WO2024060991A1 - 一种多路径的数据流引流方法及装置 - Google Patents

一种多路径的数据流引流方法及装置 Download PDF

Info

Publication number
WO2024060991A1
WO2024060991A1 PCT/CN2023/117048 CN2023117048W WO2024060991A1 WO 2024060991 A1 WO2024060991 A1 WO 2024060991A1 CN 2023117048 W CN2023117048 W CN 2023117048W WO 2024060991 A1 WO2024060991 A1 WO 2024060991A1
Authority
WO
WIPO (PCT)
Prior art keywords
protocol data
path
data unit
information
communication device
Prior art date
Application number
PCT/CN2023/117048
Other languages
English (en)
French (fr)
Inventor
徐玲
强鹂
常俊仁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024060991A1 publication Critical patent/WO2024060991A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/24Multipath
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management

Definitions

  • the present application relates to the field of communication technology, and in particular, to a multi-path data flow diversion method and device.
  • Extended reality (XR) service is a service used on terminals. It is one of the key media applications of 5G and has high throughput and high reliability transmission requirements.
  • QoS quality of service
  • 3GPP 3rd generation partnership project
  • the current XR transmission enhancement technology only considers the scenario of a single path between the terminal and the core network, that is, the terminal device establishes a single-access Protocol Data Unit (PDU) session.
  • XR service data is transmitted on the QoS flow of the established single-access PDU session.
  • PDU sessions are defined, and each PDU session can include multiple QoS flows.
  • terminal devices can simultaneously access the 3GPP network by establishing multiple access (Multiple Access, MA) PDU sessions.
  • ATSSS Access Traffic Steering, Switching and Splitting
  • traffic can be diverted on both paths of the 3GPP network and the non-3GPP network through load sharing mode, active-standby mode, minimum delay mode, or priority mode.
  • the access types were expanded from 3GPP and non-3GPP access types to dual 3GPP access types, such as 3GPP NR access type and 3GPP LTE access type, 3GPP NR access type and 3GPP NR Access type, 3GPP NR access type and 3GPP satellite network access type, etc. Therefore, if the terminal device establishes a multi-access PDU session, the data stream of the XR service may be transmitted on multiple paths.
  • the XR service data flow is transmitted on multiple access paths, according to the current traffic diversion method based on Protocol Data Unit (PDU) or byte count, it may result in multiple PDUs in the same PDU set (set). That is, multiple data packets) are divided into different paths, causing intermediate nodes such as base stations or WI-FI access points to be unable to perform QoS processing based on PDU set integrity; or, multiple different PDU sets that have dependencies are divided into to different paths. For example, the PDU set corresponding to the I frame and the PDU set corresponding to the P frame are divided into different paths. The PDU set corresponding to the previous P frame and the PDU set corresponding to the following P frame are divided into different paths. As a result, the intermediate nodes cannot perform differentiated QoS processing based on dependencies, and cannot perform data scheduling and packet loss processing based on the integrity and differences of data transmission, causing the XR enhancement technology to fail in multi-path scenarios.
  • PDU Protocol Data Unit
  • This application provides a multi-path data flow diversion method and device to implement extended reality XR services in multi-path scenarios and improve communication efficiency.
  • a multi-path data flow diversion method includes: a communication device obtains a data flow, the data flow includes a first set of protocol data units and a second set of protocol data units; the communication device Determine the traffic diversion mode based on the protocol data unit set group as a unit, send the first set of protocol data units through the first path; send the second set of protocol data units through the second path.
  • the data flow is diverted to multiple paths according to the protocol data unit set group, so that the protocol data unit set belonging to the same frame or multiple protocol data unit sets with dependencies can be directed to the same path.
  • complete QoS processing or differentiated QoS processing can be performed based on the received protocol data unit set.
  • the access point can determine whether the number of PDUs corresponding to the decoded PDU set has been reached based on the number of received protocol data unit PDUs, and determine whether to perform packet loss processing or retransmission processing.
  • the access point does If the I frame packet loss is determined, it can be determined that the P frame or B frame corresponding to the I frame can also be lost, and subsequent transmissions are meaningless. This can avoid invalid transmission, improve multi-path transmission efficiency, and improve the utilization of transmission resources.
  • traffic diversion means that in a multi-path data transmission scenario, the communication device can guide the data stream to be transmitted to different paths, thereby realizing transmission through multiple paths and improving transmission efficiency.
  • the transmission path used by the communication device to send the data stream to the target device includes at least a first path and a second path.
  • the communication device can pass different data streams through different paths according to the traffic diversion mode or traffic diversion method provided by the embodiments of the present application. Make the transfer.
  • the first set of protocol data units is a set of protocol data units, or is a set of multiple protocol data units;
  • the second set of protocol data units is a set of protocol data units, or is a set of multiple protocol data units. Unit collection.
  • the protocol data unit set group in the embodiment of the present application can be grouped according to a protocol data unit set (PDU set), or multiple protocol data unit sets (PDU sets) can be grouped.
  • PDU set protocol data unit set
  • PDU sets multiple protocol data unit sets
  • multi-path data flow can be diverted according to the protocol data unit collection group, thereby improving the flexibility of multi-path transmission.
  • multiple protocol data unit sets there are dependencies between multiple protocol data unit sets.
  • multiple protocol data unit sets (PDU sets) with dependencies are used as a group for multi-path data flow diversion, which can realize the integrity judgment and data dependency judgment of the transmitted data by a single access point, and improve multi-path communication efficiency.
  • the traffic diversion mode based on protocol data unit collection groups includes: load sharing mode, which is to pass different protocol data unit collection groups through multiple lines according to the preset load ratio according to the rules of load balancing. path transmission.
  • load sharing mode which is to pass different protocol data unit collection groups through multiple lines according to the preset load ratio according to the rules of load balancing. path transmission.
  • the embodiment of the present application can transmit the data stream through multiple paths according to the preset load ratio of each path by collecting groups of protocol data units to realize the completeness of XR services. or differentiated processing to improve the flexibility and communication efficiency of multi-path transmission.
  • the traffic diversion mode based on the protocol data unit set group includes: the minimum delay mode, which refers to transmitting the protocol data unit set group using the first path with a smaller delay. It is detected that the transmission delay of the second path is smaller than the transmission delay of the first path, and the protocol data unit is transmitted through the second path in units of set groups.
  • the embodiment of the present application can divert the data flow to different protocol data unit collection groups according to the real-time transmission path delay situation by taking the protocol data unit collection group as a unit. Transmission path to realize the integrity or differentiated processing of XR services and improve the flexibility and communication efficiency of multi-path transmission.
  • the diversion mode based on the protocol data unit set group includes: a priority mode, which means that the protocol data unit set group is transmitted using the first path, and when the first path is congested, it is transmitted through the second path based on the protocol data unit set group.
  • a priority mode which means that the protocol data unit set group is transmitted using the first path, and when the first path is congested, it is transmitted through the second path based on the protocol data unit set group.
  • the embodiment of the present application can transmit the first group of protocol data unit sets through the priority transmission path according to the preset priority transmission path by using the protocol data unit set group as a unit until the path is congested, and the subsequent second group of protocol data unit sets can be transmitted through another path, so as to realize the integrity or differentiated processing of the XR service, thereby improving the flexibility and communication efficiency of multi-path transmission.
  • the method further includes: the communication device receiving instruction information in units of protocol data unit collection groups from a network device; and the communication device determining a traffic diversion mode in units of protocol data unit collection groups, including : Determine the traffic diversion mode based on the protocol data unit collection group based on the instruction information.
  • the network device can send traffic diversion instruction information to the communication device (such as a terminal device or a UPF network element) to instruct the communication device to perform multi-path data flow diversion based on the protocol data unit set group, thereby achieving Flexible configuration of multi-path traffic diversion methods.
  • the communication device such as a terminal device or a UPF network element
  • the communication device determines a load sharing mode based on the protocol data unit set group based on the indication information, and further includes: the communication device receives first information and second information from a network device, wherein , the first information is used to identify the path, and the second information is used to identify the load proportion of the path corresponding to the first information; the communication device determines the path determined by the first information based on the first information and the second information. The proportion of load shared on the path.
  • the communication device determines a priority mode based on a protocol data unit set group according to the indication information, and the method further includes: the communication device receives third information from a network device, and the third information is used to identify a priority transmission path; the communication device determines that the first path is a priority transmission path according to the third message.
  • the method further includes: the communication device determines that the data flow is transmitted through the XR QoS flow; the communication device determines a traffic diversion mode based on the protocol data unit set group, including: according to the XR QoS flow Determine the traffic diversion mode based on the protocol data unit collection group.
  • the communication device can also determine that the current data stream is transmitted through the XR QoS stream, thereby determining that the data can be diverted through the traffic diversion mode based on the protocol data unit collection group as a unit, and the multi-path based on the XR service can be realized
  • the traffic diversion method can be flexibly configured.
  • determining that the data stream is transmitted through the XR QoS stream includes: the communication device determines that the data stream is transmitted through the XR QoS stream according to the identification information of the QoS hit by the data stream, or, according to the The quality of service flow description information associated with the QoS flow hit by the data flow determines that the data flow is transmitted through the XR QoS flow, wherein the quality of service flow description information includes at least one of a quality of service identifier, a transmission delay or a packet loss rate, Or; determine based on the context that the data stream is transmitted through XR QoS streaming.
  • the first path and the second path are different transmission paths corresponding to the 3GPP access type or the non-3GPP access type.
  • the scenario and number of multi-access transmission paths are not limited in the embodiments of this application.
  • it may include: the first path may be a transmission path corresponding to a non-3GPP access type, and the second path may be A transmission path corresponding to a 3GPP access type; the first path may be a transmission path corresponding to a 3GPP access type, and the second path may be a transmission path corresponding to a non-3GPP access type; or the first path and the second path may be a 3GPP access type.
  • Different transmission paths corresponding to the access type; or, the first path and the second path are different transmission paths corresponding to the non-3GPP access type.
  • the communication device is a terminal device or a user plane function UPF network element.
  • the method further includes: the terminal device sending a session establishment request message to a network device; and the terminal device receiving a session establishment request message from the network device. Accept the message.
  • a multi-path data flow diversion method includes: a network device receives a request message for session establishment from a terminal device; the network device establishes a session including an XR QoS flow; the network device communicates The device sends instruction information.
  • the instruction information is used to indicate the traffic diversion mode based on the protocol data unit collection group.
  • the first group of protocol data unit collection is sent through the first path; the second group of protocol data unit collection is sent through the second path. send.
  • the first set of protocol data units is a set of protocol data units, or is a set of multiple protocol data units;
  • the second set of protocol data units is a set of protocol data units, or is a set of multiple protocol data units. Unit collection.
  • the traffic diversion mode based on the protocol data unit collection group includes: load sharing mode, which refers to passing different protocol data unit collection groups through multiple groups according to the preset load ratio according to the rules of load balancing. path transmission path.
  • the traffic diversion mode based on the protocol data unit set group includes: the minimum delay mode, which refers to transmitting the protocol data unit set group using the first path with a smaller delay. It is detected that the transmission delay of the second path is smaller than the transmission delay of the first path, and the protocol data unit is transmitted through the second path in units of set groups.
  • the traffic diversion mode based on the protocol data unit set group includes: priority mode, which means that the protocol data unit set group is transmitted using the first path. When the first path is congested, When, the protocol data unit set group is used as a unit to transmit through the second path.
  • the indication information indicating the load sharing mode based on the protocol data unit set group also includes: the network device sending first information and second information to the communication device, wherein the third information One piece of information is used to identify a path, the second information is used to identify the load proportion of the path corresponding to the first information, and the first information and the second information are used by the communication device to determine the path identified by the first information. The proportion of the load shared.
  • the indication information indicating the priority mode based on the protocol data unit set group also includes: the network device sending third information to the communication device, the third information being used to identify priority transmission path, and the third information is used by the communication device to determine that the first path is a priority transmission path.
  • the network device is a session management function SMF network element.
  • the communication device is the terminal device or the user plane function UPF network element.
  • the method further includes: the network device sending a session acceptance message to the terminal device, wherein the indication information is included in the session Receiving message.
  • the method further includes: the network device sends a session modification message to the user plane function UPF network element, wherein: The above indication information is included in the session modification message.
  • the first path and the second path are different transmission paths corresponding to a 3GPP access type or a non-3GPP access type.
  • a communication device in a third aspect, includes: a processing module, configured to obtain a data stream, where the data stream includes a first set of protocol data units and a second set of protocol data units; the processing module, It is also used to determine the traffic diversion mode based on the protocol data unit set group; the communication module is used to send the first set of protocol data units through the first path; and send the second set of protocol data units through the second path sent.
  • the first set of protocol data units is a protocol data unit set (PDU set), or includes multiple protocol data unit sets;
  • the second set of protocol data units is a protocol data unit set, Or include multiple protocol data unit sets.
  • the traffic diversion mode based on the protocol data unit collection group includes: load sharing mode, which refers to passing different protocol data unit collection groups through multiple groups according to the preset load ratio according to the rules of load balancing. transmission path.
  • the traffic diversion mode based on the protocol data unit set group includes: the minimum delay mode, which refers to transmitting the protocol data unit set group using the first path with a smaller delay. It is detected that the transmission delay of the second path is smaller than the transmission delay of the first path, and the protocol data unit is transmitted through the second path in units of set groups.
  • the traffic diversion mode based on the protocol data unit set group includes: priority mode, which means that the protocol data unit set group is transmitted using the first path. When the first path is congested, When, the protocol data unit set group is used as a unit to transmit through the second path.
  • the communication module is further configured to receive indication information based on the protocol data unit set group from the network device; the processing module is further configured to determine a traffic diversion mode based on the protocol data unit set group based on the indication information. .
  • the communication module is also used to receive first information and second information from a network device, wherein the first information is used to identify a path, and the second information is used to identify the load ratio of the path corresponding to the first information; the processing module is also used to determine the load ratio shared on the path determined by the first information based on the first information and the second information.
  • the communication module is further configured to receive third information from the network device, where the third information is used to identify a priority transmission path; the processing module is further configured to determine whether the first path is a priority based on the third message. transmission path.
  • the processing module is also used to determine that the data flow is transmitted through the XR QoS flow; and to determine the traffic diversion mode based on the protocol data unit set group based on the XR QoS flow.
  • the processing module is also configured to determine that the data flow is transmitted through the XR QoS flow according to the identification information of the QoS flow hit by the data flow, or based on the quality of service associated with the QoS flow hit by the data flow.
  • the flow description information determines that the data flow is transmitted through the XR QoS flow, wherein the service quality flow description information includes at least one of a quality of service identifier, a transmission delay or a packet loss rate; or, it is determined according to the context that the data flow is transmitted through XR QoS streaming.
  • the first path and the second path are different transmission paths corresponding to the 3GPP access type or the non-3GPP access type.
  • the communication device is a terminal device or a user plane function UPF network element.
  • the communication module is further configured to send a session establishment request message to the network device; and receive a session establishment acceptance message from the network device.
  • a network device in a fourth aspect, includes: a communication module for receiving a request message for session establishment from a terminal device; a processing module for establishing a session including an XR QoS flow; the communication module is also used For sending instruction information to the communication device, the instruction information is used to indicate the traffic diversion mode according to the protocol data unit collection group, sending the first group of protocol data unit collection through the first path; sending the second group of protocol data unit collection through Send via the second path.
  • the first set of protocol data units is a set of protocol data units, or is a set of multiple protocol data units;
  • the second set of protocol data units is a set of protocol data units, or is a set of multiple protocol data units. Unit collection.
  • the traffic diversion mode based on the protocol data unit collection group includes: load sharing mode, which refers to passing different protocol data unit collection groups through multiple servers according to the preset load ratio according to the load balancing rules. transmission path.
  • the traffic diversion mode based on the protocol data unit set group includes: the minimum delay mode, which refers to transmitting the protocol data unit set group using the first path with a smaller delay.
  • the minimum delay mode refers to transmitting the protocol data unit set group using the first path with a smaller delay.
  • the traffic diversion mode based on the protocol data unit set group includes: priority mode, which means that the protocol data unit set group is transmitted using the first path. When the first path is congested, When, the protocol data unit set group is used as a unit to transmit through the second path.
  • the communication module is further configured to receive first information and second information from the network device, wherein the first information is used to identify a path, and the second information is used to identify a path corresponding to the first information.
  • Load proportion the processing module is further configured to determine the load proportion shared on the path determined by the first information based on the first information and the second information.
  • the communication module is further configured to receive third information from the network device, where the third information is used to identify a priority transmission path; the processing module is further configured to determine whether the first path is a priority based on the third message. transmission path.
  • the network device is a session management function SMF network element.
  • the communication device is the terminal device or the user plane function UPF network element.
  • the communication module is further configured to send a session acceptance message to the terminal device, wherein the indication information is included in the session acceptance message. middle.
  • the communication module is further configured to send a session modification message to the user plane function UPF network element, wherein the indication The information is contained in the session modification message.
  • the first path and the second path are different transmission paths corresponding to the 3GPP access type or the non-3GPP access type.
  • a communication device in a fifth aspect, includes a processor and a memory coupled to the processor; the memory stores computer program code, and the computer program code includes computer instructions.
  • the processor executes the
  • the terminal device is caused to execute the method described in any one of the above first aspects.
  • a sixth aspect provides a network device, the network device including a processor and a memory coupled to the processor; the memory is coupled to the processor, the memory stores computer program code, and the computer program code includes Computer instructions, when the processor executes the computer instructions, cause the network device to perform the method described in any one of the above second aspects.
  • a computer-readable storage medium stores computer-executable instructions. When called by the computer, the computer-executable instructions cause the computer to execute the above-mentioned first step. The method described in any one of the aspects.
  • a computer-readable storage medium stores computer-executable instructions. When called by the computer, the computer-executable instructions cause the computer to execute the above second step. The method described in any one of the aspects.
  • a ninth aspect provides a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to perform the method described in any one of the above first aspects.
  • a tenth aspect provides a computer program product containing instructions, which when the computer program product is run on a computer, causes the computer to perform the method described in any one of the above second aspects.
  • An eleventh aspect provides a chip, which is coupled to a memory and used to read and execute program instructions stored in the memory to implement the method as described in any one of the above first aspects.
  • a twelfth aspect provides a chip, which is coupled to a memory and used to read and execute program instructions stored in the memory to implement the method described in any one of the above second aspects.
  • a thirteenth aspect provides a communication system, which includes the communication device as described in the third aspect and the network device as described in the fourth aspect.
  • any of the communication devices, network devices, computer-readable storage media, computer program products, chips or communication systems provided above can be used to execute the corresponding methods provided above. Therefore, the beneficial effects that can be achieved can refer to the beneficial effects in the corresponding methods provided above and will not be repeated here.
  • Figure 1 is an architecture diagram of a multi-access communication system provided by an embodiment of the present application
  • Figure 2 is a schematic diagram of GOP encoding and transmission of video images provided by an embodiment of the present application
  • Figure 3 is a schematic diagram of slice encoding and transmission of video images provided by an embodiment of the present application.
  • FIG4 is a schematic diagram of the structure of a communication device provided in an embodiment of the present application.
  • FIGS 5 to 8 are schematic flow charts of several multi-access data flow diversion methods provided by embodiments of the present application.
  • FIG. 9 is a schematic diagram of the format of an RTP message header provided by an embodiment of the present application.
  • FIG10 is a schematic diagram of the format of an extended header of an RTP message provided in an embodiment of the present application.
  • FIG. 11 is a schematic diagram of the format of another RTP message provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the format of an extension header of another RTP message provided by an embodiment of the present application.
  • Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of this embodiment, unless otherwise specified, “plurality” means two or more.
  • the communication method provided by the embodiments of this application can be applied to a communication system with multiple access modes. Multiple access may mean that the terminal device can access the core network device through more than one access mode. Therefore, the terminal device can realize data transmission with the core network or application server through more than one transmission path.
  • the terminal device can access the core network through the access network equipment corresponding to the 3rd generation partnership project (3GPP) access type, and can also access the core network through the access network equipment corresponding to the non-3GPP access type. into the core network to achieve multi-access communication.
  • multi-access communication can also include two or more access methods corresponding to 3GPP access types.
  • the terminal device can achieve multi-access through 4G and 5G communication systems at the same time, and can also communicate through two 5G communication systems at the same time. The system realizes multiple access, etc.
  • multi-access communication can also include two or more access methods corresponding to non-3GPP access types.
  • the terminal device can implement multi-access through Bluetooth and Wi-Fi communication systems at the same time.
  • 3GPP access types can include the following access technologies: Long Term Evolution (LTE) technology corresponding to 4G cellular networks, New Radio (NR) technology corresponding to 5G cellular networks, and next-generation wireless communication technology
  • LTE Long Term Evolution
  • NR New Radio
  • next-generation wireless communication technology and the satellite access methods defined by 3GPP (including low-orbit satellites, medium-orbit satellites, synchronous satellites), etc.
  • Non-3GPP access types include untrusted non-3GPP access (such as access to the core network through a wireless access node purchased by an individual), trusted non-3GPP access Network (trusted non-3GPP access Network) , TNAN) (such as access to the core network through wireless access nodes deployed by operators) and wired access technology (wireline access), etc.
  • the access technologies for non-3GPP access may include wireless communication technology (Wi-Fi), Bluetooth, ZigBee, etc.
  • the non-3GPP access network equipment can specifically be non-3GPP interworking function (N3IWF), trusted non-3GPP gateway function (TNGF), trusted WLAN interworking function (trusted WLAN interworking function, TWIF), wired access gateway function (wireline access gateway function, W-AGF), etc.
  • N3IWF non-3GPP interworking function
  • TNGF trusted non-3GPP gateway function
  • TWIF trusted WLAN interworking function
  • W-AGF can also be called AGF.
  • the access technology is an untrusted non-3GPP access technology
  • its corresponding non-3GPP access device may include N3IWF.
  • the access technology is a trusted non-3GPP access technology
  • its corresponding non-3GPP access device may include TNGF.
  • the multi-access communication system shown in Figure 1 may include a terminal device, a first access device, a second access device, a core network device and an application server.
  • the first access device and the second access device may be access network devices corresponding to different access modes.
  • the access device may be a (R)AN.
  • Core network equipment can be user plane equipment or other network elements.
  • the application server is used to respond to the service request of the terminal device and provide specific business services for the terminal device. Among them, the data sent by the terminal device to the application server The data can be called uplink data, and the data sent by the application server to the terminal device can be called downlink data.
  • Terminal equipment can also be called user equipment (UE), mobile station, mobile terminal or terminal, etc.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle to everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things (IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablets, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiments of this application do not limit the specific technology and specific equipment form used by the terminal.
  • (R)AN can be AN or RAN.
  • RAN can be various forms of wireless access network equipment, such as base stations, macro base stations, micro base stations, distributed unit-control unit (DU-CU), etc.
  • the above-mentioned base station can also be a wireless controller in a cloud radio access network (CRAN) scenario, or a relay station, access point, vehicle-mounted device, wearable device or future evolved public land mobile network (public land mobile network).
  • CRAN cloud radio access network
  • PLMN public land mobile network
  • (R)AN is mainly responsible for wireless resource management, service quality management, data compression and encryption on the air interface side.
  • AN can be a non-3GPP access network, such as a trusted non-3GPP access network (TNAN), a trusted WLAN access network (TWAN), and an untrusted non-3GPP wireless access network.
  • TNAN trusted non-3GPP access network
  • TWAN trusted WLAN access network
  • W-5GAN untrusted non-3GPP wireless access network.
  • wired access network wireless access network, WAN
  • wired 5G access network wireless 5G access network
  • W-5GAN wireless 5G access network
  • the access network equipment corresponding to the trusted non-3GPP access network can be a trusted non-3GPP gateway function (TNGF);
  • the access network equipment corresponding to the trusted WLAN access network can be a trusted non-3GPP gateway function (TNGF).
  • WLAN interworking function trusted WLAN interworking function
  • the access network equipment corresponding to the untrusted non-3GPP access network can be non-3GPP interworking function (N3IWF); wired access network or wired 5G access network
  • NW-AGF wireline-access gateway function
  • User plane equipment It can be called user plane function (UPF) or user plane network element, and is mainly responsible for the reception and forwarding of user data.
  • UPF can receive downlink data from the data network (DN) and then transmit the downlink data to the UE through (R)AN.
  • the UPF can also receive uplink data from the UE through the (R)AN and then forward the uplink data to the DN.
  • XR business is the collective name for various businesses such as virtual reality (VR), augmented reality (AR), mixed reality (Mixed Reality, MR) or cloud gaming (CG).
  • XR services may need to transmit video image data, audio data, tactile data, sensor data, etc. at the same time.
  • the transmitted data can be composed of many video frames. If the similarity between adjacent video frames is large, the GOP encoding and transmission method will be used in encoding the video data.
  • a video frame may be divided into multiple GOPs for transmission, each GOP including an I frame and several P frames or B frames, and there is no dependency between the encodings of different GOPs.
  • I frame Intra-coded picture frame, intra-coded picture frame
  • P frame Predicted-coded picture frame, predictive coding image frame
  • B frame Bidirectional predicted picture frame, bidirectional predicted image frame
  • B frame represents a bidirectional difference frame, recording the difference between the current frame and the previous and subsequent frames (the most recent I frame or P frame in front, and the most recent P frame in the back).
  • each frame of the image may be encoded in a slice manner.
  • each frame image is divided into 4 slices, namely slice1, slice2, slice3 and slice4.
  • the slice of the I frame contains complete slice picture information.
  • the slice of the P frame contains the difference from the corresponding slice of the previous I frame or P frame.
  • slice1 of the P frame contains the difference from slice1 of the previous I frame.
  • the encoding method of slice is not limited.
  • each frame of image may also adopt a hierarchical coding method of a base layer and an enhancement layer, where the enhancement layer depends on the base layer.
  • the base layer is a 480P video image
  • superimposing the enhancement layer 1 can obtain a 720P video image.
  • superimposing enhancement layer 1 and enhancement layer 2 can get a 1080P video image.
  • each frame of image data or each slice of image data or the image data of each layer (base layer or enhancement layer), It may need to be transmitted through multiple protocol data units (Protocal Data Unit, PDU).
  • PDU Protocol Data Unit
  • Each frame of image data, or each slice of image data, or the multiple PDUs corresponding to the image data of each layer can be called a PDU set. (PDU set).
  • PDU set When the receiving end receives all PDUs or the number of PDUs belonging to the same PDU set reaches a certain threshold, it can successfully decode this frame or this slice or the image of this layer of this frame; otherwise, the decoding may fail.
  • the multiple PDUs have an interdependent relationship, and the access device (such as 3GPP access device or non-3GPP) Frame integrity judgment can be made based on the received PDU, that is, when it is determined that one PDU in a PDU set has lost packets or multiple PDUs have lost packets and exceeds a certain threshold (such as x%), the transmission of the PDU set is incomplete, and other received Even if the received PDU is transmitted to the destination, it is meaningless and can be processed by packet loss or instructions for retransmission.
  • the access device such as 3GPP access device or non-3GPP
  • each PDU of the PDU set is encapsulated with the PDU set identifier, PDU sequence number and PDU set address. The number of PDUs included.
  • the access device such as 3GPP access device or non-3GPP
  • the access device receives it, it identifies the PDU belonging to the PDU set based on the PDU set ID, counts the number of PDU packet loss based on the PDU sequence number, and calculates based on the number of PDUs contained in the PDU set. Packet loss ratio. When the packet loss ratio exceeds a certain threshold, the PDU set transmission is judged to be incomplete.
  • I frame and P frame have different importance.
  • I frame is more important than P frame.
  • P frame or B frame The PDU set corresponding to the frame can also be lost; for example, the base layer and the enhancement layer have different importance, and the base layer is more important than the enhancement layer. If the PDU set corresponding to the base layer is lost, the transmission of the enhancement layer It doesn't make sense either. Therefore, access network equipment can perform differentiated QoS processing based on the dependencies between different PDU sets when scheduling and losing packets.
  • each PDU of the PDU set is encapsulated with a PDU set identifier and carries the dependencies between the PDU set and other PDU sets. information.
  • Access devices such as 3GPP access devices or non-3GPP
  • the dependent PDU set is discarded, other PDU sets that depend on the PDU set can also be discarded. For example, after the I frame is lost, the following P frame or B frame can also be lost; or after the base layer is lost, the following enhancement layer can also be lost.
  • multi-access means that the end-to-end transmission path includes multiple transmission paths, and the multiple transmission paths can be implemented through one or more of 3GPP access technology, non-3GPP access technology, or other access types.
  • data transmission between the terminal device and the application server shown in Figure 1 can be achieved through at least a first path and a second path.
  • the UE may request the establishment of a multi-access PDU session when requesting PDU session establishment.
  • a QoS Flow Identifier QFI
  • the multi-access service can be used Drainage technology diverts data traffic to 2 or more different paths.
  • one QFI can correspond to two paths between the terminal device and the application server.
  • the UE may send uplink data through 3GPP (such as the first path) and non-3GPP (such as the second path).
  • UPF can also divert downlink data to 3GPP and non-3GPP paths.
  • specific business traffic diversion technologies can be used to divert data based on load sharing mode, active-standby mode, minimum delay mode, priority mode, etc.
  • the above-mentioned service diversion technologies are all based on data diversion based on protocol data unit sets or byte units, and do not sense media layer information.
  • the data plane is based on the enhancement of the to 2 or more different paths. If divided into two different paths, the 3GPP access point or non-3GPP access point will not be able to complete the above frame integrity judgment, that is, determine whether one PDU in a PDU set has lost packets or multiple PDUs have lost packets exceeding a certain limit. threshold.
  • the access device corresponding to path 2 does not sense that the I frame transmitted by path 1 has been lost, and will still perform invalid data transmission.
  • the enhancement layer depends on the base layer
  • the data flows of the base layer and the enhancement layer are directed to different paths. For example, the base layer is directed to path 1 and the enhancement layer is directed to path 2. If the base layer of path 1 loses packets, It cannot be restored, and there is no need to transmit the enhancement layer of path 2. Therefore, the access device can determine whether to lose packets based on the received data packets to avoid invalid transmissions.
  • the embodiment of the present application proposes a data flow diversion method suitable for multi-access path communication mode based on the data characteristics of XR services.
  • diversion of service data according to the protocol data unit collection group such that Multiple access network devices corresponding to the multi-access mode can perform frame integrity judgment or frame dependency judgment based on the received service data, thereby realizing data scheduling and packet loss processing, and improving communication efficiency under multi-access.
  • the above-mentioned communication system in Figure 1 is only a schematic diagram and does not constitute a limitation on the applicable scenarios of the technical solution provided by this application.
  • the communication system may include fewer devices or network elements than shown in Figure 1, or the communication system may also include other devices or other network elements, and may also be implemented according to specific requirements. Needed to determine the number of devices or network elements in the communication system.
  • each network element in Figure 1 of the embodiment of this application can be a functional module in a device.
  • the above functions can be either network elements in hardware devices, such as communication chips in mobile phones, or This can be a software function running on dedicated hardware, or a virtualized function instantiated on a platform (e.g., a cloud platform).
  • each network element in Figure 1 can be implemented by the communication device 400 in Figure 4 .
  • FIG. 4 shows a schematic diagram of the hardware structure of a communication device applicable to embodiments of the present application.
  • the communication device 400 includes at least one processor 401, a communication line 402, a memory 403 and at least one communication interface 404.
  • the processor 401 can be a general central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors used to control the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication line 402 may include a path, such as a bus, that carries information between the above-mentioned components.
  • the communication interface 404 uses any device such as a transceiver to communicate with other devices or communication networks, such as an Ethernet interface, a RAN interface, a wireless local area networks (WLAN) interface, etc.
  • a transceiver to communicate with other devices or communication networks, such as an Ethernet interface, a RAN interface, a wireless local area networks (WLAN) interface, etc.
  • WLAN wireless local area networks
  • Memory 403 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory (RAM)) or other type that can store information and instructions.
  • a dynamic storage device can also be an electrically erasable programmable read-only memory (EEPROM), a compact disc read-only memory (CD-ROM) or other optical disk storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other medium for access, but not limited to this.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory may exist independently and be connected to the processor through a communication line 402 . Memory can also be integrated with the processor.
  • the memory provided by the embodiments of the present application may generally be non-volatile.
  • the memory 403 is used to store computer execution instructions involved in executing the solution of the present application, and is controlled by the processor 401 for execution.
  • the processor 401 is used to execute computer execution instructions stored in the memory 403, thereby implementing the method provided by the embodiment of the present application.
  • the computer-executed instructions in the embodiments of the present application may also be called application codes, which are not specifically limited in the embodiments of the present application.
  • the processor 401 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 4 .
  • the communication device 400 may include multiple processors, such as the processor in Figure 4 401 and processor 407. Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • a processor here may refer to one or more devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the communication device 400 may also include an output device 405 and an input device 406.
  • Output device 405 communicates with processor 401 and can display information in a variety of ways.
  • the output device 405 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. wait.
  • Input device 406 communicates with processor 401 and can receive user input in a variety of ways.
  • the input device 406 may be a mouse, a keyboard, a touch screen device, a sensing device, or the like.
  • the above-mentioned communication device 400 may be a general-purpose device or a special-purpose device.
  • the communication device 400 may be a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal, an embedded device, or a device with a similar structure as shown in FIG. 4 .
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of communication device 400.
  • the method may include the following steps 501-502.
  • the communication device may be a terminal device, or the communication device may be a core network device such as a UPF network element.
  • the communication device obtains a data stream.
  • the data stream includes a first set of protocol data units and a second set of protocol data units.
  • the data stream is a data stream of a service used on a terminal.
  • the data stream may be an uplink transmission data stream or a downlink transmission data stream.
  • the data stream may be an uplink data stream corresponding to the service generated by the terminal device in response to the user's operation during the use of the service, and the destination of the data stream may be an application server or a core network device.
  • the communication device is a UPF network element
  • the data stream may be a downlink data stream obtained from an application server or from other network element devices, and the destination of the data stream may be a terminal device.
  • the first set of protocol data units may be a protocol data unit set (PDU set), and the second set of protocol data units may be a protocol data unit set.
  • PDU set protocol data unit set
  • the first set of protocol data units and the second set of protocol data units are the first PDU set and the second PDU set respectively.
  • the first set of protocol data units may be a set of picture GOPs including multiple protocol data unit sets
  • the second set of protocol data units may also be A group of pictures, a GOP, that includes multiple collections of protocol data units. Among them, there are dependencies between multiple protocol data unit sets included in a GOP.
  • the first set of protocol data units and the second set of protocol data units are the first GOP and the second GOP respectively, where the first GOP includes the PDU set (1) corresponding to the I frame in the first GOP and the corresponding For the PDU set(2) of the P frame, etc., the second GOP includes the PDU set(i) corresponding to the I frame and the PDU set(j) corresponding to the P frame in the second GOP.
  • the first group of protocol data unit sets may be a set of multiple protocol data units including a base layer and an enhancement layer; the second group of protocol data unit sets may also be a set of multiple protocol data units including a base layer and an enhancement layer, wherein the enhancement layer depends on the base layer.
  • the communication device determines the traffic diversion mode based on the protocol data unit set group, sends the first set of protocol data units through the first path, and sends the second set of protocol data units through the second path.
  • a protocol data unit set group includes a PDU set, or it can be multiple PDU sets.
  • the communication device determines the traffic diversion mode based on the protocol data unit set group, which means that the communication equipment can determine the traffic diversion mode based on the PDU set as the unit, that is, the PDU included in different PDU sets can be diverted to different path; alternatively, the communication device can divert service data in units of multiple PDU sets with dependencies. For example, the communication device can divert service data in units of GOP, that is, divert PDUs included in different GOPs to different path; or, divert multiple PDUs of the base layer and enhancement layer with dependencies to the same path.
  • the first path may be a transmission path corresponding to a 3GPP access type
  • the second path may be a transmission path corresponding to a non-3GPP access type.
  • the communication device may At least one PDU corresponding to the first PDU set is directed to the first path, and at least one PDU corresponding to the second PDU set is directed to the second path.
  • the communication device may divert all the plurality of PDUs corresponding to the first GOP to the first path, and divert all the plurality of PDUs corresponding to the second GOP to the second path.
  • the communication device may direct all the multiple PDUs corresponding to different layers of the first frame to the first path, and all the multiple PDUs corresponding to different layers of the second frame to the second path.
  • the first path may be a transmission path corresponding to a non-3GPP access type
  • the second path may be a transmission path corresponding to a 3GPP access type
  • the first path and the second path are different transmission paths corresponding to the 3GPP access type.
  • the first path is the transmission path of the 4G network
  • the second path is the transmission path of the 5G network.
  • the first path and the second path are different transmission paths corresponding to non-3GPP access types.
  • the first path is a transmission path of an untrusted non-3GPP network
  • the second path is a transmission path of a trusted non-3GPP network.
  • the traffic diversion mode based on the protocol data unit set group in the embodiment of this application may include: load sharing mode, minimum delay mode, priority mode and other traffic diversion modes based on PDU set unit.
  • the diversion mode based on the protocol data unit set group in the embodiment of the present application can specifically include: a load sharing mode for diverting traffic based on multiple PDU sets with dependencies, for example, a load sharing mode based on GOP, a minimum delay mode, a priority mode and other diversion modes.
  • Each diversion method can be applied to the scenario of diverting traffic based on a PDU set as a unit, and can also be applied to the scenario of diverting traffic based on multiple dependent PDU sets as a unit.
  • one PDU set or multiple dependent PDU sets are collectively referred to as protocol data unit set groups.
  • the load sharing mode refers to directing different protocol data unit sets (one PDU set or multiple PDU sets) to multiple paths according to the preset load ratio according to the load balancing rules. For example, taking the GOP as a unit to divert traffic, if the load ratio configured on the first path is 30% and the load ratio configured on the second path is 50%, the communication device can divert multiple PDUs included in the first three arriving GOPs. Divert traffic to the first path; divert multiple PDUs contained in the five subsequent GOPs to the second path; divert PDUs contained in other subsequent GOPs to the third path, until the number of GOPs shared on the third path is The number reaches or exceeds the configured load ratio.
  • the minimum delay mode refers to preferentially diverting the data flow to a path with a smaller transmission delay.
  • the transmission delay of another path is detected to be smaller, the data flow can be subsequently diverted to a path with a smaller transmission delay based on the protocol data unit set group. Small path.
  • the communication device preferentially flows at least one PDU included in the first PDU set to the first path with a smaller transmission delay.
  • the subsequent communication device detects the transmission of the second path If the transmission delay is less than the transmission delay of the first path, PDUs included in other PDU sets except the first PDU set can be directed to the second path.
  • Priority mode means that transmission is given priority in a certain access path.
  • the path in the access mode is congested, for example, when the network indicator parameter in the access path is less than or exceeds the preset threshold value, the traffic can be directed to other transmission paths in units of protocol data unit sets.
  • the network indicator parameter may include at least one of transmission delay, network bandwidth, data transmission rate or packet loss rate.
  • the communication device preferentially directs the first PDU set to the first path according to the configuration.
  • the communication device detects that the transmission delay of the first path exceeds the threshold, the communication device can direct the second PDU set to the second path.
  • the communication device detects that the data transmission rate of the first path is lower than the preconfigured data transmission rate threshold, the communication device can divert the subsequent second PDU set to the second path.
  • the above implementation mode enhances the existing load sharing mode, minimum delay mode, and priority mode, and proposes a load sharing mode based on PDU set or GOP as a unit (or other multiple PDU sets with dependencies), minimum delay mode, Delay mode and priority mode realize the diversion of business data and improve the communication efficiency of multi-access mode.
  • the network device can pre-configure or dynamically configure the multi-path data flow diversion mode for the communication device. For example, the network device can send instruction information to the communication device to instruct the communication device to determine whether to use a PDU set or Multiple PDU sets (such as GOP) are used as a unit to divert multi-access service data.
  • a PDU set or Multiple PDU sets such as GOP
  • the method may include the following steps.
  • the terminal device sends a session establishment request message to the network device.
  • the terminal device can establish multiple PDU sessions associated on multiple paths by sending session establishment request messages to the network device multiple times.
  • the terminal device may send a multi-access session establishment request message to the network device.
  • the network device may be an SMF network element, and the terminal device sends a MA PDU session establishment request message to the SMF.
  • the network device receives the MA PDU session establishment request message from the terminal device.
  • the network device establishes a session containing the XR QoS flow and sends a session establishment acceptance message to the terminal device.
  • the session establishment acceptance message sent by the network device to the terminal device may carry the QoS rules of the data flow, as well as the description information of the QoS flow, and Access Traffic Steering, Switching and Splitting (Access Traffic Steering, Switching and Splitting, ATSSS) information.
  • the ATSSS information can be used to select an access network for the data flow, transfer all the traffic of a data flow from one access network to another access network, or split the traffic of a single data flow into multiple access networks.
  • ATSSS information may include traffic diversion mode information, traffic description information, etc. For different traffic diversion modes, it may also include other information corresponding to the traffic diversion mode. For example, if the traffic diversion mode information is used to indicate the load sharing mode, the ATSSS information may also include access Indication information of access type (such as 3GPP or non-3GPP), and load sharing ratio information corresponding to different access types.
  • the network device may send to the terminal device a traffic diversion indication information in units of protocol data unit sets.
  • the indication information is used to indicate a traffic diversion mode in units of protocol data unit sets (one PDU set or multiple PDU sets, such as GOP).
  • the indication information may be carried in a session establishment accept message.
  • the ATSSS information carried in the session establishment acceptance message such as by extending the ATSSS information, adding additional bits to indicate that the unit is in accordance with the protocol data unit set group (a PDU set or multiple PDU sets, such as a GOP). Traffic diversion mode; or add a new mode type to indicate the load sharing mode, minimum delay mode, or priority mode based on the protocol data unit set group (one PDU set or multiple PDU sets, such as GOP).
  • the terminal device determines a traffic diversion mode based on a protocol data unit set group.
  • the terminal device can determine the traffic diversion mode based on the protocol data unit set group (including one PDU set or multiple PDU sets, such as GOP) based on the instruction information, and then send the first set of protocol data unit sets through the first path. A second set of protocol data units is sent over a second path, and so on.
  • the protocol data unit set group including one PDU set or multiple PDU sets, such as GOP
  • the method may include the following steps.
  • the terminal device sends a session establishment request message to the network device.
  • step 601 Refer to the relevant description of step 601 above, which will not be described again here.
  • the network device establishes a session containing the XR QoS flow and sends a session establishment accept message to the terminal device.
  • step 602 Refer to the relevant description of step 602 above, which will not be described again here.
  • the network device sends a session modification message to the UPF network element, carrying instruction information based on the protocol data unit collection group.
  • the session modification message may be an N4Session Modification request message
  • the indication information can be carried in the above-mentioned session modification message, and is used to indicate the traffic diversion mode based on the protocol data unit set group (one PDU set or multiple PDU sets, such as GOP).
  • the following may be executed first: the network device sends a session establishment acceptance message to the terminal device, and then the network device sends a session modification message to the UPF network element; or, the following may be executed first: the network device sends a session modification message to the UPF network element, and then the network device sends a session establishment acceptance message to the terminal device; the above two steps may also be executed simultaneously.
  • the UPF network element determines the traffic diversion mode based on the protocol data unit collection group based on the instruction information.
  • the UPF network element can determine the traffic diversion mode based on the protocol data unit set group (one PDU set or multiple PDU sets, such as GOP) based on the instruction information, and then send the first group of protocol data unit sets through the first path. Second set of agreements The set of data units is sent over the second path and so on.
  • the network device sends indication information to the communication device (terminal device or UPF network element) to indicate the traffic diversion mode of load sharing according to the protocol data unit set group.
  • the indication information may also include the third One piece of information and second information, wherein the first information can be used to identify the communication path, and the second information can be used to identify the load proportion of the path corresponding to the first information. That is to say, the load sharing mode can be indicated through the combination of the first information and the second information.
  • the communication device receives the first information and the second information from the network device, so that it can determine based on the first information and the second information, what is the load proportion shared on the path identified by the first information, and then determine The diversion path of the data flow.
  • the indication information may also include fourth information, and the fourth information is used to indicate the load sharing mode based on the protocol data unit set group. That is to say, the load sharing mode can be indicated jointly through the first information, the second information and the fourth information.
  • the network device sends indication information to the communication device to indicate the priority mode in the traffic diversion mode based on the protocol data unit set group.
  • the indication information may also include third information for identifying the priority mode.
  • the selected traffic diversion path (that is, the access path of the first priority) may optionally also include fifth information, and the fifth information is used to indicate the priority mode based on the protocol data unit set group. Therefore, the communication device can determine, based on the third information (if there is fifth information), to prioritize the current data flow based on the unit of PDU set or GOP to the path indicated by the third information.
  • the terminal device or UPF network element preferentially chooses to direct the data flow of the XR service to the access path of 3GPP based on the unit of PDU set or GOP.
  • the indication information may also include sixth information, used to identify a second-preferred traffic diversion path (such as a second-priority access path). Therefore, the communication device can determine based on the third information combined with the sixth information that when the path indicated by the third information is congested, the current data flow will be preferentially directed to the path indicated by the sixth information based on the unit of PDU set or GOP.
  • the third information is used to indicate the access path of the Wi-Fi network in non-3GPP
  • the sixth information is used to indicate the access path of the 5G network in 3GPP. Then the terminal device or UPF network element preferentially selects the data flow of the XR service.
  • Units based on PDU set or GOP divert traffic to the Wi-Fi network. If the network index parameters (such as data transmission rate) of the Wi-Fi network are lower than the access path of the 5G network, the terminal device or UPF network element can choose to transfer the XR service The data flow is directed to the access path of the 5G network based on the unit of PDU set or GOP; if the subsequent network index parameters of the access path of the 5G network are lower than the access path of the 4G network or other access paths, the terminal equipment or UPF network You can choose to direct the XR service data flow to the 4G network access path or other access paths based on PDU set or GOP units.
  • the network index parameters such as data transmission rate
  • the terminal device or UPF network element can determine that the current data flow is transmitted through XR QoS flow (also referred to as XR QoS flow in this application), thereby determining the data unit set group (a PDU set or multiple PDU sets, such as GOP) for multiple access data diversion.
  • XR QoS flow also referred to as XR QoS flow in this application
  • This method does not require the indication information configured by the network device to determine the multi-access data traffic diversion mode based on the protocol data unit set group (one PDU set or multiple PDU sets, such as GOP), which can reduce the signaling overhead of the indication information.
  • the method may include the following steps.
  • the communication device obtains the data stream and determines that the data stream is transmitted through the XR QoS stream.
  • the communication device may determine that the data flow is transmitted through the XR QoS flow based on the identification information of the QoS flow hit by the data flow, that is, QFI.
  • the network allocates a special QFI to the QoS flow to indicate that the data flow is transmitted through the XR QoS flow.
  • the communication device may determine that the data flow is transmitted through the XR QoS flow according to the service quality flow description information (QoS flow description) associated with the QoS flow hit by the data flow, wherein the service quality flow description information includes at least one of a service quality identifier, a transmission delay, or a packet loss rate.
  • the network assigns QoS flow description information containing some specific parameters to the XR QoS flow to indicate that the data flow is transmitted through the XR QoS flow.
  • the communications device may contextually determine that the data stream is transmitted via XR QoS streaming. Specifically, the communication device can determine through the context that the currently established PDU session contains the XR QoS flow. Through frame recognition and other related technologies, it can identify that the current data flow is the data flow of the XR service. Then the QoS flow matching the XR flow is Is the XR QoS flow.
  • the communication device determines a traffic diversion mode based on a protocol data unit set group.
  • the communication device can determine the traffic diversion mode based on the protocol data unit set group based on the XR QoS flow. Therefore, based on the preconfigured traffic diversion mode, the traffic diversion mode based on the protocol data unit set group (one PDU set or multiple PDU sets, such as GOP) can be determined/adjusted.
  • the current network device is a terminal device or UPF network element configuration is the load sharing mode.
  • the terminal device or UPF network element determines that the current data flow is transmitted through the XR QoS stream, the terminal device or UPF network element can determine the traffic diversion mode based on load sharing in units of PDU set or GOP, and then can The first set of protocol data units is sent through the first path, the second set of protocol data units is sent through the second path, and so on.
  • the unit is based on a PDU set or multiple PDU sets with dependencies provided by the embodiments of this application.
  • Traffic diversion mode for example, access devices corresponding to different access networks can judge frame integrity based on the received PDU set or GOP, or judge the dependency between different frames, so as to perform data scheduling and packet loss processing, improving Communication efficiency of multiple access methods.
  • communication equipment such as terminal equipment or UPF network elements
  • a PDU set may contain data of a frame, data of a slice, or data of a layer within a frame.
  • a PDU set contains data of a frame, it can be based on the message header information of the Real-time Transport Protocol (RTP) message, the extended header information of the RTP message, or the data flow rate. Characteristics to identify a PDU set.
  • RTP Real-time Transport Protocol
  • RTP message is a protocol message running at the application layer. It is usually based on User Datagram Protocol (UDP) and also supports Transmission Control Protocol (TCP). RTP messages include a message header and a data payload. The header contains real-time audio and video synchronization information, and the payload carries specific audio and video data.
  • UDP User Datagram Protocol
  • TCP Transmission Control Protocol
  • Figure 9 shows an RTP message header format.
  • V field indicates the version of RTP protocol.
  • X field Indicates whether the RTP message has an extension header.
  • M field Marks some important events, such as frame boundaries.
  • Sequence number field indicates the sequence number. Timestamp field: indicates the timestamp.
  • the timestamp information belonging to the same PDU set is the same.
  • the timestamp information is the Timestamp field as shown in Figure 9.
  • the M field (corresponding to 1 bit) is used to indicate the last PDU belonging to the same PDU set.
  • Figure 10 shows the format of a short extension header of an RTP message.
  • the S field and the E field correspond to 1 bit respectively, which are used to indicate the start and end of each PDU set. Therefore, the communication device can determine whether it belongs to the same PDU set based on the S field and the E field.
  • a PDU set can be identified based on the payload field of the RTP message.
  • Figure 11 shows the format of the Network Abstract Layer Unit (NALU) header in H.264 video encoding mode. It can be determined based on the Type field of the NALU message header. The method is as follows:
  • Type is Single NAL unit packet, it means that the RTP packet contains a slice
  • Type is aggregation packet, it means that the RTP packet contains multiple slices
  • Type is fragmentation unit, it means that multiple RTP packets contain one slice.
  • the start and end of a slice can be identified based on the S and E bits in the RTP packet extension header.
  • a PDU set contains data of one layer in a frame, it can be determined based on the long extension header of the RTP message as shown in Figure 12.
  • TID field identifies the time layer.
  • other TID values can be used to identify the enhancement layer.
  • the communication device can make a judgment based on the TID field contained in the long extended header of the RTP message (as shown in Figure 12) and the timestamp field of the RTP message header (as shown in Figure 9). For example, it can identify whether the PDU belongs to the same layer based on the TID field, and then identify whether it is data of a layer in a frame based on the timestamp field of the RTP header.
  • a GOP may include an I frame and several P frames or B frames, where the I frame is the first frame of each GOP.
  • RTP message extension header The format of an RTP message extension header is shown in Figure 10, in which the I bit included in the RTP message extension header is used to indicate a frame that can be independently decoded, that is, to indicate an I frame. Then the frames from the beginning of the current I frame to the next I frame belong to one GOP.
  • the communication device can use the I bit of the RTP extension header and the time of the RTP message header.
  • the timestamp information jointly identifies a GOP, two I frames are determined through the I bit, and the time interval between the current I frame and the next I frame is determined through the timestamp information carried by the I frame. The frames falling within these two timestamps belong to Current GOP.
  • Method 4 If the video encoding is based on the base layer and enhancement layer, multiple dependent PDU sets need to be identified.
  • Scalable Video Coding is a technology that divides the video stream into multiple resolution, quality and frame rate layers and codes them separately.
  • a video image is compressed using multiple different data streams, each of which processes a different component of the video image, for example, by encoding different components of the video image through a base layer and an enhancement layer.
  • the video stream of the base layer can use lower bandwidth to process relatively low-definition images
  • the video stream of the enhancement layer can encode information containing higher resolution, frame rate and quality level.
  • the data streams of the base layer and the enhancement layer can be flexibly selected for decoding according to the needs of different applications, so that resource consumption can be adapted to business characteristics.
  • the communication device can be identified according to the "timestamp" field of the RTP message header, and the base layer and enhancement layer belonging to the same time can be considered as a set of PDUs.
  • the inter-frame dependency relationship involved in the embodiment of this application may mean that the receiving end needs to rely on the first set of protocol data units when decoding the second set of protocol data units, for example, the first set of protocol data units.
  • the data unit set is an I frame
  • the second protocol data unit set is a P frame, so the decoding of the second protocol data unit set depends on the first protocol data unit set.
  • the second set of protocol data units is the enhancement layer
  • the first set of protocol data units is the base layer, then the decoding of the second set of protocol data units depends on the first set of protocol data units.
  • the dependencies involved in this application can also be dependencies on business use or display.
  • the first set of protocol data units corresponds to the video stream
  • the second set of protocol data units corresponds to audio or haptic. If the video transmission fails, then the audio and The tactile experience is also incomplete, so the second set of protocol data units is considered to be dependent on the first set of protocol data units.
  • the set of protocol data units corresponding to any data flow can be the first set of protocol data units
  • the set of protocol data units corresponding to other data flows can be the second set of protocol data units.
  • the protocol data unit set groups corresponding to each data flow using the same service are dependent on each other.
  • the services of this application may be media services (such as video, audio), perception services (such as tactile sensation), etc.
  • the communication device can determine that the first set of protocol data units is There is a dependency relationship between the protocol data unit set and the second protocol data unit set.
  • the first protocol data unit set and the second protocol data unit set can be directed to the same a path.
  • the first group of protocol data unit sets can be P frames that are earlier in the video stream
  • the second group of protocol data unit sets are P frames that are later in the same group as the above-mentioned P frames that are earlier in the video stream.
  • the first group of protocol data unit sets are the base layer in the video stream
  • the second group of protocol data unit sets are the enhancement layer in the video stream.
  • the first group of protocol data unit sets are one of the video, audio, or tactile senses serving the same user
  • the second group of protocol data unit sets are at least one of the other video, audio, and tactile senses; exemplarily, the first group of protocol data unit sets are video, and the second group of protocol data unit sets are audio and/or tactile senses.
  • the communication device can determine that there is a dependency relationship between the first group of protocol data unit sets and the second group of protocol data unit sets, and can direct the first group of protocol data unit sets and the second group of protocol data unit sets to the same path.
  • the above-mentioned embodiments of the present application provide a variety of different identification methods for protocol data unit collection groups, so that the communication device can flexibly select and identify the protocol data unit collection group (such as PDU collection or GOP), and perform the identification according to the protocol data unit
  • the aggregation group conducts traffic diversion for XR services in multi-path scenarios, improving the flexibility and communication efficiency of multi-path business traffic diversion.
  • the embodiment of the present application also provides a communication device for implementing the steps performed by the terminal device or UPF network element in the previous embodiment.
  • the communication device 1300 may include a processing module 1301 and a communication module. 1302.
  • the processing module 1301 is used to obtain a data stream, where the data stream includes a first set of protocol data units and a second set of protocol data units.
  • the processing module 1301 is also used to determine the traffic diversion mode based on the protocol data unit set group.
  • the communication module 1302 is configured to send the first set of protocol data units through a first path; and send the second set of protocol data units through a second path.
  • the first set of protocol data units is a protocol data unit set (PDU set), or includes multiple protocol data unit sets;
  • the second set of protocol data units is a protocol data unit set, Or include multiple protocol data unit sets.
  • the traffic diversion mode based on the protocol data unit collection group includes: load sharing mode, which refers to passing different protocol data unit collection groups through multiple groups according to the preset load ratio according to the rules of load balancing. transmission path.
  • the traffic diversion mode based on the protocol data unit set group includes: the minimum delay mode, which refers to transmitting the protocol data unit set group using the first path with a smaller delay. It is detected that the transmission delay of the second path is smaller than the transmission delay of the first path, and the protocol data unit is transmitted through the second path in units of set groups.
  • the traffic diversion mode based on the protocol data unit set group includes: priority mode, which means that the protocol data unit set group is transmitted using the first path. When the first path is congested, When, the protocol data unit set group is used as a unit to transmit through the second path.
  • the communication module 1302 is also configured to receive instruction information based on the protocol data unit collection group from the network device; the processing module is also configured to determine traffic diversion based on the protocol data unit collection group based on the instruction information. model.
  • the communication module 1302 is further configured to receive first information and second information from the network device, wherein the first information is used to identify a path, and the second information is used to identify a path corresponding to the first information.
  • the load proportion; the processing module 1301 is configured to determine the load proportion shared on the path determined by the first information according to the first information and the second information.
  • the communication module 1302 is further configured to receive third information from a network device, where the third information is used to identify a priority transmission path; the processing module 1301 is configured to determine whether the first path is a priority transmission path based on the third message. Prioritized transmission path.
  • the processing module 1301 is also used to determine that the data flow is transmitted through the XR Quality of Service flow (QoS flow); and to determine the traffic diversion mode based on the protocol data unit set group based on the XR QoS flow.
  • QoS flow Quality of Service flow
  • the processing module 1301 is further configured to determine that the data flow is transmitted through the XR QoS flow according to the identification information of the QoS flow hit by the data flow, or to determine the service associated with the QoS flow hit by the data flow.
  • the quality flow description information determines that the data flow is transmitted through the XR QoS flow, wherein the quality of service flow description information includes at least one of a quality of service identifier, a transmission delay or a packet loss rate; or, according to the context It is determined that the data flow is transmitted through XR QoS flow.
  • the first path and the second path are different transmission paths corresponding to the 3GPP access type or the non-3GPP access type.
  • the communication device 1300 may be a terminal device or a user plane function UPF network element.
  • the communication module 1302 is further configured to send a session establishment request message to the network device; and receive a session establishment acceptance message from the network device.
  • the communication device 1300 can implement the functions of the communication equipment (such as terminal equipment or UPF network element) in each of the above possible implementations.
  • the communication equipment such as terminal equipment or UPF network element
  • the embodiment of the present application also provides a communication device for implementing the steps performed by the network device in the previous embodiment.
  • the communication device 1300 may include a processing module 1301 and a communication module 1302.
  • the communication module 1302 is configured to receive a request message for session establishment from the terminal device.
  • the processing module 1301 is used to establish a session including the XR QoS flow.
  • the communication module 1302 is also configured to send instruction information to the communication device.
  • the instruction information is used to indicate the traffic diversion mode according to the protocol data unit set group as a unit, and to send the first group of protocol data unit sets through the first path; The second set of protocol data units is sent through the second path.
  • the first set of protocol data units is a set of protocol data units, or is a set of multiple protocol data units;
  • the second set of protocol data units is a set of protocol data units, or is a set of multiple protocol data units. Unit collection.
  • the traffic diversion mode based on the protocol data unit collection group includes: load sharing mode, which refers to passing different protocol data unit collection groups through multiple groups according to the preset load ratio according to the rules of load balancing. transmission path.
  • the traffic diversion mode based on the protocol data unit set group includes: the minimum delay mode, which refers to transmitting the protocol data unit set group using the first path with a smaller delay. It is detected that the transmission delay of the second path is smaller than the transmission delay of the first path, and the protocol data unit is transmitted through the second path in units of set groups.
  • the traffic diversion mode based on the protocol data unit set group includes: priority mode, which uses the first path to transmit the protocol data unit set group.
  • priority mode which uses the first path to transmit the protocol data unit set group.
  • the communication device 1300 may be a session management function SMF network element.
  • the communication device may be a terminal device or a user plane function UPF network element.
  • the communication module 1302 is further configured to send a session acceptance message to the terminal device, wherein the indication information is included in the session acceptance message. middle.
  • the communication module 1302 is further configured to send a session modification message to the user plane function UPF network element, wherein the indication The information is contained in the session modification message.
  • the first path and the second path are different transmission paths corresponding to the 3GPP access type or the non-3GPP access type.
  • the communication device 1300 can implement the functions of the network device in each of the above possible implementations.
  • the functions of the network device in each of the above possible implementations.
  • the above-mentioned communication module 1302 can be a transceiver, which can include an antenna and a radio frequency circuit, etc.
  • the processing module 1301 can be a processor, such as a baseband chip, etc.
  • the communication module 1302 may be a radio frequency unit
  • the processing module 1301 may be a processor.
  • the communication module 1302 may be an input interface and/or an output interface of the chip system
  • the processing module 1301 may be a processor of the chip system, such as a central processing unit (CPU).
  • CPU central processing unit
  • the device is presented in the form of dividing various functional modules in an integrated manner.
  • Module here may refer to specific circuits, processors and memories that execute one or more software or firmware programs, integrated logic circuits, and/or other devices that can provide the above functions.
  • the transmission device of the side link can take the form shown in Figure 4 mentioned above.
  • the function/implementation process of the processing module 1301 in Figure 13 can be implemented by the processor 401 in Figure 4 calling the computer program instructions stored in the memory 403.
  • the function/implementation process of the communication module 1302 in Figure 13 can be through the communication interface 404 in Figure 4 .
  • the processor 401 in Figure 4 can call the computer execution instructions stored in the memory 403, so that the device 400 can perform the operations performed by the terminal device or network device or UPF network element in each of the above method embodiments, Implement each of the above possible implementation methods of this application.
  • the communication device in each of the above device embodiments may completely correspond to the communication device or network device in the method embodiment, and the corresponding steps are performed by corresponding modules or units.
  • the communication module 1302 may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above communication module 1302 for sending or receiving is an interface circuit of the device, used to send or receive signals to other devices.
  • the communication module 1302 can be used to send or receive signals to other devices.
  • a computer-readable storage medium or a computer program product including instructions is also provided, and the instructions can be executed by the processor 401 of the communication device 400 to complete the method of the above embodiment. Therefore, the technical effects that can be obtained can be referred to the above method embodiments, and will not be described again here.
  • the computer program product includes instructions. When the instructions are executed, the computer can respectively perform operations of the terminal device or network device corresponding to the above method.
  • An embodiment of the present application also provides a system chip.
  • the system chip includes: a processing unit and a communication unit.
  • the processing unit may be, for example, a processor.
  • the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions to cause the communication device to which the chip is applied to perform the operations of the terminal device and the network device in the method provided by the embodiments of the present application.
  • any communication device provided in the above embodiments of the present application may include the system chip.
  • the computer instructions are stored in a storage unit.
  • An embodiment of the present application also provides a communication system, which may include: any communication device and network device in the above embodiments.
  • the communication system may include: any terminal device and network device in the above embodiments.
  • the communication system may include: any terminal device, network device and UPF network element in the above-mentioned embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种多路径的数据流引流方法及装置,涉及通信技术领域,用于实现扩展现实(extended reality,XR)业务应用于多路径的场景,提高通信效率。该方法包括:通信设备获取数据流,所述数据流包括第一组协议数据单元集合和第二组协议数据单元集合;所述通信设备确定按照协议数据单元集合组为单位的引流模式,将所述第一组协议数据集合单元通过第一路径发送;将所述第二组协议数据单元集合通过第二路径发送。

Description

一种多路径的数据流引流方法及装置
本申请要求于2022年09月22日提交国家知识产权局、申请号为202211160756.3、申请名称为“一种多路径的数据流引流方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种多路径的数据流引流方法及装置。
背景技术
扩展现实(extended reality,XR)业务是在终端上使用的业务,是5G的关键媒体应用之一,具有高吞吐高可靠性的传输需求。为了满足XR业务的服务质量(Quality of Service,QoS)需求,和提升XR的用户体验,第三代合作伙伴项目(the 3rd generation partnership project,3GPP)专门成立工作组研究XR业务的特点和XR业务传输的增强技术。
当前关于XR的传输增强技术仅考虑了终端与核心网之间单路径的场景,即终端设备建立单接入的协议数据单元(Protocol Data Unit,PDU)会话。XR业务数据在建立的单接入PDU会话的QoS流(flow)上传输。第五代(fifth generation)移动通信网络即5G网络中,关于PDU会话定义了,每个PDU会话可以包括多个QoS流。
目前按照3GPP的访问流量引导切换与拆分(Access Traffic Steering、Switching and Splitting,ATSSS)技术的标准定义,终端设备可以通过建立多接入(Multiple Access,MA)PDU会话,同时接入到3GPP网络和非3GPP网络,可以通过负载分担模式、主备模式、最小时延模式或者优先模式在3GPP网络与非3GPP网络两条路径上实现引流。后又在3GPP SA1的标准中将接入类型从3GPP和非3GPP接入类型扩展到双3GPP的接入类型,比如3GPP NR接入类型和3GPP LTE接入类型,3GPP NR接入类型和3GPP NR接入类型,3GPP NR接入类型和3GPP卫星网络接入类型等。所以若终端设备建立的是多接入的PDU会话,XR业务的数据流可能在多条路径上传输。
若XR业务数据流在多条接入路径上传输,按照当前基于协议数据单元集合(Prococol Data Unit,PDU)或基于字节数的引流方式,可能导致同一PDU集合(set)内多个PDU(即多个数据包)被分到不同的路径,导致中间节点如基站或WI-FI接入点无法做基于PDU set完整性的QoS处理;或者,将存在依赖关系的多个不同的PDU集合分到不同的路径,比如将I帧对应的PDU集合与P帧对应的PDU集合分到不同的路径、前面的P帧对应的PDU集合与后面的P帧对应的PDU集合分到不同的路径,将导致中间节点无法做基于依赖关系的差异化的QoS处理,进而无法根据数据传输的完整性以及差异性做数据调度和丢包处理,导致XR增强技术在多路径场景下失效。
发明内容
本申请提供一种多路径的数据流引流方法及装置,实现扩展现实XR业务应用于多路径的场景,提高通信效率。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种多路径的数据流引流方法,该方法包括:通信设备获取数据流,所述数据流包括第一组协议数据单元集合和第二组协议数据单元集合;所述通信设备确定按照协议数据单元集合组为单位的引流模式,将所述第一组协议数据单元集合通过第一路径发送;将所述第二组协议数据单元集合通过第二路径发送。
上述技术方案中,通过对数据流按照协议数据单元集合组为单位进行多路径的引流,从而使得属于同一帧的协议数据单元集合或者具有依赖关系的多个协议数据单元集合可以引流至相同的路径,从而对于不同路径的接入点来说,可以根据接收的协议数据单元集合进行完整性的QoS处理或者差异化的QoS处理。例如,接入点可以根据接收的协议数据单元PDU个数确定是否达到解码该PDU set对应的PDU数量门限,确定是否进行丢包处理或重传处理。再例如,若接入点确 定I帧丢包,则可以确定该I帧对应的P帧或B帧也可以丢包,后续传输没有意义,从而可以避免无效传输,提高多路径的传输效率和提高传输资源的利用率等。
在本申请的实施例中,引流是指对于多路径的数据传输场景,通信设备可以将待传输的数据流引导至不同的路径,从而通过多条路径实现传输,提高传输效率。例如,通信设备将数据流发送至目标设备的传输路径至少包括第一路径和第二路径等,通信设备可以根据本申请实施例提供的引流模式或引流方法,将不同的数据流通过不同的路径进行传输。
在一种实施方式中,第一组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合;第二组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合。
上述可能的实施方式中,本申请实施例中的协议数据单元集合组可以是按照一个协议数据单元集合(PDU set)为单位进行分组的,或者,可以将多个协议数据单元集合(PDU set)作为一组,从而可以按照协议数据单元集合组为单位进行多路径的数据流引流,提高多路径传输的灵活性。
在一种实施方式中,多个协议数据单元集合之间存在依赖关系。其中,将存在依赖关系的多个协议数据单元集合(PDU set)作为一组进行多路径的数据流引流,可以实现单一接入点对传输数据的完整性判断以及数据依赖性判断,提高多路径的通信效率。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:负载分担模式,是根据负载均衡的规则,将不同的协议数据单元集合组按照预设负载比例通过多条路径传输。其中,在现有的负载均衡引流模式下,本申请实施例通过按照协议数据单元集合组为单位,可以根据每条路径预设的负载比例将数据流进行多条路径传输,实现XR业务的完整性或差异化处理,提高多路径传输的灵活性和通信效率。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:最小时延模式,是指将协议数据单元集合组使用时延较小的所述第一路径传输,当检测到所述第二路径的传输时延小于所述第一路径的传输时延时,按照协议数据单元集合组为单位通过所述第二路径传输。其中,在现有的最小时延引流模式下,本申请实施例通过按照协议数据单元集合组为单位,可以根据实时的传输路径时延情况,将数据流按照协议数据单元集合组引流至不同的传输路径,实现XR业务的完整性或差异化处理,提高多路径传输的灵活性和通信效率。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:优先模式,是指将协议数据单元集合组使用所述第一路径传输,当所述第一路径发生拥塞的时候,按照协议数据单元集合组为单位通过所述第二路径传输。其中,在现有的优先引流模式下,本申请实施例通过按照协议数据单元集合组为单位,可以根据预设的优先传输路径,将第一组协议数据单元集合通过优先传输路径进行传输,直至该路径拥塞,可以将后续的第二组协议数据单元集合通过另一条路径传输,实现XR业务的完整性或差异化处理,现提高多路径传输的灵活性和通信效率。
在一种实施方式中,该方法还包括:所述通信设备从网络设备接收按照协议数据单元集合组为单位的指示信息;所述通信设备确定按照协议数据单元集合组为单位的引流模式,包括:根据所述指示信息确定按照协议数据单元集合组为单位的引流模式。
上述可能的实施方式中,网络设备可以通过向通信设备(如终端设备或者UPF网元)发送引流指示信息,用于指示通信设备可以基于协议数据单元集合组进行多路径的数据流引流,从而实现多路径引流方式的灵活配置。
在一种实施方式中,所述通信设备根据所述指示信息确定按照协议数据单元集合组为单位的负载分担模式,还包括:所述通信设备从网络设备接收第一信息和第二信息,其中,所述第一信息用于标识路径,所述第二信息用于标识第一信息对应路径的负载比例;所述通信设备根据所述第一信息和第二信息确定所述第一信息确定的路径上所分担的负载比例。
在一种实施方式中,通信设备根据所述指示信息确定按照协议数据单元集合组为单位的优先模式,所述方法还包括:所述通信设备从网络设备接收第三信息,所述第三信息用于标识优先传输的路径;所述通信设备根据所述第三消息确定第一路径是优先传输的路径。
在一种实施方式中,该方法还包括:所述通信设备确定所述数据流通过XR QoS流传输;所述通信设备确定按照协议数据单元集合组为单位的引流模式,包括:根据XR QoS流确定按照协议数据单元集合组为单位的引流模式。
上述可能的实施方式中,通信设备还可以根据当前的数据流是通过XR QoS流传输的,从而确定可以通过基于协议数据单元集合组为单元的引流模式进行数据引流,实现基于XR业务的多路径引流方式灵活配置。
在一种实施方式中,确定所述数据流通过XR QoS流传输包括:所述通信设备根据所述数据流命中的QoS的标识信息确定所述数据流通过XR QoS流传输,或者,根据所述数据流命中的QoS流关联的服务质量流描述信息确定所述数据流通过XR QoS流传输,其中,所述服务质量流描述信息包括服务质量标识、传输时延或丢包率中的至少一个,或者;根据上下文确定所述数据流通过XR QoS流传输。
在一种实施方式中,第一路径和第二路径为3GPP接入类型或非3GPP接入类型对应的不同传输路径。
上述可能的实施方式中,本申请实施例中对多接入传输路径的场景和数量不限定,例如,可以包括:第一路径可以为非3GPP接入类型对应的传输路径,第二路径可以为3GPP接入类型对应的传输路径;第一路径可以为3GPP接入类型对应的传输路径,第二路径可以为非3GPP接入类型对应的传输路径;或者,第一路径和第二路径为3GPP接入类型对应的不同传输路径;或者,第一路径和第二路径为非3GPP接入类型对应的不同传输路径。
在一种实施方式中,通信设备为终端设备或用户面功能UPF网元。
在一种实施方式中,若所述通信设备为终端设备,则所述方法还包括:所述终端设备向网络设备发送会话建立的请求消息;所述终端设备接收来自所述网络设备的会话建立接受消息。
第二方面,提供一种多路径的数据流引流方法,该方法包括:网络设备接收来自终端设备的会话建立的请求消息;所述网络设备建立包含XR QoS流的会话;所述网络设备向通信设备发送指示信息,所述指示信息用于指示按照协议数据单元集合组为单位的引流模式,将第一组协议数据单元集合通过第一路径发送;将第二组协议数据单元集合通过第二路径发送。
在一种实施方式中,第一组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合;第二组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合。
在一种实施方式中,多个协议数据单元集合之间存在依赖关系。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:负载分担模式,是指根据负载均衡的规则,将不同的协议数据单元集合组按照预设负载比例通过多条路传输径。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:最小时延模式,是指将协议数据单元集合组使用时延较小的所述第一路径传输,当检测到所述第二路径的传输时延小于所述第一路径的传输时延时,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:优先模式,是指将协议数据单元集合组使用所述第一路径传输,当所述第一路径发生拥塞的时候,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,所述指示信息指示按照协议数据单元集合组为单位的负载分担模式还包括:所述网络设备向所述通信设备发送第一信息和第二信息,其中,所述第一信息用于标识路径,所述第二信息用于标识第一信息对应路径的负载比例,所述第一信息和所述第二信息用于所述通信设备确定所述第一信息标识的路径上所分担的负载比例。
在一种实施方式中,所述指示信息指示按照协议数据单元集合组为单位的优先模式还包括:所述网络设备向所述通信设备发送第三信息,所述第三信息用于标识优先传输的路径,所述第三信息用于所述通信设备确定第一路径是优先传输的路径。
在一种实施方式中,网络设备是会话管理功能SMF网元。
在一种实施方式中,通信设备是所述终端设备或用户面功能UPF网元。
在一种实施方式中,若所述通信设备是所述终端设备,则所述方法还包括:所述网络设备向所述终端设备发送会话接受消息,其中,所述指示信息包含在所述会话接受消息中。
在一种实施方式中,若所述通信设备是所述用户面功能UPF网元,则所述方法还包括:所述网络设备向所述用户面功能UPF网元发送会话修改消息,其中,所述指示信息包含在所述会话修改消息中。
在一种实施方式中,第一路径和第二路径为3GPP接入类型或非3GPP接入类型对应的不同传输路径。
第三方面,提供一种通信装置,该通信装置包括:处理模块,用于获取数据流,所述数据流包括第一组协议数据单元集合和第二组协议数据单元集合;所述处理模块,还用于确定按照协议数据单元集合组为单位的引流模式;通信模块,用于将所述第一组协议数据单元集合通过第一路径发送;将所述第二组协议数据单元集合通过第二路径发送。
在一种实施方式中,第一组协议数据单元集合为一个协议数据单元集合(PDU set),或者包括多个协议数据单元集合;所述第二组协议数据单元集合为一个协议数据单元集合,或者包括多个协议数据单元集合。
在一种实施方式中,多个协议数据单元集合之间存在依赖关系。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:负载分担模式,是指根据负载均衡的规则,将不同的协议数据单元集合组按照预设负载比例通过多条路径传输。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:最小时延模式,是指将协议数据单元集合组使用时延较小的所述第一路径传输,当检测到所述第二路径的传输时延小于所述第一路径的传输时延时,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:优先模式,是指将协议数据单元集合组使用所述第一路径传输,当所述第一路径发生拥塞的时候,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,通信模块还用于从网络设备接收按照协议数据单元集合组为单位的指示信息;处理模块还用于根据所述指示信息确定按照协议数据单元集合组为单位的引流模式。
在一种实施方式中,通信模块还用于从网络设备接收第一信息和第二信息,其中,所述第一信息用于标识路径,所述第二信息用于标识第一信息对应路径的负载比例;处理模块还用于根据所述第一信息和第二信息确定所述第一信息确定的路径上所分担的负载比例。
在一种实施方式中,通信模块还用于从网络设备接收第三信息,所述第三信息用于标识优先传输的路径;处理模块还用于根据所述第三消息确定第一路径是优先传输的路径。
在一种实施方式中,处理模块还用于确定所述数据流通过XR QoS流传输;根据XR QoS流确定按照协议数据单元集合组为单位的引流模式。
在一种实施方式中,处理模块还用于根据所述数据流命中的QoS流的标识信息确定所述数据流通过XR QoS流传输,或者,根据所述数据流命中的QoS流关联的服务质量流描述信息确定所述数据流通过XR QoS流传输,其中,所述服务质量流描述信息包括服务质量标识、传输时延或丢包率中的至少一个;或者,根据上下文确定所述数据流通过XR QoS流传输。
在一种实施方式中,第一路径和第二路径为3GPP接入类型或非3GPP接入类型对应的不同传输路径。
在一种实施方式中,通信设备为终端设备或用户面功能UPF网元。
在一种实施方式中,若所述通信设备为终端设备,则所述通信模块还用于向网络设备发送会话建立的请求消息;接收来自所述网络设备的会话建立接受消息。
第四方面,提供一种网络设备,该设备包括:通信模块,用于接收来自终端设备的会话建立的请求消息;处理模块,用于建立包含XR QoS流的会话;所述通信模块,还用于向通信设备发送指示信息,所述指示信息用于指示按照协议数据单元集合组为单位的引流模式,将第一组协议数据单元集合通过第一路径发送;将第二组协议数据单元集合通过第二路径发送。
在一种实施方式中,第一组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合;第二组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合。
在一种实施方式中,多个协议数据单元集合之间存在依赖关系。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:负载分担模式,是指根据负载均衡的规则,将不同的协议数据单元集合组按照预设负载比例通过多条路径传输。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:最小时延模式,是指将协议数据单元集合组使用时延较小的所述第一路径传输,当检测到所述第二路径的传输时 延小于所述第一路径的传输时延时,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:优先模式,是指将协议数据单元集合组使用所述第一路径传输,当所述第一路径发生拥塞的时候,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,通信模块还用于从网络设备接收第一信息和第二信息,其中,所述第一信息用于标识路径,所述第二信息用于标识第一信息对应路径的负载比例;处理模块还用于根据所述第一信息和第二信息确定所述第一信息确定的路径上所分担的负载比例。
在一种实施方式中,通信模块还用于从网络设备接收第三信息,所述第三信息用于标识优先传输的路径;处理模块还用于根据所述第三消息确定第一路径是优先传输的路径。
在一种实施方式中,网络设备是会话管理功能SMF网元。
在一种实施方式中,通信设备是所述终端设备或用户面功能UPF网元。
在一种实施方式中,若所述通信设备是所述终端设备,则所述通信模块,还用于向所述终端设备发送会话接受消息,其中,所述指示信息包含在所述会话接受消息中。
在一种实施方式中,若所述通信设备是所述用户面功能UPF网元,则所述通信模块,还用于向所述用户面功能UPF网元发送会话修改消息,其中,所述指示信息包含在所述会话修改消息中。
在一种实施方式中,第一路径和第二路径为3GPP接入类型或非3GPP接入类型对应的不同传输路径。
第五方面,提供一种通信设备,该通信设备包括处理器和与所述处理器耦合的存储器;所述存储器存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器执行所述计算机指令时,使得所述终端设备执行如上述第一方面中任一项所述的方法。
第六方面,提供一种网络设备,该网络设备包括处理器和与所述处理器耦合的存储器;所述存储器与所述处理器耦合,所述存储器存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器执行所述计算机指令时,使得所述网络设备执行如上述第二方面中任一项所述的方法。
第七方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时,使得所述计算机执行如上述第一方面中任一项所述的方法。
第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时,使得所述计算机执行如上述第二方面中任一项所述的方法。
第九方面,提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如上述第一方面中任一项所述的方法。
第十方面,提供一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如上述第二方面中任一项所述的方法。
第十一方面,提供一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如上述第一方面中任一项所述的方法。
第十二方面,提供一种芯片,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如上述第二方面中任一项所述的方法。
第十三方面,提供一种通信系统,所述通信系统包括如上述第三方面所述的通信设备和如上述第四方面所述的网络设备。
可以理解地,上述提供的任一种通信设备、网络设备、计算机可读存储介质、计算机程序产品、芯片或者通信系统,均可以用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
附图说明
图1为本申请实施例提供的一种多接入的通信系统架构图;
图2为本申请实施例提供的一种视频图像的GOP编码传输示意图;
图3为本申请实施例提供的一种视频图像的片(slice)编码传输的示意图;
图4为本申请实施例提供的一种通信装置的结构示意图;
图5至图8为本申请实施例提供的几种多接入的数据流引流方法的流程示意图;
图9为本申请实施例提供的一种RTP报文头的格式示意图;
图10为本申请实施例提供的一种RTP报文的扩展头的格式示意图;
图11为本申请实施例提供的另一种RTP报文的格式示意图;
图12为本申请实施例提供的另一种RTP报文的扩展头的格式示意图;
图13为本申请实施例提供的一种通信装置的结构示意图。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
首先,对本申请实施例的实施环境和应用场景进行简单介绍。
本申请实施例提供的通信方法可以应用于多接入方式的通信系统,多接入可以是指终端设备可以通过不止一种接入方式接入核心网设备。从而终端设备可以通过不止一条传输路径与核心网或应用服务器之间实现数据传输。
例如,终端设备可以通过第三代合作伙伴项目(the 3rd generation partnership project,3GPP)接入类型对应的接入网设备接入核心网,还可以通过非3GPP接入类型对应的接入网设备接入核心网,实现多接入通信。或者,多接入通信还可以包括3GPP接入类型对应的两种或两种以上接入方式,例如,终端设备可以同时通过4G以及5G通信系统实现多接入,还可以同时通过两个5G通信系统实现多接入等。或者,多接入通信还可以包括非3GPP接入类型对应的两种或两种以上接入方式,例如,终端设备可以同时通过蓝牙以及Wi-Fi通信系统实现多接入。
本申请的实施例中对多接入方式的具体接入类型以及多接入方式的接入路径的个数不做具体限定。
其中,3GPP接入类型可以包括以下的接入技术:对应4G蜂窝网络的长期演进技术(Long Term Evolution,LTE)、对应5G蜂窝网络的新空口(New Radio,NR)技术、下一代无线通信技术以及3GPP定义的卫星接入方式(包括低轨道卫星、中轨道卫星、同步卫星)等。
非3GPP接入类型包括非可信非3GPP接入(untrusted non-3GPP access)(例如通过个人购买的无线接入节点接入核心网)、可信非3GPP接入网络(trusted non-3GPP access Network,TNAN)(例如通过运营商部署的无线接入节点接入核心网)以及有线接入技术(wireline access)等。其中,非3GPP接入的接入技术可以包括无线通信技术(Wi-Fi)、蓝牙、紫峰(ZigBee)等。
其中,非3GPP接入网设备具体可以是非3GPP互通功能(non-3GPP interworking function,N3IWF)、可信非3GPP网关功能(trusted non-3GPP gateway function,TNGF)、可信WLAN互通功能(trusted WLAN interworking function,TWIF)、有线接入网关功能(wireline access gateway function,W-AGF)等。其中,W-AGF也可以称为AGF。若接入技术为非可信非3GPP接入技术,则其对应的非3GPP接入设备可以包括N3IWF。若接入技术为可信非3GPP接入技术,则其对应的非3GPP接入设备可以包括TNGF。
如图1所示的多接入的通信系统,可以包括终端设备,第一接入设备,第二接入设备,核心网设备以及应用服务器。第一接入设备与第二接入设备可以为不同接入方式所对应的接入网设备,例如,接入设备可以是(R)AN。核心网设备可以是用户面设备或者其他网元。应用服务器用于响应终端设备的业务请求,为终端设备提供特定业务的服务。其中,终端设备向应用服务器发送的数 据可以称为上行数据,应用服务器向终端设备发送的数据可以称为下行数据。
终端设备,也可以称为用户设备(user equipment,UE)、移动台、移动终端或终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
(R)AN:(R)AN可以是AN,也可以是RAN。具体的,RAN可以是各种形式的无线接入网设备,例如:基站,宏基站,微基站,分散单元-控制单元(distribute unit-control unit,DU-CU)等。另外,上述基站还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者中继站、接入点、车载设备、可穿戴设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)中的网络设备等。(R)AN主要负责空口侧的无线资源管理、服务质量管理、数据压缩和加密等。AN可以是非3GPP接入网,例如可信非3GPP接入网(trusted non-3GPP access network,TNAN),可信WLAN接入网(trusted WLAN access network,TWAN)非可信非3GPP无线接入网,有线接入网(wireline access network,WAN)或者有线5G接入网(wireline-5G access network,W-5GAN)。其中,可信非3GPP接入网对应的接入网设备可以是可信非3GPP网关功能(trusted non-3GPP gateway function,TNGF);可信WLAN接入网对应的接入网设备可以是可信WLAN互通功能(trusted WLAN interworking function,TWIF);非可信非3GPP接入网对应的接入网设备可以是非3GPP互操作功能(non-3GPP interworking function,N3IWF);有线接入网或者有线5G接入网对应的接入网设备可以是有线接入网关功能(wireline-access gateway function,W-AGF)。
用户面设备:可以称为用户面功能(user plane function,UPF)或者用户面网元,主要负责用户数据的接收和转发。UPF可以接收来自数据网络(data network,DN)的下行数据,然后通过(R)AN将该下行数据传输给UE。UPF还可以通过(R)AN接收来自UE的上行数据,然后将该上行数据转发到DN。
其中,图1中还可以包括的其他网元的功能,可以参考常规技术中的相关描述,这里不再赘述。
本申请实施例主要用于解决XR业务的多路径的数据引流方法。其中,XR业务是虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、混合现实(Mixed Reality,MR)或云游戏(cloud gaming,CG)等多种业务的统称。XR业务可能同时需要传输视频图像数据、音频数据、触觉数据以及传感器数据等。以XR业务的视频图像数据为例,传输的数据可以是由许多视频帧组成的,若相邻视频帧之间相似度较大,在视频数据的编码中会采用GOP的编码传输方式。
示例性的,如图2所示,可以将一段视频帧划分为多个GOP传输,每个GOP内部包括一个I帧和若干P帧或B帧,不同GOP之间的编码没有依赖关系。
其中,I帧(Intra-coded picture frame,帧内编码图像帧),表示关键帧,包含一张完整的图像信息,通常作为GOP的第一个帧。P帧(Predicted-coded picture frame,预测编码图像帧)表示差别帧,包含当前帧与前面最近的I帧或P帧的差别,P帧可以依赖于前面的I帧或P帧。B帧(Bidirectional predicted picture frame,双向预测图像帧)表示双向差别帧,记录当前帧与前后帧(前面最近的I帧或P帧,后面最近的P帧)的差别。
在一种实施方式中,依据图片特征,每一帧图像可能采取片(slice)的编码方式。示例性的,如图3所示,若按照slice的编码方式,每一帧图像被分为4个slice,分别为slice1、slice2、slice3和slice4,其中,I帧的slice包含完整的slice图片信息,P帧的slice包含与前面I帧或P帧对应slice的差异部分。例如,P帧的slice1包含与前面I帧的slice1的差异部分。本申请实施例中对slice的编码方式不做限定。
在一种实施方式中,依据图片特征,每一帧图像还可能采取基础层与增强层的分层编码方式,其中增强层依赖于基础层。如基础层是480P的视频图像,叠加增强层1可以得到720P的视频图 像,叠加增强层1和增强层2可以得到1080P的视频图像。
因为网络最大传输单元(Maximum Transmission Unit,MTU)的限制,在实际的传输过程中,上述的每一帧图像数据或每一个slice图像数据或每一层的图像数据(基础层或增强层),可能需要通过多个协议数据单元(Protocal Data Unit,PDU)来传输,可以将每一帧图像数据,或每一个slice图像数据,或每一层的图像数据对应的多个PDU称为一个PDU集合(PDU set)。当接收端接收到的属于同一个PDU set的全部PDU或PDU数量达到一定阈值时,才能够成功解码这一帧或这一个slice或这一帧的这一层的图像;否则,解码可能失败。
可见,接入点在对一个PDU set中的多个PDU进行调度或丢包处理时,该多个PDU之间具有相互依赖的关系,接入设备(如3GPP的接入设备或非3GPP的)可以根据接收到的PDU进行帧完整性判断,即当确定一个PDU set中的一个PDU丢包或者多个PDU丢包且超过一定阈值(如x%)时,该PDU set传输不完整,其他收到的PDU即使被传输到目的地也没有意义,可以做丢包处理或指示重传等处理。
示例性的,在一种实施方式中,终端设备或核心网网元如UPF网元识别属于一个PDU set的PDU后,给PDU set的每个PDU封装PDU set标识、PDU序列号和PDU set所包含的PDU数量。接入设备(如3GPP的接入设备或非3GPP的)收到后,根据PDU set ID识别属于PDU set的PDU,根据PDU序列号统计PDU的丢包数量,根据PDU set所包含的PDU数量计算丢包比例,当丢包比例超过一定阈值,则判断该PDU set传输不完整。
另外,不同的PDU set之间有不同的重要性,例如,I帧与P帧重要性不同,I帧的重要性高于P帧,若I帧对应的PDU set丢包的话,P帧或B帧对应的PDU set也可以被丢掉;例如,基础层与增强层重要性不同,基础层的重要性高于增强层的重要性,若基础层对应的PDU set被丢包的话,增强层的传输也没有意义。因此,接入网设备在调度与丢包时可以基于不同PDU set之间的依赖关系做差异化的QoS处理。
示例性的,在一种实施方式中,终端设备或核心网网元如UPF网元识别PDU set后,给PDU set的每个PDU封装PDU set标识,并携带该PDU set与其他PDU set的依赖信息。接入设备(如3GPP的接入设备或非3GPP的)可以根据报文头的序列号与依赖信息,当被依赖的PDU set被丢掉之后,则依赖该PDU set的其他PDU set也可以丢掉,比如I帧丢掉之后,后面的P帧或B帧也可以丢掉;或者基础层丢掉之后,后面的增强层也可以丢掉。
目前,多接入PDU会话(MA PDU session)技术被提出。其中,多接入是指端到端的传输路径包括多条,该多条传输路径分别可以通过3GPP接入技术、非3GPP接入技术或其他接入类型中一种或多种实现。例如,图1所示的终端设备和应用服务器之间,至少可以通过第一路径和第二路径实现数据传输。
示例性的,若UE同时支持3GPP(如NR或LTE等)和非3GPP(Wi-Fi或蓝牙等)接入方式,UE在请求PDU会话建立时,可以请求建立多接入PDU会话。当多接入PDU会话建立成功后,一个QoS流标识(QoS Flow Identifier,QFI)将对应2条或2条以上的路径,UE或UPF在收到上行或下行数据时,可以采用多接入业务引流技术将数据流量引流到2条或2条以上的不同路径上。
示例性的,如图1所示,若UE同时支持3GPP和非3GPP接入方式,则多接入PDU会话建立成功后,一个QFI可以对应终端设备和应用服务器之间的两条路径。UE可以将上行数据通过3GPP(如第一路径)和非3GPP(如第二路径)发送。另外,UPF也可以将下行数据引流到3GPP和非3GPP的路径。其中,具体的业务引流技术可以基于负载分担模式、主备模式、最小时延模式以及优先模式等进行数据引流。
但是,上述的业务引流技术均是基于协议数据单元集合或字节数为单位进行的数据引流,不感知媒体层信息。但是对于XR数据,若数据面是基于XR特性的增强,若UE或UPF在数据引流时按照上述的引流模式,基于PDU或字节数的引流,极有可能将同一PDU set内的不同PDU分到2个或2个以上的不同路径上。如果分到2条不同的路径上,3GPP接入点或非3GPP接入点将无法完成上述的帧完整性判断,即确定一个PDU set中的一个PDU丢包或者多个PDU丢包且超过一定阈值。
另外,若同一个GOP内的帧分到不同的路径上,将很难做到基于不同帧之间依赖关系的调度与丢包,比如某个GOP内的I帧引流至路径1、P帧引流至路径2,若路径1的I帧丢包,实际后面的P帧都没有传输的必要,可以丢包。但路径2对应的接入设备并不感知路径1传输的I帧已丢包,仍然会进行无效的数据传输。同理,因为增强层依赖于基础层,将基础层与增强层的数据流引流到不同的路径,比如将基础层引流至路径1,增强层引流至路径2,若路径1的基础层丢包无法恢复,路径2的增强层也没有传输的必要。因此,接入设备可以根据接收的数据包确定是否丢包,避免无效传输。
可见,在现有的多接入PDU会话技术下,若将XR业务对应的一个PDU set的多个PDU或属于同一GOP的PDU set或属于同一帧不同层的PDU set分别分配至至少两个接入网络,则3GPP接入点或非3GPP接入点无法分别根据接收到的PDU进行帧完整性判断或者帧间依赖性的判断,进而导致多接入PDU会话技术无法应用于XR业务,传输效率较低。
为解决上述问题,本申请实施例针对XR业务的数据特征,提出一种适用于多接入路径通信方式下数据流的引流方法,通过按照协议数据单元集合组为单位进行业务数据的引流,使得多接入方式对应的多个接入网设备可以根据接收的业务数据进行帧完整性判断,或者帧依赖关系的判断,从而实现数据调度以及丢包处理,提高多接入下的通信效率。
可以理解的,上述图1的通信系统仅是示意图,并不构成对本申请提供的技术方案的适用场景的限定。本领域的技术人员应当明白,在具体实现过程中,通信系统可以包括比图1所示更少的设备或网元,或者,通信系统还可以包括其他设备或其他网元,同时也可根据具体需要来确定通信系统中设备或网元的数量。
可选的,本申请实施例图1中的各网元可以是一个设备内的一个功能模块,可以理解的是,上述功能既可以是硬件设备中的网络元件,例如手机中的通信芯片,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,图1中的各网元均可以通过图4中的通信装置400来实现。图4所示为可适用于本申请实施例的通信装置的硬件结构示意图。该通信装置400包括至少一个处理器401,通信线路402,存储器403以及至少一个通信接口404。
处理器401可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路402可包括一通路,在上述组件之间传送信息,例如总线。
通信接口404,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网接口,RAN接口,无线局域网(wireless local area networks,WLAN)接口等。
存储器403可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路402与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常可以具有非易失性。其中,存储器403用于存储执行本申请方案所涉及的计算机执行指令,并由处理器401来控制执行。处理器401用于执行存储器403中存储的计算机执行指令,从而实现本申请实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器401可以包括一个或多个CPU,例如图4中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信装置400可以包括多个处理器,例如图4中的处理器 401和处理器407。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信装置400还可以包括输出设备405和输入设备406。输出设备405和处理器401通信,可以以多种方式来显示信息。例如,输出设备405可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备406和处理器401通信,可以以多种方式接收用户的输入。例如,输入设备406可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信装置400可以是一个通用设备或者是一个专用设备。在具体实现中,通信装置400可以是便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端、嵌入式设备或有图4中类似结构的设备。本申请实施例不限定通信装置400的类型。
下面将结合附图,对本申请实施例提供的多路径的数据流引流方法进行具体阐述。
需要说明的是,本申请下述实施例中各个网元之间的消息名字或消息中各参数的名字等只是一个示例,具体实现中也可以是其他的名字,本申请实施例对此不作具体限定。
可以理解的,本申请实施例中的部分或全部步骤仅是示例,本申请实施例还可以执行其它步骤或者各种步骤的变形。此外,各个步骤可以按照本申请实施例呈现的不同的顺序来执行,并且有可能并非要执行本申请实施例中的全部步骤。
如图5所示,以通信设备为例进行阐述,该方法可以包括以下步骤501-502。其中,通信设备可以是终端设备,或者,通信设备可以是核心网设备如UPF网元。
501:通信设备获取数据流,数据流包括第一组协议数据单元集合和第二组协议数据单元集合。
其中,数据流为在终端上使用的业务的数据流。数据流可以是上行传输的数据流,可以是下行传输的数据流。示例性的,若通信设备是终端设备,则数据流可以是终端设备在使用业务的过程中响应于用户的操作,生成的与业务对应的上行数据流,该数据流的目的地可以为应用服务器或者核心网设备。若通信设备是UPF网元,则数据流可以是从应用服务器或者从其他网元设备获取的下行数据流,该数据流的目的地可以为终端设备。
在一种实施方式中,第一组协议数据单元集合可以为一个协议数据单元集合(PDU set),第二组协议数据单元为一个协议数据单元集合。例如,第一组协议数据单元集合和第二组协议数据单元集合分别为第一PDU set和第二PDU set。
或者,在另一种实施方式中,若数据流是视频图像数据流,第一组协议数据单元集合可以为包括多个协议数据单元集合的一组图片GOP,第二组协议数据单元集合也为包括多个协议数据单元集合的一组图片GOP。其中,一个GOP包括的多个协议数据单元集合之间存在依赖关系。
例如,第一组协议数据单元集合和第二组协议数据单元集合分别为第一GOP和第二GOP,其中,第一GOP包括第一个GOP内对应于I帧的PDU set(1)和对应于P帧的PDU set(2)等,第二GOP包括第二个GOP内对应于I帧的PDU set(i)和对应于P帧的PDU set(j)等。
或者,在另一种实施方式中,若数据流是视频图像数据流且按照分层的编码方式,第一组协议数据单元集合可以为包括基础层与增强层的多个协议数据单元集合;第二组协议数据单元集合也为包括基础层与增强层的多个协议数据单元集合,其中,增强层依赖于基础层。
502:通信设备确定按照协议数据单元集合组为单位的引流模式,将第一组协议数据单元集合通过第一路径发送,将第二组协议数据单元集合通过第二路径发送。
其中,一个协议数据单元集合组包括一个PDU set,或者,可以是多个PDU set。
也就是说,通信设备确定按照协议数据单元集合组为单位的引流模式是指,通信设备可以确定按照PDU set为单位进行业务数据的引流,即可以将不同的PDU set包括的PDU引流至不同的路径;或者,通信设备可以按照具有依赖关系的多个PDU set为单位进行业务数据的引流,例如,通信设备可以按照GOP为单位进行业务数据的引流,即将不同的GOP包括的PDU引流至不同的路径;或者,将具有依赖关系的基础层与增强层的多个PDU引流至同一的路径。
在一种实施方式中,示例性的,如图1所示,第一路径可以为3GPP接入类型对应的传输路径,第二路径可以为非3GPP接入类型对应的传输路径,通信设备可以将第一PDU set对应的至少一个PDU引流至第一路径,将第二PDU set对应的至少一个PDU引流至第二路径。或者,通信设备可以将第一GOP对应的多个PDU全部引流至第一路径,将第二GOP对应的多个PDU全部引流至第二路径。或者,通信设备可以将第一帧不同层对应的多个PDU全部引流至第一路径,将第二帧不同层对应的多个PDU全部引流至第二路径。
在一种实施方式中,第一路径可以为非3GPP接入类型对应的传输路径,第二路径可以为3GPP接入类型对应的传输路径。
在另一种实施方式中,第一路径和第二路径为3GPP接入类型对应的不同传输路径,例如,第一路径为4G网络的传输路径,第二路径为5G网络的传输路径。
在另一种实施方式中,第一路径和第二路径为非3GPP接入类型对应的不同传输路径。例如,第一路径为非可信非3GPP网络的传输路径,第二路径为可信非3GPP网络的传输路径。
具体的,本申请实施例中按照协议数据单元集合组为单位的引流模式,具体可以包括:基于PDU set为单位进行引流的负载分担模式、最小时延模式、优先模式等引流方式。
在另一种实施方式中,本申请实施例中按照协议数据单元集合组为单位的引流模式,具体可以包括:以具有依赖关系的多个PDU set为单位进行引流的负载分担模式,例如,基于GOP为单位的负载分担模式、最小时延模式、优先模式等引流模式。
下面将介绍几种引流模式的具体方式,每种引流方式均可以适用于基于一个PDU set为单位进行引流的场景,也可以适用于基于多个有依赖关系的PDU set为单位进行引流的场景。本申请的实施例中,将基于一个PDU set或基于多个有依赖关系的多个PDU set均统称为基于协议数据单元集合组。
负载分担模式是指根据负载均衡的规则,将不同的协议数据单元集合组(一个PDU set或多个PDU set)按照预设负载比例引流至多条路径。例如,以GOP为单位进行引流为例,若第一路径配置的负载比例为30%,第二路径配置的负载比例为50%,则通信设备可以将前3个到达的GOP包括的多个PDU引流至第一路径;将后续到达的5个GOP所包含的多个PDU引流至第二路径;将后续到达的其他GOP所包含的PDU引流至第三路径,直至第三路径上分担的GOP个数达到或超过配置的负载比例。
最小时延模式是指优先将数据流引流至传输时延较小的路径,当检测到另一路径的传输时延更小时,后续可以将数据流基于协议数据单元集合组引流至传输时延更小的路径。
例如,以一个PDU set为单位进行引流为例,通信设备优先将第一PDU set包括的至少一个PDU流至传输时延较小的第一路径,当后续通信设备检测到第二路径的传输时延小于第一路径的传输时延时,可以将除第一PDU set之外的其他PDU set包括的PDU引流至第二路径。
优先模式是指优先在某接入路径下传输,当该接入模式下的路径发生拥塞,比如该接入路径下的网络指标参数小于或超过预设的门限值的时候,可以按照协议数据单元集合组为单位引流至其他的传输路径。其中,网络指标参数可以包括传输时延、网络带宽、数据传输率或丢包率中的至少一项。
示例性的,通信设备根据配置优先将第一PDU set引流至第一路径,当通信设备检测到第一路径的传输时延超过阈值的时候,通信设备可以将第二PDU set引流至第二路径。或者,当通信设备检测到第一路径的数据传输率低于预先配置的数据传输率门限值时,通信设备可以将后续的第二PDU set引流至第二路径。
上述实施方式,通过对现有的负载分担模式、最小时延模式、优先模式进行增强,提出基于PDU set或GOP为单位(或者其他具有依赖关系的多个PDU set)的负载分担模式、最小时延模式、优先模式实现业务数据的引流,提高多接入模式的通信效率。
在一种实施方式中,网络设备可以为通信设备预配置或动态配置多路径的数据流引流模式,例如,网络设备可以通过向通信设备发送指示信息,用于指示通信设备确定以一个PDU set或多个PDU set(如GOP)为单位进行多接入的业务数据引流。
如图6所示,对于上行数据传输,以通信设备为终端设备作为示例,该方法可以包括如下步骤。
601:终端设备向网络设备发送会话建立的请求消息。
在一种实施方式中,终端设备可以通过先后多次向网络设备发送会话建立请求消息,以建立多条路径上相关联的多个PDU会话。或者,在一种实施方式中,终端设备可以通过向网络设备发送多接入的会话建立请求消息。
示例性的,网络设备可以为SMF网元,终端设备向SMF发送MA PDU会话建立的请求消息。
相对应的,网络设备接收来自终端设备的MA PDU会话建立的请求消息。
602:网络设备建立包含XR QoS流的会话,并向终端设备发送会话建立接受消息。
在一种实施方式中,网络设备向终端设备发送的会话建立接受消息中可以携带该数据流的QoS规则,以及QoS流的描述信息,以及访问流量引导切换与拆分(Access Traffic Steering、Switching and Splitting,ATSSS)信息。其中,ATSSS信息可以用于为数据流选择一个访问网络,将一个数据流的所有流量从一个接入网转移到另一个接入网,或者,将单个数据流的流量拆分为多个接入网络。ATSSS信息可以包括引流模式信息以及流量描述信息等,对于不同的引流模式还可能包括该引流模式对应的其他信息,例如,若引流模式信息用于指示负载分担模式,则ATSSS信息中还可以包括接入类型(如3GPP或非3GPP)的指示信息,以及不同接入类型对应的负载分担比例信息。
在一种实施方式中,网络设备可以向终端设备发送按照协议数据单元集合组为单位的引流指示信息。所述指示信息用于指示按照协议数据单元集合组(一个PDU set或多个PDU set,如GOP)为单位的引流模式。
在一种实施方式中,所述指示信息可以承载于会话建立接受消息中。例如,承载于会话建立接受消息的ATSSS信息中,如通过扩展ATSSS信息,增加额外的比特位,用于指示按照协议数据单元集合组(一个PDU set或多个PDU set,如GOP)为单位的引流模式;或者增加新的模式类型,用于指示按照协议数据单元集合组(一个PDU set或多个PDU set,如GOP)为单位的负载分担模式、最小时延模式、或优先模式。
603:终端设备确定按照协议数据单元集合组为单位的引流模式。
终端设备可以根据指示信息,确定按照协议数据单元集合组(包含一个PDU set或多个PDU set,如GOP)为单位的引流模式,然后将第一组协议数据单元集合通过第一路径发送,将第二组协议数据单元集合通过第二路径发送等。
在另一种实施方式中,对于下行数据传输,以通信设备为UPF作为示例,如图7所示,该方法可以包括如下步骤。
701:终端设备向网络设备发送会话建立的请求消息。
参考上述步骤601的相关描述,此处不再赘述。
702:网络设备建立包含XR QoS流的会话,并向终端设备发送会话建立接受消息。
参考上述步骤602的相关描述,此处不再赘述。
703:网络设备向UPF网元发送会话修改消息,携带按照协议数据单元集合组为单位的指示信息。
在一种实施方式中,会话修改消息具体可以为N4Session Modification request消息,
其中,指示信息可以承载于上述的会话修改消息中,用于指示按照协议数据单元集合组(一个PDU set或多个PDU set,如GOP)为单位的引流模式。
需要说明的是,本申请的实施例中,对上述步骤702和703中网络设备向终端设备以及向UPF网元发送消息的执行顺序不做限定,可以先执行:网络设备向终端设备发送会话建立接受消息,再执行:网络设备向UPF网元发送会话修改消;或者,可以先执行:网络设备向UPF网元发送会话修改消,再执行:网络设备向终端设备发送会话建立接受消息;还可以同时执行上述两个步骤。
704:UPF网元根据指示信息确定按照协议数据单元集合组为单位的引流模式。
UPF网元可以根据指示信息,确定按照协议数据单元集合组(一个PDU set或多个PDU set,如GOP)为单位的引流模式,然后将第一组协议数据单元集合通过第一路径发送,将第二组协议 数据单元集合通过第二路径发送等。
在一种实施方式中,网络设备通过向通信设备(终端设备或UPF网元)发送指示信息,用于指示按照协议数据单元集合组为单位的负载分担的引流模式中,指示信息还可以包括第一信息和第二信息,其中,第一信息可以用于标识通信路径,第二信息用于标识该第一信息对应路径的负载比例。也就是说,可以通过第一信息第二信息联合进行负载分担模式的指示。
在这种实施方式下,通信设备从网络设备接收第一信息和第二信息,从而可以根据第一信息和第二信息确定,第一信息标识的路径上所分担的负载比例是多少,进而确定数据流的引流路径。
可选的,指示信息还可以包括第四信息,第四信息用于指示基于协议数据单元集合组的负载分担模式。也就是说,可以通过第一信息、第二信息和第四信息联合进行负载分担模式的指示。
在另一种实施方式中,网络设备通过向通信设备发送指示信息,用于指示按照协议数据单元集合组为单位的优先模式的引流模式中,指示信息还可以包括第三信息,用于标识优先选择的引流路径(即第一优先级的接入路径),可选的,还可以包括第五信息,第五信息用于指示基于协议数据单元集合组的优先模式。从而通信设备可以根据第三信息(如有第五信息),确定将当前的数据流基于PDU set或GOP的单位优先引流至第三信息所指示的路径。例如,第三信息用于指示3GPP的接入路径,则终端设备或UPF网元优先选择将XR业务的数据流基于PDU set或GOP的单位引流至3GPP的接入路径。
进一步的,在这种实施方式下,指示信息还可以包括第六信息,用于标识次优先选择的引流路径(如第二优先级的接入路径)。从而通信设备可以根据第三信息结合第六信息,确定当第三信息指示的路径拥塞的时候,将当前的数据流基于PDU set或GOP的单位优先引流至第六信息所指示的路径。例如,第三信息用于指示非3GPP中Wi-Fi网络的接入路径,第六信息用于指示3GPP中5G网络的接入路径,则终端设备或UPF网元优先选择将XR业务的数据流基于PDU set或GOP的单位引流至Wi-Fi网络,若Wi-Fi网络的网络指标参数(如数据传输速率)低于5G网络的接入路径,则终端设备或UPF网元可以选择将XR业务的数据流基于PDU set或GOP的单位引流至5G网络的接入路径;若后续5G网络的接入路径网络指标参数低于4G网络的接入路径或其他接入路径,则终端设备或UPF网元可以选择将XR业务的数据流基于PDU set或GOP的单位引流至4G网络的接入路径或其他接入路径。
在另一种实施方式中,终端设备或UPF网元可以通过确定当前的数据流是通过XR QoS flow(本申请中也简称为XR QoS流)传输,从而确定按照协议数据单元集合组(一个PDU set或多个PDU set,如GOP)为单位进行多接入的数据引流。这种方式无需通过网络设备配置的指示信息确定基于协议数据单元集合组(一个PDU set或多个PDU set,如GOP)的多接入数据引流模式,可以降低指示信息的信令开销。
如图8所示,该方法可以包括如下步骤。
801:通信设备获取数据流,确定数据流通过XR QoS流传输。
在一种实施方式中,通信设备可以根据数据流命中的QoS流的标识信息即QFI,确定所述数据流通过XR QoS流传输。也就说,网络通过为QoS流分配特殊的QFI用于指示该数据流通过XR QoS流传输。
或者,通信设备可以根据所述数据流命中的QoS流关联的服务质量流描述信息(QoS flow description)确定所述数据流通过XR QoS流传输,其中,所述服务质量流描述信息包括服务质量标识、传输时延或丢包率中的至少一个。也就是说,网络通过为XR QoS流分配包含一些特定参数的QoS流描述信息,用于指示该数据流通过XR QoS流传输。
或者,通信设备可以根据上下文确定所述数据流通过XR QoS流传输。具体的,通信设备可以通过上下文确定当前建立的是包含XR QoS流的PDU会话,通过帧识别等相关技术可以识别出当前的数据流是XR业务的数据流,则该XR流匹配的QoS流即是XR QoS流。
802:通信设备确定按照协议数据单元集合组为单位的引流模式。
具体的,通信设备可以根据XR QoS流确定按照协议数据单元集合组为单位的引流模式。从而可以基于预先配置的引流模式的基础上,确定/调整为按照协议数据单元集合组(一个PDU set或多个PDU set,如GOP)为单位的引流模式。例如,当前网络设备为终端设备或UPF网元配置 的是负载分担模式,若终端设备或UPF网元确定当前的数据流通过XR QoS流传输,则终端设备或UPF网元可以确定为基于PDU set或GOP为单位的负载分担的引流模式,进而可以将第一组协议数据单元集合通过第一路径发送,将第二组协议数据单元集合通过第二路径发送等。
上述的实施例,介绍了几种不同的多接入的业务引流方法的不同实施场景,基于XR业务数据流,通过本申请实施例提供的基于PDU set或多个具有依赖关系的PDU set为单位的引流模式,例如,不同接入网对应的接入设备可以根据接收的PDU set或GOP实现帧完整性判断,或者,判断不同帧之间的依赖关系,从而进行数据调度以及丢包处理,提高多接入方式的通信效率。
可见,上述的实施例中,通信设备(如终端设备或UPF网元)需要识别出同一个PDU set,或者,识别出具有依赖关系的多个PDU set,如一个GOP对应的多个PDU set。进而将同一个PDU set或具有依赖关系的多个PDU set引流至同一路径,将不同的PDU set或不同的GOP可以根据配置的引流模式引流至不同路径。
下面,将介绍通信设备识别PDU set或具有依赖关系的一组PDU set的具体方法。
在一种实施方式中,根据前述的视频图像的编码方式,一个PDU set可能包含一个帧的数据,也可能包含一个slice的数据,也可能包含一个帧内一个层的数据。
在一种实施方式中,若一个PDU set包含一个帧的数据,可以根据实时传输协议(Real-time Transport Protocol,RTP)报文的报文头信息、RTP报文的扩展头信息或者数据流量的特征来识别一个PDU set。
其中,RTP报文是一种运行在应用层的协议报文,通常基于用户数据报协议(User Datagram Protocol,UDP),也支持传输控制协议(Transmission Control Protocol,TCP)。RTP报文包括报文头header和数据载荷payload,header包含了实时音视频的同步信息,payload承载具体的音视频数据。
示例性的,如图9示出了一种RTP报文头的格式。
其中,V字段:指示RTP协议的版本。X字段:指示该RTP报文是否有扩展头。M字段:标记一些重要事件,比如帧边界。Sequence number字段:指示序列号。Timestamp字段:指示时间戳。
下面将示出几种可能的PDU set识别方式。
1、根据RTP报文头的时间戳信息确定,属于同一PDU set的时间戳信息相同。
其中,时间戳信息如图9中所述的Timestamp字段。
2、根据RTP报文头的M字段的信息确定,M字段(对应于1个比特位)用于指示属于同一PDU set的最后一个PDU。
3、根据RTP报文扩展头的S字段与E字段确定。
示例性的,如图10示出了一种RTP报文的短扩展头的格式。
其中,S字段与E字段分别对应于1个比特位,用于指示每个PDU set的起始与结束。因此,通信设备可以根据S字段与E字段确定是否属于同一个PDU set。
4、根据数据流量的周期特征确定。若检测到数据流是周期的,根据媒体流的传输规律,则每个burst包含的PDU就可以被认为是一个PDU set。
在一种实施方式中,若一个PDU set包含一个slice的数据,可以基于RTP报文的payload字段识别一个PDU set。
以H.264视频图像帧编码为例,如图11示出了H.264视频编码方式下网络抽象层单元(Network Abstract Layer Unit,NALU)头的格式。可以根据NALU报文头的类型Type字段判断,方法如下:
1、若Type为Single NAL unit packet,则表示该RTP报文包含一个slice;
2、若Type为aggregation packet,则表示该RTP报文包含多个slice;
3、若Type为fragmentation unit,则表示多个RTP报文包含一个slice。可以根据RTP报文扩展头的S和E比特位标识一个slice的起始和结束。
在另一种实施方式中,若一个PDU set包含一个帧内一个层的数据,可以根据如图12所示的RTP报文的长扩展头确定。
S字段:当S=1时,表示当前PDU是某一帧某一层的第一个PDU;
E字段:当E=1时,表示当前PDU是某一帧某一层的最后一个PDU;
I字段:当I=1时,表示当前帧是独立帧,不依赖前面的帧;
B字段:当B=1时,表示当前帧仅依赖基础层;
TID字段:标识时间层。
其中,TID=0可以用于标识基础层,其他TID值可以用于标识增强层。
因此,通信设备可以基于RTP报文的长扩展头(如图12所示)包含的TID字段,结合RTP报文头(如图9所示)的timestamp字段来判断,例如,可以根据TID字段识别是否属于同一个层的PDU,再根据RTP头的timestamp字段识别是否是一个帧内一个层的数据。
根据前述的视频图像编码方式可知,一个GOP可以包括一个I帧和若干P帧或B帧,其中,I帧是每个GOP的第一个帧。下面示出通信设备识别一个GOP的几种具体方法。
方式一、RTP报文:
1、根据RTP报文扩展头的I字段确定。
如图10所示的一种RTP报文扩展头的格式,其中,RTP报文扩展头包括的I比特位用于指示能独立解码的帧,即用于指示I帧。那么从当前I帧开始到下一个I帧之间的帧均属于一个GOP。
2、根据RTP报文扩展头的I字段结合RTP报文头的时间戳信息确定。
在一种实施方式下,如果RTP报文乱序的情况下,不同帧产生的时刻不同,即时间戳timestamp信息不同,从而通信设备可以通过RTP扩展头的I比特位和RTP报文头的时间戳timestamp信息共同识别一个GOP,通过I比特位确定2个I帧,通过I帧携带的timestamp信息确定当前I帧与下一个I帧之间的时间间隔,落在这2个timestamp内的帧属于当前GOP。
方式四、若视频编码按照基础层与增强层的方式,则需要识别多个有依赖关系的PDU set。
其中,视频分层编码技术(Scalable Video Coding,SVC)是一种将视频流分割为多个分辨率、质量和帧频层,并分别进行编码的技术。通过使用多个不同的数据流对视频图像进行压缩,每个数据流处理视频图像的不同组成部分,例如,通过基础层与增强层分别对视频图像的不同组成部分进行编码。其中,基础层的视频流可以用较低的带宽来处理清晰度相对低的图像,增强层的视频流可以对包含更高分辨率、帧频和质量水平的信息进行编码。如此,可以根据不同应用的需要灵活选择基础层和增强层的数据流进行解码,从而可以使资源消耗与业务特征相适配。
示例性的,若RTP报文头如图9所示,则通信设备可以根据RTP报文头的“timestamp”字段识别,属于同一时刻的基础层与增强层可被认为是一组PDU set。
在一种实施方式中,本申请实施例中涉及的帧间依赖关系可以是指,接收端在解码时第二组协议数据单元集合需要依赖于第一组协议数据单元集合,例如第一组协议数据单元集合是I帧,第二组协议数据单元集合是P帧,则第二组协议数据单元集合的解码依赖于第一组协议数据单元集合。例如第二组协议数据单元集合是增强层,第一组协议数据单元集合为基础层,则第二组协议数据单元集合的解码依赖于第一组协议数据单元集合。
另外,本申请涉及的依赖还可以是业务使用或显示上的依赖,例如第一组协议数据单元集合对应视频流,第二组协议数据单元集合为音频或触觉,假使视频传输失败,那么音频和触觉的体验也不完整,因此认为第二组协议数据单元集合依赖于第一组协议数据单元集合。对于业务使用或显示上的依赖,任意数据流对应的协议数据单元集合都可以是第一组协议数据单元集合,而其它数据流对应的协议数据单元集合组可以为第二组协议数据单元集合。当有任一数据流没传输成功,其他数据流的传输也使得体验也不完整。因此,可以认为使用同一业务的各数据流对应的协议数据单元集合组互相依赖。本申请的业务可以是媒体业务(例如视频、音频)、感知业务(例如触觉)等。
因此,示例性的,若第一组协议数据单元集合为视频流中的I帧,第二组协议数据单元集合为与该I帧属于同GOP的P帧,则通信设备可以确定该第一组协议数据单元集合与第二组协议数据单元集合存在依赖关系,可以将第一组协议数据单元集合与第二组协议数据单元集合引流至同 一路径。
或者,若第一组协议数据单元集合可以为视频流中时序靠前的P帧,第二组协议数据单元集合为与上述时序靠前的P帧同组的时序靠后的P帧。或者,第一组协议数据单元集合为视频流中的基础层,第二组协议数据单元集合为视频流中的增强层。或者,第一组协议数据单元集合为服务于同一用户的视频、音频或触觉中的一个,第二组协议数据单元集合为视频、音频、触觉中的其余至少一个;示例性地,第一组协议数据单元集合为视频,第二组协议数据单元集合为音频和/或触觉。则通信设备可以确定该第一组协议数据单元集合与第二组协议数据单元集合存在依赖关系,可以将第一组协议数据单元集合与第二组协议数据单元集合引流至同一路径。
上述本申请的实施方式,提供了多种不同的协议数据单元集合组的识别方式,从而通信设备可以灵活选择并进行协议数据单元集合组(如PDU集合或GOP)的识别,并根据协议数据单元集合组进行XR业务的多路径场景下的引流,提高多路径业务引流的灵活性和通信效率。
基于此,本申请实施例还提供一种通信装置,用于实现前述实施例中终端设备或者UPF网元等执行的步骤,如图13所示,该通信装置1300可以包括处理模块1301和通信模块1302。
其中,处理模块1301用于获取数据流,所述数据流包括第一组协议数据单元集合和第二组协议数据单元集合。
处理模块1301还用于确定按照协议数据单元集合组为单位的引流模式。
通信模块1302用于将所述第一组协议数据单元集合通过第一路径发送;将所述第二组协议数据单元集合通过第二路径发送。
在一种实施方式中,第一组协议数据单元集合为一个协议数据单元集合(PDU set),或者包括多个协议数据单元集合;所述第二组协议数据单元集合为一个协议数据单元集合,或者包括多个协议数据单元集合。
在一种实施方式中,多个协议数据单元集合之间存在依赖关系。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:负载分担模式,是指根据负载均衡的规则,将不同的协议数据单元集合组按照预设负载比例通过多条路径传输。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:最小时延模式,是指将协议数据单元集合组使用时延较小的所述第一路径传输,当检测到所述第二路径的传输时延小于所述第一路径的传输时延时,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:优先模式,是指将协议数据单元集合组使用所述第一路径传输,当所述第一路径发生拥塞的时候,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,通信模块1302还用于从网络设备接收按照协议数据单元集合组为单位的指示信息;处理模块还用于根据所述指示信息确定按照协议数据单元集合组为单位的引流模式。
在一种实施方式中,通信模块1302还用于从网络设备接收第一信息和第二信息,其中,所述第一信息用于标识路径,所述第二信息用于标识第一信息对应路径的负载比例;处理模块1301用于根据所述第一信息和第二信息确定所述第一信息确定的路径上所分担的负载比例。
在一种实施方式中,通信模块1302还用于从网络设备接收第三信息,所述第三信息用于标识优先传输的路径;处理模块1301用于根据所述第三消息确定第一路径是优先传输的路径。
在一种实施方式中,处理模块1301还用于确定所述数据流通过XR服务质量流(QoS flow)传输;根据XR QoS流确定按照协议数据单元集合组为单位的引流模式。
在一种实施方式中,处理模块1301还用于根据所述数据流命中的QoS flow的标识信息确定所述数据流通过XR QoS流传输,或者,根据所述数据流命中的QoS流关联的服务质量流描述信息(QoS flow description)确定所述数据流通过XR QoS流传输,其中,所述服务质量流描述信息包括服务质量标识、传输时延或丢包率中的至少一个;或者,根据上下文确定所述数据流通过XR QoS流传输。
在一种实施方式中,第一路径和第二路径为3GPP接入类型或非3GPP接入类型对应的不同传输路径。
在一种实施方式中,通信装置1300可以为终端设备或用户面功能UPF网元。
在一种实施方式中,若通信装置1300为终端设备,则所述通信模块1302还用于向网络设备发送会话建立的请求消息;接收来自所述网络设备的会话建立接受消息。
具体的,该通信装置1300可以实现上述各个可能的实施方式中的通信设备(如终端设备或者UPF网元)的功能,具体可以参见前述各个方法示例中的详细描述,此处不做赘述。
另外,本申请实施例还提供一种通信装置,用于实现前述实施例中网络设备执行的步骤,如图13所示,该通信装置1300可以包括处理模块1301和通信模块1302。
通信模块1302用于接收来自终端设备的会话建立的请求消息。
处理模块1301用于建立包含XR QoS流的会话。
通信模块1302还用于向通信设备发送指示信息,所述指示信息用于指示按照协议数据单元集合组为单位的引流模式,将所述第一组协议数据单元集合通过第一路径发送;将所述第二组协议数据单元集合通过第二路径发送。
在一种实施方式中,第一组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合;第二组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合。
在一种实施方式中,多个协议数据单元集合之间存在依赖关系。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:负载分担模式,是指根据负载均衡的规则,将不同的协议数据单元集合组按照预设负载比例通过多条路径传输。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:最小时延模式,是指将协议数据单元集合组使用时延较小的所述第一路径传输,当检测到所述第二路径的传输时延小于所述第一路径的传输时延时,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,所述按照协议数据单元集合组为单位的引流模式,包括:优先模式,是将协议数据单元集合组使用所述第一路径传输,当所述第一路径发生拥塞的时候,按照协议数据单元集合组为单位通过所述第二路径传输。
在一种实施方式中,通信装置1300可以是会话管理功能SMF网元。
在一种实施方式中,其中的通信设备可以终端设备或用户面功能UPF网元。
在一种实施方式中,若所述通信设备是所述终端设备,则所述通信模块1302还用于向所述终端设备发送会话接受消息,其中,所述指示信息包含在所述会话接受消息中。
在一种实施方式中,若所述通信设备是所述用户面功能UPF网元,则所述通信模块1302还用于向所述用户面功能UPF网元发送会话修改消息,其中,所述指示信息包含在所述会话修改消息中。
在一种实施方式中,第一路径和第二路径为3GPP接入类型或非3GPP接入类型对应的不同传输路径。
具体的,该通信装置1300可以实现上述各个可能的实施方式中的网络设备的功能,具体可以参见前述各个方法示例中的详细描述,此处不做赘述。
可以理解的,结合图4所示,当上述通信装置是电子设备时,上述的通信模块1302可以是收发器,可以包括天线和射频电路等,处理模块1301可以是处理器,例如基带芯片等。当该通信装置是具有上述实施例中的通信设备或者网络设备等功能的部件时,通信模块1302可以是射频单元,处理模块1301可以是处理器。当装置是芯片系统时,通信模块1302可以是芯片系统的输入接口和/或输出接口,处理模块1301可以是芯片系统的处理器,例如:中央处理单元(central processing unit,CPU)。
需要说明的是,上述装置中具体的执行过程和实施例可以参照上述方法实施例中通信设备(包括终端设备或UPF网元)或者网络设备执行的步骤和相关的描述,所解决的技术问题和带 来的技术效果也可以参照前述实施例所述的内容,此处不再一一赘述。
在本实施例中,该装置以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路、和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该侧行链路的传输装置可以采用如前述中的图4所示的形式。
示例性的,图13中的处理模块1301的功能/实现过程可以通过图4中的处理器401调用存储器403中存储的计算机程序指令来实现。例如,图13中通信模块1302的功能/实现过程可以通过图4中的通信接口404。
在一些实施方式中,图4中的处理器401可以通过调用存储器403中存储的计算机执行指令,使得装置400可以执行上述各个方法实施例中的终端设备或者网络设备或者UPF网元执行的操作,实现本申请的上述各个可能的实施方法。
上述各个装置实施例中的通信装置可以与方法实施例中的通信设备或者网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该通信模块1302可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送或接收的通信模块1302是一种该装置的接口电路,用于向其他装置发送或接收信号,例如,当该装置以芯片的方式实现时,该通信模块1302可以是用于向其他芯片或者装置发送信号的接口电路。
在示例性实施例中,还提供了一种包括指令的计算机可读存储介质,或者计算机程序产品,上述指令可由通信装置400的处理器401执行以完成上述实施例的方法。因此其所能获得的技术效果可参考上述方法实施例,在此不再赘述。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该计算机分别可以执行对应于上述方法的终端设备或者网络设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该芯片所应用的通信装置执行上述本申请实施例提供的方法中的终端设备和网络设备的操作。
可选地,上述本申请实施例中提供的任意一种通信装置可以包括该系统芯片。
可选地,该计算机指令被存储在存储单元中。
本申请实施例还提供了一种通信系统,该通信系统可以包括:上述的实施方式中的任一种通信设备和网络设备。或者,该通信系统可以包括:上述的实施方式中的任一种终端设备和网络设备。或者,该通信系统可以包括:上述的实施方式中的任一种终端设备、网络设备和UPF网元。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本申请未公开的本技术领域中的公知常识或惯用技术手段。
最后应说明的是:以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (40)

  1. 一种多路径的数据流引流方法,其特征在于,所述方法包括:
    通信设备获取在终端上使用的业务的数据流,所述数据流包括第一组协议数据单元集合和第二组协议数据单元集合;
    所述通信设备确定按照协议数据单元集合组为单位的引流模式,将所述第一组协议数据单元集合通过第一路径发送;
    将所述第二组协议数据单元集合通过第二路径发送。
  2. 根据权利要求1中所述的方法,其特征在于,所述第一组协议数据单元集合包含一个协议数据单元集合,或者多个协议数据单元集合;
    所述第二组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合。
  3. 根据权利要求2中所述的方法,其特征在于,所述多个协议数据单元集合之间存在依赖关系。
  4. 根据权利要求1-3任一项所述的方法,其特征在于,所述按照协议数据单元集合组为单位的引流模式,包括:
    负载分担模式,所述负载分担模式是根据负载均衡的规则,将不同的协议数据单元集合组按照预设负载比例通过多条路径传输。
  5. 根据权利要求1-3任一项所述的方法,其特征在于,所述按照协议数据单元集合组为单位的引流模式,包括:
    最小时延模式,所述最小时延模式是指将协议数据单元集合组通过时延较小的所述第一路径传输,当检测到所述第二路径的传输时延小于所述第一路径的传输时延时,按照协议数据单元集合组为单位通过所述第二路径传输。
  6. 根据权利要求1-3任一项所述的方法,其特征在于,所述按照协议数据单元集合组为单位的引流模式,包括:
    优先模式,所述优先模式是指将协议数据单元集合组使用所述第一路径传输,当所述第一路径发生拥塞的时候,按照协议数据单元集合组为单位通过所述第二路径传输。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述方法还包括:
    所述通信设备从网络设备接收按照协议数据单元集合组为单位的指示信息;
    所述通信设备确定按照协议数据单元集合组为单位的引流模式,包括:根据所述指示信息确定按照协议数据单元集合组为单位的引流模式。
  8. 根据权利要求1-4或7任一项中所述的方法,其特征在于,所述通信设备根据指示信息确定按照协议数据单元集合组为单位的负载分担模式,包括:
    所述通信设备从网络设备接收第一信息和第二信息,其中,所述第一信息用于标识路径,所述第二信息用于标识所述第一信息对应路径的负载比例;
    所述通信设备根据所述第一信息和第二信息确定所述第一信息确定的路径上所分担的负载比例。
  9. 根据权利要求1-3或6、7任一项所述的方法,其特征在于,所述通信设备根据指示信息确定按照协议数据单元集合组为单位的优先模式,所述方法还包括:
    所述通信设备从网络设备接收第三信息,所述第三信息用于标识优先传输的路径;
    所述通信设备根据所述第三消息确定第一路径是优先传输的路径。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述方法还包括:
    所述通信设备确定所述数据流通过XR服务质量QoS流传输;
    所述通信设备确定按照协议数据单元集合组为单位的引流模式,包括:根据XR QoS流确定按照协议数据单元集合组为单位的引流模式。
  11. 根据权利要求10中所述的方法,其特征在于,确定所述数据流通过XR QoS流传输,包括:
    所述通信设备根据所述数据流命中的QoS流的标识信息确定所述数据流通过XR QoS流传输,或者,
    根据所述数据流命中的QoS流关联的服务质量流描述信息确定所述数据流通过XR QoS流传输,其中,所述服务质量流描述信息包括服务质量标识、传输时延或丢包率中的至少一个,或者;
    根据上下文确定所述数据流通过XR QoS流传输。
  12. 根据权利要求1-11任一项所述的方法,其特征在于,所述第一路径和所述第二路径为3GPP接入类型或非3GPP类型对应的不同传输路径。
  13. 根据权利要求1-12任一项所述的方法,其特征在于,所述通信设备为终端设备或用户面功能UPF网元。
  14. 根据权利要求1-13任一项所述的方法,其特征在于,若所述通信设备为终端设备,则所述方法还包括:
    所述终端设备向网络设备发送会话建立的请求消息;
    所述终端设备接收来自所述网络设备的会话建立接受消息。
  15. 一种多路径的数据流引流方法,其特征在于,所述方法包括:
    网络设备接收来自终端设备的会话建立的请求消息;
    所述网络设备建立包含XR QoS流的会话;
    所述网络设备向通信设备发送指示信息,所述指示信息用于指示所述通信设备按照协议数据单元集合组为单位的引流模式,将第一组协议数据单元集合通过第一路径发送,将第二组协议数据单元集合通过第二路径发送。
  16. 根据权利要求15中所述的方法,其特征在于,所述第一组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合;
    所述第二组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合。
  17. 根据权利要求16中所述的方法,其特征在于,所述多个协议数据单元集合之间存在依赖关系。
  18. 根据权利要求15-17任一项所述的方法,其特征在于,所述按照协议数据单元集合组为单位的引流模式,包括:
    负载分担模式,所述负载分担模式是指根据负载均衡的规则,将不同的协议数据单元集合组按照预设负载比例通过多条路径传输。
  19. 根据权利要求15-17任一项所述的方法,其特征在于,所述按照协议数据单元集合组为单位的引流模式,包括:
    最小时延模式,所述最小时延模式是指将协议数据单元集合组使用时延较小的所述第一路径传输,当检测到所述第二路径的传输时延小于所述第一路径的传输时延时,按照协议数据单元集合组为单位通过所述第二路径传输。
  20. 根据权利要求15-17任一项所述的方法,其特征在于,所述按照协议数据单元集合组为单位的引流模式,包括:
    优先模式,所述优先模式是指优先将协议数据单元集合组使用所述第一路径传输,当所述第一路径发生拥塞的时候,按照协议数据单元集合组为单位通过所述第二路径传输。
  21. 根据权利要求15-18任一项所述的方法,其特征在于,所述指示信息指示按照协议数据单元集合组为单位的负载分担模式还包括:
    所述网络设备向所述通信设备发送第一信息和第二信息,其中,所述第一信息用于标识路径,所述第二信息用于标识所述第一信息对应路径的负载比例,所述第一信息和所述第二信息用于所述通信设备确定所述第一信息标识的路径上所分担的负载比例。
  22. 根据权利要求15-17、20任一项所述的方法,其特征在于,所述指示信息指示按照协议数据单元集合组为单位的优先模式还包括:
    所述网络设备向所述通信设备发送第三信息,所述第三信息用于标识优先传输的路径,所述第三信息用于所述通信设备确定第一路径是优先传输的路径。
  23. 根据权利要求15-22任一项所述的方法,其特征在于,所述网络设备是会话管理功能SMF网元。
  24. 根据权利要求15-23任一项所述的方法,其特征在于,所述通信设备是所述终端设备或用 户面功能UPF网元。
  25. 根据权利要求15-24任一项所述的方法,其特征在于,若所述通信设备是所述终端设备,则所述方法还包括:
    所述网络设备向所述终端设备发送会话接受消息,其中,所述指示信息包含在所述会话接受消息中。
  26. 根据权利要求15-24任一项所述的方法,其特征在于,若所述通信设备是用户面功能UPF网元,则所述方法还包括:
    所述网络设备向所述用户面功能UPF网元发送会话修改消息,其中,所述指示信息包含在所述会话修改消息中。
  27. 根据权利要求15-26任一项所述的方法,其特征在于,所述第一路径和所述第二路径为3GPP接入类型或非3GPP接入类型对应的不同传输路径。
  28. 一种多路径的数据流引流方法,其特征在于,所述方法包括:
    终端设备向网络设备发送会话建立的请求消息;
    所述网络设备建立包含XR QoS流的会话;
    所述网络设备向通信设备发送指示信息,所述指示信息用于指示所述通信设备按照协议数据单元集合组为单位的引流模式;
    所述通信设备根据所述指示信息确定按照协议数据单元集合组为单位的引流模式,将第一组协议数据单元集合通过第一路径发送,将第二组协议数据单元集合通过第二路径发送。
  29. 根据权利要求28中所述的方法,其特征在于,所述第一组协议数据单元集合包含一个协议数据单元集合,或者多个协议数据单元集合;
    所述第二组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合。
  30. 根据权利要求29中所述的方法,其特征在于,所述多个协议数据单元集合之间存在依赖关系。
  31. 一种通信装置,其特征在于,所述通信装置包括:
    处理模块,用于获取数据流,所述数据流包括第一组协议数据单元集合和第二组协议数据单元集合;
    所述处理模块,还用于确定按照协议数据单元集合组为单位的引流模式;
    通信模块,用于将所述第一组协议数据单元集合通过第一路径发送;将所述第二组协议数据单元集合通过第二路径发送。
  32. 根据权利要求31中所述的装置,其特征在于,所述第一组协议数据单元集合为一个协议数据单元集合,或者包括多个协议数据单元集合;
    所述第二组协议数据单元集合为一个协议数据单元集合,或者包括多个协议数据单元集合。
  33. 一种网络设备,其特征在于,所述设备包括:
    通信模块,用于接收来自终端设备的会话建立的请求消息;
    处理模块,用于建立包含XR QoS流的会话;
    所述通信模块,还用于向通信设备发送指示信息,所述指示信息用于指示按照协议数据单元集合组为单位的引流模式,将第一组协议数据单元集合通过第一路径发送,将第二组协议数据单元集合通过第二路径发送。
  34. 根据权利要求33中所述的设备,其特征在于,所述第一组协议数据单元集合为一个协议数据单元集合,或者包括多个协议数据单元集合;
    所述第二组协议数据单元集合为一个协议数据单元集合,或者为多个协议数据单元集合。
  35. 一种通信设备,其特征在于,所述通信设备包括处理器和与所述处理器耦合的存储器;所述存储器存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器执行所述计算机指令时,使得所述终端设备执行如权利要求1-14中任一项所述的方法。
  36. 一种网络设备,其特征在于,所述网络设备包括处理器和与所述处理器耦合的存储器;所述存储器与所述处理器耦合,所述存储器存储计算机程序代码,所述计算机程序代码包括计算机指令,当所述处理器执行所述计算机指令时,使得所述网络设备执行如权利要求15-27中任一项 所述的方法。
  37. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令在被所述计算机调用时,使得所述计算机执行如权利要求1-14中任一项所述的方法,或者执行如权利要求15-27中任一项所述的方法。
  38. 一种包含指令的计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得所述计算机执行如权利要求1-14中任一项所述的方法,或者执行如权利要求15-27中任一项所述的方法。
  39. 一种芯片,其特征在于,所述芯片与存储器耦合,用于读取并执行所述存储器中存储的程序指令,以实现如权利要求1-14中任一项所述的方法,或者实现如权利要求15-27中任一项所述的方法。
  40. 一种通信系统,其特征在于,所述通信系统包括如权利要求31-32中任一项所述的通信装置和如权利要求33-34中任一项所述的网络设备。
PCT/CN2023/117048 2022-09-22 2023-09-05 一种多路径的数据流引流方法及装置 WO2024060991A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211160756.3 2022-09-22
CN202211160756.3A CN117749694A (zh) 2022-09-22 2022-09-22 一种多路径的数据流引流方法及装置

Publications (1)

Publication Number Publication Date
WO2024060991A1 true WO2024060991A1 (zh) 2024-03-28

Family

ID=90280193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/117048 WO2024060991A1 (zh) 2022-09-22 2023-09-05 一种多路径的数据流引流方法及装置

Country Status (2)

Country Link
CN (1) CN117749694A (zh)
WO (1) WO2024060991A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330609A (zh) * 2008-07-31 2008-12-24 南京大学 一种多路径无线视频传输方法和系统
KR20130007993A (ko) * 2011-07-11 2013-01-21 한국전자통신연구원 프레임별 전송 시간 정보 할당을 이용한 상호 의존성 프레임을 가지는 미디어 스트림의 전송 방법
CN111726882A (zh) * 2019-03-19 2020-09-29 华为技术有限公司 数据传输的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101330609A (zh) * 2008-07-31 2008-12-24 南京大学 一种多路径无线视频传输方法和系统
KR20130007993A (ko) * 2011-07-11 2013-01-21 한국전자통신연구원 프레임별 전송 시간 정보 할당을 이용한 상호 의존성 프레임을 가지는 미디어 스트림의 전송 방법
CN111726882A (zh) * 2019-03-19 2020-09-29 华为技术有限公司 数据传输的方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Study on Access Traffic Steering, Switching and Splitting support in the 5G system architecture (Release 16)", 3GPP STANDARD; TECHNICAL REPORT; 3GPP TR 23.793, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. V0.5.0, 12 June 2018 (2018-06-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , pages 1 - 68, XP051451692 *
KDDI, HUAWEI, HISILICON: "KI #5, Sol #24: Update to apply identification of importance information of PDU Sets based on H.265/H.266 NAL unit header", 3GPP DRAFT; S2-2204112, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. SA WG2, no. e-meeting; 20220516 - 20220520, 6 May 2022 (2022-05-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052159615 *

Also Published As

Publication number Publication date
CN117749694A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2022022471A1 (zh) 一种媒体流切换方法及装置
WO2022052102A1 (zh) 一种通信方法及装置
US20230050923A1 (en) Media packet transmission method, apparatus, and system
WO2023046118A1 (zh) 一种通信方法及装置
WO2024060991A1 (zh) 一种多路径的数据流引流方法及装置
TW202345565A (zh) 業務處理方法和設備
WO2023130453A1 (en) Methods and apparatus of packet classification for xr traffic
WO2022198613A1 (zh) 一种媒体数据传输方法及通信装置
WO2022151492A1 (zh) 一种调度传输方法及装置
EP3881459B1 (en) Method and apparatus for efficient delivery of source and forward error correction streams in systems supporting mixed unicast multicast transmission
CN115250537A (zh) 一种通信方法及设备
CN112135329B (zh) 参数传输方法、装置及系统
CN115250506A (zh) 一种通信方法及设备
WO2022126437A1 (zh) 通信方法及装置
CN113596915A (zh) 一种通信方法及装置
WO2024055871A1 (zh) 一种通信系统中传输数据的方法和通信装置
WO2023185608A1 (zh) 一种数据传输的方法及通信装置
WO2023179322A1 (zh) 一种通信方法及装置
US20240031298A1 (en) Communication method and device
WO2023185402A1 (zh) 通信方法及装置
WO2024055692A1 (zh) 通信方法、通信装置和通信系统
EP4311298A1 (en) Communication method, and device
WO2023088155A1 (zh) 一种服务质量QoS管理方法以及装置
WO2023155633A1 (zh) 一种数据传输方法及装置
WO2022228006A1 (zh) 一种业务流识别方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867282

Country of ref document: EP

Kind code of ref document: A1