WO2024060533A1 - 一种矿山爆破矿岩运动轨迹采集装置 - Google Patents

一种矿山爆破矿岩运动轨迹采集装置 Download PDF

Info

Publication number
WO2024060533A1
WO2024060533A1 PCT/CN2023/081030 CN2023081030W WO2024060533A1 WO 2024060533 A1 WO2024060533 A1 WO 2024060533A1 CN 2023081030 W CN2023081030 W CN 2023081030W WO 2024060533 A1 WO2024060533 A1 WO 2024060533A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
ring
self
blasting
movement trajectory
Prior art date
Application number
PCT/CN2023/081030
Other languages
English (en)
French (fr)
Inventor
马连成
徐连生
杨禹
潘鹏飞
胡振涛
陆占国
吴秀毅
李嵩
柳小波
张兴凯
Original Assignee
鞍钢集团矿业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鞍钢集团矿业有限公司 filed Critical 鞍钢集团矿业有限公司
Publication of WO2024060533A1 publication Critical patent/WO2024060533A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/067Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only wound springs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation

Definitions

  • the present invention relates to the technical field of mine blasting, specifically, to a mine blasting ore rock movement trajectory acquisition device.
  • accurately obtaining the true movement trajectory of the ore rock can provide scientific basis and theoretical support for the study of the blast pile shape and the safe distance of blasting flying rocks.
  • the movement trajectory of ore rocks during mine blasting can be obtained through field tests with the help of inertial navigation sensors. Since the inertial navigation sensors can accurately collect movement data during the blasting process, accurate and realistic blasting ore rocks can be obtained. Movement trajectory.
  • the inertial navigation sensor is in a horizontal attitude when placing it underground or on the surface of the blasting site.
  • the inertial navigation sensor needs to be thrown into a blast hole more than ten meters deep, and the inertia cannot be guaranteed at all.
  • the navigation sensor is in a horizontal attitude, which will affect the determination of the initial motion information, thereby producing a large error in the inertial navigation position calculation process, affecting the accuracy of the generated ore rock motion trajectory.
  • the inertial navigation sensor cannot maintain a horizontal posture due to the 360-degree rotation due to the blasting impact during the blasting process.
  • posture adjustment devices there are two main categories of existing posture adjustment devices.
  • One is posture adjustment based on posture adjustment algorithms through electronic control devices, and the other is posture adjustment based on the force balance principle through mechanical structures.
  • the Chinese patent CN111457233A designs a multi-functional gimbal three-axis stabilizer, including a yaw arm, a yaw axis motor, a roll arm, and a roll arm.
  • Motor, pitch arm, pitch arm motor, handle, battery compartment and battery switch protection plate associated with the battery compartment, the battery compartment and battery switch protection plate are associated with the yaw axis motor, roll arm motor and pitch arm motor, Used to provide power and power switching and protection.
  • Chinese patent CN112555598A designs a three-axis stabilizer and a gimbal device with the same, including an X-axis rotation device, a Y-axis motor, a Z-axis motor, a pitch arm and a roll arm.
  • the rotating device is movablely connected, the other end of the pitch arm is fixedly connected to the Y-axis motor, and the two ends of the rolling arm are connected to the Y-axis motor and the Z-axis motor respectively;
  • the X-axis rotating device is provided with a connecting part, and the Z-axis motor is connected with a mounting
  • the shooting device is installed on the mounting plate; when used in formal use, the Y-axis motor and Z-axis motor are not higher than the X-axis rotating device.
  • Chinese patent CN103712747A is used in the balancing method and equipment of a rotating body.
  • the balancing equipment includes: at least one unbalance detector for measuring the imbalance of the rotating body, and two balance mass blocks for maneuvering along the steering circle.
  • a position sensor is used to detect the mutual position of the balance mass and a motor is used to operate the balance mass independently of each other based on the imbalance and the mutual position of the balance mass.
  • the controller brakes the first brake and the second brake based on the signal to level the work tool by rotating it around the top axis.
  • These devices all include electronic control devices, which require the use of high-precision attitude algorithms and driving equipment (such as motors) to achieve attitude control.
  • the algorithm takes time to calculate attitude parameters, and motor control also takes time.
  • the blasting process is very short, often only Within a few seconds, the stabilizing device did not have time to calculate and run the motor to adjust the attitude of the sensor. That is, the stabilizing device including the electronic control device was unable to keep the sensor in a horizontal attitude during the blasting process.
  • the electronic control device itself is easily damaged during blasting and is not suitable for protecting inertial navigation sensors in mine blasting.
  • the balancing device includes a balance pendant installed below the telescope platform, and the telescope platform is automatically leveled under the gravity of the balance pendant.
  • the present invention provides a mining blasting ore and rock motion trajectory acquisition device.
  • a device for collecting the movement trajectory of ore and rock during mine blasting comprising: a spherical explosion-proof shell with an opening on one side, an explosion-proof cover body connected to the opening, a self-stabilizing device, a shock absorbing device and an inertial navigation sensor;
  • the self-stabilizing device includes: an outer ring, a middle ring, an inner groove and a latching groove; the middle ring is movably connected inside the outer ring through a first bearing and a second bearing; the first The bearing and the second bearing are collinear and located on the line, located on the Y-axis; the X-axis is arranged perpendicularly to the Y-axis;
  • the shock absorbing device is connected between the self-stabilizing device and the housing, so that the self-stabilizing device is fixed inside the housing; the inertial navigation sensor is fixed through the slot on the inner circular groove. inside the inner circular groove.
  • the self-stabilizing device further includes: a counterweight block; the counterweight block is fixed at the bottom of the inner circular groove.
  • the middle ring is movably connected inside the outer ring through a first bearing and a second bearing, including:
  • a large circular hole is symmetrically provided on the side of the outer circular ring.
  • the first bearing and the second bearing are respectively arranged inside the large circular hole of the outer circular ring in an interference fit manner.
  • the side of the middle circular ring is Small circular holes are arranged symmetrically, and the first bearing and the second bearing in the large circular hole on the side of the outer circular ring are connected to the small circular hole on the side of the middle circular ring through bolts and nuts.
  • the inner circular groove is movably connected inside the middle ring through a third bearing and a fourth bearing, including:
  • a large circular hole is symmetrically arranged on the side of the middle ring, and the direction of the small circular hole is symmetrically arranged on the side of the middle ring is perpendicular.
  • the third bearing and the fourth bearing are respectively arranged in an interference fit connection. Inside the large circular hole of the middle ring, small circular holes are symmetrically arranged on the side of the inner circular groove.
  • the third bearing and the fourth bearing inside the large circular hole on the side of the middle ring are connected to the said inner ring through bolts and nuts.
  • the small round holes on the side of the inner circular groove are connected.
  • the shock absorbing device includes: a plurality of first shock absorbing devices fixedly connected between the upper ring surface of the outer ring and the housing above the upper ring surface, and a lower ring of the outer ring.
  • first shock absorbing devices fixedly connected between the upper ring surface of the outer ring and the housing above the upper ring surface, and a lower ring of the outer ring.
  • second shock absorbing devices are fixedly connected between the surface and the shell below the lower ring surface; the number of the first shock absorbing devices and the second shock absorbing devices is the same, and based on the The ring surface is symmetrical up and down; the first shock absorbing device plays a pulling force on the self-stabilizing device, and the second shock absorbing device plays a supporting role on the self-stabilizing device, making the self-stabilizing device suspended placed inside the casing.
  • the first shock absorbing device includes a first connecting rod, a first guide rod, a first spring and a first sleeve; one end of the first connecting rod and the first guide rod are of an integral structure, so The first spring is placed outside the first guide rod, the first sleeve is placed outside the first spring, and the other end of the first connecting rod is fixedly connected to the upper ring of the outer ring. surface, the first sleeve is fixedly connected to the upper housing of the upper ring surface;
  • the second shock absorbing device includes a second connecting rod, a second guide rod, a second spring and a second sleeve; one end of the second connecting rod and the second guide rod are of an integral structure, and the second The spring sleeve is placed outside the second guide rod, the second sleeve is placed outside the second spring, and the other end of the second connecting rod is fixedly connected to the lower ring surface of the outer ring, so The second sleeve is fixedly connected to the lower housing of the lower ring surface.
  • the collection device further includes: an acousto-optic device arranged on the inner surface of the housing.
  • a stop lock is provided at the connection between the housing and the cover, and several stop locks are evenly distributed at the connection between the housing and the cover;
  • the stop lock includes a support column, a spring and An elastic box;
  • a buckle is provided at the connection between the cover body and the casing;
  • a latching groove is provided at the connection between the casing and the cover body.
  • the present invention has the following advantages:
  • the outer spherical shell is made of explosion-proof material, which can protect the inertial navigation sensor for mine blasting placed inside it.
  • the self-stabilizing device inside the collection device under the joint action of rotation along the X-axis and Y-axis, offsets the shaking generated by the collection device, so that the inertial navigation sensor inside the collection device is always in a relative position even if it rotates at any angle of 360 degrees.
  • the balanced and relatively horizontal state can protect the inertial navigator for mine blasting from the influence of the blasting site environment and the blasting process, avoid errors in the process of inertial navigation position calculation, and then obtain accurate blasting ore rock motion trajectories.
  • the mine blasting ore rock movement trajectory acquisition device provided by the present invention also includes a counterweight block in the self-stabilizing device to further ensure the stability of the sensor.
  • the mine blasting ore rock movement trajectory acquisition device provided by the present invention is provided with vibration damping devices on the upper and lower parts of the self-stabilizing device.
  • the upper damping device exerts a pulling force on the self-stabilizing device
  • the lower damping device acts as a pulling force on the self-stabilizing device. It plays a supporting role in the self-stabilizing device.
  • the upper and lower damping devices work together to make the self-stabilizing device suspended inside the casing. It plays a role in damping the inertial navigation sensor inside the self-stabilizing device and can further reduce the inertia.
  • the navigation sensor plays a protective role against the vibration and impact force it receives during the blasting process.
  • the mine blasting ore rock motion trajectory acquisition device provided by the present invention is provided with an acousto-optic device on the inner surface of the spherical shell.
  • the acousto-optic device emits sound and light under the mutual extrusion of the surrounding ore rocks, which facilitates inertial navigation after blasting. Recycling of sensors and their collection devices.
  • Figure 1 is a general assembly diagram of a mine blasting ore rock movement trajectory acquisition device provided by an embodiment of the present invention
  • Figure 2 is a cross-sectional view of the general assembly of a mine blasting ore rock movement trajectory acquisition device provided by an embodiment of the present invention
  • Figure 3 is a cross-sectional view of the connection between the housing and the cover provided in the embodiment of the present invention.
  • Figure 4 is a cross-sectional view of another position of the connection between the housing and the cover provided in the embodiment of the present invention.
  • Figure 5 is a schematic diagram of the self-stabilizing device provided by an embodiment of the present invention.
  • Figure 6 is a schematic diagram of the self-stabilizing device provided by an embodiment of the present invention from another angle;
  • Figure 7 is a cross-sectional view of a vibration damping device provided by an embodiment of the present invention.
  • Figure 8 is a state diagram during the movement of the mine blasting ore rock movement trajectory acquisition device provided by the embodiment of the present invention.
  • Figure 9 is another state diagram during the movement of the mine blasting ore rock movement trajectory acquisition device provided by the embodiment of the present invention; in the figure: 1. Outer ring; 2. First bearing; 3. Second bearing; 4. Middle ring; 5. Third bearing; 6. Fourth bearing; 7. Inner circular groove; 8. Card slot; 9. Inertial navigation sensor for mine blasting; 10. Counterweight; 11. Connecting rod; 12. Guide Rod; 13. Spring; 14. Sleeve; 15. Ball shell; 16. Cover; 17. Sound and light device; 18. Support column; 19. Spring; 20. Flexible box; 21. Buckle.
  • spatially relative terms can be used here, such as “on", “on", “on the upper surface of", “above”, etc., to describe what is shown in the figure.
  • the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a feature in the figure is turned upside down, then one feature described as “above” or “on top of” other features or features would then be oriented “below” or “below” the other features or features. It lies beneath the device or structure.”
  • the exemplary term “on “Oriented” may include both “above” and “below” the device.
  • the device may be oriented in different ways (rotated 90 degrees or at other orientations), and the spatially relative descriptors used herein appropriate explain.
  • the inertial navigation sensor for mine blasting integrates multi-axis accelerometers (such as three-axis accelerometers), multi-axis gyroscopes (such as three-axis gyroscopes), communication transmission modules, control modules and data storage modules (SD can be used Memory card is used as a data storage module).
  • Inertial navigation sensors for mine blasting are generally rectangular and small in size.
  • the volume of an inertial navigation sensor for mine blasting is 51.3mm ⁇ 36mm ⁇ 15mm. It can be used to simulate blasting ore rock during the mine blasting process and collect motion data during the blasting process.
  • the data collected when the inertial navigation sensor is in a horizontal attitude is used as the initial motion information. Based on the initial motion information and the gyroscope and accelerometer measurement, The data is used to calculate the attitude, speed and position of the inertial navigation sensor, and completely obtain the instantaneous rock movement trajectory information during blasting.
  • the inertial navigation sensor for mine blasting In order to protect the inertial navigation sensor for mine blasting from being affected by the blasting site environment and the blasting process, it must always maintain a horizontal attitude when placed at the blasting site and during the blasting process, and protect the precision instrument module inside the inertial navigation sensor for mine blasting from being affected by the blasting process.
  • the resulting impact force causes damage, and the invention provides a device for collecting movement trajectories of ore rock in mine blasting.
  • the embodiment of the present invention provides a mine blasting ore rock movement trajectory acquisition device, including: a spherical explosion-proof housing 15 with an opening on one side, an explosion-proof cover 16 connected to the opening, and a self-stabilizing device and shock absorbers.
  • the shell and cover can be made of explosion-proof engineering plastic materials, such as polyetheretherketone (PEEK), which has high mechanical strength, high temperature resistance, impact resistance, flame retardancy, wear resistance and excellent electrical properties.
  • PEEK polyetheretherketone
  • the thus formed shell can not only protect the internal inertial navigation sensor for mine blasting in a flameproof manner, but also does not affect the data transmission between the inertial navigation sensor for mine blasting and external equipment, making the data collected by the inertial navigation sensor for mine blasting
  • Motion data can be wirelessly transmitted to external devices in real time so that the external devices can generate and display motion trajectories.
  • the shell in the embodiment of the present invention is spherical. Compared with shells of other shapes, the spherical shell is more convenient for adjusting the attitude of the internal inertial navigation sensor for mine blasting.
  • the connection method between the casing 15 and the cover 16 is as shown in Figure 3 and 4. Stop locks are provided at the connection between the casing 15 and the cover 16. The stop locks are evenly distributed at the connection between the casing 15 and the cover 16. number, no less than 6.
  • the housing 15 stop lock includes a support column 18, a spring 19 and an elastic box 20.
  • the cover 16 includes a buckle 21, and the housing 15 includes a slot that matches the buckle 21. During specific use, the elastic box 20 of the housing 15 is pressed, the spring 19 is compressed, and the elastic box 20 moves in the direction in which the spring is compressed.
  • the buckle 21 of the cover 16 slides into the slot of the housing 15, the housing 15 and the cover 16 are connected, the spring box 20 returns to its original position under the action of the spring force, and the cover 16
  • the buckle 21 functions as a position limiter to prevent relative displacement at the connection between the housing 15 and the cover 16, which may lead to failure of the connection.
  • the elastic box 20 of the housing 15 is pressed by rotating the cover, the spring 19 is compressed, the elastic box 20 moves in the direction in which the spring is compressed, and the buckle 21 of the explosion-proof cover 16 is released from the explosion-proof housing.
  • the card slot of 15 slides out to realize the separation of the cover and the casing, so that the inertial navigation sensor or the memory card on the inertial navigation sensor can be taken out from the casing.
  • the self-stabilizing device is installed inside the casing through a shock absorbing device.
  • the self-stabilizing device includes: an outer ring 1, a middle ring 4, an inner groove 7, a slot 8 and a counterweight 10 ;
  • the middle ring 4 is movably connected inside the outer ring 1 through bearings
  • the inner circular groove 7 is movably connected inside the middle ring 4 through bearings
  • the clamping groove 8 is fixedly arranged inside the inner circular groove 7,
  • the counterweight 10 is fixedly connected therein
  • the weight block 10 can be an integral structure with the inner circular groove 7 , or can be welded to the bottom of the inner circular groove 7 .
  • the inertial navigation sensor 9 for mine blasting is fixed inside the inner circular groove 7 through the slot 8 on the inner circular groove 7. Specifically, the four corners of the inner circular groove 7 corresponding to the inertial navigation sensor 9 for mine blasting are respectively provided with 1 There is a card slot 8. When installing the inertial navigation sensor 9 for mine blasting, the four corners of the inertial navigation sensor 9 for mine blasting are stuck in the card slot 8. Among them, the diameter of the outer ring is larger than that of the middle ring, and the diameter of the middle ring is larger than that of the inner groove. The size of the inner groove is subject to being able to place the inertial navigation sensor for mine blasting.
  • the middle ring 4 is movably connected to the inside of the outer ring 1 through the first bearing 2 and the second bearing 3.
  • the specific connection relationship is: a large circular hole is symmetrically provided on the side of the outer ring 1, and the first bearing 2 and the second bearing 3 are respectively It is installed inside the large circular hole of the outer ring 1 using an interference fit connection. Small circular holes are symmetrically provided on the side of the middle ring 4.
  • the first bearing 2 and the second bearing 3 in the large circular hole on the side of the outer ring 1 are connected by bolts.
  • the nut is connected to the side small round hole of the middle ring 4.
  • the inner circular groove 7 is movably connected inside the middle ring 4 through the third bearing 5 and the fourth bearing 6.
  • the specific connection relationship is: a large circular hole is symmetrically arranged on the side of the middle ring 4, and a large circular hole is symmetrically arranged on the side of the middle ring 4.
  • the direction of the small circular hole is vertical.
  • the third bearing 5 and the fourth bearing 6 are respectively arranged inside the large circular hole of the middle ring 4 by interference fit connection. Small circular holes are symmetrically arranged on the side of the inner circular groove 7.
  • the middle ring 4 The third bearing 5 and the fourth bearing 6 inside the large circular hole on the side are connected to the small circular hole on the side of the inner circular groove 7 through bolts and nuts.
  • the first bearing 2 and the second bearing 3 are collinear and located on the X-axis.
  • the self-stabilizing device rotates along the X-axis, it ensures that the inertial navigation sensor 9 for mine blasting remains horizontal; the third bearing 5 and the fourth bearing 6 are collinear.
  • Located on the Y axis when the self-stabilizing device rotates along the Y axis, it ensures that the inertial navigation sensor 9 for mine blasting remains in a horizontal state.
  • the X-axis and the Y-axis are arranged vertically.
  • the self-stabilizing device rotates along the X-axis and the Y-axis to offset the shaking generated by the collecting device, so that the inertial navigation sensor 9 for mine blasting inside the slot 8 Always in a relatively balanced and level state. Since the inertial navigation sensor 9 contains precision sensors such as a high-precision gyroscope and a three-axis accelerometer, it moves with the nearby ore rocks during the blasting process and records its own movement posture in real time, and stores it in the SD card on the sensor or transmits it.
  • precision sensors such as a high-precision gyroscope and a three-axis accelerometer
  • the internal inertial navigation sensor 9 for mine blasting is always in a relatively balanced and relatively horizontal state, which can not only determine accurate initial motion information, but also reduce inertial navigation position calculations caused by inaccurate initial motion information.
  • the error can also ensure the stability of the inertial navigation sensor 9 for mine blasting and reduce the system error caused by changes in the Z-axis angular velocity, thereby generating a more accurate movement trajectory of the blasted ore rock.
  • the shock absorbing device includes: connecting rod 11, guide rod 12, spring 13 and sleeve 14; one end of the connecting rod 11 and the guide rod 12 are an integral structure, and the spring 13 is placed outside the guide rod 12 , the sleeve 14 is set on the outside of the spring 13.
  • several pairs of shock absorbing devices are disposed between the self-stabilizing device and the shell. Specifically, the first shock absorbing device is disposed on the outer ring. Between the ring surface and the shell above the upper ring surface, the second shock absorbing device is arranged between the lower ring surface of the outer ring and the shell below the lower ring surface.
  • the sleeve of the shock absorbing device is fixedly connected to the shell.
  • the sleeve is made of plastic material, and the sleeve and the housing are fixedly connected by casting; the connecting rod of the shock absorbing device is fixedly connected to the annulus of the outer ring.
  • the outer ring is made of metal, and the connecting rod is also made of metal. The outer ring and the connecting rod are fixedly connected by welding.
  • Each pair of shock absorbing devices is symmetrical up and down based on the annular surface of the outer ring. In this embodiment, there are a total of 2 pairs of shock absorbing devices.
  • the shock absorbing device located on the upper annulus acts as a pulling force on the self-stabilizing device, and the shock absorbing device located on the lower annular surface plays a supporting role on the self-stabilizing device.
  • the upper and lower shock absorbing devices work together to make the self-stabilizing device suspended.
  • inertial navigation sensing is used for mine blasting inside the card slot 8 Device 9 plays the role of shock absorption.
  • the collection device includes, in addition to a spherical housing 15 with an opening on one side and a cover 16 mated and connected to the opening, and a Sound and light device 17 on the inner surface.
  • the sound and light device 17 emits sound and light under the action of the mutual extrusion of the ore rocks, which facilitates the recovery of the inertial navigation sensor and its collection device after blasting.
  • the mine blasting ore rock motion trajectory acquisition device is rotated along the X-axis.
  • the state diagram of the internal self-stabilizing device is shown in Figure 8.
  • the self-stabilizing device rotates along the X-axis, inertial navigation for mine blasting is ensured
  • the sensor 9 remains in a horizontal state; similarly, when the self-stabilizing device rotates along the Y-axis, it can also ensure that the inertial navigation sensor 9 for mine blasting remains in a horizontal state.
  • the mine blasting ore rock motion trajectory acquisition device is rotated along the X-axis and Y-axis.
  • the state diagram of the internal self-stabilizing device is shown in Figure 9.
  • the self-stabilizing device rotates along the X-axis and Y-axis.
  • the shaking generated by the collection device is offset, so that the inertial navigation sensor 9 for mine blasting inside the slot 8 is always in a relatively balanced and horizontal state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Navigation (AREA)

Abstract

本发明提供一种矿山爆破矿岩运动轨迹采集装置,包括:一面开口的球型防爆壳体、与开口配合连接的防爆盖体;设置在球型防爆壳体内部的自稳定装置;自稳定装置包括:外圆环、中圆环、内圆槽和卡槽;中圆环通过第一轴承和第二轴承活动连接在外圆环内部;第一轴承和第二轴承共线,位于X轴;内圆槽通过第三轴承和第四轴承活动连接在中圆环内部;第三轴承和第四轴承共线,位于Y轴;X轴与Y轴垂直布置;矿山爆破用惯性导航传感器通过内圆槽上的卡槽固定在内圆槽内部。本发明的矿山爆破矿岩运动轨迹采集装置能够不受爆破现场环境以及爆破过程的影响,在爆破过程中始终保持水平姿态,并保护内部的精密仪器不被爆破过程产生的冲击力损坏。

Description

一种矿山爆破矿岩运动轨迹采集装置 技术领域
本发明涉及矿山爆破技术领域,具体而言,尤其涉及一种矿山爆破矿岩运动轨迹采集装置。
背景技术
在矿山爆破过程中,准确获取矿岩的真实运动轨迹可以对爆堆形态以及爆破飞石安全距离的研究提供科学依据和理论支持。矿山爆破中矿岩的运动轨迹可以借助惯性导航传感器通过现场试验的方法获取到,由于惯性导航传感器能够精准的采集到爆破过程中的运动数据,所以由此能够获取到准确、真实的爆破矿岩运动轨迹。
但是,由于爆破现场环境较为复杂,在爆破现场地下或地表放置惯性导航传感器时往往不能确保惯性导航传感器处于水平姿态,有时惯性导航传感器还需要投掷到十几米深的炮孔内,根本无法保证惯性导航传感器处于水平姿态,这会影响初始运动信息的确定,进而在惯性导航位置解算过程中产生较大误差,影响生成的矿岩运动轨迹的准确性。而且惯性导航传感器在爆破过程中由于受到爆破冲击力而发生360度任意角度的旋转也无法保持水平姿态,这会产生因惯性导航传感器状态不稳定导致的系统误差,影响生成的矿岩运动轨迹的准确性。同时,爆破过程中产生的冲击力极易破坏惯性导航传感器内的精密仪器模块,导致运动数据获取失败。因此,亟需一种矿山爆破矿岩运动轨迹采集装置,在爆破开始前以及爆破过程中始终保持水平姿态,采集到生成准确完整的矿岩运动轨迹所需的数据,并保护内部的精密仪器模块不被爆破过程产生的冲击力损坏。
目前,现有的调整姿态的装置主要有两大类,一类是通过电控装置基于姿态调节算法进行姿态调整,另一类是通过机械结构基于力的平衡原理进行姿态调整。
其中,通过电控装置基于姿态调节算法进行姿态调整的装置中,如,中国专利CN111457233A设计了一种多功能云台三轴稳定器,包括航向臂、航向轴电机、横滚臂、横滚臂电机、俯仰臂、俯仰臂电机、手柄、电池仓和与电池仓关联的电池开关保护板,所述电池仓和电池开关保护板与所述航向轴电机、横滚臂电机和俯仰臂电机关联,用以提供电源及电源的开闭和保护。又如,中国专利CN112555598A设计了一种三轴稳定器及具有其的云台装置,包括X轴转动装置、Y轴电机、Z轴电机、俯仰臂以及横滚臂,俯仰臂的一端与X轴转动装置活动连接、俯仰臂的另一端与Y轴电机固定连接,横滚臂的两端分别与Y轴电机、Z轴电机连接;X轴转动装置设有连接部,Z轴电机上连接有安装板,拍摄装置安装于安装板;正装使用时,所述Y轴电机、Z轴电机均不高于X轴转动装置。又如,中国专利CN103712747A用于旋转体的调平衡方法和设备中,调平衡设备包括:至少一个不平衡检测器用于测量旋转体的不平衡,两个平衡质量块用于沿着操纵圆周操纵以抵消不平衡,位置传感器用于检测平衡质量块的相互位置,马达用于根据不平衡和平衡质量块的相互位置来彼此独立地操纵平衡质量块。又如,中国专利CN109748201A作业工具调平系统,控制器基于信号制动第一制动器和第二制动器,以通过使作业工具围绕顶端轴线旋转而调平。
这些装置中都包括电控装置,需要采用高精度姿态算法用驱动设备(如电机)实现姿态控制,算法计算姿态参数需要时间,电机控制也需要时间,然而,爆破过程的时间非常短,往往只有几秒钟的时间,稳定装置根本来不及运算以及运行电机实现对传感器姿态的调整,即包括电控装置的稳定装置无法实现在爆破过程中保持传感器始终处于水平姿态。而且,电控装置本身容易在爆破过程中受到损害,并不适用于矿山爆破中对惯性导航传感器的保护。
通过机械结构基于力的平衡原理进行姿态调整的装置中,如中国专利CN217356342U公开的一种市政园林测绘定位用经纬仪,通过转动球和环形板的配合设置,在使用的过程中转动球可以脱离圆板自由转动,设置配重块,使得安装台受配重块重力影响一直处于水平位置。中国专利CN115027867A-一种自平衡输送的RGV小车,通过设置重力球使储料仓始终保持平衡状态,在装填货物时重力球能够为储料仓提供向下的拉力,避免储料仓过度倾 斜,在重力球的作用下,倾斜的储料仓能够逐渐恢复水平状态。中国专利CN112254716A一种便于户外使用的土地管理测绘仪及测绘方法中,调节平衡装置包括在望远镜平台的下方安装的平衡坠,在平衡坠的重力作用下自动对望远镜平台进行调平。
这些装置都是依靠重力作用实现调平,只能在相对水平位置小范围/角度转动的情况下实现调平,然而,爆破过程中惯性传感器可能会发生360度任意角度的转动,仅依靠重力作用无法保证惯性传感器在爆破过程中发生任意角度转动时都保持水平姿态,因此,这些调整姿态的装置也不适用于矿山爆破中对惯性导航传感器的姿态调整。
发明内容
为了解决矿山爆破用惯性导航传感器不能保持水平姿态而影响生成运动轨迹的准确性以及内部的精密仪器模块容易被爆破过程产生的冲击力损坏的技术问题,本发明提供了一种矿山爆破矿岩运动轨迹采集装置。
本发明采用的技术手段如下:
一种矿山爆破矿岩运动轨迹采集装置,包括:一面开口的球型防爆壳体、与开口配合连接的防爆盖体、自稳定装置、减震装置和惯性导航传感器;
所述自稳定装置包括:外圆环、中圆环、内圆槽和卡槽;所述中圆环通过第一轴承和第二轴承活动连接在所述外圆环的内部;所述第一轴承和所述第二轴承共线,位于X轴;所述内圆槽通过第三轴承和第四轴承活动连接在所述中圆环的内部;所述第三轴承和所述第四轴承共线,位于Y轴;所述X轴与所述Y轴垂直布置;
所述减震装置连接在所述自稳定装置和所述壳体之间,使得所述自稳定装置固定于所述壳体内部;所述惯性导航传感器通过所述内圆槽上的卡槽固定在所述内圆槽内部。
进一步地,所述自稳定装置还包括:配重块;所述配重块固定在所述内圆槽的底部。
进一步地,所述中圆环通过第一轴承和第二轴承活动连接在所述外圆环的内部,包括:
所述外圆环的侧面对称设置大圆孔,所述第一轴承和所述第二轴承分别采用过盈配合连接的方式设置在所述外圆环的大圆孔内部,所述中圆环的侧面对称设置小圆孔,所述外圆环的侧面大圆孔内的所述第一轴承和所述第二轴承通过螺栓螺母与所述中圆环的侧面小圆孔连接。
进一步地,所述内圆槽通过第三轴承和第四轴承活动连接在所述中圆环的内部,包括:
所述中圆环的侧面对称设置大圆孔,与所述中圆环侧面对称设置的小圆孔的方向垂直,所述第三轴承和所述第四轴承分别采用过盈配合连接的方式设置在所述中圆环的大圆孔内部,所述内圆槽的侧面对称设置小圆孔,所述中圆环侧面大圆孔内部的所述第三轴承和所述第四轴承通过螺栓螺母与所述内圆槽的侧面小圆孔连接。
进一步地,所述减震装置包括:所述外圆环的上环面与所述上环面上方壳体之间固定连接的若干个第一减震装置,以及所述外圆环的下环面与所述下环面下方壳体之间固定连接的若干个第二减震装置;所述第一减震装置和所述第二减震装置的数量相同,且基于所述外圆环的环面上下对称;所述第一减震装置对所述自稳定装置起到拉力的作用,所述第二减震装置对所述自稳定装置起到支撑的作用,使得所述自稳定装置悬置于壳体内部。
进一步地,所述第一减震装置包括第一连杆、第一导向杆、第一弹簧以及第一套筒;所述第一连杆的一端与所述第一导向杆为一体结构,所述第一弹簧套置于所述第一导向杆外侧,所述第一套筒套至于所述第一弹簧外侧,所述第一连杆的另一端固定连接在所述外圆环的上环面,所述第一套筒固定连接在所述上环面的上方壳体;
所述第二减震装置包括第二连杆、第二导向杆、第二弹簧以及第二套筒;所述第二连杆的一端与所述第二导向杆为一体结构,所述第二弹簧套置于所述第二导向杆外侧,所述第二套筒套至于所述第二弹簧外侧,所述第二连杆的另一端固定连接在所述外圆环的下环面,所述第二套筒固定连接在所述下环面的下方壳体。
进一步地,所述采集装置还包括:设置在所述壳体内表面的声光装置。
进一步地,所述壳体与所述盖体连接处设置止动锁,若干个止动锁均布在所述壳体与所述盖体连接处;所述止动锁包括支撑柱、弹簧和弹性盒;所述盖体与所述壳体连接处设置有卡扣;所述壳体与所述盖体连接处设置有卡槽。
较现有技术相比,本发明具有以下优点:
1、本发明提供的矿山爆破矿岩运动轨迹采集装置,外部的球型壳体采用防爆材质,能够对置于其内部的矿山爆破用惯性导航传感器起到保护作用。同时,采集装置内部的自稳定装置在沿X轴和Y轴转动共同作用下,将采集装置产生的晃动进行抵消,使采集装置内部惯性导航传感器即便发生360度任意角度的转动也始终处于一个相对平衡、相对水平的状态,能够保护矿山爆破用惯性导航器不受爆破现场环境以及爆破过程的影响,避免在惯性导航位置解算过程中产生误差,进而得到准确的爆破矿岩运动轨迹。
2、本发明提供的矿山爆破矿岩运动轨迹采集装置,在自稳定装置中还包括配重块,进一步保证传感器稳定性。
3、本发明提供的矿山爆破矿岩运动轨迹采集装置,通过在自稳定装置上部和下部设置减振装置,位于上部的减震装置对自稳定装置起到拉力的作用,位于下部的减震装置对自稳定装置起到支撑的作用,上下部减振装置共同作用,使得自稳定装置悬置于壳体内部,对自稳定装置内部的惯性导航传感器起到减震的作用,能够进一步减小惯性导航传感器在爆破过程中受到的振动冲击力,起到保护作用。
4、本发明提供的矿山爆破矿岩运动轨迹采集装置,通过在球型壳体内表面设置声光装置,声光装置在周围矿岩相互挤压的作用下发出声音和光亮,便于爆破后惯性导航传感器及其采集装置的回收。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下 面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种矿山爆破矿岩运动轨迹采集装置的总装配图;
图2为本发明实施例提供的一种矿山爆破矿岩运动轨迹采集装置总装配体的剖视图;
图3为本发明实施例中提供的壳体和盖体连接处的剖视图;
图4为本发明实施例中提供的壳体和盖体连接处另一位置的剖视图;
图5为本发明实施例提供的自稳定装置一个角度示意图;
图6为本发明实施例提供的自稳定装置另一个角度示意图;
图7为本发明实施例提供的减振装置的剖视图;
图8为本发明实施例提供的矿山爆破矿岩运动轨迹采集装置运动过程中的状态图;
图9为本发明实施例提供的矿山爆破矿岩运动轨迹采集装置运动过程中的另一种状态图;图中:1、外圆环;2、第一轴承;3、第二轴承;4、中圆环;5、第三轴承;6、第四轴承;7、内圆槽;8、卡槽;9、矿山爆破用惯性导航传感器;10、配重块;11、连杆;12、导向杆;13、弹簧;14、套筒;15、球型壳体;16、盖体;17、声光装置;18、支撑柱;19、弹簧;20弹性盒;卡扣21。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明 保护的范围。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。同时,应当清楚,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。对于相关领域普通技术人员己知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。在这里示出和讨论的所有示例中,任向具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
在本发明的描述中,需要理解的是,方位词如“前、后、上、下、左、右”、“横向、竖向、垂直、水平”和“顶、底”等所指示的方位或位置关系通常是基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,在未作相反说明的情况下,这些方位词并不指示和暗示所指的装置或元件必须具有特定的方位或者以特定的方位构造和操作,因此不能理解为对本发明保护范围的限制:方位词“内、外”是指相对于各部件本身的轮廓的内外。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其位器件或构造之下”。因而,示例性术语“在……上 方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
此外,需要说明的是,使用“第一”、“第二”等词语来限定零部件,仅仅是为了便于对相应零部件进行区别,如没有另行声明,上述词语并没有特殊含义,因此不能理解为对本发明保护范围的限制。
矿山爆破用惯性导航传感器内集成有多轴加速度计(如三轴加速度计)、多轴陀螺仪(如三轴陀螺仪)、通讯传输模组、控制模组和数据存储模组(可以采用SD存储卡作为数据存储模组),矿山爆破用惯性导航传感器一般为长方体,且体积较小,如一种矿山爆破用惯性导航传感器的体积为51.3mm×36mm×15mm。可以用于在矿山爆破过程中模拟爆破矿岩,采集爆破过程中的运动数据,以惯性导航传感器为水平姿态时采集的数据作为初始运动信息,根据初始运动信息和利用陀螺仪、加速度计测量的数据,对惯性导航传感器的姿态、速度和位置进行解算,完整获取爆破瞬时矿岩运动轨迹信息。
为了保护矿山爆破用惯性导航传感器不受爆破现场环境以及爆破过程的影响,在放置到爆破现场以及爆破过程中始终保持水平姿态,并保护矿山爆破用惯性导航传感器内部的精密仪器模块不被爆破过程产生的冲击力损坏,本发明提供了一种矿山爆破矿岩运动轨迹采集装置。
如图1-2所示,本发明实施例提供了一种矿山爆破矿岩运动轨迹采集装置,包括:一面开口的球型防爆壳体15、与开口配合连接的防爆盖体16、自稳定装置和减震装置。
其中,壳体以及盖体可以采用能起到防爆作用的工程塑料材质,如聚醚醚酮(PEEK),其具有机械强度高、耐高温、耐冲击、阻燃、耐磨及优良的电性能。由此形成的壳体不但可以以隔爆的方式对内部的矿山爆破用惯性导航传感器进行保护,而且不影响矿山爆破用惯性导航传感器与外部设备的数据传输,使得矿山爆破用惯性导航传感器采集的运动数据可以实时无线传输至外部设备,以便外部设备生成并显示运动轨迹。本发明实施例中的壳体为球型,相较于其他形状的壳体,球型壳体更便于内部矿山爆破用惯性导航传感器姿态的调整。
壳体15与盖体16的连接方式,如图3和图4所示,壳体15与盖体16连接处设置止动锁,止动锁均布在壳体15与盖体16连接处若干个,不少于6个。壳体15止动锁包括支撑柱18、弹簧19和弹性盒20。盖体16包括卡扣21,壳体15包括与卡扣21配合的卡槽,在具体使用时,按压壳体15的弹性盒20,弹簧19被压缩,弹性盒20向着弹簧被压缩的方向运动,旋转盖体16,盖体16的卡扣21滑入壳体15的卡槽,壳体15与盖体16实现连接,弹簧盒20在弹簧力的作用下恢复原位,对盖体16的卡扣21起到限位的作用,防止壳体15与盖体16连接处出现相对位移,导致连接失效。需要打开盖体时,通过旋转盖体实现对壳体15的弹性盒20的按压,弹簧19被压缩,弹性盒20向着弹簧被压缩的方向运动,防爆盖体16的卡扣21从防爆壳体15的卡槽滑出,实现盖体与壳体的分离,以便从壳体中取出惯性导航传感器或惯性导航传感器上的存储卡。
如图5和图6所示,自稳定装置通过减震装置设置在壳体内部,自稳定装置包括:外圆环1、中圆环4、内圆槽7、卡槽8以及配重块10;中圆环4通过轴承活动连接在外圆环1内部,内圆槽7通过轴承活动连接在中圆环4内部,卡槽8固定设置在内圆槽7内部,配重块10固定连接在内圆槽7的底部,在具体实施中,配重块10可以与内圆槽7为一体结构,也可以焊接在内圆槽7底部。矿山爆破用惯性导航传感器9通过内圆槽7上的卡槽8固定在内圆槽7内部,具体地,内圆槽7上对应于矿山爆破用惯性导航传感器9的4个角分别设置有1个卡槽8,在安装矿山爆破用惯性导航传感器9时,将矿山爆破用惯性导航传感器9的4个角卡在卡槽8中即可。其中,外圆环的直径大于中圆环,中圆环的直径大于内圆槽,内圆槽的尺寸以能够放置矿山爆破用惯性导航传感器为准。
其中,中圆环4通过第一轴承2和第二轴承3活动连接在外圆环1内部,具体连接关系为:外圆环1的侧面对称设置大圆孔,第一轴承2和第二轴承3分别采用过盈配合连接的方式设置在外圆环1的大圆孔内部,中圆环4的侧面对称设置小圆孔,外圆环1的侧面大圆孔内的第一轴承2和第二轴承3通过螺栓螺母与中圆环4的侧面小圆孔连接。
内圆槽7通过第三轴承5和第四轴承6活动连接在中圆环4内部,具体连接关系为:中圆环4的侧面对称设置大圆孔,与中圆环4侧面对称设置的 小圆孔的方向垂直,第三轴承5和第四轴承6分别采用过盈配合连接的方式设置在中圆环4的大圆孔内部,内圆槽7的侧面对称设置小圆孔,中圆环4侧面大圆孔内部的第三轴承5和第四轴承6通过螺栓螺母与内圆槽7的侧面小圆孔连接。
第一轴承2和第二轴承3共线,位于X轴,自稳定装置沿X轴转动时,保证矿山爆破用惯性导航传感器9保持水平的状态;第三轴承5和第四轴承6共线,位于Y轴,自稳定装置沿Y轴转动时,保证矿山爆破用惯性导航传感器9保持水平的状态。X轴与Y轴垂直布置,爆破运动过程中,自稳定装置在沿X轴和Y轴转动共同作用下,将采集装置产生的晃动进行抵消,使卡槽8内部的矿山爆破用惯性导航传感器9始终处于一个相对平衡、相对水平的状态。由于惯性导航传感器9内含高精度陀螺仪和三轴加速度计等精密传感器,在爆破过程中随着附近的矿岩石运动并实时记录自身的运动姿态,并存储到传感器上的SD卡内或传输至外部设备,因此使内部的矿山爆破用惯性导航传感器9始终处于一个相对平衡、相对水平的状态,不但能够确定出准确的初始运动信息,减少因初始运动信息不准确产生的惯性导航位置解算误差,还能够保证矿山爆破用惯性导航传感器9的稳定性,减少来自Z轴角速度变化带来的系统误差,从而生成更加准确的爆破矿岩运动轨迹。
如图2、7所示,减震装置包括:连杆11、导向杆12、弹簧13以及套筒14;连杆11的一端与导向杆12为一体结构,弹簧13套置于导向杆12外侧,套筒14套至于弹簧13外侧。如图2所示,若干对减震装置(包括第一减震装置和第二减震装置)设置在自稳定装置和壳体之间,具体地,第一减震装置设置在外圆环的上环面与上环面上方壳体之间,第二减震装置设置在外圆环的下环面与下环面下方壳体之间,减震装置的套筒与壳体固定连接,在一种可能的实施方式中,套筒为塑料材质,套筒与壳体通过浇封的方式固定连接;减震装置的连杆与外圆环的环面固定连接,在一种可能的实施方式中,外圆环为金属材质,连杆也为金属材质,外圆环与连杆通过焊接的方式固定连接。每对减震装置基于外圆环的环面上下对称,在本实施例中,共2对减震装置。位于上环面的减震装置对自稳定装置起到拉力的作用,位于下环面的减震装置对自稳定装置起到支撑的作用,上下部减振装置共同作用,使得自稳定装置悬置于采集装置内部,对卡槽8内部的矿山爆破用惯性导航传感 器9起到减震的作用。
具体实施时,作为本发明优选的实施方式,如图2所示,采集装置除了包括一面开口的球型壳体15、与开口配合连接的盖体16外,还包括设置在球型壳体15内表面的声光装置17。爆破时,声光装置17在矿岩相互挤压的作用下发出声音和光亮,便于爆破后惯性导航传感器及其采集装置的回收。
在一个具体实施例中,使矿山爆破矿岩运动轨迹采集装置沿X轴转动,内部自稳定装置的状态图如图8所示,自稳定装置沿X轴转动时,保证了矿山爆破用惯性导航传感器9保持水平的状态;同样地,自稳定装置沿Y轴转动时,也能保证矿山爆破用惯性导航传感器9保持水平的状态。
在一个具体实施例中,使矿山爆破矿岩运动轨迹采集装置沿X轴和Y轴转动,内部自稳定装置的状态图如图9所示,爆破运动过程中,自稳定装置在沿X轴和Y轴转动共同作用下,将采集装置产生的晃动进行抵消,使卡槽8内部的矿山爆破用惯性导航传感器9始终处于一个相对平衡、相对水平的状态。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (8)

  1. 一种矿山爆破矿岩运动轨迹采集装置,其特征在于,包括:
    一面开口的球型防爆壳体、与开口配合连接的防爆盖体、自稳定装置、减震装置和惯性导航传感器;
    所述自稳定装置包括:外圆环、中圆环、内圆槽和卡槽;所述中圆环通过第一轴承和第二轴承活动连接在所述外圆环的内部;所述第一轴承和所述第二轴承共线,位于X轴;所述内圆槽通过第三轴承和第四轴承活动连接在所述中圆环的内部;所述第三轴承和所述第四轴承共线,位于Y轴;所述X轴与所述Y轴垂直布置;
    所述减震装置连接在所述自稳定装置和所述壳体之间,使得所述自稳定装置固定于所述壳体内部;所述惯性导航传感器通过所述内圆槽上的卡槽固定在所述内圆槽内部。
  2. 根据权利要求1所述的矿山爆破矿岩运动轨迹采集装置,其特征在于,所述自稳定装置还包括:配重块;所述配重块固定在所述内圆槽的底部。
  3. 根据权利要求1所述的矿山爆破矿岩运动轨迹采集装置,其特征在于,所述中圆环通过第一轴承和第二轴承活动连接在所述外圆环的内部,包括:
    所述外圆环的侧面对称设置大圆孔,所述第一轴承和所述第二轴承分别采用过盈配合连接的方式设置在所述外圆环的大圆孔内部,所述中圆环的侧面对称设置小圆孔,所述外圆环的侧面大圆孔内的所述第一轴承和所述第二轴承通过螺栓螺母与所述中圆环的侧面小圆孔连接。
  4. 根据权利要求3所述的矿山爆破矿岩运动轨迹采集装置,其特征在于,所述内圆槽通过第三轴承和第四轴承活动连接在所述中圆环的内部,包括:
    所述中圆环的侧面对称设置大圆孔,与所述中圆环侧面对称设置的小圆孔的方向垂直,所述第三轴承和所述第四轴承分别采用过盈配合连接的方式设置在所述中圆环的大圆孔内部,所述内圆槽的侧面对称设置小圆孔,所述 中圆环侧面大圆孔内部的所述第三轴承和所述第四轴承通过螺栓螺母与所述内圆槽的侧面小圆孔连接。
  5. 根据权利要求1所述的矿山爆破矿岩运动轨迹采集装置,其特征在于,所述减震装置包括:所述外圆环的上环面与所述上环面上方壳体之间固定连接的若干个第一减震装置,以及所述外圆环的下环面与所述下环面下方壳体之间固定连接的若干个第二减震装置;所述第一减震装置和所述第二减震装置的数量相同,且基于所述外圆环的环面上下对称;所述第一减震装置对所述自稳定装置起到拉力的作用,所述第二减震装置对所述自稳定装置起到支撑的作用,使得所述自稳定装置悬置于壳体内部。
  6. 根据权利要求5所述的矿山爆破矿岩运动轨迹采集装置,其特征在于,所述第一减震装置包括第一连杆、第一导向杆、第一弹簧以及第一套筒;所述第一连杆的一端与所述第一导向杆为一体结构,所述第一弹簧套置于所述第一导向杆外侧,所述第一套筒套至于所述第一弹簧外侧,所述第一连杆的另一端固定连接在所述外圆环的上环面,所述第一套筒固定连接在所述上环面的上方壳体;
    所述第二减震装置包括第二连杆、第二导向杆、第二弹簧以及第二套筒;所述第二连杆的一端与所述第二导向杆为一体结构,所述第二弹簧套置于所述第二导向杆外侧,所述第二套筒套至于所述第二弹簧外侧,所述第二连杆的另一端固定连接在所述外圆环的下环面,所述第二套筒固定连接在所述下环面的下方壳体。
  7. 根据权利要求1所述的矿山爆破矿岩运动轨迹采集装置,其特征在于,所述采集装置还包括:设置在所述壳体内表面的声光装置。
  8. 根据权利要求1所述的矿山爆破矿岩运动轨迹采集装置,其特征在于,所述壳体与所述盖体连接处设置止动锁,若干个止动锁均布在所述壳体与所述盖体连接处;所述止动锁包括支撑柱、弹簧和弹性盒;所述盖体与所述壳体连接处设置有卡扣;所述壳体与所述盖体连接处设置有卡槽。
PCT/CN2023/081030 2022-09-19 2023-03-13 一种矿山爆破矿岩运动轨迹采集装置 WO2024060533A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211139540.9 2022-09-19
CN202211139540.9A CN115790576A (zh) 2022-09-19 2022-09-19 一种矿山爆破矿岩运动轨迹采集装置

Publications (1)

Publication Number Publication Date
WO2024060533A1 true WO2024060533A1 (zh) 2024-03-28

Family

ID=85432027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081030 WO2024060533A1 (zh) 2022-09-19 2023-03-13 一种矿山爆破矿岩运动轨迹采集装置

Country Status (2)

Country Link
CN (1) CN115790576A (zh)
WO (1) WO2024060533A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210280A (zh) * 2010-08-09 2013-07-17 深圳市大疆创新科技有限公司 一种微型惯性测量系统
CN111547151A (zh) * 2020-06-18 2020-08-18 航天科工智能机器人有限责任公司 可抛投式球形机器人
KR102210622B1 (ko) * 2019-08-29 2021-02-02 올인올테크 주식회사 회전구조체로 구비된 가속도 측정장치
CN112611375A (zh) * 2020-11-25 2021-04-06 中煤科工开采研究院有限公司 基于惯导技术的顶煤三维动态时空运移轨迹监测方法
CN113533767A (zh) * 2021-06-25 2021-10-22 上海海事大学 一种被动式加速度传感器稳定装置以及测量方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103210280A (zh) * 2010-08-09 2013-07-17 深圳市大疆创新科技有限公司 一种微型惯性测量系统
KR102210622B1 (ko) * 2019-08-29 2021-02-02 올인올테크 주식회사 회전구조체로 구비된 가속도 측정장치
CN111547151A (zh) * 2020-06-18 2020-08-18 航天科工智能机器人有限责任公司 可抛投式球形机器人
CN112611375A (zh) * 2020-11-25 2021-04-06 中煤科工开采研究院有限公司 基于惯导技术的顶煤三维动态时空运移轨迹监测方法
CN113533767A (zh) * 2021-06-25 2021-10-22 上海海事大学 一种被动式加速度传感器稳定装置以及测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAO WU, JING HONGDI; YU JIANYANG; LIU XIAOBO; SUN XIAOYU: "Study on Ore and Rock Movement Law in Open Pit Blasting Process Based on Inertial Navigation Technology", METAL MINE, MAANSHAN KUANGSHAN YANJIUYUAN,, CN, vol. 4, no. 550, 15 April 2022 (2022-04-15), CN , pages 180 - 187, XP093150011, ISSN: 1001-1250, DOI: 10.19614/j.cnki.jsks.202204026 *

Also Published As

Publication number Publication date
CN115790576A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
AU763806B2 (en) The method of and apparatus for determining the path of a well bore under drilling conditions
CN101349564B (zh) 一种惯性测量装置
US8826550B2 (en) Geographically north-referenced azimuth determination
US20070241886A1 (en) Inertial sensor tracking system
CN101776445A (zh) 一种磁悬浮陀螺全站仪
CN108168550B (zh) 一种高速旋转载体惯性姿态测量装置
CN103868648B (zh) 三轴气浮仿真实验平台的质心测量方法
CN202926316U (zh) 一种方位角与倾角测量仪
CN106123883A (zh) 球体转子三轴陀螺仪
WO2020095218A2 (en) A device for determining orientation of an object
CN103017764A (zh) 高速列车自主导航及姿态测量装置
JPS5830524B2 (ja) 掘穿ラインの方位および傾斜測定装置
CN108444472A (zh) 一种煤矿井下手持式陀螺罗盘及其测量方法
CN201600134U (zh) 新型磁悬浮陀螺全站仪
CN102455183A (zh) 三轴姿态传感器
WO2024060533A1 (zh) 一种矿山爆破矿岩运动轨迹采集装置
JP2018179533A (ja) 倒れ測定装置、それを用いる鉄骨建て方精度測定方法、倒れ測定装置のキャリブレーション方法、及び、倒れ測定処理プログラム
WO2020163905A1 (en) An inertial measurement unit and method of operation
CN106917621B (zh) 小孔径单陀螺水平井旋转定向测斜装置及方法
CN205778825U (zh) 一种惯性测量单元
Burov Analysis of SINS structures with error autocompensation
CN104501777B (zh) 基于重锤的倾角动态测量装置
US3238795A (en) Compensated gyroscope
WO2024060532A1 (zh) 基于惯性导航的爆破矿岩运动轨迹获取方法和系统
CN215707176U (zh) 一种基于光纤imu的新型直升机地平仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866835

Country of ref document: EP

Kind code of ref document: A1