WO2024060745A1 - 汽车转向机全冗余助力系统及其控制方法 - Google Patents

汽车转向机全冗余助力系统及其控制方法 Download PDF

Info

Publication number
WO2024060745A1
WO2024060745A1 PCT/CN2023/102719 CN2023102719W WO2024060745A1 WO 2024060745 A1 WO2024060745 A1 WO 2024060745A1 CN 2023102719 W CN2023102719 W CN 2023102719W WO 2024060745 A1 WO2024060745 A1 WO 2024060745A1
Authority
WO
WIPO (PCT)
Prior art keywords
control system
auxiliary
main
assist
vehicle
Prior art date
Application number
PCT/CN2023/102719
Other languages
English (en)
French (fr)
Inventor
马洪顺
李山
华丹丹
Original Assignee
博世华域转向系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博世华域转向系统有限公司 filed Critical 博世华域转向系统有限公司
Publication of WO2024060745A1 publication Critical patent/WO2024060745A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear

Definitions

  • the invention relates to the technical field of steering systems, specifically to a fully redundant power assist system for automobile steering gear and a control method thereof.
  • Autonomous driving vehicles can effectively reduce the driver's driving burden, improve vehicle driving safety, and reduce the incidence of traffic accidents. At the same time, it can greatly improve the capacity of existing road vehicles, effectively reduce road congestion, alleviate environmental pollution, and solve various social and environmental problems caused by the sharp increase in the number of cars.
  • the lateral motion control of the vehicle refers to the control of the direction of the vehicle's running, with the purpose of allowing the vehicle to travel along a preset path.
  • the lateral motion control of the vehicle is a function that enables the vehicle to turn more quickly and sensitively during driving through the active steering technology of the vehicle's front wheels.
  • the steering system is one of the key technologies for the vehicle to realize the autonomous driving function, and it is also an important basis for achieving stable and safe driving of the vehicle.
  • the technical problem to be solved by the present invention is to overcome the above-mentioned defects in the prior art and provide a fully redundant power assist system for automobile steering gear and a control method thereof.
  • the first aspect is to provide a fully redundant power assist system for automobile steering gear, including a main control system and an auxiliary control system;
  • the main control system is used to provide the first steering assist for the car
  • the auxiliary control system is used to provide a second steering assist for the car
  • the first steering assist and the second steering assist are determined according to the operating state;
  • the operating state includes at least one of the following: the operating state of the car, the operating state of the control system, and the operating state of the control system. Operating status.
  • the main control system and the auxiliary control system have the same structure;
  • the main control system is communicatively connected with the auxiliary control system.
  • the main control system provides the first steering assist to the six-phase motor contained in the car through the main phase separator to drive the six-phase motor;
  • the auxiliary control system provides a second steering assist to the six-phase motor contained in the vehicle through an auxiliary phase separator to drive the six-phase motor.
  • the main control system includes a main chip power supply, a main inductor, a main power chip, a main control unit, a main pre-drive chip, a main capacitor, a main three-phase bridge, and a main phase separator.
  • the main control unit is powered by a 12V DC power supply after the main chip power supply passes through a filtering circuit composed of a main inductor and a main capacitor.
  • the main power chip is responsible for allocating and managing the voltage input of each component of the main control system.
  • the main control unit is responsible for coordinating the power output of the main road of the steering system based on the received signal, and the main pre-drive chip performs power amplification and then drives the motor through the main three-phase bridge through the main phase separator;
  • the auxiliary control system includes an auxiliary chip power supply, an auxiliary inductor, an auxiliary power supply chip, an auxiliary control unit, an auxiliary pre-driver chip, an auxiliary capacitor, an auxiliary three-phase bridge, and an auxiliary phase separator.
  • the auxiliary control unit is powered by the auxiliary chip power supply through the auxiliary phase separator. After the filter circuit composed of the inductor and auxiliary capacitor, the entire auxiliary control system is powered through the 12V DC power supply.
  • the auxiliary power chip is responsible for distributing and managing the voltage input of each component of the auxiliary control system.
  • the signal received by the control unit is responsible for coordinating the power output of the auxiliary circuit of the steering system.
  • the auxiliary three-phase bridge passes through the auxiliary phase separator and drives the motor.
  • the motor is a six-phase motor
  • the main chip power supply is connected to the main three-phase bridge through a reverse polarity protector
  • the auxiliary chip power supply is connected to the auxiliary three-phase bridge through a reverse polarity protector.
  • the communication methods of the main control system and the auxiliary control system include UART, SPI, CAN, and PWM communication methods.
  • the communication content between the main control unit and the auxiliary control unit includes vehicle CAN signal, torque angle signal, system operating status signal, assist request signal, motor assist distribution signal, and motor PWM wave signal.
  • the fully redundant power assist system can be used in one of an upper column steering system, a dual pinion steering system, and a parallel axis steering system.
  • the main control system and the auxiliary control system are jointly grounded for protection.
  • a method for controlling a fully redundant power assist system of an automobile steering gear includes a main control system and an auxiliary control system; the control method includes:
  • the operating state includes at least one of the following: the operating state of the vehicle, the operating state of the control system, and the operating state of the control system;
  • the auxiliary control system is triggered to provide a second steering assist to the vehicle.
  • the auxiliary control system is triggered to provide a re-determined second steering assist for the vehicle.
  • control method is suitable for normal operating mode, main road vehicle signal failure mode, main road control unit failure mode, auxiliary road ADC failure mode, and auxiliary road power supply signal failure mode.
  • the normal working mode is:
  • the main control system receives the relevant fault signal of the auxiliary control system, and then implements the corresponding degradation strategy and finalizes and distributes the system's assist output;
  • the auxiliary control system when the main control system fails, the auxiliary control system will receive the relevant fault signal of the main control system and determine whether the fault type causes the system to switch between the main and auxiliary systems.
  • the main road vehicle signal failure mode is:
  • the main control system will send relevant signals about the failure of its own vehicle CAN signal through inter-chip communication to inform the auxiliary control system. After receiving the signal from the main control system, the whole vehicle system will send the vehicle signal received by the auxiliary control system. It is transmitted to the main control system for final calculation and distribution of steering assist; the entire vehicle system can output 100% assist.
  • the failure mode of the main circuit control unit is:
  • the vehicle system when the vehicle system detects the failure of the main control system, the vehicle system will set the auxiliary control system as the main information channel and use it for the final calculation and distribution of steering assist; the vehicle system will output a maximum power assist of 50%.
  • auxiliary path ADC failure mode is:
  • the failure mode of the auxiliary circuit power signal is:
  • the positive and progressive effect of the present invention is that the present invention adopts a master-slave redundant power assist architecture, that is, the main control system and the auxiliary control system provide steering assist for the car at the same time, which greatly reduces the performance requirements for all aspects of hardware and helps to improve the life of electronic devices. , effectively increasing the service life and safety of the car steering system. Therefore, through evaluation from multiple aspects such as vehicle matching, hardware requirements, and downgrade strategies, the fully redundant power assist system architecture has excellent overall performance.
  • Figure 1 is a schematic architectural diagram of a fully redundant power assist system for an automobile steering gear provided by an exemplary embodiment of the present invention.
  • FIG. 2 is a schematic diagram of mutual communication between a main control unit and an auxiliary control unit provided by an exemplary embodiment of the present invention.
  • Figure 3 is a schematic diagram of a fully redundant system in normal working mode provided by an exemplary embodiment of the present invention.
  • Figure 4 is a vector control structure diagram of a six-phase permanent magnet motor provided by an exemplary embodiment of the present invention.
  • FIG. 5 is a graph showing the relationship between the assist reduction percentage and the ambient temperature according to an exemplary embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a main road vehicle signal failure mode state switching provided by an exemplary embodiment of the present invention.
  • Figure 7 is a schematic diagram of a main circuit control unit failure mode state switching provided by an exemplary embodiment of the present invention.
  • Figure 8 shows an auxiliary path ADC failure mode state switching provided by an exemplary embodiment of the present invention. Schematic diagram.
  • FIG. 9 is a schematic diagram of state switching of an auxiliary power supply signal failure mode provided by an exemplary embodiment of the present invention.
  • FIG. 10 is a schematic diagram of the architecture of a fully redundant power-assisting system for a vehicle steering gear with common ground protection provided by an exemplary embodiment of the present invention.
  • FIG. 11 is a schematic diagram of an application scenario of a fully redundant power assist system for automobile steering gears with common grounding protection provided by an exemplary embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a fully redundant power assist system for automobile steering gear with independent grounding protection provided by an exemplary embodiment of the present invention.
  • An embodiment of the present invention provides a fully redundant power-assisting system for an automobile steering gear, wherein the fully redundant power-assisting system for an automobile steering gear comprises a main control system and an auxiliary control system.
  • the main control system is used to provide the first steering assist to the car.
  • the auxiliary control system is used to provide a second steering assist to the car.
  • the sum of the first steering assist and the second steering assist is not less than the total assist required by the car.
  • the first steering assist and the second steering assist may, but are not limited to, represent the motor torque output response value of the vehicle.
  • the structure of the main control system and the structure of the auxiliary control system may be the same or different, and the embodiment of the present invention does not specifically limit this.
  • the first steering assist is determined based on operating conditions.
  • the second steering assist is the difference between the total assist required by the car and the first steering assist.
  • the operating state includes at least one of the following: the operating state of the car, the operating state of the control system, and the operating state of the control system.
  • the total assist required by the car is determined based on the operating status of the car.
  • the second steering assist is determined according to the operating state.
  • the first steering assist is the difference between the total assist required by the vehicle and the first steering assist.
  • both the first steering assist and the second steering assist are determined based on the operating state.
  • the number of main control systems included in the fully redundant power assist system of the automobile steering gear is not limited to 1, but can be 2, 3, or even more.
  • the number of auxiliary control systems included in the fully redundant power assist system of the automobile steering gear is not limited to one, but can be two, three, or even more.
  • main-master redundant assist architecture that is, under normal conditions, only the main circuit (one channel) responds with output, while the other circuit is in standby state. Only when the main circuit fails, the other circuit switches from standby state to working state. , that is, only one system is in working state at any time.
  • a master-slave redundant power-assistance architecture is adopted, that is, the main control system and the auxiliary control system provide steering assistance for the car at the same time, so the performance requirements of various hardware aspects are greatly reduced, which helps to improve the life of electronic devices and effectively increase the service life and safety of the car steering system. Therefore, through evaluation from multiple aspects such as vehicle matching, hardware requirements and degradation strategy, the fully redundant power-assistance system architecture has excellent comprehensive performance.
  • the first steering assist can be calculated by the main control system, the first steering assist can also be calculated by the auxiliary control system, and the first steering assist can also be calculated by an external device.
  • the second steering assist can be calculated by the main control system, the second steering assist can also be calculated by the auxiliary control system, and the second steering assist can also be calculated by an external device.
  • the first steering assist is calculated by the primary control system
  • the second steering assist is calculated by the auxiliary control system. That is, the two systems of the main circuit and the auxiliary circuit independently calculate the motor torque output response. When the system status is normal, the calculation results of the two circuits can be verified against each other, ensuring the correct and stable output of the system.
  • the main control system is communicatively connected with the auxiliary control system.
  • the main control system When the main control system When calculating the first steering assist and the second steering assist, the main control system sends the second steering assist to the auxiliary control system, so that the auxiliary control system provides the second steering assist to the car.
  • the auxiliary control system sends the first steering assist to the main control system, so that the main control system provides the first steering assist for the car.
  • the main control system and the auxiliary control system can cooperate to provide the required total assistance to the car.
  • the main control system includes the main chip power supply, the main inductor, the main power chip, and the main control system. unit, main pre-driver chip, main capacitor, main three-phase bridge, main phase separator.
  • the main control unit 13a uses the main chip power supply 20a after passing through the filter circuit composed of the main inductor 11a and the main capacitor 16a, and then supplies the entire main unit with a 12V DC power supply.
  • the main power supply chip 12a is responsible for distributing and managing the voltage input of each component of the main control system.
  • the main control unit 13a comprehensively receives the signal and is responsible for coordinating the power output of the main road of the steering system. After power amplification through the main pre-drive chip 15a The motor 19 is driven by the main three-phase bridge 17a via the main phase separator 18a.
  • the auxiliary control system includes an auxiliary chip power supply, an auxiliary inductor, an auxiliary power supply chip, an auxiliary control unit, an auxiliary pre-drive chip, an auxiliary capacitor, an auxiliary three-phase bridge, and an auxiliary phase separator.
  • the auxiliary control unit 13b is powered by the auxiliary chip power supply 20b through the auxiliary inductor 11b.
  • the entire auxiliary control system is powered through a 12V DC power supply.
  • the auxiliary power chip 12b is responsible for distributing and managing the voltage input of each component of the auxiliary control system.
  • the auxiliary control unit 13b comprehensively receives the signals responsible for coordinating the steering.
  • the power assist output of the system auxiliary circuit is amplified through the auxiliary pre-driver chip 15b and then driven by the auxiliary three-phase bridge 17b through the auxiliary phase separator 18b to drive the motor 19; the main control unit 13a and the auxiliary control unit 13b are connected through communication.
  • the motor 19 can be, but is not limited to, a six-phase motor.
  • main control system and the auxiliary control system may also include ADCs.
  • the communication methods of the main control system and the auxiliary control system include UART, SPI, CAN, and PWM communication methods.
  • the communication content between the main control unit 13a and the auxiliary control unit 13b includes vehicle CAN signal, torque angle signal, system operation status signal, power assist request signal, motor power assist distribution signal, and motor PWM wave signal.
  • Fully redundant power steering system can be used for column-type steering system, dual pinion steering system, parallel A type of axle steering system.
  • the fully redundant power assist system architecture consists of a main control system and an auxiliary control system that are completely symmetrical on both sides.
  • the two channels of information can work independently to complete the final calculation and mutual transmission of steering assist. .
  • the main control system and the auxiliary control system are jointly protected from ground faults.
  • R1, R2 two independent current sampling resistors
  • Two independent electronic control units are used for numerical comparison and calculation analysis, and at the same time, the calibration and inspection of the motor control current is introduced, which can accurately detect the failure of the negative electronic components of the system circuit, and at the same time avoid the negative electrode of the entire vehicle due to long-term durability. Misdiagnosis of faults caused by excessive resistance of wires or connectors can effectively ensure the safety, robustness and maximum availability of the fully redundant power steering system.
  • the main control system and the auxiliary control system perform grounding protection independently to ensure the electrical safety of the system.
  • the main control system is the main control path
  • the auxiliary control system is the auxiliary control path. Real-time information interaction occurs between the two systems to ensure that the system is in a redundant state during operation.
  • the automobile steering control fully redundant power assist system architecture mainly consists of electronic and electrical components including at least one motor (six-phase motor), two control units (a main control unit 13a and an auxiliary control unit 13b), two power chips ( One main power chip 12a and one auxiliary power chip 12b), two pre-driver chips (one main pre-driver chip 15a and one auxiliary pre-driver chip 15b), two CAN transceivers, two three-phase bridges (one main three-phase bridge 17a and an auxiliary three-phase bridge 17b), two reverse polarity protectors (a main MOS tube 14a and an auxiliary MOS tube 14b), and six phase separators. Each group of three is divided into two main and auxiliary channels, respectively.
  • two-way vehicle power supply (a main chip power supply 20a and an auxiliary chip power supply 20b), several filter inductors (main inductor 11a and auxiliary inductor 11b) and capacitors (main capacitor 16a and auxiliary capacitor 16b ), and a rotor position chip, etc.
  • the main road and auxiliary road of the fully redundant steering system are in working condition at the same time.
  • the main control system side provides 12V DC power to the entire system after the main chip power supply 20a passes through the filter circuit (main inductor 11a and main capacitor 16a).
  • the main power chip 12a is responsible for distributing and managing the voltage of each component of the main control system.
  • Input, main control unit The signal received by the integrated main control system 13a is responsible for coordinating the power assist output of the main circuit of the steering system. It amplifies the power through the main pre-drive chip 15a and drives the six-phase motor 19 to provide 50% power assistance to the system.
  • the six-phase motor 19 in order to reduce the failure rate when the steering system loses power assistance, by adding a main phase separator 18a, the six-phase motor 19 can still operate independently after any one phase fails.
  • a reverse polarity protector main MOS transistor 14a is introduced to increase the robustness of the main control system end system.
  • a reverse polarity protector main MOS transistor 14b is introduced to increase the robustness of the auxiliary control system end system.
  • the auxiliary control system is consistent with the main control system, each providing 50% assistance to the system. Under normal working conditions, the main and auxiliary systems each provide 50% power assistance. After superposition, the fully redundant steering system can provide 100% steering power to meet high-level autonomous driving in various scenarios, ensuring the intelligent and safe driving of the entire vehicle.
  • the overall control strategy of the fully redundant power assist system of the present invention is: the upper system ensures reasonable calculation and distribution of the requested torque of the active unit through the master-slave control mode, and the lower system responds independently to ensure accurate output of motor power assist.
  • the main control unit 13a and the auxiliary control unit 13b communicate with each other, which can support real-time data transmission and synchronization of the dual control units. Master-slave switching and signal mutual transmission can ensure maximum system availability when a fault occurs.
  • the upper-layer system and the lower-layer system are for the software level (the same for the main road and the auxiliary road).
  • the upper-layer system mainly refers to system signal processing, torque calculation and output limits, safety strategies, etc.; while the lower-layer system Mainly refers to the control logic of motor torque output.
  • Embodiments of the present invention also provide a control method for a fully redundant power assist system of a car steering gear.
  • the control method includes the following steps: determining the first steering power assist and the second steering power assist according to the operating status; triggering the main control system to provide the first steering power assist to the car. Steering assist; the trigger auxiliary control system provides the car with a second steering assist.
  • the operating state includes at least one of the following: the operating state of the automobile, the operating state of the control system, and the operating state of the control system.
  • the first steering assist is determined according to the operating state, and the second steering assist is the difference between the total assist required by the car and the first steering assist.
  • the second steering assist is determined based on the operating state.
  • the first steering assist is the difference between the total assist required by the car and the first steering assist.
  • both the first steering assist and the second steering assist are determined based on the operating state.
  • the execution subject of the control method in the embodiment of the present invention may be the main control system in any of the above embodiments; the execution subject of the control method in the embodiment of the present invention may also be the auxiliary control system in any of the above embodiments;
  • the control method of the example can also be realized through the interaction between the main control system and the auxiliary control system.
  • control method further includes: monitoring the operating state; when the operating state changes, redetermining the first steering assist and the second steering assist according to the changed operating state; triggering the main control system to provide the redetermined steering assist to the car.
  • the control method of the embodiment of the present invention is suitable for normal operating mode, main road vehicle signal failure mode, main road control unit failure mode, auxiliary road ADC failure mode, and auxiliary road power supply signal failure mode.
  • the operating status may be, but is not limited to, represented by the status corresponding to each of the above modes.
  • FIG. 3 it is a schematic diagram of a fully redundant system under normal working conditions.
  • the main control system and the auxiliary control system receive two independent vehicle power signals, torque input signals and vehicle CAN signals respectively.
  • the unilateral system the systems on both sides do not interfere with each other will assist and compensate according to the external interference they receive.
  • the temperature sensor in the ECU will calculate the temperature change of the unilateral system in real time, and adjust and compensate the motor assist output according to the temperature change range. If the temperature drops, the system will actively increase the motor assist to compensate. Insufficient steering assist due to low ambient temperature. When the temperature increases, the system will actively reduce the motor assist output to avoid damage to the electronic and electrical components of the steering system due to excessive ambient temperature.
  • the system When the steering system senses the excitation of different road surfaces, the system will predict the road conditions in the next period and adjust the power assist output in time based on the real-time feedback from the road surface to adapt to the steering power output of different road conditions, thereby improving the vehicle's control stability and driving.
  • the operator s hand comfort.
  • the mathematical model of the permanent magnet synchronous motor is the basis for realizing vector control.
  • the mathematical model of the permanent magnet motor in the d-q coordinate system can be expressed by the following formula:
  • T cem p[ ⁇ f i q +(Ld-Lq)i d i q ]; where u dq , i dq , ⁇ d and ⁇ q respectively represent the dq axis components of the stator voltage, current and flux linkage. ; Ld and Lq are the dq-axis inductance of the stator winding, R1 is the stator resistance; ⁇ f is the rotor permanent magnet flux linkage; T cem is the electromagnetic torque of the motor; p is the number of pole pairs of the motor; ⁇ is the rotor electrical angular speed. It can be seen from the above formula that T cem is mainly composed of two parts: excitation torque and reluctance torque, and the essence of vector control is to control the magnitude and phase of the motor stator current vector.
  • FIG. 4 it is the vector control structure diagram of the six-phase permanent magnet motor of the steering gear, which mainly adopts a double closed-loop structure of speed and current.
  • the rotor position sensor detects the position of the rotor magnetic pole in real time, and can obtain the absolute position of the rotor and the actual speed of the motor.
  • the difference between the speed reference and the speed feedback is adjusted by ASR to obtain the current loop dq axis current given; the phase current detected by the current sampling resistor is transformed by Clarke and Park to obtain the feedback stator current i d and i q ; the current loop given and feedback
  • the difference is obtained through ACR and Park inverse transformation to obtain the voltage given in the ⁇ - ⁇ coordinate system, and then the desired gate PWM signal is generated through SVPWM technology and given to the inverter. It can be seen from the above formula that when the motor parameters are determined, the electromagnetic torque is only related to the currents id and iq .
  • the precise control of the permanent magnet motor torque can be achieved by independent control of id and iq .
  • the steering system architecture starts to implement power reduction protection when the ambient temperature is greater than 110°C to ensure that the system does not Continuous operation at high temperatures may cause damage.
  • the ambient temperature By detecting the ambient temperature in real time and using the software module to realize the power-down protection at the corresponding temperature.
  • the relationship between the percentage of reduced power assist when the temperature is greater than 110°C and the ambient temperature is shown in Figure 8.
  • the system When the temperature is greater than 125°C, the system will reduce the power assist to 0, that is, the motor will stop providing steering assistance to the outside world to achieve high temperature protection for the system.
  • the fully redundant system architecture will implement corresponding degradation strategies and necessary master-slave switching based on the form and severity of the fault, thereby ensuring system security and availability.
  • the main faults include but are not limited to the failure of electronic and electrical components, loss or error of signals, software vulnerabilities, and vehicle power failure.
  • the main channel torque signal, angle signal, CAN signal and other signals fail or are lost, the system does not switch, because at this time the other channel can obtain the corresponding information through the IPC to control and distribute torque.
  • the main circuit RPS signal, current signal, phase separation and pre-drive chip and other signals or electronic devices fail, master-slave switching is required, mainly because the execution end of the main circuit has failed at this time and the upper control end cannot implement it. control.
  • the schematic diagram of the main road vehicle signal failure mode state switching when the vehicle CAN signal of the main control system fails or is lost, the main control unit of the main control system cannot perform system assistance calculation and calculation based on the real-time vehicle operating status. distribution, resulting in "paralysis" of the main control system.
  • the main control system will send relevant signals about the failure of its own vehicle CAN signal through inter-chip communication to inform the auxiliary control system.
  • the system After receiving the signal from the main control system, the system will transmit the vehicle signal received by the auxiliary control system to the main control system.
  • the system is used for steering power calculation and distribution. Since the auxiliary control system can still accept the complete vehicle CAN signal in this failure mode, and can synchronize the vehicle CAN signal to the main control system through inter-chip communication, master-slave switching does not occur in this failure mode and the system can still Output 100% boost.
  • the schematic diagram of the failure mode state switching of the main road control unit the main control system completely loses its working ability. At this time, the auxiliary control system will be unable to receive relevant signals from the main control system for a long time, and the entire vehicle system will
  • the control system is configured as the main information channel and is used for the calculation and distribution of the steering assist. Due to the failure of the main control unit of the main control system, the main control of the six-phase motor controlled by it The control system also fails to work, so after master-slave switching occurs in this fault mode, the vehicle system can only output a maximum of 50% boost.
  • FIG 8 it is a schematic diagram of the auxiliary circuit ADC failure mode state switching.
  • the ADC of the auxiliary control system fails, the six-phase motor will not be driven.
  • the main and auxiliary control do not switch in this fault mode, and the entire vehicle system can only output a maximum of 50% assist.
  • FIG. 9 it is a schematic diagram of the status switching of the auxiliary circuit power supply signal failure mode.
  • the entire auxiliary control system is in a power-down state and cannot work. Therefore, the main and auxiliary control do not switch in this fault mode. , both ends of the system cannot complete inter-chip communication, and the system can output a maximum of 50% boost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)

Abstract

一种汽车转向机全冗余助力系统,包括主控制系统和辅控制系统;主控制系统用于为汽车提供第一转向助力;辅控制系统用于为汽车提供第二转向助力;其中,第一转向助力和第二转向助力根据运行状态确定;运行状态包括以下至少之一:汽车的运行状态、主控制系统的运行状态、辅控制系统的运行状态。还公开了一种汽车转向机全冗余助力系统的控制方法。采用主从冗余助力架构,即主控制系统和辅控制系统同时为汽车提供转向助力,对硬件各方面性能要求大大降低,有助于提高电子器件的寿命,有效增加汽车转向的系统的使用寿命和安全性。

Description

汽车转向机全冗余助力系统及其控制方法
本申请要求申请日为2022/9/20的中国专利申请2022111402173的优先权。本申请引用上述中国专利申请的全文。
技术领域
本发明涉及转向系统技术领域,具体地说是一种汽车转向机全冗余助力系统及其控制方法。
背景技术
自动驾驶车辆可有效减少驾驶员的驾驶负担,提升车辆行驶安全性,降低交通安全事故的发生率。同时,可大幅度提升现有道路车辆的容纳能力,有效减轻道路堵塞状况,缓解环境污染,解决因汽车保有量急剧增加而导致的各类社会和环境问题。目前,汽车自动驾驶技术研究的核心的问题之一是汽车在自动驾驶过程中如何实现稳定可靠的车辆横向控制。车辆的横向运动控制是指对汽车运行方向的控制,目的是为了让车辆沿着预设的路径行驶。车辆的横向运动控制是通过车辆前轮主动转向技术,使车辆在行驶过程中能够更加快速灵敏地进行转向的功能,转向系统属于车辆实现自动驾驶功能的关键技术之一,也是实现车辆稳定、安全行驶的重要基础。
传统的汽车转向系统只能支持低级别的自动驾驶或辅助驾驶,主要是因为其电子电气架构是非冗余设计,当发生单点失效时转向系统将会丢失助力,使汽车处于“失控”状态而无法支持“自动驾驶”,威胁驾驶员或行人的人生安全。因此为了满足日益提升的自动驾驶技术要求,开发可支持高级自动驾驶的全冗余汽车转向系统势在必行。
发明内容
本发明要解决的技术问题是为了克服现有技术中的上述缺陷,提供一种汽车转向机全冗余助力系统及其控制方法。
本发明是通过下述技术方案来解决上述技术问题:
第一方面,提供一种汽车转向机全冗余助力系统,包括主控制系统和辅控制系统;
所述主控制系统用于为汽车提供第一转向助力;
所述辅控制系统用于为汽车提供第二转向助力;
其中,所述第一转向助力和所述第二转向助力根据运行状态确定;所述运行状态包括以下至少之一:所述汽车的运行状态、所述控制系统的运行状态、所述控制系统的运行状态。
可选地,所述主控制系统与所述辅控制系统的结构一致;
和/或,所述主控制系统与所述辅控制系统通讯连接。
可选地,所述主控制系统通过主相分离器为汽车包含的六相电机提供第一转向助力,以驱动所述六相电机;
所述辅控制系统通过辅相分离器为汽车包含的六相电机提供第二转向助力,以驱动所述六相电机。
可选地,所述主控制系统包括主芯片电源、主电感、主电源芯片、主控制单元、主预驱芯片、主电容、主三相桥、主相分离器,主控制单元由主芯片电源经过主电感和主电容组成的滤波电路之后,通过12V直流电源给整个主控制系统供电,主电源芯片负责分配和管理主控制系统各元器件的电压输入,主控制单元综合接收的信号负责协调转向系统主路的助力输出,通过主预驱芯片进行功率放大后由主三相桥经过主相分离器驱动电机;
和/或,辅控制系统包括辅芯片电源、辅电感、辅电源芯片、辅控制单元、辅预驱芯片、辅电容、辅三相桥、辅相分离器,辅控制单元由辅芯片电源经过辅电感和辅电容组成的滤波电路之后,通过12V直流电源给整个辅控制系统供电,辅电源芯片负责分配和管理辅控制系统各元器件的电压输入,辅控 制单元综合接收的信号负责协调转向系统辅路的助力输出,通过辅预驱芯片进行功率放大后由辅三相桥经过辅相分离器、驱动电机。
可选地,所述的电机为六相电机;
和/或,所述主芯片电源通过一个反极性保护器与所述主三相桥连接;
和/或,所述辅芯片电源通过一个反极性保护器与所述辅三相桥连接。
可选地,所述的主控制系统及辅控制系统的通讯方式包括UART、SPI、CAN、PWM通讯方式。
可选地,所述的主控制单元与辅控制单元之间的通讯内容包括整车CAN信号、扭矩转角信号、系统运行状态信号、助力请求信号、电机助力分配信号、电机PWM波信号。
可选地,所述的全冗余助力系统可用于上管柱式转向系统、双小齿轮式转向系统、平行轴式转向系统中的一种。
可选地,所述主控制系统和所述辅控制系统共同接地保护。
第二方面,提供一种汽车转向机全冗余助力系统的控制方法,所述汽车转向机全冗余助力系统包括主控制系统和辅控制系统;所述控制方法包括:
根据运行状态确定第一转向助力和第二转向助力;其中,所述运行状态包括以下至少之一:所述汽车的运行状态、所述控制系统的运行状态、所述控制系统的运行状态;
触发所述主控制系统为汽车提供第一转向助力;
触发所述辅控制系统为汽车提供第二转向助力。
可选地,还包括:
监测所述运行状态;
当所述运行状态发生变化时,根据变化后的运行状态重新确定第一转向助力和第二转向助力;
触发所述主控制系统为汽车提供重新确定的第一转向助力;
触发所述辅控制系统为汽车提供重新确定的第二转向助力。
可选地,所述的控制方法适用于正常工作模式、主路整车信号失效模式、主路控制单元失效模式、辅路ADC失效模式、辅路电源信号失效模式。
可选地,所述的正常工作模式为:
S11,当辅控制系统发生故障时,主控制系统接收到辅控制系统相关故障信号,进而实施相应降级策略并决算和分配系统助力输出;
S12,当主控制系统发生故障时,辅控制系统会接收主控制系统相关故障信号,并判断故障类型是否引起系统发生主辅切换。
可选地,所述的主路整车信号失效模式为:
S21,当主控制系统的整车CAN信号失效或丢失时,主控制系统的主控制单元无法根据实时整车运行状态进行系统助力决算和分配;
S22,主控制系统会通过片间通讯发送自身整车CAN信号失效的相关信号告知辅控制系统,在接收到主控制系统的信号后,整车系统会将辅控制系统所接受到的整车信号传送至主控制系统用于转向助力决算和分配;整车系统可输出100%助力。
可选地,所述的主路控制单元失效模式为:
S31,当主控制系统的主控制单元发生失效时,主控制系统完全失去工作能力;
S32,整车系统检测到主控制系统失效时,整车系统会将辅控制系统设置成主要信息通路并用于转向助力决算和分配;整车系统最大输出50%助力。
可选地,所述的辅路ADC失效模式为:
S41,当辅控制系统的ADC失效后,电机将无法被驱动;
S42,此时,主控制系统与辅控制系统之间仍可完成信息交互,在该故障模式下主、辅控制系统不发生切换,整车系统最大输出50%助力。
可选地,所述的辅路电源信号失效模式为:
S51,当辅控制系统的电源失效后,整个辅控制系统处于掉电状态而无法工作;
S52,在该故障模式下主、辅控制不发生切换,系统两端也无法完成片间通讯,系统最大可输出50%助力。
在符合本领域常识的基础上,上述各优选条件,可任意组合,即得本发明各较佳实例。
本发明的积极进步效果在于:本发明采用主从冗余助力架构,即主控制系统和辅控制系统同时为汽车提供转向助力,对硬件各方面性能要求大大降低,有助于提高电子器件的寿命,有效增加汽车转向的系统的使用寿命和安全性。因此通过从整车匹配、硬件要求和降级策略等多个方面进行评估,所述全冗余助力系统架构具有优良的综合性能。
附图说明
图1为本发明一示例性实施例提供的一种汽车转向机全冗余助力系统的架构示意图。
图2为本发明一示例性实施例提供的一种主要控制单元和辅控制单元之间相互通讯示意图。
图3为本发明一示例性实施例提供的一种正常工作模式下全冗余系统的示意图。
图4为本发明一示例性实施例提供的一种六相永磁电机矢量控制结构图。
图5为本发明一示例性实施例提供的一种降助力百分比与环境温度的关系图。
图6为本发明一示例性实施例提供的一种主路整车信号失效模式状态切换示意图。
图7为本发明一示例性实施例提供的一种主路控制单元失效模式状态切换示意图。
图8为本发明一示例性实施例提供的一种辅路ADC失效模式状态切换 示意图。
图9为本发明一示例性实施例提供的一种辅路电源信号失效模式状态切换示意图。
图10为本发明一示例性实施例提供的一种共同接地保护的汽车转向机全冗余助力系统的架构示意图。
图11为本发明一示例性实施例提供的一种共同接地保护的汽车转向机全冗余助力系统的应用场景示意图。
图12为本发明一示例性实施例提供的一种独立接地保护的汽车转向机全冗余助力系统的架构示意图。
具体实施方式
下面通过实施例的方式进一步说明本发明,但并不因此将本发明限制在所述的实施例范围之中。
本发明实施例提供一种汽车转向机全冗余助力系统,该汽车转向机全冗余助力系统包括主控制系统和辅控制系统。
主控制系统用于为汽车提供第一转向助力。
辅控制系统用于为汽车提供第二转向助力。
第一转向助力与第二转向助力之和不小于汽车所需的总助力。第一转向助力与第二转向助力可以但不限于表征汽车的电机扭矩输出响应值。
主控制系统的结构与辅控制系统的结构可以相同,也可以不同。本发明实施例对此不作特别限定。
在一个实施例中,第一转向助力根据运行状态确定。第二转向助力为汽车所需的总助力与第一转向助力之差。
其中,运行状态包括以下至少之一:汽车的运行状态、控制系统的运行状态、控制系统的运行状态。汽车所需的总助力根据汽车的运行状态确定。 根据汽车的运行状态计算汽车所需的总助力转向助力的具体实现方式,以及根据运行状态确定第一转向助力和第二转向助力的具体实现方式,参见相关技术描述,此处不再赘述。
在一个实施例中,第二转向助力根据运行状态确定。第一转向助力为汽车所需的总助力与第一转向助力之差。
在一个实施例中,第一转向助力和第二转向助力均根据运行状态确定。
需要说明的是,该汽车转向机全冗余助力系统包括的主控制系统的数量不限于1个,可以是2个、3个,甚至更多。同样,该汽车转向机全冗余助力系统包括的辅控制系统的数量不限于1个,可以是2个、3个,甚至更多。
现有技术大多采用的是主主冗余助力架构,即正常状态下仅主路(一路)进行输出响应,而另一路处于待机状态,只有当主路失效时,另一路从待机状态切换成工作状态,即任何时候只有一路系统处于工作状态。
而本发明实施例中,采用主从冗余助力架构,即主控制系统和辅控制系统同时为汽车提供转向助力,所以对硬件各方面性能要求大大降低,有助于提高电子器件的寿命,有效增加汽车转向的系统的使用寿命和安全性。因此通过从整车匹配、硬件要求和降级策略等多个方面进行评估,所述全冗余助力系统架构具有优良的综合性能。
第一转向助力可以由主控制系统计算得到,第一转向助力也可以由辅控制系统计算得到,第一转向助力还可以由外部设备计算得到。同样,第二转向助力可以由主控制系统计算得到,第二转向助力也可以由辅控制系统计算得到,第二转向助力还可以由外部设备计算得到。
在一个实施例中,第一转向助力由主控制系统计算得到,第二转向助力由辅控制系统计算得到。即主路和辅路两套系统各自独立计算电机扭矩输出响应,在系统状态正常的情况下,两路计算结果可以相互校验,确保了系统的正确稳定输出。
在一个实施例中,主控制系统与辅控制系统通讯连接。当由主控制系统 计算第一转向助力和第二转向助力时,主控制系统将第二转向助力发送给辅控制系统,以使辅控制系统为汽车提供第二转向助力。当由辅控制系统计算第一转向助力和第二转向助力时,辅控制系统将第一转向助力发送给主控制系统,以使主控制系统为汽车提供第一转向助力。从而,实现主控制系统与辅控制系统协同为汽车提供所需的总助力。
如图1所示,图1为示出的汽车转向机全冗余助力系统包含的主控制系统与辅控制系统的结构一致,主控制系统包括主芯片电源、主电感、主电源芯片、主控制单元、主预驱芯片、主电容、主三相桥、主相分离器,主控制单元13a由主芯片电源20a经过主电感11a和主电容16a组成的滤波电路之后,通过12V直流电源给整个主控制系统供电,主电源芯片12a负责分配和管理主控制系统各元器件的电压输入,主控制单元13a综合接收的信号负责协调转向系统主路的助力输出,通过主预驱芯片15a进行功率放大后由主三相桥17a经过主相分离器18a驱动电机19。辅控制系统包括辅芯片电源、辅电感、辅电源芯片、辅控制单元、辅预驱芯片、辅电容、辅三相桥、辅相分离器,辅控制单元13b由辅芯片电源20b经过辅电感11b和辅电容16b组成的滤波电路之后,通过12V直流电源给整个辅控制系统供电,辅电源芯片12b负责分配和管理辅控制系统各元器件的电压输入,辅控制单元13b综合接收的信号负责协调转向系统辅路的助力输出,通过辅预驱芯片15b进行功率放大后由辅三相桥17b经过辅相分离器18b驱动电机19;所述的主控制单元13a与辅控制单元13b采用通讯方式连接。
其中,电机19可以但不限于采用六相电机。
可以理解地,主控制系统与辅控制系统还可以包括ADC。
在一个实施例中,主控制系统及辅控制系统的通讯方式包括UART、SPI、CAN、PWM通讯方式。
主控制单元13a与辅控制单元13b之间的通讯内容包括整车CAN信号、扭矩转角信号、系统运行状态信号、助力请求信号、电机助力分配信号、电机PWM波信号。
全冗余助力系统可用于上管柱式转向系统、双小齿轮式转向系统、平行 轴式转向系统中的一种。
在一个实施例中,该全冗余助力系统架构具有两边完全对称的主控制系统和辅控制系统构成,两路信息(主控制系统、辅控制系统)可独立工作完成转向助力的决算和互传。
在一个实施例中,主控制系统和辅控制系统共同接地保护。参见图10和图11,通过使用两个独立的电流采样电阻(R1,R2)分别采集主控制系统和辅控制系统的负极母线电流,再经过两个独立的运算放大器,然后使用主辅各自包含的两个独立的电子控制单元进行数值对比和计算分析,同时引入电机控制电流的校核检验,可准确无误的检测出该系统电路负极电子元器件故障,同时可避免整车因长期耐久导致负极导线或接插件阻值过大而引起的故障误诊断,从而可有效确保该全冗余助力转向系统的安全性、鲁棒性和最大可用性。
在一个实施例中,参见图12,主控制系统和辅控制系统独立进行接地保护,确保系统的电气安全。在正常工作状态下,主控制系统为主要控制路径,辅控制系统为辅助控住路径,两个系统之间进行实时信息交互,确保系统运行时处于冗余状态。
所述汽车转向控制全冗余助力系统架构主要组成电子电气元器件至少包含一个电机(六相电机)、两个控制单元(一个主控制单元13a和一个辅控制单元13b)、两个电源芯片(一个主电源芯片12a和一个辅电源芯片12b)、两个预驱芯片(一个主预驱芯片15a和一个辅预驱芯片15b)、两个CAN收发器,两个三相桥(一个主三相桥17a和一个辅三相桥17b)、两个反极性保护器(一个主MOS管14a和一个辅MOS管14b)、六个相分离器每三个一组分为主辅两路,分别用于控制两路电机保护,两路整车供电电源(一个主芯片电源20a和一个辅助芯片电源20b),若干滤波电感(主电感11a和辅电感11b)和电容(主电容16a和辅电容16b),以及一个转子位置芯片等。
如图1和图2所示,正常工作模式下,该全冗余转向系统主路和辅路同时处于工作状态。其中主控制系统端由主芯片电源20a经过滤波电路(主电感11a和主电容16a)之后,通过提供12V直流电源给整个系统供电,主电源芯片12a负责分配和管理主控制系统各元器件的电压输入,主控制单元 13a综合主控制系统接收的信号负责协调转向系统主路的助力输出,通过主预驱芯片15a进行功率放大后驱动六相电机19为系统提供50%助力。
在一个实施例中,为减小转向系统丢失助力的失效率,通过增加主相分离器18a可以实现六相电机19在任意一相相失效后电机仍可独立运行。
在一个实施例中,同时为了防止主控制系统端整车电源反接导致转向系统元器件失效,因此引入了反极性保护器主MOS管14a,增加主控制系统端系统的鲁棒性。
在一个实施例中,同时为了防止辅控制系统端整车电源反接导致转向系统元器件失效,因此引入了反极性保护器主MOS管14b,增加辅控制系统端系统的鲁棒性。
在一个实施例中,辅控制系统与主控制系统一致,各自为系统提供50%助力。正常工作状态下主辅两系统各提供50%助力,叠加之后该全冗余转向系统可提供满足多种场景的高级别自动驾驶的100%转向助力,确保整车的智能安全行驶。
本发明全冗余助力系统的总体控制策略为:在上层系统通过主从控制模式保证主动单元的请求扭矩合理决算和分配,下层系统独立响应确保电机助力精准输出。主控制单元13a和辅控制单元13b间相互通讯,可支持双控单元数据实时传输和同步,主从切换和信号互传可保证在故障发生时系统最大可用性。
可以理解地,上层系统和下层系统是针对软件层面而言的(对主路和辅路是相同的),上层系统主要是指系统信号的处理、扭矩计算和输出限制、安全策略等;而下层系统主要是指电机扭矩输出的控制逻辑。
本发明实施例还提供一种汽车转向机全冗余助力系统的控制方法,该控制方法包括以下步骤:根据运行状态确定第一转向助力和第二转向助力;触发主控制系统为汽车提供第一转向助力;触发辅控制系统为汽车提供第二转向助力。
其中,运行状态包括以下至少之一:所述汽车的运行状态、所述控制系统的运行状态、所述控制系统的运行状态。
在一个实施例中,根据运行状态确定第一转向助力,第二转向助力为汽车所需的总助力与第一转向助力之差。
在一个实施例中,第二转向助力根据运行状态确定。第一转向助力为汽车所需的总助力与第一转向助力之差。
在一个实施例中,第一转向助力和第二转向助力均根据运行状态确定。
本发明实施例的控制方法的执行主体可以是上述任一实施例中的主控制系统;本发明实施例的控制方法的执行主体还可以是上述任一实施例中的辅控制系统;本发明实施例的控制方法还可以通过主控制系统和辅控制系统的交互实现。
在一个实施例中,控制方法还包括:监测运行状态;当运行状态发生变化时,根据变化后的运行状态重新确定第一转向助力和第二转向助力;触发主控制系统为汽车提供重新确定的第一转向助力;触发辅控制系统为汽车提供重新确定的第二转向助力。
本发明实施例的控制方法适用于正常工作模式、主路整车信号失效模式、主路控制单元失效模式、辅路ADC失效模式、辅路电源信号失效模式。
运行状态可以但不限于通过上述各模式对应的状态表征。
如图3所示,为正常工作状态下全冗余系统示意图,主控制系统和辅控制系统分别接收两路独立的整车电源信号、扭矩输入信号和整车CAN信号。当其中任意一端通路收到外界环境或信号的干扰而运行状态发生变化时,单边系统(两边系统互不干扰)会根据各自受到的外界的干扰进行助力补偿。
当环境温度过高或过低时,ECU内的温度传感器会实时计算单边系统的温度变化,并根据温度变化范围调整及补偿电机助力的输出,如温度降低系统会主动增大电机助力以补偿因环境温度过低导致的转向助力不足,当温度增高时系统会主动减少电机助力输出以避免因环境温度过高导致转向系统电子电器件损坏。
当两端系统各自感知到电源波动时同样会根据电源变化幅值进行转向助力补偿,以克服因电源系统的不稳定导致转向系统电子元器件的损坏或转向助力的不稳定控制。
当转向系统感知到不同路面的激励时,系统会根据路面的实时反馈,预测下一时段的路面状况及时调整助力输出,以适应不同路面状况的转向助力输出,从而提高汽车操控稳定性和提高驾驶员的手感舒适度。
如图4,图5所示,以当环境温度升高至一定范围后,通过控制减少电机助力的输出对系统进行保护为例,讲述系统自动保护的过程。永磁同步电机的数学模型是实现矢量控制的基础,在d-q坐标系下永磁电机的数学模型可用如下公式进行表示:
磁链方程为
电压方程为
转矩方程为Tcem=p[ψfiq+(Ld-Lq)idiq];其中udq、idq、ψd和ψq分别表示定子电压、电流、磁链的dq轴分量;Ld、Lq为定子绕组dq轴电感,R1为定子电阻;ψf为转子永磁体磁链;Tcem为电机电磁转矩;p为电机极对数;ω为转子电角速度。由上述公式可见,Tcem主要由励磁转矩和磁阻转矩两部分组成,而矢量控制的本质是对电机定子电流矢量幅值和相位的控制。
如图4所示,为转向机六相永磁电机矢量控制结构图,其主要是采用转速和电流双闭环结构。该电机控制系统中,转子位置传感器(RPS)实时探测转子磁极的位置,可得到转子的绝对位置和电机的实际转速。速度参考与速度反馈的差值经过ASR调节得到电流环dq轴电流给定;电流采样电阻检测得到的相电流经过Clarke和Park变换,得到反馈定子电流id和iq;电流环给定和反馈差经ACR和Park逆变换获得α-β坐标系下电压给定,再通过SVPWM技术产生期望的门极PWM信号给到逆变器。通过上述公式可知,当电机参数确定后,电磁转矩仅与电流id和iq有关,通过对id和iq的独立控制便可实现对永磁电机转矩的精确控制。
为确保转向系统的最大可用性同时兼顾系统自保护的安全性,转向系统架构当环境温度大于110℃时开始实施降助力保护,以确保系统不会因为在 高温下持续工作而导致损坏。通过实时检测环境温度并通过软件模块实现对应温度下助力下降保护。温度大于110℃下降助力百分比与环境温度的关系如图8所示,当温度大于125℃时,系统将助力下降至0,即电机停止对外提供转向助力,以实现对系统的高温保护。
当故障发生时,该全冗余助力系统架构会根据故障的形式和严重程度实施相应的降级策略和必要的主从切换,进而确保系统的安全性和可用性。主要的故障有但不限于电子电气件的失效、信号的丢失或错误、软件的漏洞以及整车电源失效等。一般当主路扭矩信号、角度信号和CAN信号等信号失效或丢失时,系统不进行切换,因为此时另一路可以通过IPC获取相应的信息进行控制和分配扭矩。而当主路RPS信号、电流信号、相分离及预驱芯片等信号或电子器件失效时,需要进行主从切换,主要是因为此时主路的执行端已发生失效,上层控制端无法对其实施控制。
总之,当主路的上层控制端出现失效时,一般不进行主从切换;而当主路下层执行端失效时,需要进行主从切换,以确保系统的可靠性和安全性。接下来选取几种典型的失效形式进行分析,进一步解释说明该全冗余助力系统的主从切换和故障降级模式。
如图6所示,为主路整车信号失效模式状态切换示意图,当主控制系统的整车CAN信号失效或丢失时,主控制系统的主控制单元无法根据实时整车运行状态进行系统助力决算和分配,从而导致主控制系统发生“瘫痪”。此时主控制系统会通过片间通讯发送自身整车CAN信号失效的相关信号告知辅控制系统,在接收到主控制系统信号后系统会将辅控制系统所接受到的整车信号传送至主控制系统用于转向助力决算和分配。由于该失效模式下辅控制系统仍可接受完整的整车CAN信号,且可通过片间通讯将整车CAN信号同步至主控制系统,因此在该故障模式下不发生主从切换且系统依旧可输出100%助力。
如图7所示,为主路控制单元失效模式状态切换示意图,主控制系统完全失去工作能力,此时辅控制系统会因长时间无法接收到来自主控制系统的相关信号,整车系统会将辅控制系统设置成主要信息通路并用于转向助力决算和分配。由于主控制系统的主控制单元失效导致其控制的六相电机的主控 制系统也无法工作,因此在该故障模式下发生主从切换之后,整车系统最大只能输出50%助力。
如图8所示,为辅路ADC失效模式状态切换示意图,当辅控制系统的ADC失效后,六相电机将无法被驱动。虽然两个系统之间仍可完成信息交互,在该故障模式下主、辅控制不发生切换,整车系统最大仅能输出50%助力。
如图9所示,为辅路电源信号失效模式状态切换示意图,当辅控制系统端电源失效后,整个辅控制系统处于掉电状态而无法工作,因此在该故障模式下主、辅控制不发生切换,系统两端也无法完成片间通讯,系统最大可输出50%助力。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明的原理和实质的前提下,可以对这些实施方式做出多种变更或修改。因此,本发明的保护范围由所附权利要求书限定。

Claims (17)

  1. 一种汽车转向机全冗余助力系统,其特征在于,包括主控制系统和辅控制系统;
    所述主控制系统用于为汽车提供第一转向助力;
    所述辅控制系统用于为汽车提供第二转向助力;
    其中,所述第一转向助力和所述第二转向助力根据运行状态确定;所述运行状态包括以下至少之一:所述汽车的运行状态、所述控制系统的运行状态、所述控制系统的运行状态。
  2. 根据权利要求1所述的汽车转向机全冗余助力系统,其特征在于,所述主控制系统与所述辅控制系统的结构一致;
    和/或,所述主控制系统与所述辅控制系统通讯连接。
  3. 根据权利要求1所述的汽车转向机全冗余助力系统,其特征在于,所述主控制系统通过主相分离器为汽车包含的六相电机提供第一转向助力,以驱动所述六相电机;
    所述辅控制系统通过辅相分离器为汽车包含的六相电机提供第二转向助力,以驱动所述六相电机。
  4. 根据权利要求1所述的汽车转向机全冗余助力系统,其特征在于,所述主控制系统包括主芯片电源、主电感、主电源芯片、主控制单元、主预驱芯片、主电容、主三相桥、主相分离器,主控制单元由主芯片电源经过主电感和主电容组成的滤波电路之后,通过12V直流电源给整个主控制系统供电,主电源芯片负责分配和管理主控制系统各元器件的电压输入,主控制单元综合接收的信号负责协调转向系统主路的助力输出,通过主预驱芯片进行功率放大后由主三相桥经过主相分离器驱动电机;
    和/或,辅控制系统包括辅芯片电源、辅电感、辅电源芯片、辅控制单元、辅预驱芯片、辅电容、辅三相桥、辅相分离器,辅控制单元由辅芯片电源经 过辅电感和辅电容组成的滤波电路之后,通过12V直流电源给整个辅控制系统供电,辅电源芯片负责分配和管理辅控制系统各元器件的电压输入,辅控制单元综合接收的信号负责协调转向系统辅路的助力输出,通过辅预驱芯片进行功率放大后由辅三相桥经过辅相分离器、驱动电机。
  5. 根据权利要求4所述的汽车转向机全冗余助力系统,其特征在于,所述的电机为六相电机;
    和/或,所述主芯片电源通过一个反极性保护器与所述主三相桥连接;
    和/或,所述辅芯片电源通过一个反极性保护器与所述辅三相桥连接。
  6. 根据权利要求1所述的汽车转向机全冗余助力系统,其特征在于,所述的主控制系统及辅控制系统的通讯方式包括UART、SPI、CAN、PWM通讯方式。
  7. 根据权利要求4所述的汽车转向机全冗余助力系统,其特征在于,所述的主控制单元与辅控制单元之间的通讯内容包括整车CAN信号、扭矩转角信号、系统运行状态信号、助力请求信号、电机助力分配信号、电机PWM波信号。
  8. 根据权利要求1所述的汽车转向机全冗余助力系统,其特征在于,所述的全冗余助力系统可用于上管柱式转向系统、双小齿轮式转向系统、平行轴式转向系统中的一种。
  9. 根据权利要求1-8中任一项所述的汽车转向机全冗余助力系统,其特征在于,所述主控制系统和所述辅控制系统共同接地保护。
  10. 一种汽车转向机全冗余助力系统的控制方法,其特征在于,所述汽车转向机全冗余助力系统包括主控制系统和辅控制系统;所述控制方法包括:
    根据运行状态确定第一转向助力和第二转向助力;其中,所述运行状态包括以下至少之一:所述汽车的运行状态、所述控制系统的运行状态、所述控制系统的运行状态;
    触发所述主控制系统为汽车提供第一转向助力;
    触发所述辅控制系统为汽车提供第二转向助力。
  11. 根据权利要求10所述的汽车转向机全冗余助力系统的控制方法,其特征在于,还包括:
    监测所述运行状态;
    当所述运行状态发生变化时,根据变化后的运行状态重新确定第一转向助力和第二转向助力;
    触发所述主控制系统为汽车提供重新确定的第一转向助力;
    触发所述辅控制系统为汽车提供重新确定的第二转向助力。
  12. 根据权利要求10所述的汽车转向机全冗余助力系统的控制方法,其特征在于,所述的控制方法适用于正常工作模式、主路整车信号失效模式、主路控制单元失效模式、辅路ADC失效模式、辅路电源信号失效模式。
  13. 根据权利要求12所述的汽车转向机全冗余助力系统的控制方法,其特征在于,所述的正常工作模式为:
    S11,当辅控制系统发生故障时,主控制系统接收到辅控制系统相关故障信号,进而实施相应降级策略并决算和分配系统助力输出;
    S12,当主控制系统发生故障时,辅控制系统会接收主控制系统相关故障信号,并判断故障类型是否引起系统发生主辅切换。
  14. 根据权利要求12所述的汽车转向机全冗余助力系统的控制方法,其特征在于,所述的主路整车信号失效模式为:
    S21,当主控制系统的整车CAN信号失效或丢失时,主控制系统的主控制单元无法根据实时整车运行状态进行系统助力决算和分配;
    S22,主控制系统会通过片间通讯发送自身整车CAN信号失效的相关信号告知辅控制系统,在接收到主控制系统的信号后,整车系统会将辅控制系统所接受到的整车信号传送至主控制系统用于转向助力决算和分配;整车系统可输出100%助力。
  15. 根据权利要求12所述的汽车转向机全冗余助力系统的控制方法,其 特征在于,所述的主路控制单元失效模式为:
    S31,当主控制系统的主控制单元发生失效时,主控制系统完全失去工作能力;
    S32,整车系统检测到主控制系统失效时,整车系统会将辅控制系统设置成主要信息通路并用于转向助力决算和分配;整车系统最大输出50%助力。
  16. 根据权利要求12所述的汽车转向机全冗余助力系统的控制方法,其特征在于,所述的辅路ADC失效模式为:
    S41,当辅控制系统的ADC失效后,电机将无法被驱动;
    S42,此时,主控制系统与辅控制系统之间仍可完成信息交互,在该故障模式下主、辅控制系统不发生切换,整车系统最大输出50%助力。
  17. 根据权利要求12所述的汽车转向机全冗余助力系统的控制方法,其特征在于,所述的辅路电源信号失效模式为:
    S51,当辅控制系统的电源失效后,整个辅控制系统处于掉电状态而无法工作;
    S52,在该故障模式下主、辅控制不发生切换,系统两端也无法完成片间通讯,系统最大可输出50%助力。
PCT/CN2023/102719 2022-09-20 2023-06-27 汽车转向机全冗余助力系统及其控制方法 WO2024060745A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211140217.3A CN117775097A (zh) 2022-09-20 2022-09-20 一种汽车转向机全冗余助力系统
CN202211140217.3 2022-09-20

Publications (1)

Publication Number Publication Date
WO2024060745A1 true WO2024060745A1 (zh) 2024-03-28

Family

ID=90387619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102719 WO2024060745A1 (zh) 2022-09-20 2023-06-27 汽车转向机全冗余助力系统及其控制方法

Country Status (2)

Country Link
CN (1) CN117775097A (zh)
WO (1) WO2024060745A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040243287A1 (en) * 2003-06-02 2004-12-02 Toyota Jidosha Kabushiki Kaisha. Automotive vehicle with redundant controller
CN103419835A (zh) * 2013-07-22 2013-12-04 湖南大学 一种汽车线控转向系统及其控制方法
WO2016180858A1 (de) * 2015-05-13 2016-11-17 Robert Bosch Automotive Steering Gmbh Signalkreuzung in redundanten lenksystemen
CN208053434U (zh) * 2018-02-13 2018-11-06 重庆长安汽车股份有限公司 车辆冗余电子助力转向系统
CN109733460A (zh) * 2018-02-13 2019-05-10 重庆长安汽车股份有限公司 冗余电子转向制动系统
CN109733461A (zh) * 2018-02-13 2019-05-10 重庆长安汽车股份有限公司 自动驾驶车辆的冗余电子转向系统及控制方法
CN112660235A (zh) * 2020-12-28 2021-04-16 嬴彻科技(浙江)有限公司 冗余助力转向系统及其控制方法、以及车辆

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040243287A1 (en) * 2003-06-02 2004-12-02 Toyota Jidosha Kabushiki Kaisha. Automotive vehicle with redundant controller
CN103419835A (zh) * 2013-07-22 2013-12-04 湖南大学 一种汽车线控转向系统及其控制方法
WO2016180858A1 (de) * 2015-05-13 2016-11-17 Robert Bosch Automotive Steering Gmbh Signalkreuzung in redundanten lenksystemen
CN208053434U (zh) * 2018-02-13 2018-11-06 重庆长安汽车股份有限公司 车辆冗余电子助力转向系统
CN109733460A (zh) * 2018-02-13 2019-05-10 重庆长安汽车股份有限公司 冗余电子转向制动系统
CN109733461A (zh) * 2018-02-13 2019-05-10 重庆长安汽车股份有限公司 自动驾驶车辆的冗余电子转向系统及控制方法
CN112660235A (zh) * 2020-12-28 2021-04-16 嬴彻科技(浙江)有限公司 冗余助力转向系统及其控制方法、以及车辆

Also Published As

Publication number Publication date
CN117775097A (zh) 2024-03-29

Similar Documents

Publication Publication Date Title
WO2020125249A1 (zh) 基于线控转向双电机的主动容错和故障缓解系统及其控制方法
CN113799872B (zh) 一种基于线控转向路感模拟的控制方法及系统
US20080294313A1 (en) Electric power steering apparatus
CN108215935A (zh) 汽车最高车速管理方法、装置、存储介质及电动汽车
CN104956587B (zh) 电动机控制装置以及电动机控制方法
DE102011051232A1 (de) Motorantriebsvorrichtung und elektrisches Servolenkungssystem mit derselben
DE102011051233A1 (de) Motoransteuervorrichtung und -verfahren und elektrisches Lenkhilfesystem, welches dieselben verwendet
US11201567B2 (en) Vehicle and control method thereof and system
JP2007068398A (ja) 無人搬送車システム
CN104459537B (zh) 一种电动汽车驱动电机健康度监测诊断方法
CN102324877A (zh) 一种车用永磁同步电机控制系统及方法
CN108327577B (zh) 一种扭矩确定方法、装置及电动汽车
CN102173293A (zh) 一种电动汽车驱动力矩的控制方法、装置及系统
CN111717278A (zh) 一种电动汽车转向失效的容错控制方法及系统
CN101966855B (zh) 一种无角度信号的电动助力转向回正补偿控制装置
EP3683956A1 (en) Motor control device, electric actuator product and electric power steering device
CN104802645A (zh) 一种并联式电动汽车再生制动系统及其控制方法
CN111422249B (zh) 后轮转向控制方法、装置和计算机存储介质
WO2024060745A1 (zh) 汽车转向机全冗余助力系统及其控制方法
JP2013514755A (ja) 操舵モータ電力供給方法及び係る方法に適応される電源システム
CN110040124B (zh) 一种车辆紧急制动控制方法及系统
US11349430B2 (en) Regenerative current limiting of synchronous motor drives
CN102336141B (zh) 一种电动汽车的扭矩监控系统及方法
CN203278722U (zh) 永磁电机容错牵引模块
JP5724665B2 (ja) 直流電気鉄道の電力貯蔵装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23867040

Country of ref document: EP

Kind code of ref document: A1