WO2024061018A1 - 灵敏度确定方法、植入效果判断方法以及相关设备 - Google Patents

灵敏度确定方法、植入效果判断方法以及相关设备 Download PDF

Info

Publication number
WO2024061018A1
WO2024061018A1 PCT/CN2023/117597 CN2023117597W WO2024061018A1 WO 2024061018 A1 WO2024061018 A1 WO 2024061018A1 CN 2023117597 W CN2023117597 W CN 2023117597W WO 2024061018 A1 WO2024061018 A1 WO 2024061018A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical signal
analyte
signal data
electronic device
working electrode
Prior art date
Application number
PCT/CN2023/117597
Other languages
English (en)
French (fr)
Inventor
韩洋
王佳敏
Original Assignee
苏州百孝医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州百孝医疗科技有限公司 filed Critical 苏州百孝医疗科技有限公司
Publication of WO2024061018A1 publication Critical patent/WO2024061018A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter

Definitions

  • This application relates to the technical field of transcutaneous analyte sensors, for example, to a sensitivity determination method, an implantation effect judgment method, and related equipment.
  • the sensitivity of the sensor is an important performance in sensor measurement and an important basis for converting the electrical signal measured by the sensor into the measured parameter.
  • continuous glucose monitoring sensors eg, a transdermal analyte sensor
  • sensitivity through calibration during use or through factory calibration codes.
  • factory calibration is to obtain the sensitivity by batch during the production process and inform the user through the label, but there is still no way to solve the difference of each sensor.
  • This application proposes a sensitivity determination method, an implantation effect judgment method and related equipment.
  • the sensitivity determination method proposed in this application fully considers the differences of sensors and can improve the accuracy of calibration while reducing the patient's calibration burden.
  • this application proposes a sensitivity determination method applied to a transdermal analyte sensor with a working electrode.
  • the method includes:
  • a sensitivity of the transdermal analyte sensor is determined based on the first electrical signal data and analyte concentration data of the analyte solution.
  • this application proposes a method for judging the implantation effect, which is applied to a transcutaneous analyte sensor.
  • the method includes:
  • second electrical signal data generated based on the electrochemical reaction between the working electrode and the analyte in the host body is acquired;
  • a fourth prompt message is sent to the second electronic device, where the fourth prompt message is used to indicate failure of implantation of the transcutaneous analyte sensor.
  • the present application proposes a sensitivity determination device applied to a transcutaneous analyte sensor with a working electrode.
  • the sensitivity determination device includes:
  • an acquisition module configured to acquire first electrical signal data generated based on an electrochemical reaction between the working electrode and the analyte solution when the working electrode contacts the analyte solution in vitro;
  • a determining module configured to determine the sensitivity of the transdermal analyte sensor based on the first electrical signal data and the analyte concentration data of the analyte solution.
  • the present application proposes an implantation effect determination device, which is applied to a transcutaneous analyte sensor, and the implantation effect determination device comprises:
  • the sensitivity determination device wherein the acquisition module is further configured to acquire the sensitivity between the working electrode and the analyte in the host body after the transcutaneous analyte sensor is implanted into the host skin.
  • a judgment module configured to judge whether the second electrical signal data is less than a fourth threshold
  • a sending module configured to send fourth prompt information to the second electronic device in response to the second electrical signal data being less than the fourth threshold, the fourth prompt information being used to indicate implantation of the transcutaneous analyte sensor fail.
  • this application proposes a computer-readable storage medium that stores a computer program.
  • the computer program is executed by a processor, the method described in the first aspect or the second aspect is implemented.
  • the present application proposes a computer program product that, when run on a transcutaneous analyte sensor, causes the transcutaneous analyte sensor to perform the method described in the first or second aspect. .
  • this application proposes a transcutaneous analyte sensor, including:
  • the electronic device is electrically connected to the working electrode
  • the electronic devices include:
  • a processor coupled to said memory, and
  • the processor executes the computer program to implement the method described in the first aspect or the second aspect.
  • this application proposes a transcutaneous analyte continuous monitoring system, including:
  • a container that can be opened and contains an analyte solution
  • the analyte concentration data of the analyte solution is stored in a memory of the electronic device of the transcutaneous analyte sensor.
  • FIG1 is a schematic diagram of the structure of a transcutaneous analyte sensor provided in an embodiment of the present application
  • Figure 2 is a schematic flow chart of a sensitivity determination method provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a sensitivity determination method provided by an embodiment of the present application.
  • Figure 4 is a schematic flowchart of a sensitivity determination method provided by an embodiment of the present application.
  • Figure 5 is a schematic flowchart of a sensitivity determination method provided by an embodiment of the present application.
  • Figure 6 is a schematic flowchart of an implantation effect judgment method provided by an embodiment of the present application.
  • FIG. 7 is a graph showing the relationship between excitation voltage and current value provided by the embodiment of the present application.
  • transcutaneous analyte sensor to which the embodiments of the present application can be applied is briefly described to facilitate those skilled in the art to understand the embodiments of the present application.
  • FIG 1 it is a schematic structural diagram of a transcutaneous analyte sensor provided by an embodiment of the present application.
  • the transcutaneous analyte sensor shown in Figure 1 includes a working electrode and an electronic device electrically connected to the working electrode.
  • the electronic device includes a battery, an electrical signal sampling circuit, a first communication module, a second communication module, a memory and a processor connected to the memory.
  • a computer program is stored in the memory, and the processor can call and execute the computer program.
  • the first communication module may be a near field communication module
  • the second communication module may be a Bluetooth communication module
  • the battery is configured to provide operating power for components such as the electrical signal sampling circuit and processor of the electronic device.
  • the working electrode needs to be (at least partially) implanted under the skin of the host (the host is usually a human, but can also be a pet such as a cat or a dog), and the electronic device can be applied to the surface of the host's skin through an adhesive.
  • the working electrode implanted under the skin can electrochemically react with the interstitial fluid in the host body to generate an electrical signal.
  • the electronic device can detect the electrical signal and perform related processing on it to finally calculate the analyte level in the interstitial fluid.
  • the above-mentioned analyte may be glucose
  • the corresponding analyte level may be blood glucose concentration.
  • the strength of the aforementioned electrical signal is related to the level of the analyte in the interstitial fluid.
  • Figure 2 is a schematic flow chart of a sensitivity determination method provided by an embodiment of the present application.
  • This method can be applied to the transdermal analyte sensor shown in Figure 1 above or with a similar functional structure to Figure 1, that is, the The method may be executed by each hardware part in the transcutaneous analyte sensor (specifically, the electronic device of the transcutaneous analyte sensor) in combination with a corresponding software program.
  • the method includes the following steps S201 and S202:
  • the user can first apply the transcutaneous analyte sensor (hereinafter referred to as the sensor) before it is implanted into the host skin, that is, before the working electrode is implanted under the host skin and the electronic device is applied to the skin surface.
  • the working electrode of the sensor is immersed in an analyte solution of a set concentration (such as glucose solution), so that an electrochemical reaction occurs between the working electrode and the analyte solution outside the body to generate an electrical signal that acts on the electrical signal sampling circuit.
  • Electrical signals in electronic devices The sampling circuit transmits the electrical signal directly or after processing to the processor of the electronic device, and the processor performs calculations to obtain corresponding electrical signal data.
  • electricity The signal data may be current data.
  • Even two sensors of the same model and batch have inevitable structural differences. Therefore, when they are immersed in the same concentration of analyte solution, the electrical signal data generated may be different. This also shows that The sensitivity of the two is different.
  • S202 Determine the sensitivity of the transcutaneous analyte sensor based on the first electrical signal data and the analyte concentration data of the analyte solution.
  • manufacturers may sell a transdermal analyte sensor and a container with a standard analyte solution enclosed inside as a packaged product.
  • the manufacturer can pre-store the analyte concentration data of the analyte solution in the memory of the electronic device.
  • users purchase this complete set of products and are ready to use them, they can first open the aforementioned container, immerse the working electrode of the sensor into the analyte solution in the container, and allow the working electrode and the analyte solution to undergo an electrochemical reaction.
  • the electronic device obtains the information based on the working electrode.
  • the sensitivity of the sensor can be calculated based on the analyte concentration data pre-stored in its memory, and the determined sensitivity is stored in its memory.
  • the analyte level such as blood glucose concentration
  • users can purchase analyte solutions with corresponding concentrations sold by third parties, such as standard glucose solutions with a concentration of 6.0 millimoles per liter (mmol/L).
  • third parties such as standard glucose solutions with a concentration of 6.0 millimoles per liter (mmol/L).
  • the user can send the analyte concentration data of the analyte solution to the electronic device by means of an electronic device (such as a mobile phone, a tablet computer or a smart watch) that is communicatively connected to the electronic device of the sensor.
  • the sensitivity determination method of the transcutaneous analyte sensor provided in the present application can realize personalized calibration of the sensitivity of each sensor, fully considering the differences between different sensors, and improving the accuracy of calibration while reducing the calibration burden of the user.
  • the transcutaneous analyte sensor includes an electronic device electrically connected to the working electrode, the working electrode is configured to be implanted under the skin of the host, and the electronic device is configured to be applied on the The skin surface of the host; the above sensitivity determination method can be performed by the electronic device.
  • the method when the working electrode is in contact with the analyte solution outside the body, and before the electronic device acquires the first electrical signal data generated based on the electrochemical reaction between the working electrode and the analyte solution , the method also includes the following steps S301 to S303:
  • the above-mentioned first electronic device has a display screen.
  • the first electronic device is a first mobile phone, and the user can establish a near field communication connection between the first mobile phone and the electronic device by scanning communication (via The first near field communication module implementation in mobile phones and electronic devices).
  • the first mobile phone is the master device in the near field communication connection
  • the sensor specifically, the electronic device of the sensor
  • This communication method does not require the use of the power supply of the sensor (that is, the battery in the electronic device). ), thus saving the energy consumption of the sensor's own battery and ensuring the battery life of the sensor.
  • the electronic device After the electronic device receives the first control instruction from the first mobile phone, in response to the first control instruction, the electronic device activates the electrical signal sampling circuit (powered by the battery in the electronic device), thereby applying an excitation voltage to the working electrode, Promote the electrochemical reaction between the working electrode and the analyte solution, and then obtain the corresponding electrical signal data.
  • the electrical signal sampling circuit powered by the battery in the electronic device
  • the method It also includes the following steps S401 to S404:
  • the first electronic device is the master device in the second near field communication connection
  • the sensor specifically, the electronic device of the sensor
  • This communication method does not require the use of the power supply of the sensor (i.e., the electronic device). (battery in the sensor), thus saving the energy consumption of the sensor's own battery and ensuring the battery life of the sensor.
  • determining the sensitivity of the transdermal analyte sensor based on the first electrical signal data and the analyte concentration data of the analyte solution may include: based on the background electrical signal data , the first electrical signal data and the analyte concentration data of the analyte solution to determine the sensitivity of the transdermal analyte sensor.
  • the sensitivity determination method provided by the embodiment shown in Figure 4 considers and eliminates the noise part of the first electrical signal data - the background electrical signal data, so the determined sensitivity is more accurate.
  • determining the sensitivity of the transdermal analyte sensor based on the background electrical signal data, the first electrical signal data and the analyte concentration data of the analyte solution may include:
  • the sensitivity of the transdermal analyte sensor is determined, where S is the sensitivity of the transdermal analyte sensor, I is the first electrical signal data, I B is the background electrical signal data, and G is the analyte concentration data of the analyte solution. That is, the ratio of the difference between the first electrical signal data minus the background electrical signal data divided by the analyte concentration data is determined as the sensitivity of the sensor.
  • obtaining the first electrical signal data generated based on the electrochemical reaction between the working electrode and the analyte solution in step S201 may include:
  • S201a real-time acquisition of measured electrical signal data generated in the transcutaneous analyte sensor.
  • the N pieces of continuously acquired measured electrical signal data are all greater than the second threshold, and the change rate of any two adjacent measured electrical signal data among the N pieces of measured electrical signal data is less than the third threshold, then the N pieces of measured electrical signal data are The average value of the measured electrical signal data is used as the first electrical signal data, where N ⁇ 3.
  • the electronic device can obtain the current measured electrical signal data every certain period of time (such as 1 second or 10 seconds), and obtain the current measured electrical signal data every time.
  • the current measured electrical signal data is compared with the preset second threshold. If a certain comparison result shows that the current measured electrical signal data I 1 is greater than the second threshold for the first time, continue to obtain the next measured electrical signal data I 2 . If it is determined that the next measured electrical signal data I2 is also greater than the second threshold, then the change rate of the two adjacent measured electrical signal data is calculated.
  • the change rate a 1 is less than a preset third threshold (for example, the third threshold is 0.05), and continue to obtain the next measured electrical signal data I 3 . If it is determined that the aforementioned change rate a 1 is less than the preset third threshold, and the electrical signal data I 3 is greater than the second threshold, then the change rate of the current two adjacent measured electrical signal data is calculated. And judge whether the change rate a 2 is also smaller than the preset third threshold. If it is judged that the aforementioned change rate a 2 is also smaller than the preset third threshold, then the average value of I 1 , I 2 and I 3 can be used as the above-mentioned
  • the first electrical signal data I is
  • the selection of the second threshold can be determined based on the minimum sensitivity value and background electrical signal data (eg, background current) in the relevant batch (eg, batch) of sensors.
  • background electrical signal data eg, background current
  • the method may also include:
  • the first prompt information is used to indicate that the transcutaneous analyte sensor functions normally but the sensitivity determination fails.
  • the first condition is: at least one measured electrical signal data obtained is greater than the first threshold;
  • the second condition is: the N measured electrical signal data continuously acquired are all greater than the second threshold, and the change rate of any two adjacent measured electrical signal data among the N measured electrical signal data is less than the third threshold, N ⁇ 3 ;
  • the first threshold is smaller than the second threshold, please refer to Figure 7 .
  • the electronic device can send the first prompt information to the first electronic device that is communicatively connected with it, thereby informing the user that the sensor function is normal but the sensitivity determination fails.
  • the first prompt information can be displayed on the first electronic device. "Sensitivity calibration failed, please enter the factory calibration code manually" on the display.
  • the user can determine the sensitivity of the sensor by manually inputting a factory calibration code or other manual calibration methods.
  • the method may also include:
  • the first threshold is the minimum requirement for the measured electrical signal data. If the measured electrical signal data obtained by the electronic device each time is not greater than the first threshold, it means that the sensor is likely to be faulty, and the electronic device can Second prompt information indicating abnormal function of the transcutaneous analyte sensor is sent to the first electronic device.
  • the second prompt information may be "Sensor failure, please send it to the factory for repair" displayed on the display screen of the first electronic device. When prompted by the second prompt message, the user can discard the sensor or send it to the factory for repair.
  • the second condition is naturally not met.
  • the method further includes: sending a third prompt message to the first electronic device, the third prompt message being used to instruct implantation of the skin analyzer into the host skin. object sensor.
  • the sensor The sensor can be used normally.
  • the electronic device can send third prompt information to the first electronic device communicatively connected with it.
  • the third prompt information is used to instruct the implantation of the skin analyte sensor into the host skin.
  • the third prompt information may be "sensitivity calibration completed, sensor can be implanted.”
  • the present application also provides a method for determining the implantation effect of a transcutaneous analyte sensor, which can also be applied to the transcutaneous analyte sensor shown in FIG. 1 or having a functional structure similar to that of FIG. 1 , that is, the method can be performed by various hardware components in the transcutaneous analyte sensor (specifically, the electronic device of the transcutaneous analyte sensor) in combination with corresponding software programs.
  • the method includes:
  • S603 Determine whether the second electrical signal data is less than the fourth threshold.
  • the electronic device can determine the sensitivity of the sensor outside the body, it means that the sensor is functioning normally. However, if the sensor with normal function is implanted into the host skin (the working electrode is implanted under the skin and the electronic device is applied on the skin surface), it will not function properly. It is found that the detected electrical signal data is too small (less than the fourth threshold), which is probably because there is a problem with the implantation effect (for example, the working electrode has a large bend and cannot be implanted in place).
  • the electronic device can The second electronic device currently connected to the second electronic device sends a fourth prompt message indicating failure of sensor implantation, prompting the user to remove the sensor from the skin to prevent misjudgment of in vivo analyte data from being obtained and delaying the condition.
  • the second electronic device and the above-mentioned first electronic device may be the same device or may be different devices.
  • the senor with determined sensitivity is implanted into the host's skin and the detected electrical signal data is found to be not too small (greater than or equal to the fourth threshold), it means that the sensor is implanted normally and the electronic device can obtain real-time data based on the previously determined sensitivity.
  • the analyte concentration data in the host body is obtained, and the obtained analyte concentration data in the host body (for example, through Bluetooth communication) is transmitted to the second electronic device in real time for reference by the patient or medical personnel.
  • the electronic device of the transcutaneous analyte sensor is configured to send the analyte concentration data to the second electronic device. Therefore, the above-mentioned electronic device is also called a transmitter in the industry, and the first electronic device or the second electronic device is also called a transmitter. The device is called a receiver.
  • the communication path between the electronic device and the second electronic device should be a communication path that can stably connect and communicate in real time, such as Bluetooth communication, which can use electronic devices.
  • the Bluetooth communication module is implemented in the device and the second electronic device.
  • the embodiment of the present application realizes the determination of sensitivity and the judgment of implantation effect through the combination of multiple communication paths, and includes at least one communication path that does not require battery power supply of the sensor itself, which is helpful for the design of miniaturization of electronic devices in the sensor. (The battery does not need to be large).
  • the method for determining the implantation effect of a transcutaneous analyte sensor provided by this application, after determining the sensor sensitivity in vitro, it is then determined whether the sensor is implanted in place based on the obtained in vivo analyte data. The accuracy higher.
  • the method may further include:
  • the electronic device establishes a third near field communication connection with the second electronic device, wherein the second electronic device is the master device in the third near field communication connection, and the electronic device is the slave device in the third near field communication connection;
  • the electronic device receives a third control instruction from the second electronic device
  • the electronic device activates the electrical signal sampling circuit in the electronic device to apply voltage to the working electrode.
  • the electronic device can establish a near field communication connection with the second electronic device by means of the electronic device and the near field communication module in the second electronic device.
  • the electrical signal sampling circuit in the electronic device (powered by the battery in the electronic device) is activated, thereby applying an excitation voltage to the working electrode, causing the working electrode to interact with the analyte.
  • the solution undergoes an electrochemical reaction, and corresponding second electrical signal data can be obtained.
  • the electronic device determines that the second electrical signal data is greater than the fourth threshold, it indicates that the sensor has been correctly implanted, and the electrical signal sampling circuit can remain activated and periodically transmit the electrical signal to the processor of the electronic device, and the electronic device will The calculated analyte data is periodically transmitted to the second electronic device through Bluetooth communication.
  • embodiments of the present application also provide a sensitivity determination device applied to a transcutaneous analyte sensor with a working electrode.
  • the sensitivity determination device includes an acquisition module and a determination module, wherein the acquisition module is configured to operate on the working electrode.
  • the determination module is configured to be based on the first electrical signal data and the analyte concentration data of the analyte solution , to determine the sensitivity of a transcutaneous analyte sensor.
  • embodiments of the present application also provide an implantation effect judgment device, which is applied to Transcutaneous analyte sensor, the implantation effect judgment device includes a judgment module, a sending module and the above-mentioned sensitivity determination device, wherein the acquisition module in the sensitivity determination device is also configured to after the transcutaneous analyte sensor is implanted into the host skin, Obtain second electrical signal data generated based on the electrochemical reaction between the working electrode and the analyte in the host body; the judgment module is configured to determine whether the second electrical signal data is less than a fourth threshold; the sending module is configured to respond to the second electrical signal data. If the signal data is less than the fourth threshold, a fourth prompt message is sent to the second electronic device, and the fourth prompt message is used to indicate that the transcutaneous analyte sensor implantation fails.
  • embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by a processor, the above-mentioned sensitivity determination method or plant can be implemented. Enter the effect judgment method.
  • embodiments of the present application also provide a computer program product.
  • the computer program product When the computer program product is run on a transcutaneous analyte sensor, the transcutaneous analyte sensor performs the above sensitivity determination method or implantation. Enter the effect judgment method.
  • the transcutaneous analyte continuous monitoring system includes: an openable container with an analyte solution enclosed in the container, and a A transdermal analyte sensor that functions as described above (such as that shown in Figure 1).
  • the memory of the electronic device of the transcutaneous analyte sensor stores the analyte concentration data of the analyte solution in the container.
  • the above-mentioned transcutaneous analyte continuous monitoring system may also include an implantation device (or applicator) for implanting the transcutaneous analyte sensor into the skin of the host.
  • the user can operate the implantation device to make the sensor implanted in human skin), the transcutaneous analyte sensor is detachably disposed in the implanted device.
  • the implant device includes a removable cap, the cap is configured to shield the working electrode in the implant device, and when the cap is removed, the working electrode is exposed from the implant device.
  • the user can first remove the cap of the implanted device to expose the working electrode, so that while the sensor is still left in the implanted device, the working electrode can be contacted with the analyte solution in the container to determine After determining the sensitivity of the sensor, it is very convenient to implant the sensor into the host skin with the help of an implantation device.
  • the implant device when the cap is removed, forms a connection structure at the exposed position of the working electrode.
  • the connection structure is configured to connect the opening of the container, thereby ensuring that the working electrode and the analyte solution in the container can have a uniform contact depth.
  • the connection structure may be a slot structure, and the openable opening of the container may be a plug-in structure adapted to the slot.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

一种灵敏度确定方法、植入效果判断方法以及相关设备,本申请提出的灵敏度确定方法充分考虑了传感器的差异性,在减少患者校准负担的同时提高了校准的准确性。其中,灵敏度确定方法应用于具有工作电极的经皮分析物传感器,该方法包括:在所述工作电极与体外的分析物溶液接触时,获取基于所述工作电极与所述分析物溶液间的电化学反应而产生的第一电信号数据;基于所述第一电信号数据和所述分析物溶液的分析物浓度数据,确定出所述经皮分析物传感器的灵敏度。

Description

灵敏度确定方法、植入效果判断方法以及相关设备
本公开要求在2022年9月19日提交中国专利局、申请号为202211134559.4的中国专利的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及经皮分析物传感器技术领域,例如涉及一种灵敏度确定方法、植入效果判断方法以及相关设备。
背景技术
传感器的灵敏度是传感器测量中的重要性能,是将传感器测量的电信号转化为被测量参数的重要依据。
相关技术中,连续血糖监测传感器(如一种经皮分析物传感器)需要通过使用过程中的校准或者通过工厂校准码获得灵敏度。使用过程中校准改变灵敏度的方法虽然能够保证灵敏度的实时性,但是频繁的校准增加了使用成本和用户的痛楚。工厂校准的方法是在生产过程中按批次获得灵敏度并通过标签告知使用者,但是依然没有办法解决每个传感器的差异性。
发明内容
本申请提出一种灵敏度确定方法、植入效果判断方法以及相关设备,本申请提出的灵敏度确定方法充分考虑了传感器的差异性,可以在减少患者校准负担的同时提高校准的准确性。
第一方面,本申请提出一种灵敏度确定方法,应用于具有工作电极的经皮分析物传感器,所述方法包括:
在所述工作电极与体外的分析物溶液接触时,获取基于所述工作电极与所述分析物溶液间的电化学反应而产生的第一电信号数据;
基于所述第一电信号数据和所述分析物溶液的分析物浓度数据,确定出所述经皮分析物传感器的灵敏度。
第二方面,本申请提出一种植入效果判断方法,应用于经皮分析物传感器,所述方法包括:
通过如第一方面所述的方法确定出所述经皮分析物传感器的灵敏度;
在所述经皮分析物传感器被植入宿主皮肤后,获取基于所述工作电极与所述宿主体内分析物间的电化学反应而产生的第二电信号数据;
判断所述第二电信号数据是否小于第四阈值;
响应于所述第二电信号数据小于所述第四阈值,向第二电子设备发送第四提示息,所述第四提示信息用于指示所述经皮分析物传感器植入失败。
第三方面,本申请提出一种灵敏度确定装置,应用于具有工作电极的经皮分析物传感器,所述灵敏度确定装置包括:
获取模块,设置为在所述工作电极与体外的分析物溶液接触时,获取基于所述工作电极与所述分析物溶液间的电化学反应而产生的第一电信号数据;
确定模块,设置为基于所述第一电信号数据和所述分析物溶液的分析物浓度数据,确定出所述经皮分析物传感器的灵敏度。
第四方面,本申请提出一种植入效果判断装置,应用于经皮分析物传感器,所述植入效果判断装置包括:
如第三方面所述的灵敏度确定装置,其中,所述获取模块还设置为在所述经皮分析物传感器被植入宿主皮肤后,获取基于所述工作电极与所述宿主体内分析物间的电化学反应而产生的第二电信号数据;
判断模块,设置为判断所述第二电信号数据是否小于第四阈值;
发送模块,设置为响应于所述第二电信号数据小于所述第四阈值,向第二电子设备发送第四提示息,所述第四提示信息用于指示所述经皮分析物传感器植入失败。
第五方面,本申请提出一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面或第二方面所述的方法。
第六方面,本申请提出一种计算机程序产品,当所述计算机程序产品在经皮分析物传感器上运行时,使得所述经皮分析物传感器执行如第一方面或第二方面所述的方法。
第七方面,本申请提出一种经皮分析物传感器,包括:
工作电极,以及
电子器件,所述电子器件与所述工作电极电性连接;
其中,所述电子器件包括:
存储器,
与所述存储器连接的处理器,以及
存储在所述存储器中并可被所述处理器执行的计算机程序;
所述处理器执行所述计算机程序时以实现如第一方面或第二方面所述的方法。
第八方面,本申请提出一种经皮分析物持续监测系统,包括:
可被打开的容器,且所述容器内封装有分析物溶液,以及
如第七方面所述的经皮分析物传感器;
其中,所述经皮分析物传感器的电子器件的存储器中存储有所述分析物溶液的分析物浓度数据。
附图说明
下面将对实施例的附图作介绍。
图1是本申请实施例提供的一种经皮分析物传感器的结构示意图;
图2是本申请实施例提供的一种灵敏度确定方法的流程示意图;
图3是本申请实施例提供的一种灵敏度确定方法的流程示意图;
图4是本申请实施例提供的一种灵敏度确定方法的流程示意图;
图5是本申请实施例提供的一种灵敏度确定方法的流程示意图;
图6是本申请实施例提供的一种植入效果判断方法的流程示意图;
图7是本申请实施例提供的激励电压与电流值的关系曲线图。
具体实施方式
下面将结合本申请实施例的附图,对本申请实施例进行描述。所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请的描述中,若存在术语“第一”、“第二”等,仅用于区分所描述的对象,不具有任何顺序或技术含义。由此,限定有“第一”、“第二”等的对象可以明示或者隐含地包括一个或者多个该对象。并且,“一个”或者“一”等类似词语,不表示数量限制,而是表示存在至少一个,“多个”表示不少于两个。
在本说明书的描述中,参考“一个实施例”或“一些实施例”等意味着在 本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。
首先,对本申请实施例可以应用到的经皮分析物传感器的结构进行简要说明,以便于本领域技术人员理解本申请实施例。示例性地,如图1所示,为本申请实施例提供的一种经皮分析物传感器的结构示意图,图1所示的经皮分析物传感器包括工作电极以及与工作电极电性连接的电子器件,其中,电子器件包括电池、电信号采样电路、第一通信模块、第二通信模块、存储器和与所述存储器连接的处理器,存储器中存储有计算机程序,处理器可以调用并执行计算机程序,以实现如下所述的灵敏度确定方法或植入效果判断方法。其中,第一通信模块可以是近场通信模块,第二通信模块可以是蓝牙通信模块,电池设置为对电子器件的电信号采样电路和处理器等部件提供工作电源。
在实际应用时,工作电极需被(至少部分地)植入宿主(宿主通常为人,当然也可以是猫、狗等宠物)的皮肤下,电子器件可以通过粘接剂敷贴在宿主的皮肤表面,植入皮下的工作电极能够与宿主体内的组织间液发生电化学反应从而产生电信号,电子器件可以检测该电信号并对其进行相关处理而最终推算出组织间液中的分析物水平。示例性地,上述分析物可以是葡萄糖,对应的分析物水平可以是血糖浓度。前述电信号的强弱与组织间液中的分析物水平相关。
以上介绍了本申请实施例提供的一种经皮分析物传感器,接下来结合附图介绍本申请实施例提供的灵敏度确定方法。
如图2所示,图2为本申请实施例提供的一种灵敏度确定方法的流程示意图,该方法可以应用于上述图1所示或者与图1功能结构类似的经皮分析物传感器,即该方法可由经皮分析物传感器(具体为经皮分析物传感器的电子器件)中的各个硬件部分结合相应的软件程序来执行。该方法包括下述步骤S201和S202:
S201,在工作电极与体外的分析物溶液接触时,获取基于工作电极与分析物溶液间的电化学反应而产生的第一电信号数据。
在一些实施例中,用户可以在经皮分析物传感器(以下简称传感器)被植入宿主皮肤之前,也即在工作电极被植入宿主皮肤下、电子器件被敷贴在皮肤表面之前,先将传感器的工作电极浸入设定浓度的分析物溶液(例如葡萄糖溶液),从而使工作电极与该体外的分析物溶液发生电化学反应产生作用于电信号采样电路的电信号,电子器件中的电信号采样电路将该电信号直接或经过处理后传送至电子器件的处理器,由处理器进行运算得到对应的电信号数据。电 信号数据可以为电流数据。一般,分析物溶液中分析物的浓度越高,得到电信号数据(电流值)越大。即使是同一型号同一批次的两个传感器,因二者在结构构造上存在不可避免的差异性,故而将它们浸入相同浓度的分析物溶液时,所产生的电信号数据可能不同,这也表明二者的灵敏度不同。
S202,基于第一电信号数据和分析物溶液的分析物浓度数据,确定出经皮分析物传感器的灵敏度。
在一些实施例中,厂家可以将经皮分析物传感器以及内部封装有标准分析物溶液的容器作为成套产品售卖。在这种情况下,该成套产品在出厂之前,厂家可以将分析物溶液的分析物浓度数据预先存储在电子器件的存储器中。用户购买到该成套产品并准备使用时,可先打开前述容器,将传感器的工作电极浸入容器中的分析物溶液内,让工作电极与分析物溶液发送电化学反应,电子器件获取到基于工作电极与分析物溶液间的电化学反应而产生的第一电信号数据后,便可以结合预存在其存储器中的分析物浓度数据运算得出该传感器的灵敏度,并将确定出的灵敏度存储在其存储器中,以在该传感器被植入宿主皮肤后通过确定出的灵敏度得出宿主体内的分析物水平(例如血糖浓度)。
在另一些实施例中,用户可以购买第三方售卖的具有相应浓度的分析物溶液,例如浓度为6.0毫摩尔每升(mmol/L)的标准葡萄糖溶液。这种情况下,用户可以借助与传感器的电子器件通信连接的电子设备(例如手机、平面电脑或智能手表等)向电子器件发送该分析物溶液的分析物浓度数据。
在一实施例中,通过本申请提供的经皮分析物传感器的灵敏度确定方法,可实现每个传感器灵敏度的个性化校准,充分考虑了不同传感器的差异性,在减少用户校准负担的同时提高了校准的准确性。
在一实施例中,所述经皮分析物传感器包括与所述工作电极电性连接的电子器件,所述工作电极设置为植入宿主的皮肤下,所述电子器件设置为敷贴在所述宿主的皮肤表面;上述灵敏度确定方法可以由所述电子器件执行。
在一些实施例中,如图3所示,在工作电极与体外的分析物溶液接触时,且在电子器件获取基于工作电极与分析物溶液间的电化学反应而产生的第一电信号数据之前,该方法还包括下述步骤S301至S303:
S301,建立与第一电子设备的第一近场通信连接,其中,第一电子设备为第一近场通信连接中的主设备,经皮分析物传感器(具体为传感器的电子器件)为第一近场通信连接中的从设备。
上述第一电子设备具有显示屏。示例性地,第一电子设备为第一手机,用户可以通过扫描通信的方式建立起第一手机与电子器件的近场通信连接(借助 第一手机和电子器件中的近场通信模块实现)。第一手机为近场通信连接中的主设备,而传感器(具体为传感器的电子器件)为近场通信连接中的从设备,这种通信方式不需要使用传感器的电源(即电子器件中的电池),从而节省了传感器自身电池的能量消耗,保证了传感器的电池使用寿命。
S302,接收来自第一电子设备的第一控制指令。
S303,响应于第一控制指令,激活经皮分析物传感器中的电信号采样电路以向工作电极施加电压。
电子器件接收到来自第一手机的第一控制指令后,响应于该第一控制指令,激活电子器件中的电信号采样电路(由电子器件中的电池供电),从而向工作电极施加激励电压,促使工作电极与分析物溶液发生电化学反应,进而可以得到相应的电信号数据。
考虑到如果直接将电子器件中产生的实测电信号数据用来计算传感器的灵敏度,会存在一定的误差,这是因为:在工作电极不接触分析物溶液时,倘若将电信号采样电路激活,也会在电子器件中产生微弱的电信号数据——背景电信号数据(也即噪声数据)。基于此,在一些实施例中,如图4所示,在工作电极与体外的分析物溶液接触之前(即工作电极与体外的分析物溶液接触未接触时,也是上述步骤S301之前),该方法还包括下述步骤S401至S404:
S401,建立与第一电子设备的第二近场通信连接,其中,第一电子设备为第二近场通信连接中的主设备,经皮分析物传感器为第二近场通信连接中的从设备。
第一电子设备为第二近场通信连接中的主设备,而传感器(具体为传感器的电子器件)为近场通信连接中的从设备,这种通信方式不需要使用传感器的电源(即电子器件中的电池),从而节省了传感器自身电池的能量消耗,保证了传感器的电池使用寿命。
S402,接收来自第一电子设备的第二控制指令。
S403,响应于第二控制指令,激活经皮分析物传感器中的电信号采样电路以向工作电极施加电压。
S404,获取在经皮分析物传感器中产生的背景电信号数据。
在一实施例中,在图4所示的实施例中,基于第一电信号数据和分析物溶液的分析物浓度数据,确定出经皮分析物传感器的灵敏度,可以包括:基于背景电信号数据、第一电信号数据和分析物溶液的分析物浓度数据,确定出经皮分析物传感器的灵敏度。
可见,图4所示实施例提供的灵敏度确定方法考虑并剔除了第一电信号数据的噪声部分——背景电信号数据,因此确定出的灵敏度更加准确。
在图4所示的实施例中,上述基于背景电信号数据、第一电信号数据和分析物溶液的分析物浓度数据,确定出经皮分析物传感器的灵敏度,可以包括:
根据式确定出经皮分析物传感器的灵敏度,其中,S为经皮分析物传感器的灵敏度,I为第一电信号数据,IB为背景电信号数据,G为分析物溶液的分析物浓度数据。也即,将第一电信号数据减去背景电信号数据的差值除以分析物浓度数据的比值确定为传感器的灵敏度。
请参见图7,传感器的完全激活存在一定的响应时间,刚对工作电极施加激励电压(OutputVoltage,OV)时,传感器中产生的电信号数据(电流值)很微弱,然后逐渐增大直至趋于稳定。因此,如果过早地获取电信号数据,并通过该电信号数据用来计算出灵敏度,会存在较大的偏差。基于此,在一些实施例中,如图5所示,其步骤S201中获取基于工作电极与分析物溶液间的电化学反应而产生的第一电信号数据,可以包括:
S201a,实时获取在经皮分析物传感器中产生的实测电信号数据。
S202a,如果连续获取到的N个实测电信号数据均大于第二阈值,且该N个实测电信号数据中任意相邻两个实测电信号数据的变化率均小于第三阈值,则将该N个实测电信号数据的平均值作为第一电信号数据,其中,N≥3。
示例性地,以N=3为例对上述步骤S201a和步骤S202a的内容进行说明,电子器件可以每隔一定时长(例如1秒或10秒)获取一次当前的实测电信号数据,并在每次获取到当前的实测电信号数据时,将该次的实测电信号数据与预设的第二阈值进行比较。若某次的比较结果显示当前实测电信号数据I1首次大于第二阈值,继续获取下一次的实测电信号数据I2。若判断出该下一次的实测电信号数据I2也大于第二阈值,则计算出该相邻两次实测电信号数据的变化率并判断该变化率a1是否小于预设的第三阈值(例如第三阈值为0.05),且继续获取下一次的实测电信号数据I3。若判断出前述变化率a1小于预设的第三阈值,且电信号数据I3大于第二阈值,则计算出当前相邻两次实测电信号数据的变化率并判断该变化率a2是否也小于预设的第三阈值,若判断出前述变化率a2也小于预设的第三阈值,则可以将I1、I2和I3的平均值作为上述第一电信号数据I,即
第二阈值的选择可以根据相关批次(如同一批次)传感器中的灵敏度最小值和背景电信号数据(如背景电流)来确定。
请再参见图5,在图5所示的实施例中,该方法还可以包括:
S202b,如果满足下述第一条件、且不满足下述第二条件,则向第一电子设备发送第一提示信息,该第一提示信息用于指示经皮分析物传感器功能正常但灵敏度确定失败;
第一条件为:获取到的至少一个实测电信号数据大于第一阈值;
第二条件为:连续获取到的N个实测电信号数据均大于第二阈值,且N个实测电信号数据中任意相邻两个实测电信号数据的变化率均小于第三阈值,N≥3;
其中,第一阈值小于第二阈值,可参照图7。
倘若电子器件获取到的至少一个实测电信号数据大于第一阈值,说明该电子器件具有适当灵敏度可能性很大;但是,如果电子器件实时获取的实测电信号数据无法满足上述第二条件,也就无法通过计算相关实测电信号数据平均值的方式来得出第一电信号数据,进而无法确定出传感器的灵敏度。这种情况下,电子器件可以向与之通信连接的第一电子设备发送第一提示信息,从而告知用户该传感器功能正常但是灵敏度确定失败,例如,第一提示信息可以是显示于第一电子设备显示屏上的“灵敏度校准失败,请手动输入工厂校准码”。用户在该第一提示信息的提示下,可以通过手动输入工厂校准码或其他手动校准方式来确定该传感器的灵敏度。
请再参见图5,在图5所示的实施例中,该方法还可以包括:
S202c,如果不满足上述第一条件,则向第一电子设备发送第二提示信息,第二提示信息用于指示经皮分析物传感器功能异常。
可以理解,第一阈值是对实测电信号数据的最低要求,倘若电子器件每次获取到的实测电信号数据都不大于第一阈值,说明该传感器存在故障的可能性很大,则电子器件可以向第一电子设备发送用于指示经皮分析物传感器功能异常的第二提示信息。例如,第二提示信息可以是显示于第一电子设备的显示屏上的“传感器故障,请送厂返修”。用户在该第二提示信息的提示下,可以将该传感器丢弃或送厂返修。
在一实施例中,如果不能满足上述第一条件,自然也就无法满足上述第二条件。
在一些实施例中,在电子器件确定出经皮分析物传感器的灵敏度之后,该方法还包括:向第一电子设备发送第三提示信息,第三提示信息用于指示向宿主皮肤植入皮肤分析物传感器。
示例性地,当电子器件确定出经皮分析物传感器的灵敏度之后,说明该传 感器可正常使用,这时,电子器件可以向与之通信连接的第一电子设备发送第三提示信息,该第三提示信息用于指示向宿主皮肤植入皮肤分析物传感器。例如,第三提示信息可以是“灵敏度校准完成,传感器可植入”。
请参见图6,本申请实施例还提供了一种判断经皮分析物传感器植入效果的方法,该方法也可以应用于上述图1所示或者与图1功能结构类似的经皮分析物传感器,即该方法可由经皮分析物传感器(具体为经皮分析物传感器的电子器件)中的各个硬件部分结合相应的软件程序来执行。该方法包括:
S601,通过上述实施例的方法在体外确定出经皮分析物传感器的灵敏度。
S602,在经皮分析物传感器被植入宿主皮肤后,获取基于工作电极与宿主体内分析物间的电化学反应而产生的第二电信号数据。
S603,判断第二电信号数据是否小于第四阈值。
S604,如果判断出第二电信号数据小于第四阈值,则向第二电子设备发送第四提示息,第四提示信息用于指示经皮分析物传感器植入失败。
S605,如果判断出第二电信号数据不小于(即大于或等于)第四阈值,则基于灵敏度实时获取宿主体内的分析物浓度数据。
S606,将获取到的宿主体内的分析物浓度数据实时传送给第二电子设备。
若电子器件能够在体外确定出传感器的灵敏度,则说明该传感器功能正常,而若将该功能正常的传感器植入宿主皮肤后(工作电极植入皮肤下,电子器件敷贴在皮肤表面),却发现检测到的电信号数据过小(小于第四阈值),很可能是因为植入效果出现了问题(例如工作电极产生了较大弯曲而未能植入到位),这时,电子器件可以向当前与之通信连接的第二电子设备发送用于指示传感器植入失败的第四提示信息,提示用户从皮肤取下该传感器,以防止得到误判的体内分析物数据而延误病情。
在一实施例中,第二电子设备与上述第一电子设备可以是同一设备,也可以是不同的设备。
如果将确定出灵敏度的传感器植入宿主皮肤后,发现检测到的电信号数据并非太小(大于或等于第四阈值),则说明传感器植入正常,电子器件可以基于之前确定出的灵敏度实时获取宿主体内的分析物浓度数据,并将其获取到的宿主体内的分析物浓度数据(例如以蓝牙通信的方式)实时传送给第二电子设备,以供患者或医务人员参考。
经皮分析物传感器的电子器件设置为将分析物浓度数据发送给第二电子设备,故而在业内也会将上述电子器件称为发射器,将第一电子设备或第二电子 设备称为接收器。
电子器件向第二电子设备实时发送宿主体内的分析物浓度数据时,电子器件与第二电子设备的通信路径宜为可以稳定连接并可以实时进行通信的通信路径,例如蓝牙通信,其可以借助电子器件及第二电子设备中的蓝牙通信模块实现。
本申请实施例通过多个通信路径的组合,且至少包含一种不需要传感器自身电池供电的通信路径实现灵敏度的确定以及对植入效果的判断,这有助于传感器中电子器件小型化的设计(电池无须很大)。
在一实施例中,通过本申请提供的应用于经皮分析物传感器的植入效果判断方法,在体外确定出传感器灵敏度之后,再根据获取的体内分析物数据判断传感器是否植入到位,准确度更高。
在图6所示的实施例中,在获取基于工作电极与宿主体内分析物间的电化学反应而产生的第二电信号数据之前,该方法还可以包括:
电子器件建立与第二电子设备的第三近场通信连接,其中,第二电子设备为第三近场通信连接中的主设备,电子器件为第三近场通信连接中的从设备;
电子器件接收来自第二电子设备的第三控制指令;
电子器件响应于第三控制指令,激活电子器件中的电信号采样电路以向工作电极施加电压。
电子器件建立与第二电子设备的近场通信连接可以借助电子器件及第二电子设备中的近场通信模块实现。在电子器件接收到来自第二电子设备的第三控制指令后,激活电子器件中的电信号采样电路(由电子器件中的电池供电),从而向工作电极施加激励电压,促使工作电极与分析物溶液发生电化学反应,进而可以得到相应的上述第二电信号数据。若电子器件判断出第二电信号数据大于第四阈值,则表明传感器已正确植入,电信号采样电路可保持激活状态,并周期性地向电子器件的处理器传输电信号,电子器件将其运算得到的分析物数据以蓝牙通信的方式周期性地传送给第二电子设备。
基于上述实施例,本申请实施例还提供了一种灵敏度确定装置,应用于具有工作电极的经皮分析物传感器,该灵敏度确定装置包括获取模块和确定模块,其中,获取模块设置为在工作电极与体外的分析物溶液接触时,获取基于工作电极与分析物溶液间的电化学反应而产生的第一电信号数据;确定模块设置为基于第一电信号数据和分析物溶液的分析物浓度数据,确定出经皮分析物传感器的灵敏度。
基于上述实施例,本申请实施例还提供了一种植入效果判断装置,应用于 经皮分析物传感器,该植入效果判断装置包括判断模块、发送模块以及上述的灵敏度确定装置,其中,灵敏度确定装置中的获取模块还设置为在经皮分析物传感器被植入宿主皮肤后,获取基于工作电极与宿主体内分析物间的电化学反应而产生的第二电信号数据;判断模块设置为判断第二电信号数据是否小于第四阈值;发送模块设置为响应于所述第二电信号数据小于第四阈值,向第二电子设备发送第四提示息,第四提示信息用于指示所述经皮分析物传感器植入失败。
基于上述实施例,本申请实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序,所述计算机程序被处理器执行时可实现上述的灵敏度确定方法或植入效果判断方法。
基于上述实施例,本申请实施例还提供了一种计算机程序产品,当所述计算机程序产品在经皮分析物传感器上运行时,使得所述经皮分析物传感器执行上述的灵敏度确定方法或植入效果判断方法。
基于上述实施例,本申请实施例还提供了一种经皮分析物持续监测系统,该经皮分析物持续监测系统包括:可被打开的容器且所述容器内封装有分析物溶液、以及具有上述功能的(例如图1所示的)经皮分析物传感器。其中,经皮分析物传感器的电子器件的存储器中存储有容器中分析物溶液的分析物浓度数据。
在一实施例中,上述经皮分析物持续监测系统还可以包括用于将经皮分析物传感器植入宿主皮肤的植入装置(或称施加器,用户可通过对植入装置的操作使传感器植入人体皮肤),经皮分析物传感器可分离地设置在植入装置中。其中,植入装置包括可被摘除的帽,所述帽设置为将工作电极遮挡于植入装置中,当所述帽被摘除后,工作电极从植入装置露出。由此,在实际使用时,用户可以先摘除植入装置的帽,使工作电极露出,从而在传感器仍然留置在植入装置中的情况下,让工作电极接触容器中的分析物溶液,来确定传感器的灵敏度,确定出灵敏度后再借助植入装置将传感器植入宿主皮肤,非常方便。
在一些实施例中,当帽被摘除后,植入装置在工作电极的露出位置形成有连接结构。连接结构设置为连接容器的开口部,由此保证工作电极与容器中分析物溶液能够具有统一的接触深度。例如连接结构可以是插槽结构,容器的可打开的开口部是与插槽适配的插接结构。
上述植入装置的结构可以参考公开号为CN114767104A和CN114391838A的中国专利申请的介绍。

Claims (22)

  1. 一种灵敏度确定方法,应用于具有工作电极的经皮分析物传感器,所述方法包括:
    在所述工作电极与体外的分析物溶液接触时,获取基于所述工作电极与所述分析物溶液间的电化学反应而产生的第一电信号数据;
    基于所述第一电信号数据和所述分析物溶液的分析物浓度数据,确定出所述经皮分析物传感器的灵敏度。
  2. 根据权利要求1所述的方法,在所述工作电极与体外的分析物溶液接触时,且在获取基于所述工作电极与所述分析物溶液间的电化学反应而产生的第一电信号数据之前,所述方法还包括:
    建立与第一电子设备的第一通信连接;
    接收来自所述第一电子设备的第一控制指令;
    响应于所述第一控制指令,激活所述经皮分析物传感器中的电信号采样电路,以向所述工作电极施加电压。
  3. 根据权利要求2所述的方法,在所述工作电极与体外的分析物溶液接触之前,所述方法还包括:
    建立与所述第一电子设备的第二通信连接;
    接收来自所述第一电子设备的第二控制指令;
    响应于所述第二控制指令,激活所述经皮分析物传感器中的电信号采样电路,以向所述工作电极施加电压;
    获取在所述经皮分析物传感器中产生的背景电信号数据;
    所述基于所述第一电信号数据和所述分析物溶液的分析物浓度数据,确定出所述经皮分析物传感器的灵敏度,包括:
    基于所述背景电信号数据、所述第一电信号数据和所述分析物溶液的分析物浓度数据,确定出所述经皮分析物传感器的灵敏度。
  4. 根据权利要求3所述的方法,其中,
    所述第一通信连接为第一近场通信连接,所述第一电子设备为所述第一近场通信连接中的主设备,所述经皮分析物传感器为所述第一近场通信连接中的从设备,所述第一电子设备具有显示屏;
    所述第二通信连接为第二近场通信连接,所述第一电子设备为所述第二近场通信连接中的主设备,所述经皮分析物传感器为所述第二近场通信连接中的从设备。
  5. 根据权利要求3所述的方法,其中,所述基于所述背景电信号数据、所述第一电信号数据和所述分析物溶液的分析物浓度数据,确定出所述经皮分析物传感器的灵敏度,包括:
    根据式确定出所述经皮分析物传感器的灵敏度,其中,S为所述经皮分析物传感器的灵敏度,I为所述第一电信号数据,IB为所述背景电信号数据,G为所述分析物溶液的分析物浓度数据。
  6. 根据权利要求2所述的方法,其中,所述基于所述工作电极与所述分析物溶液间的电化学反应而产生的第一电信号数据,包括:
    实时获取在所述经皮分析物传感器中产生的实测电信号数据;
    响应于连续获取到的N个实测电信号数据均大于第二阈值,且所述N个实测电信号数据中任意相邻两个实测电信号数据的变化率均小于第三阈值,将所述N个实测电信号数据的平均值作为所述第一电信号数据,其中,N≥3。
  7. 根据权利要求6所述的方法,所述方法还包括:
    响应于满足下述第一条件、且不满足下述第二条件,向所述第一电子设备发送第一提示信息,所述第一提示信息用于指示所述经皮分析物传感器功能正常但灵敏度确定失败;
    所述第一条件为:获取到的至少一个实测电信号数据大于第一阈值;
    所述第二条件为:获取到的N个实测电信号数据均大于第二阈值,且所述N个实测电信号数据中任意相邻两个实测电信号数据的变化率均小于第三阈值;
    其中,所述第一阈值小于所述第二阈值。
  8. 根据权利要求7所述的方法,所述方法还包括:
    响应于不满足所述第一条件,向所述第一电子设备发送第二提示信息,所述第二提示信息用于指示所述经皮分析物传感器功能异常。
  9. 根据权利要求2至8中任一项所述的方法,在确定出所述经皮分析物传感器的灵敏度之后,所述方法还包括:
    向所述第一电子设备发送第三提示信息,所述第三提示信息用于指示向宿主皮肤植入所述皮肤分析物传感器。
  10. 根据权利要求1至8中任一项所述的方法,其中,所述经皮分析物传感器包括与所述工作电极电性连接的电子器件,其中,所述工作电极设置为植入宿主的皮肤下,所述电子器件设置为敷贴在所述宿主的皮肤表面;
    所述方法由所述电子器件执行。
  11. 一种植入效果判断方法,应用于经皮分析物传感器,包括:
    通过如权利要求1至10中任一项所述的方法确定出所述经皮分析物传感器的灵敏度;
    在所述经皮分析物传感器被植入宿主皮肤后,获取基于所述工作电极与所述宿主体内分析物间的电化学反应而产生的第二电信号数据;
    判断所述第二电信号数据是否小于第四阈值;
    响应于所述第二电信号数据小于所述第四阈值,向第二电子设备发送第四提示息,所述第四提示信息用于指示所述经皮分析物传感器植入失败。
  12. 根据权利要求11所述的方法,所述方法还包括:
    响应于所述第二电信号数据不小于所述第四阈值,基于所述灵敏度实时获取所述宿主体内的分析物浓度数据。
  13. 根据权利要求12所述的方法,其中,所述基于所述灵敏度实时获取所述宿主体内的分析物浓度数据,包括:
    基于所述灵敏度实时获取所述宿主体内的分析物浓度数据,且将所述宿主体内的分析物浓度数据实时传送给所述第二电子设备。
  14. 根据权利要求11至13中任一项所述的方法,在获取基于所述工作电极与所述宿主体内分析物间的电化学反应而产生的第二电信号数据之前,所述方法还包括:
    建立与所述第二电子设备的第三近场通信连接,其中,所述第二电子设备为所述第三近场通信连接中的主设备,所述经皮分析物传感器为所述第三近场通信连接中的从设备;
    接收来自所述第二电子设备的第三控制指令;
    响应于所述第三控制指令,激活所述经皮分析物传感器中的电信号采样电路,以向所述工作电极施加电压。
  15. 一种灵敏度确定装置,应用于具有工作电极的经皮分析物传感器,所述灵敏度确定装置包括:
    获取模块,设置为在所述工作电极与体外的分析物溶液接触时,获取基于所述工作电极与所述分析物溶液间的电化学反应而产生的第一电信号数据;
    确定模块,设置为基于所述第一电信号数据和所述分析物溶液的分析物浓度数据,确定出所述经皮分析物传感器的灵敏度。
  16. 一种植入效果判断装置,应用于经皮分析物传感器,所述植入效果判断装置包括:
    如权利要求15所述的灵敏度确定装置,其中,所述获取模块还设置为在所述经皮分析物传感器被植入宿主皮肤后,获取基于所述工作电极与所述宿主体内分析物间的电化学反应而产生的第二电信号数据;
    判断模块,设置为判断所述第二电信号数据是否小于第四阈值;
    发送模块,设置为响应于所述第二电信号数据小于所述第四阈值,向第二电子设备发送第四提示息,所述第四提示信息用于指示所述经皮分析物传感器植入失败。
  17. 一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至14中任一项所述的方法。
  18. 一种计算机程序产品,当所述计算机程序产品在经皮分析物传感器上运行时,使得所述经皮分析物传感器执行如权利要求1至14中任一项所述的方法。
  19. 一种经皮分析物传感器,包括:
    工作电极,以及
    电子器件,所述电子器件与所述工作电极电性连接;
    其中,所述电子器件包括:
    存储器,
    与所述存储器连接的处理器,以及
    存储在所述存储器中并可被所述处理器执行的计算机程序;
    所述处理器执行所述计算机程序时以实现如权利要求1至14中任一项所述的方法。
  20. 一种经皮分析物持续监测系统,包括:
    可被打开的容器且所述容器内封装有分析物溶液,以及
    如权利要求19所述的经皮分析物传感器;
    其中,所述经皮分析物传感器的电子器件的存储器中存储有所述分析物溶液的分析物浓度数据。
  21. 根据权利要求20所述的经皮分析物持续监测系统,所述经皮分析物持续监测系统还包括用于将所述经皮分析物传感器植入宿主皮肤的植入装置,所述经皮分析物传感器可分离地设置在所述植入装置中;
    其中,所述植入装置包括可被摘除的帽,所述帽设置为将所述工作电极遮挡于所述植入装置中,当所述帽被摘除后,所述工作电极从所述植入装置露出。
  22. 根据权利要求21所述的经皮分析物持续监测系统,其中,
    当所述帽被摘除后,所述植入装置在所述工作电极的露出位置形成有用于连接所述容器的开口部的连接结构。
PCT/CN2023/117597 2022-09-19 2023-09-08 灵敏度确定方法、植入效果判断方法以及相关设备 WO2024061018A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211134559.4A CN117752333A (zh) 2022-09-19 2022-09-19 灵敏度确定方法、植入效果判断方法以及相关设备
CN202211134559.4 2022-09-19

Publications (1)

Publication Number Publication Date
WO2024061018A1 true WO2024061018A1 (zh) 2024-03-28

Family

ID=90311019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117597 WO2024061018A1 (zh) 2022-09-19 2023-09-08 灵敏度确定方法、植入效果判断方法以及相关设备

Country Status (2)

Country Link
CN (1) CN117752333A (zh)
WO (1) WO2024061018A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143943A1 (en) * 2007-05-14 2008-11-27 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
CN101547633A (zh) * 2006-10-04 2009-09-30 戴克斯卡姆公司 分析物传感器
US20140107447A1 (en) * 2012-10-12 2014-04-17 Google Inc. In-vitro Calibration Of An Ophthalmic Analyte Sensor
WO2014093028A1 (en) * 2012-12-12 2014-06-19 Edwards Lifesciences Corporation System for determining an estimated analyte value
CN110996794A (zh) * 2017-08-18 2020-04-10 雅培糖尿病护理公司 与医疗装置的个体化校准和/或制造相关的系统、装置以及方法
CN114391835A (zh) * 2021-11-27 2022-04-26 苏州百孝医疗科技有限公司 经皮分析物传感器系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101547633A (zh) * 2006-10-04 2009-09-30 戴克斯卡姆公司 分析物传感器
WO2008143943A1 (en) * 2007-05-14 2008-11-27 Abbott Diabetes Care, Inc. Method and apparatus for providing data processing and control in a medical communication system
US20140107447A1 (en) * 2012-10-12 2014-04-17 Google Inc. In-vitro Calibration Of An Ophthalmic Analyte Sensor
WO2014093028A1 (en) * 2012-12-12 2014-06-19 Edwards Lifesciences Corporation System for determining an estimated analyte value
CN110996794A (zh) * 2017-08-18 2020-04-10 雅培糖尿病护理公司 与医疗装置的个体化校准和/或制造相关的系统、装置以及方法
CN114391835A (zh) * 2021-11-27 2022-04-26 苏州百孝医疗科技有限公司 经皮分析物传感器系统

Also Published As

Publication number Publication date
CN117752333A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
US9274098B2 (en) Analyte meter digital sample detection
JP2016518881A (ja) 医療デバイスデータ処理方法及びシステム、並びに医療デバイスデータ通信方法及びシステム
EP2108948B1 (en) Biological sample measuring device
US9383332B2 (en) Analytical test strip with integrated battery
JP2014219396A (ja) 検体計測器のテストストリップの検出
AU2019201087A1 (en) Orientation independent meter
US9442089B2 (en) Analyte meter test strip detection
WO2024061018A1 (zh) 灵敏度确定方法、植入效果判断方法以及相关设备
US20150050678A1 (en) Modular analytical test meter
US20210068723A1 (en) Intelligent prediction-based glucose alarm devices, systems, and methods
CN109199402A (zh) 测定装置和显示装置
US20210068764A1 (en) Intelligent prediction-based glucose alarm devices, systems, and methods
TW202139927A (zh) 用於耦合行動電子裝置之血糖計的系統
CA3199889A1 (en) Nfc-enabled test sensors, systems and methods using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867309

Country of ref document: EP

Kind code of ref document: A1