WO2024060913A1 - 非连续接收的方法及装置 - Google Patents

非连续接收的方法及装置 Download PDF

Info

Publication number
WO2024060913A1
WO2024060913A1 PCT/CN2023/114371 CN2023114371W WO2024060913A1 WO 2024060913 A1 WO2024060913 A1 WO 2024060913A1 CN 2023114371 W CN2023114371 W CN 2023114371W WO 2024060913 A1 WO2024060913 A1 WO 2024060913A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
information
data
cdrx
indicate
Prior art date
Application number
PCT/CN2023/114371
Other languages
English (en)
French (fr)
Inventor
张健
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2024060913A1 publication Critical patent/WO2024060913A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and in particular, to a method and device for discontinuous reception.
  • Extended reality provides a new way of human-computer interaction.
  • CDRX Connected mode discontinuous reception
  • CDRX technology is directly applied to XR services, it is found that the power saving range is limited.
  • the main reason is that in the actual XR system, there is a jitter problem, that is, the change of frame coding delay and network transmission time causes jitter when the base station receives the data packet (data frame) of the XR service.
  • This application provides a method and device for discontinuous reception, which can ensure the effect of energy saving.
  • a discontinuous reception method is provided, which is applied to user equipment.
  • the method includes: receiving indication information sent by a network device, the indication information being used to indicate whether data arrives early or to indicate data arriving late; according to Instruction information to monitor the physical downlink control channel.
  • the main method is to monitor the physical downlink control channel according to the indication information when receiving the indication information whether the data sent by the network device arrives early or late, thereby ensuring that the early arrival or delayed arrival caused by jitter is ensured.
  • the reception of arriving data prevents the loss of such data.
  • the data can be data frames of XR services, data packets of other services, or other data that can be sent and received under the CDRX mechanism.
  • data frames of XR services data packets of other services, or other data that can be sent and received under the CDRX mechanism.
  • CDRX mechanism There is no limitation.
  • the indication information includes first information, the first information is used to indicate whether the data arrives in advance, and the early arrival is used to indicate that the data has arrived when the first information is received;
  • PDCCH physical downlink control channel
  • the indication information may include: when data arrives in advance, based on The first information indicates the configuration parameters of CDRX and monitors PDCCH.
  • the first information includes first downlink control information (DCI), and the first preset bit in the first DCI is used to indicate whether the data arrives early.
  • DCI downlink control information
  • the first DCI is a UE group common DCI.
  • At least one bit in the first DCI except the first preset bit is used to indicate at least one parameter among the configuration parameters of CDRX, or, The identifier of the parameter set used to indicate the configuration parameters of CDRX.
  • the parameter set includes at least one configuration parameter of CDRX.
  • the configuration parameters of the CDRX include at least one of an offset time, an on-period timer, an inactivity timer, or a search space set; when the data arrives in advance, when monitoring the PDCCH according to the configuration parameters of the CDRX indicated by the first information, at least one of the following operations may be included:
  • the offset time indicated by the first information start the on-period timer in advance and monitor the PDCCH within the on-period timer; or, according to the instruction of the first information, monitor using a dense search space set; or, monitor according to the on-period timer indicated by the first information; or, monitor according to the inactive timer indicated by the first information.
  • the above method further includes: when the data does not arrive in advance, monitoring according to the first preset configuration parameter of CDRX, and the first preset configuration parameter is that the data does not arrive in advance. Reach the corresponding preset configuration parameters. That is to say, in this implementation method, CDRX is pre-configured with two sets of configuration parameters, the first preset configuration parameters and the second preset configuration parameters. The two situations of data not arriving in advance and data arriving in advance correspond to the first preset configuration parameters respectively. Set configuration parameters and second preset configuration parameters. Therefore, when the user equipment determines that the data has not arrived in advance according to the received first information, it can select the first preset configuration parameters for monitoring.
  • the indication information includes second information, and the second information is used to indicate delayed arrival of data; when monitoring the PDCCH according to the indication information, it may include: according to the second information, Monitor the PDCCH.
  • the second information includes the second DCI; the second DCI does not schedule a corresponding physical downlink shared channel (PDSCH); when monitoring the PDCCH according to the second information , may include: in response to the second DCI, starting the first timer to monitor the PDCCH; or, monitoring the PDCCH according to the CDRX configuration parameter indicated by the second DCI.
  • PDSCH physical downlink shared channel
  • the fact that the second DCI does not schedule the corresponding PDSCH is indicated using the time domain resource allocation (TDRA) field in the second DCI.
  • TDRA time domain resource allocation
  • At least one bit in the second DCI except the TDRA domain is used to indicate at least one parameter of the configuration parameters of the CDRX, or is used to indicate the CDRX
  • the parameter set includes at least one CDRX configuration parameter.
  • the second information includes a third DCI; the PDSCH scheduled by the third DCI is a padding PDSCH; when monitoring the PDCCH according to the second information, it may include: in response to the third DCI, starting a second timer to monitor the PDCCH.
  • a discontinuous reception method is provided, which is applied to network equipment.
  • the method includes: sending indication information to a user equipment (UE), the indication information being used to indicate whether data arrives early or to indicate that data arrives late. .
  • UE user equipment
  • the indication information includes first information
  • the first information is used to indicate whether the data arrives in advance
  • the early arrival is used to indicate that the data has arrived when the first information is sent.
  • the first information includes first downlink control information (first DCI); the first preset bit in the first DCI is used to indicate whether the data arrives early. .
  • first DCI first downlink control information
  • the first DCI is a UE group common DCI.
  • At least one bit in the first DCI other than the first preset bit is used to indicate at least one parameter among the configuration parameters of CDRX, or to indicate an identifier of a parameter set of the configuration parameters of CDRX, wherein the parameter set includes at least one configuration parameter of CDRX.
  • the configuration parameters of the CDRX include at least one of an offset time, a start-up period timer, an inactivity timer, or a search space set.
  • the indication information includes second information, and the second information is used to indicate that the data arrives late.
  • the second information includes a second DCI; the second DCI does not schedule a corresponding physical downlink shared channel (PDSCH), and the second DCI is used to indicate the delayed arrival.
  • PDSCH physical downlink shared channel
  • the fact that the second DCI does not schedule the corresponding PDSCH is indicated using the time domain resource allocation (TDRA) field in the second DCI.
  • TDRA time domain resource allocation
  • At least one bit in the second DCI except the TDRA domain is used to indicate at least one parameter of the configuration parameters of the CDRX, or is used to indicate the CDRX
  • the parameter set includes at least one CDRX configuration parameter.
  • the second information includes a third DCI; the PDSCH scheduled by the third DCI is a stuffing PDSCH.
  • a third aspect provides a device for discontinuous reception, which device includes a unit composed of software and/or hardware for executing any one of the methods of the first aspect or the second aspect.
  • an electronic device comprising a memory, a processor, and a computer program stored in the memory and executable on the processor, wherein when the processor executes the computer program, the electronic device can implement any one of the methods of the first aspect or the second aspect.
  • the electronic device when the electronic device is used to implement any one of the methods of the first aspect, the electronic device may be a user device; when the electronic device is used to implement any one of the methods of the second aspect, the electronic device may be a network device.
  • a chip including a processor.
  • the processor is used to read and execute a computer program stored in a memory.
  • the computer program is executed by the processor, the electronic device in which the chip is located can implement the first aspect. Or any of the second methods.
  • the chip also includes a memory, and the memory is electrically connected to the processor.
  • the chip may also include a communication interface.
  • a computer-readable storage medium stores a computer program.
  • the computer program is executed by an electronic device, any method of the first aspect or the second aspect can be implemented.
  • a computer program product which includes a computer program, and when the computer program is executed by an electronic device, it can implement any one of the methods of the first aspect or the second aspect.
  • Figure 1 is a schematic diagram of an applicable network scenario according to the embodiment of the present application.
  • Figure 2 is a schematic diagram of the periodic transmission of data frames of the XR service according to the embodiment of the present application.
  • Figure 3 is a schematic flow chart of a discontinuous reception method according to an embodiment of the present application.
  • Figure 4 is a schematic flow chart of another discontinuous reception method according to an embodiment of the present application.
  • Figure 5 is a schematic diagram comparing a discontinuous reception method and a conventional CDRX method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram comparing another discontinuous reception method and the conventional CDRX method according to the embodiment of the present application.
  • FIG. 7 is a schematic diagram showing a comparison between another discontinuous reception method according to an embodiment of the present application and a conventional CDRX method.
  • Figure 8 is a schematic structural diagram of a first DCI according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of a discontinuous reception device according to an embodiment of the present application.
  • Figure 10 is a schematic diagram of the hardware structure of an electronic device according to an embodiment of the present application.
  • the discontinuous reception method provided by the present application can be applied to various wireless communication systems.
  • FIG. 1 is a schematic diagram of an applicable network scenario according to the embodiment of the present application.
  • the wireless communication system in this scenario includes at least one network device 110 and at least one user equipment (user equipment, UE) 120.
  • the wireless communication system can be a long term evolution (LTE) network, a fifth-generation (5G) network, a future sixth-generation (6G) network, or various subsequent evolved wireless communication systems that can carry XR services.
  • LTE long term evolution
  • 5G fifth-generation
  • 6G future sixth-generation
  • XR evolved wireless communication systems
  • the network device 110 may include an access network (AN) device, a radio access network (RAN) device, and an access network device such as a base station (for example, an access point), It can refer to the equipment in the access network that communicates with wireless terminal equipment through one or more cells over the air interface as a base station.
  • AN access network
  • RAN radio access network
  • a base station for example, an access point
  • it can be an evolved base station (NodeB or eNB or e-NodeB, evolved Node B), or it can also include 5G Next generation node B (next generation node B, gNB) or next generation evolved base station (next generation evolved nodeB, ng-eNB), en-gNB (enhanced next generation node B, gNB) in the system: enhanced next generation base station ; It can also include the centralized unit (CU) and distributed unit (DU) in the cloud radio access network (Cloud RAN) system, etc., which will not be listed one by one.
  • CU centralized unit
  • DU distributed unit
  • User equipment can also be called terminal equipment, which can be mobile phones, smart watches, tablets, laptops, XR terminals, vehicle-mounted terminals, etc.
  • XR terminals can also include virtual reality (VR) terminals, augmented reality (AR) terminals and mixed reality (MR) terminals.
  • VR virtual reality
  • AR augmented reality
  • MR mixed reality
  • FIG. 2 is a schematic diagram of the periodic transmission of data frames of the XR service according to the embodiment of the present application.
  • the data frames of the XR service are transmitted periodically.
  • the transmission cycle is 8.33 milliseconds, that is, the 8 transmission cycle in Figure 2 can be 8.33 milliseconds.
  • the user equipment periodically sends and receives data frames
  • the network equipment periodically sends and receives data frames at the same cycle.
  • a user equipment periodically sends data frames, and the network equipment periodically receives these data frames at the same cycle and responds in the same manner. Periodically sent to another user equipment, the other user equipment will also periodically receive these data frames at the same period.
  • jitter due to the frame encoding delay of the XR service and changes in network transmission time, there is jitter at the moment when the network device receives the data frame. For example, it may arrive early or late, etc.
  • the length can be called Jitter.
  • jitter1 represents the jitter of the early arrival time
  • jitter2 represents the jitter of the late arrival time.
  • the jitter follows a truncated Gaussian distribution, specifically a truncated Gaussian distribution between -4 milliseconds and +4 milliseconds. It can be understood that the jitter value is a random variable between -4 milliseconds and +4 milliseconds. That is, the value range of jitter2 in Figure 2 is (0,+4], and the value range of jitter1 is [-4,0), and the unit is milliseconds.
  • the configured on duration timer (on duration timer) is too short, the reception of data frames will be missed due to jitter; if the configured on duration timer is configured to prevent misses A long enough on-period timer needs to completely cover at least the jitter duration.
  • the on-period timer needs at least 8 milliseconds, which will result in the power saving effect being reduced. That is, the on-period timer takes up the entire CDRX cycle. 8 milliseconds.
  • the inactivity timer is too long or too short, there will be similar problems as mentioned above, that is, too long will consume power, and if it is too short, data frames will be missed.
  • the embodiments of this application mainly inform the user in advance whether the device data has arrived in advance by the network device at a certain moment before the timer starts during the startup period, and/or if it has not been confiscated at a certain moment after the timer starts during the startup period.
  • the network device informs the user equipment that the data arrives late, so that the user equipment can use the corresponding CDRX configuration parameters to monitor the physical downlink control channel (PDCCH) according to such instructions.
  • PDCCH physical downlink control channel
  • Figure 3 is a schematic flow chart of a discontinuous reception method according to an embodiment of the present application.
  • the network device sends indication information to the UE.
  • the indication information is used to indicate whether the data arrives early or whether the data arrives late.
  • the data can be data frames of XR services, data packets of other services, or other data that can be sent and received under the CDRX mechanism.
  • data frames of XR services data packets of other services, or other data that can be sent and received under the CDRX mechanism.
  • CDRX mechanism There is no limitation.
  • Early arrival can be understood as the data has arrived when the indication information of early arrival is sent, while late arrival can be understood as the data has not arrived yet (has not arrived yet) when the late arrival indication information is sent.
  • the network device may send the above indication information to the UE, and the UE may execute step S302 after receiving the indication information.
  • the indication information includes first information, and the first information is used to indicate whether the data arrives early.
  • early arrival is used to indicate that the data has arrived when the UE receives the first information.
  • early arrival is used to indicate that the data has arrived when the network device sends the first information.
  • the network device can periodically send the first information to the UE. If the network device has received the data when the first information is sent, the network device uses the first information to indicate that the data has arrived in advance. If the network device has not received the data when the first information is sent. , the first information is used to indicate that the data has not arrived early. It should be understood that no early arrival can include two possibilities: normal arrival and late arrival. It should also be understood that the first information will be sent regardless of whether the data has been received. It is a periodic sending, but when sending, it will carry an indication of whether the data has been received at the time of sending.
  • the network device does not send the first information to the UE periodically, but does not send the first information when the data does not arrive in advance. In this case, if the UE cannot decode the first information, it will default to the fact that the data has not arrived early.
  • the first information includes first downlink control information (DCI), and the first preset bit in the first DCI is used to indicate whether the data arrives early. That is, DCI can be used to indicate whether data arrives early.
  • DCI downlink control information
  • the first DCI may be a UE-group common signaling DCI. That is to say, one DCI includes indications for multiple UEs.
  • the field (bit segment) corresponding to the UE can be found, and then the indicated information can be read from it.
  • a certain target UE in the first DCI corresponds to N bits, and a certain bit of these N bits can be used as the above-mentioned first preset bit, for example, it can be one of the N bits.
  • the first bit is used as the first preset bit, and the first bit includes an indication of whether the data arrives early.
  • the first preset bit indicates that the data has arrived early. For example, when the first preset bit is 0, it indicates that the data has not arrived early, and when the first preset bit is 1, it indicates that the data has arrived early.
  • the structure of the first DCI can be customized, or can be implemented by changing the structure of the existing DCI.
  • the first DCI can be the structure of DCI2_6, and each bit of DCI2_6 is redefined so that it can meet the requirements of the first DCI.
  • the PDCCH can also be monitored according to the configuration parameters indicated by the first information.
  • At least one bit in the first DCI except the above-mentioned first preset bit is used to indicate at least one parameter of the configuration parameters of the CDRX, or is used to indicate a parameter of the configuration parameters of the CDRX.
  • the parameter set includes at least one CDRX configuration parameter.
  • the configuration parameters of CDRX may include at least one of offset time (offset), start-up period timer, inactivity timer, or search space set group (SSSG).
  • offset time offset time
  • start-up period timer start-up period timer
  • inactivity timer inactivity timer
  • search space set group SSSG
  • the parameter set of CDRX configuration parameters may include configuration parameters of different values, and the identifiers of the two parameter sets may be represented by index value1 and index value2, for example.
  • both data sets can include the setting values of several configuration parameters: offset, on duration timer, inactivity timer and SSSG.
  • offset When the first information is used to indicate the identity of a certain parameter set, the parameter set can be found, and the PDCCH can be monitored using each configuration parameter in the parameter set.
  • the first information indicates whether the data arrives in advance, it can also implicitly indicate that the SSSG adopts Dense SSSG or sparse SSSG. That is to say, when the first information indicates that data arrives early, dense SSSG may be implicitly indicated; when the first information indicates that data does not arrive early, sparse SSSG may be implicitly indicated.
  • the first information may also explicitly indicate whether to use dense SSSG or sparse SSSG when indicating the configuration parameters of CDRX. That is, whether the SSSG is sparse or dense can be indicated by the first preset bit, or by the bits used to indicate CDRX configuration parameters (other bits except the first preset bit).
  • the media access control (MAC) control element (CE) can also be used in the previous cycle of CDRX to indicate the configuration parameters of the next cycle of CDRX.
  • the indication information may include second information, and the second information is used to indicate delayed arrival of data.
  • delayed arrival is used to indicate that the data has not arrived (not yet arrived) when the second information is received.
  • delayed arrival is used to indicate that the data has not arrived when the second information is sent.
  • the second information is sent after the on duration timer has started and is about to end at a certain moment or at the end time, so if the data is received at this time, there is no lag, if it is not received, there is a lag.
  • the purpose of sending the second information is to allow the UE to respond to the lag in a targeted manner. For example, it can start a newly defined timer, or directly start a known timer that is longer than the on duration timer, etc. to ensure that the lag is dealt with. Receipt of data. Under this premise, there is no need to extend the on duration timer in CDRX in order to completely cover the jitter interval. That is, a shorter on duration timer is used when there is no lag, and a longer timer is used only when lag occurs. .
  • the second information can be that every time the on duration timer is started, the network device sends a second information before the data has been received, that is, the second information is only sent when the lag occurs.
  • This method avoids meaningless instructions, that is, when there is no lag, CDRX's own mechanism can already meet the data sending and receiving needs, and there is no need to indicate that there is no lag. Therefore, this method saves signaling, that is, the number of times the indication information is sent is reduced, and the UE correspondingly reduces the number of times the indication information is received and processed.
  • the second information includes a second DCI; the second DCI does not schedule a corresponding physical downlink shared channel (PDSCH), and the second DCI is used to indicate delayed arrival of data.
  • the UE receives the second information, it can learn two things: the data has lagged behind, and this DCI does not schedule PDSCH.
  • the delayed arrival of data is indicated by the second DCI, a DCI with a special structure, or by the fact that the second DCI does not schedule PDSCH. It can be understood that when the data has not arrived, the network device sent a second DCI, and then after receiving the second DCI, the UE found that this was a special DCI, a DCI that did not schedule PDSCH, and knew that the data arrived late.
  • the time domain resource assignment (TDRA) indication field in the second DCI can be used to indicate that the second DCI does not schedule the corresponding PDSCH.
  • RRC radio resource control
  • the UE receives the second DCI, it finds the corresponding entry from the TDRA field in the second DCI, and then reads K0 from the entry. If the value is -1, it means that the second DCI does not schedule the corresponding PDSCH, and then it is known that the data arrives late.
  • At least one bit in the second DCI except the bit used to indicate delayed arrival of data is used to indicate at least one parameter among the configuration parameters of CDRX, or, with An identifier of a parameter set indicating a configuration parameter of the CDRX, the parameter set including at least one configuration parameter of the CDRX.
  • the UE can learn three things: the data has lagged behind, this DCI does not schedule the corresponding PDSCH, and it can parse the configuration parameters of the CDRX indicated by the second DCI.
  • the second information includes the third DCI; the PDSCH scheduled by the third DCI is a padding PDSCH (ie, padding PDSCH).
  • the UE receives the third DCI and decodes the padding PDSCH when decoding the PDSCH corresponding to the third DCI, it can know that the data has lagged behind.
  • step S302 After receiving the indication information, the UE will execute step S302.
  • step S302 can monitor the PDCCH according to the corresponding monitoring strategy according to the different indication information.
  • the first information when the indication information includes first information, the first information may include two indications, the first item indicating whether the data arrives early, and the second item indicating the configuration parameters of CDRX.
  • the CDRX configuration parameters are also implicitly indicated by indicating whether data has arrived in advance.
  • the UE monitors the PDCCH according to the CDRX configuration parameters implicitly indicated by the first information. For example, you can first pre-configure two sets of CDRX configuration parameters through RRC, corresponding to the two situations of early arrival and no early arrival respectively.
  • the UE knows whether the data has arrived early. If it arrives early, it uses the set of CDRX configuration parameters corresponding to the early arrival to monitor the PDCCH. If it does not arrive early, it uses the set of CDRX corresponding to the early arrival. Configure parameters to monitor PDCCH.
  • the two sets of configuration parameters pre-configured by CDRX are the first preset configuration parameters and the second preset configuration parameters.
  • the first preset configuration parameters correspond to the data not arriving in advance
  • the second preset configuration parameters correspond to the data arriving in advance. Therefore, when the user equipment determines that the data has not arrived in advance based on the received first information, the first preset configuration parameters can be selected for monitoring; when the user equipment determines that the data has arrived in advance based on the received first information, the second preset configuration parameters can be selected for monitoring.
  • the first preset configuration parameters and the second preset configuration parameters can both be used as the CDRX configuration parameters indicated by the first information.
  • CDRX can pre-configure two sets of configuration parameters: the first preset configuration parameters and the second preset configuration parameters, and the first preset configuration parameters are the configuration parameters adopted by default. That is to say, when the user equipment receives If the user equipment determines that the data has not arrived in advance or the first information has not been decoded, the default first preset configuration parameters are used for monitoring. When the user equipment determines that the data has arrived in advance based on the received first information, then Select the second preset configuration parameters to monitor.
  • At least one bit other than the first preset bit in the first DCI is used to indicate at least one parameter of the configuration parameters of CDRX, or to indicate an identifier of a parameter set of the configuration parameters of CDRX, wherein the parameter set includes at least one configuration parameter of CDRX.
  • the configuration parameters of CDRX are a form of explicit indication.
  • step S302 may include at least one of the following operations:
  • the offset indicated by the first information start the on duration timer in advance, and monitor the PDCCH within the on duration timer; or, according to the instruction of the first information, monitor using a dense SSSG; or, monitor according to the on duration timer indicated by the first information; or, monitor according to the inactivity timer indicated by the first information.
  • the specific instructions can be followed. Parameter values are monitored. For example, the UE determines that the data has arrived early according to the indication of the first information, and starts the on duration timer in advance according to the offset value indicated by the first information. It can also use the dense SSSG to monitor based on the early arrival, and can Shorten the duration of the on duration timer, etc., and no longer list them one by one.
  • the indication information may also include second information, which is used to indicate delayed arrival of data; when receiving the second information, step S302 may include the UE monitoring the PDCCH according to the second information. .
  • step S302 will also perform different operations.
  • step S302 may include: in response to the second DCI, starting a first timer to monitor the PDCCH; or, monitoring the PDCCH according to the CDRX configuration parameters indicated by the second DCI.
  • the first timer is a new timer, which can be called new timer, that is, starting a new timer with a longer duration.
  • This new timer can be a newly defined timer, or it can reuse an existing timer. , for example, it can be the retransmission timer drx-RetransmissionTimerDL. It should be understood that in this implementation, when the UE receives the second DCI and knows that the data arrives late, it knows that it does not need to decode the PDSCH. If the second DCI does not indicate the CDRX configuration parameter, it can start a first timer.
  • the PDCCH is monitored according to the indicated CDRX configuration parameters. Assuming that the second DCI indicates a longer on duration timer, after receiving the second DCI, the UE knows that the data arrives late, knows that this DCI does not need to decode the PDSCH, and knows that this DCI indicates a longer on duration timer. With a CDRX configuration parameter such as on duration timer, the UE can start this longer on duration timer for monitoring.
  • step S302 may include: in response to the third DCI, starting a second timer to monitor the PDCCH.
  • the second timer can be an inactivity timer of default length or a preset longer inactivity timer for delayed arrival of data.
  • the third DCI since the third DCI is a complete DCI, it can start a timer through natural triggering under the CDRX mechanism, such as starting an inactivity timer.
  • the method shown in Figure 3 mainly monitors the physical downlink control channel according to the indication information when receiving the indication information whether the data sent by the network device arrives early or lags, thereby ensuring that the data arrives early or lags due to jitter. reception of data to prevent the loss of such data. Under this premise, there is no need to extend the duration of the on-timer in discontinuous reception in the connected state in order to completely cover the jitter interval, thereby further saving power. Effect.
  • Figure 4 is a schematic flow chart of another discontinuous reception method according to an embodiment of the present application.
  • Figure 4 can be seen as a specific example of the method shown in Figure 3.
  • the network device sends first information to the UE to indicate whether the data arrives in advance.
  • Step S401 can be regarded as an example of step S301.
  • the network device may periodically send the first information to the UE.
  • the first information may be the above-mentioned first DCI.
  • it may be the UE group common DCI.
  • the UE monitors the PDCCH according to the CDRX configuration parameters indicated by the first information.
  • Step S402 can be regarded as an example of step S302.
  • the first information includes two instructions.
  • the first item indicates whether the data has arrived in advance, and the second item indicates the configuration parameters of CDRX.
  • the above method further includes: when data does not arrive in advance, the UE monitors the PDCCH according to the first preset configuration parameter of CDRX.
  • step S402 may include at least one of the following operations:
  • monitoring can be performed according to the specific parameter value indicated. For example, if the UE determines that the data has arrived early based on the indication of the first information, it can start the on duration timer in advance based on the offset value indicated by the first information. It can also use dense SSSG to monitor based on the fact that it has arrived early, and it can Shorten the duration of the on duration timer, etc., and no longer list them one by one.
  • Steps S401 and S402 mainly use the UE to monitor the physical downlink control channel according to the indication information when receiving the indication information whether the data sent by the network device has arrived in advance, thereby ensuring the reception of the data arriving in advance caused by jitter and preventing For this type of data loss, under this premise, there is no need to extend the on duration timer in CDRX in order to completely cover the jitter interval, thereby further saving power.
  • the UE receives the second information sent by the network device, where the second information is used to indicate delayed arrival of data.
  • the second information may be the second DCI or the third DCI.
  • Step S403 can be regarded as an example of step S301.
  • the UE monitors the PDCCH according to the second information.
  • Step S404 can be regarded as an example of step S302.
  • Steps S403 and S404 mainly send the second information to the UE through the network device to tell the data lag, so that the UE can use the corresponding configuration parameters for monitoring.
  • the dense SSSG can be changed to a sparse SSSG, and a longer timer can be started, etc., which are no longer listed one by one.
  • the default configuration parameters can continue to be used. This ensures the reception of delayed data caused by jitter. Under this premise, there is no need to extend the on duration timer in CDRX in order to fully cover the jitter interval, thereby achieving further power saving.
  • steps S403-S404 are executed separately, the UE can use the configuration parameters of CDRX that are suitable for monitoring when the data is lagging and when the data is not lagging.
  • steps S401-S402 may be executed, only steps S403-S404 may be executed, or both steps S401-S404 may be executed, which can achieve the technical effect of further power saving.
  • steps S401-S404 are all executed, the power saving effect is better.
  • Figure 5 is a schematic diagram comparing a discontinuous reception method and a conventional CDRX method according to an embodiment of the present application.
  • Figure 5 mainly shows an example of processing only the situation of early arrival, that is, in the method shown in Figure 3, the indication information is used to indicate whether the data arrives early (that is, the indication information only includes the first information), which is also the case in Figure 4
  • the method shown only includes steps S401 and S402.
  • FIG. 5 mainly takes the first information to be sent periodically as an example for introduction, but it does not limit that the first information must be sent periodically.
  • the network device may not send the first information when it has not arrived in advance. In this case, if the UE cannot decode the first information, it will default to the fact that it has not arrived in advance.
  • the on duration timer in conventional CDRX is started periodically, and the length is fixed.
  • the on duration timer needs to be long enough.
  • jitter follows a truncated Gaussian distribution from -4 milliseconds to +4 milliseconds, so here, the on duration timer needs to be greater than or equal to 8 milliseconds.
  • the data transmission cycle in the XR service is 8.33 milliseconds. In other words, the on duration timer accounts for a large proportion of the CDRX cycle, and the power saving effect is very limited.
  • the first DCI (an example of the first information) is periodically sent, and the first information is used to inform whether the data has arrived in advance, that is, Figure 5
  • the transmission cycle shown in (b) is the transmission cycle of the first information.
  • the first DCI-1 when the first DCI-1 is sent, the data arrives early, so the offset standard value can be reduced to offset1, that is, the on duration timer is started in advance, and dense use is made during the on duration timer.
  • SSSG monitors, that is, the density of the white lines in the black box during on1 in the figure is denser, and the on duration timer is shortened, that is, on1 is shorter.
  • the first DCI-2 When the first DCI-2 is sent, if the data does not arrive early, you can continue to use the default value of offset, which is offset2 here, start the on duration timer normally, and use sparse SSSG to monitor during the on duration timer, that is, during the on2 period in the figure.
  • the density of the white lines in the black box is the default density.
  • the offset standard value can be reduced to offset3, that is, the on duration timer is started in advance, and dense SSSG is used for monitoring during the on duration timer, that is, the black color during on3 is shown in the figure.
  • the density of the white lines in the box is denser, and the on duration timer is shortened, that is, on3 is shorter.
  • the wake-up time in CDRX is significantly shortened, because when the data is advanced, it can wake up faster, monitor in a shorter time, and use dense SSSG for monitoring.
  • the default configuration parameters can continue to be used for monitoring, which saves more power overall than the conventional full coverage jitter method.
  • FIG. 6 is a schematic diagram comparing another discontinuous reception method and the conventional CDRX method according to the embodiment of the present application.
  • Figure 6 mainly shows an example of processing only the case of delayed arrival (that is, the indication information only includes the second information), that is, the case where the indication information is used to indicate whether the data arrives late in the method shown in Figure 3, which is also shown in Figure 4
  • the method shown only includes steps S403 and S404.
  • a second message is sent before the on duration timer is started and times out, and the second message is used to inform the delayed arrival of the data.
  • the second information is sent, the data arrives late, and a timer can be started, which is represented by new timer in the figure.
  • the second information is not sent when the data is not delayed, but is sent when the data is delayed.
  • the new timer here may be a new timer started under the trigger of the second DCI or an existing timer.
  • the first timer may be drx-RetransmissionTimerDL, or it may be based on the second DCI.
  • the timer started by the indicated CDRX configuration parameter may also be the second timer started under the third DCI trigger. That is to say, as shown in (b) of Figure 6, the second CDRX cycle includes a new timer, and during the timer running time, the UE monitors the PDCCH.
  • the wake-up time in CDRX is significantly shortened, because when the data does not lag, it monitors with a shorter on duration timer. If it lags, it can monitor with a longer timer.
  • the default configuration parameters will continue to be used for monitoring, that is, a longer timer will be used only when the data lags, and a shorter timer will be used at other times, making the overall method more efficient than the conventional method of fully covering jitter. Save electricity.
  • FIG. 7 is a schematic diagram comparing another discontinuous reception method and the conventional CDRX method according to the embodiment of the present application.
  • Figure 7 is mainly an example of processing both early arrival and late arrival, that is, the situation where the instruction information in the method shown in Figure 3 includes the first information and the second information, and the method shown in Figure 4 includes steps S401- S404 situation.
  • FIG. 7 mainly introduces the first information by taking it as an example that the first information is sent periodically, but it does not limit that the first information must be sent periodically.
  • the network device may not send the first information when it has not arrived in advance. In this case, if the UE cannot decode the first information, it will default to the fact that it has not arrived in advance.
  • SSSG monitors, that is, the density of the white lines in the black box during the on duration timer1 period in the figure is denser, and the duration of the on duration timer is shortened, that is, on duration timer1 is shorter.
  • the default offset is used, which is offset2 here.
  • On duration timer is started normally, and sparse SSSG is used for monitoring during on duration timer, as shown in the black box during on duration timer2.
  • the density of the white lines is the default density.
  • the first message -3 is sent, the data does not arrive in advance.
  • the default offset is used, which is offset3 here (offset2 and offset3 are equal).
  • the on duration timer is started normally, and during the startup of the on duration timer, a second message is sent, through the first The second message informs that the data arrived late.
  • the second information is sent, the data arrives late, so a new timer is started. That is to say, as shown in (b) of Figure 7, in the last longest timer, the UE continues to listen to the PDCCH.
  • Figure 8 is a schematic structural diagram of a first DCI according to an embodiment of the present application.
  • the i1th bit of the first DCI is used to indicate whether the data arrives early. For example, 1 corresponds to early arrival, and 0 corresponds to not early arrival. That is, when the value of the i1th bit is 1, it means that the data arrived early; when the value of the i1th bit is 0, it means that the data did not arrive early.
  • the i1th bit can be regarded as an example of the first preset bit.
  • some or all of the i2-th to iN-th total N-1 bits of the first DCI may be used to indicate at least one parameter of the CDRX configuration parameter or to indicate the parameter set identifier of the CDRX configuration parameter. That is, at least one bit in the first DCI mentioned above except the first preset bit (here, the i1th bit is taken as an example) (herein, the i2th-iNth bits in total N-1 Or all for example) is used to indicate at least one configuration parameter of CDRX or is used to indicate a parameter set identifier of CDRX.
  • these N-1 bits can be used to indicate the offset from the first DCI to the on duration timer, such as the unit is slot or x milliseconds (x can be a certain value, such as 0.125, then the unit is 0.125 milliseconds),
  • These N-1 bits can represent 1 to 32 unit lengths.
  • 3 bits among the N-1 bits can be used to indicate the identity of the CDRX parameter set used. For example, if the value of the 3 bits is 0, it indicates the parameter set with index 0.
  • SSSG 4 bits among the N-1 bits can be used to indicate the offset, and 1 bit among the N-1 bits can be used to indicate the density identifier of the SSSG.
  • SSSG can also be sparse by default at other times, and will be changed to dense only when the data is advanced, that is, when the first bit is 1.
  • 3 bits among the N-1 bits can be used to indicate the offset, and 2 bits among the N-1 bits can be used to indicate the identifier of the SSSG used.
  • Multiple SSSGs are preconfigured by RRC and are distinguished by identifiers. It should be understood that the numerical values in the above examples are only to facilitate understanding of the solutions and are not limiting. Those skilled in the art can select numerical values according to needs.
  • Figure 9 is a schematic diagram of a discontinuous reception device according to an embodiment of the present application.
  • the device 2000 includes a transceiver unit 2001 and a processing unit 2002.
  • the apparatus 2000 may be integrated in user equipment or network equipment.
  • the apparatus 2000 can be used to perform steps performed by user equipment or network equipment in any of the above discontinuous reception methods.
  • the transceiver unit 2001 can be used to perform step S301, and the processing unit 2002 can be used to perform step S302.
  • the transceiver unit 2001 can be used to perform steps S401 and S403, and the processing unit 2002 can be used to perform steps S402 and S404.
  • the device 2000 may further include a storage unit for storing relevant data.
  • the storage unit may be integrated in the processing unit 2002, or may be a unit independent of the transceiver unit 2001 and the processing unit 2002.
  • Figure 10 is a schematic diagram of the hardware structure of an electronic device according to an embodiment of the present application.
  • the electronic device 4000 includes: at least one processor 4001 (only one is shown in Figure 10), a memory 4002, and a processor stored in the memory 4002 and available on the at least one processor 4001.
  • Running computer program 4003. When the processor 4001 executes the computer program 4003, the steps in any of the above methods are implemented.
  • FIG. 10 is only an example of an electronic device and does not constitute a limitation on the electronic device.
  • the electronic device may include more or fewer components than shown in the figure, or may combine certain components, or use different components.
  • Components may also include, for example, input and output devices, network access devices, etc.
  • the processor 4001 can be a central processing unit (CPU), other general-purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), or off-the-shelf programmable gate array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the memory 4002 may be an internal storage unit of the electronic device 4000 in some embodiments, such as a hard disk or memory of the electronic device 4000 . In other embodiments, the memory 4002 may also be an external storage device of the electronic device 4000, such as a plug-in hard disk, a smart media card (SMC), or a secure digital (SD) equipped on the electronic device 4000. card, flash card, etc. Optionally, the memory 4002 may also include both an internal storage unit of the electronic device 4000 and an external storage device.
  • the memory 4002 is used to store operating systems, application programs, boot loaders, data and other programs, such as program codes of the computer programs. The memory 4002 can also be used to temporarily store data that has been output or is to be output.
  • the above-mentioned functions can be distributed to different functional units and modules as needed, that is, the internal structure of the device can be divided into different functional units or modules to complete all or part of the functions described above.
  • the functional units and modules in the embodiments can be integrated into one processing unit, or each unit can exist physically separately, or two or more units can be integrated into one unit.
  • the above-mentioned integration The unit can be implemented in the form of hardware or in the form of software functional units.
  • An embodiment of the present application also provides an electronic device.
  • the electronic device includes: at least one processor, a memory, and a computer program stored in the memory and executable on the at least one processor.
  • the processor executes The computer program enables the electronic device to implement the steps in any of the above method embodiments.
  • the electronic device may be a user equipment, configured to perform steps performed by the user equipment, such as receiving indication information and monitoring the PDCCH according to the indication information.
  • the electronic device may also be a network device for performing steps performed by the network device, for example, for generating and sending instruction information.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • the computer-readable storage medium stores a computer program.
  • the computer program is executed by an electronic device, the steps in each of the above method embodiments can be implemented.
  • Embodiments of the present application also provide a chip, including a processor.
  • the processor is used to read and execute a computer program stored in a memory.
  • the computer program is executed by the processor, the electronic device where the chip is located can implement each of the above methods. Steps in Examples.
  • the chip also includes a memory, and the memory is electrically connected to the processor.
  • the chip may also include a communication interface.
  • Embodiments of the present application also provide a computer program product.
  • the computer program product includes a computer program.
  • the steps in each of the above method embodiments can be implemented.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • this application can implement all or part of the processes in the above embodiment methods by instructing relevant hardware through a computer program.
  • the computer program can be stored in a computer-readable storage medium.
  • the computer program When executed by a processor, the steps of each of the above method embodiments may be implemented.
  • the computer program includes computer program code, which may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may at least include: any entity or device capable of carrying computer program code to the camera device/terminal device, recording media, computer memory, read-only memory (ROM), random access memory (random access memory, RAM), electrical carrier signals, telecommunications signals, and software distribution media.
  • ROM read-only memory
  • RAM random access memory
  • electrical carrier signals telecommunications signals
  • software distribution media For example, U disk, mobile hard disk, magnetic disk or CD, etc.
  • computer-readable media may not be electrical carrier signals and telecommunications signals.
  • the disclosed devices/electronic devices and methods can be implemented in other ways.
  • the apparatus/electronic device embodiments described above are merely illustrative, for example, The division of modules or units is only a logical function division. In actual implementation, there may be other division methods. For example, multiple units or components may be combined or integrated into another system, or some features may be ignored or not used. implement.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, which may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the term “if” may be interpreted as “when” or “once” or “in response to determining” or “in response to detecting” depending on the context. ". Similarly, the phrase “if determined” or “if [the described condition or event] is detected” may be interpreted, depending on the context, to mean “once determined” or “in response to a determination” or “once the [described condition or event] is detected ]” or “in response to detection of [the described condition or event]”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种非连续接收的方法及装置,该方法包括:接收网络设备发送的指示信息,该指示信息用于指示数据是否提前到达或用于指示数据滞后到达;根据指示信息,监听物理下行控制信道。该方案主要通过,在接收到网络设备发送的数据有没有提前到达或滞后到达的指示信息时,根据该指示信息监听物理下行控制信道,从而保证了对于抖动导致的提前到达或滞后到达的数据的接收,防止这类数据的丢失,在这种前提下,就不需要再为了完全覆盖抖动区间而延长连接态下的非连续接收中的开启期间定时器的时长,达到进一步省电的效果。

Description

非连续接收的方法及装置
本申请要求于2022年09月23日提交国家知识产权局、申请号为202211166990.7、申请名称为“非连续接收的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种非连续接收的方法及装置。
背景技术
扩展现实(extended reality,XR)提供了一种新的人机交互方式,但是由于XR业务具有数据量大和时延要求高的特点,给无线网络的发展也带来了新的挑战。连接态下的非连续接收(connectedmode discontinuous reception,CDRX)是一种应用广泛的省电机制。但是当将CDRX技术直接应用于XR业务时,却发现省电的幅度存在局限,主要原因在于,在实际的XR系统中,存在抖动的问题,也就是说,帧编码延迟和网络传输时间的变化导致在基站接收到XR业务的数据包(数据帧)的时刻是存在抖动的。可以理解为,当一个终端周期性发送XR业务的数据帧时,基站接收到数据帧的实际时刻并不是完全对应的周期性到达时刻。所以为了防止数据丢失,势必要延长CDRX中的开启期间定时器的时长,以完全覆盖这个抖动区间。但是这就导致省电效果被削减。
因此,如何在存在抖动的场景下保证节能省电的效果是亟待解决的技术问题。
发明内容
本申请提供一种非连续接收的方法及装置,能够保证节能省电的效果。
第一方面,提供了一种非连续接收的方法,应用于用户设备,该方法包括:接收网络设备发送的指示信息,该指示信息用于指示数据是否提前到达或用于指示数据滞后到达;根据指示信息,监听物理下行控制信道。
在本申请技术方案中,主要通过在接收到网络设备发送的数据有没有提前到达或滞后到达的指示信息时,根据该指示信息监听物理下行控制信道,从而保证了对于抖动导致的提前到达或滞后到达的数据的接收,防止这类数据的丢失,在这种前提下,就不需要再为了完全覆盖抖动区间而延长连接态下的非连续接收中的开启期间定时器的时长,达到进一步省电的效果。
在本申请实施例中,数据可以是XR业务的数据帧,也可以是其他业务的数据包,还可以是其他能够在CDRX机制下进行收发的数据,不存在限定。
结合第一方面,在第一方面的某些实现方式中,指示信息包括第一信息,第一信息用于指示数据是否提前到达,提前到达用于表示在接收到第一信息时数据已经到达;当根据指示信息,监听物理下行控制信道(PDCCH)时,可以包括:当数据提前到达时,根据 第一信息指示的CDRX的配置参数,监听PDCCH。
结合第一方面,在第一方面的某些实现方式中,第一信息包括第一下行控制信息(DCI),第一DCI中的第一预设比特位用于指示数据是否提前到达。
结合第一方面,在第一方面的某些实现方式中,第一DCI为UE组公共DCI。
结合第一方面,在第一方面的某些实现方式中,第一DCI中除第一预设比特位之外的至少一个比特位,用于指示CDRX的配置参数中的至少一个参数,或者,用于指示CDRX的配置参数的参数集的标识,参数集中包括至少一个CDRX的配置参数。
结合第一方面,在第一方面的某些实现方式中,CDRX的配置参数包括偏移时间、开启期间定时器、不活跃定时器或搜索空间集中的至少一项;当数据提前到达时,在根据第一信息指示的CDRX的配置参数,监听PDCCH时,可以包括以下至少一项操作:
根据第一信息指示的偏移时间,提前启动开启期间定时器,并在开启期间定时器内监听PDCCH;或者,根据第一信息的指示,利用稠密的搜索空间集进行监听;或者,根据第一信息指示的开启期间定时器进行监听;或者,根据第一信息指示的不活跃定时器进行监听。
结合第一方面,在第一方面的某些实现方式中,上述方法还包括:当数据没有提前到达时,根据CDRX的第一预设配置参数进行监听,第一预设配置参数是数据没有提前到达所对应的预设配置参数。也就是说,在这种实现方式中,CDRX预配置了两套配置参数,第一预设配置参数和第二预设配置参数,数据没有提前到达和数据提前到达两种情况分别对应第一预设配置参数和第二预设配置参数。所以当用户设备根据接收到的第一信息确定数据没有提前到达就可以选定第一预设配置参数来进行监听。
结合第一方面,在第一方面的某些实现方式中,指示信息包括第二信息,第二信息用于指示数据滞后到达;当根据指示信息,监听PDCCH时,可以包括:根据第二信息,对PDCCH进行监听。
结合第一方面,在第一方面的某些实现方式中,第二信息包括第二DCI;第二DCI没有调度对应的物理下行共享信道(PDSCH);在根据第二信息,对PDCCH进行监听时,可以包括:响应于第二DCI,启动第一定时器监听PDCCH;或者,根据第二DCI指示的CDRX配置参数监听PDCCH。
结合第一方面,在第一方面的某些实现方式中,第二DCI没有调度对应的PDSCH是利用第二DCI中的时域资源分配(TDRA)域指示的。
结合第一方面,在第一方面的某些实现方式中,第二DCI中除TDRA域之外的至少一个比特位,用于指示CDRX的配置参数中的至少一个参数,或者,用于指示CDRX的配置参数的参数集的标识,该参数集中包括至少一个CDRX的配置参数。
结合第一方面,在第一方面的某些实现方式中,第二信息包括第三DCI;第三DCI调度的PDSCH为填充PDSCH;在根据第二信息,对PDCCH进行监听时,可以包括:响应于第三DCI,启动第二定时器监听PDCCH。
第二方面,提供了一种非连续接收的方法,应用于网络设备,该方法包括:向用户设备(UE)发送指示信息,该指示信息用于指示数据是否提前到达或用于指示数据滞后到达。
应理解,第二方面的技术方案的技术效果,可以参照第一方面相关描述,不再赘述。
结合第二方面,在第二方面的某些实现方式中,指示信息包括第一信息,第一信息用于指示数据是否提前到达,提前到达用于表示在发送第一信息时数据已经到达。
结合第二方面,在第二方面的某些实现方式中,第一信息包括第一下行控制信息(第一DCI);第一DCI中的第一预设比特位用于指示数据是否提前到达。
结合第二方面,在第二方面的某些实现方式中,第一DCI为UE组公共DCI。
结合第二方面,在第二方面的某些实现方式中,第一DCI中除第一预设比特位之外的至少一个比特位,用于指示CDRX的配置参数中的至少一个参数,或者,用于指示CDRX的配置参数的参数集的标识,参数集中包括至少一个CDRX的配置参数。
结合第二方面,在第二方面的某些实现方式中,CDRX的配置参数包括偏移时间、开启期间定时器、不活跃定时器或搜索空间集中的至少一项。
结合第二方面,在第二方面的某些实现方式中,指示信息包括第二信息,第二信息用于指示数据滞后到达。
结合第二方面,在第二方面的某些实现方式中,第二信息包括第二DCI;第二DCI没有调度对应的物理下行共享信道(PDSCH),第二DCI用于指示所述滞后到达。
结合第二方面,在第二方面的某些实现方式中,第二DCI没有调度对应的PDSCH是利用第二DCI中的时域资源分配(TDRA)域指示的。
结合第二方面,在第二方面的某些实现方式中,第二DCI中除TDRA域之外的至少一个比特位,用于指示CDRX的配置参数中的至少一个参数,或者,用于指示CDRX的配置参数的参数集的标识,参数集中包括至少一个CDRX的配置参数。
结合第二方面,在第二方面的某些实现方式中,第二信息包括第三DCI;第三DCI调度的PDSCH为填充PDSCH。
第三方面,提供了一种非连续接收的装置,该装置包括由软件和/或硬件组成的用于执行第一方面或第二方面中的任意一种方法的单元。
第四方面,提供了一种电子设备,包括存储器、处理器以及存储在存储器中并可在处理器上运行的计算机程序,当处理器执行计算机程序时,该电子设备能够实现第一方面或第二方面的任意一种方法。
可选地,当该电子设备用于实现第一方面任意一种方法时,该电子设备可以是用户设备,当该电子设备用于实现第二方面任意一种方法时,该电子设备可以是网络设备。
第五方面,提供了一种芯片,包括处理器,该处理器用于读取并执行存储在存储器中的计算机程序,当计算机程序被处理器执行时,该芯片所在的电子设备能够实现第一方面或第二方面的任意一种方法。
可选地,该芯片还包括存储器,存储器与处理器电连接。
可选地,该芯片还可以包括通信接口。
第六方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当计算机程序被电子设备执行时能够实现第一方面或第二方面的任意一种方法。
第七方面,提供了一种计算机程序产品,该计算机程序产品包括计算机程序,当计算机程序被电子设备执行时能够实现第一方面或第二方面的任意一种方法。
附图说明
图1是本申请实施例的一种适用网络场景的示意图。
图2是本申请实施例的XR业务的数据帧周期性传输的示意图。
图3是本申请实施例的一种非连续接收的方法的示意性流程图。
图4是本申请实施例的另一种非连续接收的方法的示意性流程图。
图5是本申请实施例的一种非连续接收的方法与常规CDRX方法的比较示意图。
图6是本申请实施例的另一种非连续接收的方法与常规CDRX方法的比较示意图。
图7是本申请实施例的又一种非连续接收的方法与常规CDRX方法的比较示意图。
图8是本申请实施例的一种第一DCI的结构示意图。
图9是本申请实施例的一种非连续接收的装置的示意图。
图10是本申请实施例的一种电子设备的硬件结构示意图。
具体实施方式
下面结合附图对本申请实施例的方案进行介绍。本申请提供的非连续接收的方法能够应用于各类无线通信系统。
图1是本申请实施例的一种适用网络场景的示意图。如图1所示,该场景中的无线通信系统中包括至少一个网络设备110和至少一个用户设备(user equipment,UE)120。该无线通信系统可以是长期演进(long term evolution,LTE)网络、第五代(5G)网络或者未来第六代(6G)网络或者后续演进的各类能够承载XR业务的无线通信系统。
在本申请实施例中,网络设备110可以包括接入网(access network,AN)设备,无线接入网(rad ioaccess network,RAN)设备,接入网设备例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端设备通信的设备为基站,例如可以为演进型基站(NodeB或eNB或e-NodeB,evolved Node B),或者也可以包括5G系统中的下一代节点B(next generation node B,gNB)或者下一代演进型基站(next generation evolved nodeB,ng-eNB)、en-gNB(enhanced next generation node B,gNB):增强的下一代基站;也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)等,不再逐一列举。
用户设备也可以称之为终端设备,可以为手机、智能手表、平板电脑、笔记本电脑、XR终端、车载终端等。XR终端还可以包括虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端和混合现实(mixed reality,MR)终端。
为了便于理解本申请实施例的方案,下面结合图2对XR业务的抖动进行介绍。图2是本申请实施例的XR业务的数据帧周期性传输的示意图。如图2所示,XR业务的数据帧是周期性传输的,例如,如果以120帧/秒的速率进行周期性传输,传输周期就是8.33毫秒,即图2中的8传输周期可以是8.33毫秒。理想情况下,用户设备周期性收发数据帧,网络设备以同样的周期周期性收发数据帧,例如一个用户设备周期性发送数据帧,网络设备以同样的周期周期性接收这些数据帧并以同样的周期周期性发送给另外一个用户设备,另外一个用户设备也会以同样的周期周期性接收这些数据帧。但是如上所述,由于XR业务的帧编码延迟和网络传输时间的变化,导致网络设备接收到数据帧的时刻是存在抖动(jitter)的,例如,可能提前或滞后到达等这个提前或滞后的时间长度就可以称之为 抖动。如图2所示jitter1表示提前到达时长的抖动,jitter2表示滞后到达时长的抖动。研究人员发现,抖动符合截断高斯分布,具体而言是-4毫秒到+4毫秒之间的截断高斯分布。可以理解为,抖动的数值是一个-4毫秒到+4毫秒之间的一个随机变量。即图2中jitter2的取值范围为(0,+4],jitter1的取值范围为[-4,0),单位为毫秒。
对于这种特殊情况,当将CDRX技术直接应用于XR业务时,如果配置的开启期间定时器(on duration timer)太短,就会因为抖动错失了数据帧的接收;如果为了防止错失而配置的足够长的开启期间定时器,至少需要完全覆盖抖动的时长,以上述例子为例,开启期间定时器至少需要8毫秒,就会导致省电效果被削减,即CDRX周期中开启期间定时器就占了8毫秒。此外,不活跃定时器(inactivity timer)过长或过短同样存在上述类似的问题,即过长费电,过短会错失数据帧。
针对上述问题,本申请实施例主要通过在开启期间定时器前的某一时刻网络设备提前告知用户设备数据有没有提前到达,和/或,在开启期间定时器开始后的某一时刻如果还没收到数据时网络设备告知用户设备数据滞后到达,使得用户设备能够根据这样的指示采用与之相应的CDRX配置参数去监听物理下行控制信道(physical downlink control channel,PDCCH)。但应理解,本申请实施例的方法既可以应用于XR业务,但也可以应用于其他数据传输的场景。
图3是本申请实施例的一种非连续接收的方法的示意性流程图。
S301、网络设备向UE发送指示信息。
该指示信息用于指示数据是否提前到达或用于指示数据滞后到达。
在本申请实施例中,数据可以是XR业务的数据帧,也可以是其他业务的数据包,还可以是其他能够在CDRX机制下进行收发的数据,不存在限定。
提前到达可以理解为在发送是否提前到达的指示信息的时候数据已经到达,而滞后到达可以理解为在发送滞后到达的指示信息的时候数据尚未到达(还没有到达)。
也就是说,网络设备可以发送上述指示信息给UE,UE接收到该指示信息后可以执行步骤S302。
在一种实现方式中,该指示信息包括第一信息,第一信息用于指示数据是否提前到达。对于UE而言,提前到达用于表示UE在接收到第一信息时数据已经到达,对于网络设备而言,提前到达用于表示网络设备在发送第一信息时数据已经到达。
在一个例子中,网络设备可以周期性给UE发送第一信息,如果发送第一信息时网络设备已经接收到数据,就利用第一信息指示数据提前到达,如果发送第一信息时没有接收到数据,就利用第一信息指示数据没有提前到达。应理解,没有提前到达可以包括正常到达和滞后到达两种可能。还应理解,第一信息不管数据是否已经接收到都会被发送,是一种周期性发送,只是在发送时,会携带发送时刻数据有没有收到的指示。
在另一个例子中,网络设备给UE发送第一信息并不是周期性发送的,而是在数据没有提前到达的时候就不发送第一信息。在这种情况下,UE解码不到第一信息就会默认认为数据没有提前到达。
在一个例子中,第一信息包括第一下行控制信息(downlink control information,DCI),第一DCI中的第一预设比特位用于指示数据是否提前到达。也就是说,可以利用DCI来指示数据是否提前到达。
可选地,第一DCI可以为UE组公共(UE-group common signaling)DCI。也就是说,一个DCI中包括对多个UE的指示,对于目标UE而言,可以从中找到该UE对应的字段(比特段),然后从中读取指示的信息。例如,第一DCI中某个目标UE对应了N个比特(bit)位,这N个比特位的某个比特位就可以作为上述第一预设比特位,例如可以是N个比特位中的第一个比特位作为上述第一预设比特位,则这第一个比特位中就包括了对于数据的是否提前到达的指示。第一预设比特位指示数据提前到达例如可以是,当第一预设比特位为0时,表示没有提前到达,当第一预设比特位为1时,表示提前到达。
第一DCI的结构可以自定义,也可以通过更改现有DCI的结构实现,例如第一DCI可以是DCI2_6的结构,对DCI2_6的各个比特位进行重新定义,使之能够满足第一DCI的要求。
可选地,由于指示是否提前只需要利用一个比特位就能达到,因此还可以利用剩余的一些比特位来进一步指示CDRX的配置参数,使得UE在接收到第一信息时,除了能够知道数据是否提前到达之外,还能够根据第一信息指示的配置参数监听PDCCH。
在另一个例子中,第一DCI中除上述第一预设比特位之外的至少一个比特位,用于指示CDRX的配置参数中的至少一个参数,或者,用于指示CDRX的配置参数的参数集的标识,参数集中包括至少一个CDRX的配置参数。
CDRX的配置参数可以包括偏移时间(offset)、开启期间定时器、不活跃定时器、或搜索空间集(search space set group,SSSG)中的至少一项。
举例说明,CDRX的配置参数的参数集例如可以包括不同value的配置参数,且两个参数集的标识例如可以用index value1和index value2表示。
比如:
可以看出,两个数据集中均可以包括offset、on duration timer、inactivity timer和SSSG几个配置参数的设定值。当利用第一信息指示了某个参数集的标识,就可以找到这个参数集,并以这个参数集中的各个配置参数去监听PDCCH。
需要说明的是,第一信息在指示数据是否提前到达的同时还可以隐式指示SSSG采用 稠密的SSSG还是稀疏的SSSG。也就是说,当第一信息指示数据提前到达,可以隐式指示采用稠密的SSSG;当第一信息指示数据没有提前到达,可以隐式指示采用稀疏的SSSG。此外,第一信息还可以在指示CDRX的配置参数时,显式指示采用稠密的SSSG还是稀疏的SSSG。即SSSG采用稀疏的还是稠密的可以通过第一预设比特位一起指示,也可以通过用于指示CDRX配置参数的比特位(第一预设比特位之外的其他比特位)进行指示。
在一些情况下,当数据足够紧密时,还可以在CDRX的前一周期利用介质(媒体)访问控制(media access control,MAC)控制元素(control element,CE)指示CDRX的下一周期的配置参数。
在另一种实现方式中,该指示信息可以包括第二信息,第二信息用于指示数据滞后到达。对于UE而言,滞后到达用于表示在接收到第二信息时数据还没有到达(尚未到达),对于网络设备而言,滞后到达用于表示在发送第二信息时,数据还没有到达。
可以理解为,第二信息是on duration timer已经启动之后且快要结束之前的某个时刻或者是结束时刻才发送的,所以此时如果数据收到了就是没有滞后,如果没有收到就是滞后了,此时发送第二信息是为了让UE能够针对性地对滞后进行应对,例如可以启动一个新定义的定时器,或者直接启动一个比on duration timer时长更长的已知定时器等,以保证对滞后数据的接收。在这种前提下,就不需要为了完全覆盖抖动区间而延长CDRX中的on duration timer时长,也就是没滞后的时候采用较短的on duration timer,只有滞后发生的时候才采用较长的定时器。
还应理解,第二信息可以是每次on duration timer启动时,网络设备在数据还没有收到时就发送一个第二信息,也就是只有在滞后发生时才发送第二信息。这种方式避免了无意义指示,也就是没有滞后的时候,依靠CDRX的自身机制已经能够满足数据的收发需求,不需要指示没有滞后这件事。因此这种方式更节省信令,也就是减少发送指示信息的次数,UE也相应减少了接收指示信息和对指示信息进行处理的次数。
在一个例子中,第二信息包括第二DCI;第二DCI没有调度对应的物理下行共享信道(physical downlink shared channel,PDSCH),第二DCI用于指示数据滞后到达。此时,如果UE接收到第二信息,就可以获知两件事情:数据已经滞后,且这个DCI不调度PDSCH。
需要说明的是,数据滞后到达是通过第二DCI这个特殊结构的DCI进行指示的,或者说是通过第二DCI没有调度PDSCH这件事指示的。可以理解为,当数据还没到达,网络设备发送了一个第二DCI,然后UE当接收到第二DCI之后发现这是一个特殊的DCI,是一个没有调度PDSCH的DCI就知道了数据滞后到达。
可选地,可以利用第二DCI中的时域资源分配(time domain resource assignment,TDRA)指示域指示第二DCI没有调度对应的PDSCH。例如,可以先通过无线资源控制(radio resource control,RRC)配置一个entry对应K0,当UE接收到第二DCI,从第二DCI中的TDRA域找到对应的entry,然后从entry中读取K0的值为-1,就知道了第二DCI没有调度对应的PDSCH,进而知道了数据滞后到达。
在另一个例子中,第二DCI中除用于指示数据滞后到达的比特位(例如上述TDRA域)之外的至少一个比特位,用于指示CDRX的配置参数中的至少一个参数,或者,用于指示CDRX的配置参数的参数集的标识,参数集中包括至少一个CDRX的配置参数。 此时,如果UE接收到第二DCI,就可以获知三件事情:数据已经滞后,这个DCI没有调度对应的PDSCH,且能够解析出第二DCI指示的CDRX的配置参数。
在又一个例子中,第二信息包括第三DCI;第三DCI调度的PDSCH为填充PDSCH(即padding PDSCH)。此时,如果UE接收到第三DCI,在解码第三DCI对应的PDSCH时解码出填充PDSCH,就可以获知数据已经滞后。
UE在接收到指示信息后,会执行步骤S302。
S302、根据指示信息,监听PDCCH。
如上所述,指示信息指示的情况会有所不同,因此步骤S302可以根据指示信息的不同来根据相对应的监听策略对PDCCH进行监听。
在一种实现方式中,当指示信息包括第一信息时,第一信息可以包括两项指示,第一项是指示数据有没有提前到达,第二项是指示CDRX的配置参数。
在一个例子中,CDRX的配置参数也是通过数据有没有提前到达的指示进行隐式指示的,当UE接收到第一信息后,就根据第一信息隐式指示的CDRX的配置参数监听PDCCH。例如可以先通过RRC预配置两套CDRX配置参数,分别对应提前到达和没有提前到达两种情况。当UE接收到第一信息后,知道了数据有没有提前到达,如果提前到达就采用与提前到达对应的那套CDRX配置参数监听PDCCH,如果没有提前到达就采用与没有提前到达对应的那套CDRX配置参数监听PDCCH。
例如,CDRX预配置的两套配置参数为第一预设配置参数和第二预设配置参数,数据没有提前到达对应第一预设配置参数,数据提前到达对应第二预设配置参数。所以当用户设备根据接收到的第一信息,确定数据没有提前到达,就可以选定第一预设配置参数来进行监听;当用户设备根据接收到的第一信息,确定数据提前到达,就可以选定第二预设配置参数来进行监听。在这个例子中,第一预设配置参数和第二预设配置参数都可以作为第一信息指示的CDRX配置参数。
又例如,CDRX可以预配置两套配置参数:第一预设配置参数和第二预设配置参数,且第一预设配置参数是默认采用的配置参数,也就是说,当用户设备根据接收到的第一信息,确定数据没有提前到达,或者没有解码到第一信息,就采用默认的第一预设配置参数来进行监听,当用户设备根据接收到的第一信息,确定数据提前到达,则选择第二预设配置参数来进行监听。
在另一个例子中,第一DCI中除所述第一预设比特位之外的至少一个比特位,用于指示CDRX的配置参数中的至少一个参数,或者,用于指示CDRX的配置参数的参数集的标识,所述参数集中包括至少一个CDRX的配置参数。可以看出,在这个例子中,CDRX的配置参数是一种显式指示的方式。当UE接收到第一信息,能够从第一预设比特位知道数据有没有提前到达,还能够从第一预设比特位之外的其他比特位知道后续监听PDCCH时采用的CDRX配置参数。
在另一种实现方式中,步骤S302可以包括以下至少一项操作:
根据第一信息指示的offset,提前启动on duration timer,并在on duration timer内监听PDCCH;或者,根据第一信息的指示,利用稠密的SSSG进行监听;或者,根据第一信息指示的on duration timer进行监听;或者,根据第一信息指示的inactivity timer进行监听。
也就是说,可以根据第一信息具体指示的是某个或某些配置参数,去按照指示的具体 参数值进行监听。例如,UE根据第一信息的指示,确定了数据是提前到达,就根据第一信息指示的offset的值,提前启动on duration timer,还可以基于已经提前到达,利用稠密的SSSG进行监听,以及可以缩短on duration timer的时长等,不再逐一列举。
在另一种实现方式中,指示信息还可以包括第二信息,该第二信息用于指示数据滞后到达;当接收到第二信息时,步骤S302可以包括UE根据第二信息,对PDCCH进行监听。
针对第二信息的不同情况,步骤S302也会执行不同的操作。
在一个例子中,当第二信息包括上述第二DCI时,步骤S302可以包括:响应于第二DCI,启动第一定时器监听PDCCH;或者,根据第二DCI指示的CDRX配置参数监听PDCCH。
第一定时器是一个新定时器,可以称之为new timer,也就是,启动一个时长更长的新的定时器。原因在于,第二DCI没法通过CDRX机制下的自然触发启动一个inactivity timer的,所以可以是启动一个new timer,这个new timer可以是新定义的定时器,也可以是复用现有的定时器,例如可以是重传定时器drx-RetransmissionTimerDL。应理解,在这种实现方式中,当UE接收到第二DCI,知道了数据滞后到达,知道了不需要解码PDSCH,如果第二DCI没有指示CDRX配置参数,就可以是启动一个第一定时器,例如启动drx-RetransmissionTimerDL,如果第二DCI还指示了CDRX的配置参数,就根据所指示的CDRX的配置参数监听PDCCH。假设第二DCI指示了一个较长的on duration timer,则UE接收到这个第二DCI后,知道了数据滞后到达,知道了这个DCI不需要解码PDSCH,并且知道了这个DCI指示了一个较长的on duration timer这样一个CDRX的配置参数,UE就可以启动这个较长的on duration timer进行监听。
在另一个例子中,当第二信息包括上述第三DCI时,步骤S302可以包括:响应于第三DCI,启动第二定时器监听PDCCH。第二定时器可以是默认长度的inactivity timer也可以是针对数据滞后到达的一个预设的更长的inactivity timer。在这个例子中,由于第三DCI是结构完整的DCI,所以能够通过CDRX机制下的自然触发去启动一个定时器,例如启动一个inactivity timer。
图3所示方法,主要通过在接收到网络设备发送的数据有没有提前到达或滞后到达的指示信息时,根据该指示信息监听物理下行控制信道,从而保证了对于抖动导致的提前到达或滞后到达的数据的接收,防止这类数据的丢失,在这种前提下,就不需要再为了完全覆盖抖动区间而延长连接态下的非连续接收中的开启期间定时器的时长,达到进一步省电的效果。
图4是本申请实施例的另一种非连续接收的方法的示意性流程图。图4可以看作是图3所示方法的一个具体示例。
S401、网络设备向UE发送第一信息,用于指示数据是否提前到达。
步骤S401可以看作步骤S301的一个示例。
网络设备可以周期性给UE发送第一信息。
该第一信息可以为上述第一DCI。例如可以是UE组公共DCI。
UE在接收到第一信息后,会执行步骤S402。
S402、当数据提前到达时,UE根据第一信息指示的CDRX的配置参数,监听PDCCH。
步骤S402可以看作步骤S302的一个示例。
也就是说,第一信息包括了两项指示,第一项是指示数据有没有提前到达,第二项是指示CDRX的配置参数。
在一种实现方式中,上述方法还包括:当数据没有提前到达时,UE根据CDRX的第一预设配置参数监听PDCCH。
在另一种实现方式中,步骤S402可以包括以下至少一项操作:
根据第一信息指示的offset,提前启动on duration timer,并在on duration timer内监听PDCCH;或者,根据第一信息的指示,利用稠密的SSSG进行监听;或者,根据第一信息指示的on duration timer进行监听;或者,根据第一信息指示的inactivity timer进行监听。
也就是说,可以根据第一信息具体指示的是某个或某些配置参数,去按照指示的具体参数值进行监听。例如,UE根据第一信息的指示,确定了数据是提前到达,就根据第一信息指示的offset的值,提前启动on duration timer,还可以基于已经提前到达,利用稠密的SSSG进行监听,以及可以缩短on duration timer的时长等,不再逐一列举。
步骤S401和S402,主要通过UE在接收到网络设备发送的数据有没有提前到达的指示信息时,根据该指示信息监听物理下行控制信道,从而保证了对于抖动导致的提前到达的数据的接收,防止这类数据的丢失,在这种前提下,就不需要再为了完全覆盖抖动区间而延长CDRX中的on duration timer时长,达到进一步省电的效果。
S403、UE接收网络设备发送的第二信息,该第二信息用于指示数据滞后到达。
该第二信息可以为第二DCI或第三DCI。
步骤S403可以看作步骤S301的一个示例。
S404、UE根据第二信息,对PDCCH进行监听。
步骤S404可以看作步骤S302的一个示例。
步骤S403和S403主要通过网络设备发送第二信息告诉UE数据滞后,从而使得UE可以采用相应的配置参数来进行监听,例如在数据滞后时可以将稠密的SSSG改为稀疏的SSSG,还可以启动一个更长的timer等,不再逐一列举,而在数据没有滞后时可以继续采用默认配置参数。从而保证了对于抖动导致的滞后到达的数据的接收,在这种前提下,就不需要再为了完全覆盖抖动区间而延长CDRX中的on duration timer时长,达到进一步省电的效果。步骤S403-S404单独执行时,UE可以在数据滞后时和数据没有滞后时分别采用与之适应的CDRX的配置参数进行监听。
应理解,可以只执行步骤S401-S402,也可以只执行步骤S403-S404,还可以步骤S401-S404都执行,均可以达到进一步省电的技术效果。步骤S401-S404都执行时省电效果更好。
图5是本申请实施例的一种非连续接收的方法与常规CDRX方法的比较示意图。图5中主要是只对提前到达的情况进行处理的示例,也就是图3所示方法中指示信息用于指示数据是否提前到达(即指示信息只包括第一信息)的情况,也是图4所示方法只包括步骤S401和步骤S402的情况。
需要说明的是,图5主要以第一信息为周期性发送为例进行介绍,但是并不限定第一信息必须周期性发送。例如,网络设备可以在没有提前到达的时候就不发送第一信息,在这种情况下,UE解码不到第一信息就会默认认为没有提前到达。
如图5中(a)所示,常规CDRX中on duration timer周期性启动,且长度是固定的, 这种情况下,为了防止XR业务中的丢包发生,就需要on duration timer足够长。如上文所述,抖动符合-4毫秒到+4毫秒的截断高斯分布,所以此处,on duration timer需要大于或等于8毫秒。而XR业务中数据的传输周期是8.33毫秒,也就是说,on duration timer在CDRX的周期中的占比较大,省电效果非常局限。如图5中(b)所示,在引入了本申请实施例的方法后,周期性发送第一DCI(第一信息的一例),通过第一信息告知数据有没有提前到达,也就是图5中(b)所示发送周期为第一信息的发送周期。如图5中(b)所示,第一DCI-1发送时,数据是提前到达的,就可以减小offset标准值到offset1,即提前启动on duration timer,且在on duration timer期间利用稠密的SSSG进行监听,即图示on1期间黑色框中白线条的密度更密了,且缩短了on duration timer的时长,也就是on1较短。第一DCI-2发送时,数据没有提前到达,就可以继续采用offset默认值即此处的offset2,正常启动on duration timer,且在on duration timer期间利用稀疏的SSSG进行监听,即图示on2期间黑色框中白线条的密度是默认密度。第一DCI-3发送时,数据是提前到达的,就可以减小offset标准值到offset3,即提前启动on duration timer,且在on duration timer期间利用稠密的SSSG进行监听,即图示on3期间黑色框中白线条的密度更密了,且缩短了on duration timer的时长,也就是on3较短。
从图5可以看出,CDRX中醒来的时长有明显缩短了,因为当数据提前时可以更快醒来,可以用更短的时间监听,可以用稠密的SSSG来监听,当数据没有提前时,则可以继续采用默认配置参数进行监听,使得整体上相比于常规的完全覆盖抖动的方式更加省电。
图6是本申请实施例的另一种非连续接收的方法与常规CDRX方法的比较示意图。图6中主要是只对滞后到达(即指示信息只包括第二信息)的情况进行处理的示例,也就是图3所示方法中指示信息用于指示数据是否滞后到达的情况,也是图4所示方法只包括步骤S403和步骤S404的情况。
如图6中(a)所示的内容可以参照图5中(a)所示内容的相关描述,不再赘述。如图6中(b)所示,在引入了本申请实施例的方法后,在on duration timer启动后超时前,发送一个第二信息,通过第二信息告知数据滞后到达。如图6中(b)所示,第二信息发送时,数据是滞后到达的,就可以启动一个定时器,图中用new timer表示。如图6中(b)所示,第二信息在数据没有滞后的时候不发送,在数据滞后的时候才发送。但应理解,此处的new timer可能是在第二DCI触发下启动的新的定时器或者现有的某个定时器,例如第一定时器可能是drx-RetransmissionTimerDL,也可能是按照第二DCI指示的CDRX配置参数启动的timer,还可能是在第三DCI触发下启动的第二定时器。也就是说,如图6中(b)所示,第二个CDRX周期中包括了一个新的定时器,在定时器运行时间内,UE监听PDCCH。
从图6可以看出,CDRX中醒来的时长有明显缩短,因为当数据没有滞后的时候就以一个较短的on duration timer进行监听,如果滞后时可以以更长的timer来监听。当数据没有滞后时则继续采用默认配置参数进行监听,即只有在数据滞后的时候才用更长的timer,其他时间用较短的timer,使得整体上相比于常规的完全覆盖抖动的方式更加省电。
图7是本申请实施例的又一种非连续接收的方法与常规CDRX方法的比较示意图。图7中主要是对提前到达和滞后到达的情况都进行处理的示例,也就是图3所示方法中指示信息包括第一信息和第二信息的情况,也是图4所示方法包括步骤S401-S404的情况。
需要说明的是,图7主要以第一信息为周期性发送为例进行介绍,但是并不限定第一信息必须周期性发送。例如,网络设备可以在没有提前到达的时候就不发送第一信息,在这种情况下,UE解码不到第一信息就会默认认为没有提前到达。
图7中(a)可以参照图5中(a)和图6中(a)的相关描述,不再重复。如图7中(b)所示,在引入了本申请实施例的方法后,周期性发送第一信息,通过第一信息告知数据有没有提前到达,并在数据滞后时发送第二信息。如图7中(b)所示,第一信息-1发送时,数据是提前到达的,就可以减小offset标准值到offset1,即提前启动on duration timer,且在on duration timer期间利用稠密的SSSG进行监听,即图示on duration timer1期间黑色框中白线条的密度更密了,且缩短了on duration timer的时长,也就是on duration timer1较短。第一信息-2发送时,数据正常到达,采用默认offset即此处的offset2,正常启动on duration timer,且在on duration timer期间利用稀疏的SSSG进行监听,即图示on duration timer2期间黑色框中白线条的密度是默认密度。第一信息-3发送时,数据没有提前到达,采用默认offset即此处的offset3(offset2和offset3相等),正常启动on duration timer,且在on duration timer启动期间,发送一个第二信息,通过第二信息告知数据滞后到达。如图7中(b)所示,第二信息发送时,数据是滞后到达的,所以启动一个new timer。也就是说,如图7中(b)所示,最后一个最长的定时器中,UE持续监听PDCCH。
图8是本申请实施例的一种第一DCI的结构示意图。如图8所示,第一DCI的第i1个bit用于指示数据是否提前到达,例如可以1对应提前,0对应没有提前。也就是当第i1位的值为1,说明数据提前到达,当第i1位的值为0,说明数据没有提前到达。第i1个bit可以看作是第一预设比特位的一个示例。如图8所示,第一DCI的第i2-第iN共N-1个bit中的部分或者全部可以用来指示CDRX配置参数的至少一个参数或者指示CDRX配置参数的参数集标识。即上文所述第一DCI中除第一预设比特位(此处以第i1个bit为例)之外的至少一个比特位(此处以第i2-第iN共N-1个bit中的部分或者全部为例)用于指示CDRX的至少一个配置参数或者用于指示CDRX的参数集标识。例如,可以用这N-1个bit指示第一DCI到on duration timer的offset,比如单位为时隙(slot)或者x毫秒(x可以为某一值,比如0.125,则单位为0.125毫秒),这N-1个bit可以表示1~32单位长度,比如N-1个bit的数值为10,指示的是10*0.125=1.25毫秒。又例如,可以用N-1个bit中的3个bit指示使用的CDRX参数集的标识,比如3个bit的数值为0,指示的是index为0的参数集。又例如,可以用N-1个bit中的4个bit指示offset,并用N-1个bit中的1个bit指示SSSG的稠密度标识。又例如,还可以默认SSSG在其他时间是稀疏的,只有在数据提前也就是第一个bit位为1时会改为稠密的。又例如,可以用N-1个bit中的3个bit指示offset,并用N-1个bit中的2个bit指示使用的SSSG的标识,其中多个SSSG是RRC预配置的并用标识区分。应理解,上述例子中的数值只是为了便于理解方案,不存在限定,本领域技术人员可以根据需求选择数值。
上文主要结合附图对本申请实施例的非连续接收的方法进行了介绍。应理解,虽然如上所述的各实施例所涉及的流程图中的各个步骤依次显示,但是这些步骤并不是必然按照图中所示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,如上所述的各实施例所涉及的流程图中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时 刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。下面结合附图对本申请实施例的非连续接收的装置进行介绍。
图9是本申请实施例的一种非连续接收的装置的示意图。如图9所示,该装置2000包括收发单元2001和处理单元2002。该装置2000可以集成在用户设备或网络设备中。
该装置2000能够用于执行上文任意一种非连续接收的方法中用户设备或网络设备执行的步骤。例如,收发单元2001可用于执行步骤S301,处理单元2002可用于执行步骤S302。又例如,收发单元2001可用于执行步骤S401、S403,处理单元2002可用于执行步骤S402、S404。
在一种实现方式中,装置2000还可以包括存储单元,用于存储相关数据。该存储单元可以是集成在处理单元2002中,也可以是独立于收发单元2001和处理单元2002之外的单元。
图10是本申请实施例的一种电子设备的硬件结构示意图。如图10所示,该电子设备4000包括:至少一个处理器4001(图10中仅示出一个)处理器、存储器4002以及存储在所述存储器4002中并可在所述至少一个处理器4001上运行的计算机程序4003,所述处理器4001执行所述计算机程序4003时实现上述任意一种方法中的步骤。
本领域技术人员可以理解,图10仅仅是电子设备的举例,并不构成对电子设备限定,实际中电子设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
处理器4001可以是中央处理单元(central processing unit,CPU),其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器4002在一些实施例中可以是电子设备4000的内部存储单元,例如电子设备4000的硬盘或内存。存储器4002在另一些实施例中也可以是电子设备4000的外部存储设备,例如电子设备4000上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。可选地,存储器4002还可以既包括电子设备4000的内部存储单元也包括外部存储设备。存储器4002用于存储操作系统、应用程序、引导装载程序、数据以及其他程序等,例如所述计算机程序的程序代码等。存储器4002还可以用于暂时地存储已经输出或者将要输出的数据。
需要说明的是,上述装置/单元之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成 的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请实施例还提供了一种电子设备,该电子设备包括:至少一个处理器、存储器以及存储在所述存储器中并可在所述至少一个处理器上运行的计算机程序,所述处理器执行所述计算机程序时,使得该电子设备实现上述任意方法实施例中的步骤。
该电子设备可以是用户设备,用于执行用户设备执行的步骤,例如用于接收指示信息和根据指示信息监听PDCCH。该电子设备也可以是网络设备,用于执行网络设备执行的步骤,例如用于生成和发送指示信息。
本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被电子设备执行时可实现上述各个方法实施例中的步骤。
本申请实施例还提供了一种芯片,包括处理器,该处理器用于读取并执行存储在存储器中的计算机程序,当计算机程序被处理器执行时,该芯片所在电子设备能够实现上述各个方法实施例中的步骤。
可选地,该芯片还包括存储器,存储器与处理器电连接。
可选地,该芯片还可以包括通信接口。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品包括计算机程序,当计算机程序被电子设备执行时能够实现上述各个方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/电子设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/电子设备实施例仅仅是示意性的,例如, 所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
应当理解,当在本申请说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
如在本申请说明书和所附权利要求书中所使用的那样,术语“如果”可以依据上下文被解释为“当...时”或“一旦”或“响应于确定”或“响应于检测到”。类似地,短语“如果确定”或“如果检测到[所描述条件或事件]”可以依据上下文被解释为意指“一旦确定”或“响应于确定”或“一旦检测到[所描述条件或事件]”或“响应于检测到[所描述条件或事件]”。
另外,在本申请说明书和所附权利要求书的描述中,术语“第一”、“第二”、“第三”等仅用于区分描述,而不能理解为指示或暗示相对重要性。
在本申请说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (28)

  1. 一种非连续接收的方法,应用于用户设备UE,其特征在于,包括:
    接收网络设备发送的指示信息,所述指示信息用于指示数据是否提前到达或用于指示数据滞后到达;
    根据所述指示信息,监听物理下行控制信道PDCCH。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息包括第一信息,所述第一信息用于指示数据是否提前到达,所述提前到达用于表示在接收到所述第一信息时数据已经到达;
    所述根据所述指示信息,监听物理下行控制信道PDCCH,包括:
    当数据提前到达时,根据所述第一信息指示的CDRX的配置参数,监听PDCCH。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信息包括第一下行控制信息DCI,所述第一DCI中的第一预设比特位用于指示数据是否提前到达。
  4. 根据权利要求3所述的方法,其特征在于,所述第一DCI为UE组公共DCI。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一DCI中除所述第一预设比特位之外的至少一个比特位,用于指示CDRX的配置参数中的至少一个参数,或者,用于指示CDRX的配置参数的参数集的标识,所述参数集中包括至少一个CDRX的配置参数。
  6. 根据权利要求2至5中任一项所述的方法,其特征在于,所述CDRX的配置参数包括偏移时间、开启期间定时器、不活跃定时器或搜索空间集中的至少一项;
    所述当数据提前到达时,根据所述第一信息指示的CDRX的配置参数,监听PDCCH,包括以下至少一项操作:
    根据所述第一信息指示的偏移时间,提前启动开启期间定时器,并在开启期间定时器内监听PDCCH;或者,根据所述第一信息的指示,利用稠密的搜索空间集进行监听;或者,根据所述第一信息指示的开启期间定时器进行监听;或者,根据所述第一信息指示的不活跃定时器进行监听。
  7. 根据权利要求2至6中任一项所述的方法,其特征在于,所述方法还包括:
    当数据没有提前到达时,根据CDRX的第一预设配置参数进行监听,所述第一预设配置参数是数据没有提前到达所对应的预设配置参数。
  8. 根据权利要求1所述的方法,其特征在于,所述指示信息包括第二信息,所述第二信息用于指示数据滞后到达,所述滞后到达用于表示在接收到所述第二信息时数据尚未到达;
    所述根据所述指示信息,监听物理下行控制信道PDCCH,包括:
    根据所述第二信息,对PDCCH进行监听。
  9. 根据权利要求8所述的方法,其特征在于,所述第二信息包括第二DCI;所述第二DCI没有调度对应的物理下行共享信道PDSCH,所述第二DCI用于指示所述滞后到达;
    所述根据所述第二信息,对PDCCH进行监听,包括:
    响应于所述第二DCI,启动第一定时器监听PDCCH;或者,根据所述第二DCI指示 的CDRX配置参数监听PDCCH。
  10. 根据权利要求9所述的方法,其特征在于,所述第二DCI没有调度对应的PDSCH是利用所述第二DCI中的时域资源分配TDRA域指示的。
  11. 根据权利要求10所述的方法,其特征在于,所述第二DCI中除所述TDRA域之外的至少一个比特位,用于指示所述CDRX的配置参数中的至少一个参数,或者,用于指示所述CDRX的配置参数的参数集的标识,所述参数集中包括至少一个所述CDRX的配置参数。
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,所述第二信息包括第三DCI;所述第三DCI调度的PDSCH为填充PDSCH;
    所述根据所述第二信息,对PDCCH进行监听,包括:
    响应于所述第三DCI,启动第二定时器监听PDCCH。
  13. 一种非连续接收的方法,应用于网络设备,其特征在于,包括:
    向用户设备UE发送指示信息,所述指示信息用于指示数据是否提前到达或用于指示数据滞后到达。
  14. 根据权利要求13所述的方法,其特征在于,所述指示信息包括第一信息,所述第一信息用于指示数据是否提前到达,所述提前到达用于表示在发送所述第一信息时数据已经到达。
  15. 根据权利要求14所述的方法,其特征在于,所述第一信息包括第一下行控制信息DCI,所述第一DCI中的第一预设比特位用于指示数据是否提前到达。
  16. 根据权利要求15所述的方法,其特征在于,所述第一DCI为UE组公共DCI。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一DCI中除第一预设比特位之外的至少一个比特位,用于指示所述CDRX的配置参数中的至少一个参数,或者,用于指示所述CDRX的配置参数的参数集的标识,所述参数集中包括至少一个所述CDRX的配置参数。
  18. 根据权利要求14至17中任一项所述的方法,其特征在于,所述CDRX的配置参数包括偏移时间、开启期间定时器、不活跃定时器或搜索空间集中的至少一项。
  19. 根据权利要求13至17中任一项所述的方法,其特征在于,所述指示信息包括第二信息,所述第二信息用于指示数据滞后到达,所述滞后到达用于表示在发送所述第二信息时数据尚未到达。
  20. 根据权利要求19所述的方法,其特征在于,所述第二信息包括第二DCI;所述第二DCI没有调度对应的物理下行共享信道PDSCH,所述第二DCI用于指示所述滞后到达。
  21. 根据权利要求20所述的方法,其特征在于,所述第二DCI没有调度对应的PDSCH是利用所述第二DCI中的时域资源分配TDRA域指示的。
  22. 根据权利要求21所述的方法,其特征在于,所述第二DCI中除所述TDRA域之外的至少一个比特位,用于指示所述CDRX的配置参数中的至少一个参数,或者,用于指示所述CDRX的配置参数的参数集的标识,所述参数集中包括至少一个所述CDRX的配置参数。
  23. 根据权利要求21所述的方法,其特征在于,所述第二信息包括第三DCI;所述第三DCI调度的PDSCH为填充PDSCH。
  24. 一种非连续接收的装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的指示信息,所述指示信息用于指示数据是否提前到达或用于指示数据滞后到达;
    处理单元,用于根据所述指示信息,监听物理下行控制信道PDCCH。
  25. 一种非连续接收的装置,其特征在于,包括:
    发送单元,用于向用户设备UE发送所述指示信息,所述指示信息用于指示数据是否提前到达或用于指示数据滞后到达。
  26. 一种用户设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,使得所述用户设备实现如权利要求1至12中任一项所述的方法。
  27. 一种网络设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时,使得所述网络设备实现如权利要求13至23中任一项所述的方法。
  28. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被电子设备执行时,实现如权利要求1至12中任一项所述的方法,或者实现如权利要求13至23中任一项所述的方法。
PCT/CN2023/114371 2022-09-23 2023-08-23 非连续接收的方法及装置 WO2024060913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211166990.7A CN117812671A (zh) 2022-09-23 2022-09-23 非连续接收的方法及装置
CN202211166990.7 2022-09-23

Publications (1)

Publication Number Publication Date
WO2024060913A1 true WO2024060913A1 (zh) 2024-03-28

Family

ID=90427148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/114371 WO2024060913A1 (zh) 2022-09-23 2023-08-23 非连续接收的方法及装置

Country Status (2)

Country Link
CN (1) CN117812671A (zh)
WO (1) WO2024060913A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109429258A (zh) * 2017-07-17 2019-03-05 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN111278096A (zh) * 2020-01-21 2020-06-12 展讯通信(上海)有限公司 信道监听的指示方法、装置及存储介质
WO2020191638A1 (zh) * 2019-03-26 2020-10-01 Oppo广东移动通信有限公司 Pdcch监听方法、终端设备和网络设备
WO2021217344A1 (zh) * 2020-04-27 2021-11-04 Oppo广东移动通信有限公司 一种信道监听方法、电子设备及存储介质
CN114828167A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 Dci的发送方法、接收方法、装置、网络侧设备及终端
CN115022948A (zh) * 2018-03-28 2022-09-06 Oppo广东移动通信有限公司 监听pdcch的方法、终端设备和网络设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109429258A (zh) * 2017-07-17 2019-03-05 中国移动通信有限公司研究院 一种信道监听的指示方法、监听方法、终端及网络侧设备
CN115022948A (zh) * 2018-03-28 2022-09-06 Oppo广东移动通信有限公司 监听pdcch的方法、终端设备和网络设备
WO2020191638A1 (zh) * 2019-03-26 2020-10-01 Oppo广东移动通信有限公司 Pdcch监听方法、终端设备和网络设备
CN111278096A (zh) * 2020-01-21 2020-06-12 展讯通信(上海)有限公司 信道监听的指示方法、装置及存储介质
WO2021217344A1 (zh) * 2020-04-27 2021-11-04 Oppo广东移动通信有限公司 一种信道监听方法、电子设备及存储介质
CN114828167A (zh) * 2021-01-18 2022-07-29 大唐移动通信设备有限公司 Dci的发送方法、接收方法、装置、网络侧设备及终端

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "Discussion on potential enhancements for supporting XR", 3GPP TSG RAN WG1 #103-E, R1-2008819, 23 October 2020 (2020-10-23), XP051946702 *
VIVO: "WUS Co-operation with C-DRX", 3GPP TSG-RAN WG2 MEETING #106, R2-1905955, 3 May 2019 (2019-05-03), XP051710301 *

Also Published As

Publication number Publication date
CN117812671A (zh) 2024-04-02

Similar Documents

Publication Publication Date Title
US11871349B2 (en) Sleep method for terminal device and apparatus
EP3641351B1 (en) Multicast bearer management method and terminal device
EP3996427B1 (en) Wake-up signal (wus) detection method and apparatus
EP2651165A1 (en) Method and device for processing carrier aggregation capability information of user equipment
EP3963953A1 (en) Determining pdcch monitoring during on-duration when in power saving mode
CN114424482B (zh) 通信方法及装置
US20230106109A1 (en) Communications Method and Apparatus
WO2012083843A1 (zh) 一种发送方法、基站及终端
WO2020043139A1 (zh) 通信方法、装置及存储介质
WO2020220361A1 (zh) Drx操作方法及相关设备
CN111865536A (zh) 搜索空间的监测、配置方法及装置
WO2018035816A1 (zh) 传输数据的方法、终端设备和基站
CN113950151A (zh) 物理下行控制信道pdcch监测方法、装置及终端
CN107635269B (zh) 调度方法、接入点和站点
WO2023097810A1 (zh) 无线通信方法、终端和网络设备
WO2024060913A1 (zh) 非连续接收的方法及装置
US20230074206A1 (en) Communication method, apparatus, and system
WO2023279865A1 (zh) 一种通信方法及装置
US11523460B2 (en) Method and apparatus for adaptive discontinous reception configuration
WO2017193400A1 (zh) 一种非周期srs的传输方法及装置
WO2018045864A1 (zh) 一种数据传输的方法及终端
WO2023011240A1 (zh) 数据传输方法、装置、网络侧设备及终端
WO2023030037A1 (zh) 信息监听的方法和装置
WO2023024896A1 (zh) 一种信息传输方法、通信装置、芯片及其模组设备
WO2024045790A1 (zh) 信息传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867206

Country of ref document: EP

Kind code of ref document: A1