和存储器。所述存储器用于存储计算机程序,所述处理器用于从所述存储器调用并运行所述计算机程序,以使得所述处理装置执行上述方法实施例中终端设备或网络设备执行的方法。
应理解,上述处理装置可以是一个或多个芯片。例如,该处理装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(centralprocessor unit,CPU),还可以是网络处理器(networkprocessor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controllerunit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(directrambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有程序代码,当该程序代码在计算机上运行时,使得该计算机执行上述方法实施例中终端设备或网络设备执行的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,该通信系统可以包括前述的终端设备和网络设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (56)

  1. 一种数据传输方法,其特征在于,包括:
    第一终端设备根据M个第一间隔GAP时机,确定N个第二GAP时机,所述M个第一GAP时机包括所述N个第二GAP时机,所述M个第一GAP时机为第一网络设备配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;
    在所述N个第二GAP时机,所述第一终端设备停止接收所述第一网络设备发送的第一信号。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    所述第一终端设备接收所述第一网络设备发送的配置信息,所述配置信息用于配置所述第一GAP的周期性的时域位置。
  3. 根据权利要求2所述的方法,其特征在于,所述配置信息包括所述第一GAP的周期、偏移值、时域长度中的至少之一。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述N个第二GAP时机为基于所述第一终端设备的标识或所述第一终端设备所在的终端设备组的标识,从所述M个第一GAP时机中确定的。
  5. 根据权利要求4所述的方法,其特征在于,所述M个第一GAP时机划分为W组GAP时机,所述M个第一GAP时机中的第i个第一GAP时机为所述第二GAP时机,i和W均为正整数,所述i满足如下公式:
    D mod W=i mod W;
    其中,mod表示取模运算,所述D为所述第一终端设备的标识或所述第一终端设备所在的终端设备组的标识。
  6. 根据权利要求5所述的方法,其特征在于,所述W基于所述第一GAP的周期T和测量周期L确定,所述测量周期为所述第一终端设备测量邻小区的参考信号的周期。
  7. 根据权利要求6所述的方法,其特征在于,所述W小于或等于所述第一GAP的周期T和所述测量周期L之商。
  8. 根据权利要求2或3所述的方法,其特征在于,所述配置信息携带于所述第一网络设备发送的广播消息。
  9. 根据权利要求8所述的方法,其特征在于,所述第一终端设备接收所述广播消息时处于空闲态或非激活态。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述第一信号包括以下至少之一:
    低功耗唤醒信号;
    低功耗测量信号;
    低功耗同步信号。
  11. 根据权利要求1至10任一项所述的方法,其特征在于,所述第一终端设备停止接收所述第一网络设备发送的第一信号,包括:
    所述第一终端设备停止在第一频率范围内接收所述第一信号。
  12. 根据权利要求11所述的方法,其特征在于,还包括:
    在所述N个第二GAP时机,所述第一终端设备在第二频率范围内接收第二信号,所述第二频率范围与所述第一频率范围不同,所述第二信号用于无线资源管理RRM测量。
  13. 根据权利要求12所述的方法,其特征在于,所述第一终端设备在第二频率范围内接收第二信号,包括:
    所述第一终端设备通过第一通信装置在所述第二频率范围内接收所述第二信号,所述第二信号为邻小区的测量参考信号;或者,
    所述第一终端设备通过第二通信装置在所述第二频率范围内接收所述第二信号,所述第二信号为服务小区或邻小区的测量参考信号。
  14. 根据权利要求1至13任一项所述的方法,其特征在于,
    所述第一GAP的时域长度大于或等于测量邻小区的参考信号的时长;或者,
    所述第一GAP的时域长度大于或等于测量邻小区的参考信号的时长和以下至少之一之和:
    测量频点切换的时长;
    第一通信装置切换为第二通信装置的时长,所述第一通信装置用于在第一频率范围内接收所述第一信号;
    第二通信装置开启的时长,所述第二通信装置用于在第二频率范围内接收第二信号;
    其中,所述第一频率范围与所述第二频率范围不同。
  15. 一种数据传输方法,其特征在于,包括:
    第一网络设备根据M个第一GAP时机,确定N个第二GAP时机,所述M个第一GAP时机包括所述N个第二GAP时机,所述M个第一GAP时机为所述第一网络设备配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;
    在所述N个第二GAP时机,所述第一网络设备停止向第一终端设备发送第一信号。
  16. 根据权利要求15所述的方法,其特征在于,还包括:
    所述第一网络设备向所述第一终端设备发送配置信息,所述配置信息用于配置第一GAP的周期性的时域位置。
  17. 根据权利要求16所述的方法,其特征在于,所述配置信息包括所述第一GAP的周期、偏移值、时域长度中的至少之一。
  18. 根据权利要求15至17任一项所述的方法,其特征在于,所述N个第二GAP时机为基于所述第一终端设备的标识或所述第一终端设备所在的终端设备组的标识,从所述M个第一GAP时机中确定的。
  19. 根据权利要求18所述的方法,其特征在于,所述M个第一GAP时机划分为W组GAP时机,所述M个第一GAP时机中的第i个第一GAP时机为所述第二GAP时机,i和W均为正整数,所述i满足如下公式:
    D mod W=i mod W;
    其中,mod表示取模运算,所述D为所述第一终端设备的标识或所述第一终端设备所在的终端设备组的标识。
  20. 根据权利要求19所述的方法,其特征在于,所述W基于所述第一GAP的周期T和测量周期L确定,所述测量周期为所述第一终端设备测量邻小区的参考信号的周期。
  21. 根据权利要求20所述的方法,其特征在于,所述W小于或等于所述第一GAP的周期T和所述测量周期L之商。
  22. 根据权利要求16或17所述的方法,其特征在于,所述配置信息携带于广播消息。
  23. 根据权利要求22所述的方法,其特征在于,所述第一终端设备接收所述广播消息时处于空闲态或非激活态。
  24. 根据权利要求15至23任一项所述的方法,其特征在于,所述第一信号包括以下至少之一:
    低功耗唤醒信号;
    低功耗测量信号;
    低功耗同步信号。
  25. 根据权利要求15至24任一项所述的方法,其特征在于,所述第一网络设备停止向第一终端设备发送第一信号,包括:
    所述第一网络设备停止在第一频率范围内向所述第一终端设备发送所述第一信号。
  26. 根据权利要求15至25任一项所述的方法,其特征在于,
    所述第一GAP的时域长度大于或等于测量邻小区的参考信号的时长;或者,
    所述第一GAP的时域长度大于或等于测量邻小区的参考信号的时长和以下至少之一之和:
    测量频点切换的时长;
    第一通信装置切换为第二通信装置的时长,所述第一通信装置用于在第一频率范围内接收所述第一信号;
    第二通信装置开启的时长,所述第二通信装置用于在第二频率范围内接收第二信号;
    其中,所述第一频率范围与所述第二频率范围不同。
  27. 一种通信装置,其特征在于,包括:
    处理模块,用于根据M个第一间隔GAP时机,确定N个第二GAP时机,所述M个第一GAP时机包括所述N个第二GAP时机,所述M个第一GAP时机为第一网络设备配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;
    收发模块,用于在所述N个第二GAP时机,停止接收所述第一网络设备发送的第一信号。
  28. 根据权利要求27所述的装置,其特征在于,所述收发模块还用于:
    接收所述第一网络设备发送的配置信息,所述配置信息用于配置所述第一GAP的周期性的时域位置。
  29. 根据权利要求28所述的装置,其特征在于,所述配置信息包括所述第一GAP的周期、偏移值、时域长度中的至少之一。
  30. 根据权利要求27至29任一项所述的装置,其特征在于,所述N个第二GAP时机为基于所述通信装置的标识或所述通信装置所在的终端设备组的标识,从所述M个第一GAP时机中确定的。
  31. 根据权利要求30所述的装置,其特征在于,所述M个第一GAP时机划分为W组GAP时机,所述M个第一GAP时机中的第i个第一GAP时机为所述第二GAP时机,i和W均为正整数,所述i满足如下公式:
    D mod W=i mod W;
    其中,mod表示取模运算,所述D为所述通信装置的标识或所述通信装置所在的终端设备组的标识。
  32. 根据权利要求31所述的装置,其特征在于,所述W基于所述第一GAP的周期T和测量周期L确定,所述测量周期为所述通信设备测量邻小区的参考信号的周期。
  33. 根据权利要求32所述的装置,其特征在于,所述W小于或等于所述第一GAP的周期T和所述测量周期L之商。
  34. 根据权利要求28或29所述的装置,其特征在于,所述配置信息携带于所述第一网络设备发送的广播消息。
  35. 根据权利要求34所述的装置,其特征在于,所述通信装置接收所述广播消息时处于空闲态或非激活态。
  36. 根据权利要求27至35任一项所述的装置,其特征在于,所述第一信号包括以下至少之一:
    低功耗唤醒信号;
    低功耗测量信号;
    低功耗同步信号。
  37. 根据权利要求27至36任一项所述的装置,其特征在于,所述收发模块具体用于:
    停止在第一频率范围内接收所述第一信号。
  38. 根据权利要求37所述的装置,其特征在于,所述收发模块还用于:
    在所述N个第二GAP时机,在第二频率范围内接收第二信号,所述第二频率范围与所述第一频率范围不同,所述第二信号用于无线资源管理RRM测量。
  39. 根据权利要求38所述的装置,其特征在于,所述收发模块具体用于:
    通过第一通信装置在所述第二频率范围内接收所述第二信号,所述第二信号为邻小区的测量参考信号;或者,
    通过第二通信装置在所述第二频率范围内接收所述第二信号,所述第二信号为服务小区或邻小区的测量参考信号。
  40. 根据权利要求27至39任一项所述的装置,其特征在于,
    所述第一GAP的时域长度大于或等于测量邻小区的参考信号的时长;或者,
    所述第一GAP的时域长度大于或等于测量邻小区的参考信号的时长和以下至少之一之和:
    测量频点切换的时长;
    第一通信装置切换为第二通信装置的时长,所述第一通信装置用于在第一频率范围内接收所 述第一信号;
    第二通信装置开启的时长,所述第二通信装置用于在第二频率范围内接收第二信号;
    其中,所述第一频率范围与所述第二频率范围不同。
  41. 一种通信装置,其特征在于,包括:
    处理模块,用于根据M个第一GAP时机,确定N个第二GAP时机,所述M个第一GAP时机包括所述N个第二GAP时机,所述M个第一GAP时机为所述通信装置配置的第一GAP的周期性的时域位置,M大于N,且M和N均为正整数;
    收发模块,用于在所述N个第二GAP时机,停止向第一终端设备发送第一信号。
  42. 根据权利要求41所述的装置,其特征在于,所述收发模块还用于:
    向所述第一终端设备发送配置信息,所述配置信息用于配置第一GAP的周期性的时域位置。
  43. 根据权利要求42所述的装置,其特征在于,所述配置信息包括所述第一GAP的周期、偏移值、时域长度中的至少之一。
  44. 根据权利要求41至43任一项所述的装置,其特征在于,所述N个第二GAP时机为基于所述第一终端设备的标识或所述第一终端设备所在的终端设备组的标识,从所述M个第一GAP时机中确定的。
  45. 根据权利要求44所述的装置,其特征在于,所述M个第一GAP时机划分为W组GAP时机,所述M个第一GAP时机中的第i个第一GAP时机为所述第二GAP时机,i和W均为正整数,所述i满足如下公式:
    D mod W=i mod W;
    其中,mod表示取模运算,所述D为所述第一终端设备的标识或所述第一终端设备所在的终端设备组的标识。
  46. 根据权利要求45所述的装置,其特征在于,所述W基于所述第一GAP的周期T和测量周期L确定,所述测量周期为所述第一终端设备测量邻小区的参考信号的周期。
  47. 根据权利要求46所述的装置,其特征在于,所述W小于或等于所述第一GAP的周期T和所述测量周期L之商。
  48. 根据权利要求42或43所述的装置,其特征在于,所述配置信息携带于广播消息。
  49. 根据权利要求48所述的装置,其特征在于,所述第一终端设备接收所述广播消息时处于空闲态或非激活态。
  50. 根据权利要求41至49任一项所述的装置,其特征在于,所述第一信号包括以下至少之一:
    低功耗唤醒信号;
    低功耗测量信号;
    低功耗同步信号。
  51. 根据权利要求41至50任一项所述的装置,其特征在于,所述收发模块具体用于:
    停止在第一频率范围内向所述第一终端设备发送所述第一信号。
  52. 根据权利要求41至51任一项所述的装置,其特征在于,
    所述第一GAP的时域长度大于或等于测量邻小区的参考信号的时长;或者,
    所述第一GAP的时域长度大于或等于测量邻小区的参考信号的时长和以下至少之一之和:
    测量频点切换的时长;
    第一通信装置切换为第二通信装置的时长,所述第一通信装置用于在第一频率范围内接收所述第一信号;
    第二通信装置开启的时长,所述第二通信装置用于在第二频率范围内接收第二信号;
    其中,所述第一频率范围与所述第二频率范围不同。
  53. 一种通信设备,其特征在于,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至26中任一项所述的方法。
  54. 一种芯片,其特征在于,包括:处理器,用于从存储器中调用并运行计算机指令,使得 安装有所述芯片的设备执行如权利要求1至26中任一项所述的方法。
  55. 一种计算机可读存储介质,其特征在于,用于存储计算机程序指令,所述计算机程序使得计算机执行如权利要求1至26中任一项所述的方法。
  56. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至26中任一项所述的方法。
PCT/CN2023/119253 2022-09-21 2023-09-15 数据传输方法、装置以及存储介质 WO2024061139A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202211166569.6 2022-09-21
CN202211166569 2022-09-21
CN202211340812.1 2022-10-29
CN202211340812.1A CN117750399A (zh) 2022-09-21 2022-10-29 数据传输方法、装置以及存储介质

Publications (1)

Publication Number Publication Date
WO2024061139A1 true WO2024061139A1 (zh) 2024-03-28

Family

ID=90276336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/119253 WO2024061139A1 (zh) 2022-09-21 2023-09-15 数据传输方法、装置以及存储介质

Country Status (2)

Country Link
CN (1) CN117750399A (zh)
WO (1) WO2024061139A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474682A (zh) * 2013-08-12 2016-04-06 瑞典爱立信有限公司 用于异构网络中的测量的聚簇周期间隙
CN109151922A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 测量方法、测量配置方法和相关设备
CN113507720A (zh) * 2021-07-21 2021-10-15 惠州Tcl云创科技有限公司 终端测量模式管理方法、装置、存储介质及电子终端
WO2022007768A1 (zh) * 2020-07-09 2022-01-13 展讯半导体(南京)有限公司 Rrm测量方法及装置、存储介质、ue、基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105474682A (zh) * 2013-08-12 2016-04-06 瑞典爱立信有限公司 用于异构网络中的测量的聚簇周期间隙
CN109151922A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 测量方法、测量配置方法和相关设备
WO2022007768A1 (zh) * 2020-07-09 2022-01-13 展讯半导体(南京)有限公司 Rrm测量方法及装置、存储介质、ue、基站
CN113507720A (zh) * 2021-07-21 2021-10-15 惠州Tcl云创科技有限公司 终端测量模式管理方法、装置、存储介质及电子终端

Also Published As

Publication number Publication date
CN117750399A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
EP3923502A1 (en) Communication method, apparatus, and device
TWI795555B (zh) 信號傳輸方法及裝置
US20210144646A1 (en) Signal transmission method, network device and terminal device
US20210159961A1 (en) Method for transmitting signal, terminal device, and network device
TWI828716B (zh) 傳輸訊號的方法、網路設備及終端設備
US20230083399A1 (en) Signal communication method and device
TW202021394A (zh) 一種通道監聽方法及裝置、終端設備、網路設備
JP7462644B2 (ja) 同期信号ブロック情報処理方法、装置及び通信装置
CN110971474A (zh) 信号处理的方法和装置
WO2021062612A1 (zh) 通信方法及装置
WO2019191984A1 (zh) 一种信号发送方法、网络设备及终端设备
WO2021258776A1 (zh) 通信方法及通信装置
WO2016187851A1 (zh) 一种系统消息获取判断方法及终端设备
US20240188036A1 (en) Wireless communication method, terminal, and network device
CN114731580B (zh) 检测物理下行控制信道pdcch的方法以及装置
WO2020164390A1 (zh) 一种测量的方法和通信装置
WO2023098845A1 (zh) 资源确定方法与装置、终端
WO2024061139A1 (zh) 数据传输方法、装置以及存储介质
WO2023020482A1 (zh) 通信方法与装置、终端和网络设备
WO2018177266A1 (zh) 数据传输的方法和装置
WO2023284261A1 (zh) 一种寻呼方法、计算机可读存储介质和用户设备
WO2024012114A1 (zh) 通信方法及通信装置
WO2023206533A1 (zh) 通信方法、装置、设备、芯片、存储介质、产品及程序
WO2024061113A1 (zh) 测量小区的方法与装置
WO2023078415A1 (zh) 寻呼提前指示的方法与装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867428

Country of ref document: EP

Kind code of ref document: A1