WO2024061020A1 - 转动机构和可折叠电子设备 - Google Patents

转动机构和可折叠电子设备 Download PDF

Info

Publication number
WO2024061020A1
WO2024061020A1 PCT/CN2023/117605 CN2023117605W WO2024061020A1 WO 2024061020 A1 WO2024061020 A1 WO 2024061020A1 CN 2023117605 W CN2023117605 W CN 2023117605W WO 2024061020 A1 WO2024061020 A1 WO 2024061020A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
swing arm
teeth
sub
rotating
Prior art date
Application number
PCT/CN2023/117605
Other languages
English (en)
French (fr)
Inventor
陈瑞豪
董绍洪
彭高峰
苏帅
黄健
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024061020A1 publication Critical patent/WO2024061020A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/14Mounting supporting structure in casing or on frame or rack
    • H05K7/16Mounting supporting structure in casing or on frame or rack on hinges or pivots

Definitions

  • the present application relates to the technical field of electronic products, and in particular to a rotating mechanism and foldable electronic equipment.
  • the appearance (ID) form of electronic devices has a trend of developing from candy bar machines to folding machines.
  • the folding machine has a large-area screen in the open state, which fully satisfies consumers' visual experience. In the closed state, it is small and easy to carry.
  • Most folding machines in the prior art realize synchronous motion through synchronization gears in the synchronization mechanism.
  • most of the existing synchronization gears have a spur-tooth structure, which results in poor transmission stability.
  • the present application provides a rotating mechanism and a foldable electronic device to solve the technical problem of poor transmission smoothness of the rotating mechanism in the prior art.
  • this application provides a rotation mechanism, including a fixed base, a first synchronized swing arm, a second synchronized swing arm and a synchronized gear.
  • the synchronized gear includes a first gear, a second gear and an intermediate gear.
  • the first gear, the intermediate gear and the second gear are all helical gears.
  • the first gear, the intermediate gear and the second gear are arranged side by side and in parallel.
  • the intermediate gear is located between the first gear and the second gear and is connected with the first gear and the second gear.
  • the second gear meshes.
  • the first synchronized swing arm is fixedly connected to the first gear
  • the second synchronized swing arm is fixedly connected to the second gear.
  • the synchronization gear is installed in the fixed base and is rotationally connected with the fixed base.
  • the first synchronization swing arm and the second synchronization swing arm are respectively located at opposite sides of the fixed base in the width direction. both sides.
  • the rotation directions of the first synchronized swing arm and the second synchronized swing arm are opposite, and the rotation directions of the first gear and the second gear are opposite.
  • the rotation mechanism is used in a foldable electronic device.
  • the foldable electronic device includes a first housing, a second housing and a display screen.
  • the first housing is connected to the first synchronous swing arm, and the second housing is connected to the second synchronous swing arm.
  • the rotating mechanism is located between the first housing and the second housing, and enables the first housing and the second housing to be rotationally connected.
  • the rotation of the rotating mechanism can drive the first housing and the second housing to rotate relative to each other.
  • the first housing and the second housing are also provided with accommodating slots, which are used to accommodate electronic components and structural components such as processors, circuit boards, camera modules, etc. of the electronic device.
  • the rotating mechanism When the rotating mechanism is in a folded state, the first synchronous swing arm and the second synchronous swing arm are relatively folded. That is, the first synchronized swing arm and the second synchronized swing arm rotate toward each other so that the first synchronized swing arm and the second synchronized swing arm are stacked.
  • the rotating mechanism When the rotating mechanism is in a flat state, the first synchronous swing arm and the second synchronous swing arm are flattened relative to the fixed base, and the angle between the first synchronous swing arm and the second synchronous swing arm is close to 180 degrees.
  • the overlap degree of the intermediate gear with the first gear and the second gear is increased, thereby increasing the stability of the synchronous gear transmission and improving
  • the rotating mechanism rotates dynamic stability.
  • the first gear, the intermediate gear and the second gear as helical gears, it is possible to prevent tooth root breakage, improve the impact resistance and load-bearing capacity of the rotating mechanism, and improve the durability of the rotating mechanism.
  • the gear module can be appropriately increased and the number of teeth of the gear can be reduced according to the actual application scenario, thereby reducing the diameter of the gear and reducing the folding time of the rotating mechanism.
  • the thickness of the state makes foldable electronic devices thinner and lighter.
  • the first gear, the intermediate gear and the second gear side by side and in parallel the thickness of the rotation mechanism can be reduced, thereby further achieving a thinner and lighter foldable electronic device.
  • the rotating mechanism includes a folded state and a flattened state.
  • the first synchronous swing arm expands relative to the second synchronous swing arm, so
  • the first gear is driven to rotate, thereby driving the second gear to rotate, thereby driving the second synchronized swing arm toward the first synchronized swing arm.
  • the direction of the swing arm is rotated so that the first synchronous swing arm is folded relative to the second synchronous swing arm and the rotating mechanism is in the folded state.
  • the first synchronous swing arm and the second synchronous swing arm realize synchronous rotation through synchronization gears, thereby realizing synchronous rotation of the rotation mechanism, thereby improving the convenience and reliability of the rotation of the rotation mechanism, and improving the user experience.
  • the overlap degree of the intermediate gear and the first gear is greater than 1.2
  • the overlap degree of the intermediate gear and the second gear is greater than 1.2
  • the degree of coincidence is equal to the sum of the degree of end surface coincidence and the degree of longitudinal coincidence.
  • the transmission stability of the synchronization gear can be increased and the rotational stability of the rotating mechanism can be improved.
  • the intermediate gear includes a third gear and a fourth gear, both of the third gear and the fourth gear are helical gears, and both the third gear and the fourth gear are configured as Between the first gear and the second gear, the third gear meshes with the first gear, and the fourth gear meshes with the second gear and the third gear.
  • a third gear and a fourth gear are provided between the first gear and the second gear, and when the first gear rotates, the third gear is driven to rotate, thereby driving the fourth gear to rotate, and then the second gear is driven. Rotate to achieve synchronous rotation of the first gear and the second gear, thereby improving the stability of the synchronous gear transmission and the rotation stability of the rotating mechanism.
  • the coincidence degree of the third gear and the fourth gear is greater than 1.2.
  • the transmission stability of the synchronization gear can be further increased and the rotation stability of the rotation mechanism can be improved.
  • the first gear includes first teeth
  • the second gear includes second teeth
  • the third gear includes third teeth
  • the fourth gear includes fourth teeth.
  • the first teeth, the second teeth, the third teeth and the fourth teeth are all helical, and the helical directions of the first teeth and the second teeth are opposite, and the third gear The helical direction of the fourth gear is opposite.
  • the overlap between the intermediate gear and the first gear and the second gear can be improved, thereby increasing the transmission stability of the synchronous gear, improving the rotation stability of the rotating mechanism, and preventing the tooth root from breaking, thereby improving the impact resistance and load-bearing capacity of the rotating mechanism and improving the durability of the rotating mechanism.
  • the spirals of the first tooth, the second tooth, the third tooth and the fourth tooth are The angles are all between 15° and 45°.
  • the coincidence degree between the two adjacent gears can be improved, and thus the degree of overlap between the two adjacent gears can be improved.
  • the first gear includes a first tooth
  • the second gear includes a second tooth
  • the third gear includes a third tooth
  • the fourth gear includes a fourth tooth
  • the first tooth, the second tooth, the third tooth, and the fourth tooth are all "V"-shaped.
  • the axial force when the synchronization gear rotates can be reduced, thereby further increasing the rotation of the synchronization gear.
  • the stability of the rotating mechanism improves the stability of the rotation.
  • the first teeth include first sub-teeth and second sub-teeth, both of the first sub-teeth and the second sub-teeth are helical teeth, and the first sub-teeth and the first sub-teeth are The second sub-teeth are fixedly connected along the axial direction of the first gear.
  • the second teeth include third sub-teeth and fourth sub-teeth, the third sub-teeth and the fourth sub-teeth are helical teeth, the third sub-teeth and the fourth sub-teeth are along the said Axial fixed connection of the second gear.
  • the third teeth include fifth sub-teeth and sixth sub-teeth, the fifth sub-teeth and the sixth sub-tooth are both helical teeth, and the fifth sub-teeth and the sixth sub-tooth are along the same direction.
  • the third gear is axially fixedly connected.
  • the fourth teeth include seventh sub-teeth and eighth sub-teeth, the seventh sub-teeth and the eighth sub-tooth are both helical teeth, and the seventh sub-tooth and the eighth sub-tooth lie along the same edge.
  • the fourth gear is axially fixedly connected.
  • the teeth of each gear are set as two sub-teeth, and the two adjacent gears are meshed with each other respectively, so that the force received by the two sub-teeth of the same gear is divided in the axial direction.
  • the directions of the forces are opposite, so they can offset each other, thereby reducing the axial force of each gear, which can further increase the stability of the rotation of the synchronous gear and improve the stability of the rotation of the rotating mechanism.
  • the spiral directions of the first sub-tooth and the fifth sub-tooth are opposite, the spiral directions of the fifth sub-tooth and the seventh sub-tooth are opposite, and the seventh sub-tooth Opposite to the helical direction of the third sub-teeth, the helical angles of the first sub-teeth, the fifth sub-teeth, the seventh sub-teeth and the third sub-teeth are all 15° ⁇ 45°.
  • the first sub-teeth, the fifth sub-teeth, the seventh sub-teeth and the third sub-teeth into a helical shape, and the helical angles are all 15° to 45°, it is possible to improve the relationship between the first gear and the third sub-tooth.
  • the coincidence degree of the third gear, the coincidence degree of the third gear and the fourth gear, and the coincidence degree of the fourth gear and the second gear can thereby increase the transmission stability of the synchronization gear and improve the rotation stability of the rotating mechanism.
  • the overlap degree of the first gear and the third gear is greater than 1.2
  • the overlap degree of the third gear and the fourth gear is greater than 1.2
  • the overlap degree of the fourth gear and the The coincidence degree of the second gear is greater than 1.2.
  • the coincidence degree of the first gear and the third gear can be greater than 1.2, the coincidence degree of the third gear and the fourth gear being greater than 1.2, and the coincidence degree of the fourth gear and the second gear being greater than 1.2. , can further increase the transmission stability of the synchronization gear and improve the rotation stability of the rotating mechanism.
  • the rotating mechanism further includes a damping member, the damping member includes a damping spring, a first hinge base and a second hinge base, the damping member is installed on the fixed base, and the first hinge seat and the second The hinge seats are all fixedly connected with the damping spring.
  • the first synchronous swing arm includes a first hinge body, the first hinge body is hinged with the first hinge base, the second synchronous swing arm includes a second hinge body, and the second hinge body is hinged with the first hinge seat.
  • the second hinge seat is hinged.
  • the first hinge body When the first synchronous swing arm rotates relative to the fixed base, the first hinge body resists the first hinge base, and when the second synchronous swing arm rotates relative to the fixed base, the first hinge body resists the first hinge base.
  • Two hinge bodies resist the second hinge seat, and the first hinge seat and the second hinge seat jointly compress the damping spring and cause the damping spring to generate elastic force.
  • a damping member is provided, and a first hinge is provided on the first synchronous swing arm, and a second hinge is provided on the second synchronous swing arm, so that when the first synchronous swing arm and the second synchronous swing arm rotate, the damping spring is repeatedly squeezed to generate an elastic force, and the elastic restoring force generated by the elastic force in turn acts on the first synchronous swing arm and the second synchronous swing arm, thereby providing a damping force for the rotation of the first synchronous swing arm and the second synchronous swing arm, so as to enhance the damping feel when the user uses it and improve the user's experience.
  • the rotating mechanism includes a first fixed plate and a second fixed plate, and the first fixed plate and the second fixed plate are respectively located on opposite sides of the fixed base in the width direction,
  • the first synchronized swing arm is slidably connected to the first fixed plate, and the second fixed plate is slidably connected to the second synchronized swing arm.
  • the first housing is fixedly connected to the first fixing plate
  • the second housing is fixedly connected to the second fixing plate.
  • the first fixed plate drives the first synchronous swing arm to rotate
  • the second fixed plate drives the third synchronous swing arm to rotate.
  • the rotation of the two synchronous swing arms can improve the rotation stability of the first synchronous swing arm and the second synchronous swing arm, thereby improving the rotation stability of the rotation mechanism and the foldable electronic device.
  • the fixed base is provided with a first rotation groove and a second rotation groove, and the first rotation groove and the second rotation groove are arranged oppositely.
  • the rotation mechanism includes a first main swing arm and a second main swing arm.
  • the first main swing arm is installed in the first rotation groove and can slide and rotate along the first rotation groove, and the third main swing arm
  • a main swing arm is rotatably connected to the first fixed plate.
  • the second main swing arm is installed in the second rotation groove and can slide and rotate along the second rotation groove, and the second main swing arm is rotationally connected to the second fixed plate.
  • first main swing arm and a second main swing arm when the first fixed plate rotates relative to the fixed base, the first main swing arm rotates and slides in the first rotation groove, and the second fixed When the plate rotates relative to the fixed base, the second main swing arm rotates and slides in the second rotation groove, so that the first fixed plate and the second fixed plate can rotate relative to the fixed base.
  • the first main swing arm includes a first rotating body and a first swinging body.
  • the first rotating body is fixedly connected to the first swinging body.
  • the first rotating body includes a first rotating body.
  • One sliding part and two second sliding parts, the two second sliding parts are connected to opposite sides of the first sliding part.
  • the first rotation groove includes a first slide rail and two second slide rails.
  • the two second slide rails are located on opposite sides of the first slide rail and are along the same direction as the first slide rail.
  • the fixed bases are arranged side by side in the length direction.
  • the first rotating body is installed in the first rotating groove, the first sliding part is installed on the first slide rail, and one of the second sliding parts is installed on one of the second slide rails.
  • a first slide rail and two second slide rails are provided in the first rotation groove, and the sliding trajectory of the first main swing arm is defined by the first slide rail and the two second slide rails, so that This can reduce the accuracy requirements for the first rotation groove, reduce processing costs, and at the same time improve the stability of the rotation of the first main swing arm.
  • the first slide rail and the two second slide rails are arranged in a distributed manner, which reduces the processing difficulty of the fixed base.
  • one of the second slide rails includes a slide rail bottom wall and a convex block.
  • the convex block is connected to the side wall of the first rotation groove and is relatively spaced from the slide rail bottom wall. It is provided that the bottom wall of the first rotation groove is further provided with a first hollow portion, the first hollow portion penetrates the bottom wall of the first rotation groove and is arranged opposite to the bump.
  • the second sliding part is located between the bottom wall of the slide rail and the bump.
  • the fixed base by providing the first hollow portion, the fixed base can be prepared by molding, which simplifies the processing technology of the fixed base and avoids the problem of undercutting.
  • the first main swing arm by providing a bump on the side wall of the first rotation groove, the first main swing arm can be limited, thereby preventing the first main swing arm from being separated from the first rotation groove during rotation. Improve the stability of the first main swing arm rotation.
  • the fixed base is further equipped with a first rotation axis and a second rotation axis.
  • the first rotation axis and the second rotation axis are arranged opposite and parallel to the fixed base.
  • the base is rotatably connected, and the extension directions of the first rotation axis and the second rotation axis are both parallel to the length direction of the fixed base.
  • the rotating mechanism includes a first auxiliary swing arm and a second auxiliary swing arm.
  • the first auxiliary swing arm is fixedly connected to the first rotating shaft and slidingly connected to the first fixed plate;
  • the second auxiliary swing arm is fixedly connected to the first rotating shaft and slidingly connected to the first fixed plate;
  • the swing arm is fixedly connected to the second rotation axis and slidingly connected to the second fixed plate.
  • the first auxiliary swing arm when the first fixed plate rotates relative to the fixed base, the first auxiliary swing arm and the first main swing arm are driven to rotate together, so that the first fixed plate rotates relative to the fixed base. , thereby increasing the stability of the rotation of the first fixed plate; by providing the second auxiliary swing arm, when the second fixed plate rotates relative to the fixed base, the second auxiliary swing arm and the second main swing arm are driven to rotate together to achieve the third The two fixed plates rotate relative to the fixed base, thereby increasing the rotational stability of the second fixed plate.
  • the rotation mechanism also includes a floating plate, which is mounted on the fixed base and is rotationally connected to the first rotating shaft and the second rotating shaft; when the first auxiliary swing arm rotates relative to the fixed base, it drives the first rotating shaft to rotate, and when the second auxiliary swing arm rotates relative to the fixed base, it drives the second rotating shaft to rotate, and the first rotating shaft and the second rotating shaft rotate to drive the floating plate to move along the thickness direction of the fixed base.
  • the floating plate is located at the FPC line crossing position of the rotating mechanism.
  • the FPC crossing line can be protected to prevent the display screen from squeezing the FPC crossing line when the rotating mechanism is in a folded state, causing damage to the FPC crossing line.
  • the floating plate supports the display screen; when the rotating mechanism is in the folded state, the floating plate sinks to avoid the display screen and avoid squeezing the display screen.
  • the first rotation axis includes a first fixed part and a first extension part, and the axis of the first fixed part is parallel to and spaced apart from the axis of the first extension part;
  • the second rotation axis The shaft includes a second fixing part and a second extension part, and the axis of the second fixation part is parallel to and spaced apart from the axis of the second extension part;
  • the floating plate is provided with a first installation groove and a second installation groove, and the The first mounting slot and the second mounting slot are spaced apart.
  • the first extension part is located in the first installation groove
  • the second extension part is located in the second installation groove.
  • the first rotation axis and the second rotation axis are driven to rotate, thereby driving the floating plate to move, so that when the rotating mechanism is in a flat state, the floating plate faces The display direction moves to support the display display screen, when the rotating mechanism is in the folded state, the floating plate sinks to avoid the display screen and avoid squeezing the display screen.
  • the rotating mechanism further includes a first pressure plate and a second pressure plate, the first pressure plate is slidingly connected to the first fixed plate, and the first fixed plate rotates relative to the fixed base.
  • the second pressure plate is slidably connected to the second fixed plate.
  • the second pressure plate can be driven to rotate relative to the fixed base. The second pressure plate rotates relative to the fixed base.
  • the first pressure plate and the second pressure plate jointly support the display screen, thereby increasing the stability of the connection of the display screen to ensure that the display screen good display.
  • the fixed base is further provided with a third rotation groove and a fourth rotation groove, and the third rotation groove is arranged opposite to the fourth rotation groove;
  • the rotation mechanism further includes a first pressure plate swing arm and a second pressure plate swing arm, the first pressure plate swing arm is installed in the third rotation groove, and can slide and rotate along the third rotation groove, and the first pressure plate swing arm is slidably connected to the first pressure plate.
  • the second pressure plate swing arm is installed in the fourth rotation groove, and can slide and rotate along the fourth rotation groove, and the second pressure plate swing arm is slidably connected to the second pressure plate.
  • the first pressure plate swing arm is provided and the first pressure plate drives the first pressure plate swing arm to rotate, thereby realizing the rotation of the first pressure plate relative to the fixed base, thereby improving the stability of the rotation of the first pressure plate;
  • a second pressure plate swing arm is provided, and the second pressure plate drives the second pressure plate swing arm to rotate, thereby realizing the rotation of the second pressure plate relative to the fixed base, thereby improving the stability of the rotation of the second pressure plate.
  • the fixed base further includes a flexible support member installed on the fixed base.
  • the flexible support member bends and An avoidance space is formed; when the rotating mechanism is in a flattened state, the flexible support member expands.
  • a flexible support member is provided, and when the rotating mechanism is in the flat state, the flexible support member, the first pressure plate and the second pressure plate jointly support the display screen to ensure good display of the display screen; when the rotating mechanism is in the folded state , the foldable part of the display screen bends and protrudes toward the flexible support member, the flexible support member bends to form a drop-shaped structure, and the middle part of the flexible support member sinks toward the fixed base, forming an avoidance space to avoid display screen to prevent the flexible support member 70 from squeezing the display screen and causing damage to the display screen.
  • This application also provides a foldable electronic device, including a first housing, a second housing, a display screen and the above-mentioned rotating mechanism, the rotating mechanism is connected between the first housing and the second housing, The display screen is installed on the first housing, the second housing and the rotating mechanism.
  • the rotating mechanism rotates, the first housing and the second housing rotate relative to each other, thereby causing the display screen to bend. Fold or unfold.
  • the rotation stability of the foldable electronic device can be improved and the user experience can be improved.
  • the first gear, the intermediate gear and the second gear as helical gears
  • the overlap between the intermediate gear and the first gear and the second gear is increased, thereby increasing the stability of the synchronous gear transmission and improving The stability of the rotation of the rotating mechanism.
  • the tooth root can be prevented from breaking, the impact resistance and load-bearing capacity of the rotating mechanism can be improved, and the durability of the rotating mechanism can be improved.
  • the gear module can be appropriately increased and the number of teeth of the gear can be reduced according to the actual application scenario, thereby reducing the diameter of the gear and reducing the folding time of the rotating mechanism.
  • the thickness of the state makes foldable electronic devices thinner and lighter.
  • Figure 1 is a schematic structural diagram of a foldable electronic device in a first state according to an embodiment of the present application
  • Figure 2 is a schematic structural diagram of the foldable electronic device provided by the embodiment of the present application in the second state
  • Figure 3 is a schematic structural diagram of the foldable electronic device provided by the embodiment of the present application in the third state
  • FIG4 is a schematic diagram of the exploded structure of the foldable electronic device shown in FIG3 ;
  • FIG. 5 is a schematic structural diagram of the rotation mechanism in the foldable electronic device shown in Figure 4;
  • Figure 6 is an exploded structural diagram of the rotating mechanism shown in Figure 5;
  • Figure 7 is an exploded structural schematic view of the fixed base in the rotating mechanism described in Figure 6;
  • Figure 8 is a partially enlarged structural schematic diagram of the fixed base shown in Figure 7;
  • Figure 9 is an enlarged structural schematic diagram of the fixed plate in the first rotating component of the rotating mechanism shown in Figure 6;
  • Figure 10 is a schematic structural view of the main swing arm of the first rotating assembly in the rotating mechanism shown in Figure 6;
  • FIG 11 is an enlarged structural schematic diagram of the auxiliary swing arm of the first rotating assembly 1 in the rotating mechanism shown in Figure 6;
  • Figure 12 is a partial structural schematic diagram of the rotating mechanism in Figure 5 in a flattened state
  • Figure 13 is a partial structural schematic diagram of the rotating mechanism shown in Figure 12 in a folded state
  • FIG. 14 is a schematic structural diagram of the first synchronization assembly in the rotating mechanism shown in FIG6;
  • Figure 15 is a partially enlarged structural schematic diagram of the first synchronization component shown in Figure 14;
  • Figure 16 is a partial structural schematic diagram of the first synchronization component shown in Figure 14 in another embodiment
  • Figure 17 is a partial structural diagram of the first synchronization component shown in Figure 14;
  • Figure 18 is a partial structural schematic diagram of the rotating mechanism shown in Figure 5 in a flattened state
  • Figure 19 is a partial structural schematic diagram of the rotating mechanism shown in Figure 5 in a folded state
  • Figure 20 is a partially exploded structural schematic view of the pressure plate assembly in the rotating mechanism shown in Figure 6;
  • FIG21 is a schematic diagram of the exploded structure of the pressing plate assembly shown in FIG20 at another angle;
  • Figure 22 is a cross-sectional view of the rotating mechanism shown in Figure 5 in a folded state
  • Figure 23 is an enlarged structural schematic diagram of the floating plate in the rotating mechanism shown in Figure 6;
  • Figure 24 is a partial structural schematic diagram of the rotating mechanism shown in Figure 5;
  • Figure 25 is a schematic cross-sectional structural view of the rotating mechanism shown in Figure 5 in a flattened state
  • Figure 26 is a structural schematic diagram of the rotating mechanism shown in Figure 5 in a folded state.
  • the appearance (ID) form of electronic devices has a trend of developing from candy bar machines to folding machines.
  • the folding machine has a large-area screen in the open state, which fully satisfies consumers' visual experience. In the closed state, it is small and easy to carry.
  • Most folding machines in the prior art realize synchronous movement through the synchronization gear 513 in the synchronization mechanism.
  • most of the existing synchronization gears 513 have a spur-tooth structure, which results in poor transmission stability.
  • the rotating mechanism 100 provided by this application uses helical gears instead of spur gears, which can improve the rotational stability of the rotating mechanism 100 and thereby improve the user experience.
  • Figure 1 is a schematic structural diagram of a foldable electronic device 500 provided by an embodiment of the present application in a first state.
  • Figure 2 is a schematic structural diagram of a foldable electronic device 500 provided by an embodiment of the present application in a second state.
  • the width direction of the foldable electronic device 500 is defined as the X direction
  • the length direction of the foldable electronic device 500 is defined as the Y direction
  • the thickness direction of the foldable electronic device 500 is defined as the Z direction.
  • the X direction, Y direction and Z direction are perpendicular to each other.
  • the foldable electronic device 500 includes, but is not limited to, a cellphone, a notebook computer, a tablet personal computer, a laptop computer, a personal digital assistant, a wearable Equipment (wearable device) or vehicle equipment (mobile device), etc.
  • the foldable electronic device 500 is a mobile phone as an example for description.
  • the foldable electronic device 500 shown in FIG. 1 is in a folded state
  • the foldable electronic device 500 shown in FIG. 2 is in a semi-expanded state
  • the foldable electronic device 500 shown in FIG. 3 is in a flattened state.
  • the unfolding angle ⁇ of the foldable electronic device 500 shown in FIG. 2 is 90 degrees
  • the unfolding angle ⁇ of the foldable electronic device 500 shown in FIG. 3 is 180 degrees.
  • the unfolding angle ⁇ of the foldable electronic device 500 shown in FIG. 2 is 90 degrees, it means that ⁇ can be 90 degrees, or approximately 90 degrees, such as 80 degrees, 85 degrees, 95 degrees or 100 degrees.
  • the unfolding angle ⁇ of the foldable electronic device 500 shown in FIG. 3 is 180 degrees, which means that ⁇ can be 180 degrees or approximately 180 degrees, such as 170 degrees, 175 degrees, 185 degrees, 190 degrees, etc.
  • the angles illustrated in the examples below can be understood in the same way.
  • the foldable electronic device 500 shown in the embodiment of the present application is an electronic device that can be folded once.
  • the foldable electronic device 500 may also be an electronic device that can be folded multiple times (more than twice).
  • the foldable electronic device 500 may include multiple parts. Two adjacent parts may be folded relatively close to each other until the foldable electronic device 500 is in a folded state. Two adjacent parts may be relatively far away from each other until the foldable electronic device 500 is in an unfolded state. flat state.
  • FIG. 4 is an exploded structural diagram of the foldable electronic device 500 shown in FIG. 3 .
  • the foldable electronic device 500 includes a folding device 200 and a display screen 300.
  • the display screen 300 is installed on the folding device 200.
  • the display screen 300 includes a display surface 340 and a mounting surface 350, and the display surface 340 and the mounting surface 350 are arranged oppositely.
  • the display surface 340 is used to display text, images, videos, etc.
  • the display screen 300 includes a first part 310, a second part 320, and a foldable part 330.
  • the foldable part 330 is located between the first part 310 and the second part 320, and the foldable part 330 can be bent along the Y direction.
  • the first part 310, the second part 320 and the foldable part 330 together form the display screen 300.
  • the display screen 300 adopts a flexible display screen, such as an organic light-emitting diode (OLED) display screen, an active matrix organic light-emitting diode or an active-matrix organic light-emitting diode (active-matrix).
  • organic light-emitting diode (AMOLED) display mini organic light-emitting diode (mini organic light-emitting diode) display, micro organic light-emitting diode (micro organic light-emitting diode) display, micro organic light-emitting diode (micro organic light-emitting diode) display screen, quantum dot light emitting diodes (QLED) display.
  • OLED organic light-emitting diode
  • AMOLED organic light-emitting diode
  • mini organic light-emitting diode mini organic light-emitting diode
  • micro organic light-emitting diode micro organic light-emitting diode
  • micro organic light-emitting diode
  • the folding device 200 includes a first housing 210, a second housing 220 and a rotating mechanism 100.
  • the first housing 210 is provided with a first receiving groove 230
  • the second housing 220 is provided with a second receiving groove 240.
  • the first receiving groove 230 and the second receiving groove 240 are connected to form a receiving groove of the rotating mechanism 100.
  • the rotating mechanism 100 is installed in the receiving groove and is fixedly connected to the first housing 210 and the second housing 220 to realize the rotating connection between the first housing 210 and the second housing 220.
  • the display screen 300 is installed at
  • the folding device 200 is provided with a mounting surface 350, and the mounting surface 350 is fixedly connected to the folding device 200.
  • the first housing 210 carries the first portion 310 of the display screen 300
  • the second housing 220 carries the second portion 320.
  • the first portion 310 is mounted on the first housing 210
  • the second portion 320 is mounted on the second housing 220.
  • the rotating mechanism 100 is arranged opposite to the foldable portion 330. The first housing 210 and the second housing 220 can rotate relative to each other through the rotating mechanism 100, so that the folding device 200 can switch between the folded state and the flattened state.
  • the first housing 210 and the second housing 220 are relatively rotated through the rotation mechanism 100 , and the first housing 210 and the second housing 220 are relatively close to each other to drive the display screen 300 to fold, so that the foldable electronic device 500 is folded. .
  • the foldable electronic device 500 is in the folded state, the foldable part 330 of the display screen 300 is bent, and the first part 310 and the second part 320 are arranged oppositely.
  • the display screen 300 is between the first housing 210 and the second housing 220 , which can greatly reduce the probability of the display screen 300 being damaged and achieve effective protection of the display screen 300 .
  • the first housing 210 and the second housing 220 rotate relative to each other through the rotation mechanism 100 , and the display screen 300 is unfolded by the first housing 210 and the second housing 220 moving away from each other relative to each other, so that the display screen 300 is unfolded.
  • the foldable electronic device 500 is unfolded to a semi-expanded state.
  • the first housing 210 and the second housing 220 are expanded to an included angle ⁇ , the first part 310 and the second part 320 are relatively expanded, and drive the foldable part 330 to expand.
  • the angle between the first part 310 and the second part 320 is ⁇ .
  • is 90 degrees.
  • may also be approximately 90 degrees, or may be 80 degrees, 85 degrees, 95 degrees or 100 degrees, etc.
  • the first housing 210 and the second housing 220 rotate relative to each other through the rotation mechanism 100 .
  • the first housing 210 and the second housing 220 move away from each other to drive the display screen 300 to further expand until
  • the foldable electronic device 500 is flattened.
  • the angle between the first housing 210 and the second housing 220 is ⁇ .
  • the foldable portion 330 is unfolded, and the first portion 310 and the second portion 320 are relatively unfolded.
  • the included angles between the first part 310, the second part 320 and the foldable part 330 are all ⁇ , and the display screen 300 has a large display area, realizing a large-screen display of the foldable electronic device 500 and improving user experience. experience.
  • is 180 degrees. In other embodiments, ⁇ may also be approximately 180 degrees, and may be 170 degrees, 175 degrees, 185 degrees, 190 degrees, etc.
  • the included angle ⁇ and the included angle ⁇ are both the included angles between the first housing 210 and the second housing 220 , which are only used to distinguish between the first housing 210 and the second housing 220 in different states of the foldable electronic device 500 .
  • the angles between the second housings 220 are different.
  • the included angle ⁇ refers to the angle between the first housing 210 and the second housing 220 when the foldable electronic device 500 is in a semi-expanded state; the included angle ⁇ refers to the angle when the foldable electronic device 500 is in a flattened state.
  • the angle between the first housing 210 and the second housing 220 is not limited to distinguish between the first housing 210 and the second housing 220 in different states of the foldable electronic device 500 .
  • the angles between the second housings 220 are different.
  • the included angle ⁇ refers to the angle between the first housing 210 and the second housing 220 when the foldable electronic device 500 is in a semi-expanded state; the included angle ⁇ refers to the
  • FIG. 5 is a schematic structural view of the rotating mechanism 100 in the foldable electronic device 500 shown in FIG. 4 .
  • FIG. 6 is an exploded structural schematic view of the rotating mechanism 100 shown in FIG. 5 .
  • the rotating mechanism 100 includes a fixed base 10 , a rotating assembly 1 , a synchronizing assembly 2 , a pressure plate assembly 3 , a floating plate 80 and a flexible support 70 .
  • the floating plate 80 is installed on the fixed base 10 , and the floating plate 80 can move in the Z direction relative to the fixed base 10 .
  • the flexible support member 70 is installed on the pressure plate assembly 3. When the rotating mechanism 100 rotates from the flat state to the folded state, the flexible support member 70 can be bent to avoid the display screen 300.
  • the pressure plate assembly 3 is slidingly and rotationally connected to the rotating assembly 1 .
  • the rotating component 1 is installed on the fixed base 10 and can rotate relative to the fixed base 10 so that the fixed base 10 and the rotating component 1 are rotationally connected.
  • the synchronizing component 2 is installed on the fixed base 10 and is slidingly connected with the rotating component 1 .
  • the rotating assembly 1 rotates relative to the fixed base 10, it drives the pressure plate assembly 3 and the synchronizing assembly 2 to rotate relative to the fixed base 10, thereby realizing the rotation of the rotating mechanism 100 and causing the rotating mechanism 100 to switch between folded and flat states.
  • this application sets the axis of symmetry O (as shown in Figure 5).
  • the axis of symmetry O is perpendicular to the X direction, and the axis of symmetry O passes through the center of the rotating mechanism 100 .
  • the rotating mechanism 100 is axially symmetrical about the axis of symmetry O.
  • the four rotating components 1 are respectively the first rotating component 101 , the second rotating component 102 , the third rotating component 103 and the fourth rotating component 104 .
  • the first rotating component 101, the second rotating component 102, the third rotating component 103 and the fourth rotating component 104 are arranged at intervals along the Y direction.
  • the first rotating component 101 is located on the negative Y-axis side of the fixed base 10
  • the fourth rotating component 104 is located on the positive Y-axis side of the fixed base 10 .
  • the first rotating assembly 101 includes a fixed plate 20 , a main swing arm 30 and an auxiliary swing arm 40 .
  • the fixed plate 20 includes a first fixed plate 21 and a second fixed plate 22
  • the main swing arm 30 includes a first main swing arm 31 and a second main swing arm 32
  • the auxiliary swing arm 40 includes a first auxiliary swing arm 41 and a second auxiliary swing arm 41. Swing arm 42.
  • the main swing arm 30 and the auxiliary swing arm 40 are both installed on the fixed base 10 and can rotate relative to the fixed base 10 .
  • the first fixed plate 21, the first main swing arm 31 and the first auxiliary swing arm 41 are located on one side of the fixed base 10 in the X direction
  • the second fixed plate 22, the second main swing arm 32 and the second auxiliary swing arm are
  • the arm 42 is located on the other side of the fixed base 10 in the X direction.
  • the first main swing arm 31 is rotationally connected to the first fixed plate 21
  • the first auxiliary swing arm 41 is slidingly connected to the first fixed plate 21 .
  • the second main swing arm 32 is rotationally connected to the second fixed plate 22
  • the second auxiliary swing arm 42 is slidingly connected to the second fixed plate 22 .
  • the second fixed plate 22 rotates relative to the fixed base 10
  • the second main swing arm 32 and the second auxiliary swing arm 42 are driven to rotate relative to the fixed base 10 .
  • the second rotating component 102 and the first rotating component 101 may be the same or similar components, a symmetrical or partially symmetrical structure, or a different structure.
  • the second rotating component 102 includes a first fixed plate 21A, a second fixed plate 22A, a first auxiliary swing arm 41A and a second auxiliary swing arm 42A.
  • the basic structure of each component in the second rotating assembly 102, the connection relationship between the components, and the connection relationship between the components and components outside the assembly can all refer to the relevant design of the first rotating assembly 101.
  • the second rotating component 102 and the first rotating component 101 may be the same or different in detailed structure or positional arrangement of components.
  • the second rotating component 102 may also include a first main swing arm and a second main swing arm.
  • the first main swing arm in the second rotating assembly 102 may have the same or similar structure as the first main swing arm 31 in the first rotating assembly 101 .
  • the structure of the second main swing arm 32 in 101 is the same or similar. This application does not specifically limit this.
  • the third rotating component 103 and the second rotating component 102 may be the same or similar components, symmetrical or partially symmetrical structures, or different structures.
  • the structure of the third rotating component 103 is the same as that of the second rotating component 102 .
  • the third rotating assembly 103 includes a first fixed plate 21B, a second fixed plate 22B, a first main swing arm 31B and a second main swing arm 32B.
  • first fixed plate 21B rotates relative to the fixed base 10
  • it drives the first main swing arm 31B to slide and rotate relative to the fixed base 10.
  • the second fixed plate 22B rotates relative to the fixed base 10
  • the fixed base 10 slides and rotates.
  • each component of the third rotating component 103 and the connection relationship between each component and the fixed base 10 reference can be made to the relevant description of the first rotating component 101 .
  • the fourth rotating component 104 and the third rotating component 103 may be the same or similar components, symmetrical or partially symmetrical structures, or different structures.
  • the structure of the fourth rotating component 104 is the same as that of the second rotating component 102 .
  • the fourth rotating assembly 104 includes a first fixed plate 21C, a second fixed plate 22C, a first main swing arm 31C and a second main swing arm 32C.
  • first fixed plate 21C rotates relative to the fixed base 10
  • it drives the first main swing arm 31C to be relatively fixed.
  • the base 10 slides and rotates.
  • the second fixed plate 22C rotates relative to the fixed base 10
  • each component of the fourth rotating component 104 and the connection relationship between each component and the fixed base 10 reference can be made to the relevant description of the first rotating component 101 .
  • the first fixed plate 21A in the second rotating assembly 102, the first fixed plate 21B in the third rotating assembly 103, and the first fixed plate 21C in the fourth rotating assembly 104 are integrally formed structures, and are jointly formed.
  • the third fixing plate 23 is formed.
  • the second fixed plate 22A in the second rotating assembly 102, the second fixed plate 22B in the third rotating assembly 103, and the second fixed plate 22C in the fourth rotating assembly 104 are integrally formed structures and together form a fourth fixed plate. twenty four.
  • the first fixed plate 21A in the second rotating assembly 102, the first fixed plate 21B in the third rotating assembly 103, and the first fixed plate 21C in the fourth rotating assembly 104 may also be of split structure.
  • the second fixed plate 22A in the second rotating assembly 102, the second fixed plate 22B in the third rotating assembly 103, and the second fixed plate 22C in the fourth rotating assembly 104 may also be of split structure.
  • the pressure plate assembly 3 includes a pressure plate 301 and a pressure plate swing arm 302.
  • the pressure plate swing arm 302 is slidably connected to the pressure plate 301.
  • the pressure plate 301 is slidably connected to the fixed plate 20, the third fixed plate 23 and the fourth fixed plate 24 in the first rotating assembly 101.
  • the pressure plate swing arm 302 is installed on the fixed base 10, and is rotatably and slidably connected to the fixed base 10.
  • the fixed plate, the third fixed plate 23 and the fourth fixed plate 24 in the first rotating assembly 101 all rotate relative to the fixed base 10, and together drive the pressure plate 301 to rotate relative to the fixed base 10, and the pressure plate 301 slides relative to the fixed plate 20, and at the same time, the pressure plate 301 drives the pressure plate swing arm 302 to rotate relative to the fixed base 10.
  • the synchronization component 2 is installed on the fixed base 10 and is slidingly connected with the fixed plate 20 .
  • the two synchronization components 2 in this embodiment are the first synchronization component 201 and the second synchronization component 202 respectively.
  • the first synchronization component 201 includes a synchronization member 51, a damping member 52 and a synchronization swing arm.
  • the synchronization member 51 is fixedly connected to the damping member 52 and installed in the fixed base 10.
  • the synchronization swing arm is fixedly connected to the damping member 52 and rotates with the damping member 52. Component 1 sliding connection.
  • the rotating component 1 When the rotating component 1 rotates relative to the fixed base 10, it drives the synchronous swing arm to rotate and exerts force on the damping member 52, causing the damping member 52 to generate a damping force.
  • the synchronizing swing arm drives the synchronizing member 51 to rotate, thereby realizing the synchronous rotation of the rotating mechanism 100 .
  • the damping member 52 can provide damping force so that the user can experience a better damping feel, thus improving the user's usage experience.
  • the foldable electronic device 500 is also enabled to hover at a preset angle.
  • the second synchronization component 202 and the first synchronization component 201 may be the same or similar components, symmetrical or partially symmetrical structures, or different structures.
  • the structure of the second synchronization component 202 is the same as that of the first synchronization component 201, and will not be described in detail here.
  • FIG. 7 is an exploded structural schematic diagram of the fixed base 10 in the rotating mechanism 100 shown in FIG. 6 .
  • FIG. 8 is a partially enlarged structural schematic diagram of the fixed base 10 shown in FIG. 7 .
  • the fixed base 10 includes a lower housing 11 and an upper housing 12 .
  • the lower housing 11 includes a bottom plate 111 , a first end plate 112 and a second end plate 113 .
  • the first end plate 112 and the second end plate 113 are located on opposite sides of the bottom plate 111 in the Y direction, and are fixedly connected to the bottom plate 111 .
  • the upper housing 12 is installed on the lower housing 11 and is fixedly connected to the lower housing 11 .
  • the upper housing 12 is opposite to the bottom plate 111 .
  • the upper housing 12 and the lower housing 11 are fixedly connected by bolts.
  • the upper case and the lower case can also be fixedly connected by glue or welding.
  • the upper housing 12 is composed of four sub-housings.
  • the four sub-housings are respectively the first sub-housing 12A, the second sub-housing 12B, the third sub-housing 12C and the fourth sub-housing 12D.
  • the first sub-housing 12A, the second sub-housing 12B, the The third sub-casing 12C and the fourth sub-casing 12D are arranged at intervals along the Y direction.
  • the first sub-casing 12A is located on the negative side of the fixed base 10 in the Y-axis direction
  • the fourth sub-casing 12D is located on the positive side of the Y-axis direction of the fixed base 10 .
  • the four sub-casings have a split structure. In other embodiments, the four sub-casings may also be an integrally formed structure.
  • the first sub-casing 12A is provided with a first rotation groove 123 and a second rotation groove 124.
  • the first rotation groove 123 and the second rotation groove 124 are arranged side by side along the X direction, and the first rotation groove 123 and the second rotation groove 124 are axially symmetrical about the symmetry axis O.
  • the bottom wall of the first rotation groove 123 is arc-shaped, and a first slide rail 1231 is provided on the bottom wall of the first rotation groove 123 .
  • the first slide rail 1231 is arc-shaped, and the bending direction of the first slide rail 1231 is substantially the same as the bending direction of the bottom wall of the first rotation groove 123 .
  • a second slide rail 1232 is provided on the side wall of the first rotation groove 123 .
  • each second slide rail 1232 includes a slide rail bottom wall 1233 and a protrusion 1234.
  • the protrusions 1234 are connected to the side walls of the first rotation groove 123 and are opposite to and spaced apart from the slide rail bottom wall 1233 .
  • the bottom wall of the first rotation groove 123 is further provided with a first hollow portion 1235 .
  • the first hollow portion 1235 penetrates the bottom wall of the first rotation groove 123 and is opposite to the protrusion 1234 .
  • the first rotation groove 123 is used for the first main swing arm 31 in the first rotation assembly 101. The first main swing arm 31 can rotate and slide along the first rotation groove 123.
  • the first slide rail 1231 and the two second slide rails 1232 are arranged in a distributed manner, which reduces the processing difficulty of the first sub-shell 12A.
  • the first hollow portion 1235 can be prepared by mold forming, which simplifies the processing technology of the upper shell 12 and avoids the problem of undercut.
  • the protrusion 1234 on the side wall of the first rotation groove 123 the first main swing arm 31 can be limited, which can prevent the first main swing arm 31 from detaching from the first rotation groove 123.
  • the structure of the second rotation groove 124 is the same as that of the first rotation groove 123 .
  • the second rotation groove 124 includes a third slide rail 1241 and two fourth slide rails 1242 .
  • the third slide rail 1241 is provided on the bottom wall of the second rotation groove 124
  • the two fourth slide rails 1242 are respectively provided on two opposite side walls of the second rotation groove 124 .
  • the second rotation slot 124 is used to install the second main swing arm 32 , and the second main swing arm 32 can rotate and slide along the second rotation slot 124 .
  • the first sub-housing 12A is further provided with a third rotation groove 125 and a fourth rotation groove 126.
  • the third rotation groove 125 and the fourth rotation groove 126 are arranged side by side along the X direction, and the third rotation groove 125 and the fourth rotation groove 126 are axisymmetric about the symmetry axis O.
  • the third rotation groove 125 is arranged side by side with the first rotation groove 123 along the Y direction, and the third rotation groove 125 is located in the negative direction of the Y axis of the first rotation groove 123.
  • the fourth rotation groove 126 is arranged side by side with the second rotation groove 124 along the Y direction, and the fourth rotation groove 126 is located in the negative direction of the Y axis of the second rotation groove 124.
  • the structure of the third rotation groove 125 is substantially the same as that of the first rotation groove 123 .
  • the third rotation groove 125 includes a fifth slide rail 1251 and two sixth slide rails 1252 .
  • the fifth slide rail 1251 is provided on the bottom wall of the third rotation groove 125
  • the two sixth slide rails 1252 are respectively provided on two opposite side walls of the third rotation groove 125 .
  • the third rotation slot 125 is used to install the pressure plate swing arm.
  • the pressure plate swing arm can rotate and slide along the third rotation groove 125 .
  • the fourth rotation groove 126 includes a seventh slide rail 1261 and two eighth slide rails 1262.
  • the seventh slide rail 1261 is provided on the bottom wall of the fourth rotation groove 126
  • the two eighth slide rails 1262 are respectively provided on two opposite side walls of the fourth rotation groove 126 .
  • the fourth rotation slot 126 is used to install the pressure plate swing arm.
  • the pressure plate swing arm can rotate and slide along the fourth rotation groove 126 .
  • the fixed base 10 is also provided with a first rotation axis 127 and a second rotation axis 128 .
  • the first rotating shaft 127 includes a first fixed part 1271 and the first extension part 1272.
  • the first fixing part 1271 is fixedly connected to the first extension part 1272.
  • at least part of the first fixing part 1271 is a flat shaft section, and the first extending part 1272 is a round shaft.
  • the axial directions of the first fixing part 1271 and the first extending part 1272 are both parallel to the Y direction, and the axis of the first fixing part 1271 and the axis of the first extending part 1272 are offset.
  • the first rotation shaft 127 is installed on the first sub-casing 12A and is spaced apart from the third rotation grooves 125 along the Y direction, and the first rotation shaft 127 can rotate relative to the first sub-casing 12A.
  • the first fixing part 1271 is located inside the first sub-casing 12A, and the first extension part 1272 extends out of the first sub-casing 12A.
  • the first fixed part 1271 is used to be fixedly connected to the first auxiliary swing arm 41 in the first rotating assembly 101
  • the first extension part 1272 is used to be connected to the floating plate 80 .
  • the structure of the second rotating shaft 128 is the same as that of the first rotating shaft 127 .
  • the second rotation shaft 128 includes a second fixing part 1281 and a second extending part 1282.
  • the second fixing part 1281 is fixedly connected to the second extending part 1282.
  • the second rotation shaft 128 is rotationally connected to the first sub-casing 12A and is spaced apart from the fourth rotation grooves 126 along the Y direction.
  • the second rotation shaft 128 and the first rotation shaft 127 are axially symmetrical about the symmetry axis O.
  • the second fixed part 1281 is used to be fixedly connected to the second auxiliary swing arm 42 in the first rotating assembly 101
  • the second extension part 1282 is used to be connected to the floating plate 80 .
  • the second sub-casing 12B and the first sub-casing 12A may be the same or similar components, a symmetrical or partially symmetrical structure, or a different structure.
  • the second sub-casing 12B includes a third rotation groove 125B, a fourth rotation groove 126B, a first rotation shaft 127B and a second rotation shaft 128B.
  • the basic structure of each component in the second sub-casing 12B, the connection relationship between the components, and the connection relationship between the components and components other than the assembly can all refer to the relevant design of the first sub-casing 12A.
  • the second sub-casing 12B and the first sub-casing 12A may be the same or different in detailed structure or positional arrangement of components.
  • the third rotation groove 125B and the fourth rotation groove 126B in the second sub-casing 12B are used to install the pressure plate swing arm.
  • the first rotation shaft 127B in the second sub-housing 12B is used for fixed connection with the first auxiliary swing arm 41 in the second rotation assembly 102, and the second rotation shaft 128B is used for fixed connection with the second auxiliary swing arm 42.
  • the third sub-housing 12C and the first sub-housing 12A can be the same or similar components, symmetrical or partially symmetrical structures, or different structures.
  • the third sub-housing 12C includes a first rotation groove 123C, a second rotation groove 124C, a third rotation groove 125C and a fourth rotation groove 126C.
  • the basic structure of each component in the third sub-housing 12C, the connection relationship between the components, and the connection relationship between the components and the components outside the assembly can all refer to the relevant design of the first sub-housing 12A.
  • the first rotation groove 123C in the third sub-housing 12C is used to rotate and slide with the first main swing arm 31 in the third rotating assembly 103, and the second rotation groove 124C is used to rotate and slide with the second main swing arm 32.
  • the third rotation groove 125C and the fourth rotation groove 126C in the third sub-housing 12C are used to install the pressure plate swing arm.
  • the fourth sub-casing 12D and the first sub-casing 12A may be the same or similar components, a symmetrical or partially symmetrical structure, or a different structure.
  • the fourth sub-casing 12D includes a first rotation groove 123D, a second rotation groove 124D, a third rotation groove 125D and a fourth rotation groove 126D.
  • the basic structure of each component in the fourth sub-casing 12D, the connection relationship between the components, and the connection relationship between the components and components other than the assembly can all refer to the relevant design of the first sub-casing 12A.
  • the first rotation groove 123D in the fourth sub-casing 12D is used to rotate and slide with the first main swing arm 31 in the fourth rotation assembly 104, and the second rotation slot 124D is used to rotate and slide with the second main swing arm 32. Sliding connection.
  • the third rotation groove 125D and the fourth rotation groove 126D in the fourth sub-casing 12D are used to install the pressure plate swing arm.
  • FIG. 9 is an enlarged structural diagram of the fixed plate 20 in the first rotating component 101 of the rotating mechanism 100 shown in FIG. 6 .
  • the fixed plate 20 in the first rotating assembly 101 includes a first fixed plate 21 and a second fixed plate 22 .
  • the first fixing plate 21 is a long plate-shaped structure with a thickness.
  • the first fixing plate 21 includes a first upper surface 2111, a first lower surface 2112, a first side surface 2113, a second side surface 2114, a first end surface 2115 and a second end surface 2116.
  • the first upper surface 2111 and the first lower surface 2112 are arranged oppositely, the first side surface 2113 and the second side surface 2114 are arranged oppositely, and the first end surface 2115 and the second end surface 2116 are arranged oppositely.
  • the first side 2113 and the second side 2114 are both connected between the first upper surface 2111 and the first lower surface 2112, and the first end surface 2115 and the second end surface 2116 are both connected between the first side 2113 and the second side 2114.
  • the first fixing plate 21 is provided with a first notch 212, a second notch 213, a first slide groove 214 and a first guide groove 215.
  • the first notch 212 and the second notch 213 are both provided on the second side 2114, and both the first notch 212 and the second notch 213 penetrate the first upper surface 2111 and the first lower surface 2112.
  • a first sleeve 216 is fixed on the inner wall of the first notch 212 , and the axis extending direction of the first sleeve 216 is parallel to the Y direction.
  • the first sleeve 216 is used for rotationally connecting with the first main swing arm 31 in the first rotating assembly 101 .
  • the second notch 213 is used to avoid the pressure plate assembly 3 .
  • Both first guide grooves 215 are arc-shaped, are recessed in the first upper surface 2111, and penetrate the first side surface 2113.
  • One of the first guide grooves 215 is located on one side of the first end surface 2115 .
  • the other first guide groove 215 is located on a side close to the second end surface 2116 .
  • the first guide groove 215 is used for sliding connection with the pressure plate assembly 3 .
  • the first chute 214 is located between the first notch 212 and the first guide groove 215 close to the first end surface 2115, and is spaced apart from the first notch 212 and the first guide groove 215, and the first chute 214 penetrates the first side surface. 2113 and the second side 2114.
  • the first slide groove 214 is used for slidingly connecting with the first auxiliary swing arm 41 in the first rotating assembly 101 .
  • the second fixing plate 22 and the first fixing plate 21 have a mirror-symmetrical structure, and the second fixing plate 22 and the first fixing plate 21 are axially symmetrical about the symmetry axis O.
  • the second fixing plate 22 includes a second upper surface 2211, a second lower surface 2212, a third side surface 2213, a fourth side surface 2214, a third end surface 2215 and a fourth end surface 2216 that surround and form the outer surface of the second fixing plate 22.
  • the second fixing plate 22 is provided with a third notch 222 , a fourth notch 223 , a second slide groove 224 and a second guide groove 225 .
  • the structure of the third notch 222 is the same as that of the first notch 212 , and a second sleeve 226 is provided on the inner wall of the third notch 222 .
  • the fourth notch 223 has the same structure as the second notch 213
  • the second guide groove 225 has the same structure as the first guide groove 215
  • the second slide groove 224 has the same structure as the first slide groove 214 .
  • the second sleeve 226 is used for rotational connection with the second main swing arm 32 in the first rotating assembly 101, the fourth notch 223 is used for avoiding the pressure plate assembly 3, the second guide groove 225 is used for sliding connection with the pressure plate assembly 3, The two slide grooves 224 are used for slidingly connecting with the second auxiliary swing arm 42 in the first rotating assembly 101 .
  • the fixed plates in the second rotating assembly 102 , the third rotating assembly 103 and the fourth rotating assembly 104 are similar in structure to the fixed plates in the first rotating assembly 101 , and their specific structures may depend on the types of swing arms in the rotating assembly 1 Make appropriate adjustments.
  • the third fixed plate 23 is also provided with a third chute 231 and a fifth chute 232.
  • the fourth fixed plate 24 is provided with a fourth chute 241 and a sixth chute 242.
  • the third chute 231 and The fourth slide groove 241 is used to install the first damping component
  • the fifth slide groove 232 and the sixth slide groove 242 are used to install the second damping component.
  • FIG. 10 is a schematic structural diagram of the main swing arm of the first rotating component 101 in the rotating mechanism 100 shown in FIG. 6 .
  • Figure 10 shows the structure of the rotating shaft.
  • the main swing arm in the first rotating assembly 101 includes a first main swing arm 31 and a second main swing arm 32 .
  • First main swing arm 31 pack It includes a first rotating body 311, a first swinging body 312 and a first rotating shaft 313.
  • the first rotating body 311 has an arc-shaped plate structure.
  • the first rotating body 311 includes a first sliding part 3111 and two second sliding parts 3112.
  • the two second sliding parts 3112 are respectively located on opposite sides of the first rotating body 311 in the X direction, and the first sliding part 3111 is located between the two second sliding parts 3112.
  • the structure of the first rotating body 311 matches the structure of the first rotating groove 123 of the fixed base 10 .
  • the structure of the first sliding part 3111 matches the structure of the first slide rail 1231 .
  • the structure of the second sliding part 3112 matches the structure of the first sliding part 3112 .
  • the structures of the two slide rails 1232 match.
  • the first swing body 312 has a plate-like structure. One end of the first swing body 312 is fixedly connected to the first rotating body 311 , and the other end is fixedly connected to the first rotating shaft 313 . The extending direction of the axis center of the first rotating shaft 313 is parallel to the Y direction.
  • the first main swing arm 31 is installed in the first rotation groove 123 for rotation and sliding connection with the fixed base 10 and rotational connection with the first fixed plate 21 .
  • the second main swing arm 32 has the same structure as the first main swing arm 31 .
  • the second main swing arm 32 includes a second rotating body 321 , a second swinging body 322 and a second rotating shaft 323 .
  • the second rotating body 321 is provided with a third sliding part 3211 and two fourth sliding parts 3212.
  • the second rotating body 321 has the same structure as the first rotating body 311
  • the second swinging body 322 has the same structure as the first swinging body 312
  • the second rotating shaft 323 has the same structure as the first rotating shaft 313 .
  • the second main swing arm 32 is installed in the second rotation slot 124 of the fixed base 10 for rotation and sliding connection with the fixed base 10 and rotational connection with the second fixed plate 22 .
  • the structures of the main swing arm in the third rotating assembly 103 and the main swing arm in the fourth rotating assembly 104 are the same as or similar to the structure of the main swing arm in the first rotating assembly 101, and are not described in detail here.
  • FIG. 11 is an enlarged structural diagram of the auxiliary swing arm of the first rotating component 101 in the rotating mechanism 100 shown in FIG. 6 .
  • the auxiliary swing arm 40 of the first rotating assembly 101 includes a first auxiliary swing arm 41 and a second auxiliary swing arm 42 .
  • the first auxiliary swing arm 41 includes a first auxiliary shaft seat 411 and a first auxiliary swing body 412 .
  • the first auxiliary swing body 412 has a plate-like structure.
  • the first auxiliary shaft seat 411 is fixedly connected to the first auxiliary swing body 412, and the axis center extending direction of the first auxiliary shaft seat 411 is parallel to the Y direction.
  • the first auxiliary swing arm 41 is used for rotational connection with the fixed base 10 and is slidably and rotationally connected with the first fixed plate 21 .
  • the structures of the second auxiliary swing arm 42 and the first auxiliary swing arm 41 are the same.
  • the second auxiliary swing arm 42 includes a second auxiliary shaft seat 421 and a second auxiliary swing body 422 .
  • the structure of the second auxiliary shaft seat 421 is the same as that of the first auxiliary shaft seat 411
  • the structure of the second auxiliary swing body 422 is the same as the structure of the first auxiliary swing body 412 .
  • the second auxiliary swing arm 42 is used to be dynamically connected with the fixed base 10 , and is slidingly and rotationally connected with the second fixed plate 22 .
  • FIG. 12 is a partial structural schematic diagram of the rotating mechanism 100 shown in FIG. 5 in a flattened state.
  • FIG. 13 is a partial structural schematic diagram of the rotating mechanism 100 shown in FIG. 12 in a folded state.
  • the first fixed plate 21, the first main swing arm 31 and the first auxiliary swing arm 41 are located on one side of the fixed base 10, that is, in the negative direction of the
  • the two auxiliary swing arms 42 are located on the other side of the fixed base 10, that is, in the positive direction of the X-axis.
  • the first rotating body 311 of the first main swing arm 31 is installed in the first rotating groove 123
  • the first sliding part 3111 is installed on the first slide rail 1231
  • the second sliding part 3112 is installed on the second slide rail 1232.
  • the first rotating body 311 can slide and rotate along the first slide rail 1231 and the second slide rail 1232 in the first rotation groove 123 .
  • the first rotating shaft 313 is installed in the first sleeve 216 of the first fixed plate 21 , and the first rotating shaft 313 can rotate in the first sleeve 216 .
  • the first auxiliary swing arm 41 and the first main swing arm 31 are arranged at intervals along the Y direction.
  • the first auxiliary shaft seat 411 is installed on the first rotating shaft 127
  • the first auxiliary swing body 412 is installed in the first chute 214 and can slide and rotate in the first chute 214 .
  • the first fixing plate 21 is fixedly connected to the first housing 210 .
  • the second main swing arm 32 and the first main swing arm 31 are arranged side by side along the X direction, and the second auxiliary swing arm 42 and the first auxiliary swing arm 41 are arranged side by side along the X direction.
  • the second rotating body 321 of the second main swing arm 32 is installed in the second rotating groove 124, the third sliding part 3211 is installed on the third slide rail 1241, and the fourth sliding part 3212 is installed on the fourth slide rail 1242.
  • the second rotating body 321 can slide and rotate along the third slide rail 1241 and the fourth slide rail 1242 in the fourth rotation groove 126 .
  • the second rotating shaft 323 is installed in the second sleeve 226 of the second fixed plate 22 , and the second rotating shaft 323 can rotate in the second sleeve 226 .
  • the second auxiliary swing arm 42 and the second main swing arm 32 are spaced apart along the Y direction.
  • the second auxiliary shaft seat 421 is installed on the second rotating shaft 128, and the second auxiliary swing body 422 is installed in the second slide groove 224 and can slide and rotate in the second slide groove 224.
  • the second fixing plate 22 is fixedly connected to the second housing 220 .
  • the rotation of the first housing 210 relative to the fixed base 10 can drive the first fixed plate 21 to rotate relative to the fixed base 10, thereby driving the first main swing arm 31 to rotate, and causing the first rotating shaft 313 to rotate in the first sleeve 216.
  • the first rotating body 311 rotates in the first rotating groove 123 .
  • the first fixed plate 21 also drives the first auxiliary swing arm 41 to rotate and causes the first auxiliary swing body 412 to slide in the first chute 214.
  • the first auxiliary shaft seat 411 drives the first rotating shaft 127 to relative to the fixed base. 10 turns.
  • the rotation of the second housing 220 relative to the fixed base 10 can drive the second fixed plate 22 to rotate relative to the fixed base 10, thereby driving the second main swing arm 32 to rotate, and causing the second rotating shaft 323 to rotate in the second sleeve 226.
  • the second rotating body 321 rotates in the second rotating groove 124 .
  • the second fixed plate 22 also drives the second auxiliary swing arm 42 to rotate, and causes the second auxiliary swing body 422 to slide in the second chute 224 , and the second auxiliary shaft seat 421 rotates relative to the second rotation shaft 128 .
  • the rotation direction of the first fixed plate 21 is opposite to the rotation direction of the second fixed plate 22
  • the rotation direction of the first main swing arm 31 is opposite to the rotation direction of the second main swing arm 32
  • the rotation direction of the first auxiliary swing arm 41 is opposite.
  • the direction is opposite to the rotation direction of the second auxiliary swing arm 42 .
  • the rotating mechanism 100 switches from the flat state to the folded state
  • the first fixed plate 21 , the first main swing arm 31 and the first auxiliary swing arm 41 rotate clockwise
  • the second fixed plate 22 and the second main swing arm 32 rotate clockwise
  • the second auxiliary swing arm 42 rotates counterclockwise.
  • the rotating mechanism 100 switches from the folded state to the flat state
  • the first fixed plate 21, the first main swing arm 31 and the first auxiliary swing arm 41 rotate counterclockwise
  • the second fixed plate 22, the second main swing arm 32 and the first auxiliary swing arm 41 rotate counterclockwise.
  • the second swing arm 42 rotates clockwise.
  • the first fixing plate 21 and the second fixing plate 22 by providing the first fixing plate 21 and the second fixing plate 22, the first fixing plate 21 is fixedly connected to the first housing 210, and the second fixing plate 22 is fixedly connected to the second housing 220, so that The connection strength between the fixing plate 20 and the casing can be increased, and the rotational stability of the foldable electronic device 500 can be improved. Furthermore, by providing the first main swing arm 31 and the second main swing arm 32 , the first fixed plate 21 and the second fixed plate 22 can rotate relative to the fixed base 10 . Moreover, by providing the first auxiliary swing arm 41, when the first fixed plate 21 rotates relative to the fixed base 10, the first auxiliary swing arm 41 and the first main swing arm 31 are driven to rotate together, so that the first fixed plate 21 is relatively fixed.
  • the base 10 rotates, thereby increasing the rotational stability of the first fixed plate 21; by providing the second auxiliary swing arm 42, when the second fixed plate 22 rotates relative to the fixed base 10, it drives the second auxiliary swing arm 42 and the second auxiliary swing arm 42.
  • the main swing arms 32 rotate together to realize the rotation of the second fixed plate 22 relative to the fixed base 10, thereby increasing the rotational stability of the second fixed plate 22.
  • FIG. 14 is a schematic structural diagram of the first synchronization component 201 in the rotating mechanism 100 shown in FIG. 6 .
  • FIG. 15 is a partially enlarged structural diagram of the first synchronization component 201 shown in FIG. 14 .
  • the first synchronization assembly 201 includes a synchronization member 51, a damping member 52, a first synchronization swing arm 53 and a second synchronization swing arm 54.
  • the first synchronization swing arm 53 and the second synchronization swing arm 54 are both hinged to the damping member 52, and the first synchronization swing arm 53 and the second synchronization swing arm 54 are respectively located on opposite sides of the damping member 52 in the X direction.
  • the synchronization member 51 is fixedly connected to the first synchronization swing arm 53 and the second synchronization swing arm 54.
  • first synchronization swing arm 53 When the first synchronization swing arm 53 rotates, it drives the synchronization member 51 to rotate, thereby driving the second synchronization swing arm 54 to rotate, so as to realize the synchronous movement of the first synchronization swing arm 53 and the second synchronization swing arm 54.
  • first synchronization swing arm When the first and second synchronous swing arms 53 and 54 rotate, they abut against the damping member 52, causing the damping member 52 to generate a damping force, thereby providing a damping feel for the rotation of the rotating mechanism 100.
  • the synchronizing member 51 includes a first mounting plate 511 , a second mounting plate 512 , a synchronizing gear 513 and a rotating rod 514 .
  • the first mounting plate 511 and the second mounting plate 512 are arranged side by side and spaced apart along the Y direction.
  • the synchronization gear 513 is installed between the first installation plate 511 and the second installation plate 512 and is rotationally connected with the first installation plate 511 and the second installation plate 512 .
  • the rotating rod 514 is fixedly connected to the synchronization gear 513 .
  • the synchronization gear 513 includes a first gear 515 , a second gear 516 and an intermediate gear 519 .
  • the first gear 515, the intermediate gear 519 and the second gear 516 are installed side by side between the first installation plate 511 and the second installation plate 512 along the X direction, and are rotationally connected with the first installation plate 511 and the second installation plate 512, and
  • the axial directions of the first gear 515, the intermediate gear 519 and the second gear 516 are all parallel to the Y direction.
  • the intermediate gear 519 is located between the first gear 515 and the second gear 516 and meshes with the first gear 515 and the second gear 516 .
  • the two intermediate gears 519 are the third gear 517 and the fourth gear 518 respectively.
  • the first gear 515 rotates, it drives the intermediate gear 519 to rotate, thereby driving the second gear 516 to rotate. in.
  • the first gear 515 and the second gear 516 rotate in opposite directions.
  • the outer peripheral surface of the first gear 515 is provided with a plurality of first teeth 5151, and the plurality of first teeth 5151 are spaced apart and arranged in parallel.
  • the first teeth 5151 are distributed on part of the outer peripheral surface of the first gear 515 . That is to say, taking the plane where the axis of the first gear 515 is located as a limit, part of the outer peripheral surface of the first gear 515 is provided with the first teeth 5151 and part of the outer peripheral surface is not provided with the first teeth 5151.
  • the first teeth 5151 may be distributed around the entire outer circumferential surface of the first gear 515 around the axis of the first gear 515 , that is, the first teeth 5151 surround the outer circumferential surface of the first gear 515 .
  • the first tooth 5151 is a helical tooth.
  • the tangential direction of the first teeth 5151 intersects with the axial direction of the first gear 515 .
  • the first teeth 5151 are spiral-shaped, and the spiral angle of the first teeth 5151 is 15° ⁇ 45°.
  • the angle between the tangential direction of the first tooth 5151 and the axial direction of the first gear 515 is 15° ⁇ 45°.
  • the first gear 515 is a helical gear.
  • the "helical gear” mentioned here refers to a gear whose angle between the extending direction of the teeth and the axial direction is greater than 0°.
  • a plurality of second teeth 5161 are provided on the outer peripheral surface of the second gear 516 .
  • the shape of the plurality of second teeth 5161 is spiral.
  • the difference between the second tooth 5161 and the first tooth 5151 is that the helical direction of the second tooth 5161 is opposite to the helical direction of the first tooth 5151 .
  • the first gear 515 and the second gear 516 are respectively located on opposite sides of the synchronization gear 513 in the X direction, and the first teeth 5151 and the second teeth 5161 are arranged oppositely.
  • the outer circumference of the third gear 517 is provided with a plurality of third teeth 5171.
  • the shape of the third teeth 5171 is a spiral.
  • the difference between the third teeth 5171 and the second teeth 5161 is that the third teeth 5171 surround the outer circumference of the third gear 517.
  • the outer circumference of the fourth gear 518 is provided with a plurality of fourth teeth 5181.
  • the shape of the plurality of fourth teeth 5181 is a spiral.
  • the difference between the fourth teeth 5181 and the third teeth 5171 is that the spiral direction of the fourth teeth 5181 is opposite to the spiral direction of the third teeth 5171.
  • the first gear 515, the third gear 517, the fourth gear 518 and the second gear 516 are arranged side by side and parallel in sequence along the X direction.
  • the first gear 515 meshes with the third gear 517
  • the third gear 517 meshes with the fourth gear 518
  • the fourth gear 518 meshes with the second gear 516 .
  • the first tooth 5151 and the fourth tooth 5181 have the same helical direction
  • the first gear 515 and the fourth gear 518 have the same rotation direction.
  • the spiral directions of the second gear 516 and the third gear 517 are the same, and the rotation directions of the second gear 516 and the third gear 517 are the same.
  • the third gear 517 drives the fourth gear 518 to rotate through the third tooth 5171.
  • the fourth gear 518 drives the second gear through the fourth tooth 5181. 516 rotates, thereby achieving synchronous rotation of the first gear 515 , the second gear 516 , the third gear 517 and the fourth gear 518 .
  • the coincidence degree between two adjacent gears is greater than 1.2. That is, the overlap between the first gear 515 and the third gear 517 is greater than 1.2, the overlap between the third gear 517 and the fourth gear 518 is greater than 1.2, and the overlap between the second gear 516 and the fourth gear 518 is greater than 1.2.
  • the degree is greater than 1.2.
  • ⁇ ⁇ is the end surface coincidence degree
  • ⁇ ⁇ is the longitudinal coincidence degree.
  • z 1 and z 2 are the number of teeth of the gear
  • ⁇ at1 and ⁇ at1 are the tip circle pressure angle
  • ⁇ ' t is the end face indexing circle meshing angle
  • is the helix angle
  • b is the gear width
  • m n is the normal surface modulus.
  • the longitudinal coincidence degree ⁇ ⁇ of the synchronization gear 513 is increased, thereby increasing the coincidence degree ⁇ ⁇ between two adjacent gears, thereby increasing the rotation of the synchronization gear 513
  • the stability of the synchronization component 2 is improved, and the stability of the rotation of the rotating mechanism 100 is improved.
  • the impact resistance and load-bearing capacity of the synchronization component 2 can also be improved, the life of the synchronization component 2 can be extended, and the durability of the rotating mechanism 100 can be improved.
  • the longitudinal coincidence degree ⁇ ⁇ and the coincidence degree ⁇ ⁇ of the synchronization gear 513 can be increased, so that more teeth in the synchronization gear 513 can participate in meshing, further increasing the The stability of the rotation of the synchronization gear 513 prevents the tooth root from breaking.
  • the requirements for the end face coincidence degree ⁇ ⁇ can be appropriately reduced according to the actual application scenario.
  • the gear module is increased, and the gear module is reduced.
  • the number of teeth of the pinion can thereby reduce the diameter of the gear, reduce the thickness of the rotating mechanism 100 in the folded state, and achieve a thinner and lighter foldable electronic device 500 .
  • increasing the gear module and reducing the number of gear teeth will also help improve the strength of the tooth root.
  • the synchronization gear 513 in this embodiment can also have short teeth. By adjusting the helix angle of the gear, the minimum number of undercut teeth is reduced, thereby increasing the gear module, improving the bending resistance of the tooth root, and improving the synchronization gear 513 of durability.
  • the center distance of the synchronous swing arm a (m n z 1 +m n z 2 )/cos ⁇ .
  • the middle distance a of the synchronized swing arm can be adjusted.
  • the rotating rod 514 includes a first rotating rod 5141 and a second rotating rod 5142.
  • the first rotating rod 5141 is fixedly connected to the first gear 515, and extends through the second mounting plate 512 in a direction away from the second mounting plate 512, and the extension direction of the first rotating rod 5141 is parallel to the Y direction.
  • the second rotating rod 5142 is fixedly connected to the second gear 516, and extends through the second mounting plate 512 in a direction away from the second mounting plate 512, and the second rotating rod 5142 is parallel to the first rotating rod 5141 and is spaced apart.
  • first rotating rod 5141 and the second rotating rod 5142 are both flat shafts to achieve a fixed connection between the first rotating rod 5141 and the first synchronous swing arm 53, and a fixed connection between the second rotating rod 5142 and the second synchronous swing arm 54.
  • FIG. 16 is a partial structural diagram of the first synchronization component 201 shown in FIG. 14 in another embodiment.
  • the difference between this embodiment and the embodiment shown in Figure 15 is that in this embodiment, the teeth of the first gear 515, the second gear 516, the third gear 517 and the fourth gear 518 are all "V" shaped teeth. .
  • the outer circumference of the first gear 515 is provided with a plurality of first teeth 5151 spaced apart and arranged in parallel.
  • Each first tooth 5151 includes a first sub-tooth 5152 and a second sub-tooth 5153.
  • the plurality of first sub-teeth 5152 are arranged in parallel and at intervals.
  • the first sub-teeth 5152 have a first helix angle, and the first helix angle is 15° ⁇ 45°.
  • the plurality of second sub-teeth 5153 are arranged in parallel and at intervals.
  • the second sub-teeth 5153 have a second helix angle, and the second helix angle is 15° ⁇ 45°.
  • Each first sub-tooth 5152 is fixedly connected to the corresponding second sub-tooth 5153 and forms a “V”-shaped structure, and the first sub-tooth 5152 and the second sub-tooth 5153 are arranged symmetrically relative to the radial direction of the first gear 515 .
  • the second gear 516 is provided with second teeth 5161 on its outer peripheral surface.
  • the shape of the second teeth 5161 is similar to the shape of the first teeth 5151. like.
  • the second tooth 5161 includes third sub-teeth 5162 and fourth sub-teeth 5163 .
  • the third sub-tooth 5162 is opposite to the first sub-tooth 5152, and the helical direction of the third sub-tooth 5162 is opposite to the helical direction of the first sub-tooth 5152.
  • the fourth sub-tooth 5163 is opposite to the second sub-tooth 5153, and the fourth sub-tooth 5163 is opposite to the second sub-tooth 5153, and the fourth sub-tooth 5162 is opposite to the helical direction of the first sub-tooth 5152.
  • the helical direction of the tooth 5163 is opposite to the helical direction of the second sub-tooth 5153.
  • the third gear 517 is provided with third teeth 5171 on its outer peripheral surface.
  • the third tooth 5171 includes fifth sub-teeth 5172 and sixth sub-teeth 5173 .
  • the structure of the third tooth 5171 is the same as that of the first tooth 5151 .
  • the third teeth 5171 surround the outer peripheral surface of the third gear 517 .
  • the fourth gear 518 is provided with fourth teeth 5181 on its outer peripheral surface.
  • the fourth tooth 5181 includes seventh sub-teeth 5182 and eighth sub-teeth 5183 .
  • the structure of the fourth tooth 5181 is similar to the structure of the third tooth 5171 .
  • the difference between the fourth tooth 5181 and the third tooth 5171 is that the helical direction of the seventh sub-tooth 5182 is opposite to the helical direction of the fifth sub-tooth 5172, and the helical direction of the eighth sub-tooth 5183 is the same as the helical direction of the sixth sub-tooth 5173. In the opposite direction.
  • the first gear 515, the third gear 517, the fourth gear 518 and the second gear 516 are arranged side by side and parallel in sequence along the X direction.
  • the first gear 515 meshes with the third gear 517
  • the first sub-teeth 5152 meshes with the fifth sub-teeth 5172
  • the second sub-teeth 5153 meshes with the sixth sub-teeth 5173
  • the third gear 517 meshes with the fourth gear 518
  • the fifth sub-teeth 5152 meshes with the fifth sub-teeth 5172.
  • Sub-teeth 5172 mesh with seventh sub-teeth 5182, sixth sub-teeth 5173 mesh with eighth sub-teeth 5183; fourth gear 518 meshes with second gear 516, seventh sub-tooth 5182 meshes with third sub-teeth 5162, eighth The sub-teeth 5183 mesh with the fourth sub-teeth 5163.
  • the first sub-tooth 5152 drives the fifth sub-tooth 5172 to move
  • the second sub-tooth 5153 drives the sixth sub-tooth 5173 to move, thereby driving the third gear 517 to rotate
  • the third gear 517 rotates
  • the fifth sub-tooth 5172 drives the seventh sub-tooth 5182 to move
  • the sixth sub-tooth 5173 drives the eighth sub-tooth 5183 to move, thereby driving the fourth gear 518 to rotate
  • the seventh sub-tooth 5182 drives the third
  • the eighth sub-tooth 5183 drives the fourth sub-tooth 5163 to move, thereby driving the second gear 516 to rotate, thereby achieving synchronous rotation of the first gear 515, the second gear 516, the third gear 517 and the fourth gear 518.
  • the components of the forces in the Y direction of the first sub-tooth 5152 and the second sub-tooth 5153 are in opposite directions, so that they can offset each other and reduce the force of the first sub-tooth 5152 and the second sub-tooth 5153.
  • the axial force of a gear 515 can also cancel each other out, reducing the axial force of the second gear 516 .
  • the effects of the fifth sub-tooth 5172 and the sixth sub-tooth 5173 in the third gear 517 in the Y direction can also offset each other to reduce the axial force of the third gear 517 .
  • the effects of the seventh sub-tooth 5182 and the eighth sub-tooth 5183 in the fourth gear 518 in the Y direction can also offset each other to reduce the axial force of the fourth gear 518 .
  • the axial force when the synchronization gear 513 rotates can be reduced, thereby further increasing the stability of the rotation of the synchronization gear 513 and improving the transmission of the synchronization assembly 2 The smoothness and the stability of the rotation of the rotating mechanism 100.
  • FIG. 17 is a partial structural diagram of the first synchronization component 201 shown in FIG. 14 .
  • the first synchronous swing arm 53 includes a first synchronous swing body 531, a first synchronous shaft seat 532, a first hinge body 533 and a third hinge body 534.
  • the first synchronous shaft seat 532 is connected to one end of the first synchronous swing body 531.
  • a first rotating hole 535 is provided in the first synchronous shaft seat 532, and the extension direction of the first rotating hole 535 is parallel to the Y direction.
  • the first synchronous shaft seat 532 is provided with a first receiving notch 536.
  • the first receiving notch 536 is located in the middle of the first synchronous shaft seat 532.
  • the first hinge body 533 and the third hinge body 534 are both fixedly connected to the first synchronous shaft seat 532 and face the first receiving notch 536.
  • the first hinge body 533 includes a protrusion and a plurality of recesses (not marked in the figure), and the plurality of protrusions and the plurality of recesses are alternately arranged along the circumference of the first rotating hole 535.
  • the structure of the third hinge body 534 is the same as that of the first hinge body 533.
  • the structure of the second synchronized swing arm 54 and the first synchronized swing arm 53 are the same, and the second synchronized swing arm 54 and the first synchronized swing arm 53 are symmetrical structures.
  • the second synchronized swing arm 54 includes a second synchronized swing body 541, a second synchronized shaft seat 542, a second hinge body 543 and a fourth hinge body 544.
  • a second rotation hole 545 is provided in the second synchronization shaft seat 542, and the extension direction of the second rotation hole 545 is parallel to the Y direction.
  • the second synchronizing shaft seat 542 is provided with a second receiving notch 546 .
  • the second hinge body 543 and the fourth hinge body 544 are both fixedly connected to the second synchronization shaft seat 542 and face the second receiving notch 546 .
  • the structures of the second hinge body 543 and the fourth hinge body 544 are the same as those of the first hinge body 533 .
  • the damping member 52 includes a first baffle 521 , a second baffle 522 and a damping spring 523 .
  • the first baffle 521 includes a first body 524, a first hinge seat 525 and a second hinge seat 526.
  • the first hinge seat 525 and the second hinge seat 526 are spaced apart on the surface of the first body 524, and the structure of the first hinge seat 525 matches the structure of the first hinge body 533, and the structure of the second hinge seat 526 matches the structure of the second hinge seat 524.
  • the structure of the hinge body 543 matches.
  • the structure of the second baffle 522 is the same as that of the first baffle 521 .
  • the second baffle 522 includes a second body 527 , a third hinge seat 528 and a fourth hinge seat 529 .
  • the structure of the third hinge seat 528 matches the structure of the third hinge body 534
  • the structure of the fourth hinge seat 529 matches the structure of the fourth hinge body 544 .
  • the first baffle 521 and the second baffle 522 are spaced apart and parallel along the Y direction, wherein the surface of the first baffle 521 faces away from the first hinge seat 525 and the surface of the second baffle 522 faces away from the third hinge seat 528 relatively.
  • the damping spring 523 is installed between the first baffle 521 and the second baffle 522 and is fixedly connected with the first baffle 521 and the second baffle 522 .
  • FIG. 18 is a partial structural schematic diagram of the rotating mechanism 100 shown in FIG. 5 in a flattened state.
  • FIG. 19 is a partial structural schematic diagram of the rotating mechanism 100 shown in FIG. 5 in a folded state.
  • the first synchronization component 201 is installed on the fixed base 10.
  • the first synchronization swing arm 53 and the second synchronization swing arm 54 are respectively located on opposite sides of the fixed base 10 in the X direction, and the first synchronization swing body 531 is installed on the second synchronization swing arm 53.
  • the third slide groove 231 of the third fixed plate 23 in the rotating assembly 102, and the first synchronous swing body 531 can slide along the third slide groove 231, and the second synchronous swing body 541 is installed on the fourth slide groove of the fourth fixed plate 24. groove 241, and the second synchronous swing body 541 can slide along the fourth slide groove 241.
  • the damping member 52 is installed in the fixed base 10 and is located between the first synchronized swing arm 53 and the second synchronized swing arm 54 .
  • the first hinge body 533 is hinged to the first hinge seat 525
  • the third hinge body 534 is hinged to the third hinge seat 528
  • the second hinge body 543 is hinged to the second hinge seat 526
  • the fourth hinge body 544 is hinged to the fourth hinge seat 529 Articulated.
  • the synchronization component 51 is installed on the fixed base 10
  • the first mounting plate 511 and the second mounting plate 512 are fixedly connected to the fixed base 10 .
  • the first rotating rod 5141 is located in the first rotating hole 535 and is fixedly connected to the first synchronizing shaft seat 532.
  • the second rotating rod 5142 is located in the second rotating hole 545 and is fixedly connected to the second synchronizing shaft seat 542.
  • the first synchronous swing arm 53 When the third fixed plate 23 rotates, the first synchronous swing arm 53 is driven to rotate, and the first synchronous swing body 531 of the first synchronous swing arm 53 slides and rotates in the third slide groove 231.
  • the first rotating rod 5141 When the first synchronous swing arm 53 rotates, the first rotating rod 5141 is driven to rotate synchronously, thereby driving the first gear 515 to rotate.
  • the intermediate gear 519 is driven to rotate, thereby driving the second gear 516 to rotate.
  • the second rotating rod 5142 is driven to rotate, thereby driving the second synchronous swing arm 54 to rotate, and driving the fourth fixed plate 24 to rotate, while causing the second synchronous swing body 541 to slide and rotate in the fourth slide groove 241, thereby realizing the synchronous rotation of the first synchronous swing arm 53 and the second synchronous swing arm 54, and the synchronous rotation of the third fixed plate 23 and the fourth fixed plate 24.
  • the first synchronous swing arm 53 rotates, it drives the first hinge body 533 and the third hinge body 534 to rotate synchronously.
  • the first hinge body 533 rotates, it repeatedly pushes the first hinge base 525 to move in the Y direction and drives the first baffle 521 to move.
  • the third hinge body 534 rotates, the third hinge seat 528 is repeatedly pushed to move in the Y direction, driving the second baffle 522 to move.
  • the movement directions of the first baffle 521 and the second baffle 522 are opposite, thereby compressing the damping spring 523 so that the damping spring 523 generates elastic force.
  • the elastic restoring force of the damping spring 523 acts on the first hinge seat 525 and the third hinge seat 528, causing the first hinge seat 525 to squeeze the first hinge body 533, and the third hinge seat 528 to squeeze the third hinge body 534, thereby
  • the rotation of the first synchronized swing arm 53 provides a damping force, and the damping force of the first synchronized swing arm 53 acts on the first housing 210 through the third fixed plate 23 , thereby providing the user with a damping feel.
  • the second synchronous swing arm 54 When the second synchronous swing arm 54 rotates, it drives the second hinge body 543 and the fourth hinge body 544 to rotate synchronously.
  • the second hinge body 543 rotates, it repeatedly pushes the second hinge seat 526 to move in the Y direction and drives the first baffle 521 to move.
  • the fourth hinge body 544 rotates, the fourth hinge base 529 is repeatedly pushed to move in the Y direction, driving the second baffle 522 to move.
  • the movement directions of the first baffle 521 and the second baffle 522 are opposite, thereby compressing the damping spring 523 so that the damping spring 523 generates elastic force.
  • the elastic restoring force of the damping spring 523 acts on the second hinge seat 526 and the fourth hinge seat 529, causing the second hinge seat 526 to squeeze the second hinge body 543, and the fourth hinge seat 529 to squeeze the fourth hinge body 544, thereby
  • the rotation of the second synchronized swing arm 54 provides a damping force, and the damping force of the second synchronized swing arm 54 acts on the second housing 220 through the fourth fixed plate 24 , thereby providing the user with a damping feel.
  • the rotation directions of the first synchronized swing arm 53 and the second synchronized swing arm 54 are opposite.
  • the third fixed plate 23, the first synchronous swing arm 53 and the first rotating rod 5141 rotate clockwise
  • the fourth fixed plate 24, the second synchronous swing arm 54 and The second rotating lever 5142 rotates counterclockwise.
  • the rotating mechanism 100 switches from the folded state to the flat state
  • the third fixed plate 23, the first synchronous swing arm 53 and the first rotating rod 5141 rotate counterclockwise
  • the fourth fixed plate 24 the second synchronous swing arm 54 and the second The rotating lever 5142 rotates clockwise.
  • the second synchronous swing arm 54 can be driven to rotate by the synchronous member 51, so that the first synchronous swing arm 53 and the second synchronous swing arm 54 can be synchronously rotated, thereby realizing the synchronous rotation of the rotating mechanism 100 and the foldable electronic device 500.
  • the synchronous gear 513 as a helical tooth, the overlap of the synchronous gear 513 is increased, so that the transmission stability of the synchronous assembly 2 and the stability of the rotation of the rotating mechanism 100 can be improved, and at the same time, the tooth root can be prevented from being broken, thereby improving the durability of the synchronous gear 513.
  • the damping member 52 is provided, and when the first synchronized swing arm 53 and the second synchronized swing arm 54 rotate relative to the fixed base 10, the damping member 52 always resists the first synchronized swing arm 53 and the second synchronized swing arm 53.
  • the synchronous swing arm 54 generates damping force, thereby providing the user with a damping feel and improving the user's experience.
  • the structure of the second synchronization component 202 is the same as that of the first synchronization component 201.
  • the first synchronization swing arm 53 in the second synchronization component 202 is installed on the fifth chute 232, and the second synchronization swing arm 54 is installed on the sixth chute. 242.
  • the basic structure of each component in the second synchronization component 202, the connection relationship between the components, and the connection relationship between the components and components other than the component can all be referred to the relevant design of the first synchronization component 201, and will not be described in detail here. .
  • FIG. 20 is a partially exploded structural view of the pressure plate assembly 3 in the rotating mechanism 100 shown in FIG. 6 .
  • FIG. 21 is an exploded structural view of the pressure plate assembly 3 shown in FIG. 20 from another angle.
  • the pressure plate assembly 3 includes a first pressure plate 61 , a second pressure plate 62 , a first pressure plate swing arm 63 and a second pressure plate swing arm 64 .
  • the plates 21D are rotated and slidably connected.
  • the plate 22A, the second fixed plate 22B of the third rotating assembly 103 and the second fixed plate 22C of the fourth rotating assembly 104 are rotationally and slidingly connected.
  • the first pressure plate swing arm 63 is slidingly connected to the first pressure plate 61 , and is rotationally and slidingly connected to the fixed base 10 .
  • the second pressure plate swing arm 64 is slidingly connected to the second pressure plate 62 , and is rotationally and slidingly connected to the fixed base 10 .
  • the first pressure plate 61 includes a first pressure plate body 611 and a first slide block 612 .
  • the first pressure plate body 611 is a long plate-shaped structure.
  • the first pressure plate body 611 is provided with a first pressure plate slide groove 613 , and the first pressure plate slide groove 613 penetrates the first pressure plate body 611 in the width direction of the first pressure plate body 611 .
  • the first pressure plate slide groove 613 is used to install the first pressure plate swing arm 63 .
  • the first slider 612 is disposed on the bottom surface of the first pressure plate body 611 and is fixedly connected to the first pressure plate body 611 .
  • there are multiple first sliders 612 and the multiple first sliders 612 are arranged at intervals along the Y direction.
  • Each first slider 612 extends in an arc shape from the bottom surface of the first pressure plate body 611 in a direction away from the top surface.
  • the structure of the first slide block 612 is adapted to the structure of the first guide groove 215 .
  • the structure of the second pressing plate 62 is substantially the same as that of the first pressing plate 61 .
  • the second pressure plate 62 includes a second pressure plate body 621 and a second slide block 622 .
  • the second pressure plate body 621 is provided with a second pressure plate slide groove 623 .
  • the second pressure plate slide groove 623 is used to install the second pressure plate swing arm 64 .
  • the second slider 622 is disposed on the bottom surface of the second pressure plate body 621 and extends in an arc from the bottom surface of the second pressure plate body 621 in a direction away from the top surface.
  • the structure of the second slide block 622 is adapted to the structure of the second guide groove 225 .
  • the first pressure plate swing arm 63 includes a first pressure plate swing body 631 and a first pressure plate rotating body 632 .
  • the first platen rotating body 632 has an arc-shaped plate structure.
  • the first platen rotating body 632 includes a first rotating part 6321 and two second rotating parts 6322.
  • the two second rotating parts 6322 are respectively located on opposite sides of the first plate rotating body 632 in the X direction, and the first rotating part 6321 is located between the two second rotating parts 6322.
  • the structure of the first pressure plate rotating body 632 matches the structure of the third rotating groove 125
  • the structure of the first rotating part 6321 matches the structure of the fifth slide rail 1251
  • the structure of the second rotating part 6322 matches the structure of the sixth sliding rail 1252 structure matches.
  • the first pressure plate swinging body 631 has a plate-like structure, and one end of the first pressure plate swinging body 631 is fixedly connected to the first pressure plate rotating body 632 .
  • the first pressure plate swing arm 63 is installed in the third rotation groove 125 for rotation and sliding connection with the fixed base 10 and sliding connection with the first fixed plate 21 .
  • the second pressure plate swing arm 64 has the same structure as the first pressure plate swing arm 63 .
  • the second pressure plate swing arm 64 includes a second pressure plate rotating body 641 and a second pressure plate swing body 642 .
  • the second pressure plate rotating body 641 is provided with a third rotating part 6421 and two fourth rotating parts 6422.
  • the structure of the second pressing plate rotating body 641 is the same as that of the first pressing plate rotating body 632, and the structure of the second pressing plate swinging body 642 is the same as the structure of the first pressing plate swinging body 631.
  • the second pressure plate swing arm 64 is installed in the fourth rotation groove 126 of the fixed base 10 for rotation and sliding connection with the fixed base 10 and sliding connection with the second fixed plate 22 .
  • first pressure plate swing arms 63 and four second pressure plate swing arms 64 there are four first pressure plate swing arms 63 and four second pressure plate swing arms 64 .
  • the number of the first pressure plate swing arm 63 and the second pressure plate swing arm 64 may be one, two, three or more than five.
  • the first pressure plate 61 and the first pressure plate swing arm 63 are located on the same side of the fixed base 10 in the X direction, and the four first pressure plate swing arms 63 are arranged at intervals along the Y direction.
  • the first pressure plate rotating body 632 is installed in the third rotating groove 125 of the fixed base 10, the first rotating part 6321 is installed on the fifth slide rail 1251, and the second rotating part 6322 is installed on the sixth slide rail 1252.
  • the first pressure plate rotating body 632 can slide and rotate along the fifth slide rail 1251 and the sixth slide rail 1252 in the third rotating groove 125.
  • the end of the first pressure plate swing body 631 facing away from the first pressure plate rotating body 632 is installed in the first pressure plate slide groove 613, and each first pressure plate swing body 631 can slide in the corresponding first pressure plate slide groove 613.
  • the first pressure plate 61 is slidably and rotatably connected to the first fixed plate 21. Its In the embodiment, the first slider 612 of the first pressing plate 61 is installed in the first guide groove 215 of the first fixing plate 21 , and each first slider 612 can slide in the corresponding first guide groove 215 .
  • the first fixed plate 21 is driven to rotate relative to the fixed base 10, so as to drive the first pressure plate 61 to rotate relative to the fixed base 10, and the first slider 612 is positioned in the corresponding first guide groove 215. It slides in an arc shape, thereby driving the first pressure plate 61 to slide in an arc shape relative to the first fixed plate 21 .
  • the first pressure plate swinging body 631 is driven to rotate, thereby driving the first pressure plate rotating body 632 to slide and rotate in the first chute 214, thereby realizing the first pressure plate 61 and the first pressure plate swing arm 63. Rotate relative to the fixed base 10 .
  • the second pressure plate 62 and the second pressure plate swing arm 64 are located on the other side of the fixed base 10 in the X direction, and the four second pressure plate swing arms 64 are spaced apart along the Y direction.
  • the second pressure plate rotating body 641 is installed in the fourth rotating groove 126 of the fixed base 10
  • the third rotating part 6421 is installed on the seventh slide rail 1261
  • the fourth rotating part 6422 is installed on the eighth slide rail 1262 .
  • the second pressure plate rotating body 641 can slide and rotate along the seventh slide rail 1261 and the eighth slide rail 1262 in the second rotation groove 124 .
  • the second pressure plate 62 is slidably and rotationally connected to the second fixed plate 22 .
  • the second slide block 622 of the second pressure plate 62 is installed in the second guide groove 225 of the second fixing plate 22 , and each second slide block 622 can slide in the corresponding second guide groove 225 .
  • the second fixed plate 22 is driven to rotate relative to the fixed base 10, so as to drive the second pressure plate 62 to rotate relative to the fixed base 10, and the second slider 622 is positioned in the corresponding second guide groove 225. It slides in an arc shape, thereby driving the second pressure plate 62 to slide in an arc shape relative to the second fixed plate 22 .
  • the second pressure plate swinging body 642 is driven to rotate, thereby driving the second pressure plate rotating body 641 to slide and rotate in the second chute 224, thereby realizing the second pressure plate 62 and the second pressure plate swing arm 64. Rotate relative to the fixed base 10 .
  • the first pressure plate 61 and the second pressure plate 62 are both arranged opposite to the display screen 300 .
  • the first pressure plate 61 and the second pressure plate 62 jointly support the display screen 300, thereby increasing the stability of the connection of the display screen 300 and ensuring good display of the display screen 300.
  • the first housing 210 drives the first fixed plate 21 to rotate, thereby driving the first pressure plate 61 to rotate
  • the second housing 220 drives the second fixed plate 22 to rotate, thereby driving the second pressure plate 62 to rotate, thereby causing
  • the foldable electronic device 500 switches between a folded state and a flat state to realize folding and unfolding of the display screen 300 .
  • the first pressure plate 61 can slide in an arc shape relative to the first fixed plate 21
  • the second pressure plate 62 can slide in an arc shape relative to the second fixed plate 22 , so that the first pressure plate 61 and the second pressure plate 62
  • the included angle is adjustable to adapt to the folding angle of the foldable portion 330 of the display screen 300 to prevent the first pressure plate 61 and the second pressure plate 62 from squeezing the display screen 300 when the rotating mechanism 100 is in the folded state.
  • the angle between the first fixed plate 21 and the second fixed plate 22 is different from the angle between the first pressure plate 61 and the second pressure plate 62, and the first pressure plate
  • the angle between 61 and the second pressure plate 62 can be adjusted according to the bending angle of the display screen 300 to adapt to the bending of the display screen 300 .
  • the rotation of the first pressure plate 61 relative to the fixed base 10 is achieved, and the first pressure plate 61 can be lifted.
  • Rotational stability By providing the second pressure plate swing arm 64 and driving the second pressure plate swing arm 64 to rotate through the second pressure plate 62, the rotation of the second pressure plate 62 relative to the fixed base 10 is achieved, thereby improving the rotation stability of the second pressure plate 62.
  • FIG. 22 is a cross-sectional view of the rotating mechanism 100 shown in FIG. 5 in a folded state.
  • the flexible support member 70 is a long plate-shaped structure, and the flexible support member 70 can be bent along the Y direction.
  • the flexible support member 70 is installed on the fixed base 10 and is opposite to the upper housing 12 in the Z direction.
  • the rotating mechanism 100 When the rotating mechanism 100 is in a flat state, the flexible support member 70 , the first pressure plate 61 and the second pressure plate 62 jointly support the display screen 300 to ensure good display of the display screen 300 .
  • the foldable portion 330 of the display screen 300 bends and protrudes toward the flexible support member 70 , the flexible support member 70 bends to form a water drop-shaped structure, and the middle part of the flexible support member 70 faces the fixed base.
  • the seat 10 sinks and forms an avoidance space to avoid the display screen 300 and prevent the flexible support member 70 from squeezing the display screen 300 and causing damage to the display screen 300 .
  • FIG. 23 is an enlarged structural schematic diagram of the floating plate 80 in the rotating mechanism 100 shown in FIG. 6 .
  • FIG. 24 is a partial structural schematic diagram of the rotating mechanism 100 shown in FIG. 5 .
  • the floating plate 80 is a long plate-like structure.
  • the floating plate 80 includes a first side 81 and a second side 82 .
  • the first side 81 and the second side 82 are arranged opposite each other and are respectively located on opposite sides of the floating plate 80 in the X direction.
  • the floating plate 80 is provided with a first installation groove 83 , a second installation groove 84 , a third installation groove 85 and a fourth installation groove 86 .
  • the first installation groove 83 and the third installation groove 85 are provided on the first side 81
  • the second installation groove 84 and the fourth installation groove 86 are provided on the second side 82 .
  • first mounting groove 83 and the second mounting groove 84 are arranged oppositely in the X direction
  • third mounting groove 85 and the fourth mounting groove 86 are arranged oppositely in the X direction.
  • the first installation groove 83, the second installation groove 84, the third installation groove 85 and the fourth installation groove 86 are U-shaped through grooves.
  • the first installation groove 83 includes two groove walls. The groove walls are arranged oppositely to form a U-shaped through groove, and the groove openings are all facing away from the longitudinal centerline of the floating plate 80 .
  • the floating plate 80 is located between the fixed base 10 and the flexible support 70 and is installed between the first sub-casing 12A and the second sub-casing 12B.
  • the FPC (flexible circuit board) of the foldable electronic device 500 is also passed between the first sub-casing 12A and the second sub-casing 12B.
  • the FPC here refers to a structure used to electrically connect the electronic device located in the first housing 210 and the electronic device located in the second housing 220 in the foldable electronic device 500 . That is to say, the floating plate 80 is installed on the fixed base 10 and is opposite to the FPC line crossing position.
  • first extending portion 1272 of the first rotating shaft 127 in the first sub-casing 12A is located in the first mounting groove 83
  • second extending portion 1282 of the second rotating shaft 128 in the first sub-casing 12A is located in the first mounting groove 83.
  • first rotating shaft 127 in the second sub-casing 12B is located in the third mounting slot 85
  • second rotating shaft 128 in the second sub-casing 12B is located in the second mounting slot 84 .
  • FIG. 25 is a schematic cross-sectional structural diagram of the rotating mechanism 100 shown in FIG. 5 in a flat state.
  • the first auxiliary swing arm 41 and the second auxiliary swing arm 42 rotate toward each other.
  • the first auxiliary swing arm 41 drives the first rotation shaft 127 to rotate to drive the first extension portion 1272 to rotate in a direction closer to the lower housing 11
  • the second auxiliary swing arm 42 drives the second rotation shaft 128 to rotate to drive the second extension portion. 1282 rotates toward the lower housing 11 .
  • the first extension part 1272 and the second extension part 1282 rotate toward the lower housing 11 , thereby driving the floating plate 80 to move in the negative direction of the Z-axis, that is, driving the floating plate 80 to move in a direction away from the display screen 300 , thereby forming a flexible support member.
  • the bending of the flexible support 70 and the display screen 300 provides an escape space to prevent the floating plate 80 from squeezing the flexible support member 70 and the display screen 300 and causing damage to the display screen 300 .
  • the first auxiliary swing arm 41 and the second auxiliary swing arm 42 rotate in a direction away from each other.
  • the first auxiliary swing arm 41 drives the first rotation shaft 127 to rotate to drive the first extension portion 1272 to rotate in a direction away from the lower housing 11
  • the second auxiliary swing arm 42 drives the second rotation shaft 128 to rotate to drive the second extension portion. 1282 rotates away from the lower housing 11 .
  • the first extension portion 1272 and the second extension portion 1282 are oriented away from the lower housing. 11 direction, thereby driving the floating plate 80 to move toward the positive direction of the Z axis, that is, driving the floating plate 80 to move toward the direction closer to the display screen 300, so that the rotating mechanism 100 is in a flat state.
  • the rotating mechanism 100 When the rotating mechanism 100 is in the flattened state, the first auxiliary swing arm 41 and the second auxiliary swing arm 42 in the first rotating assembly 101 are unfolded relative to the fixed base 10, and the first auxiliary swing arm 41 and the second auxiliary swing arm 42 in the second rotating assembly 102 are unfolded relative to the fixed base 10.
  • the floating plate 80 and the flexible support member 70 jointly support the display screen 300.
  • the floating plate 80 by arranging the floating plate 80 at the FPC crossing position of the rotating mechanism 100, the FPC crossing position can be protected, and the flexible support 70 and the display screen 300 can be prevented from squeezing the FPC when the rotating mechanism 100 is in the folded state. Crossing the line will cause damage to the FPC crossing line.
  • the floating plate 80 and the flexible support member 70 jointly support the display screen 300.
  • the floating plate 80 sinks to avoid the flexible support member 70 and the display screen 300. Avoid squeezing the display screen 300 .
  • FIG. 26 is a schematic structural diagram of the rotating mechanism 100 shown in FIG. 5 in a folded state.
  • the foldable portion 330 of the display screen 300 is located inside the rotating mechanism 100 .
  • the foldable portion 330 is located in the avoidance space.
  • the avoidance space is roughly in the shape of a "water drop".
  • the rotating mechanism 100 can avoid the R angle formed when the foldable part 330 is bent, so that the foldable part 330 will not be bent at a large angle, and the display screen 300 will be prevented from causing creases and other undesirable phenomena, which will help extend the display time.
  • the service life of the screen is 300.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Telephone Set Structure (AREA)

Abstract

本申请提供一种转动机构和可折叠电子设备。转动机构包括固定基座、第一同步摆臂、第二同步摆臂和同步齿轮。同步齿轮的第一齿轮、中间齿轮和第二齿轮均为斜齿轮,第一齿轮、中间齿轮和第二齿轮并排且平行设置,中间齿轮位于第一齿轮和第二齿轮之间,并与第一齿轮及第二齿轮啮合。第一同步摆臂与第一齿轮固定连接,第二同步摆臂与第二齿轮固定连接。同步齿轮安装于固定基座内,并与固定基座转动连接,第一同步摆臂和第二同步摆臂分别位于固定基座在宽度方向的相对两侧,第一同步摆臂与第二同步摆臂的转动方向相反,第一齿轮与第二齿轮的转动方向相反。本申请提供的转动机构可以解决现有技术中的转动机构的传动平稳性差的技术问题。

Description

转动机构和可折叠电子设备
本申请要求于2022年09月20日提交中国专利局、申请号为202211145993.2、申请名称为“转动机构和可折叠电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子产品技术领域,尤其涉及一种转动机构和可折叠电子设备。
背景技术
随着科技的发展,电子设备(如手机、平板电脑等)的外观(ID)形态有从直板机往折叠机发展的趋势。折叠机在打开状态下具有大面积屏幕,充分满足了消费者的视觉体验,在闭合状态下体积小,便于携带。现有技术中的折叠机,大多通过同步机构中的同步齿轮实现同步运动。然而,现有的同步齿轮大多为直齿结构,传动平稳性差。
发明内容
本申请提供一种转动机构和可折叠电子设备,以解决现有技术中的转动机构的传动平稳性差的技术问题。
第一方面,本申请提供一种转动机构,包括固定基座、第一同步摆臂、第二同步摆臂和同步齿轮。所述同步齿轮包括第一齿轮、第二齿轮和中间齿轮。所述第一齿轮、所述中间齿轮和所述第二齿轮均为斜齿轮。所述第一齿轮、所述中间齿轮和所述第二齿轮并排且平行设置,所述中间齿轮位于所述第一齿轮和所述第二齿轮之间,并与所述第一齿轮及所述第二齿轮啮合。所述第一同步摆臂与所述第一齿轮固定连接,所述第二同步摆臂与所述第二齿轮固定连接。所述同步齿轮安装于所述固定基座内,并与所述固定基座转动连接,所述第一同步摆臂和所述第二同步摆臂分别位于所述固定基座在宽度方向的相对两侧。所述第一同步摆臂与所述第二同步摆臂的转动方向相反,所述第一齿轮与所述第二齿轮的转动方向相反。
转动机构应用于可折叠电子设备中,可折叠电子设备包括第一壳体、第二壳体和显示屏。第一壳体与第一同步摆臂连接,第二壳体与第二同步摆臂连接。转动机构位于第一壳体和第二壳体之间,并使第一壳体和第二壳体转动连接。转动机构的转动可带动第一壳体和第二壳体相对转动。第一壳体和第二壳体还设有容置槽,容置槽用于容纳电子设备的处理器、电路板、摄像模组等电子元件以及结构元件。
转动机构处于折叠状态时,第一同步摆臂和第二同步摆臂相对折叠。也就是,第一同步摆臂和第二同步摆臂朝向相互靠近方向转动,以使第一同步摆臂和第二同步摆臂层叠设置。转动机构处于展平状态时,第一同步摆臂和第二同步摆臂相对固定基座展平,第一同步摆臂和第二同步摆臂之间的夹角接近180度。
本实施例中,通过将第一齿轮、中间齿轮和第二齿轮均设置为斜齿轮,增加了中间齿轮与第一齿轮及第二齿轮的重合度,从而增加了同步齿轮传动的稳定性,提升转动机构转 动的稳定性。并且,通过将第一齿轮、中间齿轮和第二齿轮设为斜齿轮,还能防止齿根发生断裂,提高转动机构的抗冲击能力与承载能力,提升转动机构的耐用性。同时,同步齿轮的重合度增加之后,在满足连续传动的条件下,可根据实际应用场景适当增大齿轮模数,减小齿轮的齿数,从而可以减小齿轮的直径,减小转动机构在折叠状态的厚度,实现可折叠电子设备的轻薄化。此外,通过将第一齿轮、中间齿轮和第二齿轮并排且平行设置,可以减小转动机构的厚度,从而可以进一步实现可折叠电子设备的轻薄化。
一种可能的实施方式中,所述转动机构包括折叠状态和展平状态,所述转动机构处于所述展平状态时,所述第一同步摆臂相对所述第二同步摆臂展开,所述第一同步摆臂朝向靠近所述固定基座方向转动时,带动所述第一齿轮转动,以带动所述第二齿轮转动,从而带动所述第二同步摆臂朝向靠近所述第一同步摆臂方向转动,以使所述第一同步摆臂相对所述第二同步摆臂折叠,并使所述转动机构处于所述折叠状态。
本实施例中,第一同步摆臂和第二同步摆臂通过同步齿轮实现同步转动,从而实现转动机构的同步转动,进而提升转动机构转动的便利性和可靠性,提升用户的使用体验。
一种可能的实施方式中,所述中间齿轮与所述第一齿轮的重合度大于1.2,所述中间齿轮与所述第二齿轮的重合度大于1.2。
需要说明的是,重合度等于端面重合度与纵向重合度之和。本实施例中,通过将中间齿轮与第一齿轮的重合度设为大于1.2,且中间齿轮与第二齿轮的重合度大于1.2,能够增加同步齿轮的传动稳定性,提升转动机构的转动稳定性。
一种可能的实施方式中,所述中间齿轮包括第三齿轮和第四齿轮,所述第三齿轮和所述第四齿轮均为斜齿轮,所述第三齿轮和所述第四齿轮均设于所述第一齿轮和所述第二齿轮之间,且所述第三齿轮与所述第一齿轮啮合,所述第四齿轮与所述第二齿轮及所述第三齿轮啮合。
本实施例中,通过在第一齿轮和第二齿轮之间设置第三齿轮和第四齿轮,并且第一齿轮转动时,带动第三齿轮转动,从而带动第四齿轮转动,进而带动第二齿轮转动,从而实现第一齿轮和第二齿轮的同步转动,从而可以提升同步齿轮传动的稳定性,提升转动机构转动的稳定性。
一种可能的实施方式中,所述第三齿轮与所述第四齿轮的重合度大于1.2。本实施例中,通过将第三齿轮与第四齿轮的重合度设为大于1.2,从而能够进一步增加同步齿轮的传动稳定性,提升转动机构的转动稳定性。
一种可能的实施方式中,所述第一齿轮包括第一齿,所述第二齿轮包括第二齿,所述第三齿轮包括第三齿,所述第四齿轮包括第四齿。所述第一齿、所述第二齿、所述第三齿和所述第四齿均为螺旋型,且所述第一齿和所述第二齿的螺旋方向相反,所述第三齿轮与所述第四齿轮的螺旋方向相反。
本实施例中,通过将第一齿、第二齿、第三齿和第四齿设为螺旋型,可以提升中间齿轮与第一齿轮及第二齿轮的重合度,进而可以增加同步齿轮的传动稳定性,提升转动机构的转动稳定性,并且可以防止齿根发生断裂,提高转动机构的抗冲击能力与承载能力,提升转动机构的耐用性。
一种可能的实施方式中,所述第一齿、所述第二齿、所述第三齿和所述第四齿的螺旋 角均为15°~45°。
本实施例中,通过将第一齿、第二齿、第三齿和第四齿的螺旋角度均设为15°~45°,从而可以提升相邻两个齿轮之间的重合度,进而可以增加同步齿轮的传动稳定性,提升转动机构的转动稳定性。
一种可能的实施方式中,所述第一齿轮包括第一齿,所述第二齿轮包括第二齿,所述第三齿轮包括第三齿,所述第四齿轮包括第四齿;所述第一齿、所述第二齿、所述第三齿和所述第四齿均为“V”字型。
本实施例中,通过将第一齿、第二齿、第三齿和第四齿均设为“V”字型,能够减小同步齿轮转动时的轴向力,从而可以进一步增加同步齿轮转动的稳定性,提升转动机构转动的稳定性。
一种可能的实施方式中,所述第一齿包括第一子齿和第二子齿,所述第一子齿和所述第二子齿均为斜齿,所述第一子齿与所述第二子齿沿所述第一齿轮的轴向固定连接。所述第二齿包括第三子齿和第四子齿,所述第三子齿和所述第四子齿均为斜齿,所述第三子齿与所述第四子齿沿所述第二齿轮的轴向固定连接。所述第三齿包括第五子齿和第六子齿,所述第五子齿和所述第六子齿均为斜齿,且所述第五子齿与所述第六子齿沿所述第三齿轮的轴向固定连接。所述第四齿包括第七子齿和第八子齿,所述第七子齿和所述第八子齿均为斜齿,且所述第七子齿与所述第八子齿沿所述第四齿轮的轴向固定连接。
所述第一子齿与所述第五子齿啮合,所述第五子齿与所述第七子齿啮合,所述第七子齿与所述第三子齿啮合。所述第二子齿与所述第七子齿啮合,所述第六子齿与所述第八子齿啮合,所述第八子齿与所述第四子齿啮合。
本实施例中,通过将每一齿轮的齿设为两个子齿,且相邻两个齿轮之间通过两个子齿分别啮合,使得同一齿轮的两个子齿收到的作用力在轴向的分力的方向相反,从而可以相互抵消,进而可以减小每一齿轮的轴向力,进而可以进一步增加同步齿轮转动的稳定性,提升转动机构转动的稳定性。
一种可能的实施方式中,所述第一子齿与所述第五子齿的螺旋方向相反,所述第五子齿与所述第七子齿的螺旋方向相反,所述第七子齿与所述第三子齿的螺旋方向相反,所述第一子齿、所述第五子齿、第七子齿和所述第三子齿的螺旋角度均为15°~45°。
本实施例中,通过将第一子齿、第五子齿、第七子齿和第三子齿设为螺旋型,且第螺旋角度均为15°~45°,从而可以提升第一齿轮与第三齿轮的重合度,第三齿轮与第四齿轮的重合度以及第四齿轮与第二齿轮的重合度,进而可以增加同步齿轮的传动稳定性,提升转动机构的转动稳定性。
一种可能的实施方式中,所述第一齿轮与所述第三齿轮的重合度大于1.2,所述第三齿轮与所述第四齿轮的重合度大于1.2,所述第四齿轮与所述第二齿轮的重合度大于1.2。
本实施例中,通过将第一齿轮与第三齿轮的重合度设为大于1.2,第三齿轮与第四齿轮的重合度设为大于1.2,且第四齿轮与第二齿轮的重合度大于1.2,能够进一步增加同步齿轮的传动稳定性,提升转动机构的转动稳定性。
一种可能的实施方式中,所述转动机构还包括阻尼件,所述阻尼件包括阻尼弹簧、第一铰接座和第二铰接座,所述阻尼件安装于所述固定基座,且所述第一铰接座和所述第二 铰接座均与所述阻尼弹簧固定连接。所述第一同步摆臂包括第一铰接体,所述第一铰接体与所述第一铰接座铰接,所述第二同步摆臂包括第二铰接体,所述第二铰接体与所述第二铰接座铰接。
所述第一同步摆臂相对所述固定基座转动时,所述第一铰接体抵持所述第一铰接座,所述第二同步摆臂相对所述固定基座转动时,所述第二铰接体抵持所述第二铰接座,所述第一铰接座和所述第二铰接座共同压缩所述阻尼弹簧,并使所述阻尼弹簧产生弹性力。
本实施例中,通过设置阻尼件,并在第一同步摆臂设置第一铰接体,第二同步摆臂设置第二铰接体,使得第一同步摆臂和第二同步摆臂转动时,反复挤压阻尼弹簧产生弹性力,该弹性力产生的弹性恢复力反过来作用于第一同步摆臂和第二同步摆臂,从而为第一同步摆臂和第二同步摆臂的转动提供阻尼力,以提升用户使用时的阻尼手感,提升用户的使用体验。
一种可能的实施方式中,所述转动机构包括第一固定板和第二固定板,所述第一固定板与所述第二固定板分别位于所述固定基座宽度方向的相对两侧,且所述第一同步摆臂与所述第一固定板滑动连接,所述第二固定板与所述第二同步摆臂滑动连接。
其中,第一壳体与第一固定板固定连接,第二壳体与第二固定板固定连接。本实施例中,通过设置第一固定板和第二固定板,使得第一壳体和第二壳体相对转动时,通过第一固定板带动第一同步摆臂转动,第二固定板带动第二同步摆臂转动,从而可以提升第一同步摆臂和第二同步摆臂转动的稳定性,进而可以提升转动机构和可折叠电子设备转动的稳定性。
一种可能的实施方式中,所述固定基座设有第一转动槽和第二转动槽,所述第一转动槽和所述第二转动槽相对设置。所述转动机构包括第一主摆臂和第二主摆臂,所述第一主摆臂安装于所述第一转动槽,并可以沿所述第一转动槽滑动并转动,且所述第一主摆臂与所述第一固定板转动连接。所述第二主摆臂安装于所述第二转动槽,并可沿所述第二转动槽滑动并转动,且所述第二主摆臂与所述第二固定板转动连接。
本实施例中,通过设置第一主摆臂和第二主摆臂,并且,第一固定板相对固定基座转动时,第一主摆臂在第一转动槽内转动并滑动,第二固定板相对固定基座转动时,第二主摆臂在第二转动槽内转动并滑动,从而可以实现第一固定板和第二固定板相对固定基座转动。
一种可能的实施方式中,所述第一主摆臂包括第一转动体和第一摆动体,所述第一转动体与所述第一摆动体固定连接,所述第一转动体包括第一滑动部和两个第二滑动部,两个所述第二滑动部连接于所述第一滑动部的相对两侧。所述第一转动槽包括第一滑轨和两个第二滑轨,两个所述第二滑轨分别位于所述第一滑轨的相对两侧,并与所述第一滑轨沿所述固定基座的长度方向并排设置。所述第一转动体安装于所述第一转动槽内,所述第一滑动部安装于所述第一滑轨,一个所述第二滑动部安装于一个所述第二滑轨。
本实施例中,通过在第一转动槽设置第一滑轨和两个第二滑轨,并且,第一主摆臂的滑动轨迹由第一滑轨和两个第二滑轨来限定,从而可以降低对第一转动槽的精度要求,降低加工成本,同时还能够提升第一主摆臂转动的稳定性。并且,第一滑轨和两个第二滑轨呈分布式排列,降低了固定基座的加工难度。
一种可能的实施方式中,一个所述第二滑轨包括滑轨底壁和凸块,所述凸块连接于所述第一转动槽的侧壁,并与所述滑轨底壁相对间隔设置,所述第一转动槽的底壁还设有第一镂空部,所述第一镂空部贯穿所述第一转动槽的底壁,并与所述凸块相对设置。所述第二滑动部位于所述滑轨底壁和所述凸块之间。
本实施例中,通过设置第一镂空部,使得固定基座可以通过模具成型的方式制备,简化了固定基座的加工工艺,避免倒扣问题。此外,本实施例中,通过在第一转动槽的侧壁设置凸块,可以对第一主摆臂起到限位作用,能够避免第一主摆臂在转动过程中脱离第一转动槽,提升第一主摆臂转动的稳定性。
一种可能的实施方式中,所述固定基座还安装有第一转动轴和第二转动轴,所述第一转动轴和所述第二转动轴相对且平行设置,并与所述固定基座转动连接,且所述第一转动轴和所述第二转动轴的延伸方向均与所述固定基座的长度方向平行。所述转动机构包括第一副摆臂和第二副摆臂,所述第一副摆臂与所述第一转动轴固定连接,并与所述第一固定板滑动连接;所述第二副摆臂与所述第二转动轴固定连接,并与所述第二固定板滑动连接。
本实施例中,通过设置第一副摆臂,第一固定板相对固定基座转动时,带动第一副摆臂与第一主摆臂共同转动,以实现第一固定板相对固定基座转动,从而可以增加第一固定板转动的稳定性;通过设置第二副摆臂,第二固定板相对固定基座转动时,带动第二副摆臂与第二主摆臂共同转动,以实现第二固定板相对固定基座转动,从而可以增加第二固定板转动的稳定性。
一种可能的实施方式中,所述转动机构还包括浮板,所述浮板安装于所述固定基座,并与所述第一转动轴及所述第二转动轴转动连接;所述第一副摆臂相对所述固定基座转动时,带动所述第一转动轴转动,所述第二副摆臂相对所述固定基座转动时,带动所述第二转动轴转动,所述第一转动轴和所述第二转动轴转动,以带动所述浮板沿所述固定基座的厚度方向移动。
其中,浮板设于转动机构的FPC过线位置。本实施例中,通过设置浮板,能够对FPC过线起到保护作用,避免转动机构处于折叠状态时,显示屏挤压FPC过线,对FPC过线造成损坏。并且,转动机构处于展平状态时,浮板支撑显示屏,转动机构处于折叠状态时,浮板下沉,以避让显示屏,避免对显示屏造成挤压。
一种可能的实施方式中,所述第一转动轴包括第一固定部和第一延伸部,所述第一固定部的轴线与第一延伸部的轴线平行且间隔设置;所述第二转动轴包括第二固定部和第二延伸部,所述第二固定部的轴线与第二延伸部的轴线平行且间隔设置;所述浮板设有第一安装槽和第二安装槽,所述第一安装槽和所述第二安装槽间隔设置。所述第一延伸部位于所述第一安装槽内,所述第二延伸部位于所述第二安装槽内。
所述第一副摆臂和所述第二副摆臂朝向相互靠近的方向转动时,所述第一延伸部和所述第二延伸部带动所述浮板朝向所述固定基座内移动;所述第一副摆臂和所述第二副摆臂朝向相互远离的方向转动时,所述第一延伸部和所述第二延伸部带动所述浮板朝向远离所述固定基座方向移动。
本实施例中,通过第一副摆臂和第二副摆臂转动,带动第一转动轴和第二转动轴转动,从而带动浮板移动,以使转动机构处于展平状态时,浮板朝向显示屏方向移动,以支撑显 示屏,转动机构处于折叠状态时,浮板下沉,以避让显示屏,避免对显示屏造成挤压。
一种可能的实施方式中,所述转动机构还包括第一压板和第二压板,所述第一压板与所述第一固定板滑动连接,所述第一固定板相对所述固定基座转动时,可带动所述第一压板相对所述固定基座转动;所述第二压板与所述第二固定板滑动连接,所述第二压板相对所述固定基座转动时,可带动所述第二压板相对所述固定基座转动。
本实施例中,通过设置第一压板和第二压板,且转动机构处于展平状态时,第一压板和第二压板共同支撑显示屏,从而可以增加显示屏连接的稳定性,以保证显示屏的良好显示。
一种可能的实施方式中,所述固定基座还设有第三转动槽和第四转动槽,所述第三转动槽与所述第四转动槽相对设置;所述转动机构还包括第一压板摆臂和第二压板摆臂,所述第一压板摆臂安装于所述第三转动槽,并可沿所述第三转动槽滑动并转动,且所述第一压板摆臂与所述第一压板滑动连接。所述第二压板摆臂安装于所述第四转动槽,并可沿所述第四转动槽滑动并转动,且所述第二压板摆臂与所述第二压板滑动连接。
本实施例中,通过设置第一压板摆臂,并通过第一压板带动第一压板摆臂转动,从而实现第一压板相对固定基座的转动,进而可以提升第一压板转动的稳定性;通过设置第二压板摆臂,并通过第二压板带动第二压板摆臂转动,从而实现第二压板相对固定基座的转动,进而可以提升第二压板转动的稳定性。
一种可能的实施方式中,所述固定基座还包括柔性支撑件,所述柔性支撑件安装于所述固定基座,所述转动机构处于折叠状态时,所述柔性支撑件弯折,并形成避让空间;所述转动机构处于展平状态时,所述柔性支撑件展开。
本实施例中,通过设置柔性支撑件,且转动机构处于展平状态时,柔性支撑件、第一压板和第二压板共同支撑显示屏,以保证显示屏的良好显示;转动机构处于折叠状态时,显示屏的可折叠部分弯折并向柔性支撑件方向外凸,柔性支撑件发生弯折形成水滴型结构,且柔性支撑件的中部朝向固定基座内下沉,并形成避让空间,以避让显示屏,避免柔性支撑件70挤压显示屏,对显示屏造成损坏。
本申请还提供一种可折叠电子设备,包括第一壳体、第二壳体、显示屏和上述转动机构,所述转动机构连接所述第一壳体和所述第二壳体之间,所述显示屏安装于第一壳体、第二壳体及转动机构,所述转动机构转动时,所述第一壳体和所述第二壳体相对转动,从而带动所述显示屏发生弯折或展开。
本实施例中,通过在可折叠电子设备设置同步齿轮为斜齿轮的转动机构,从而可以提升可折叠电子设备转动的稳定性,提升用户的使用体验。
综上,本申请通过将第一齿轮、中间齿轮和第二齿轮均设置为斜齿轮,增加了中间齿轮与第一齿轮及第二齿轮的重合度,从而增加了同步齿轮传动的稳定性,提升转动机构转动的稳定性。并且,通过将第一齿轮、中间齿轮和第二齿轮设为斜齿轮,还能防止齿根发生断裂,提高转动机构的抗冲击能力与承载能力,提升转动机构的耐用性。同时,同步齿轮的重合度增加之后,在满足连续传动的条件下,可根据实际应用场景适当增大齿轮模数,减小齿轮的齿数,从而可以减小齿轮的直径,减小转动机构在折叠状态的厚度,实现可折叠电子设备的轻薄化。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的可折叠电子设备在第一种状态下的结构示意图;
图2是本申请实施例提供的可折叠电子设备在第二种状态下的结构示意图;
图3是本申请实施例提供的可折叠电子设备在第三种状态下的结构示意图;
图4是图3所示可折叠电子设备的分解结构示意图;
图5是图4所示可折叠电子设备中的转动机构的结构示意图;
图6是图5所示转动机构的分解结构示意图;
图7是图6所述转动机构中的固定基座的分解结构示意图;
图8是图7所示固定基座的部分放大结构示意图;
图9是图6所示转动机构中第一转动组件中的固定板的放大结构示意图;
图10是图6所示转动机构中的第一转动组件的主摆臂的结构示意图;
图11是图6所示转动机构中第一转动组件1的副摆臂的放大结构示意图;
图12是图5所述转动机构处于展平状态的部分结构示意图;
图13是图12所示转动机构处于折叠状态的部分结构示意图;
图14是图6所示转动机构中的第一同步组件的结构示意图;
图15是图14所示第一同步组件的部分放大结构示意图;
图16是图14所示第一同步组件在另一种实施方式中的部分结构示意图;
图17是图14所示第一同步组件中的部分结构示意图;
图18是图5所示转动机构处于展平状态的部分结构示意图;
图19是图5所示转动机构处于折叠状态的部分结构示意图;
图20是图6所示转动机构中的压板组件的部分分解结构示意图;
图21是图20所示压板组件在另一角度的分解结构示意图;
图22是图5所示转动机构处于折叠状态的剖面图;
图23是图6所示转动机构中的浮板的放大结构示意图;
图24是图5所示转动机构的部分结构示意图;
图25是图5所示转动机构处于展平状态的剖面结构示意图;
图26是图5所示转动机构处于折叠状态的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
随着科技的发展,电子设备(如手机、平板电脑等)的外观(ID)形态有从直板机往折叠机发展的趋势。折叠机在打开状态下具有大面积屏幕,充分满足了消费者的视觉体验,在闭合状态下体积小,便于携带。现有技术中的折叠机,大多通过同步机构中的同步齿轮513实现同步运动。然而,现有的同步齿轮513大多为直齿结构,传动平稳性差。本申请提供的转动机构100采用斜齿轮代替直齿轮,能够提升转动机构100的转动平稳性,从而可以提升用户的使用体验。
请参阅图1至图3,图1是本申请实施例提供的可折叠电子设备500在第一种状态下的结构示意图,图2是本申请实施例提供的可折叠电子设备500在第二种状态下的结构示意图,图3是本申请实施例提供的可折叠电子设备500在第三种状态下的结构示意图。
为了便于描述,将可折叠电子设备500的宽度方向定义为X方向,将可折叠电子设备500的长度方向定义为Y方向,将可折叠电子设备500的厚度方向定义为Z方向。X方向、Y方向和Z方向两两相互垂直。
可折叠电子设备500包括但不限于手机(cellphone)、笔记本电脑(notebook computer)、平板电脑(tablet personal computer)、膝上型电脑(laptop computer)、个人数字助理(personal digital assistant)、可穿戴式设备(wearable device)或车载设备(mobile device)等。本申请实施例中,以可折叠电子设备500为手机为例进行说明。
图1所示可折叠电子设备500处于折叠状态,图2所示可折叠电子设备500处于半展开状态,图3所示可折叠电子设备500处于展平状态。其中,图2所示可折叠电子设备500的展开角度α为90度,图3所示可折叠电子设备500的展开角度β为180度。
需要说明的是,本申请实施例举例说明的角度均允许存在少许偏差。例如,图2所示可折叠电子设备500的展开角度α为90度是指,α可以为90度,也可以大约为90度,比如80度、85度、95度或100度等。图3所示可折叠电子设备500的展开角度β为180度是指,β可以为180度,也可以大约为180度,比如170度、175度、185度和190度等。后文中举例说明的角度可做相同理解。
本申请实施例所示可折叠电子设备500为可发生一次折叠的电子设备。在其他一些实施例中,可折叠电子设备500也可以为可发生多次(两次以上)折叠的电子设备。此时,可折叠电子设备500可以包括多个部分,相邻两个部分可相对靠近折叠至可折叠电子设备500处于折叠状态,相邻两个部分可相对远离展开至可折叠电子设备500处于展平状态。
请参阅图4,图4是图3所示可折叠电子设备500的分解结构示意图。
可折叠电子设备500包括折叠装置200和显示屏300,显示屏300安装于折叠装置200。显示屏300包括显示面340和安装面350,显示面340和安装面350相对设置。显示面340用于显示文字、图像和视频等。显示屏300包括第一部分310、第二部分320和可折叠部分330。可折叠部分330位于第一部分310和第二部分320之间,可折叠部分330可以沿Y方向发生弯折。第一部分310、第二部分320和可折叠部分330共同构成显示屏300。本实施例中,显示屏300采用柔性显示屏,例如,有机发光二极管(organic light-emitting diode,OLED)显示屏,有源矩阵有机发光二极体或主动矩阵有机发光二极体(active-matrix organic light-emitting diode,AMOLED)显示屏,迷你发光二极管(mini organic lightemitting diode)显示屏,微型发光二极管(micro organic light-emitting diode)显示屏,微型有机发光二极管(micro organic light-emitting diode)显示屏,量子点发光二极管(quantum dot light emitting diodes,QLED)显示屏。
折叠装置200包括第一壳体210、第二壳体220和转动机构100,第一壳体210设有第一容置槽230,第二壳体220设有第二容置槽240,第一容置槽230和第二容置槽240连通形成转动机构100的容置槽。转动机构100安装于容置槽,并与第一壳体210和第二壳体220固定连接,以实现第一壳体210和第二壳体220之间的转动连接。显示屏300安装于 折叠装置200,且安装面350与折叠装置200固定连接。具体的,第一壳体210承载显示屏300的第一部分310,第二壳体220承载第二部分320。换言之,第一部分310安装于第一壳体210,第二部分320安装于第二壳体220。其中,转动机构100与可折叠部分330相对设置。第一壳体210和第二壳体220可通过转动机构100相对转动,使得折叠装置200在折叠状态和展平状态之间相互切换。
结合图1,第一壳体210和第二壳体220通过转动机构100相对转动,通过第一壳体210和第二壳体220相对靠近带动显示屏300折叠,以使可折叠电子设备500折叠。当可折叠电子设备500处于折叠状态时,显示屏300的可折叠部分330发生弯折,第一部分310和第二部分320相对设置。此时,显示屏300处于第一壳体210和第二壳体220之间,可大大降低显示屏300被损坏的概率,实现对显示屏300的有效保护。
请一并参阅图2和图4,第一壳体210和第二壳体220通过转动机构100相对转动,通过第一壳体210和第二壳体220相对远离带动显示屏300展开,以使可折叠电子设备500展开至半展开状态。当可折叠电子设备500处于半展开状态时,第一壳体210和第二壳体220展开至夹角为α,第一部分310和第二部分320相对展开,并带动可折叠部分330展开。此时,第一部分310和第二部分320之间的夹角为α。本实施例中,α为90度。在其它实施例中,α也可以大约为90度,也可以是80度、85度、95度或100度等。
请一并参阅图3和图4,第一壳体210和第二壳体220通过转动机构100相对转动,通过第一壳体210和第二壳体220相对远离带动显示屏300进一步展开,直至可折叠电子设备500展平。当折叠装置200处于展平状态时,第一壳体210和第二壳体220之间的夹角为β。可折叠部分330展开,第一部分310和第二部分320相对展开。此时,第一部分310、第二部分320和可折叠部分330之间的夹角均为β,显示屏300具有大面积的显示区域,实现可折叠电子设备500的大屏显示,提高用户的使用体验。本实施例中,β为180度。在其它实施例中,β也可以大约为180度,可以是170度、175度、185度和190度等。
需要说明的是,夹角α和夹角β均为第一壳体210和第二壳体220之间的夹角,这里只是为了区分可折叠电子设备500在不同状态下第一壳体210和第二壳体220之间的角度不同。其中,夹角α是指,可折叠电子设备500处于半展开状态下第一壳体210和第二壳体220之间的角度;夹角β是指,可折叠电子设备500处于展平状态下第一壳体210和第二壳体220之间的角度。
请参阅图5和图6,图5是图4所示可折叠电子设备500中的转动机构100的结构示意图,图6是图5所示转动机构100的分解结构示意图。
转动机构100包括固定基座10、转动组件1、同步组件2、压板组件3、浮板80和柔性支撑件70。浮板80安装于固定基座10,且浮板80可相对固定基座10在Z方向移动。柔性支撑件70安装于压板组件3,转动机构100由展平状态转动至折叠状态时,柔性支撑件70可发生弯折,以避让显示屏300。压板组件3与转动组件1滑动且转动连接。转动组件1安装于固定基座10,并可相对固定基座10转动,以使固定基座10与转动组件1转动连接。同步组件2安装于固定基座10,并与转动组件1滑动连接。转动组件1相对固定基座10转动时,带动压板组件3和同步组件2相对固定基座10转动,进而实现转动机构100的转动,并使转动机构100在折叠和展平状态之间相互切换。
为了便于描述,本申请设置对称轴O(如图5所示)。其中,对称轴O与X方向垂直,且对称轴O穿过转动机构100的中心,转动机构100关于对称轴O轴对称。
本实施例中,转动组件1有四个,四个转动组件1分别为第一转动组件101、第二转动组件102、第三转动组件103和第四转动组件104。第一转动组件101、第二转动组件102、第三转动组件103和第四转动组件104沿Y方向依次间隔排布。其中,第一转动组件101位于固定基座10的Y轴负方向一侧,第四转动组件104位于固定基座10的Y轴正方向一侧。在其他实施例中,转动组件1也可以是一个、两个、三个或者四个以上。本申请对转动组件1的数量不做具体限制。
第一转动组件101包括固定板20、主摆臂30和副摆臂40。固定板20包括第一固定板21和第二固定板22,主摆臂30包括第一主摆臂31和第二主摆臂32,副摆臂40包括第一副摆臂41和第二副摆臂42。主摆臂30和副摆臂40均安装于固定基座10,且可相对固定基座10转动。其中,第一固定板21、第一主摆臂31和第一副摆臂41位于固定基座10在X方向的一侧,第二固定板22、第二主摆臂32和第二副摆臂42位于固定基座10在X方向的另一侧。第一主摆臂31与第一固定板21转动连接,第一副摆臂41与第一固定板21滑动连接。第一固定板21相对固定基座10转动时,带动第一主摆臂31和第一副摆臂41相对固定基座10转动。第二主摆臂32与第二固定板22转动连接,第二副摆臂42与第二固定板22滑动连接。第二固定板22相对固定基座10转动时,带动第二主摆臂32和第二副摆臂42相对固定基座10转动。
第二转动组件102与第一转动组件101可以是相同或相似的组件、对称或部分对称的结构、或者不同的结构。本实施例中,第二转动组件102包括第一固定板21A、第二固定板22A、第一副摆臂41A和第二副摆臂42A。第二转动组件102中各个部件的基础结构、部件之间的连接关系、以及部件与组件之外的部件之间的连接关系,均可以参照第一转动组件101的相关设计。第二转动组件102与第一转动组件101在部件的细节结构或位置排布上可以相同,也可以不同。在其他一些实施例中,第二转动组件102也可以包括第一主摆臂和第二主摆臂。第二转动组件102中的第一主摆臂可以与第一转动组件101中的第一主摆臂31结构相同或者相似,第二转动组件102中的第二主摆臂可以与第一转动组件101中的第二主摆臂32结构相同或者相似。本申请对此不做具体限定。
第三转动组件103与第二转动组件102可以是相同或相似的组件、对称或部分对称的结构、或者不同的结构。本实施例中,第三转动组件103的结构与第二转动组件102的结构相同。第三转动组件103包括第一固定板21B、第二固定板22B、第一主摆臂31B和第二主摆臂32B。第一固定板21B相对固定基座10转动时,带动第一主摆臂31B相对固定基座10滑动并转动,第二固定板22B相对固定基座10转动时,带动第二主摆臂32B相对固定基座10滑动并转动。具体的,第三转动组件103的各部件结构、以及各部件与固定基座10之间的连接关系可以参照第一转动组件101的相关描述。
第四转动组件104与第三转动组件103可以是相同或相似的组件、对称或部分对称的结构、或者不同的结构。本实施例中,第四转动组件104的结构与第二转动组件102的结构相同。第四转动组件104包括第一固定板21C、第二固定板22C、第一主摆臂31C和第二主摆臂32C。第一固定板21C相对固定基座10转动时,带动第一主摆臂31C相对固定 基座10滑动并转动,第二固定板22C相对固定基座10转动时,带动第二主摆臂32C相对固定基座10滑动并转动。具体的,第四转动组件104的各部件结构、以及各部件与固定基座10之间的连接关系可以参照第一转动组件101的相关描述。
本实施例中,第二转动组件102中的第一固定板21A、第三转动组件103中的第一固定板21B和第四转动组件104中的第一固定板21C为一体成型结构,并共同构成第三固定板23。第二转动组件102中的第二固定板22A、第三转动组件103中的第二固定板22B和第四转动组件104中的第二固定板22C为一体成型结构,并共同构成第四固定板24。在其他实施例中,第二转动组件102中的第一固定板21A、第三转动组件103中的第一固定板21B和第四转动组件104中的第一固定板21C也可以是分体式结构,第二转动组件102中的第二固定板22A、第三转动组件103中的第二固定板22B和第四转动组件104中的第二固定板22C也可以是分体式结构。
压板组件3包括压板301和压板摆臂302。压板摆臂302与压板301滑动连接。压板301与第一转动组件101中的固定板20、第三固定板23及第四固定板24均滑动连接。压板摆臂302安装于固定基座10,并与固定基座10转动并滑动连接。转动组件1相对固定基座10转动时,第一转动组件101中的固定板、第三固定板23和第四固定板24均相对固定基座10转动,共同带动压板301相对固定基座10转动,且压板301相对固定板20滑动,同时,压板301带动压板摆臂302相对固定基座10转动。
同步组件2安装于固定基座10,并与固定板20滑动连接。本实施例中,同步组件2有两个。在其他实施例中,同步组件2也可以是一个或者三个以上。本实施例中的两个同步组件2分别为第一同步组件201和第二同步组件202。第一同步组件201包括同步件51、阻尼件52和同步摆臂,同步件51与阻尼件52固定连接,并安装于固定基座10内,同步摆臂与阻尼件52固定连接,并与转动组件1滑动连接。转动组件1相对固定基座10转动时,带动同步摆臂转动,并对阻尼件52产生作用力,使阻尼件52产生阻尼力。同时,同步摆臂带动同步件51转动,从而实现转动机构100的同步转动。可折叠电子设备500在转动过程中,阻尼件52可以提供阻尼力,以使用户体验到较佳的阻尼手感,从而提升用户的使用体验。当阻尼力达到一定值时,还实现可折叠电子设备500在预设角度的悬停。
第二同步组件202与第一同步组件201可以是相同或相似的组件、对称或部分对称的结构、或者不同的结构。本实施例中,第二同步组件202的结构与第一同步组件201的结构相同,在这里不做赘述。
请参阅图7和图8,图7是图6所述转动机构100中的固定基座10的分解结构示意图,图8是图7所示固定基座10的部分放大结构示意图。
固定基座10包括下壳体11和上壳体12。下壳体11包括底板111、第一端板112和第二端板113。第一端板112和第二端板113位于底板111在Y方向的相对两侧,并与底板111固定连接。上壳体12安装于下壳体11,并与下壳体11固定连接,且上壳体12与底板111相对设置。本实施例中,上壳体12和下壳体11通过螺栓固定连接。在其他实施例中,上壳体与下壳体也可以通过胶水或者焊接等方式固定连接。
本实施例中,上壳体12由四个子壳体组成。四个子壳体分别为第一子壳体12A、第二子壳体12B、第三子壳体12C和第四子壳体12D。第一子壳体12A、第二子壳体12B、第 三子壳体12C和第四子壳体12D沿Y方向依次间隔排布。其中,第一子壳体12A位于固定基座10的Y轴负方向一侧,第四子壳体12D位于固定基座10的Y轴正方向一侧。本实施例中,四个子壳体为分体式结构。在其他实施例中,四个子壳体也可以是一体成型结构。
第一子壳体12A设有第一转动槽123和第二转动槽124。本实施例中,第一转动槽123和第二转动槽124沿X方向并排设置,且第一转动槽123和第二转动槽124关于对称轴O轴对称。第一转动槽123的底壁为弧形,且第一转动槽123的底壁设有第一滑轨1231。第一滑轨1231为弧形,且第一滑轨1231的弯曲方向与第一转动槽123的底壁的弯曲方向大致相同。第一转动槽123的侧壁设有第二滑轨1232。本实施例中,第二滑轨1232有两个,两个第二滑轨1232在第一转动槽123的相对两个侧壁对称设置。第二滑轨1232的弯曲方向与第一滑轨1231的弯曲方向一致。每一第二滑轨1232包括滑轨底壁1233和凸块1234。凸块1234连接于第一转动槽123的侧壁,并与滑轨底壁1233相对且间隔设置。本实施例中,第一转动槽123的底壁还设有第一镂空部1235,第一镂空部1235贯穿第一转动槽123的底壁,并与凸块1234相对设置。第一转动槽123用于第一转动组件101中的第一主摆臂31,第一主摆臂31可沿第一转动槽123转动并滑动。
本实施例中,通过在第一转动槽123设置第一滑轨1231和两个第二滑轨1232,并且,第一主摆臂31的滑动轨迹由第一滑轨1231和两个第二滑轨1232来限定,从而可以降低对第一转动槽123的精度要求,降低加工成本。并且,第一滑轨1231和两个第二滑轨1232呈分布式排列,降低了第一子壳体12A的加工难度,同时,通过设置第一镂空部1235,使得第一子壳体12A可以通过模具成型的方式制备,简化了上壳体12的加工工艺,避免倒扣问题。此外,本实施例中,通过在第一转动槽123的侧壁设置凸块1234,可以对第一主摆臂31起到限位作用,能够避免第一主摆臂31脱离第一转动槽123。
本实施例中,第二转动槽124的结构与第一转动槽123的结构相同。第二转动槽124包括第三滑轨1241和两个第四滑轨1242。第三滑轨1241设于第二转动槽124的底壁,两个第四滑轨1242分别设于第二转动槽124的相对两个侧壁。第二转动槽124用于安装第二主摆臂32,第二主摆臂32可沿第二转动槽124转动并滑动。
第一子壳体12A还设有第三转动槽125和第四转动槽126。第三转动槽125和第四转动槽126沿X方向并排设置,且第三转动槽125和第四转动槽126关于对称轴O轴对称。其中,第三转动槽125与第一转动槽123沿Y方向并排设置,且第三转动槽125位于第一转动槽123的Y轴负方向。第四转动槽126与第二转动槽124沿Y方向并排设置,且第四转动槽126位于第二转动槽124的Y轴负方向。
第三转动槽125的结构与第一转动槽123的结构大致相同。第三转动槽125包括第五滑轨1251和两个第六滑轨1252。第五滑轨1251设于第三转动槽125的底壁,两个第六滑轨1252分别设于第三转动槽125的相对两个侧壁。第三转动槽125用于安装压板摆臂。压板摆臂可沿第三转动槽125转动并滑动。第四转动槽126包括第七滑轨1261和两个第八滑轨1262。第七滑轨1261设于第四转动槽126的底壁,两个第八滑轨1262分别设于第四转动槽126的相对两个侧壁。第四转动槽126用于安装压板摆臂。压板摆臂可沿第四转动槽126转动并滑动。
固定基座10还设有第一转动轴127和第二转动轴128。第一转动轴127包括第一固定 部1271和第一延伸部1272。第一固定部1271与第一延伸部1272固定连接。本实施例中,第一固定部1271至少部分为扁轴段,第一延伸部1272为圆轴。第一固定部1271和第一延伸部1272的轴线方向均与Y方向平行,且第一固定部1271的轴线和第一延伸部1272的轴线错位设置。第一转动轴127安装于第一子壳体12A,并与第三转动槽125沿Y方向间隔排列,且第一转动轴127可相对第一子壳体12A转动。其中,第一固定部1271位于第一子壳体12A的内侧,第一延伸部1272伸出第一子壳体12A外。第一固定部1271用于与第一转动组件101中的第一副摆臂41固定连接,第一延伸部1272用于与浮板80连接。第一副摆臂41相对固定基座10转动时,可带动第一固定部1271转动,并带动第一延伸部1272转动,以带动浮板80在Z方向移动。
第二转动轴128的结构与第一转动轴127的结构相同。第二转动轴128包括第二固定部1281和第二延伸部1282。第二固定部1281与第二延伸部1282固定连接。第二转动轴128与第一子壳体12A转动连接,并与第四转动槽126沿Y方向间隔排列,且第二转动轴128和第一转动轴127关于对称轴O轴对称。第二固定部1281用于与第一转动组件101中的第二副摆臂42固定连接,第二延伸部1282用于与浮板80连接。第二副摆臂42相对固定基座10转动时,可带动第二固定部1281转动,并带动第二延伸部1282转动,以与第一延伸部1272共同带动浮板80在Z方向移动。
第二子壳体12B与第一子壳体12A可以是相同或相似的组件、对称或部分对称的结构、或者不同的结构。本实施例中,第二子壳体12B包括第三转动槽125B、第四转动槽126B、第一转动轴127B和第二转动轴128B。第二子壳体12B中各个部件的基础结构、部件之间的连接关系、以及部件与组件之外的部件之间的连接关系,均可以参照第一子壳体12A的相关设计。第二子壳体12B与第一子壳体12A在部件的细节结构或位置排布上可以相同,也可以不同。第二子壳体12B中的第三转动槽125B和第四转动槽126B用于安装压板摆臂。第二子壳体12B中的第一转动轴127B用于与第二转动组件102中的第一副摆臂41固定连接,第二转动轴128B用于与第二副摆臂42固定连接。
第三子壳体12C与第一子壳体12A可以是相同或相似的组件、对称或部分对称的结构、或者不同的结构。本实施例中,第三子壳体12C包括第一转动槽123C、第二转动槽124C、第三转动槽125C和第四转动槽126C。第三子壳体12C中各个部件的基础结构、部件之间的连接关系、以及部件与组件之外的部件之间的连接关系,均可以参照第一子壳体12A的相关设计。第三子壳体12C中的第一转动槽123C用于与第三转动组件103中的第一主摆臂31转动并滑动连接,第二转动槽124C用于与第二主摆臂32转动并滑动连接。第三子壳体12C中的第三转动槽125C和第四转动槽126C用于安装压板摆臂。
第四子壳体12D与第一子壳体12A可以是相同或相似的组件、对称或部分对称的结构、或者不同的结构。本实施例中,第四子壳体12D包括第一转动槽123D、第二转动槽124D、第三转动槽125D和第四转动槽126D。第四子壳体12D中各个部件的基础结构、部件之间的连接关系、以及部件与组件之外的部件之间的连接关系,均可以参照第一子壳体12A的相关设计。第四子壳体12D中的第一转动槽123D用于与第四转动组件104中的第一主摆臂31转动并滑动连接,第二转动槽124D用于与第二主摆臂32转动并滑动连接。第四子壳体12D中的第三转动槽125D和第四转动槽126D用于安装压板摆臂。
请参阅图9,图9是图6所示转动机构100中第一转动组件101中的固定板20的放大结构示意图。
第一转动组件101中的固定板20包括第一固定板21和第二固定板22。第一固定板21为具有厚度的长条形板状结构。第一固定板21包括第一上表面2111、第一下表面2112、第一侧面2113、第二侧面2114、第一端面2115和第二端面2116。第一上表面2111和第一下表面2112相对设置,第一侧面2113与第二侧面2114相对设置,第一端面2115与第二端面2116相对设置。第一侧面2113和第二侧面2114均连接与第一上表面2111和第一下表面2112之间,第一端面2115和第二端面2116均连接第一侧面2113和第二侧面2114之间。
第一固定板21设有第一缺口212、第二缺口213、第一滑槽214和第一导槽215。第一缺口212和第二缺口213均设于第二侧面2114,且第一缺口212和第二缺口213均贯穿第一上表面2111和第一下表面2112。第一缺口212的内壁固定有第一轴套216,第一轴套216的轴心延伸方向与Y方向平行。第一轴套216用于与第一转动组件101中的第一主摆臂31转动连接。第二缺口213用于避让压板组件3。本实施例中,第一导槽215有两个,两个第一导槽215均为弧形,且凹设于第一上表面2111,并贯穿第一侧面2113。其中一个第一导槽215位于第一端面2115的一侧。另一个第一导槽215位于靠近第二端面2116的一侧。第一导槽215用于与压板组件3滑动连接。第一滑槽214位于第一缺口212和靠近第一端面2115的第一导槽215之间,并与第一缺口212及第一导槽215间隔设置,且第一滑槽214贯穿第一侧面2113和第二侧面2114。第一滑槽214用于与第一转动组件101中的第一副摆臂41滑动连接。
第二固定板22与第一固定板21为镜像对称结构,且第二固定板22与第一固定板21关于对称轴O轴对称。第二固定板22包括围合形成第二固定板22外表面的第二上表面2211、第二下表面2212、第三侧面2213、第四侧面2214、第三端面2215和第四端面2216。第二固定板22设有第三缺口222、第四缺口223、第二滑槽224和第二导槽225。第三缺口222的结构与第一缺口212的结构相同,且第三缺口222的内壁设有第二轴套226。第四缺口223的结构与第二缺口213的结构相同,第二导槽225的结构与第一导槽215的结构相同,第二滑槽224的结构与第一滑槽214的结构相同。第二轴套226用于与第一转动组件101中的第二主摆臂32转动连接,第四缺口223用于避让压板组件3,第二导槽225用于与压板组件3滑动连接,第二滑槽224用于与第一转动组件101中的第二副摆臂42滑动连接。
第二转动组件102、第三转动组件103和第四转动组件104中的固定板与第一转动组件101中的固定板的结构相似,其具体结构可根据不同转动组件1中的摆臂的种类做适当调整。本实施例中,第三固定板23还设有第三滑槽231和第五滑槽232,第四固定板24设有第四滑槽241和第六滑槽242,第三滑槽231和第四滑槽241用于安装第一阻尼组件,第五滑槽232和第六滑槽242用于安装第二阻尼组件。
请参阅图10,图10是图6所示转动机构100中的第一转动组件101的主摆臂的结构示意图。其中,图10显示了转轴的结构。
第一转动组件101中的主摆臂包括第一主摆臂31和第二主摆臂32。第一主摆臂31包 括第一转动体311、第一摆动体312和第一转轴313。第一转动体311为圆弧形板状结构。第一转动体311包括第一滑动部3111和两个第二滑动部3112。两个第二滑动部3112分别位于第一转动体311在X方向的相对两侧,第一滑动部3111位于两个第二滑动部3112之间。第一转动体311的结构与固定基座10的第一转动槽123的结构相匹配,第一滑动部3111的结构与第一滑轨1231的结构相匹配,第二滑动部3112的结构与第二滑轨1232的结构相匹配。第一摆动体312呈板状结构。第一摆动体312的一端与第一转动体311固定连接,另一端与第一转轴313固定连接。第一转轴313的轴心延伸方向与Y方向平行。第一主摆臂31安装于第一转动槽123,用于与固定基座10转动并滑动连接,并与第一固定板21转动连接。
第二主摆臂32与第一主摆臂31的结构相同。第二主摆臂32包括第二转动体321、第二摆动体322和第二转轴323。第二转动体321设有第三滑动部3211和两个第四滑动部3212。第二转动体321的结构与第一转动体311的结构相同,第二摆动体322的结构与第一摆动体312的结构相同,第二转轴323的结构与第一转轴313的结构相同。第二主摆臂32安装于固定基座10的第二转动槽124,用于与固定基座10转动并滑动连接,并与第二固定板22转动连接。
第三转动组件103中的主摆臂和第四转动组件104中的主摆臂的结构与第一转动组件101中的主摆臂的结构相同或者相似,在这里不做赘述。
请参阅图11,图11是图6所示转动机构100中第一转动组件101的副摆臂的放大结构示意图。
第一转动组件101的副摆臂40包括第一副摆臂41和第二副摆臂42。第一副摆臂41包括第一副轴座411和第一副摆动体412。第一副摆动体412为板状结构。第一副轴座411与第一副摆动体412固定连接,且第一副轴座411的轴心延伸方向与Y方向平行。第一副摆臂41用于与固定基座10转动连接,并与第一固定板21滑动且转动连接。第二副摆臂42和第一副摆臂41的结构相同。第二副摆臂42包括第二副轴座421和第二副摆动体422。第二副轴座421的结构与第一副轴座411的结构相同,第二副摆动体422的结构与第一副摆动体412的结构相同。第二副摆臂42用于与固定基座10动连接,并与第二固定板22滑动且转动连接。
请一并参阅图12和图13,图12是图5所述转动机构100处于展平状态的部分结构示意图,图13是图12所示转动机构100处于折叠状态的部分结构示意图。
第一固定板21、第一主摆臂31和第一副摆臂41位于固定基座10的一侧,即位于X轴负方向上,第二固定板22、第二主摆臂32和第二副摆臂42位于固定基座10的另一侧,即位于X轴正方向上。其中,第一主摆臂31的第一转动体311安装于第一转动槽123内,第一滑动部3111安装于第一滑轨1231,第二滑动部3112安装于第二滑轨1232。第一转动体311可在第一转动槽123内沿着第一滑轨1231和第二滑轨1232滑动并转动。第一转轴313安装于第一固定板21的第一轴套216内,且第一转轴313可在第一轴套216内转动。第一副摆臂41和第一主摆臂31沿Y方向间隔排列。第一副轴座411安装于第一转动轴127,第一副摆动体412安装于第一滑槽214内,且可在第一滑槽214内滑动并转动。第一固定板21与第一壳体210固定连接。
第二主摆臂32与第一主摆臂31沿X方向并排设置,第二副摆臂42与第一副摆臂41沿X方向并排设置。第二主摆臂32的第二转动体321安装于第二转动槽124内,第三滑动部3211安装于第三滑轨1241,第四滑动部3212安装于第四滑轨1242。第二转动体321可在第四转动槽126内沿着第三滑轨1241和第四滑轨1242滑动并转动。第二转轴323安装于第二固定板22的第二轴套226内,且第二转轴323可在第二轴套226内转动。第二副摆臂42和第二主摆臂32沿Y方向间隔排列。第二副轴座421装于第二转动轴128,第二副摆动体422安装于第二滑槽224内,且可在第二滑槽224内滑动并转动。第二固定板22与第二壳体220固定连接。
第一壳体210相对固定基座10转动可带动第一固定板21相对固定基座10转动,从而带动第一主摆臂31转动,并使第一转轴313在第一轴套216内转动,第一转动体311在第一转动槽123内转动。同时,第一固定板21还带动第一副摆臂41转动,并使第一副摆动体412在第一滑槽214内滑动,第一副轴座411带动第一转动轴127相对固定基座10转动。第二壳体220相对固定基座10转动可带动第二固定板22相对固定基座10转动,从而带动第二主摆臂32转动,并使第二转轴323在第二轴套226内转动,第二转动体321在第二转动槽124内转动。同时,第二固定板22还带动第二副摆臂42转动,并使第二副摆动体422在第二滑槽224内滑动,第二副轴座421相对第二转动轴128转动。其中,第一固定板21的转动方向与第二固定板22的转动方向相反,第一主摆臂31的转动方向与第二主摆臂32的转动方向相反,第一副摆臂41的转动方向与第二副摆臂42的转动方向相反。
例如,转动机构100从展平状态切换至折叠状态时,第一固定板21、第一主摆臂31和第一副摆臂41顺时针旋转,第二固定板22、第二主摆臂32和第二副摆臂42逆时针旋转。转动机构100从折叠状态切换至展平状态时,第一固定板21、第一主摆臂31和第一副摆臂41逆时针旋转,第二固定板22、第二主摆臂32和第二副摆臂42顺时针旋转。
本实施例中,通过设置第一固定板21和第二固定板22,并使第一固定板21与第一壳体210固定连接,第二固定板22与第二壳体220固定连接,从而可以增加固定板20与壳体的连接强度,提升可折叠电子设备500转动的稳定性。并且,通过设置第一主摆臂31和第二主摆臂32,从而可以实现第一固定板21和第二固定板22相对固定基座10转动。并且,通过设置第一副摆臂41,第一固定板21相对固定基座10转动时,带动第一副摆臂41与第一主摆臂31共同转动,以实现第一固定板21相对固定基座10转动,从而可以增加第一固定板21转动的稳定性;通过设置第二副摆臂42,第二固定板22相对固定基座10转动时,带动第二副摆臂42与第二主摆臂32共同转动,以实现第二固定板22相对固定基座10转动,从而可以增加第二固定板22转动的稳定性。
请参阅图14和图15,图14是图6所示转动机构100中的第一同步组件201的结构示意图,图15是图14所示第一同步组件201的部分放大结构示意图。
第一同步组件201包括同步件51、阻尼件52、第一同步摆臂53和第二同步摆臂54。第一同步摆臂53和第二同步摆臂54均与阻尼件52铰接,且第一同步摆臂53和第二同步摆臂54分别位于阻尼件52在X方向的相对两侧。同步件51与第一同步摆臂53和第二同步摆臂54固定连接。第一同步摆臂53转动时,带动同步件51转动,从而带动第二同步摆臂54转动,以实现第一同步摆臂53和第二同步摆臂54的同步运动。并且,第一同步摆臂 53和第二同步摆臂54转动时,抵持阻尼件52,使阻尼件52产生阻尼力,从而为转动机构100的转动提供阻尼手感。
同步件51包括第一安装板511、第二安装板512、同步齿轮513和转动杆514。第一安装板511和第二安装板512沿Y方向并排且间隔设置。同步齿轮513安装于第一安装板511和第二安装板512之间,并与第一安装板511及第二安装板512转动连接。转动杆514与同步齿轮513固定连接。
同步齿轮513包括第一齿轮515、第二齿轮516和中间齿轮519。第一齿轮515、中间齿轮519和第二齿轮516沿X方向并排安装于第一安装板511和第二安装板512之间,并与第一安装板511及第二安装板512转动连接,且第一齿轮515、中间齿轮519和第二齿轮516的轴向均与Y方向平行。中间齿轮519位于第一齿轮515和第二齿轮516之间,并与第一齿轮515和第二齿轮516啮合。本实施例中,中间齿轮519为两个,两个中间齿轮519分别为第三齿轮517和第四齿轮518。第一齿轮515转动时,带动中间齿轮519转动,从而带动第二齿轮516转动。其中。第一齿轮515和第二齿轮516的转动方向相反。
第一齿轮515的外周面设有多个第一齿5151,多个第一齿5151间隔且平行排列。本实施例中,第一齿5151分布于第一齿轮515的部分外周面。也就是说,以第一齿轮515的轴线所在面为界限,第一齿轮515的部分外周面设有第一齿5151,部分外周面未设有第一齿5151。在其他实施例中,第一齿5151绕着第一齿轮515的轴线也可以分布于第一齿轮515的整个外周面,也就是,第一齿5151环绕第一齿轮515的外周面。第一齿5151为斜齿。第一齿5151的切线方向与第一齿轮515的轴线方向相交。本实施例中,第一齿5151为螺旋型,且第一齿5151的螺旋角度为15°~45°。换言之,第一齿5151的切线方向与第一齿轮515的轴线方向之间的夹角为15°~45°。可以理解的是,第一齿轮515即为斜齿轮。这里所说的“斜齿轮”是指齿的延伸方向与轴向之间的夹角大于0°的齿轮。
第二齿轮516的外周面设有多个第二齿5161。多个第二齿5161的形状为螺旋型。第二齿5161与第一齿5151的不同之处在于,第二齿5161的螺旋方向与第一齿5151的螺旋方向相反。第一齿轮515和第二齿轮516分别位于同步齿轮513在X方向的相对两侧,且第一齿5151和第二齿5161相对设置。
第三齿轮517的外周面设有多个第三齿5171。第三齿5171的形状为螺旋型。第三齿5171与第二齿5161的不同之处在于,第三齿5171环绕第三齿轮517的外周面。第四齿轮518的外周面设有多个第四齿5181。多个第四齿5181的形状为螺旋型。第四齿5181与第三齿5171的不同之处在于,第四齿5181的螺旋方向与第三齿5171的螺旋方向相反。
第一齿轮515、第三齿轮517、第四齿轮518和第二齿轮516沿X方向依次并排且平行设置。第一齿轮515与第三齿轮517啮合,第三齿轮517与第四齿轮518啮合,第四齿轮518与第二齿轮516啮合。第一齿5151与第四齿5181的螺旋方向相同,第一齿轮515与第四齿轮518的旋转方向相同。第二齿轮516与第三齿轮517的螺旋方向相同,且第二齿轮516与第三齿轮517的旋转方向相同。第一齿轮515旋转时,通过第一齿5151带动第三齿轮517旋转,然后第三齿轮517通过第三齿5171带动第四齿轮518旋转,第四齿轮518再通过第四齿5181带动第二齿轮516旋转,从而实现第一齿轮515、第二齿轮516、第三齿轮517和第四齿轮518的同步旋转。
本实施例中,相邻两个齿轮之间的重合度大于1.2。也就是,第一齿轮515与第三齿轮517之间的重合度大于1.2,第三齿轮517和第四齿轮518之间的重合度大于1.2,第二齿轮516与第四齿轮518之间的重合度大于1.2。
需要说明的是,重合度εγ的计算公式为:εγ=εαβ。其中,εα为端面重合度,εβ为纵向重合度。端面重合度εα的计算公式为:εα=1/2π[z1(tanαat1-tanα’t)±z2(tanαat2-tanα’t)];纵向重合度εβ的计算公式为:εβ=bsinβ/πmn。其中,z1和z2为齿轮的齿数,αat1和αat1为齿顶圆压力角,α’t为端面分度圆啮合角,β为螺旋角,b为齿轮宽度;mn为法面模数。
本实施例中,通过将同步齿轮513设为斜齿轮,增加了同步齿轮513的纵向重合度εβ,从而可以增加相邻两个齿轮之间的重合度εγ,进而能够增加同步齿轮513转动的稳定性,提升同步组件2传动的平稳性,以及转动机构100转动的稳定性。并且,还能够提高同步组件2的抗冲击能力与承载能力,延长同步组件2的寿命,提升转动机构100的耐用性。同时,本实施例中,通过调整螺旋角β与齿轮宽度b,可以增加同步齿轮513的纵向重合度εβ以及重合度εγ,从而可以使同步齿轮513中更多的齿参与啮合,进一步增加同步齿轮513转动的稳定性,防止齿根发生断裂。
本实施例中,同步齿轮513的纵向重合度εβ增加之后,在满足连续传动的条件下,可根据实际应用场景适当降低对端面重合度εα的要求,例如,增大齿轮模数,减小齿轮的齿数,从而可以减小齿轮的直径,减小转动机构100在折叠状态的厚度,实现可折叠电子设备500的轻薄化。同时,增大齿轮模数,减小齿轮的齿数还有利于提高齿根的强度。此外,本实施例中的同步齿轮513还可以为矮齿,通过调整齿轮的螺旋角,减小根切的最小齿数,从而增大齿轮模数,提高齿根的抗弯能力,提升同步齿轮513的耐用性。
其中,同步摆臂的中心距离a=(mnz1+mnz2)/cosβ。本实施例中,通过调节齿轮的螺旋角β,可以实现对同步摆臂的中间距离a的调节。
转动杆514包括第一转动杆5141和第二转动杆5142。第一转动杆5141与第一齿轮515固定连接,并穿过第二安装板512朝向远离第二安装板512方向延伸,且第一转动杆5141的延伸方向与Y方向平行。第二转动杆5142与第二齿轮516固定连接,并穿过第二安装板512朝向远离第二安装板512方向延伸,且第二转动杆5142与第一转动杆5141平行且间隔设置。本实施例中,第一转动杆5141和第二转动杆5142均为扁轴,以实现第一转动杆5141与第一同步摆臂53的固定连接,第二转动杆5142与第二同步摆臂54的固定连接。
请参阅图16,图16是图14所示第一同步组件201在另一种实施方式中的部分结构示意图。
本实施方式与图15所示实施方式的不同之处在于,本实施方式中,第一齿轮515、第二齿轮516、第三齿轮517和第四齿轮518的齿均为“V”字型齿。其中,第一齿轮515外周设有多个间隔且平行排列的第一齿5151。每一第一齿5151包括一个第一子齿5152和一个第二子齿5153。多个第一子齿5152平行且间隔设置。第一子齿5152具有第一螺旋角,第一螺旋角为15°~45°。多个第二子齿5153平行且间隔设置。第二子齿5153具有第二螺旋角,第二螺旋角为15°~45°。每一第一子齿5152与对应的第二子齿5153固定连接,并形成“V”字型结构,且第一子齿5152和第二子齿5153相对第一齿轮515的径向对称设置。
第二齿轮516的外周面设有第二齿5161。第二齿5161的形状与第一齿5151的形状相 似。第二齿5161包括第三子齿5162和第四子齿5163。第三子齿5162与第一子齿5152相对,且第三子齿5162的螺旋方向与第一子齿5152的螺旋方向相反,第四子齿5163与第二子齿5153相对,且第四子齿5163的螺旋方向与第二子齿5153的螺旋方向相反。
第三齿轮517的外周面设有第三齿5171。第三齿5171包括第五子齿5172和第六子齿5173。第三齿5171的结构与第一齿5151的结构相同。第三齿5171环绕第三齿轮517的外周面。第四齿轮518的外周面设有第四齿5181。第四齿5181包括第七子齿5182和第八子齿5183。第四齿5181的结构与第三齿5171的结构相似。第四齿5181与第三齿5171的不同之处在于,第七子齿5182的螺旋方向与第五子齿5172的螺旋方向相反,第八子齿5183的螺旋方向与第六子齿5173的螺旋方向相反。
第一齿轮515、第三齿轮517、第四齿轮518和第二齿轮516沿X方向依次并排且平行设置。第一齿轮515与第三齿轮517啮合,第一子齿5152与第五子齿5172啮合,第二子齿5153与第六子齿5173啮合;第三齿轮517与第四齿轮518啮合,第五子齿5172与第七子齿5182啮合,第六子齿5173与第八子齿5183啮合;第四齿轮518与第二齿轮516啮合,第七子齿5182与第三子齿5162啮合,第八子齿5183与第四子齿5163啮合。第一齿轮515旋转时,通过第一子齿5152带动第五子齿5172运动,第二子齿5153带动第六子齿5173运动,从而带动第三齿轮517旋转;第三齿轮517旋转时,通过第五子齿5172带动第七子齿5182运动,第六子齿5173带动第八子齿5183运动,从而带动第四齿轮518旋转;第四齿轮518旋转时,通过第七子齿5182带动第三子齿5162运动,第八子齿5183带动第四子齿5163运动,从而带动第二齿轮516旋转,进而实现第一齿轮515、第二齿轮516、第三齿轮517和第四齿轮518的同步旋转。
需要说明的是,第一齿轮515带动第三齿轮517转动时,第一子齿5152和第二子齿5153受到的作用力在Y方向的分力的方向相反,从而可以相互抵消,减小第一齿轮515的轴向力。同样,第二齿轮516中的第三子齿5162和第四子齿5163在Y方向上受到的作用也可以相互抵消,减小第二齿轮516的轴向力。第三齿轮517中的第五子齿5172和第六子齿5173在Y方向上受到的作用也可以相互抵消,以减小第三齿轮517的轴向力。第四齿轮518中的第七子齿5182和第八子齿5183在Y方向上受到的作用也可以相互抵消,以减小第四齿轮518的轴向力。
本实施例中,通过将同步齿轮513的齿设为“V”字型,能够减小同步齿轮513转动时的轴向力,从而可以进一步增加同步齿轮513转动的稳定性,提升同步组件2传动的平稳性,以及转动机构100转动的稳定性。
请参阅图17,图17是图14所示第一同步组件201中的部分结构示意图。
第一同步摆臂53包括第一同步摆动体531、第一同步轴座532、第一铰接体533和第三铰接体534。第一同步轴座532连接于第一同步摆动体531的一端。第一同步轴座532内设有第一转动孔535,第一转动孔535的延伸方向均与Y方向平行。第一同步轴座532设有第一收容缺口536。第一收容缺口536位于第一同步轴座532的中部。第一铰接体533和第三铰接体534均与第一同步轴座532固定连接,且朝向第一收容缺口536。第一铰接体533包括凸起和多个凹部(图未标),多个凸起和多个凹部沿第一转动孔535周向交替排布。第三铰接体534的结构与第一铰接体533的结构相同。
第二同步摆臂54与第一同步摆臂53的结构相同,且第二同步摆臂54和第一同步摆臂53为对称结构。第二同步摆臂54包括第二同步摆动体541、第二同步轴座542、第二铰接体543和第四铰接体544。第二同步轴座542内设有第二转动孔545,且第二转动孔545的延伸方向均与Y方向平行。第二同步轴座542设有第二收容缺口546。第二铰接体543和第四铰接体544均与第二同步轴座542固定连接,且朝向第二收容缺口546。第二铰接体543和第四铰接体544的结构均与第一铰接体533的结构相同。
阻尼件52包括第一挡板521、第二挡板522和阻尼弹簧523。第一挡板521包括第一本体524、第一铰接座525和第二铰接座526。第一铰接座525和第二铰接座526在第一本体524的表面间隔设置,且第一铰接座525的结构与第一铰接体533的结构相匹配,第二铰接座526的结构与第二铰接体543的结构相匹配。第二挡板522的结构与第一挡板521的结构相同。第二挡板522包括第二本体527、第三铰接座528和第四铰接座529。第三铰接座528的结构与第三铰接体534的结构相匹配,第四铰接座529的结构与第四铰接体544的结构相匹配。第一挡板521和第二挡板522沿Y方向间隔且平行设置,其中,第一挡板521背向第一铰接座525的表面与第二挡板522背向第三铰接座528的表面相对。本实施例中,阻尼弹簧523有四个。在其他实施例中,阻尼弹簧523也可以是两个、三个或者五个以上。阻尼弹簧523安装于第一挡板521和第二挡板522之间,并与第一挡板521和第二挡板522固定连接。
请一并参阅图18和图19,图18是图5所示转动机构100处于展平状态的部分结构示意图,图19是图5所示转动机构100处于折叠状态的部分结构示意图。
第一同步组件201安装于固定基座10,第一同步摆臂53和第二同步摆臂54分别位于固定基座10在X方向的相对两侧,且第一同步摆动体531安装于第二转动组件102中的第三固定板23的第三滑槽231,且第一同步摆动体531可沿第三滑槽231滑动,第二同步摆动体541安装于第四固定板24的第四滑槽241,且第二同步摆动体541可沿第四滑槽241滑动。阻尼件52安装于固定基座10内,并位于第一同步摆臂53和第二同步摆臂54之间。第一铰接体533与第一铰接座525铰接,第三铰接体534与第三铰接座528铰接,第二铰接体543与第二铰接座526铰接,第四铰接体544与第四铰接座529铰接。同步件51安装于固定基座10,第一安装板511和第二安装板512与固定基座10固定连接。第一转动杆5141位于第一转动孔535内,并与第一同步轴座532固定连接,第二转动杆5142位于第二转动孔545内,并与第二同步轴座542固定连接。
第三固定板23转动时,带动第一同步摆臂53转动,并使第一同步摆臂53的第一同步摆动体531在第三滑槽231内滑动并转动。第一同步摆臂53转动时,带动第一转动杆5141同步转动,从而带动第一齿轮515转动。第一齿轮515转动时,带动中间齿轮519转动,从而带动第二齿轮516转动。第二齿轮516转动时,带动第二转动杆5142转动,从而带动第二同步摆臂54转动,并带动第四固定板24转动,同时使第二同步摆动体541在第四滑槽241内滑动并转动,进而实现第一同步摆臂53和第二同步摆臂54的同步转动,以及第三固定板23和第四固定板24的同步转动。
同时,第一同步摆臂53转动时,带动第一铰接体533和第三铰接体534同步转动。第一铰接体533转动时,反复推动第一铰接座525沿Y方向移动,并带动第一挡板521运动。 第三铰接体534转动时,反复推动第三铰接座528沿Y方向移动,带动第二挡板522运动。其中,第一挡板521和第二挡板522的运动方向相反,进而压缩阻尼弹簧523,使阻尼弹簧523产生弹性力。阻尼弹簧523的弹性回复力作用于第一铰接座525和第三铰接座528,使第一铰接座525挤压第一铰接体533,第三铰接座528挤压第三铰接体534,从而为第一同步摆臂53的转动提供阻尼力,第一同步摆臂53的阻尼力经第三固定板23作用至第一壳体210,从而为用户提供阻尼手感。
第二同步摆臂54转动时,带动第二铰接体543和第四铰接体544同步转动。第二铰接体543转动时,反复推动第二铰接座526沿Y方向移动,并带动第一挡板521运动。第四铰接体544转动时,反复推动第四铰接座529沿Y方向移动,带动第二挡板522运动。其中,第一挡板521和第二挡板522的运动方向相反,进而压缩阻尼弹簧523,使阻尼弹簧523产生弹性力。阻尼弹簧523的弹性回复力作用于第二铰接座526和第四铰接座529,使第二铰接座526挤压第二铰接体543,第四铰接座529挤压第四铰接体544,从而为第二同步摆臂54的转动提供阻尼力,第二同步摆臂54的阻尼力经第四固定板24作用至第二壳体220,从而为用户提供阻尼手感。
其中,第一同步摆臂53和第二同步摆臂54的转动方向相反。例如,转动机构100从展平状态切换至折叠状态时,第三固定板23、第一同步摆臂53和第一转动杆5141顺时针转动,第四固定板24、第二同步摆臂54和第二转动杆5142逆时针转动。转动机构100从折叠状态切换至展平状态时,第三固定板23、第一同步摆臂53和第一转动杆5141逆时针转动,第四固定板24、第二同步摆臂54和第二转动杆5142顺时针转动。
本实施例中,通过设置同步件51,并且第一同步摆臂53转动时,可通过同步件51带动第二同步摆臂54转动,从而可以实现第一同步摆臂53和第二同步摆臂54的同步转动,进而实现转动机构100进和可折叠电子设备500的同步转动。并且,本实施例中,通过将同步齿轮513设为斜齿,增加了同步齿轮513的重合度,从而可以提升同步组件2传动的平稳性,以及转动机构100转动的稳定性,同时,还可以防止齿根发生断裂,提升同步齿轮513的耐用性。
并且,本实施例中,通过设置阻尼件52,并且第一同步摆臂53和第二同步摆臂54相对固定基座10转动时,阻尼件52始终抵持第一同步摆臂53和第二同步摆臂54,产生阻尼力,从而为用户提供阻尼手感,提升用户的使用体验。
第二同步组件202的结构与第一同步组件201的结构相同,第二同步组件202中的第一同步摆臂53安装于第五滑槽232,第二同步摆臂54安装于第六滑槽242。第二同步组件202中各个部件的基础结构、部件之间的连接关系、以及部件与组件之外的部件之间的连接关系,均可以参照第一同步组件201的相关设计,在这里不做赘述。
请参阅图20和图21,图20是图6所示转动机构100中的压板组件3的部分分解结构示意图,图21是图20所示压板组件3在另一角度的分解结构示意图。
压板组件3包括第一压板61、第二压板62、第一压板摆臂63和第二压板摆臂64。第一压板61与第一转动组件101的第一固定板21、第二转动组件102的第一固定板21A、第三转动组件103的第一固定板21C以及第四转动组件104的第一固定板21D转动且滑动连接。第二压板62与第一转动组件101的第二固定板22、第二转动组件102的第二固定 板22A、第三转动组件103的第二固定板22B以及第四转动组件104的第二固定板22C转动且滑动连接。第一压板摆臂63与第一压板61滑动连接,并与固定基座10转动且滑动连接。第二压板摆臂64与第二压板62滑动连接,并与固定基座10转动且滑动连接。
第一压板61包括第一压板本体611和第一滑块612。第一压板本体611为长条形板状结构。第一压板本体611设有第一压板滑槽613,第一压板滑槽613在第一压板本体611的宽度方向上贯穿第一压板本体611。本实施例中,第一压板滑槽613有四个,四个第一压板滑槽613沿Y方向依次间隔排布。在其他实施例中,第一压板滑槽613也可以是一个、两个、三个或五个以上。第一压板滑槽613用于安装第一压板摆臂63。第一滑块612设于第一压板本体611的底面,并与第一压板本体611固定连接。本实施例中,第一滑块612有多个,多个第一滑块612沿Y方向依次间隔排布。每一第一滑块612由第一压板本体611的底面朝向远离顶面的方向呈弧形延伸。第一滑块612的结构与第一导槽215的结构相适配。
第二压板62的结构与第一压板61的结构大致相同。第二压板62包括第二压板本体621和第二滑块622。第二压板本体621设有第二压板滑槽623。第二压板滑槽623用于安装第二压板摆臂64。第二滑块622设于第二压板本体621的底面,并由第二压板本体621的底面向远离顶面的方向呈弧形延伸。第二滑块622的结构与第二导槽225的结构相适配。
第一压板摆臂63包括第一压板摆动体631和第一压板转动体632。第一压板转动体632为圆弧形板状结构。第一压板转动体632包括第一转动部6321和两个第二转动部6322。两个第二转动部6322分别位于第一压板转动体632在X方向的相对两侧,第一转动部6321位于两个第二转动部6322之间。第一压板转动体632的结构与第三转动槽125的结构相匹配,第一转动部6321的结构与第五滑轨1251的结构相匹配,第二转动部6322的结构与第六滑轨1252的结构相匹配。第一压板摆动体631呈板状结构,且第一压板摆动体631的一端与第一压板转动体632固定连接。第一压板摆臂63安装于第三转动槽125,用于与固定基座10转动并滑动连接,并与第一固定板21滑动连接。
第二压板摆臂64与第一压板摆臂63的结构相同。第二压板摆臂64包括第二压板转动体641和第二压板摆动体642。第二压板转动体641设有第三转动部6421和两个第四转动部6422。第二压板转动体641的结构与第一压板转动体632的结构相同,第二压板摆动体642的结构与第一压板摆动体631的结构相同。第二压板摆臂64安装于固定基座10的第四转动槽126,用于与固定基座10转动并滑动连接,并与第二固定板22滑动连接。
本实施例中,第一压板摆臂63和第二压板摆臂64均为四个。在其他实施例中,第一压板摆臂63和第二压板摆臂64也可以是一个、两个、三个或五个以上。
为了更清楚的理解压板组件3与其它元件的装配关系,请结合图5和图6,第一压板61和第一压板摆臂63位于固定基座10在X方向的同一侧,且四个第一压板摆臂63沿Y方向间隔排布。第一压板转动体632安装于固定基座10的第三转动槽125内,第一转动部6321安装于第五滑轨1251,第二转动部6322安装于第六滑轨1252。第一压板转动体632可在第三转动槽125内沿第五滑轨1251和第六滑轨1252滑动并转动。第一压板摆动体631背向第一压板转动体632的一端安装于第一压板滑槽613内,且每一第一压板摆动体631可在对应的第一压板滑槽613内滑动。第一压板61与第一固定板21滑动且转动连接。其 中,第一压板61的第一滑块612安装于第一固定板21的第一导槽215内,且每一第一滑块612可在对应的第一导槽215内滑动。
第一壳体210转动时,带动第一固定板21相对固定基座10转动,以带动第一压板61相对固定基座10转动,并使第一滑块612在对应的第一导槽215内呈弧形滑动,从而带动第一压板61相对第一固定板21呈弧形滑动。并且,第一压板61转动时,带动第一压板摆动体631转动,从而带动第一压板转动体632在第一滑槽214内滑动并转动,进而实现第一压板61和第一压板摆臂63相对固定基座10转动。
第二压板62和第二压板摆臂64位于固定基座10在X方向的另一侧,且四个第二压板摆臂64沿Y方向间隔排布。第二压板转动体641安装于固定基座10的第四转动槽126内,第三转动部6421安装于第七滑轨1261,第四转动部6422安装于第八滑轨1262。第二压板转动体641可在第二转动槽124内沿第七滑轨1261和第八滑轨1262滑动并转动。第二压板摆动体642背向第二压板转动体641的一端安装于第二压板滑槽623内,且每一第二压板摆动体642可在对应的第二压板滑槽623内滑动。第二压板62与第二固定板22滑动且转动连接。其中,第二压板62的第二滑块622安装于第二固定板22的第二导槽225内,且每一第二滑块622可在对应的第二导槽225内滑动。
第二壳体220转动时,带动第二固定板22相对固定基座10转动,以带动第二压板62相对固定基座10转动,并使第二滑块622在对应的第二导槽225内呈弧形滑动,从而带动第二压板62相对第二固定板22呈弧形滑动。并且,第二压板62转动时,带动第二压板摆动体642转动,从而带动第二压板转动体641在第二滑槽224内滑动并转动,进而实现第二压板62和第二压板摆臂64相对固定基座10转动。
第一压板61和第二压板62均与显示屏300相对设置。第一压板61和第二压板62共同支撑显示屏300,从而可以增加显示屏300连接的稳定性,以保证显示屏300的良好显示。
本实施例中,通过第一壳体210带动第一固定板21转动,从而带动第一压板61转动,第二壳体220带动第二固定板22转动,从而带动第二压板62转动,进而使可折叠电子设备500在折叠状态和展平状态之间切换,以实现显示屏300的折叠与展开。并且,本实施例中,第一压板61可相对第一固定板21呈弧形滑动,第二压板62可相对第二固定板22呈弧形滑动,从而使第一压板61和第二压板62之间的夹角可调节,进而可以适应显示屏300的可折叠部分330的折叠角度,以避免转动机构100处于折叠状态时,第一压板61和第二压板62对显示屏300造成挤压。也就是说,转动机构100处于折叠状态时,第一固定板21和第二固定板22之间的夹角与第一压板61和第二压板62之间的夹角不同,并且,第一压板61和第二压板62之间的夹角可以根据显示屏300的弯曲角度进行调节,以适应显示屏300的弯曲。
本实施例中,通过设置第一压板摆臂63,并通过第一压板61带动第一压板摆臂63转动,从而实现第一压板61相对固定基座10的转动,进而可以提升第一压板61转动的稳定性。通过设置第二压板摆臂64,并通过第二压板62带动第二压板摆臂64转动,从而实现第二压板62相对固定基座10的转动,进而可以提升第二压板62转动的稳定性。
请参阅图5和图22,图22是图5所示转动机构100处于折叠状态的剖面图。
柔性支撑件70为长条形板状结构,且柔性支撑件70可沿Y方向弯折。柔性支撑件70安装于固定基座10,并与上壳体12在Z方向相对设置。转动机构100处于展平状态时,柔性支撑件70、第一压板61和第二压板62共同支撑显示屏300,以保证显示屏300的良好显示。转动机构100处于折叠状态时,显示屏300的可折叠部分330弯折并向柔性支撑件70方向外凸,柔性支撑件70发生弯折形成水滴型结构,且柔性支撑件70的中部朝向固定基座10内下沉,并形成避让空间,以避让显示屏300,避免柔性支撑件70挤压显示屏300,对显示屏300造成损坏。
请参阅图23和图24,图23是图6所示转动机构100中的浮板80的放大结构示意图,图24是图5所示转动机构100的部分结构示意图。
浮板80为长条形板状结构。浮板80包括第一侧81和第二侧82。第一侧81和第二侧82相对设置,并分别位于浮板80在X方向的相对两侧。浮板80设有第一安装槽83、第二安装槽84、第三安装槽85和第四安装槽86。第一安装槽83和第三安装槽85设于第一侧81,第二安装槽84和第四安装槽86设于第二侧82。且第一安装槽83与第二安装槽84在X方向相对设置,第三安装槽85和第四安装槽86在X方向相对设置。第一安装槽83、第二安装槽84、第三安装槽85和第四安装槽86为U型通槽,以第一安装槽83为例,第一安装槽83包括两个槽壁,两个槽壁相对设置围成U型通槽,且槽口均背向所述浮板80长度方向中心线位置。
浮板80位于固定基座10和柔性支撑件70之间,并安装于第一子壳体12A和第二子壳体12B之间。第一子壳体12A和第二子壳体12B之间还用于可折叠电子设备500的FPC(柔性电路板)穿过。这里的FPC是指用于将可折叠电子设备500中位于第一壳体210的电子器件和位于第二壳体220的电子器件电连接的结构。也就是说,浮板80安装于固定基座10,并与FPC过线位置相对。其中,第一子壳体12A中的第一转动轴127的第一延伸部1272位于第一安装槽83内,第一子壳体12A中的第二转动轴128的第二延伸部1282位于第二安装槽84内,第二子壳体12B中的第一转动轴127位于第三安装槽85内,第二子壳体12B中的第二转动轴128位于第二安装槽84内。
请一并参阅图22和图25,图25是图5所示转动机构100处于展平状态的剖面结构示意图。
转动机构100从展平状态转动至折叠状态时,第一副摆臂41和第二副摆臂42朝向相互靠近的方向转动。第一副摆臂41带动第一转动轴127转动,以带动第一延伸部1272朝向靠近下壳体11方向转动,第二副摆臂42带动第二转动轴128转动,以带动第二延伸部1282朝向下壳体11方向转动。第一延伸部1272和第二延伸部1282朝向下壳体11方向转动,从而带动浮板80朝向Z轴负方向移动,也就是带动浮板80朝向远离显示屏300方向移动,进而为柔性支撑件70和显示屏300的弯折提供避让空间,以避免浮板80挤压柔性支撑件70和显示屏300,对显示屏300造成损坏。
转动机构100从折叠状态转动至展平状态时,第一副摆臂41和第二副摆臂42朝向相互远离的方向转动。第一副摆臂41带动第一转动轴127转动,以带动第一延伸部1272朝向远离下壳体11方向转动,第二副摆臂42带动第二转动轴128转动,以带动第二延伸部1282朝向远离下壳体11方向转动。第一延伸部1272和第二延伸部1282朝向远离下壳体 11方向转动,从而带动浮板80朝向Z轴正方向移动,也就是带动浮板80朝向靠近显示屏300方向移动,以使转动机构100处于展平状态。
转动机构100处于展平状态时,第一转动组件101中的第一副摆臂41和第二副摆臂42相对固定基座10展开,第二转动组件102中的第一副摆臂41和第二副摆臂42相对固定基座10展开。浮板80与柔性支撑件70共同支撑显示屏300。
本实施例中,通过在转动机构100的FPC过线位置设置浮板80,能够对FPC过线起到保护作用,避免转动机构100处于折叠状态时,柔性支撑件70和显示屏300挤压FPC过线,对FPC过线造成损坏。并且,转动机构100处于展平状态时,浮板80与柔性支撑件70共同支撑显示屏300,转动机构100处于折叠状态时,浮板80下沉,以避让柔性支撑件70和显示屏300,避免对显示屏300造成挤压。
请参阅图26,图26是图5所示转动机构100处于折叠状态的结构示意图。
转动机构100处于折叠状态时,显示屏300的可折叠部分330位于转动机构100的内侧。具体的,可折叠部分330位于避让空间内。示例性的,避让空间大致呈“水滴”状。此时,转动机构100可避让可折叠部分330弯折时形成的R角,使得可折叠部分330不会出现较大角度弯折,避免显示屏300产生折痕等不良现场,有助于延长显示屏300的使用寿命。
以上,仅为本申请的部分实施例和实施方式,本申请的保护范围不局限于此,任何熟知本领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (23)

  1. 一种转动机构,其特征在于,包括:固定基座、第一同步摆臂、第二同步摆臂和同步齿轮;
    所述同步齿轮包括第一齿轮、第二齿轮和中间齿轮,所述第一齿轮、所述中间齿轮和所述第二齿轮均为斜齿轮,所述第一齿轮、所述中间齿轮和所述第二齿轮并排且平行设置,所述中间齿轮位于所述第一齿轮和所述第二齿轮之间,并与所述第一齿轮及所述第二齿轮啮合;
    所述第一同步摆臂与所述第一齿轮固定连接,所述第二同步摆臂与所述第二齿轮固定连接;
    所述同步齿轮安装于所述固定基座内,并与所述固定基座转动连接,所述第一同步摆臂和所述第二同步摆臂分别位于所述固定基座在宽度方向的相对两侧,所述第一同步摆臂与所述第二同步摆臂的转动方向相反,所述第一齿轮与所述第二齿轮的转动方向相反。
  2. 根据权利要求1所述的转动机构,其特征在于,所述转动机构包括折叠状态和展平状态,所述转动机构处于所述展平状态时,所述第一同步摆臂相对所述第二同步摆臂展开,所述第一同步摆臂朝向靠近所述固定基座方向转动时,带动所述第一齿轮转动,以带动所述第二齿轮转动,从而带动所述第二同步摆臂朝向靠近所述第一同步摆臂方向转动,以使所述第一同步摆臂相对所述第二同步摆臂折叠,并使所述转动机构处于所述折叠状态。
  3. 根据权利要求1或2所述的转动机构,其特征在于,所述中间齿轮与所述第一齿轮的重合度大于1.2,所述中间齿轮与所述第二齿轮的重合度大于1.2。
  4. 根据权利要求1至3任一项所述的转动机构,其特征在于,所述中间齿轮包括第三齿轮和第四齿轮,所述第三齿轮和所述第四齿轮均为斜齿轮,所述第三齿轮和所述第四齿轮均设于所述第一齿轮和所述第二齿轮之间,且所述第三齿轮与所述第一齿轮啮合,所述第四齿轮与所述第二齿轮及所述第三齿轮啮合。
  5. 根据权利要求4所述的转动机构,其特征在于,所述第三齿轮与所述第四齿轮的重合度大于1.2。
  6. 根据权利要求4或5所述的转动机构,其特征在于,所述第一齿轮包括第一齿,所述第二齿轮包括第二齿,所述第三齿轮包括第三齿,所述第四齿轮包括第四齿;所述第一齿、所述第二齿、所述第三齿和所述第四齿均为螺旋型,且所述第一齿和所述第二齿的螺旋方向相反,所述第三齿轮与所述第四齿轮的螺旋方向相反。
  7. 根据权利要求6所述的转动机构,其特征在于,所述第一齿、所述第二齿、所述第三齿和所述第四齿的螺旋角均为15°~45°。
  8. 根据权利要求4或5所述的转动机构,其特征在于,所述第一齿轮包括第一齿,所述第二齿轮包括第二齿,所述第三齿轮包括第三齿,所述第四齿轮包括第四齿;所述第一齿、所述第二齿、所述第三齿和所述第四齿均为“V”字型。
  9. 根据权利要求8所述的转动机构,其特征在于,所述第一齿包括第一子齿和第二子齿,所述第一子齿和所述第二子齿均为斜齿,所述第一子齿与所述第二子齿沿所述第一齿轮的轴向固定连接;所述第二齿包括第三子齿和第四子齿,所述第三子齿和所述第四子齿 均为斜齿,所述第三子齿与所述第四子齿沿所述第二齿轮的轴向固定连接;所述第三齿包括第五子齿和第六子齿,所述第五子齿和所述第六子齿均为斜齿,且所述第五子齿与所述第六子齿沿所述第三齿轮的轴向固定连接;所述第四齿包括第七子齿和第八子齿,所述第七子齿和所述第八子齿均为斜齿,且所述第七子齿与所述第八子齿沿所述第四齿轮的轴向固定连接;
    所述第一子齿与所述第五子齿啮合,所述第五子齿与所述第七子齿啮合,所述第七子齿与所述第三子齿啮合;所述第二子齿与所述第七子齿啮合,所述第六子齿与所述第八子齿啮合,所述第八子齿与所述第四子齿啮合。
  10. 根据权利要求9所述的转动机构,其特征在于,所述第一子齿与所述第五子齿的螺旋方向相反,所述第五子齿与所述第七子齿的螺旋方向相反,所述第七子齿与所述第三子齿的螺旋方向相反,所述第一子齿、所述第五子齿、第七子齿和所述第三子齿的螺旋角度均为15°~45°。
  11. 根据权利要求8所述的转动机构,其特征在于,所述第一齿轮与所述第三齿轮的重合度大于1.2,所述第三齿轮与所述第四齿轮的重合度大于1.2,所述第四齿轮与所述第二齿轮的重合度大于1.2。
  12. 根据权利要求1至11任一项所述的转动机构,其特征在于,所述转动机构还包括阻尼件,所述阻尼件包括阻尼弹簧、第一铰接座和第二铰接座,所述阻尼件安装于所述固定基座,且所述第一铰接座和所述第二铰接座均与所述阻尼弹簧固定连接;
    所述第一同步摆臂包括第一铰接体,所述第一铰接体与所述第一铰接座铰接,所述第二同步摆臂包括第二铰接体,所述第二铰接体与所述第二铰接座铰接;
    所述第一同步摆臂相对所述固定基座转动时,所述第一铰接体抵持所述第一铰接座,所述第二同步摆臂相对所述固定基座转动时,所述第二铰接体抵持所述第二铰接座,所述第一铰接座和所述第二铰接座共同压缩所述阻尼弹簧,并使所述阻尼弹簧产生弹性力。
  13. 根据权利要求1至12任一项所述的转动机构,其特征在于,所述转动机构包括第一固定板和第二固定板,所述第一固定板与所述第二固定板分别位于所述固定基座宽度方向的相对两侧,且所述第一同步摆臂与所述第一固定板滑动连接,所述第二固定板与所述第二同步摆臂滑动连接。
  14. 根据权利要求13所述的转动机构,其特征在于,所述固定基座设有第一转动槽和第二转动槽,所述第一转动槽和所述第二转动槽相对设置;所述转动机构包括第一主摆臂和第二主摆臂,所述第一主摆臂安装于所述第一转动槽,并可以沿所述第一转动槽滑动并转动,且所述第一主摆臂与所述第一固定板转动连接;所述第二主摆臂安装于所述第二转动槽,并可沿所述第二转动槽滑动并转动,且所述第二主摆臂与所述第二固定板转动连接。
  15. 根据权利要求14所述的转动机构,其特征在于,所述第一主摆臂包括第一转动体和第一摆动体,所述第一转动体与所述第一摆动体固定连接,所述第一转动体包括第一滑动部和两个第二滑动部,两个所述第二滑动部连接于所述第一滑动部的相对两侧;
    所述第一转动槽包括第一滑轨和两个第二滑轨,两个所述第二滑轨分别位于所述第一滑轨的相对两侧,并与所述第一滑轨沿所述固定基座的长度方向并排设置;
    所述第一转动体安装于所述第一转动槽内,所述第一滑动部安装于所述第一滑轨,一 个所述第二滑动部安装于一个所述第二滑轨。
  16. 根据权利要求15所述的转动机构,其特征在于,一个所述第二滑轨包括滑轨底壁和凸块,所述凸块连接于所述第一转动槽的侧壁,并与所述滑轨底壁相对间隔设置,所述第一转动槽的底壁还设有第一镂空部,所述第一镂空部贯穿所述第一转动槽的底壁,并与所述凸块相对设置;所述第二滑动部位于所述滑轨底壁和所述凸块之间。
  17. 根据权利要求13至16任一项所述的转动机构,其特征在于,所述固定基座还安装有第一转动轴和第二转动轴,所述第一转动轴和所述第二转动轴相对且平行设置,并与所述固定基座转动连接,且所述第一转动轴和所述第二转动轴的延伸方向均与所述固定基座的长度方向平行;
    所述转动机构包括第一副摆臂和第二副摆臂,所述第一副摆臂与所述第一转动轴固定连接,并与所述第一固定板滑动连接;所述第二副摆臂与所述第二转动轴固定连接,并与所述第二固定板滑动连接。
  18. 根据权利要求17所述的转动机构,其特征在于,所述转动机构还包括浮板,所述浮板安装于所述固定基座,并与所述第一转动轴及所述第二转动轴转动连接;所述第一副摆臂相对所述固定基座转动时,带动所述第一转动轴转动,所述第二副摆臂相对所述固定基座转动时,带动所述第二转动轴转动,所述第一转动轴和所述第二转动轴转动,以带动所述浮板沿所述固定基座的厚度方向移动。
  19. 根据权利要求18所述的转动机构,其特征在于,所述第一转动轴包括第一固定部和第一延伸部,所述第一固定部的轴线与第一延伸部的轴线平行且间隔设置;所述第二转动轴包括第二固定部和第二延伸部,所述第二固定部的轴线与第二延伸部的轴线平行且间隔设置;所述浮板设有第一安装槽和第二安装槽,所述第一安装槽和所述第二安装槽间隔设置;
    所述第一延伸部位于所述第一安装槽内,所述第二延伸部位于所述第二安装槽内;
    所述第一副摆臂和所述第二副摆臂朝向相互靠近的方向转动时,所述第一延伸部和所述第二延伸部带动所述浮板朝向所述固定基座内移动;所述第一副摆臂和所述第二副摆臂朝向相互远离的方向转动时,所述第一延伸部和所述第二延伸部带动所述浮板朝向远离所述固定基座方向移动。
  20. 根据权利要求13至19任一项所述的转动机构,其特征在于,所述转动机构还包括第一压板和第二压板,所述第一压板与所述第一固定板滑动连接,所述第一固定板相对所述固定基座转动时,可带动所述第一压板相对所述固定基座转动;所述第二压板与所述第二固定板滑动连接,所述第二压板相对所述固定基座转动时,可带动所述第二压板相对所述固定基座转动。
  21. 根据权利要求20所述的转动机构,其特征在于,所述固定基座还设有第三转动槽和第四转动槽,所述第三转动槽与所述第四转动槽相对设置;所述转动机构还包括第一压板摆臂和第二压板摆臂,所述第一压板摆臂安装于所述第三转动槽,并可沿所述第三转动槽滑动并转动,且所述第一压板摆臂与所述第一压板滑动连接;所述第二压板摆臂安装于所述第四转动槽,并可沿所述第四转动槽滑动并转动,且所述第二压板摆臂与所述第二压板滑动连接。
  22. 根据权利要求2所述的转动机构,其特征在于,所述固定基座还包括柔性支撑件,所述柔性支撑件安装于所述固定基座,所述转动机构处于折叠状态时,所述柔性支撑件弯折,并形成避让空间;所述转动机构处于展平状态时,所述柔性支撑件展开。
  23. 一种可折叠电子设备,其特征在于,包括第一壳体、第二壳体、显示屏和如权利要求1至22任一项所述的转动机构,所述转动机构连接所述第一壳体和所述第二壳体之间,所述显示屏安装于第一壳体、第二壳体及转动机构,所述转动机构转动时,所述第一壳体和所述第二壳体相对转动,从而带动所述显示屏发生弯折或展开。
PCT/CN2023/117605 2022-09-20 2023-09-08 转动机构和可折叠电子设备 WO2024061020A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211145993.2 2022-09-20
CN202211145993.2A CN117780769A (zh) 2022-09-20 2022-09-20 转动机构和可折叠电子设备

Publications (1)

Publication Number Publication Date
WO2024061020A1 true WO2024061020A1 (zh) 2024-03-28

Family

ID=90396884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117605 WO2024061020A1 (zh) 2022-09-20 2023-09-08 转动机构和可折叠电子设备

Country Status (2)

Country Link
CN (1) CN117780769A (zh)
WO (1) WO2024061020A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010093139A2 (ko) * 2009-02-16 2010-08-19 (주) 프렉코 휴대 단말기용 힌지장치
CN207049182U (zh) * 2017-08-22 2018-02-27 苏州诚骏科技股份有限公司 一种四齿轮传动360°双轴同步转动的枢纽器
CN109469680A (zh) * 2018-09-27 2019-03-15 兆利科技工业股份有限公司 折叠式装置的转轴模块
CN208686793U (zh) * 2018-07-13 2019-04-02 Oppo广东移动通信有限公司 折叠装置及电子设备
US20190146561A1 (en) * 2017-12-26 2019-05-16 Intel Corporation Technologies for hinges for dual screen devices
CN208885769U (zh) * 2018-08-24 2019-05-21 东莞市橙工电子科技有限公司 一种四斜齿自动闭合转轴
CN113194183A (zh) * 2021-05-21 2021-07-30 维沃移动通信有限公司 折叠机构及电子设备
CN113923279A (zh) * 2021-01-14 2022-01-11 荣耀终端有限公司 折叠组件及可折叠电子设备
CN217502265U (zh) * 2022-03-23 2022-09-27 荣耀终端有限公司 转动机构及电子设备
CN218863071U (zh) * 2022-10-25 2023-04-14 荣耀终端有限公司 一种转轴机构、支撑装置和折叠屏电子设备
CN219587959U (zh) * 2023-03-15 2023-08-25 兆利科技工业股份有限公司 双转轴连动结构

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010093139A2 (ko) * 2009-02-16 2010-08-19 (주) 프렉코 휴대 단말기용 힌지장치
CN207049182U (zh) * 2017-08-22 2018-02-27 苏州诚骏科技股份有限公司 一种四齿轮传动360°双轴同步转动的枢纽器
US20190146561A1 (en) * 2017-12-26 2019-05-16 Intel Corporation Technologies for hinges for dual screen devices
CN208686793U (zh) * 2018-07-13 2019-04-02 Oppo广东移动通信有限公司 折叠装置及电子设备
CN208885769U (zh) * 2018-08-24 2019-05-21 东莞市橙工电子科技有限公司 一种四斜齿自动闭合转轴
CN109469680A (zh) * 2018-09-27 2019-03-15 兆利科技工业股份有限公司 折叠式装置的转轴模块
CN113923279A (zh) * 2021-01-14 2022-01-11 荣耀终端有限公司 折叠组件及可折叠电子设备
CN113194183A (zh) * 2021-05-21 2021-07-30 维沃移动通信有限公司 折叠机构及电子设备
CN217502265U (zh) * 2022-03-23 2022-09-27 荣耀终端有限公司 转动机构及电子设备
CN218863071U (zh) * 2022-10-25 2023-04-14 荣耀终端有限公司 一种转轴机构、支撑装置和折叠屏电子设备
CN219587959U (zh) * 2023-03-15 2023-08-25 兆利科技工业股份有限公司 双转轴连动结构

Also Published As

Publication number Publication date
CN117780769A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2021007750A1 (zh) 折叠装置及电子设备
JP7515572B2 (ja) 電子デバイス及び折り畳みアセンブリ
WO2022143478A9 (zh) 折叠机构和电子设备
WO2020186889A1 (zh) 一种转轴机构及移动终端
WO2021209008A1 (zh) 折叠装置及电子设备
JP2023544715A (ja) 折り畳み可能な装置及び電子デバイス
EP4117257B1 (en) Rotating mechanism, support apparatus and electronic device
WO2023273574A1 (zh) 一种转动机构、支撑装置以及折叠屏终端
EP4318177A1 (en) Hinge assembly and electronic device
CN217849479U (zh) 转轴机构及可折叠设备
CN116097011A (zh) 转动机构和电子设备
CN217502265U (zh) 转动机构及电子设备
WO2024061020A1 (zh) 转动机构和可折叠电子设备
CN116658512B (zh) 转动机构和可折叠电子设备
WO2023138380A1 (zh) 一种转轴机构、支撑装置和折叠屏设备
WO2023083039A1 (zh) 折叠铰链和电子设备
CN218564166U (zh) 转动机构和可折叠电子设备
US20230032306A1 (en) Flexible display panel, electronic device, and hinge
CN116950983A (zh) 转动机构和可折叠电子设备
WO2024131443A1 (zh) 一种可折叠电子设备和铰链
EP4279755A1 (en) Rotary mechanism and foldable electronic device
JP2008095935A (ja) 平行二軸ヒンジモジュール
WO2024067615A1 (zh) 电子设备和折叠机构
WO2024067124A1 (zh) 电子设备及折叠组件
WO2021218363A1 (zh) 同步机构、转轴套件、电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867311

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023867311

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023867311

Country of ref document: EP

Effective date: 20240806