WO2024045790A1 - 信息传输方法及装置 - Google Patents

信息传输方法及装置 Download PDF

Info

Publication number
WO2024045790A1
WO2024045790A1 PCT/CN2023/101383 CN2023101383W WO2024045790A1 WO 2024045790 A1 WO2024045790 A1 WO 2024045790A1 CN 2023101383 W CN2023101383 W CN 2023101383W WO 2024045790 A1 WO2024045790 A1 WO 2024045790A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
node
time domain
occupied
Prior art date
Application number
PCT/CN2023/101383
Other languages
English (en)
French (fr)
Inventor
刘锟
杨维维
戴博
陈梦竹
胡有军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2024045790A1 publication Critical patent/WO2024045790A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/20Services signaling; Auxiliary data signalling, i.e. transmitting data via a non-traffic channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/06Transport layer protocols, e.g. TCP [Transport Control Protocol] over wireless

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to an information transmission method and device.
  • a signal transmission method includes: a first node sends first information, the first information includes a first part and/or a second part, and the first part includes a first signal and/or a first control information, The second part includes the second signal and/or the second control information.
  • an information transmission method includes: a first node receiving first information from a second node, the first information including a first part and/or a second part, and the first part including a first signal and/or The first control information, the second part includes the second signal and/or the second control information.
  • an information transmission device configured to send first information.
  • the first information includes a first part and/or a second part.
  • the first part includes a first signal and/or a first control.
  • the second part includes a second signal and/or a second control information.
  • an information transmission device which device includes: a receiving unit configured to receive first information from a second node, where the first information includes a first part and/or a second part, and the first part includes a first signal and /or first control information, and the second part includes a second signal and/or second control information.
  • an information transmission device can implement the functions performed in the above aspects or in each possible design.
  • the functions can be implemented by hardware.
  • the information transmission device can include: a processor and a communication interface.
  • the processor can It is used to support the information transmission device to implement the functions involved in any embodiment of the first aspect or the second aspect, for example: the processor sends the first information through the communication interface.
  • the information transmission device may also include a memory, and the memory is used to store necessary computer execution instructions and data for the information transmission device.
  • the processor executes the computer execution instructions stored in the memory, so that the information transmission device executes the information transmission method described in any possible design of the first aspect or the second aspect.
  • a computer-readable storage medium can be a readable non-volatile storage medium.
  • the computer-readable storage medium stores computer instructions or programs. When the computer instructions or programs are stored in the computer When running on the computer, the computer can execute the information transmission method described in the first aspect or any possible design of the above aspect.
  • a computer program product containing instructions is provided.
  • the computer program product When the computer program product is run on a computer, the computer can execute the information transmission method described in the first aspect or any embodiment of the above aspect.
  • Figure 1 is a schematic structural diagram of a communication system according to some embodiments.
  • Figure 2 is a schematic structural diagram of an information transmission device according to some embodiments.
  • Figure 3 is a schematic diagram of an information transmission method according to some embodiments.
  • Figure 4 is a schematic structural diagram of first information according to some embodiments.
  • Figure 5 is a schematic structural diagram of yet another first information according to some embodiments.
  • Figure 6 is a schematic structural diagram of another first information according to some embodiments.
  • Figure 7 is a schematic structural diagram of another first information according to some embodiments.
  • Figure 8 is a schematic structural diagram of an information transmission device according to some embodiments.
  • Figure 9 is a schematic structural diagram of an information transmission device according to some embodiments.
  • A/B can mean A or B.
  • the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • a and/or B includes A only, B only, C only, A and B, A and C, B and C, and A, B and C.
  • At least one of the following” or similar expressions thereof refers to any combination of these items, including any combination of a single item (items) or a plurality of items (items).
  • at least one of a, b, or c can represent: a, b, c, a and b, a and c, b and c, or a and b and c, where a, b, c can be single or multiple.
  • "instruction” may include direct instruction and indirect instruction.
  • the first control information can directly carry the information A itself or its index to achieve the purpose of directly indicating the information A.
  • the first control information may also carry information B that is associated with information A, thereby achieving the purpose of indirectly indicating information A while indicating information B.
  • 5G devices may need to be charged weekly or daily depending on individual usage time.
  • 5G devices consume tens of milliwatts of power in idle/inactive states and hundreds of milliwatts in connected states. Therefore, energy efficiency and user experience can be improved by extending battery life.
  • the 3rd generation partnership project (3GPP) is considering introducing an ultra-low power wake up (LP-WUS) mechanism in Rel-18, that is, the terminal device uses a separate A receiver is used to receive or detect the wake-up signal.
  • the terminal device that receives or detects the wake-up signal wakes up the main wireless device (Main Radio) or turns on the main wireless device, or transfers the main wireless device to the working state, and then carries out data transmission and Data reception.
  • the terminal device does not receive or detect a low-power wake-up signal
  • the main wireless device is in a deep sleep state or is turned off. In this way, the power consumption of the terminal device can be further reduced.
  • the specific structure of the LP-WUS signal has not yet been determined.
  • the wake-up signal which can also be called a low-power wake-up signal, wake-up information, etc., can be used to trigger the terminal device to receive data and/or data transmission.
  • the terminal device is provided with a wake-up circuit (also known as a small low-power circuit, wake-up module, wake-up unit) and a main receiving circuit (also known as a main receiver, main receiving module, main receiving unit) .
  • the wake-up circuit is mainly used to support terminal devices in idle or inactive states to receive and wake-up signals
  • the main receiving circuit is mainly used to receive data and/or data transmission.
  • the terminal device monitors the wake-up signal to wake itself up, it closes the wake-up circuit and turns on the main receiving circuit. If the terminal device does not detect the wake-up signal, it keeps the wake-up circuit turned on and does not turn on the main receiving circuit (at this time, the state of the terminal device can be called wake-up state or LP-WUS state or LP-WUS detection state, etc.). In this way, the power consumption of the terminal device can be reduced.
  • NR New Radio
  • Figure 1 is a schematic structural diagram of a communication system according to some embodiments.
  • the communication system includes a second node and a plurality of first nodes (the first node 1 and the first node in Figure 1 A node 2), a first node can be communicatively connected with one or more second nodes.
  • the second node may be a network device, or a device having the function of a network device.
  • the second node can be used to implement resource scheduling, wireless resource management, wireless access control and other functions of the terminal device.
  • the second node may be any node among a small base station, a wireless access point, a transmission receive point (TRP), a transmission point (TP), and other access nodes.
  • TRP transmission receive point
  • TP transmission point
  • the first node may be a terminal device, or a device having the function of a terminal device.
  • Terminal equipment can also be called terminal, user equipment (UE), mobile station, mobile terminal, etc.
  • Terminal devices can be mobile phones, tablets, computers with wireless transceiver functions, virtual reality terminal devices, augmented reality terminal devices, wireless terminals in industrial control, wireless terminals in driverless driving, wireless terminals in remote surgery, transportation safety Wireless terminals in smart cities, wireless terminals in smart homes, etc.
  • the embodiments of this disclosure do not limit the device form adopted by the terminal device.
  • Figure 1 is only an exemplary framework diagram.
  • the number of nodes included in Figure 1 and the name of each device are not limited.
  • the communication system can also include other nodes, such as Core network equipment.
  • the embodiments of this disclosure do not limit application scenarios.
  • the system architecture and business scenarios described in the embodiments of the present disclosure are for the purpose of explaining the technical solutions of the embodiments of the present disclosure more clearly, and do not constitute a limitation on the technical solutions provided by the embodiments of the present disclosure.
  • Those of ordinary skill in the art will know that with the network With the evolution of architecture and the emergence of new business scenarios, the technical solutions provided by the embodiments of the present disclosure are also applicable to similar technical problems.
  • FIG. 2 is a schematic diagram of the composition of an information transmission device according to some embodiments.
  • the information transmission device 200 may be a second node or a chip or a system on a chip in the second node.
  • the information transmission device 200 may be the first node or a chip or system on a chip in the first node.
  • the information transmission device 200 includes a processor 201 , a communication interface 202 and a communication line 203 .
  • the information transmission device 200 may also include a memory 204.
  • the processor 201, the memory 204 and the communication interface 202 may be connected through a communication line 203.
  • the processor 201 is configured to execute instructions stored in the memory 204 to implement the method for determining antenna parameters provided by embodiments of the present disclosure.
  • the processor 201 may be a CPU, a general-purpose processor, a network processor (NP), a digital signal processor (DSP), a microprocessor, a microcontroller, or a programmable logic device. PLD) or any combination thereof.
  • the processor 201 may also be other devices with processing functions, such as circuits, devices or software modules, which is not limited by this disclosure.
  • processor 201 may include one or more CPUs, including, for example, CPU0 and CPU1 in FIG. 2 .
  • the information transmission device 200 includes multiple processors.
  • the processor 201 in FIG. 2 it may also include a processor 207.
  • Communication interface 202 is used to communicate with other devices or other communication networks.
  • Other communication networks can be Ethernet, wireless access network (radio access network, RAN), wireless local area networks (wireless local area networks, WLAN), etc.
  • the communication interface 202 may be a module, a circuit, a communication interface, or any other device capable of realizing communication.
  • the communication line 203 is used to transmit information between components included in the information transmission device 200 .
  • the memory 204 is used to store instructions, program codes, or some data. Wherein, the instructions may be computer programs.
  • memory 204 may be a read-only memory (ROM) or other type of static storage device that can store static information and/or instructions, or may be a random access memory (random access memory, RAM) or other types of dynamic storage devices that can store information and/or instructions, or electrically erasable programmable read-only memory (EEPROM), compact disc read-only memory, CD-ROM) or other optical disc storage, optical disc storage (including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, etc., this disclosure is not limited to this.
  • ROM read-only memory
  • RAM random access memory
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc read-only memory
  • optical disc storage including compressed optical discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • magnetic disk storage media or other magnetic storage devices etc.
  • the memory 204 may exist independently of the processor 201, or may be integrated with the processor 201.
  • the memory 204 may be located within the information transmission device 200 or outside the information transmission device 200, and this disclosure is not limited thereto.
  • the information transmission device 200 further includes an output device 205 and an input device 206.
  • the input device 206 is a device such as a keyboard, a mouse, a microphone, or a joystick
  • the output device 205 is a device such as a display screen, a speaker, or the like.
  • the information transmission device 200 may be a desktop computer, a portable computer, a network server, a mobile phone, a tablet computer, a wireless terminal, an embedded device, a chip system, or a device with a similar structure as shown in FIG. 2 .
  • the composition structure shown in Figure 2 does not constitute a limitation on each device in Figure 1 and Figure 2.
  • each device of FIGS. 1 and 2 may include more or fewer components than shown, or combinations of certain components, or different component arrangements.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • Figure 3 is a signal transmission method according to some embodiments. As shown in Figure 3, the method may include S301 to S302.
  • the second node sends the first information.
  • the second node may be the second node in Figure 1, or a device corresponding to the second node in Figure 1, such as a chip or a system on a chip.
  • the first information may also be called a wake-up signal or LP-WUS signal.
  • the first information may include a first part and/or a second part.
  • the first part may include a first signal and/or first control information
  • the second part may include a second signal and/or second control information.
  • the second node may send at least one of the first part or the second part respectively. That is, the first part and the second part are independent of each other.
  • the second node can send the first part first and then the second part.
  • the second node can send the second part first and then the first part.
  • the second node can send the first part and the second part synchronously.
  • the first signal, the second signal, the first control information and the second control information are respectively described below.
  • the first signal may also be called a long low-power wake-up signal (Long LP-WUS) or a long wake-up signal, which is not limited by this disclosure.
  • Long LP-WUS long low-power wake-up signal
  • a long wake-up signal Long LP-WUS
  • the first signal may be used by the first node to perform at least one of synchronization, channel measurement, as a discovery signal, or to indicate system information changes.
  • the first signal serves as a discovery signal
  • the first signal is used to discover at least one of the following: first control information, the second part, the second signal, and the second control information.
  • Channel measurements may include reference signal receiving power (RSRP) measurements and/or reference signal received quality (RSRQ) measurements.
  • the second signal may also be called a short low-power wake-up signal (Short LP-WUS) or a short wake-up signal, which is not limited by this disclosure.
  • Short LP-WUS short low-power wake-up signal
  • the second signal can be used to trigger the first node to exit the sleep state or exit the LP-WUS detection state, or to trigger the first node to exit the LP-WUS detection state and perform measurement by detecting the synchronization signal block (SSB). and/or indicate RRM measurements.
  • SSB synchronization signal block
  • the first control information can be used to indicate at least one of the following:
  • the first control information may include location information of the first signal, or identification information indicating the location information of the first signal.
  • the location information of the first signal may include the starting location information of the first signal and the time at which the first signal is located. Domain location information.
  • the starting position information of the first signal may include starting symbol indication information of the first signal, and/or starting time slot indication information of the first signal.
  • the first node returns to the paging process.
  • the first control information may include fallback indication information, and the fallback indication information may be used to instruct the terminal device to fall back to a paging process, such as falling back to a legacy paging process.
  • the first control information may include system information change indication information.
  • the first node when the first node receives the first control information, and the first control information is used to indicate a change of system information, the first node can exit the LP-WUS state and receive the system information block (SIB). )information.
  • SIB system information block
  • Radio resource management (RRM) measurement C4. Radio resource management (RRM) measurement.
  • the first control information may include RRM measurement indication information, or information used to indicate RRM measurement.
  • the information indicating RRM measurement may include, for example, configuration information of RRM measurement.
  • the first node receives the first control information, and the first control information is used to indicate RRM measurement, or includes information used to indicate RRM measurement.
  • the first node can exit the LP-WUS state and detect SSB performs RRM measurements.
  • the first control information may include indication information indicating whether the second part includes the second control information.
  • the indication information can be implemented with one or more bits. For example, assuming that the indication information is implemented with one bit, when the bit is "0", it means that the second part does not include the second control information; when the bit is "1", it means that the second part includes the second control information. .
  • the configuration information of the second control information may include the length of the interval between the second control information and the second signal, and/or the encoding method adopted for the second control information.
  • the first control information may include configuration information of the second control information, or may include information indicating the configuration information of the second control information.
  • the first node may obtain the configuration information of the second control information based on the information indicating the configuration information of the second control information.
  • the first node may obtain the configuration information of the second control information from the second node, or the first node may be pre-configured with the configuration information of the second control information.
  • the configuration change information of the first information may include at least one of the following: the first part of the configuration change information; the second part of the configuration change information; indication information of whether to send the first signal and/or the second signal in a time window; or, Indication information of whether to send the first signal and/or the second signal within one or more time slots of a time window.
  • the second node may use the first control information to indicate not to transmit within a time window or one or more time slots of a time window.
  • first signal and/or second signal the configuration change information of the first information may include time window information (such as specific time information or identification information corresponding to the time window) and information indicating not to send the first part and/or the second part (which may be a number). or characters or a combination of numbers and characters).
  • time window information such as specific time information or identification information corresponding to the time window
  • information indicating not to send the first part and/or the second part which may be a number. or characters or a combination of numbers and characters.
  • the first control information may include starting resource indication information of the first control information, and the starting resource indication information may be identification information (such as number, sequence number, etc.) of the starting resource of the first control information.
  • Termination resource carrying the first control information is
  • the first control information may include termination resource indication information of the first control information
  • the termination resource indication information may be identification information (such as number, sequence number, etc.) of the termination resource of the first control information.
  • the starting information identifier of the first control information means detecting the start position of the first control information.
  • the end information identifier of the first control information For example, detecting the end information identifier indicates that the end position of the first control information is detected.
  • the starting resource (or starting information identifier) and the ending resource (or ending information identifier) of the first control information in C8 to C11 are used.
  • the first node can accurately determine the starting position and ending position of the first control information.
  • the terminal device can accurately detect the second control information.
  • the second node can use one first control information to carry multiple different information to reduce signaling overhead.
  • the second control information can be used to indicate at least one of the following:
  • the second control information is used to indicate identification information of one or more first nodes (such as device identification, media access control Address (media access control address, MAC), etc.).
  • Configuration change information of the first information For example, reference may be made to the description of C7 in the first control information, which will not be described in detail here.
  • D5 to D8 may refer to the descriptions of C8 to C11 in the above first control information respectively, which will not be described in detail in this disclosure.
  • the second control information may be configured for a first node or a first node group.
  • a first node group may include multiple first nodes.
  • the starting resource (or starting information identifier) and the ending resource (or ending information identifier) of the second control information in D5 to D8 are used.
  • the first node can accurately determine the starting position and ending position of the second control information. Furthermore, the first node can accurately detect the first control information.
  • the second node may send the first information to the first node after generating the first information.
  • the first information may be actively generated by the second node (for example, generated when the second node needs to send data to the first node), or may be generated by the second node in response to receiving instruction information from other devices (such as the core network). Or, generated when receiving indication information of data that needs to be sent to the first node.
  • the time domain resource occupied by the first information may include at least one time domain unit, and for example, the time domain unit may be a symbol.
  • the frequency domain resource occupied by the first information may include at least one frequency domain unit.
  • the frequency domain unit may be a subcarrier.
  • the first information when the first information includes a first part and a second part, in the time domain, the first part may occupy at least one symbol, and the second part may occupy at least one symbol.
  • the first part In the frequency domain, the first part may occupy at least one subcarrier, and the second part may occupy at least one subcarrier.
  • the first node receives the first information from the second node.
  • the first node receiving the first information from the second node can also be described as the first node monitoring the first information sent by the second node, or the first node detecting the first information sent by the second node.
  • the first information may include a first part, or a second part, or a first part and a second part.
  • the second node can flexibly construct the first information according to the format of the first information.
  • each part may include one signal and/or control information.
  • the first information includes a first part and a second part and each part includes one signal and control information, that is, multiple signals and multiple control information are combined. Information is carried through one message to meet the diversification of needs.
  • the method for the first node to receive the first information of the second node may include: the first node may receive the first information from the second node according to the configuration information of the first information.
  • the configuration information of the first information may be pre-configured by the first node, or may be obtained by the first node from other devices. For example, the first node may obtain it from the second node.
  • the configuration information of the first information may include configuration information of the first information in the frequency domain and/or configuration information in the time domain.
  • the following describes the configuration information of the first information in the frequency domain and the configuration information in the time domain.
  • the first signal and the second signal independently configure at least one of the following parameters:
  • the subcarrier spacing, the bandwidth of the occupied frequency domain resources, or the location of the occupied frequency domain resources are defined.
  • the bandwidth of the occupied frequency domain resource may be the number of occupied subcarriers
  • the position of the occupied frequency domain resource may be the number of occupied subcarriers. The location of the carrier.
  • the first signal and the second signal may satisfy at least one of the following relationships in the frequency domain:
  • the subcarrier spacing configured for the first signal is the same as the subcarrier spacing configured for the second signal.
  • the bandwidth of the frequency domain resource occupied by the first signal is the same as the bandwidth of the frequency domain resource occupied by the second signal.
  • the location of the frequency domain resource occupied by the first signal is the same as the location of the frequency domain resource occupied by the second signal.
  • the position of the first signal on the time domain resource is related to the position of the time domain resource occupied by the SSB.
  • SSB can be configured through the synchronization signal block measurement time configuration (SS/PBCH block measurement time configuration, SMTC).
  • SS/PBCH block measurement time configuration SS/PBCH block measurement time configuration
  • the position of the first signal on the time domain resource is related to the position of the SSB on the time domain resource, which may include: the position of the time domain resource occupied by the first signal is the same as the position of the time domain resource occupied by the SSB; or , There is an offset value between the position of the time domain resource occupied by the first signal and the position of the time domain resource occupied by the SSB.
  • the offset value can be set as needed; or, the starting position of the time domain resource occupied by the first signal is different from the position of the time domain resource occupied by the SSB.
  • the starting position of the time domain resources occupied by SSB is the same. in this way.
  • the first node can accurately determine the position of the first signal on the time domain resource according to the position of the SSB on the time domain resource.
  • the first signal and the second signal independently configure at least one of the following parameters: the size of the occupied time domain resource, or the location of the occupied time domain resource.
  • the number of time domain units occupied by the first signal is greater than or equal to the number of time domain units occupied by the second signal.
  • the number of time domain units occupied by the first signal is N times that of the time domain units occupied by the second signal, and N is a positive integer.
  • Time domain units can be symbols or units divided according to other granularities. In this way, the second node can accurately determine when to detect the first signal and the second signal based on the configuration information of the first signal and the second signal in the time domain, thereby avoiding power consumption caused by premature detection or blind detection.
  • the first node may receive the first information sent by the second node according to the preconfigured configuration information of the first information. It is ensured that the first node can accurately receive the first information sent by the second node.
  • the first signal may be used to carry the first sequence
  • the second signal may be used to carry the second sequence.
  • the relationship between the first sequence and the second sequence can satisfy at least one of the following:
  • the length of the first sequence is greater than or equal to the length of the second sequence.
  • the length of the first sequence is M times the length of the second sequence, and M is a positive integer.
  • the first sequence includes K second sequences, and K is a positive integer.
  • K second sequences refer to K repetitions of the second sequence.
  • K 3 and the second sequence is 101101
  • the first sequence can be 101101101101101.
  • the first sequence refers to K repetitions of one of the multiple sequences, and may also include K different second sequences.
  • the first sequence may include K 10s or K 11s, or the first sequence may include L1 10s and L2 11s.
  • the second node carries multiple sequences in a dispersed manner to avoid the problem of a single signal being too large and reduce the pressure on the first node to analyze the signal.
  • K1 first parts may be configured within a time window.
  • K1 is a positive integer.
  • the time window can satisfy at least one of the following: the size of the time window is configured by the second node (for example, the second node can configure it for the first node through RRC information), the time window includes M1 discontinuous reception cycles (DRX) cycle), the time window includes Q1 STMC cycles.
  • the size of the time window is configured by the second node (for example, the second node can configure it for the first node through RRC information)
  • the time window includes M1 discontinuous reception cycles (DRX) cycle
  • the time window includes Q1 STMC cycles.
  • M1 and Q1 are positive integers.
  • the time window when the time window includes M1 DRX cycles, at least one first part is configured in one DRX cycle.
  • a first part is configured to indicate one STMC cycle.
  • the second node may send the first signal to the first node according to the configured time window.
  • the first node can receive the first signal within the time window. In this way, it is avoided that the first node is always in Detecting the status of the first information reduces the power consumption of detecting the first information.
  • the method provided by the embodiment of the present disclosure may further include: the second node/the first node determines the information corresponding to the first index value based on the first index value.
  • the first index value may be pre-configured by the second node/first node.
  • the second node may obtain it from other devices, such as the second node obtaining it from a core network device.
  • the first node obtains it from the second node.
  • the first index value may be determined according to at least one of the type of the first node, the operating bandwidth of the first node, and the number of receiving antennas supported by the first node.
  • the type of the first node may include at least one of a normal (normal) NR node, a reduced capability (reduced capability, Red Cap) node, a coverage enhancement (coverage enhancement, CE) node, and a coverage recovery (coverage recovery, CR) node.
  • a normal (normal) NR node a reduced capability (reduced capability, Red Cap) node
  • a coverage enhancement coverage enhancement, CE
  • CR coverage recovery
  • CE nodes and CR nodes can also be divided into multiple levels, which is not limited by this disclosure.
  • the second node may be configured with a corresponding relationship between the first index value and the type of the first node, the operating bandwidth of the first node, and the number of receiving antennas supported/configured by the first node. In this way, after the second node obtains the sum of the type of the first node, the operating bandwidth of the first node, and the number of receiving antennas of the first node, it can determine the first index value based on the corresponding relationship. Furthermore, the second node can simply and quickly determine the information corresponding to the first index value based on the first index value.
  • the information corresponding to the first index value may include at least one of the following information:
  • G5 the length of the first sequence.
  • G6 the length of the second sequence.
  • G7 The number of repeated transmissions of the first sequence.
  • G8 the number of repeated transmissions of the second sequence.
  • the information of G1 to G8 is only exemplary, and the information corresponding to the first index value may also include other information, such as the number of frequency domain resources occupied by the first signal and/or the second signal, This disclosure does not limit the number of repeated transmissions in the frequency domain.
  • the first node and the second node can quickly and accurately determine the information of the first signal and the second signal according to the first index value.
  • the method provided by the embodiment of the present disclosure may also include: the first node obtains a timing error (Timing Error) by detecting the first signal.
  • Timing Error Timing Error
  • the first node can accurately determine the time to detect the second part through the timing error, avoid sliding the detection of the second part within a time window, improve the success rate of detecting the second part, and also reduce the detection time of the first node.
  • the second part of the power consumption is the first node.
  • the method provided by the embodiment of the present disclosure may further include: the first node performs measurement according to the first signal to obtain a measurement result.
  • the measurement result is less than or equal to the threshold, the first node exits the first information detection state, or the first node exits the first information detection state and performs channel measurement through SSB.
  • the first information detection state can also be described as LP-WUS detection state, wake-up signal detection state, wake-up signal detection state, etc. Wake-up signal monitoring status, etc.
  • the measurement results may include parameter values of RSRP and/or parameter values of RSRQ.
  • the threshold may be pre-configured by the first node, or may be configured by the second node for the first node. The size of the threshold can be set as needed, and this disclosure does not limit this.
  • the first node may exit the first information detection state. Further, the first node may also perform channel measurement or downlink measurement through SSB.
  • the first node when the first signal is used for measurement by the first node, the first node detects the first signal, performs channel measurement, and when the channel quality is poor, exits the detection state and performs downlink through SSB. Measurement. In this way, it is avoided that the first node cannot perform data transmission normally when the channel quality is poor subsequently.
  • the method provided by the embodiment of the present disclosure further includes: the main receiver of the first node exits the sleep state and performs data transmission and/or Receive data.
  • the wake-up circuit of the first node can trigger the main receiver to exit the sleep state and receive data sent by the second node and/or send data to the second node.
  • the second control information includes identification information of the first node, indicating that the first node needs to transmit data or receive data.
  • the main receiver of the first node can exit the sleep state, and can then transmit and/or receive data.
  • the first part when the time domain resources occupied by the first part overlap with the time domain resources occupied by the SSB, if the frequency domain resources occupied by the first part overlap with the frequency domain resources occupied by the SSB, the first part is abandoned for transmission. In this way, the problem of sending SSB and the first part at the same time on overlapping frequency domain resources is avoided, resulting in false detection by the first node. If the frequency domain resources occupied by the first part do not overlap with the frequency domain resources occupied by the SSB, the first information includes the first part and the second part. In this way, frequency domain resources can be utilized to the greatest extent and frequency domain resources can be saved.
  • the first node detects SSB. If the detection period does not exceed the RRM detection period, the first node can detect the SSB or the first part.
  • the second part when the time domain resources occupied by the first part overlap with the time domain resources occupied by the second part, the second part is abandoned for transmission. Accordingly, the first node does not detect the second part on overlapping time domain resources.
  • the first node cannot accurately detect the signal due to transmitting the first part and the second part in the same frequency domain.
  • the first node does not detect the second part on overlapping time domain resources, which reduces the power consumption of the first node detecting the second part.
  • the channel measurement period configured by the first node includes 4 DRX cycles. That is, within four consecutive DRX cycles, the first node needs to perform at least one channel measurement (also called RRM measurement, downlink measurement).
  • one DRX cycle is 2.56 seconds (s)
  • Figure 4 is a schematic structural diagram of first information according to some embodiments.
  • the first node is configured with 4 SSBs, namely SSB0, SSB1, SSB2 and SSB3.
  • the transmission period of SSB is 10 milliseconds (ms)
  • the subcarrier spacing used is 15 kilohertz (kHz).
  • the time length of a slot is 1ms, including 14 orthogonal frequency division multiplexing (OFDM) symbol.
  • 4 SSBs occupy 2 slots.
  • a time domain unit can be recorded as SlotNum5.
  • SSB0 occupies symbols 2 to 5 in the first slot
  • SSB1 occupies symbols 8 to 11 in the first slot
  • SSB2 occupies symbols 2 to 5 in the second slot
  • SSB3 occupies the second The symbols in each slot are 8 to 11.
  • the second node sends 4 SSBs in the first two slots of the time domain unit (SlotNum5) corresponding to Index0, Index2, Index4, Index6, ..., Index2046.
  • the sending period of the first part is 2560ms, as shown in Figure 4, in a
  • the first part of the channel measurement cycle is sent in the time domain unit corresponding to Index1, Index513, Index1025, and Index1537.
  • the second part is sent on time domain units corresponding to other numbers except the time domain units corresponding to Index1, Index513, Index1025, and Index1537.
  • the second signal may be sent in the fourth time slot of the time domain unit corresponding to the numbers Index2, Index3, Index4, Index5,..., Index514, Index515, Index516... of a channel measurement cycle.
  • the first node may obtain the timing error after detecting the first signal, and detect the second part based on the timing error.
  • the first control information may include location information occupied by the first signal.
  • the location information occupied by the first signal may include starting symbol information and/or starting time slot information.
  • the location information occupied by the first signal may include Index1-slot5 (that is, the 6th time slot numbered Index1 of a channel measurement cycle), Index513-slot5, Index1025-slot5, and Index1537-slot5.
  • the main receiver of the first node exits the sleep state and performs data transmission and/or data reception.
  • the technical solution in Figure 4 clarifies the structure of the first information and the occupied time domain resources and location.
  • the second node can send each part of the first information on the time domain resource corresponding to the first information.
  • the first node can accurately detect/receive each part of the first information according to the time domain resources occupied by the first information.
  • the first signal includes a first portion.
  • Figure 5 is a schematic structural diagram of another first information according to some embodiments. As shown in Figure 5, one RRM measurement cycle includes 4 DRX cycles, that is, the first node performs at least one RRM measurement within 4 DRX cycles. . Combined with the example in Figure 4, an RRM measurement cycle can include 2048 time domain units (SlotNum5), which are Index 0 ⁇ Index 2047.
  • SlotNum5 time domain units
  • one DRX cycle includes two first parts, that is, the transmission period of the first part is 1/2 DRX cycle.
  • the numbers of the time domain units occupied by the first part are the time domain units (SlotNum5) corresponding to Index0, Index256, Index512, Index768, Index1024, Index1280, Index1536, and Index1792.
  • the first part can be used by the first node for synchronization.
  • one time domain unit includes 5 time slots.
  • the technical solution in Figure 5 clarifies the time domain resources and positions occupied by the first part of the first information.
  • the second node can send the first part on the time domain resource corresponding to the first part.
  • the first node can accurately detect/receive the first part according to the time domain resources occupied by the first part.
  • the first information includes a first part and a second part.
  • the first part includes the first signal and the first control information
  • the second part includes the second signal.
  • the first part occupies at least one symbol
  • the second part occupies at least one symbol.
  • the first part occupies at least one symbol
  • the second part occupies one subcarrier.
  • the terminal device can be divided into: normal NR UE, RedCap UE, CE UE, and CR UE according to the type of the terminal device.
  • Normal NR UE configuration is: the first part and the second part do not support repeated transmission.
  • RedCap UE, CE UE, CR UE are configured as follows: the first part and the second part support repeated transmission.
  • RedCap UE, CE UE, and CR UE can independently configure the number of repeated transmissions supported by each first part and second part.
  • the first and second parts can use the same number of retransmissions.
  • the first part and the second part can use the same number of retransmissions.
  • RedCap UE and CE UE can use the same number of retransmissions.
  • the second node can accurately determine the number of times that the first part and the second part corresponding to each type are repeatedly sent according to the type of the first node.
  • FIG. 6 is a schematic structural diagram of another first information according to some embodiments.
  • one channel measurement cycle includes 4 DRX cycles.
  • a DRX cycle includes 512 time domain units (SlotNum5).
  • the second node can send the first part in the first time domain unit (SlotNum5) of each DRX cycle, and repeatedly send the first part 4 times. That is, the second node can repeatedly send the first part 4 times in the time domain units (SlotNum5) corresponding to Index 0 ⁇ Index 3, Index 512 ⁇ Index 515, Index 1024 ⁇ Index 1027, Index 1536 ⁇ Index 1539.
  • first node detection solutions for the first part may include:
  • Solution 1 For normal NR UE, the first node can detect the first part at any Index in the time domain unit corresponding to Index0 ⁇ Index3.
  • Solution 2 For RedCap UE, if the first node enables the coverage recovery function or coverage enhancement function, the first node can detect each time domain unit in the time domain unit corresponding to Index0 ⁇ Index3 and perform combination detection (Combination detection) . That is, the first node repeatedly detects the first part 4 times.
  • Combination detection Combination detection
  • Solution 3 For RedCap UE, if the first node does not enable the coverage recovery function or the coverage enhancement function, but the number of antennas supported by the first node is 1, the first node can independently detect the time domain unit corresponding to Index0 ⁇ Index1. The first part, and the first part in detecting Index2 ⁇ Index3. The first node can send each detection as 2 repetitions of the first part, and then merge the detections.
  • Solution 4 For RedCap UE, if the first node does not enable the coverage recovery function or the coverage enhancement function, but the working bandwidth of the first node is less than 20 megahertz (M) Hz, the first node can independently detect the times corresponding to Index0 ⁇ Index1. The first part in the domain unit, and the first part in Index2 ⁇ Index3. The first node can send each detection as 2 repetitions of the first part, and then merge the detections.
  • M megahertz
  • the first node when the first node detects the first part of the time domain unit corresponding to Index 512 ⁇ Index 515, Index 1024 ⁇ Index 1027, and Index 1536 ⁇ Index 1539, it can adopt the same detection scheme as Index0 ⁇ Index3. This disclosure No further details will be given on this.
  • Figure 7 is a schematic structural diagram of another first information according to some embodiments.
  • one channel measurement cycle includes 4 DRX cycles, and one DRX cycle includes 512 time domain units ( SlotNum5).
  • the second node can be used multiple times in each DRX cycle (for example, each time in Figure 7 Configure 3 opportunities to send the second part in a DRX cycle) to send the second part, and send the second part 4 times at each opportunity.
  • the second part is sent repeatedly 4 times.
  • the following takes the second node sending the second part on the time domain unit corresponding to Index4 ⁇ Index6 as an example.
  • Different types of solutions for the first node to detect the second part may include:
  • Solution 1 For normal NR UE, the first node can detect the second part of any transmission in the time domain unit corresponding to Index4 ⁇ Index6.
  • Solution 2 For RedCap UE, if the first node enables the coverage recovery function or the coverage enhancement function, the first node can detect the second part of the four repeated transmissions in Index4 ⁇ Index6.
  • Option 3 For RedCap UE, if the first node does not enable the coverage recovery function or the coverage enhancement function, but the number of antennas supported by the first node is 1, the first node can independently detect the time domain unit corresponding to Index4 ⁇ Index6. The second part of the first two repeated transmissions, and the second part of the last two repeated transmissions in the time domain unit corresponding to Index4 to Index6 are detected.
  • Solution 4 For RedCap UE, if the first node does not enable the coverage recovery function or the coverage enhancement function, but the working bandwidth of the first node is less than 20 megahertz (M) Hz, the first node can independently detect the times corresponding to Index4 ⁇ Index6. The second part of the first two repeated transmissions in the domain unit, and the second part of the last two repeated transmissions in the time domain unit corresponding to Index4 to Index6 are detected.
  • M megahertz
  • the first node can determine when to detect the first part and the number of times to detect it, to avoid the first The node is always in the state of detecting the first part, which reduces the power consumption of the first node.
  • Embodiments of the present disclosure can divide the signal detection device into functional modules or functional units according to the above method embodiments.
  • each functional module or functional unit can be divided corresponding to each function, or two or more functions can be integrated into in a processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules or functional units.
  • the division of modules or units in the embodiments of the present disclosure is schematic and is only a logical function division. In actual implementation, there may be other division methods.
  • FIG. 8 is a schematic structural diagram of an information transmission device according to some embodiments.
  • the signal transmission device 80 can be used to perform the second step in the above embodiment.
  • the signal transmission device 80 shown in FIG. 8 may include: a sending unit 801.
  • Sending unit 801 used to send first information.
  • the first information includes a first part and/or a second part.
  • the first part includes a first signal and/or first control information
  • the second part includes a second signal and/or second control information.
  • the first signal is used by the first node to perform at least one of synchronization, channel measurement, or indicating system information changes.
  • the position of the time domain resource occupied by the first signal is related to the position of the time domain resource occupied by the SSB.
  • the location of the time domain resource occupied by the first signal is related to the location of the time domain resource occupied by the SSB, including the location of the time domain resource occupied by the first signal being the same as the location of the time domain resource occupied by the SSB; or There is an offset value between the position of the time domain resource occupied by the first signal and the position of the time domain resource occupied by the SSB; or the starting position of the time domain resource occupied by the first signal and the starting position of the time domain resource occupied by the SSB Same location.
  • the first control information is used to indicate at least one of the following: starting location information of the first signal, time domain location information of the first signal, fallback to paging process, system information change, RRM Measure whether the second part includes the second control information, the configuration information of the second control information, the configuration change information of the first information, the starting resource of the first control information, the new termination resource of the first control, and the The starting information identifier and the ending information identifier of the first control information.
  • the configuration change information of the first information includes at least one of the following: configuration change information of the first signal, configuration change information of the second signal, whether to send the first signal and/or the second signal within a time window. Indication information of the signal, indication information of whether to send the first signal and/or the second signal in one or more time slots within a time window.
  • the second signal is used to instruct the first node to exit the sleep state and/or RRM measurement.
  • the second control information includes at least one of the following: falling back to the paging process, system information change, RRM measurement, identification information of the first node, configuration change information of the first information, carrying the second Indication information of the start resource of the control information, indication information of the end resource carrying the second control information, start information identification of the second control information, and end information identification of the second control information.
  • the configuration change information of the first information includes at least one of the following: configuration change information of the first signal, configuration change information of the second signal, whether to send the first signal and/or the second signal within a time window. Indication information of the signal, indication information of whether to send the first signal and/or the second signal in one or more time slots within a time window.
  • the first signal and the second signal satisfy at least one of the following relationships in the frequency domain: the subcarrier spacing configured by the first signal is the same as the subcarrier spacing configured by the second signal, and the frequency domain occupied by the first signal
  • the bandwidth of the resource is the same as the bandwidth of the frequency domain resource occupied by the second signal
  • the position of the frequency domain resource occupied by the first signal is the same as the position of the frequency domain resource occupied by the second signal.
  • the first signal and the second signal independently configure at least one of the following parameters: subcarrier spacing, bandwidth of occupied frequency domain resources, size of occupied frequency domain resources, and size of occupied time domain resources. , the location of occupied time domain resources.
  • the number of time domain units occupied by the first signal is greater than or equal to the number of time domain units occupied by the second signal, or the number of time domain units occupied by the first signal is equal to the number of time domain units occupied by the second signal. N times the number, N is a positive integer.
  • the first signal is used to carry the first sequence
  • the second signal is used to carry the second sequence
  • the length of the first sequence is greater than or equal to the length of the second sequence; or the length of the first sequence is M times the length of the second sequence, and M is a positive integer; or the first sequence includes Kth Binary sequence, K is a positive integer.
  • the signal transmission device 80 further includes a determining unit 802 .
  • the determining unit 802 is configured to determine at least one of the following information according to the first index value: the number of time domain units occupied by the first signal, the number of time domain units occupied by the second signal, the first signal repeating in the time domain number of times sent, The number of times the second signal is repeatedly transmitted in the time domain, the length of the first sequence, the length of the second sequence, the number of repeated transmissions of the first sequence, and the number of repeated transmissions of the second sequence.
  • the first index value is determined according to at least one of a type of the first node, an operating bandwidth of the first node, and a number of receiving antennas supported by the first node.
  • K1 first parts are configured in a time window, K1 is a positive integer, and the time window satisfies at least one of the following: the size of the time window is configured by the second node; the time window includes M1 DRX cycles, M1 is a positive integer; the time window includes Q1 STMC cycles, and Q1 is a positive integer.
  • the time window includes M1 DRX cycles, at least one first part is configured in one DRX cycle; or, if the time window includes Q1 STMC cycles, at least one first part is configured in one STMC cycle. part.
  • the first part when the time domain resources occupied by the first part overlap with the time domain resources occupied by the SSB, if the frequency domain resources occupied by the first part overlap with the frequency domain resources occupied by the SSB, the first part is abandoned for transmission.
  • the second part when the time domain resources occupied by the first part overlap with the time domain resources occupied by the second part, the second part is abandoned for transmission.
  • the determining unit 802 in FIG. 8 may be replaced by a processor, and the processor may integrate the functions of the determining unit 802.
  • the information transmission device 80 involved in the embodiment of the present disclosure may be the information transmission device shown in FIG. 2 .
  • Figure 9 is a schematic structural diagram of an information transmission device according to some embodiments.
  • the signal transmission device 90 It can be used to perform the functions related to the first node in the above embodiment.
  • the signal transmission device 90 may include: a receiving unit 901.
  • the receiving unit 901 is used to receive the first information sent from the second node.
  • the first information includes a first part and/or a second part.
  • the first part includes a first signal and/or first control information
  • the second part includes a second signal and/or second control information.
  • the first signal is used by the first node to perform at least one of synchronization, channel measurement, serving as a discovery signal, or indicating a system information change.
  • the position of the time domain resource occupied by the first signal is related to the position of the time domain resource occupied by the SSB.
  • the location of the time domain resource occupied by the first signal is related to the location of the time domain resource occupied by the SSB, including the location of the time domain resource occupied by the first signal being the same as the location of the time domain resource occupied by the SSB; or There is an offset value between the position of the time domain resource occupied by the first signal and the position of the time domain resource occupied by the SSB; or the starting position of the time domain resource occupied by the first signal and the starting position of the time domain resource occupied by the SSB Same location.
  • the signal transmission device 90 may further include a detection unit 902 .
  • the detection unit 902 is configured to perform channel measurement according to the first signal and obtain a measurement result.
  • the detection unit 902 is also configured to exit the first information detection state if the measurement result is less than or equal to the threshold, or exit the first information detection state and perform channel measurement by detecting SSB.
  • the first control information is used to indicate at least one of the following: initiation of the first signal Location information, time domain location information where the first signal is located, fallback to paging process, system information change, RRM measurement, whether the second part includes the second control information, configuration information of the second control information, configuration of the first information Change information, the starting resource of the first control information, the new ending resource of the first control, the starting information identifier of the first control information, and the ending information identifier of the first control information.
  • the configuration change information of the first information includes at least one of the following: configuration change information of the first signal, configuration change information of the second signal, whether to send the first signal and/or the second signal within a time window. Indication information of the signal, indication information of whether to send the first signal and/or the second signal in one or more time slots within a time window.
  • the second signal is used to instruct the first node to exit the sleep state and/or RRM measurement.
  • the second control information includes at least one of the following: falling back to the paging process, system information change, RRM measurement, identification information of the first node, configuration change information of the first information, carrying the second Indication information of the start resource of the control information, indication information of the end resource carrying the second control information, start information identification of the second control information, and end information identification of the second control information.
  • the configuration change information of the first information includes at least one of the following: configuration change information of the first signal, configuration change information of the second signal, whether to send the first signal and/or the second signal within a time window. Indication information of the signal, indication information of whether to send the first signal and/or the second signal in one or more time slots within a time window.
  • the signal transmission device 90 may also include a processing unit 903 for controlling the main receiver of the first node to exit the sleep state, and perform data transmission and/or receive data.
  • the first signal and the second signal satisfy at least one of the following relationships in the frequency domain: the subcarrier spacing configured by the first signal is the same as the subcarrier spacing configured by the second signal, and the frequency domain occupied by the first signal
  • the bandwidth of the resource is the same as the bandwidth of the frequency domain resource occupied by the second signal
  • the position of the frequency domain resource occupied by the first signal is the same as the position of the frequency domain resource occupied by the second signal.
  • the first signal and the second signal independently configure at least one of the following parameters: subcarrier spacing, bandwidth of occupied frequency domain resources, size of occupied frequency domain resources, and size of occupied time domain resources. , the location of occupied time domain resources.
  • the number of time domain units occupied by the first signal is greater than or equal to the number of time domain units occupied by the second signal, or the number of time domain units occupied by the first signal is equal to the number of time domain units occupied by the second signal. N times the number, N is a positive integer.
  • the first signal is used to carry the first sequence
  • the second signal is used to carry the second sequence
  • the length of the first sequence is greater than or equal to the length of the second sequence; or the length of the first sequence is M times the length of the second sequence, and M is a positive integer; or the first sequence includes Kth Binary sequence, K is a positive integer.
  • the signal transmission device 90 further includes a detection unit 902 .
  • the detection unit 902 is configured to determine at least one of the following information according to the first index value: the number of time domain units occupied by the first signal, the number of time domain units occupied by the second signal, the number of time domain units occupied by the first signal in the time domain The number of repeated transmissions, the number of repeated transmissions of the second signal in the time domain, the length of the first sequence, the length of the second sequence, the number of repeated transmissions of the first sequence, and the number of repeated transmissions of the second sequence.
  • the first index value is based on the type of the first node, the operating bandwidth of the first node, the Determined by at least one of the number of receiving antennas supported by a node.
  • K1 first parts are configured in a time window, K1 is a positive integer, and the time window satisfies at least one of the following: the size of the time window is configured by the second node; the time window includes M1 DRX cycles, M1 is a positive integer; the time window includes Q1 STMC cycles, and Q1 is a positive integer.
  • the time window includes M1 DRX cycles, at least one first part is configured in one DRX cycle; or, if the time window includes Q1 STMC cycles, at least one first part is configured in one STMC cycle. part.
  • the detection unit 902 when the time domain resources occupied by the first part overlap with the time domain resources occupied by the SSB, if the frequency domain resources occupied by the first part overlap with the frequency domain resources occupied by the SSB, the detection unit 902 is also used to : If the RRM detection period is reached, detect SSB; if the RRM detection period is reached, detect SSB or detect the first part.
  • the detection unit 902 when the time domain resources occupied by the first part overlap with the time domain resources occupied by the second part, the detection unit 902 is also configured to not detect the second part on the overlapping time domain resources.
  • processing unit 903 in Figure 9 can be replaced by a processor, which can integrate the functions of the processing unit 903.
  • the information transmission device 90 involved in the embodiment of the present disclosure may be the information transmission device shown in FIG. 2 .
  • Embodiments of the present disclosure also provide a computer-readable storage medium. All or part of the processes in the above method embodiments can be completed by instructing relevant hardware through a computer program.
  • the program can be stored in the above computer-readable storage medium. When executed, the program can include the processes of the above method embodiments. .
  • the computer-readable storage medium may be an internal storage unit of the signal detection device (including the data sending end and/or the data receiving end) of any of the foregoing embodiments, such as the hard disk or memory of the signal detection device.
  • the above-mentioned computer-readable storage medium may also be an external storage device of the above-mentioned terminal device, such as a plug-in hard disk, a smart media card (SMC), or a secure digital (SD) card equipped on the above-mentioned terminal device. Flash card, etc. Further, the above computer-readable storage medium may also include both an internal storage unit of the signal detection device and an external storage device. The above computer-readable storage medium is used to store the above computer program and other programs and data required by the above signal detection device. The above-mentioned computer-readable storage media can also be used to temporarily store data that has been output or is to be output.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division.
  • there may be other division methods for example, multiple units or components may be The combination can either be integrated into another device, or some features can be omitted, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separate.
  • the displayed component can be one physical unit or multiple physical units, that is, it can be located in one place, or it can be distributed in multiple different places. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above integrated units can be implemented in the form of hardware or software functional units.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present disclosure is essentially or contributes to the relevant technology, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium , including a number of instructions to cause a device (which can be a microcontroller, a chip, etc.) or a processor to execute all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种信息传输方法,包括:第二节点发送第一信息,相应的,第一节点接收来自第二节点的第一信息,其中,第一信息包括第一部分和/或第二部分,第一部分包括第一信号和/或第一控制信息,第二部分包括第二信号和/或第二控制信息。

Description

信息传输方法及装置
本申请要求申请号为202211057899.1、2022年8月31日提交的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信技术领域,尤其涉及一种信息传输方法及装置。
背景技术
针对第五代(5th,generation)通信系统,除了延迟、可靠性和可用性外,终端设备的能量效率也至关重要。
发明内容
第一方面,提供一种信号传输方法,该方法包括:第一节点发送第一信息,第一信息包括第一部分和/或第二部分,第一部分包括第一信号和/或第一控制信息,第二部分包括第二信号和/或第二控制信息。
第二方面,提供一种信息传输方法,该方法包括,第一节点接收来自第二节点的第一信息,第一信息包括第一部分和/或第二部分,第一部分包括第一信号和/或第一控制信息,第二部分包括第二信号和/或第二控制信息。
第三方面,提供一种信息传输装置,该装置包括:发送单元,用于发送第一信息,第一信息包括第一部分和/或第二部分,第一部分包括第一信号和/或第一控制信息,第二部分包括第二信号和/或第二控制信息。
第四方面,提供一种信息传输装置,该装置包括:接收单元,用于接收来自第二节点的第一信息,第一信息包括第一部分和/或第二部分,第一部分包括第一信号和/或第一控制信息,第二部分包括第二信号和/或第二控制信息。
第五方面,提供一种信息传输装置。该装置可以实现上述各方面或者各可能的设计中所执行的功能,所述功能可以通过硬件实现,如:在一些实施例中中,信息传输装置可以包括:处理器和通信接口,处理器可以用于支持信息传输装置实现上述第一方面或者第二方面中的任一种实施例中所涉及的功能,例如:处理器通过通信接口发送第一信息。
在另一些实施例中,信息传输装置还可以包括存储器,存储器用于保存信息传输装置必要的计算机执行指令和数据。当信息传输装置运行时,处理器执行存储器存储的计算机执行指令,以使信息传输装置执行第一方面或者第二方面中的任一种可能的设计所述的信息传输方法。
第六方面,提供了一种计算机可读存储介质,计算机可读存储介质可以为可读的非易失性存储介质,计算机可读存储介质存储有计算机指令或者程序,当计算机指令或程序在计算机上运行时,使得计算机可以执行第一方面或者上述方面的任一种可能的设计所述的信息传输方法。
第七方面,提供了一种包含指令的计算机程序产品,当所述计算机程序产品在计算机上运行时,使得计算机可以执行第一方面或者上述方面的任一实施例所述的信息传输方法。
附图说明
图1为根据一些实施例的一种通信系统的结构示意图;
图2为根据一些实施例的一种信息传输装置的结构示意图;
图3为根据一些实施例的一种信息传输方法的示意图;
图4为根据一些实施例的一种第一信息的结构示意图;
图5为根据一些实施例的又一种第一信息的结构示意图;
图6为根据一些实施例的另一种第一信息的结构示意图;
图7为根据一些实施例的另一种第一信息的结构示意图;
图8为根据一些实施例的一种信息传输装置的结构示意图;
图9为根据一些实施例的一种信息传输装置的结构示意图。
具体实施方式
为使本领域的技术人员更好地理解本公开实施例的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整的描述。
在本公开的描述中,除非另有说明,“/”表示“或”的意思,例如,A/B可以表示A或B。术语“和/或”包括一个或多个相关列举条目的任何和所有组合。例如,A和/或B包括仅A、仅B、仅C、A和B、A和C、B和C、以及A、B和C。
在本公开的描述中,除非另有说明,“至少一个”是指一个或多个,“多个”是指两个或两个以上。
以下,术语“第一”、“第二”等字样并不对数量和执行次序进行限定,并且“第一”、“第二”等字样也并不限定一定不同。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c,其中a,b,c可以是单个,也可以是多个。
需要说明的是,本公开中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本公开中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
在本公开实施例中,“指示”可以包括直接指示和间接指示。例如,以下文中第一控制信息为例,第一控制信息可以直接携带信息A的本身或者其索引,以实现直接指示信息A的目的。或者,第一控制信息也可以携带与信息A存在关联关系的信息B,从而在指示信息B的同时实现间接指示信息A的目的。
术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
目前,5G设备可能需要根据个人的使用时间每周或每天进行充电。通常,5G设备在空闲/非活动状态消耗数十毫瓦功率,在连接状态消耗数百毫瓦功率。因此,可以通过延长电池续航时间,来提高能效和改善用户体验。
为了延长电池的续航时间,第三代合作伙伴计划(3rd generation partnership project,3GPP)在Rel-18中考虑引入超低功耗唤醒(low power wake up,LP-WUS)机制,即终端设备使用单独的接收机来接收或检测唤醒信号,接收到或检测到唤醒信号的终端设备唤醒主无线设备(Main Radio)或者把主无线设备开机,或者把主无线设备转入工作状态,进而进行数据传输和数据接收。当终端设备没有接收到或者检测到低功耗唤醒信号时,主无线设备处于深度睡眠状态或者处于关闭状态。如此,可以进一步降低终端设备的功耗。但是,LP-WUS信号的具体结构尚未确定。
唤醒信号,也可以称为低功耗唤醒信号、唤醒信息等,可以用于触发终端设备接收数据和/或数据传输。
在一些实施例中,终端设备设置有唤醒电路(也可以称为低功耗小电路、唤醒模块、唤醒单元)和主接收电路(也可以称为主接收机、主接收模块、主接收单元)。唤醒电路主要用于支持处于空闲态(idle)或者非活跃态(inactive)的终端设备接收与唤醒信号,主接收电路主要用于接收数据和/或数据传输。
本公开实施例中,当终端设备监听到唤醒自己的唤醒信号之后,关闭唤醒电路,并开启主接收电路。终端设备若未检测到唤醒信号,则保持唤醒电路开启,且不开启主接收电路(此时,终端设备的状态可以称为唤醒态或者LP-WUS状态或者LP-WUS检测状态等)。如此,可以降低终端设备的功率消耗。
本公开实施例提供的技术方案可以应用于各种通信系统,例如,采用5G通信技术的新空口(New Radio,NR)通信系统,未来演进系统或者多种通信融合系统等。
示例性地,图1为根据一些实施例的一种通信系统的结构示意图,如图1所示,通信系统包括第二节点以及多个第一节点(如图1中的第一节点1和第一节点2),第一节点可以与一个或多个第二节点通信连接。
第二节点可以为网络设备,或者具有网络设备的功能的设备。第二节点可以用于实现终端设备的资源调度、无线资源管理、无线接入控制等功能。示例性地,第二节点可以是小型基站、无线接入点、收发点(transmission receive point,TRP)、传输点(transmission point,TP)以及其它接入节点中的任一节点。
第一节点可以为终端设备,或者具有终端设备的功能的设备。终端设备也可以称为终端、用户设备(user equipment,UE)、移动台、以及移动终端等。终端设备可以是手机、平板电脑、带无线收发功能的电脑、虚拟现实终端设备、增强现实终端设备、工业控制中的无线终端、无人驾驶中的无线终端、远程手术中的无线终端、运输安全中的无线终端、智慧城市中的无线终端、以及智慧家庭中的无线终端等。本公开实施例对终端设备所采用的设备形态不做限定。
需要说明的是,图1仅为示例性框架图,图1中包括的节点的数量,各个设备的名称不受限制,且除图1所示功能节点外,通信系统还可以包括其他节点,如核心网设备。
本公开实施例对应用场景不做限定。本公开实施例描述的系统架构以及业务场景是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
在一些实施例中,图1中的设备均可以采用图2所示的组成结构,或者包括图2所示的部件。图2为根据一些实施例的一种信息传输装置的组成示意图,信息传输装置200可以为第二节点或者第二节点中的芯片或者片上系统。或者,信息传输装置200可以为第一节点或第一节点中的芯片或者片上系统。如图2所示,信息传输装置200包括处理器201、通信接口202以及通信线路203。
在一些实施例中,信息传输装置200还可以包括存储器204。处理器201、存储器204以及通信接口202之间可以通过通信线路203连接。
处理器201用于执行存储器204中存储的指令,以实现本公开实施例提供的天线参数的确定方法。处理器201可以是CPU、通用处理器、网络处理器(network processor,NP)、数字信号处理器(digital signal processing,DSP)、微处理器、微控制器、可编程逻辑器件(programmable logic device,PLD)或它们的任意组合。处理器201还可以是其它具有处理功能的装置,例如电路、器件或软件模块,本公开对此不予限制。
在一些实施例中,处理器201可以包括一个或多个CPU,例如,包括图2中的CPU0和CPU1。
在一些实施例中,信息传输装置200包括多个处理器,例如,除图2中的处理器201之外,还可以包括处理器207。
通信接口202用于与其他设备或其它通信网络进行通信。其它通信网络可以为以太网,无线接入网(radio access network,RAN),无线局域网(wireless local area networks,WLAN)等。通信接口202可以是模块、电路、通信接口或者其它任何能够实现通信的装置。
通信线路203用于在信息传输装置200包括的各部件之间传送信息。
存储器204用于存储指令、程序代码或者一些数据等。其中,指令可以是计算机程序。
在一些实施例中,存储器204可以是只读存储器(read-only memory,ROM)或可存储静态信息和/或指令的其他类型的静态存储设备,也可以是随机存取存储器(random access memory,RAM)或可存储信息和/或指令的其他类型的动态存储设备,还可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或其他磁存储设备等,本公开对此不予限制。
需要说明的是,存储器204可以独立于处理器201存在,也可以和处理器201集成于一体。存储器204可以位于信息传输装置200内,也可以位于信息传输装置200外,本公开对此不予限制。
在一些实施例中,信息传输装置200还包括输出设备205和输入设备206。示例性地,输入设备206是键盘、鼠标、麦克风或操作杆等设备,输出设备205是显示屏、扬声器(speaker)等设备。
需要说明的是,信息传输装置200可以是台式机、便携式电脑、网络服务器、移动手机、平板电脑、无线终端、嵌入式设备、芯片系统或有图2中类似结构的设备。此外,图2中示出的组成结构并不构成对图1以及图2中的各个设备的限定, 除图2所示部件之外,图1以及图2的各个设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
本公开实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本公开的各实施例之间涉及的动作、术语等均可以相互参考,本公开对此不予限制。本公开实施例中各个设备之间交互的消息名称或消息中的参数名称等只是一个示例,具体实现时也可以采用其他的名称,不予限制。
下面结合图1所示通信系统,对本公开实施例提供的唤醒信号的传输方法进行描述。本公开各实施例涉及的动作只是一个示例,具体实现时也可以采用其他的名称,如:本公开实施例中的“包括在”还可以替换为“承载于”或者“携带在”等。
图3为根据一些实施例的一种信号传输方法,如图3所示,该方法可以包括S301至S302。
S301、第二节点发送第一信息。
第二节点可以为图1中的第二节点,或者为图1中的第二节点对应的器件,如芯片或片上系统。
本公开中,第一信息也可以称为唤醒信号或者LP-WUS信号。第一信息可以包括第一部分和/或第二部分。第一部分可以包括第一信号和/或第一控制信息,第二部分可以包括第二信号和/或第二控制信息。
需要说明的是,当第一信息包括第一部分和第二部分时,第二节点可以分别发送第一部分或第二部分中的至少一个。即,第一部分和第二部分是相互独立的。比如,第二节点可以先发送第一部分,再发送第二部分。或者,第二节点可以先发送第二部分,再发送第一部分。或者,第二节点可以同步发送第一部分和第二部分。
下面分别对第一信号、第二信号、第一控制信息以及第二控制信息分别进行说明。
A、第一信号,也可以称为长低功耗唤醒信号(Long LP-WUS)或者长唤醒信号等,本公开对此不予限制。
第一信号可以用于第一节点进行同步、信道测量、作为发现信号或指示系统信息变更中的至少一个。当第一信号作为发现信号时,第一信号用于发现以下中至少之一:第一控制信息、第二部分、第二信号和第二控制信息。信道测量可以包括参考信号接收功率(reference signal receiving power,RSRP)测量和/或参考信号接收质量(reference signal received quality,RSRQ)测量。
B、第二信号,也可以称为短低功耗唤醒信号(Short LP-WUS)或者短唤醒信号等,本公开对此不予限制。
第二信号可以用于触发第一节点退出休眠状态或退出LP-WUS检测状态,或者,触发第一节点退出LP-WUS检测状态,并通过检测同步信号块(synchronization signal block,SSB)进行测量,和/或指示RRM测量。
C、第一控制信息可以用于指示以下至少一项:
C1、第一信号的位置信息。
例如,第一控制信息可以包括第一信号的位置信息,或者包括用于指示第一信号的位置信息的标识信息。
第一信号的位置信息可以包括第一信号的起始位置信息和第一信号所在的时 域位置信息。第一信号的起始位置信息可以包括第一信号的起始符号指示信息,和/或第一信号的起始时隙指示信息。
C2、第一节点回退到寻呼流程。
例如,第一控制信息可以包括回退(fallback)指示信息,该回退指示信息可以用于指示终端设备回退到寻呼(paging)流程,如回退到legacy paging流程。
C3、系统信息变更。
例如,第一控制信息可以包括系统信息变更指示信息。
在一些实施例中,第一节点接收到第一控制信息,且第一控制信息用于指示系统信息变更时,第一节点可以退出LP-WUS状态,并接收系统信息块(system information block,SIB)信息。
C4、无线资源管理(radio resource management,RRM)测量。
例如,第一控制信息可以包括RRM测量指示信息,或者用于指示RRM测量的信息。指示RRM测量的信息例如可以包括RRM测量的配置信息。
在一些实施例中,第一节点接收到第一控制信息,且第一控制信息用于指示RRM测量,或者包括用于指示RRM测量的信息,第一节点可以退出LP-WUS状态,并通过检测SSB进行RRM测量。
C5、第二部分是否包括第二控制信息。
例如,第一控制信息可以包括用于指示第二部分是否包括第二控制信息的指示信息。该指示信息可以用一个或多个比特来实现。例如,以该指示信息用一个比特来实现为例,当比特为“0”时,表示第二部分不包括第二控制信息;当比特为“1”时,表示第二部分包括第二控制信息。
C6、第二控制信息的配置信息。
第二控制信息的配置信息可以包括第二控制信息与第二信号之间的间隔长度,和/或第二控制信息采用的编码方式。
例如,第一控制信息可以包括第二控制信息的配置信息,或者可以包括用于指示第二控制信息的配置信息的信息。在第一控制信息包括用于指示第二控制信息的配置信息的信息的情况下,第一节点可以根据指示第二控制信息的配置信息的信息,获取第二控制信息的配置信息。例如,第一节点可以从第二节点获取第二控制信息的配置信息,或者第一节点可以预先配置有第二控制信息的配置信息。
C7、第一信息的配置变更信息。
第一信息的配置变更信息可以包括以下至少一项:第一部分的配置变更信息;第二部分的配置变更信息;在一个时间窗是否发送第一信号和/或第二信号的指示信息;或者,在一个时间窗的一个或多个时隙内是否发送第一信号和/或第二信号的指示信息。
在一些实施例中,在为第一信息配置的下行资源被占用的情况下,第二节点可以通过第一控制信息,指示在一个时间窗或者一个时间窗的一个或多个时隙内不发送第一信号和/或第二信号。例如,第一信息的配置变更信息可以包括时间窗的信息(如为具体的时间信息或时间窗对应的标识信息)以及用于指示不发送第一部分和/或第二部分的信息(可以为数字或字符或者数字与字符的组合)。如此,第一节点可以不在该下行资源上检测第一信息,降低了第一节点检测第一信息的功耗。
C8、承载第一控制信息的起始资源。
例如,第一控制信息可以包括第一控制信息的起始资源指示信息,起始资源指示信息可以为第一控制信息的起始资源的标识信息(如编号、序号等)。
C9、承载第一控制信息的终止资源。
例如,第一控制信息可以包括第一控制信息的终止资源指示信息,终止资源指示信息可以为第一控制信息的终止资源的标识信息(如编号、序号等)。
C10、第一控制信息的起始信息标识。例如,检测到该起始信息标识,即表示为检测到第一控制信息的起始位置。
C11、第一控制信息的结束信息标识。例如,检测到该结束信息标识,即表示为检测到第一控制信息的结束位置。
在一些实施例中,在承载第一控制信息的资源大小不固定的情况下,基于C8~C11中第一控制信息的起始资源(或起始信息标识)和终止资源(或结束信息标识),第一节点可以准确的确定第一控制信息的起始位置和结束位置。进而,终端设备可以准确的检测第二控制信息。
基于C1~C11中多种信息,第二节点可以将多个不同的信息,用一个第一控制信息来承载,以减少信令的开销。
D、第二控制信息可以用于指示以下至少一项:
D1、回退到寻呼流程。示例性地,可以参照第一控制信息中的1-2的描述,本公开对此不予赘述。
D2、系统信息变更。示例性地,可以参照第一控制信息中的1-3的描述,本公开对此不予赘述。
D3、第一节点的标识信息。
在一些实施例中,在第二信号是针对一个或多个第一节点配置的情况下,第二控制信息用于指示一个或多个第一节点的标识信息(如设备标识、媒体存取控制位址(media access control address,MAC)等)。
D4、第一信息的配置变更信息。示例性地,可以参照第一控制信息中的C7的描述,本公开在此不予赘述。
D5、承载第二控制信息的起始资源的指示信息。
D6、承载第二控制信息的结束资源指示信息。
D7、第二控制信息的起始信息标识。
D8、第二控制信息的结束信息标识。
D5~D8可以分别参照上述第一控制信息中的C8~C11的描述,本公开对此不予赘述。
需要说明的是,第二控制信息可以为一个第一节点配置的,也可以为一个第一节点组配置的。一个第一节点组可以包括多个第一节点。
在一些实施例中,在承载第二控制信息的资源大小不固定的情况下,基于D5~D8中第二控制信息的起始资源(或起始信息标识)和终止资源(或结束信息标识),第一节点可以准确的确定第二控制信息的起始位置和结束位置。进而,第一节点可以准确的检测第一控制信息。
在一些实施例中,第二节点可以在生成第一信息之后,向第一节点发送第一信 息。例如,第一信息可以是第二节点主动生成的(比如第二节点需要向第一节点发送数据时生成),也可以是第二节点响应于接收到其他设备(如核心网)的指示信息,或者,接收到需要向第一节点发送的数据的指示信息时生成。
在一些实施例中,第一信息占用的时域资源可以包括至少一个时域单元,示例性地,时域单元可以为符号。第一信息占用的频域资源可以包括至少一个频域单元,示例性地,频域单元可以为子载波。
例如,当第一信息包括第一部分和第二部分时,在时域上,第一部分可以占用至少一个符号,第二部分可以占用至少一个符号。在频域上,第一部分可以占用至少一个子载波,第二部分可以占用至少一个子载波。
S302、第一节点接收来自第二节点的第一信息。
其中,第一节点接收来自第二节点的第一信息也可以描述为第一节点监听第二节点发送的第一信息,或者第一节点检测第二节点发送的第一信息。
本公开基于图3的技术方案,定义了一种第一信息的格式,例如,第一信息可以包括第一部分、或者第二部分,或者第一部分和第二部分。如此,第二节点可以根据第一信息的格式,灵活的构建第一信息。另外,每个部分均可以包括一个信号和/或控制信息,例如,第一信息包括第一部分和第二部分且每个部分都包括一个信号和控制信息,即,将多个信号和多个控制信息通过一个信息承载,满足了需求的多样化。
在一些实施例中,在S302中,第一节点接收第二节点的第一信息的方法可以包括:第一节点可以根据第一信息的配置信息,接收来自第二节点第一信息。
第一信息的配置信息可以由第一节点预先配置,也可以由第一节点从其他设备处获取,例如,第一节点从第二节点获取。第一信息的配置信息可以包括第一信息在频域上的配置信息和/或在时域上的配置信息。
下面对第一信息在频域上的配置信息和在时域上的配置信息进行说明。
E、第一信息在频域上的配置信息。
在一些实施例中,第一信号和第二信号独立地配置以下参数至少之一:
子载波间隔、占用的频域资源的带宽、或者占用的频域资源的位置。
示例性地,在频域资源上的频域单元以子载波为粒度的情况下,占用的频域资源的带宽可以为占用的子载波的数目,占用的频域资源的位置可以为占用的子载波的位置。
在一些实施例中,第一信号和第二信号在频域上可以满足以下关系至少之一:
E1、第一信号配置的子载波间隔与第二信号配置的子载波间隔相同。
E2、第一信号占用的频域资源的带宽与第二信号占用的频域资源的带宽相同。
E3、第一信号占用的频域资源的位置与第二信号占用的频域资源的位置相同。
在一些实施例中,在第一信号用于第一节点进行测量的情况下,第一信号在时域资源上的位置与SSB占用的时域资源的位置相关。
SSB可以通过同步信号块测量时间配置(SS/PBCH block measurement time configuration,SMTC)来配置。
示例性地,第一信号在时域资源上的位置与SSB在时域资源上的位置相关,可以包括:第一信号占用的时域资源的位置与SSB占用的时域资源的位置相同;或者, 第一信号占用的时域资源的位置与SSB占用的时域资源的位置之间相差一个偏移值,偏移值可以根据需要设置;或者,第一信号占用的时域资源的起始位置与SSB占用的时域资源的起始位置相同。如此。第一节点可以根据SSB在时域资源上的位置,准确的确定第一信号在时域资源上的位置。
F、第一信息在时域上的配置信息。
在一些实施例中,第一信号和第二信号独立地配置以下参数至少之一:占用的时域资源的大小、或者占用的时域资源的位置。
需要说明的是,第一信号占用的时域单元的数量大于或等于第二信号占用的时域单元的数量。例如,第一信号占用的时域单元的数量是第二信号占用的时域单元的N倍,N为正整数。时域单元可以为符号或者按照其他粒度划分的单元。如此,第二节点可以根据第一信号和第二信号在时域上的配置信息,准确地确定何时检测第一信号和第二信号,避免出现过早检测或盲检带来的功耗。
基于该实施例,第一节点可以根据预先配置的第一信息的配置信息,接收第二节点发送的第一信息。保证第一节点可以准确的接收到第二节点发送的第一信息。
在一些实施例中,第一信号可以用于承载第一序列,第二信号可以用于承载第二序列。第一序列和第二序列之间的关系可以满足以下至少一项:
F1、第一序列的长度大于或等于第二序列的长度。
F2、第一序列的长度是第二序列的长度的M倍,M为正整数。
F3、第一序列包括K个第二序列,K为正整数。
在一些实施例中,K个第二序列是指第二序列的K次重复。例如,K=3,第二序列为101101,则第一序列可以为101101101101101101。
再例如,在第二序列为多个序列或包括多个序列的情况下,第一序列是指多个序列中的一个序列的K次重复,也可以包括K个不同的第二序列。例如,第二序列包括10、11,则第一序列可以包括K个10或者K个11,或者,第一序列可以包括L1个10和L2个11。其中,L1和L2为正整数,且L1+L2=K。L1和L2可以相同,也可以不同。
基于此,由于不同的序列可以承载不同的信息或信令,第二节点通过将多个序列分散承载,避免出现单一信号过大的问题,减少了第一节点解析信号的压力。
一些实施例中,本公开实施例中,一个时间窗内可以配置K1个第一部分。K1为正整数。
时间窗可以满足以下至少之一:时间窗的大小由第二节点配置(例如,第二节点可以通过RRC信息为第一节点配置)、时间窗包括M1个非连续接收周期(discontinuous reception cycle,DRX cycle)、时间窗包括Q1个STMC周期。M1、Q1为正整数。
在一些实施例中,在时间窗包括M1个DRX cycle的情况下,一个DRX cycle内配置至少一个第一部分。
在另一些实施例中,在时间窗包括Q1个STMC周期的情况下,一个STMC周期内配置指示一个第一部分。
基于该实施例,第二节点可以根据配置的时间窗向第一节点发送第一信号。相应的,第一节点可以在时间窗内接收第一信号。如此,避免出现第一节点一直处于 检测第一信息的状态,降低了检测第一信息的功耗。
在一些实施例中,本公开实施例提供的方法,还可以包括:第二节点/第一节点根据第一索引值,确定与第一索引值对应的信息。
第一索引值可以由第二节点/第一节点预先配置。或者,可以由第二节点从其他设备处获取,如由第二节点从核心网设备获取。或者,由第一节点从第二节点获取。
第一索引值可以根据第一节点的类型、第一节点的工作带宽、第一节点支持的接收天线数量中的至少一个确定。
例如,第一节点的类型可以包括正常(normal)NR节点、降低能力(reduced capability,Red Cap)节点、覆盖增强(coverage enhancement,CE)节点、覆盖恢复(coverage recovery,CR)节点中的至少一个。当然,CE节点和CR节点还可以划分为多个等级,本公开对此不予限制。
在一些实施例中,第二节点可以配置有第一索引值与第一节点的类型、第一节点的工作带宽、第一节点支持/配置的接收天线数量之间的对应关系。如此,第二节点在获取到第一节点的类型、第一节点的工作带宽、第一节点的接收天线数量之和后,可以根据该对应关系,确定第一索引值。进而,第二节点可以根据第一索引值,简单快速地确定与第一索引值对应的信息。
在一些实施例中,与第一索引值对应的信息可以包括以下信息中的至少之一:
G1、第一信号占用的时域单元的数量。
G2、第二信号占用的时域单元的数量。
G3、第一信号在时域上重复发送的次数。
G4、第二信号在时域上重复发送的次数。
G5、第一序列的长度。
G6、第二序列的长度。
G7、第一序列的重复发送次数。
G8、第二序列的重复发送次数。
需要说明的是,G1~G8的信息仅为示例性的,与第一索引值对应的信息还可以包括其他信息,比如,第一信号和/或第二信号占用的频域资源的数量、在频域上重复发送的次数等,本公开对此不予限制。
基于该实施例,第一节点和第二节点可以根据第一索引值,快速准确的确定第一信号和第二信号的信息。
在一些实施例中,在第一信号用于第一节点进行同步的情况下,本公开实施例提供的方法还可以包括:第一节点通过检测第一信号,获取定时误差(Timing Error)。
如此,第一节点可以通过定时误差,准确地确定检测第二部分的时间,避免在一个时间窗内滑动检测第二部分,提高了检测第二部分的成功率,同时还降低了第一节点检测第二部分的功耗。
在一些实施例中,在第一信号用于第一节点进行信道测量的情况下,本公开实施例提供的方法还可以包括:第一节点根据第一信号进行测量,得到测量结果。在测量结果小于或等于阈值的情况下,第一节点退出第一信息检测状态,或者第一节点退出第一信息检测状态,并通过SSB进行信道测量。
第一信息检测状态,也可以描述为LP-WUS检测状态、唤醒信号检测状态、唤 醒信号监听状态等。测量结果可以包括RSRP的参数值和/或RSRQ的参数值。阈值可以由第一节点预先配置,也可以由第二节点为第一节点配置。阈值的大小可以根据需要设置,本公开对此不予限制。
在一些实施例中,在RSRP的参数值和/或RSRQ的参数值小于或等于预设阈值的情况下,第一节点可以退出第一信息检测状态。进一步地,第一节点还可以通过SSB进行信道测量或下行测量。
基于该实施例,在第一信号用于第一节点进行测量的情况下,第一节点检测到第一信号,进行信道测量,并在信道质量较差时,退出检测状态,并通过SSB进行下行测量。如此,避免后续在信道质量较差时,第一节点无法正常进行数据传输。
在一些实施例中,在第二控制信息包括第一节点的标识信息的情况下,本公开实施例提供的方法还包括:第一节点的主接收机退出休眠状态,并进行数据传输和/或接收数据。
在一些实施例中,第一节点的唤醒电路检测到第一节点的标识信息之后,可以触发主接收机退出休眠状态,并接收第二节点发送的数据和/或向第二节点发送数据。
基于该实施例,第二控制信息包括第一节点的标识信息,说明第一节点需要进行数据传输或接收数据。如此,第一节点的主接收机可以退出休眠状态,进而可以进行数据传输和/或接收数据。
在一些实施例中,在第一部分占用的时域资源与SSB占用的时域资源重叠的情况下,若第一部分占用的频域资源与SSB占用的频域资源重叠,则第一部分被放弃发送。如此,避免出现在重叠的频域资源上同时发送SSB和第一部分,导致第一节点出现误检的问题。若第一部分占用的频域资源与SSB占用的频域资源不重叠,则第一信息包括第一部分和第二部分。如此,能够最大程度的利用频域资源,节约了频域资源。
相应的,若检测周期超过RRM检测周期,第一节点检测SSB。若检测周期未超过RRM检测周期,第一节点可以检测SSB或者检测第一部分。
在一些实施例中,在第一部分占用的时域资源与第二部分占用的时域资源重叠的情况下,第二部分被放弃发送。相应的,第一节点不在重叠的时域资源上检测第二部分。
基于该实施例,可以避免由于在同一频域上发送第一部分和第二部分,导致的第一节点无法准确检测信号。此外,第一节点不在重叠的时域资源上检测第二部分,降低了第一节点检测第二部分的功耗。
在一些实施例中,第一节点配置的信道测量周期包括4个DRX cycle(DRX周期)。即,在连续的4个DRX周期内,第一节点需要进行至少一次信道测量(也称为RRM测量、下行测量)。本公开实施例中,1个DRX cycle为2.56秒(s),则第一信号对应的信道测量周期为4*2.56=10.24s=10240ms。
图4为根据一些实施例的一种第一信息的结构示意图,如图4所示,第一节点配置有4个SSB,分别为SSB0、SSB1、SSB2和SSB3。其中,SSB的发送周期为10毫秒(ms),使用的子载波间隔为15千赫兹(kHz)。一个slot的时间长度为1ms,包括14个正交频分复用(orthogonal frequency division multiplexing,OFDM) 符号。4个SSB占用了2个slot。
在一些实施例中,如图4所示,以5个slots长度(即5ms)为粒度,可以将信道测量周期划分为10240/5=2048个时域单元,该2048个时域单元的编号分别为索引(index)0~2047。其中,一个时域单元可以记做SlotNum5。
结合图4,SSB0占用了第一个slot中的符号2~5,SSB1占用了第一个slot中的符号8~11,SSB2占用了第二slot中的符号2~5,SSB3占用了第二个slot中的符号8~11。此时,第二节点在编号为Index0、Index2、Index4、Index6、…、Index2046对应的时域单元(SlotNum5)的前两个slot中发送4个SSB。
以第一信号包括第一部分和第二部分,第一部分包括第一信号和第一控制信息,第二部分包括第二信号为例,第一部分的发送周期为2560ms,如图4所示,在一个信道测量周期的编号为Index1、Index513、Index1025、Index1537对应的时域单元内发送第一部分。在除了Index1、Index513、Index1025、Index1537对应的时域单元之外的其他编号对应的时域单元上发送第二部分。例如,可以在一个信道测量周期的编号Index2、Index3、Index4、Index5、…、Index514、Index515、Index516……对应的时域单元的第4个时隙内发送第二信号。
在一些实施例中,若第一信号用于第一节点进行同步,则第一节点在检测到第一信号之后,可以获取定时误差,并根据该定时误差检测第二部分。
该实施例中,第一控制信息可以包括第一信号占用的位置信息。其中,第一信号占用的位置信息可以包括起始符号信息和/或起始时隙信息。比如,结合图4,第一信号占用的位置信息可以包括Index1-slot5(即,一个信道测量周期的编号为Index1的第6个时隙)、Index513-slot5、Index1025-slot5、Index1537-slot5。
在另一些实施例中,第一节点在成功检测到第二信号之后,第一节点的主接收机退出休眠状态,并进行数据传输和/或数据接收。
图4的技术方案明确了第一信息的结构以及占用的时域资源以及位置。如此,第二节点可以在第一信息对应的时域资源上发送第一信息中各个部分。第一节点可以根据第一信息占用的时域资源,准确的检测/接收第一信息各个部分。
在一些实施例中,第一信号包括第一部分。图5为根据一些实施例的又一种第一信息的结构示意图,如图5所示,一个RRM测量周期包括4个DRX cycle,即,第一节点在4个DRX cycle内至少进行一次RRM测量。结合图4的示例,一个RRM测量周期可以包括2048个时域单元(SlotNum5),分别为Index 0~Index2047。
在一些实施例中,一个DRX cycle包括2个第一部分,即,第一部分的发送周期为1/2DRX cycle。如图5所示,第一部分占用的时域单元的编号为Index0、Index256、Index512、Index768、Index1024、Index1280、Index1536、Index1792对应的时域单元(SlotNum5)。第一部分可以用于第一节点进行同步。示例性地,在图5中,一个时域单元包括5个时隙。
图5的技术方案明确了第一信息中第一部分占用的时域资源及位置。如此,第二节点可以在第一部分对应的时域资源上发送第一部分。第一节点可以根据第一部分占用的时域资源,准确的检测/接收第一部分。
在一些实施例中,第一信息包括第一部分和第二部分。第一部分包括第一信号和第一控制信息,第二部分包括第二信号。在时域上,第一部分占用至少一个符号, 第二部分占用至少一个符号。在频域上,第一部分占用至少一个符号,第二部分占用一个子载波(subcarrier)。
在一些实施例中,以第一节点为终端设备为例,可以根据终端设备的类型,将终端设备划分为:正常的NR UE、RedCap UE、CE UE、CR UE。
正常的NR UE配置为:第一部分和第二部分不支持重复发送。RedCap UE、CE UE、CR UE配置为:第一部分和第二部分支持重复发送。
示例性地,RedCap UE、CE UE、CR UE可以独立配置每个第一部分和第二部分支持的重复发送次数。或者,针对RedCap UE、CE UE、CR UE,第一部分和第二部分可以采用相同的重复发送次数。或者,RedCap UE、CE UE、CR UE中的部分类型,第一部分和第二部分可以采用相同的重复发送次数。例如,RedCap UE、CE UE可以采用相同的重复发送次数。
基于该实施例,第二节点可以根据第一节点的类型,准确地确定每个类型对应的第一部分和第二部分重复发送的次数。
图6为根据一些实施例的另一种第一信息的结构示意图,在一些实施例中,如图6所示,一个信道测量周期包括4个DRX cycle。一个DRX cycle包括512个时域单元(SlotNum5)。第二节点可以在每个DRX cycle的第一个时域单元(SlotNum5)发送第一部分,且重复发送4次第一部分。即,第二节点可以在编号为Index0~Index3、Index 512~Index 515、Index 1024~Index 1027、Index 1536~Index 1539对应的时域单元(SlotNum5)中重复发送4次第一部分。
下面以第二节点在Index0~Index3对应的时域单元上发送第一部分为例,不同类型的第一节点检测第一部分的方案可以包括:
方案一、针对正常的NR UE,第一节点可以在Index0~Index3对应的时域单元中任一个Index检测第一部分。
方案二、针对RedCap UE,若第一节点使能了覆盖恢复功能或覆盖增强功能,第一节点可以检测Index0~Index3对应的时域单元中的每个时域单元,进行合并检测(Combination detection)。即,第一节点重复检测4次第一部分。
方案三、针对RedCap UE,若第一节点没有使能覆盖恢复功能或者覆盖增强功能,但第一节点支持的天线数量为1,则第一节点可以独立检测Index0~Index1对应的时域单元中的第一部分,以及检测Index2~Index3中的第一部分。第一节点可以将每次检测可以当做第一部分的2次重复发送,然后进行合并检测。
方案四、针对RedCap UE,若第一节点没有使能覆盖恢复功能或者覆盖增强功能,但第一节点的工作带宽小于20兆(M)Hz,则第一节点可以独立检测Index0~Index1对应的时域单元中的第一部分,以及检测Index2~Index3中的第一部分。第一节点可以将每次检测可以当做第一部分的2次重复发送,然后进行合并检测。
需要说明的是,第一节点在检测Index 512~Index 515、Index 1024~Index 1027、Index 1536~Index 1539对应的时域单元的第一部分时,可以采用与Index0~Index3相同的检测方案,本公开对此不予赘述。
在一些实施例中,图7为根据一些实施例的另一种第一信息的结构示意图,如图7所示,一个信道测量周期包括4个DRX cycle,一个DRX cycle包括512个时域单元(SlotNum5)。第二节点可以在每个DRX cycle中多个时机(例如图7中每 个DRX cycle中配置3个时机发送第二部分)上发送第二部分,且每个时机上重复发送4次第二部分。图7中,以编号为Index4~Index6对应的时域单元(SlotNum5)为例,其中重复发送4次第二部分。
下面以第二节点在Index4~Index6对应的时域单元上发送第二部分为例,不同类型的第一节点检测第二部分的方案可以包括:
方案一、针对正常的NR UE,第一节点可以在Index4~Index6对应的时域单元中检测任意一次发送的第二部分。
方案二、针对RedCap UE,若第一节点使能了覆盖恢复功能或覆盖增强功能,第一节点可以检测Index4~Index6中的4次重复发送的第二部分。
方案三、针对RedCap UE,若第一节点没有使能覆盖恢复功能或者覆盖增强功能,但第一节点支持的天线数量为1,则第一节点可以独立检测Index4~Index6对应的时域单元中的前2次重复发送的第二部分,以及检测Index4~Index6对应的时域单元中的后2次重复发送的第二部分。
方案四、针对RedCap UE,若第一节点没有使能覆盖恢复功能或者覆盖增强功能,但第一节点的工作带宽小于20兆(M)Hz,则第一节点可以独立检测Index4~Index6对应的时域单元中的前2次重复发送的第二部分,以及检测Index4~Index6对应的时域单元中的后2次重复发送的第二部分。
需要说明的是,第一节点在其他时机检测第二部分的方法可以参照上述描述,本公开对此不予赘述。
基于该实施例,针对不同类型的第一节点,或者同一类型,不同工作带宽或支持的天线数量的第一节点,第一节点可以确定在何时检测第一部分,以及检测的次数,避免第一节点一直处于检测第一部分的状态,降低了第一节点的功耗。
本公开实施例中的各个方案在不冲突的前提下,均可以进行结合。
本公开实施例可以根据上述方法实施例对信号检测装置进行功能模块或者功能单元的划分,例如,可以对应各个功能划分各个功能模块或者功能单元,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块或者功能单元的形式实现。其中,本公开实施例中对模块或者单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
图8为根据一些实施例的一种信息传输装置的结构示意图,在采用对应各个功能划分各个功能模块的情况下,如图8所示,信号传输装置80可以用于执行上述实施例中第二节点涉及的功能。图8所示的信号传输装置80可以包括:发送单元801。
发送单元801,用于发送第一信息。其中,第一信息包括第一部分和/或第二部分。第一部分包括第一信号和/或第一控制信息,第二部分包括第二信号和/或第二控制信息。
在一些实施例中,第一信号用于第一节点进行同步、信道测量或指示系统信息变更中的至少一个。
在一些实施例中,若第一信号用于第一节点进行信道测量,第一信号占用的时域资源的位置与SSB占用的时域资源的位置相关。
在一些实施例中,第一信号占用的时域资源的位置与SSB占用的时域资源的位置相关,包括第一信号占用的时域资源的位置与SSB占用的时域资源的位置相同;或者第一信号占用的时域资源的位置与SSB占用的时域资源的位置之间相差一个偏移值;或者第一信号占用的时域资源的起始位置与SSB占用的时域资源的起始位置相同。
在一些实施例中,第一控制信息用于指示至少以下至少一项:第一信号的起始位置信息、第一信号所在的时域位置信息、回退到寻呼流程、系统信息变更、RRM测量、第二部分是否包括第二控制信息、第二控制信息的配置信息、第一信息的配置变更信息、第一控制信息的起始资源、第一控制新的终止资源、第一控制信息的起始信息标识、第一控制信息的结束信息标识。
在一些实施例中,第一信息的配置变更信息包括以下至少一项:第一信号的配置变更信息、第二信号的配置变更信息、在一个时间窗内是否发送第一信号和/或第二信号的指示信息、在一个时间窗内的一个或多个时隙内是否发送第一信号和/或第二信号的指示信息。
在一些实施例中,第二信号用于指示第一节点退出休眠状态和/或RRM测量。
在一些实施例中,第二控制信息包括以下中的至少一项:回退到寻呼流程、系统信息变更、RRM测量、第一节点的标识信息、第一信息的配置变更信息、承载第二控制信息的起始资源的指示信息、承载第二控制信息的结束资源指示信息、第二控制信息的起始信息标识、承载第二控制信息的结束信息标识。
在一些实施例中,第一信息的配置变更信息包括以下至少一项:第一信号的配置变更信息、第二信号的配置变更信息、在一个时间窗内是否发送第一信号和/或第二信号的指示信息、在一个时间窗内的一个或多个时隙内是否发送第一信号和/或第二信号的指示信息。
在一些实施例中,第一信号和第二信号在频域上满足以下关系至少之一:第一信号配置的子载波间隔与第二信号配置的子载波间隔相同、第一信号占用的频域资源的带宽与第二信号占用的频域资源的带宽相同、第一信号占用的频域资源的位置与第二信号占用的频域资源的位置相同。
在一些实施例中,第一信号和第二信号独立地配置以下参数至少之一:子载波间隔、占用的频域资源的带宽、占用的频域资源的为孩子、占用的时域资源的大小、占用的时域资源的位置。
在一些实施例中,第一信号占用的时域单元的数量大于或等于第二信号占用的时域单元的数量,或者第一信号占用的时域单元的数量是第二信号占用的时域单元的数量的N倍,N为正整数。
在一些实施例中,第一信号用于承载第一序列、第二信号用于承载第二序列。
在一些实施例中,第一序列的长度大于或等于第二序列的长度;或者第一序列的长度是第二序列的长度的M倍,M为正整数;或者,第一序列包括K个第二序列,K为正整数。
在一些实施例中,如图8所示,信号传输装置80还包括确定单元802。确定单元802用于根据第一索引值,确定以下信息中的至少之一:第一信号占用的时域单元的数量、第二信号占用的时域单元的数量、第一信号在时域上重复发送的次数、 第二信号在时域上重复发送的次数、第一序列的长度、第二序列的长度、第一序列的重复发送次数、第二序列的重复发送次数。
在一些实施例中,第一索引值根据第一节点的类型、第一节点的工作带宽、第一节点支持的接收天线数量中的至少一个来确定。
在一些实施例中,在一个时间窗内配置K1个第一部分,K1为正整数,该时间窗满足以下至少之一:时间窗的大小由第二节点配置;时间窗包括M1个DRX cycle,M1为正整数;时间窗包括Q1个STMC周期,Q1为正整数。
在一些实施例中,在时间窗包括M1个DRX cycle的情况下,一个DRX cycle内配置至少一个第一部分;或者,在时间窗包括Q1个STMC周期的情况下,一个STMC周期内配置至少一个第一部分。
在一些实施例中,在第一部分占用的时域资源与SSB占用的时域资源重叠的情况下,若第一部分占用的频域资源与SSB占用的频域资源重叠,第一部分被放弃发送。
在一些实施例中,在第一部分占用的时域资源与第二部分占用的时域资源重叠的情况下,第二部分被放弃发送。
在另一些实施例中,图8中的确定单元802可以由处理器代替,该处理器可以集成确定单元802的功能。
进一步地,当确定单元802由处理器代替时,本公开实施例所涉及的信息传输装置80可以为图2所示的信息传输装置。
图9为根据一些实施例的一种信息传输装置的结构示意图,在采用对应各个功能划分各个功能模块的情况下,如图9所示,本公开提供一种信号传输装置90,信号传输装置90可以用于执行上述实施例中第一节点涉及的功能。在一些实施例中,信号传输装置90可以包括:接收单元901。
接收单元901,用于接收来自第二节点发送的第一信息。其中,第一信息包括第一部分和/或第二部分。第一部分包括第一信号和/或第一控制信息,第二部分包括第二信号和/或第二控制信息。
在一些实施例中,第一信号用于第一节点进行同步、信道测量、作为发现信号或指示系统信息变更中的至少一个。
在一些实施例中,若第一信号用于第一节点进行信道测量,第一信号占用的时域资源的位置与SSB占用的时域资源的位置相关。
在一些实施例中,第一信号占用的时域资源的位置与SSB占用的时域资源的位置相关,包括第一信号占用的时域资源的位置与SSB占用的时域资源的位置相同;或者第一信号占用的时域资源的位置与SSB占用的时域资源的位置之间相差一个偏移值;或者第一信号占用的时域资源的起始位置与SSB占用的时域资源的起始位置相同。
在一些实施例中,若第一信号用于第一节点进行信道测量,如图9所示,信号传输装置90还可以包括检测单元902。检测单元902,用于根据第一信号进行信道测量,得到测量结果。检测单元902,还用于若测量结果小于或等于阈值,退出第一信息检测状态,或者退出第一信息检测状态,并通过检测SSB进行信道测量。
在一些实施例中,第一控制信息用于指示至少以下至少一项:第一信号的起始 位置信息、第一信号所在的时域位置信息、回退到寻呼流程、系统信息变更、RRM测量、第二部分是否包括第二控制信息、第二控制信息的配置信息、第一信息的配置变更信息、第一控制信息的起始资源、第一控制新的终止资源、第一控制信息的起始信息标识、第一控制信息的结束信息标识。
在一些实施例中,第一信息的配置变更信息包括以下至少一项:第一信号的配置变更信息、第二信号的配置变更信息、在一个时间窗内是否发送第一信号和/或第二信号的指示信息、在一个时间窗内的一个或多个时隙内是否发送第一信号和/或第二信号的指示信息。
在一些实施例中,第二信号用于指示第一节点退出休眠状态和/或RRM测量。
在一些实施例中,第二控制信息包括以下中的至少一项:回退到寻呼流程、系统信息变更、RRM测量、第一节点的标识信息、第一信息的配置变更信息、承载第二控制信息的起始资源的指示信息、承载第二控制信息的结束资源指示信息、第二控制信息的起始信息标识、承载第二控制信息的结束信息标识。
在一些实施例中,第一信息的配置变更信息包括以下至少一项:第一信号的配置变更信息、第二信号的配置变更信息、在一个时间窗内是否发送第一信号和/或第二信号的指示信息、在一个时间窗内的一个或多个时隙内是否发送第一信号和/或第二信号的指示信息。
在一些实施例中,若第二控制信息包括第一节点的标识信息,如图9所示,信号传输装置90还可以包括处理单元903,用于控制第一节点的主接收机退出休眠状态,并进行数据传输和/或接收数据。
在一些实施例中,第一信号和第二信号在频域上满足以下关系至少之一:第一信号配置的子载波间隔与第二信号配置的子载波间隔相同、第一信号占用的频域资源的带宽与第二信号占用的频域资源的带宽相同、第一信号占用的频域资源的位置与第二信号占用的频域资源的位置相同。
在一些实施例中,第一信号和第二信号独立地配置以下参数至少之一:子载波间隔、占用的频域资源的带宽、占用的频域资源的为孩子、占用的时域资源的大小、占用的时域资源的位置。
在一些实施例中,第一信号占用的时域单元的数量大于或等于第二信号占用的时域单元的数量,或者第一信号占用的时域单元的数量是第二信号占用的时域单元的数量的N倍,N为正整数。
在一些实施例中,第一信号用于承载第一序列、第二信号用于承载第二序列。
在一些实施例中,第一序列的长度大于或等于第二序列的长度;或者第一序列的长度是第二序列的长度的M倍,M为正整数;或者,第一序列包括K个第二序列,K为正整数。
在一些实施例中,如图9所示,信号传输装置90还包括检测单元902。检测单元902,用于根据第一索引值,确定以下信息中的至少之一:第一信号占用的时域单元的数量、第二信号占用的时域单元的数量、第一信号在时域上重复发送的次数、第二信号在时域上重复发送的次数、第一序列的长度、第二序列的长度、第一序列的重复发送次数、第二序列的重复发送次数。
在一些实施例中,第一索引值根据第一节点的类型、第一节点的工作带宽、第 一节点支持的接收天线数量中的至少一个来确定。
在一些实施例中,在一个时间窗内配置K1个第一部分,K1为正整数,该时间窗满足以下至少之一:时间窗的大小由第二节点配置;时间窗包括M1个DRX cycle,M1为正整数;时间窗包括Q1个STMC周期,Q1为正整数。
在一些实施例中,在时间窗包括M1个DRX cycle的情况下,一个DRX cycle内配置至少一个第一部分;或者,在时间窗包括Q1个STMC周期的情况下,一个STMC周期内配置至少一个第一部分。
在一些实施例中,在第一部分占用的时域资源与SSB占用的时域资源重叠的情况下,若第一部分占用的频域资源与SSB占用的频域资源重叠,检测单元902,还用于:若RRM检测周期达到,检测SSB;若RRM检测周期为达到,检测SSB或检测第一部分。
在一些实施例中,在第一部分占用的时域资源与第二部分占用的时域资源重叠的情况下,检测单元902,还用于:不在重叠的时域资源上检测第二部分。
在另一些实施例中,图9中的处理单元903可以由处理器代替,该处理器可以集成处理单元903的功能。
进一步地,当处理单元903由处理器代替时,本公开实施例所涉及的信息传输装置90可以为图2所示的信息传输装置。
本公开实施例还提供了一种计算机可读存储介质。上述方法实施例中的全部或者部分流程可以由计算机程序来指令相关的硬件完成,该程序可存储于上述计算机可读存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。计算机可读存储介质可以是前述任一实施例的信号检测装置(包括数据发送端和/或数据接收端)的内部存储单元,例如信号检测装置的硬盘或内存。上述计算机可读存储介质也可以是上述终端装置的外部存储设备,例如上述终端装置上配备的插接式硬盘,智能存储卡(smart media card,SMC),安全数字(secure digital,SD)卡,闪存卡(flash card)等。进一步地,上述计算机可读存储介质还可以既包括信号检测装置的内部存储单元也包括外部存储设备。上述计算机可读存储介质用于存储上述计算机程序以及上述信号检测装置所需的其他程序和数据。上述计算机可读存储介质还可以用于暂时地存储已经输出或者将要输出的数据。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本公开所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。再例如,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元 显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本公开实施例的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (38)

  1. 一种信息传输方法,包括:
    第二节点发送第一信息;
    其中,所述第一信息包括第一部分和/或第二部分,所述第一部分包括第一信号和/或第一控制信息,所述第二部分包括第二信号和/或第二控制信息。
  2. 根据权利要求1所述的方法,其中,所述第一信号用于第一节点进行同步、信道测量、作为发现信号或指示系统信息变更中的一个或多个。
  3. 根据权利要求2所述的方法,其中,若所述第一信号用于所述第一节点进行信道测量,所述第一信号占用的时域资源的位置与同步信号块SSB占用的时域资源的位置相关。
  4. 根据权利要求3所述的方法,其中,所述第一信号占用的时域资源的位置与同步信号块SSB占用的时域资源的位置相关,包括:
    所述第一信号占用的时域资源的位置与所述SSB占用的时域资源的位置相同;或者,
    所述第一信号占用的时域资源的位置与所述SSB占用的时域资源的位置之间相差一个偏移值;或者,
    所述第一信号占用的时域资源的起始位置与所述SSB占用的时域资源的起始位置相同。
  5. 根据权利要求1-4任一项所述的方法,其中,所述第一控制信息用于指示以下一项或多项:
    所述第一信号的起始位置信息;
    所述第一信号所在的时域位置信息;
    回退到寻呼流程;
    系统信息变更;
    无线资源管理RRM测量;
    所述第二部分是否包括所述第二控制信息;
    所述第二控制信息的配置信息;
    所述第一信息的配置变更信息;
    承载所述第一控制信息的起始资源;
    承载所述第一控制信息的终止资源;
    所述第一控制信息的起始信息标识;
    所述第一控制信息的结束信息标识。
  6. 根据权利要求5所述的方法,其中,所述第一信息的配置变更信息包括以下一项或多项:
    所述第一信号的配置变更信息;
    所述第二信号的配置变更信息;
    在一个时间窗内是否发送所述第一信号和/或所述第二信号的指示信息;
    在一个时间窗的一个或多个时隙内是否发送所述第一信号和/或所述第二信号的指示信息。
  7. 根据权利要求1所述的方法,其中,所述第二信号用于指示第一节点退出休眠状态和/或RRM测量。
  8. 根据权利要求1或7所述的方法,其中,所述第二控制信息包括以下中的一项或 多项:
    回退到寻呼流程;
    系统信息变更;
    RRM测量;
    第一节点的标识信息;
    所述第一信息的配置变更信息;
    承载所述第二控制信息的起始资源的指示信息;
    承载所述第二控制信息的结束资源指示信息;
    所述第二控制信息的起始信息标识;
    所述第二控制信息的结束信息标识。
  9. 根据权利要求8所述的方法,其中,所述第一信息的配置变更信息包括以下一项或多项:
    所述第一信号的配置变更信息;
    所述第二信号的配置变更信息;
    在一个时间窗内是否发送所述第一信号和/或所述第二信号的指示信息;或者,
    在一个时间窗的一个或多个时隙内是否发送所述第一信号和/或所述第二信号的指示信息。
  10. 根据权利要求1所述的方法,其中,所述第一信号和所述第二信号在频域上满足以下关系的一个或多个:
    所述第一信号配置的子载波间隔与所述第二信号配置的子载波间隔相同;
    所述第一信号占用的频域资源的带宽与所述第二信号占用的频域资源的带宽相同;
    所述第一信号占用的频域资源的位置与所述第二信号占用的频域资源的位置相同。
  11. 根据权利要求1所述的方法,其中,所述第一信号和所述第二信号独立地配置以下参数的一个或多个:
    子载波间隔;
    占用的频域资源的带宽;
    占用的频域资源的位置;
    占用的时域资源的大小;
    占用的时域资源的位置。
  12. 根据权利要求1所述的方法,其中,所述第一信号占用的时域单元的数量大于或等于所述第二信号占用的时域单元的数量,或者所述第一信号占用的时域单元的数量是所述第二信号占用的时域单元的数量的N倍,N为正整数。
  13. 根据权利要求1所述的方法,其中,所述第一信号用于承载第一序列,所述第二信号用于承载第二序列。
  14. 根据权利要求13所述的方法,其中,
    所述第一序列的长度大于或等于所述第二序列的长度;或者,
    所述第一序列的长度是所述第二序列的长度的M倍,M为正整数;或者,
    所述第一序列包括K个第二序列,K为正整数。
  15. 根据权利要求14所述的方法,其中,所述方法还包括:
    所述第二节点根据第一索引值,确定以下信息中的一个或多个:
    所述第一信号占用的时域单元的数量;
    所述第二信号占用的时域单元的数量;
    所述第一信号在时域上重复发送的次数;
    所述第二信号在时域上重复发送的次数;
    所述第一序列的长度;
    所述第二序列的长度;
    所述第一序列的重复发送次数;
    所述第二序列的重复发送次数。
  16. 根据权利要求15所述的方法,其中,所述第一索引值根据第一节点的类型、所述第一节点的工作带宽、所述第一节点支持的接收天线数量中的一个或多个来确定。
  17. 根据权利要求1所述的方法,其中,在一个时间窗内配置K1个第一部分,K1为正整数;所述时间窗满足以下一项或多项:
    所述时间窗的大小由所述第二节点配置;
    所述时间窗包括M1个非连续接收周期DRX cycle,M1为正整数;
    所述时间窗包括Q1个基于同步信号块的测量时间配置STMC周期,Q1为正整数。
  18. 根据权利要求17所述的方法,其中,在所述时间窗包括M1个DRX cycle的情况下,一个DRX cycle内配置一个或多个所述第一部分;或者,
    在所述时间窗包括Q1个STMC周期的情况下,一个STMC周期内配置一个或多个所述第一部分。
  19. 根据权利要求1所述的方法,其中,在所述第一部分占用的时域资源与同步信号块SSB占用的时域资源重叠的情况下,若所述第一部分占用的频域资源与SSB占用的频域资源重叠,所述第一部分被放弃发送。
  20. 根据权利要求1所述的方法,其中,在所述第一部分占用的时域资源与所述第二部分占用的时域资源重叠的情况下,所述第二部分被放弃发送。
  21. 一种信号传输方法,包括:
    第一节点接收第二节点发送的第一信息;
    其中,所述第一信息包括第一部分和/或第二部分,所述第一部分包括第一信号和/或第一控制信息,所述第二部分包括第二信号和/或第二控制信息。
  22. 根据权利要求21所述的方法,其中,所述第一信号用于所述第一节点进行同步、信道测量、作为发现信号或指示系统信息变更中的一个或多个。
  23. 根据权利要求22所述的方法,其中,若所述第一信号用于所述第一节点进行信道测量,所述第一信号占用的时域资源的位置与SSB占用的时域资源的位置相关。
  24. 根据权利要求23所述的方法,其中,所述第一信号占用的时域资源的位置与SSB占用的时域资源的位置相关,包括:
    所述第一信号占用的时域资源的位置与所述SSB占用的时域资源的位置相同;或者,
    所述第一信号占用的时域资源的位置与所述SSB占用的时域资源的位置之间相差一个偏移值;或者,
    所述第一信号占用的时域资源的起始位置与所述SSB占用的时域资源的起始位置相同。
  25. 根据权利要求22所述的方法,其中,若所述第一信号用于所述第一节点进行信 道测量,所述方法还包括:
    所述第一节点根据所述第一信号进行信道测量,得到测量结果;
    若所述测量结果小于或者等于阈值,所述第一节点退出第一信息检测状态,或者所述第一节点退出第一信息检测状态,并通过检测SSB进行信道测量。
  26. 根据权利要求21-25任一项所述的方法,其中,所述第一控制信息用于指示以下一项或多项:
    所述第一信号的起始位置信息;
    所述第一信号的时域位置信息;
    回退到寻呼流程;
    系统信息变更;
    RRM测量;
    所述第二部分是否包括所述第二控制信息;
    所述第二控制信息的配置信息;
    所述第一信息的配置变更信息;
    承载所述第一控制信息的起始资源;
    承载所述第一控制信息的终止资源;
    所述第一控制信息的起始信息标识;
    所述第一控制信息的结束信息标识。
  27. 根据权利要求26所述的方法,其中,所述第一信息的配置变更信息包括以下一项或多项:
    所述第一信号的配置变更信息;
    所述第二信号的配置变更信息;
    在一个时间窗内是否发送所述第一信号和/或所述第二信号的指示信息;
    在一个时间窗的一个或多个时隙内是否发送所述第一信号和/或所述第二信号的指示信息。
  28. 根据权利要求21所述的方法,其中,所述第二信号用于指示所述第一节点退出休眠状态和/或RRM测量。
  29. 根据权利要求21或28所述的方法,其中,所述第二控制信息包括以下中的一项或多项:
    回退到寻呼流程;
    系统信息变更;
    RRM测量;
    所述第一节点的标识信息;
    所述第一信息的配置变更信息;
    承载所述第二控制信息的起始资源的指示信息;
    承载所述第二控制信息的结束资源指示信息;
    所述第二控制信息的起始信息标识;或,
    承载所述第二控制信息的结束信息标识。
  30. 根据权利要求29所述的方法,其中,所述第一信息的配置变更信息包括以下一项或多项:
    所述第一信号的配置变更信息;
    所述第二信号的配置变更信息;
    在一个时间窗内是否发送所述第一信号和/或所述第二信号的指示信息;
    在一个时间窗的一个或多个时隙内是否发送所述第一信号和/或所述第二信号的指示信息。
  31. 根据权利要求21所述的方法,其中,所述第一信号和所述第二信号在频域上满足以下关系的一个或多个:
    所述第一信号配置的子载波间隔与所述第二信号配置的子载波间隔相同;
    所述第一信号占用的频域资源的带宽与所述第二信号占用的频域资源的带宽相同;
    所述第一信号占用的频域资源的位置与所述第二信号占用的频域资源的位置相同。
  32. 根据权利要求21所述的方法,其中,所述第一信号和所述第二信号独立地配置以下参数的一个或多个:
    子载波间隔;
    占用的频域资源的带宽;
    占用的频域资源的位置;
    占用的时域资源的大小;
    占用的时域资源的位置。
  33. 根据权利要求21所述的方法,其中,所述第一信号占用的时域单元的数量大于或等于所述第二信号占用的时域单元的数量,或者所述第一信号占用的时域单元的数量是所述第二信号占用的时域单元的数量的N倍,N为正整数。
  34. 根据权利要求21所述的方法,其中,所述第一信号用于承载第一序列,所述第二信号用于承载第二序列。
  35. 根据权利要求34所述的方法,其中,
    所述第一序列的长度大于或等于所述第二序列的长度;或,
    所述第一序列的长度是所述第二序列的长度的M倍,M为正整数;或,
    所述第一序列包括K个第二序列,K为正整数。
  36. 一种第二节点,所述第二节点包括:处理器,所述处理器用于发送第一信息,所述第一信息包括第一部分和/或第二部分,所述第一部分包括第一信号和/或第一控制信息,所述第二部分包括第二信号和/或第二控制信息。
  37. 一种第一节点,所述第一节点包括:处理器,所述处理器用于接收第二节点发送的第一信息;
    其中,所述第一信息包括第一部分和/或第二部分,所述第一部分包括第一信号和/或第一控制信息,所述第二部分包括第二信号和/或第二控制信息。
  38. 一种计算机可读存储介质,其中,所述计算机可读存储介质包括计算机指令;
    其中,当所述计算机指令被执行时,实现如权利要求1-20中任一项或者权利要求21-35中任一项所述的信息传输方法。
PCT/CN2023/101383 2022-08-31 2023-06-20 信息传输方法及装置 WO2024045790A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211057899.1A CN117692872A (zh) 2022-08-31 2022-08-31 信息传输方法及装置
CN202211057899.1 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024045790A1 true WO2024045790A1 (zh) 2024-03-07

Family

ID=90100276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/101383 WO2024045790A1 (zh) 2022-08-31 2023-06-20 信息传输方法及装置

Country Status (2)

Country Link
CN (1) CN117692872A (zh)
WO (1) WO2024045790A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014056174A1 (en) * 2012-10-11 2014-04-17 Broadcom Corporation Power saving in cellular networks
CN111386732A (zh) * 2017-11-03 2020-07-07 索尼公司 两部分唤醒信号
CN111436126A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 一种信息的发送方法及装置、存储介质和电子装置
US20210235381A1 (en) * 2018-06-04 2021-07-29 Datang Mobile Communications Equipment Co.,Ltd Signal transmission method and device
CN113873628A (zh) * 2019-09-23 2021-12-31 Oppo广东移动通信有限公司 监听wus的方法、发送信息的方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014056174A1 (en) * 2012-10-11 2014-04-17 Broadcom Corporation Power saving in cellular networks
CN111386732A (zh) * 2017-11-03 2020-07-07 索尼公司 两部分唤醒信号
US20210235381A1 (en) * 2018-06-04 2021-07-29 Datang Mobile Communications Equipment Co.,Ltd Signal transmission method and device
CN111436126A (zh) * 2019-01-11 2020-07-21 中兴通讯股份有限公司 一种信息的发送方法及装置、存储介质和电子装置
CN113873628A (zh) * 2019-09-23 2021-12-31 Oppo广东移动通信有限公司 监听wus的方法、发送信息的方法及设备

Also Published As

Publication number Publication date
CN117692872A (zh) 2024-03-12

Similar Documents

Publication Publication Date Title
JP7207782B2 (ja) 通信方法および通信デバイス
EP2728764B1 (en) Synchronous access method, and communication device and system in frequency hopping radio communication
WO2020030098A1 (zh) 监测信号的方法和装置
WO2020156378A1 (zh) 接收参考信号的方法、发送参考信号的方法和装置
CN114424482B (zh) 通信方法及装置
EP3965479A1 (en) Method and apparatus for waking up terminal device, and network device and terminal device
JP2022502946A (ja) 異なるスケジューリング遅延の仮説間での移行
CN114424629B (zh) 一种唤醒信号的检测方法及装置
EP3537767B1 (en) Station association method and device
CN109891973A (zh) 一种下行控制信息监测方法、终端及基站
WO2018137220A1 (zh) 一种信号传输方法、设备及系统
US20220394619A1 (en) Method for controlling communication in drx
US20210400641A1 (en) Device-to-device (d2d) communication method and d2d device
CN111865536A (zh) 搜索空间的监测、配置方法及装置
CN111436085A (zh) 通信方法及装置
CN112312525B (zh) 一种节电信号配置和传输方法及装置
WO2019029497A1 (zh) 免授权资源配置方法及装置
CN108432305A (zh) 一种系统信息发送、更新方法及设备
WO2024045790A1 (zh) 信息传输方法及装置
US20230074305A1 (en) Resource determining method, apparatus, and system
EP3642987B1 (en) Apparatuses and methods for communicating in a wireless communication network
CN114765837B (zh) 省电处理方法、装置及设备
KR20220042180A (ko) 절전 신호의 구성 및 송수신 방법 및 장치
WO2024012114A1 (zh) 通信方法及通信装置
WO2024017322A1 (zh) 传输处理方法、装置、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23858829

Country of ref document: EP

Kind code of ref document: A1