WO2024060703A1 - 一种电池热失控告警方法、设备及存储介质 - Google Patents
一种电池热失控告警方法、设备及存储介质 Download PDFInfo
- Publication number
- WO2024060703A1 WO2024060703A1 PCT/CN2023/099834 CN2023099834W WO2024060703A1 WO 2024060703 A1 WO2024060703 A1 WO 2024060703A1 CN 2023099834 W CN2023099834 W CN 2023099834W WO 2024060703 A1 WO2024060703 A1 WO 2024060703A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal runaway
- change rate
- battery
- target
- concentration
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 96
- 230000008859 change Effects 0.000 claims abstract description 209
- 230000008569 process Effects 0.000 claims abstract description 40
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 18
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 18
- 238000004590 computer program Methods 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000007789 gas Substances 0.000 description 138
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 15
- 229910052744 lithium Inorganic materials 0.000 description 15
- 238000012545 processing Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 238000005070 sampling Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 238000013021 overheating Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000005055 memory storage Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/18—Status alarms
- G08B21/182—Level alarms, e.g. alarms responsive to variables exceeding a threshold
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0062—General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
- G01N33/0063—General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/392—Determining battery ageing or deterioration, e.g. state of health
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to the field of battery thermal runaway, and in particular to a battery thermal runaway alarm method, equipment and storage medium.
- lithium batteries Since the invention of batteries, they have been used in all aspects of life, especially lithium batteries. Because of their advantages such as high energy, large rated voltage and long cycle life, they have been widely used in various application scenarios such as digital and home appliances. . However, lithium batteries themselves also have some safety hazards that cannot be ignored. As the energy density and other indicators of lithium batteries further improve, the safety issues of lithium batteries during use have also attracted more and more attention.
- the main method for monitoring and warning fires caused by lithium battery combustion or explosion is to preset a threshold corresponding to the characteristic parameters of the lithium battery during thermal runaway.
- the characteristic parameters are detected by sensors and compared with The preset threshold corresponding to the characteristic parameter is compared, and whether to issue an alarm is decided based on the comparison result.
- the characteristic parameters selected by the existing technology are mainly the temperature of the battery surface, the concentration of smoke generated by the battery, the change rate of the temperature of the battery surface, etc.
- these characteristic parameters are difficult to clearly show in the early stage of battery thermal runaway, That is to say, the above-mentioned characteristic parameters are difficult to detect through sensors in the early stage of battery thermal runaway. Therefore, in the existing technology, the preset thresholds corresponding to the characteristic parameters are usually set relatively large, which cannot detect the early stage of battery thermal runaway. Achieve timely alarm, with obvious hysteresis.
- the purpose of the present invention is to provide a battery thermal runaway alarm method, equipment and storage medium. Since the target gas generated during the thermal runaway process of the target battery can be obviously manifested in the early stage of thermal runaway of the battery, then when the target battery thermal runaway It is easy to be detected by the sensor in the early stage, so the change rate of the maximum target gas concentration in the different set change rate intervals will be relatively smaller, and a more timely alarm can be issued in the early stage of thermal runaway of the target battery.
- the present invention provides a battery thermal runaway alarm method, which includes:
- concentration value of the target gas around the target battery wherein the concentration value of the target gas is different when the target battery does not undergo thermal runaway and when thermal runaway occurs to varying degrees;
- the change rate interval includes a change rate corresponding to the change rate of the concentration of the target gas when thermal runaway does not occur in the target battery and when thermal runaway occurs. interval;
- the change rate interval includes a first change rate interval, a second change rate interval and a third change rate interval, wherein the maximum value of the first change rate interval is not greater than the minimum value of the second change rate interval. , the maximum value of the second change rate interval is not greater than the minimum value of the third change rate interval;
- the corresponding alarm strategy is executed, including:
- the battery thermal runaway alarm device When the change rate of the concentration of the target gas is within the range of the first change rate interval, the battery thermal runaway alarm device is controlled not to operate;
- control the battery thermal runaway warning device When the change rate of the concentration of the target gas is within the range of the second change rate interval, control the battery thermal runaway warning device to send a battery thermal runaway warning signal;
- the battery thermal runaway alarm device is controlled to send a battery thermal runaway alarm signal.
- the method further includes:
- the fire protection treatment device is controlled to perform fire protection treatment on the target battery
- the fire protection treatment device is controlled not to act
- the fire protection treatment device is controlled to perform the fire protection treatment on the target battery.
- the change rate of the concentration of the target gas when the change rate of the concentration of the target gas is within the range of the second change rate interval, it includes:
- the second change rate interval includes a plurality of second change rate sub-intervals
- Controlling the battery thermal runaway warning device to send out a battery thermal runaway warning signal includes:
- the battery thermal runaway warning device is controlled to send out a battery thermal runaway warning sub-signal that corresponds one-to-one to the second change rate sub-interval.
- the target gas is carbon monoxide.
- the determination process of the change rate interval includes:
- the standard change rate interval corresponding to the change rate of the concentration of the target gas is determined when the standard target battery does not undergo thermal runaway and when thermal runaway occurs, and the standard change rate interval is as the rate of change interval.
- an electrochemical gas sensor is provided around the standard target battery, and the standard target battery is There is a heating module inside the quasi-target battery;
- the first thermal runaway curve of the standard target battery is drawn according to the concentration and time of the target gas around the standard target battery.
- the abscissa of the first thermal runaway curve is time, and the ordinate is the concentration of the target gas. concentration value;
- the second thermal runaway curve of the standard target battery is drawn according to the concentration and time of the target gas around the standard target battery.
- the abscissa of the second thermal runaway curve is time, and the ordinate is the concentration of the target gas. concentration value;
- the first thermal runaway curve of the standard target battery and/or the second thermal runaway curve of the standard target battery are fitted to obtain the thermal runaway characteristic curve of the standard target battery.
- the present invention also provides a battery thermal runaway alarm device, which includes:
- Memory used to store computer programs
- a processor configured to implement the steps of the battery thermal runaway alarm method described in any one of the above when executing the computer program.
- the present invention also provides a computer-readable storage medium.
- a computer program is stored on the computer-readable storage medium.
- the computer program is executed by a processor, the battery according to any one of the above is implemented. Thermal runaway alarm method steps.
- the invention provides a battery thermal runaway alarm method, which selects the change rate of the target gas concentration generated by the target battery during the thermal runaway process as a characteristic parameter, and obtains the surrounding environment of the target battery.
- the concentration value of the target gas and then determine the change rate of the concentration of the target gas at the current moment based on the concentration value of the target gas, and then execute the corresponding alarm strategy according to the different change rate intervals to which the change rate of the target gas concentration belongs. Since the target battery The target gas generated during the thermal runaway process can be obviously manifested in the early stage of thermal runaway of the battery, and can be easily detected by the sensor in the early stage of thermal runaway of the target battery. Therefore, the maximum target gas in the different change rate ranges is set. The change rate of the concentration will be relatively smaller, and a more timely alarm can be issued in the early stage of thermal runaway of the target battery.
- the present invention also provides a battery thermal runaway warning device, system and storage medium, which have the same beneficial effects as the above method.
- Figure 1 is a flow chart of a battery thermal runaway alarm method provided by an embodiment of the present invention
- Figure 2 is a structural diagram of an experimental device for simulating thermal runaway provided by an embodiment of the present invention
- Figure 3 is a fitting curve diagram of carbon monoxide and time provided by an embodiment of the present invention.
- Figure 4 is a structural diagram of a battery thermal runaway alarm system provided by an embodiment of the present invention.
- Figure 5 is a structural diagram of a battery thermal runaway alarm device provided by an embodiment of the present invention.
- the core of the present invention is to provide a battery thermal runaway alarm method, equipment and storage medium. Since the target gas generated during the thermal runaway process of the target battery can be obviously manifested in the early stage of thermal runaway of the battery, then when the target battery thermal runaway It is easy to be detected by the sensor in the early stage, so the change rate of the maximum target gas concentration in the different set change rate intervals will be relatively smaller, and a more timely alarm can be issued in the early stage of thermal runaway of the target battery.
- Figure 1 is a flow chart of a battery thermal runaway alarm method provided by an embodiment of the present invention. The method includes the following steps:
- S11 Obtain the concentration value of the target gas around the target battery, where the concentration value of the target gas is different when the target battery does not undergo thermal runaway and when thermal runaway occurs to varying degrees;
- S12 Determine the change rate of the concentration of the target gas at the current moment based on the concentration value of the target gas
- the change rate interval includes the change rate interval corresponding to the change rate of the target gas concentration when thermal runaway does not occur in the target battery and when thermal runaway occurs;
- S14 Execute the corresponding alarm strategy according to the different change rate intervals to which the change rate of the concentration of the target gas belongs.
- a gas sensor for detecting the gas concentration corresponding to the target gas is provided around the target battery to measure the target gas in real time according to the preset sampling period. The concentration is collected and stored for subsequent use in subsequent steps.
- the target gas can be a gas whose concentration changes around the target battery during the thermal runaway process of the target battery. For example, when the target battery is a lithium battery, the lithium battery will release gas during the thermal runaway process.
- the target gas can be selected from hydrogen, methane, carbon monoxide and other gases.
- the target battery only needs to cause the concentration of the target gas around the target battery to change during the thermal runaway process.
- the target gas when the target gas is carbon monoxide, the target battery can be a lithium battery or a nickel battery. Batteries such as cadmium batteries that can cause the concentration of carbon monoxide gas around the target battery to change during thermal runaway.
- the change rate of the concentration of the target gas at the current time can be the concentration of the target gas within a preset number of preset sampling periods before the current time.
- the change rate of concentration can be used as the change rate of the concentration of the target gas at the current time, or it can also be the change rate of the concentration of the target gas within a preset time period before the current time as the change rate of the concentration of the target gas at the current time.
- it is not limited to in the above two ways.
- step S13 it should be noted that there is no limit to the size and number of the change rate intervals. In practical applications, reasonable selections can be made according to actual needs. In addition, detailed descriptions of how to determine the change rate intervals can be found in the following embodiments.
- corresponding alarm strategies are executed. Specifically, when three change rate intervals are set, three corresponding alarm strategies should be set. For example, no alarm, early warning, and alarm. Specific descriptions of the above three alarm strategies can be found in the following embodiments.
- the battery thermal runaway alarm method selects the change rate of the concentration of the target gas generated by the target battery during the thermal runaway process as a characteristic parameter, and obtains the concentration value of the target gas around the target battery, and then based on the target The concentration value of the gas determines the change rate of the concentration of the target gas at the current moment, and then executes the corresponding alarm strategy according to the different change rate intervals to which the change rate of the target gas concentration belongs. Since the target gas generated by the target battery during the thermal runaway process is Battery thermal runaway can be clearly displayed in the early stage, and then it is easy to be detected by the sensor in the early stage of thermal runaway of the target battery. Therefore, the change rate of the maximum target gas concentration in the different change rate ranges set will also be relatively low. Smaller, it can provide more timely alarms in the early stages of thermal runaway of the target battery. In addition, compared with the multi-characteristic parameter coupled monitoring method, this method is simple to implement.
- the change rate interval includes a first change rate interval, a second change rate interval and a third change rate interval, wherein the maximum value of the first change rate interval is not greater than the minimum value of the second change rate interval, The maximum value of the second change rate interval is not greater than the minimum value of the third change rate interval;
- the battery thermal runaway warning device When the change rate of the concentration of the target gas is within the second change rate interval, the battery thermal runaway warning device is controlled to send a battery thermal runaway warning signal;
- the battery thermal runaway alarm device When the change rate of the concentration of the target gas is within the third change rate interval, the battery thermal runaway alarm device is controlled to send a battery thermal runaway alarm signal.
- This embodiment sets three change rate intervals.
- the change rate of the concentration of the target gas is within the first change rate interval, it is considered that the target battery is in a safe state and no thermal runaway has occurred. Therefore, the battery thermal control is controlled.
- the out-of-control alarm device does not operate, that is, no alarm is issued;
- the battery thermal runaway alarm device is controlled to issue a battery thermal runaway warning signal, that is, to perform an early warning, where Regarding the battery thermal runaway warning signal, it should be noted that the battery thermal runaway warning signal can be a visual prompt and/or an auditory prompt.
- the yellow indicator light of the battery thermal runaway alarm device is controlled to flash and/or the battery thermal runaway alarm device is controlled to make a voice broadcast.
- the color of the indicator light and the content of the voice broadcast are not particularly limited;
- the battery thermal runaway alarm device is controlled to send out a battery thermal runaway alarm signal, that is, an alarm is issued.
- a battery thermal runaway alarm signal is similar to the above description of the battery thermal runaway alarm signal.
- the colors of the indicator lights are different from each other, and the content of the voice broadcast is also different from each other. For example, in this case You can select the red indicator light below. Also, a detailed description of how to determine these three change rate intervals can be found in the following embodiments.
- This embodiment provides a specific setting method of the change rate interval and different alarm strategies corresponding to different change rate intervals.
- Setting three change rate intervals is based on achieving an earlier alarm for the target battery thermal runaway. It is relatively easy to implement and can better assist the operator through visual and/or auditory prompts.
- the target battery thermal runaway occurs, if the operator only relies on the operator to take action after seeing and/or hearing the above visual prompts and/or auditory cues, the target battery will be released in a very short time once the thermal runaway occurs. A lot of calories therefore tend to not help.
- the battery thermal runaway alarm device is controlled to issue a battery thermal runaway alarm. After the warning signal, it also includes:
- the fire-fighting treatment device is controlled to perform fire-fighting treatment on the target battery;
- the fire-fighting treatment device is controlled not to act
- the fire-fighting treatment device is controlled to perform fire-fighting treatment on the target battery after the first preset time period.
- the first preset duration should be set reasonably. If it is set too long, the purpose of timely fire protection treatment will not be achieved. If it is set too short, the operator will not have time to judge whether to send manual fire protection treatment instructions.
- appropriate fire protection devices should be selected for different types of target batteries. For example, if the target battery is a lithium battery and the fire protection device is a fire extinguisher, then the fire extinguisher can be a dry powder fire extinguisher.
- the specific implementation method is not limited.
- This embodiment is based on the above embodiment. After controlling the battery thermal runaway alarm device to send out the battery thermal runaway alarm signal, this embodiment adds the steps of automatic fire protection. When the target battery thermal runaway occurs, corresponding firefighting measures can be taken in a more timely manner. The operator can also choose whether to perform automatic fire protection treatment according to the actual situation, making the fire protection treatment process more flexible.
- the gas sensor itself in practical applications has measurement errors, and the real physical world is usually filled with various interferences. Therefore, the concentration value of the target gas collected around the target battery fluctuates to a certain extent, which in turn leads to The calculated change rate of the concentration of the target gas also fluctuates to a certain extent, so in order to reduce the misjudgment rate of the battery thermal runaway alarm method.
- the change rate of the concentration of the target gas when the change rate of the concentration of the target gas is within the second change rate interval, it includes:
- the second preset time length is reasonably selected according to the actual situation.
- the method of reducing the false positive rate does not only refer to the above, but can also be when the change rate of the concentration of the target gas is continuous.
- the preset times are all within the range of the second change rate interval.
- the definition of when the change rate of the concentration of the target gas is within the range of the first change rate interval and when the change rate of the concentration of the target gas is within the range of the third change rate interval is the same as the above method, and will not be described again here. .
- This embodiment determines whether the change rate of the concentration of the target gas continuously falls within the range of the second change rate interval within the second preset time period as the change rate of the concentration of the target gas within the range of the second change rate interval.
- the implementation method has greatly reduced the misjudgment rate of the battery thermal runaway alarm method. Moreover, once the battery thermal runaway alarm method is misjudged, it will usually cause serious damage to the target battery, thus indirectly improving the target battery's performance. service life.
- the second change rate interval includes a plurality of second change rate sub-intervals
- the battery thermal runaway warning device is controlled to send out battery thermal runaway warning signals, including:
- the battery thermal runaway warning device is controlled to send out a battery thermal runaway early warning sub-signal corresponding to the second change rate sub-interval.
- This embodiment subdivides the second change rate interval into pairs of second change rate sub-intervals, and then further subdivides the corresponding alarm strategy.
- the second change rate interval is subdivided into two second change rate sub-intervals. sub-interval, the second change rate sub-interval with a smaller value is used as the basis for judging the first-level warning, and the other second change rate sub-interval with a larger value is used as the basis for judging the second-level warning.
- the yellow indicator light controlling the battery thermal runaway alarm device flashes; when it is judged to be a second-level warning, the orange indicator light controlling the battery thermal runaway alarm device flashes.
- the above It is just a preferred embodiment and is not limited to this method.
- This embodiment subdivides the second change rate interval into pairs of second change rate sub-intervals, and further subdivides the corresponding alarm strategy, achieving more accurate change rates for different target gas concentrations. alarm.
- carbon monoxide gas will be relatively obvious in the early stage of the thermal runaway process of the target battery, that is, in the early stage of the thermal runaway process of the target battery, the target battery
- the amount of carbon monoxide gas produced is relatively large, so it is easier to be detected by the gas sensor and is not easily affected by the environment. Therefore, carbon monoxide gas can be used as a good gas characteristic parameter in the thermal runaway process of the target battery.
- the target gas is carbon monoxide.
- the determination process of the change rate interval includes:
- the standard change rate interval corresponding to the change rate of the concentration of the target gas when thermal runaway does not occur and when thermal runaway occurs in the standard target battery is determined, and the standard change rate interval is used as the change rate interval.
- the standard environment refers to the environment at normal temperature and pressure.
- simulated thermal runaway experiments are conducted for a certain target battery, and multiple thermal runaway experiments are conducted under different thermal runaway inducements and under different experimental conditions.
- obtain the relationship between the concentration of the target gas and time during the simulated thermal runaway process store all the experimental results in the database, and conduct a comprehensive analysis of all the data in the database.
- the specific comprehensive analysis process can be seen in the following embodiments, and finally we get For a certain target battery, a standard change rate interval corresponding to the change rate of the target gas concentration that is universally applicable under different conditions and different thermal runaway inducements is obtained.
- this embodiment mainly refers to different thermal runaway inducements: overheating thermal runaway and overcharging thermal runaway.
- Overheating thermal runaway is a thermal runaway process caused by the temperature of the target battery being too high
- overcharging thermal runaway is Thermal runaway process caused by charging a target battery beyond its maximum battery capacity.
- experiments can be conducted in open spaces, experiments in closed spaces, or experiments in test chambers of different sizes.
- heating-type thermal runaway different heating rates can be used.
- simulating overcharge-type thermal runaway Out of control, different charging currents, etc. can be set.
- the relationship between the concentration and time of the target gas obtained during each monitoring of the thermal runaway process of the target battery is regarded as a new experimental result, and the experimental result is added to the database, and then comprehensive analysis is performed again, and then The latest standard change rate interval corresponding to the change rate of the concentration of the target gas is obtained.
- This embodiment provides a process for determining the change rate interval.
- the relationship between the concentration of the target gas and time during the simulated thermal runaway process is obtained. All the experimental results obtained were comprehensively analyzed, and finally a standard change rate interval corresponding to the change rate of the concentration of the target gas was obtained for a certain target battery that is universally applicable under different conditions and different thermal runaway inducements. Therefore, this method has universal comfort It is adaptable and can monitor and alarm the thermal runaway process of a certain target battery under various working conditions.
- FIG. 2 is a structural diagram of an experimental device for simulating thermal runaway provided by an embodiment of the present invention.
- the experimental device for simulating thermal runaway can perform heating-type thermal runaway simulation through the heating plate, and can perform overcharge-type thermal runaway simulation through the electrode plate.
- the carbon monoxide detector can be deployed as shown in Figure 2.
- the carbon monoxide detector is connected to the data collector through the bus; the detector collects carbon monoxide concentration according to the preset sampling period and sends it to the data collection center for storage.
- the heating plate is placed in the middle of the cell of the target battery. Of course, it can also be placed at other locations inside the target battery as needed.
- electrochemical gas sensors are provided around the standard target battery, and a heating module is provided inside the standard target battery;
- the abscissa of the first thermal runaway curve is time, and the ordinate is the concentration value of the target gas;
- the experimental results in the database are processed through data, and no Eliminate the effective data, and then intercept and filter the data based on the time point when the carbon monoxide gas concentration suddenly increases in the early stage of thermal runaway and the time point when complete thermal runaway to obtain effective data, which is the first thermal runaway curve of the above-mentioned standard target battery and the second thermal runaway curve.
- Figure 3 is a fitting curve diagram of carbon monoxide and time provided by an embodiment of the present invention.
- the abscissa is time, the unit is each sampling period, and the ordinate is the concentration of carbon monoxide gas, the unit is PPM.
- the two experimental results are fitted into an approximate thermal runaway characteristic curve through the curve fitting method.
- the thick solid line in Figure 3 corresponds to an approximate thermal runaway characteristic curve, and the other two thin solid lines correspond to the two passing
- each experimental result in the database is processed and fitted according to the above method, and finally the thermal runaway characteristic curve of the standard target battery is obtained.
- the specific mathematics of the thermal runaway characteristic curve can be obtained.
- Expression the change rate range can be selected in the thermal runaway characteristic curve according to actual needs.
- the changing range of the slope of the corresponding thermal runaway characteristic curve in the time period from 0 to 50 is used as the second change rate interval
- the changing range of the slope of the corresponding thermal runaway characteristic curve in the time period from 300 to 350 is used as the third change rate. interval.
- Figure 4 is a structural diagram of a battery thermal runaway alarm system provided by an embodiment of the present invention.
- the system includes:
- the gas concentration acquisition unit 41 is used to acquire the concentration value of the target gas around the target battery, where the concentration value of the target gas is different when the target battery does not undergo thermal runaway and when thermal runaway occurs to varying degrees;
- the gas concentration change rate determination unit 42 is used to determine the change rate of the concentration of the target gas at the current moment according to the concentration value of the target gas;
- a change rate interval determination unit 43 used to determine a change rate interval to which the change rate of the concentration of the target gas belongs, the change rate interval including a change rate interval corresponding to the change rate of the concentration of the target gas when the target battery does not have thermal runaway and when thermal runaway occurs;
- the execution alarm unit 44 is configured to execute corresponding alarm strategies according to different change rate intervals to which the change rate of the concentration of the target gas belongs.
- the change rate interval includes a first change rate interval, a second change rate interval and a third change rate interval, where the first change rate interval The maximum value of is not greater than the minimum value of the second change rate interval, and the maximum value of the second change rate interval is not greater than the minimum value of the third change rate interval.
- the execution alarm unit 44 includes:
- the first execution alarm subunit is used to control the battery thermal runaway alarm device not to operate when the change rate of the concentration of the target gas is within the range of the first change rate interval;
- the second execution alarm subunit is used to control the battery thermal runaway alarm device to send a battery thermal runaway warning signal when the change rate of the concentration of the target gas is within the second change rate interval;
- the third execution alarm subunit is used to control the battery thermal runaway alarm device to send a battery thermal runaway alarm signal when the change rate of the concentration of the target gas is within the third change rate interval.
- the system also includes:
- a judgment unit configured to judge whether a manual fire-fighting processing instruction is received within a first preset time period after the battery thermal runaway alarm device is controlled to send out a battery thermal runaway alarm signal;
- the first fire-fighting processing unit is used to control the fire-fighting device to perform fire-fighting treatment on the target battery when the manual fire-fighting processing instruction is received and the manual fire-fighting processing instruction is a fire-fighting processing instruction;
- the second fire-fighting processing unit is used to control the fire-fighting device not to act when receiving a manual fire-fighting processing instruction and the manual fire-fighting processing instruction is an instruction not to perform fire-fighting processing.
- the third fire protection processing unit is used to control the fire protection processing device to perform fire protection processing on the target battery after a first preset time period if no manual fire protection processing instruction is received.
- FIG. 5 is a structural diagram of a battery thermal runaway alarm device provided by an embodiment of the present invention.
- the battery thermal runaway alarm device includes:
- Memory 20 used to store computer programs
- the processor 21 is configured to implement the steps of the battery thermal runaway alarm method as mentioned in the above embodiment when executing a computer program.
- the battery thermal runaway alarm device provided in this embodiment may include but is not limited to smart phones, tablet computers, laptop computers or desktop computers.
- the processor 21 may include one or more processing cores, such as a 4-core processor, an 8-core processor, etc.
- the processor 21 can adopt at least one hardware form among a digital signal processor (Digital Signal Processor, DSP), a field-programmable gate array (Field-Programmable Gate Array, FPGA), and a programmable logic array (Programmable Logic Array, PLA). to fulfill.
- DSP Digital Signal Processor
- FPGA Field-Programmable Gate Array
- PLA programmable logic array
- the processor 21 may also include a main processor and a co-processor.
- the main processor is a processor used to process data in the wake-up state, also called a central processor; the co-processor is used to process data in the standby state. The data is processed by a low-power processor.
- the processor 21 may be integrated with a GPU, and the GPU is responsible for rendering and drawing content to be displayed on the display screen.
- the processor 21 may also include an artificial intelligence (Artificial Intelligence, AI) processor, which is used to process computing operations related to machine learning.
- AI Artificial Intelligence
- Memory 20 may include one or more computer-readable storage media, which may be non-transitory.
- the memory 20 may also include high-speed random access memory, and non-volatile memory, such as one or more magnetic disk storage devices, flash memory storage devices.
- the memory 20 is at least used to store the following computer program 201. After the computer program is loaded and executed by the processor 21, the relevant steps of the battery thermal runaway alarm method disclosed in any of the foregoing embodiments can be implemented.
- the resources stored in the memory 20 may also include the operating system 202, data 203, etc., and the storage method may be short-term storage or permanent storage.
- the operating system 202 may include Windows, Unix, Linux, etc.
- Data 203 may include but is not limited to data on battery thermal runaway alarm methods, etc.
- the battery thermal runaway warning device may also include a display screen 22 , an input and output interface 23 , a communication interface 24 , a power supply 25 and a communication bus 26 .
- the present invention also provides an embodiment corresponding to a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps recorded in the above method embodiment are implemented.
- the methods in the above embodiments are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium. middle.
- the technical solution of the present application is essentially or contributes to the existing technology, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , perform all or part of the steps of the methods described in various embodiments of this application.
- the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (RAM), magnetic disk or optical disk and other media that can store program code. .
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Emergency Alarm Devices (AREA)
Abstract
一种电池热失控告警方法、设备及存储介质,涉及电池热失控领域,选择目标电池在热失控过程中产生的目标气体的浓度的变化率作为特征参量,通过获取目标电池周围的目标气体的浓度值(S11),进而根据目标气体的浓度值确定当前时刻目标气体的浓度的变化率(S12),然后根据目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略(S14),由于目标电池在热失控过程中产生的目标气体在电池热失控的早期就能明显地表现出来,进而在目标电池热失控的早期就容易被传感器检测到,因此设置的不同变化率区间中的最大的目标气体的浓度的变化率相对来说也会更小,在目标电池热失控的早期就能更加及时进行告警。
Description
本申请要求于2022年09月20日提交至中国专利局、申请号为202211143178.2、发明名称为“一种电池热失控告警方法、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及电池热失控领域,特别是涉及一种电池热失控告警方法、设备及存储介质。
电池自发明以来,已经被应用在生活的方方面面,尤其是锂电池,因其具有能量比较高、额定电压较大及循环使用寿命较长等优点,已被广泛应用于数码、家电等各个应用场景。但是锂电池本身也存在着一些不能忽视的安全隐患,随着锂电池的能量密度等指标的进一步提高,锂电池在使用时的安全性问题也愈发得到关注。
区别于传统电气火灾,锂电池一旦发生热失控将会在热失控瞬间释放出大量的热量,进而引起锂电池剧烈燃烧甚至爆炸,因此对于由锂电池燃烧或者爆炸引起的火灾应该进行及时报警。目前对于由锂电池燃烧或者爆炸引起的火灾的监测和告警的主要方法是预设一个与锂电池在热失控过程中的特征参量相对应的阈值,实际应用中,通过传感器检测该特征参量并与预设的与该特征参量相对应的阈值进行比较,根据比较的结果来决定是否发出告警。目前现有技术选取的特征参量主要为电池表面的温度、电池产生的烟雾的浓度、电池表面的温度的变化率等,但是由于上述这些特征参量很难在电池热失控的早期明显地表现出来,也就是说上述这些特征参量在电池热失控的早期很难通过传感器检测得到,因此现有技术中对于预设的与该特征参量相对应的阈值通常设置的比较大,无法在电池热失控的早期做到及时告警,具有明显的滞后性。
鉴于上述技术问题,寻求一种克服上述技术问题的方法是本领域技术人员亟待解决的问题。
发明内容
本发明的目的是提供一种电池热失控告警方法、设备及存储介质,由于目标电池在热失控过程中产生的目标气体在电池热失控的早期就能明显地表现出来,进而在目标电池热失控的早期就容易被传感器检测到,因此设置的不同变化率区间中的最大的目标气体的浓度的变化率相对来说也会更小,在目标电池热失控的早期就能更加及时进行告警。
为解决上述技术问题,本发明提供了一种电池热失控告警方法,包括:
获取目标电池周围的目标气体的浓度值,其中所述目标气体在所述目标电池未发生热失控以及发生不同程度的热失控时所述目标气体的浓度值不同;
根据所述目标气体的浓度值确定当前时刻所述目标气体的浓度的变化率;
确定所述目标气体的浓度的变化率所属的变化率区间,所述变化率区间包括在所述目标电池未发生热失控以及发生热失控时与所述目标气体的浓度的变化率对应的变化率区间;
根据所述目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略。
优选地,所述变化率区间包括第一变化率区间、第二变化率区间及第三变化率区间,其中所述第一变化率区间的最大值不大于所述第二变化率区间的最小值,所述第二变化率区间的最大值不大于所述第三变化率区间的最小值;
根据所述目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略,包括:
当所述目标气体的浓度的变化率在所述第一变化率区间的范围内,控制电池热失控告警装置不动作;
当所述目标气体的浓度的变化率在所述第二变化率区间的范围内,控制所述电池热失控告警装置发出电池热失控预警信号;
当所述目标气体的浓度的变化率在所述第三变化率区间的范围内,控制所述电池热失控告警装置发出电池热失控报警信号。
优选地,控制所述电池热失控告警装置发出电池热失控报警信号之后,还包括:
判断在第一预设时长内是否接收到人工消防处理指令;
若接收到所述人工消防处理指令且所述人工消防处理指令为进行消防处理指令,则在接收到所述进行消防处理指令时,控制消防处理装置对所述目标电池进行消防处理;
若接收到所述人工消防处理指令且所述人工消防处理指令为不进行消防处理指令,则在接收到所述不进行消防处理指令时,控制消防处理装置不动作;
若没有接收到所述人工消防处理指令,则在所述第一预设时长后,控制所述消防处理装置对所述目标电池进行所述消防处理。
优选地,当所述目标气体的浓度的变化率在所述第二变化率区间的范围内,包括:
当所述目标气体的浓度的变化率连续第二预设时长都在所述第二变化率区间的范围内。
优选地,所述第二变化率区间包括多个第二变化率子区间;
控制所述电池热失控告警装置发出电池热失控预警信号,包括:
控制所述电池热失控告警装置发出与所述第二变化率子区间一一对应的电池热失控预警子信号。
优选地,所述目标气体为一氧化碳。
优选地,所述变化率区间的确定过程包括:
获取标准目标电池在标准环境下模拟热失控过程中所述目标气体的浓度与时间的关系,其中所述标准目标电池与所述目标电池的类型相同;
根据所述目标气体的浓度与时间的关系确定所述标准目标电池未发生热失控以及发生热失控时与所述目标气体的浓度的变化率对应的标准变化率区间,将所述标准变化率区间作为所述变化率区间。
优选地,所述标准目标电池的周围设置有电化学气体传感器,所述标
准目标电池的内部设置有加热模块;
获取标准目标电池在标准环境下模拟热失控过程中所述目标气体的浓度与时间的关系,包括:
控制所述加热模块加热直至所述标准目标电池热失控;
实时通过所述电化学气体传感器采集到的所述目标气体确定所述标准目标电池周围的所述目标气体的浓度;
根据所述标准目标电池周围的所述目标气体的浓度及时间绘制所述标准目标电池的第一热失控曲线,所述第一热失控曲线的横坐标为时间,纵坐标为所述目标气体的浓度值;
和/或,
控制所述标准目标电池的充电模块为所述标准目标电池充电直至所述标准目标电池热失控;
实时通过所述电化学气体传感器采集到的所述目标气体确定所述标准目标电池周围的所述目标气体的浓度;
根据所述标准目标电池周围的所述目标气体的浓度及时间绘制所述标准目标电池的第二热失控曲线,所述第二热失控曲线的横坐标为时间,纵坐标为所述目标气体的浓度值;
对所述标准目标电池的第一热失控曲线和/或所述标准目标电池的第二热失控曲线进行拟合,得到所述标准目标电池的热失控特征曲线。
为解决上述技术问题,本发明还提供了一种电池热失控告警设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上述任一项所述电池热失控告警方法的步骤。
为解决上述技术问题,本发明还提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上述任一项所述电池热失控告警方法的步骤。
本发明提供的一种电池热失控告警方法,选择目标电池在热失控过程中产生的目标气体的浓度的变化率作为特征参量,通过获取目标电池周围
的目标气体的浓度值,进而根据目标气体的浓度值确定当前时刻目标气体的浓度的变化率,然后根据目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略,由于目标电池在热失控过程中产生的目标气体在电池热失控的早期就能明显地表现出来,进而在目标电池热失控的早期就容易被传感器检测到,因此设置的不同变化率区间中的最大的目标气体的浓度的变化率相对来说也会更小,在目标电池热失控的早期就能更加及时进行告警。
在此基础上,本发明还提供的一种电池热失控告警设备、系统及存储介质,具有与上述方法相同的有益效果。
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种电池热失控告警方法的流程图;
图2为本发明实施例提供的模拟热失控的实验装置的结构图;
图3为本发明实施例提供的一氧化碳与时间的拟合曲线图;
图4为本发明实施例提供的一种电池热失控告警系统的结构图;
图5为本发明实施例提供的一种电池热失控告警设备的结构图。
本发明的核心是提供一种电池热失控告警方法、设备及存储介质,由于目标电池在热失控过程中产生的目标气体在电池热失控的早期就能明显地表现出来,进而在目标电池热失控的早期就容易被传感器检测到,因此设置的不同变化率区间中的最大的目标气体的浓度的变化率相对来说也会更小,在目标电池热失控的早期就能更加及时进行告警。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。
基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参照图1,图1为本发明实施例提供的一种电池热失控告警方法的流程图,该方法包括如下步骤:
S11:获取目标电池周围的目标气体的浓度值,其中目标气体在目标电池未发生热失控以及发生不同程度的热失控时目标气体的浓度值不同;
S12:根据目标气体的浓度值确定当前时刻目标气体的浓度的变化率;
S13:确定目标气体的浓度的变化率所属的变化率区间,变化率区间包括在目标电池未发生热失控以及发生热失控时与目标气体的浓度的变化率对应的变化率区间;
S14:根据目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略。
具体实施中,对于步骤S11中的获取目标电池周围的目标气体的浓度值,通过在目标电池周围设置与目标气体相对应的检测气体浓度大小的气体传感器来实时地按照预设采样周期对目标气体的浓度进行采集并存储,以便后续在后续步骤进行使用,其中对于设置何种类型的气体传感器来实现对目标气体的浓度的检测,在此不作特别的限定。此外,对于具体的一种目标电池,其目标气体可以为在目标电池热失控过程中目标电池周围浓度发生变化的气体,例如,当目标电池为锂电池,由于锂电池在热失控过程中会放出氢气、甲烷、一氧化碳等气体,因此在锂电池热失控过程中锂电池周围的氢气、甲烷、一氧化碳等气体的浓度就会发生变化,目标气体就可以选择氢气、甲烷、一氧化碳等气体。而对于具体的一种目标气体,目标电池只要能在热失控过程中导致目标电池周围该目标气体的浓度发生变化就可以,例如,当目标气体为一氧化碳时,目标电池就可以为锂电池、镍镉电池等能够在热失控过程中导致该目标电池周围的一氧化碳气体的浓度发生变化的电池。
对于步骤S12,在上述说明的基础上,确定当前时刻目标气体的浓度的变化率可以为将在当前时刻前预设数量个预设采样周期之内的目标气体的
浓度的变化率作为当前时刻目标气体的浓度的变化率,也可以是在当前时刻前预设时间段内的目标气体的浓度的变化率作为当前时刻目标气体的浓度的变化率,当然不仅仅局限于以上两种方式。
在步骤S13中,需要说明的是,对于变化率区间的大小以及数量不作限定,实际应用中可以根据实际需要进行合理选择,此外对于如何确定变化率区间的详细说明可见以下实施例。
对于步骤S14中的根据目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略,具体的,当设置三个变化率区间,那么与之对应的就应该设置三种告警策略,例如不进行告警、进行预警及进行报警。具体对于以上三种告警策略的说明可见以下实施例。
本实施例所提供的一种电池热失控告警方法,选择目标电池在热失控过程中产生的目标气体的浓度的变化率作为特征参量,通过获取目标电池周围的目标气体的浓度值,进而根据目标气体的浓度值确定当前时刻目标气体的浓度的变化率,然后根据目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略,由于目标电池在热失控过程中产生的目标气体在电池热失控的早期就能明显地表现出来,进而在目标电池热失控的早期就容易被传感器检测到,因此设置的不同变化率区间中的最大的目标气体的浓度的变化率相对来说也会更小,在目标电池热失控的早期就能更加及时进行告警。此外,相比多特征参量耦合式监测方法,该方法实现简便。
在上述实施例的基础上:
作为一种优选地实施例,变化率区间包括第一变化率区间、第二变化率区间及第三变化率区间,其中第一变化率区间的最大值不大于第二变化率区间的最小值,第二变化率区间的最大值不大于第三变化率区间的最小值;
根据目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略,包括:
当目标气体的浓度的变化率在第一变化率区间的范围内,控制电池热
失控告警装置不动作;
当目标气体的浓度的变化率在第二变化率区间的范围内,控制电池热失控告警装置发出电池热失控预警信号;
当目标气体的浓度的变化率在第三变化率区间的范围内,控制电池热失控告警装置发出电池热失控报警信号。
本实施例设置三个变化率区间,当目标气体的浓度的变化率在第一变化率区间的范围内,则认为此时目标电池处于安全使用的状态,并未发生热失控,因此控制电池热失控告警装置不动作,也就是不进行告警;
当目标气体的浓度的变化率在第二变化率区间的范围内,则认为此时目标电池处于热失控的早期,因此控制电池热失控告警装置发出电池热失控预警信号,也就是进行预警,其中对于电池热失控预警信号需要说明的是,电池热失控预警信号可以为视觉性提示和/或听觉性提示。例如,控制电池热失控告警装置的黄色的指示灯闪烁和/或控制电池热失控告警装置进行语音播报,当然对于指示灯的颜色与语音播报的内容不作特别的限定;
当目标气体的浓度的变化率在第三变化率区间的范围内,则认为此时目标电池处于完全热失控的状态,因此控制电池热失控告警装置发出电池热失控报警信号,也就是进行报警,可以理解的是,至于电池热失控报警信号的说明与上述电池热失控报警信号的说明类似,与之不同的是,指示灯的颜色相互不同,语音播报的内容也相互不同,例如,这种情况下可以选择红色的指示灯。同样对于如何确定这三个变化率区间的详细说明可见以下实施例。
本实施例给出了变化率区间的一种具体设置方式以及与不同变化率区间相对应的的不同告警策略,设置三个变化率区间在能够实现对目标电池热失控的更加早期的告警的基础上,实现起来相对容易,而且通过视觉性提示和/或听觉性提示可以更好地辅助操作人员。
当目标电池热失控发生时,如果仅仅依靠操作人员在看到和/或听到上述的视觉性提示和/或听觉性时再去采取行动,由于目标电池一旦热失控会在极短时间内放出大量的热量,因此往往是于事无补。
作为一种优选地实施例,控制电池热失控告警装置发出电池热失控报
警信号之后,还包括:
判断在第一预设时长内是否接收到人工消防处理指令;
若接收到人工消防处理指令且人工消防处理指令为进行消防处理指令,则在接收到进行消防处理指令时,控制消防处理装置对目标电池进行消防处理;
若接收到人工消防处理指令且人工消防处理指令为不进行消防处理指令,则在接收到不进行消防处理指令时,控制消防处理装置不动作;
若没有接收到人工消防处理指令,则在第一预设时长后,控制消防处理装置对目标电池进行消防处理。
需要说明的是,第一预设时长应该合理设置,设置太长则不能达到及时进行消防处理的目的,设置太短则会导致操作人员来不及判断是否发送人工消防处理指令。对于消防处理装置应该针对不同类型的目标电池选择合适的消防处理装置,例如,目标电池为锂电池,消防处理装置为灭火器,此时灭火器就可以选择干粉灭火器,当然对具体实施的方式不作限定。
本实施例在上述实施例的基础上,在控制电池热失控告警装置发出电池热失控报警信号之后,加入自动进行消防处理的步骤,当目标电池热失控发生时,可以更加及时地采取相应的消防处理,而且还可以由操作人员很据实际情况选择是否进行自动消防处理,使得消防处理的过程更加灵活。
实际应用中的气体传感器本身存在测量误差,而且真实的物理世界中通常充斥着各种各样的干扰,因此导致采集到的目标电池周围的目标气体的浓度值存在一定程度上的波动,进而导致计算得到的目标气体的浓度的变化率也存在一定程度上的波动,因此为了降低该电池热失控告警方法的误判率。
作为一种优选地实施例,当目标气体的浓度的变化率在第二变化率区间的范围内,包括:
当目标气体的浓度的变化率连续第二预设时长都在第二变化率区间的范围内。
具体应用中,第二预设时长根据实际情况合理选择,当然降低误判率的实现方法不仅仅指上述这种,还可以为当目标气体的浓度的变化率连续
预设次数都在第二变化率区间的范围内。此外,对于当目标气体的浓度的变化率在第一变化率区间的范围内以及当目标气体的浓度的变化率在第三变化率区间的范围内的限定与上述方法相同,在此不再赘述。
本实施例通过判断在第二预设时长内目标气体的浓度的变化率是否连续地落在第二变化率区间的范围内来作为目标气体的浓度的变化率在第二变化率区间的范围内的实现方式,很好地降低了该电池热失控告警方法的误判率,而且该电池热失控告警方法一旦误判,通常将会对目标电池造成严重的损伤,因此间接地提高了目标电池的使用寿命。
作为一种优选地实施例,第二变化率区间包括多个第二变化率子区间;
控制电池热失控告警装置发出电池热失控预警信号,包括:
控制电池热失控告警装置发出与第二变化率子区间一一对应的电池热失控预警子信号。
本实施例将第二变化率区间细分为对个第二变化率子区间,进而对相应的告警策略也进行进一步细分,例如,将第二变化率区间细分为两个第二变化率子区间,其中数值较小的一个第二变化率子区间,作为判断一级预警的依据,数值较大的另一个第二变化率子区间,作为判断二级预警的依据,在指示灯的颜色上进行区分可以为,当判断为一级预警时,控制电池热失控告警装置的黄色的指示灯闪烁,当判断为二级预警时,控制电池热失控告警装置的橙色的指示灯闪烁,当然以上只是一种优选地实施例,不仅仅局限于这种方式。
本实施例本实施例将第二变化率区间细分为对个第二变化率子区间,进而对相应的告警策略也进行进一步细分,针对不同的目标气体的浓度的变化率实现了更加精准的告警。
在目标电池的热失控过程中虽说会产生很多种不同的气体,但是一氧化碳气体在目标电池的热失控过程的早期就会有相对明显的体现,也就是在目标电池的热失控过程的早期目标电池所产生的一氧化碳气体的量就相对较多,因此更容易被气体传感器检测到,而且也不易被环境所影响,因此一氧化碳气体可以作为目标电池的热失控过程中一种很好地气体特征参量。
作为一种优选地实施例,目标气体为一氧化碳。
作为一种优选地实施例,变化率区间的确定过程包括:
获取标准目标电池在标准环境下模拟热失控过程中目标气体的浓度与时间的关系,其中标准目标电池与目标电池的类型相同;
根据目标气体的浓度与时间的关系确定标准目标电池未发生热失控以及发生热失控时与目标气体的浓度的变化率对应的标准变化率区间,将标准变化率区间作为变化率区间。
需要说明的是,标准环境指的是在常温常压下的环境,在标准环境下针对某一种目标电池进行模拟热失控实验,在不同热失控诱因下及在不同的实验条件下进行多次实验,获取模拟热失控过程中目标气体的浓度与时间的关系,并将全部的实验结果存储在数据库中,将数据库中的全部数据进行综合分析,具体综合分析的过程可见以下实施例,最终得到针对某一种目标电池得到在不同条件下及不同热失控诱因下普遍适用的与目标气体的浓度的变化率对应的标准变化率区间。其中,本实施例对于不同热失控诱因主要指的是过热型热失控和过充型热失控,过热型热失控为由于目标电池的温度过高从而引发的热失控过程,过充型热失控为由于对目标电池充电超过其最大电池容量而引发的热失控过程。对于不同的实验条件可以为在开放空间进行实验或在封闭空间进行实验或在不同大小的试验箱进行实验,在模拟加热型热失控中,可以采用不同的加热速率等,在模拟过充型热失控中,可以设置不同的充电电流等。
实际应用中,每一次监测目标电池热失控过程中获得的目标气体的浓度与时间的关系都被当作一个新的实验结果,并将该实验结果添加到数据库中,随后重新进行综合分析,进而得到最新的与目标气体的浓度的变化率对应的标准变化率区间。
本实施例中给出了变化率区间的确定过程,通过在不同热失控诱因下及在不同的实验条件下进行多次实验,获取模拟热失控过程中目标气体的浓度与时间的关系,对所得到的全部实验结果进行综合分析,最终得到针对某一种目标电池得到在不同条件下及不同热失控诱因下普遍适用的与目标气体的浓度的变化率对应的标准变化率区间,因此该方法具有普遍的适
应性,满足于各种工况下对某一种目标电池的热失控过程的监测和告警。
请参照图2,图2为本发明实施例提供的模拟热失控的实验装置的结构图。模拟模拟热失控的实验装置,可通过加热板可进行加热型热失控模拟,通过电极板可进行过充型热失控模拟。根据实验需求,可以按照图2所示进行一氧化碳探测器的部署,一氧化碳探测器通过总线连接数据采集器;探测器按照预设采样周期进行一氧化碳浓度采集并发送至数据采集中心进行存储。加热板放置在目标电池的电芯中间位置,当然也可以根据需要放置在目标电池内部的其他位置。
在上述实施例的基础上,作为一种优选地实施例,标准目标电池的周围设置有电化学气体传感器,标准目标电池的内部设置有加热模块;
获取标准目标电池在标准环境下模拟热失控过程中目标气体的浓度与时间的关系,包括:
控制加热模块加热直至标准目标电池热失控;
实时通过电化学气体传感器采集到的目标气体确定标准目标电池周围的目标气体的浓度;
根据标准目标电池周围的目标气体的浓度及时间绘制标准目标电池的第一热失控曲线,第一热失控曲线的横坐标为时间,纵坐标为目标气体的浓度值;
和/或,
控制标准目标电池的充电模块为标准目标电池充电直至标准目标电池热失控;
实时通过电化学气体传感器采集到的目标气体确定标准目标电池周围的目标气体的浓度;
根据标准目标电池周围的目标气体的浓度及时间绘制标准目标电池的第二热失控曲线,第二热失控曲线的横坐标为时间,纵坐标为目标气体的浓度值;
对标准目标电池的第一热失控曲线和/或标准目标电池的第二热失控曲线进行拟合,得到标准目标电池的热失控特征曲线。
在上述实施例的基础上,将数据库中的实验结果通过数据处理,将无
效数据剔除出去,然后基于热失控早期一氧化碳气体浓度突发增大的时间点与完全热失控时的时间点进行截取和数据滤波,获得有效数据,也就是上述标准目标电池的第一热失控曲线和第二热失控曲线。
请参照图3,图3为本发明实施例提供的一氧化碳与时间的拟合曲线图,其中横坐标为时间,单位为每个采样周期,纵坐标为一氧化碳气体的浓度,单位为PPM。通过曲线拟合的方法将两个实验结果拟合为一条近似的热失控特征曲线,如图3中的粗实线就对应一条近似的热失控特征曲线,另外两条细实线对应两个经过数据处理后的实验结果,按照上述方法依次对数据库中的每一个实验结果都进行处理与拟合,最终获得标准目标电池的热失控特征曲线,实际应用中,可以得到热失控特征曲线的具体数学表达式,可以在热失控特征曲线根据实际需要选取变化率区间。例如,从0到50时间段内对应的热失控特征曲线的斜率的变化范围作为第二变化率区间,从300到350时间段内对应的热失控特征曲线的斜率的变化范围作为第三变化率区间。
本实施例的有益效果与上述实施例相同,在此不再赘述。
请参照图4,图4为本发明实施例提供的一种电池热失控告警系统的结构图,该系统包括:
气体浓度获取单元41,用于获取目标电池周围的目标气体的浓度值,其中目标气体在目标电池未发生热失控以及发生不同程度的热失控时目标气体的浓度值不同;
气体浓度变化率确定单元42,用于根据目标气体的浓度值确定当前时刻目标气体的浓度的变化率;
变化率区间确定单元43,用于确定目标气体的浓度的变化率所属的变化率区间,变化率区间包括在目标电池未发生热失控以及发生热失控时与目标气体的浓度的变化率对应的变化率区间;
执行告警单元44,用于根据目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略。
在上述实施例的基础上,作为一种优选地实施例,变化率区间包括第一变化率区间、第二变化率区间及第三变化率区间,其中第一变化率区间
的最大值不大于第二变化率区间的最小值,第二变化率区间的最大值不大于第三变化率区间的最小值,执行告警单元44,包括:
第一执行告警子单元,用于当目标气体的浓度的变化率在第一变化率区间的范围内,控制电池热失控告警装置不动作;
第二执行告警子单元,用于当目标气体的浓度的变化率在第二变化率区间的范围内,控制电池热失控告警装置发出电池热失控预警信号;
第三执行告警子单元,用于当目标气体的浓度的变化率在第三变化率区间的范围内,控制电池热失控告警装置发出电池热失控报警信号。
作为一种优选地实施例,该系统还包括:
判断单元,用于在控制电池热失控告警装置发出电池热失控报警信号之后,判断在第一预设时长内是否接收到人工消防处理指令;
第一消防处理单元,用于若接收到人工消防处理指令且人工消防处理指令为进行消防处理指令,则在接收到进行消防处理指令时,控制消防处理装置对目标电池进行消防处理;
第二消防处理单元,用于若接收到人工消防处理指令且人工消防处理指令为不进行消防处理指令,则在接收到不进行消防处理指令时,控制消防处理装置不动作;
第三消防处理单元,用于若没有接收到人工消防处理指令,则在第一预设时长后,控制消防处理装置对目标电池进行消防处理。
由于系统部分的实施例与方法部分的实施例相互对应,因此系统部分的实施例请参见方法部分的实施例的描述,这里暂不赘述。
请参照图5,图5为本发明实施例提供的一种电池热失控告警设备的结构图,该电池热失控告警设备包括:
存储器20,用于存储计算机程序;
处理器21,用于执行计算机程序时实现如上述实施例中所提到的电池热失控告警方法的步骤。
本实施例提供的电池热失控告警设备可以包括但不限于智能手机、平板电脑、笔记本电脑或台式电脑等。
其中,处理器21可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器21可以采用数字信号处理器(Digital Signal Processor,DSP)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、可编程逻辑阵列(Programmable Logic Array,PLA)中的至少一种硬件形式来实现。处理器21也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称中央处理器;协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器21可以在集成有GPU,GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器21还可以包括人工智能(Artificial Intelligence,AI)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器20可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器20还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备。本实施例中,存储器20至少用于存储以下计算机程序201,其中,该计算机程序被处理器21加载并执行之后,能够实现前述任意一个实施例公开的电池热失控告警方法的相关步骤。另外,存储器20所存储的资源还可以包括操作系统202和数据203等,存储方式可以是短暂存储或者永久存储。其中,操作系统202可以包括Windows、Unix、Linux等。数据203可以包括但不限于电池热失控告警方法的数据等。
在一些实施例中,电池热失控告警设备还可包括有显示屏22、输入输出接口23、通信接口24、电源25以及通信总线26。
本领域技术人员可以理解,图5中示出的结构并不构成对电池热失控告警设备的限定,可以包括比图示更多或更少的组件。
最后,本发明还提供了一种计算机可读存储介质对应的实施例,计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上述方法实施例中记载的步骤。
可以理解的是,如果上述实施例中的方法以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质
中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。
Claims (10)
- 一种电池热失控告警方法,其特征在于,包括:获取目标电池周围的目标气体的浓度值,其中所述目标气体在所述目标电池未发生热失控以及发生不同程度的热失控时所述目标气体的浓度值不同;根据所述目标气体的浓度值确定当前时刻所述目标气体的浓度的变化率;确定所述目标气体的浓度的变化率所属的变化率区间,所述变化率区间包括在所述目标电池未发生热失控以及发生热失控时与所述目标气体的浓度的变化率对应的变化率区间;根据所述目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略。
- 如权利要求1所述的电池热失控告警方法,其特征在于,所述变化率区间包括第一变化率区间、第二变化率区间及第三变化率区间,其中所述第一变化率区间的最大值不大于所述第二变化率区间的最小值,所述第二变化率区间的最大值不大于所述第三变化率区间的最小值;根据所述目标气体的浓度的变化率所属的不同变化率区间,执行相应的告警策略,包括:当所述目标气体的浓度的变化率在所述第一变化率区间的范围内,控制电池热失控告警装置不动作;当所述目标气体的浓度的变化率在所述第二变化率区间的范围内,控制所述电池热失控告警装置发出电池热失控预警信号;当所述目标气体的浓度的变化率在所述第三变化率区间的范围内,控制所述电池热失控告警装置发出电池热失控报警信号。
- 如权利要求2所述的电池热失控告警方法,其特征在于,控制所述电池热失控告警装置发出电池热失控报警信号之后,还包括:判断在第一预设时长内是否接收到人工消防处理指令;若接收到所述人工消防处理指令且所述人工消防处理指令为进行消防处理指令,则在接收到所述进行消防处理指令时,控制消防处理装置对所述目标电池进行消防处理;若接收到所述人工消防处理指令且所述人工消防处理指令为不进行消防处理指令,则在接收到所述不进行消防处理指令时,控制消防处理装置不动作;若没有接收到所述人工消防处理指令,则在所述第一预设时长后,控制所述消防处理装置对所述目标电池进行所述消防处理。
- 如权利要求2所述的电池热失控告警方法,其特征在于,当所述目标气体的浓度的变化率在所述第二变化率区间的范围内,包括:当所述目标气体的浓度的变化率连续第二预设时长都在所述第二变化率区间的范围内。
- 如权利要求2所述的电池热失控告警方法,其特征在于,所述第二变化率区间包括多个第二变化率子区间;控制所述电池热失控告警装置发出电池热失控预警信号,包括:控制所述电池热失控告警装置发出与所述第二变化率子区间一一对应的电池热失控预警子信号。
- 如权利要求1所述的电池热失控告警方法,其特征在于,所述目标气体为一氧化碳。
- 如权利要求1至6任一项所述的电池热失控告警方法,其特征在于,所述变化率区间的确定过程包括:获取标准目标电池在标准环境下模拟热失控过程中所述目标气体的浓度与时间的关系,其中所述标准目标电池与所述目标电池的类型相同;根据所述目标气体的浓度与时间的关系确定所述标准目标电池未发生热失控以及发生热失控时与所述目标气体的浓度的变化率对应的标准变化率区间,将所述标准变化率区间作为所述变化率区间。
- 如权利要求7所述的电池热失控告警方法,其特征在于,所述标准目标电池的周围设置有电化学气体传感器,所述标准目标电池的内部设置有加热模块;获取标准目标电池在标准环境下模拟热失控过程中所述目标气体的浓度与时间的关系,包括:控制所述加热模块加热直至所述标准目标电池热失控;实时通过所述电化学气体传感器采集到的所述目标气体确定所述标准目标电池周围的所述目标气体的浓度;根据所述标准目标电池周围的所述目标气体的浓度及时间绘制所述标准目标电池的第一热失控曲线,所述第一热失控曲线的横坐标为时间,纵坐标为所述目标气体的浓度值;和/或,控制所述标准目标电池的充电模块为所述标准目标电池充电直至所述标准目标电池热失控;实时通过所述电化学气体传感器采集到的所述目标气体确定所述标准目标电池周围的所述目标气体的浓度;根据所述标准目标电池周围的所述目标气体的浓度及时间绘制所述标准目标电池的第二热失控曲线,所述第二热失控曲线的横坐标为时间,纵坐标为所述目标气体的浓度值;对所述标准目标电池的第一热失控曲线和/或所述标准目标电池的第二热失控曲线进行拟合,得到所述标准目标电池的热失控特征曲线。
- 一种电池热失控告警设备,其特征在于,包括:存储器,用于存储计算机程序;处理器,用于执行所述计算机程序时实现如权利要求1至8任一项所述电池热失控告警方法的步骤。
- 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至8任一项所述电池热失控告警方法的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211143178.2 | 2022-09-20 | ||
CN202211143178.2A CN115424423A (zh) | 2022-09-20 | 2022-09-20 | 一种电池热失控告警方法、设备及存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024060703A1 true WO2024060703A1 (zh) | 2024-03-28 |
Family
ID=84203783
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/099834 WO2024060703A1 (zh) | 2022-09-20 | 2023-06-13 | 一种电池热失控告警方法、设备及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115424423A (zh) |
WO (1) | WO2024060703A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115424423A (zh) * | 2022-09-20 | 2022-12-02 | 中车株洲电力机车有限公司 | 一种电池热失控告警方法、设备及存储介质 |
CN117250524A (zh) * | 2023-09-26 | 2023-12-19 | 吴江海关综合技术服务中心 | 不同工况下的锂离子电池热失控的预警方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109786872A (zh) * | 2019-03-18 | 2019-05-21 | 北京航空航天大学 | 一种锂离子电池热失控预警系统及方法 |
CN112034359A (zh) * | 2020-08-31 | 2020-12-04 | 郑州大学 | 基于氢气探测的锂电池早期安全预警方法及装置 |
WO2021045576A1 (ko) * | 2019-09-06 | 2021-03-11 | 인셀(주) | 가스 센서를 이용한 배터리 보호 장치 및 방법 |
CN112789757A (zh) * | 2019-02-20 | 2021-05-11 | 瑞维安知识产权控股有限责任公司 | 用于电池单元监测的电池模块气体传感器 |
WO2021138947A1 (zh) * | 2020-01-06 | 2021-07-15 | 烟台创为新能源科技股份有限公司 | 一种锂离子电池箱抑爆装置及方法 |
CN113176378A (zh) * | 2021-03-29 | 2021-07-27 | 国网江苏省电力有限公司南京供电分公司 | 基于h2浓度的锂离子电池热失控早期预警方法及系统 |
KR102338516B1 (ko) * | 2021-01-29 | 2021-12-13 | 정대원 | 리튬이온배터리 화재 안전을 위한 보호 장치 |
WO2022009152A1 (en) * | 2020-07-09 | 2022-01-13 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for early controlled sprinkler activation |
CN114887255A (zh) * | 2022-05-09 | 2022-08-12 | 浙江吉智新能源汽车科技有限公司 | 一种换电站的消防控制方法、装置及系统 |
CN115424423A (zh) * | 2022-09-20 | 2022-12-02 | 中车株洲电力机车有限公司 | 一种电池热失控告警方法、设备及存储介质 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109541145A (zh) * | 2018-11-30 | 2019-03-29 | 安徽芯核防务装备技术股份有限公司 | 一种有害气体浓度检测方法以及装置 |
CN111260875B (zh) * | 2020-01-19 | 2021-08-24 | 国网江苏省电力有限公司电力科学研究院 | 阀控式铅酸电池火灾预警方法、系统及故障电池定位装置 |
CN113176507A (zh) * | 2021-03-29 | 2021-07-27 | 国网江苏省电力有限公司南京供电分公司 | 基于co气体机械滥用下锂离子电池故障诊断方法及系统 |
CN113571782A (zh) * | 2021-06-09 | 2021-10-29 | 东风汽车集团股份有限公司 | 一种电池热失控检测方法和装置 |
CN113552110A (zh) * | 2021-07-16 | 2021-10-26 | 中国民航大学 | 基于拉曼光谱的锂离子电池热失控动态预警系统及方法 |
CN113948781A (zh) * | 2021-09-26 | 2022-01-18 | 深圳普瑞赛思检测技术有限公司 | 一种电池热失控预警方法和装置 |
-
2022
- 2022-09-20 CN CN202211143178.2A patent/CN115424423A/zh active Pending
-
2023
- 2023-06-13 WO PCT/CN2023/099834 patent/WO2024060703A1/zh unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112789757A (zh) * | 2019-02-20 | 2021-05-11 | 瑞维安知识产权控股有限责任公司 | 用于电池单元监测的电池模块气体传感器 |
CN109786872A (zh) * | 2019-03-18 | 2019-05-21 | 北京航空航天大学 | 一种锂离子电池热失控预警系统及方法 |
WO2021045576A1 (ko) * | 2019-09-06 | 2021-03-11 | 인셀(주) | 가스 센서를 이용한 배터리 보호 장치 및 방법 |
WO2021138947A1 (zh) * | 2020-01-06 | 2021-07-15 | 烟台创为新能源科技股份有限公司 | 一种锂离子电池箱抑爆装置及方法 |
WO2022009152A1 (en) * | 2020-07-09 | 2022-01-13 | Johnson Controls Tyco IP Holdings LLP | Systems and methods for early controlled sprinkler activation |
CN112034359A (zh) * | 2020-08-31 | 2020-12-04 | 郑州大学 | 基于氢气探测的锂电池早期安全预警方法及装置 |
KR102338516B1 (ko) * | 2021-01-29 | 2021-12-13 | 정대원 | 리튬이온배터리 화재 안전을 위한 보호 장치 |
CN113176378A (zh) * | 2021-03-29 | 2021-07-27 | 国网江苏省电力有限公司南京供电分公司 | 基于h2浓度的锂离子电池热失控早期预警方法及系统 |
CN114887255A (zh) * | 2022-05-09 | 2022-08-12 | 浙江吉智新能源汽车科技有限公司 | 一种换电站的消防控制方法、装置及系统 |
CN115424423A (zh) * | 2022-09-20 | 2022-12-02 | 中车株洲电力机车有限公司 | 一种电池热失控告警方法、设备及存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN115424423A (zh) | 2022-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024060703A1 (zh) | 一种电池热失控告警方法、设备及存储介质 | |
CN113948781A (zh) | 一种电池热失控预警方法和装置 | |
US10955484B2 (en) | Battery state monitoring method and apparatus | |
CN110187225A (zh) | 一种锂电池内短路电压电流异常检测方法及系统 | |
CN112886082A (zh) | 动力电池热失控预警方法、装置、电子设备及介质 | |
CN110635182B (zh) | 电池热失控的预警方法和装置、电子设备、存储介质 | |
CN109910618A (zh) | 一种电池安全管理方法、装置及新能源汽车 | |
CN112023300B (zh) | 一种动力电池灭火系统及灭火方法 | |
CN111261957B (zh) | 基于分布控制的锂离子储能电池热失控保护系统及方法 | |
CN110376530A (zh) | 电池内短路检测装置及方法 | |
CN106842043A (zh) | 用于锂离子电池安全等级评价的测试方法 | |
CN110739495A (zh) | 一种储能电池模组热失控监测装置、系统和方法 | |
CN111123148B (zh) | 一种判断金属二次电池内短路的方法及设备 | |
CN109948937B (zh) | 人工智能自学习的安全隐患检测方法、系统、设备及介质 | |
KR20220133695A (ko) | 리튬이온 전지를 제조 또는 평가하기 위한 충방전기 데이터를 기초로 충방전기 이상을 감지하는 방법 | |
CN115808634A (zh) | 储能电站锂电池安全状态估计方法、装置、设备及介质 | |
EP4361983A1 (en) | Fire-protection detecting method and device, electronic device and medium | |
CN112698210A (zh) | 一种电池安全测试一体机、电池测试系统及电池测试方法 | |
CN117872159B (zh) | 一种基于数据分析的锂电芯充放电异常检测方法及系统 | |
CN115993541B (zh) | 磷酸铁锂电池的无损析锂检测方法及相关装置 | |
CN103325219B (zh) | 基于红外传感器的煤气灶防泄漏报警系统及方法 | |
Wang et al. | [Retracted] Research on the Early Warning Mechanism for Thermal Runaway of Lithium‐Ion Power Batteries in Electric Vehicles | |
CN212522788U (zh) | 一种电池组的灭火装置 | |
CN116146910A (zh) | 一种基于红外温感摄像头的燃气泄漏检测方法 | |
Wang et al. | Multiparameter Comprehensive Thermal Runaway Warning Model of Lithium‐Ion Battery under Overcharge Condition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23866999 Country of ref document: EP Kind code of ref document: A1 |