WO2024060525A1 - 一种基于织物的透气耐水洗可穿戴传感器及其制备方法 - Google Patents

一种基于织物的透气耐水洗可穿戴传感器及其制备方法 Download PDF

Info

Publication number
WO2024060525A1
WO2024060525A1 PCT/CN2023/080668 CN2023080668W WO2024060525A1 WO 2024060525 A1 WO2024060525 A1 WO 2024060525A1 CN 2023080668 W CN2023080668 W CN 2023080668W WO 2024060525 A1 WO2024060525 A1 WO 2024060525A1
Authority
WO
WIPO (PCT)
Prior art keywords
fabric
breathable
washable
conductive
fiber
Prior art date
Application number
PCT/CN2023/080668
Other languages
English (en)
French (fr)
Inventor
刘阳
许子骏
程博闻
江红
徐剑锋
徐桂明
Original Assignee
江西昌硕户外休闲用品有限公司
深圳市昌硕新纺材料有限公司
天津科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江西昌硕户外休闲用品有限公司, 深圳市昌硕新纺材料有限公司, 天津科技大学 filed Critical 江西昌硕户外休闲用品有限公司
Publication of WO2024060525A1 publication Critical patent/WO2024060525A1/zh

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/73Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof
    • D06M11/74Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with carbon or compounds thereof with carbon or graphite; with carbides; with graphitic acids or their salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/28Processes for applying liquids or other fluent materials performed by transfer from the surfaces of elements carrying the liquid or other fluent material, e.g. brushes, pads, rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/04Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/06Inorganic compounds or elements
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/02Natural fibres, other than mineral fibres
    • D06M2101/04Vegetal fibres
    • D06M2101/06Vegetal fibres cellulosic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/38Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/10Repellency against liquids
    • D06M2200/12Hydrophobic properties

Definitions

  • the invention belongs to the technical field of flexible wearable fabric sensors, relates to the technical fields of flexible conductive materials and printed electronic products, and particularly relates to a fabric-based breathable and washable wearable sensor and a preparation method thereof.
  • Chinese Patent Publication No. CN111678623A provides an ultra-long-life self-healing stress sensor based on printable nanocomposite materials and its preparation method.
  • One-dimensional metal nanowires, two-dimensional inorganic nanosheets, polymer materials containing host-guest interactions, and corresponding high-boiling point solvents are combined to prepare nanocomposite colloidal inks with rheological properties through screen printing.
  • a stress sensor with in-situ self-healing ability and long cycle life is produced.
  • the host-guest polymer materials contained in the sensor can repair internal defects in real time and in situ, greatly extending the service life of the material.
  • it has the characteristics of working strain range >50%, sensitivity gauge factor >100, strong self-healing ability, and strong anti-interference ability against sweat.
  • the preparation is simple and can be used in fields such as smart wearable devices.
  • the Chinese patent publication number is CN204757997U, which publishes a fabric resistance sensor.
  • the operating range of the fabric resistance sensor is only 10%.
  • Non-patent document 1 Journal of materials science, 2018, 53(12):9026-9033 introduces a stretchable and wearable strain sensor prepared by integrating a conductive graphene network on spandex/nylon fabric.
  • the strain sensor has an operating range of 40.6% and a sensitivity of up to 18.6.
  • no further research has been conducted on the water washing resistance of this strain sensor.
  • Non-patent document 2 (Fibers and Polymers, 2019, 20(3):562-568) introduces a strain fabric sensor prepared by electroless Ni-P plating on the surface of polyester and polyester/spandex woven fabrics. There is an amorphous layer composed of Ni and phosphorus atoms on the surface of the strain fabric sensor, which makes the sensor have good hydrophobicity and a contact angle greater than 140°. However, the porosity of the strain fabric sensor decreases due to the wrapping of Ni and P atoms, which in turn causes the air permeability of the strain fabric sensor to decrease.
  • the purpose of the present invention is to provide a fabric-based breathable and washable wearable sensor that can Not only does it have high sensor sensitivity, it is also washable and comfortable to wear.
  • the present invention provides a breathable and washable wearable sensor based on fabric, which includes fabric and a nano-conductive layer. It uses elastic fabric as the base material, and is attached to the surface of the base material.
  • the nano conductive active layer, as well as the hydrophobic layer on the surface has a resistance to washing times of not less than 25 times; the working range is not less than 100%; under a strain greater than 40%, the service life is not less than 500 times; the air permeability is not less than 100mm/ s; the contact angle of the hydrophobic layer is greater than 90°.
  • Another object of the present invention is to provide a method for preparing the above-mentioned fabric-based breathable and washable wearable sensor.
  • the invention also provides a method for preparing a fabric-based breathable and washable wearable sensor, which mainly includes:
  • the present invention also provides the application of the breathable and washable wearable fabric sensor, which should be close to the skin when worn to detect human body movement signals, including strain signals such as finger or knee bending; or used in electronic skin and bionic robots Wait for smart products.
  • the invention prepares a fabric-based breathable and washable wearable sensor, which mainly includes: an elastic fabric base material, a conductive active layer and a hydrophobic layer composed of nano conductive active materials.
  • the wearable sensor has: large stretch range (>100%), high sensitivity (gauge factor>40), high air permeability (>100mm/s), good washability (more than 25 washes) and long service life.
  • the device has excellent linearity in the working curve and good stretch repeatability. It can detect weak signals such as human pulse and large deformations such as joints.
  • the high air permeability can provide good comfort to the wearer, which is something that most current sensors cannot achieved.
  • the sensor of the present invention has the following characteristics:
  • sensitivity is greater than 40; working range is greater than 100%; and under strain greater than 40%, the service life is more than 500 times;
  • Figure 1 is a schematic structural diagram of a breathable and washable wearable fabric sensor.
  • Figure 1a is a schematic diagram of the sample, and
  • Figure 1b is a partial enlarged view;
  • Figure 2 is the working curve of the breathable and washable wearable fabric sensor in Example 1;
  • Figure 3 is the service life of the breathable and washable wearable fabric sensor in Embodiment 1;
  • FIG4 is a contact angle of the breathable and washable wearable fabric sensor of Example 1;
  • Figure 5 is a product of a breathable and washable wearable fabric sensor in Example 3.
  • This application provides a breathable and washable wearable sensor based on fabric, which not only meets the sensitivity of the sensor, but also has the characteristics of being washable and comfortable to wear.
  • the invention provides a fabric-based breathable and washable wearable sensor, which includes fabric and a nano conductive layer.
  • the elastic fabric is used as a base material, and a nano conductive active layer is attached to the surface of the base material.
  • the nano conductive active layer is There is a hydrophobic layer on the surface, which is resistant to The number of washing times is not less than 25 times; the working range is not less than 100%; under a strain greater than 40%, the service life is not less than 500 times; the air permeability is not less than 100mm/s; the contact angle of the hydrophobic layer is greater than 90°.
  • the invention adsorbs the nano conductive active material onto the elastic fabric base material and forms a hydrophobic layer on its surface, so that the breathable and washable wearable fabric sensor has a lower sheet resistance; the elastic fabric base provides a larger working range and good air permeability; the hydrophobic layer improves the washability of the sensor, and the resulting washable breathable wearable fabric sensor has a large working range (>100%), high sensitivity (>40), and high air permeability (>100mm/s) , good washing resistance (more than 25 times of washing) and good tensile stability (more than 500 times of service life under greater than 40% strain).
  • Base materials include diene elastic fibers, polyurethane fibers, polyetherester elastic fibers, polyolefin elastic fibers, polypropylene fibers, polyethylene fibers, polyamide fibers, natural latex fibers, polyacrylonitrile fibers, polyvinyl alcohol fibers, aromatic fibers One or several identical sub-fibers in polyester fiber: and/or
  • flax flax, hemp, apocynum, ramie, and sisal; and/or
  • sheep wool, cashmere, rabbit hair, camel hair, yak hair and/or alpaca animal hair One or more of sheep wool, cashmere, rabbit hair, camel hair, yak hair and/or alpaca animal hair; and/or
  • viscose fiber One or more of viscose fiber, acetate fiber, lyocell fiber, modal fiber, cupro fiber, soybean fiber and corn fiber.
  • the weaving method of the elastic fabric base material refers to: knitting: warp knitting, weft knitting; weaving: one of plain weave, twill, and satin.
  • the nano conductive active layer is a thin film composed of nano conductive active materials, where the nano conductive active material refers to one of zero-dimensional metal nanoparticles, one-dimensional metal nanowires, and two-dimensional conductive materials.
  • Zero-dimensional metal nanoparticles include one of gold, silver, copper, iron, chromium, nickel, aluminum, tungsten, platinum, gallium, indium, gallium-indium alloy, and gallium-indium-tin alloy metal nanoparticles, with a particle size of 1-1000nm.
  • One-dimensional metal nanowires include one of gold, silver, copper, iron, nickel, platinum, palladium, and aluminum metal nanowires.
  • the metal nanowires have a diameter of 1-300 nm and a length of 2-100 ⁇ m.
  • Two-dimensional conductive materials include graphene, graphene oxide, molybdenum disulfide, and two-dimensional transition metal carbides or nitrides (MXene).
  • two-dimensional transition metal carbides or nitrides refer to materials with similar properties.
  • the hydrophobic layer is a graft copolymer layer formed using a hydrophobic modifier, a sol-gel deposition layer, a dip coating deposition layer, a spray deposition layer, a coating layer after plasma treatment, a chemical vapor deposition (CVD) layer, and an in-situ coating layer.
  • a hydrophobic modifier e.g., a hydrophobic modifier for polyurethane foam
  • a sol-gel deposition layer e.g., a dip coating deposition layer
  • a spray deposition layer e.g., a coating layer after plasma treatment
  • CVD chemical vapor deposition
  • Hydrophobic modifiers refer to silicone resins, silane coupling agents, metal oxide nanoparticles, metal complexes of long-chain fatty acids, long-chain fatty chain quaternary amine compounds, methyl hydrogen-containing polysiloxane, ethyl-containing One of hydrogen silicone oil, dimethyl hydrogen-containing polysiloxane, acrylic fluoropolymer, and polyurethane;
  • silicone resins include polyalkyl silicone resins, polyaryl silicone resins, and polyalkylaryl silicone resins.
  • Silane coupling agents include KH-570 ( ⁇ -methacryloxypropyltrimethyloxysilane), fluorosilane coupling agents (heptadecafluorodecyltrimethoxysilane), trichloromethylsilane, trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOTS).
  • Metal oxide nanoparticles include oxides of nickel, chromium, iron, zinc, titanium, platinum, magnesium, and copper.
  • Metal complexes of long-chain fatty acids include stearic acid chromium oxide complexes, waterproofing agents CR, and waterproofing agents AC, water-repellent AZ, etc.
  • Long-chain fatty chain quaternary ammonium compounds include water-repellent PF (stearylamide methylpyridinium chloride).
  • the invention prepares a fabric-based breathable and washable wearable sensor, which mainly includes: an elastic fabric base material, a conductive active layer and a hydrophobic layer composed of nano conductive active materials.
  • the wearable sensor has: large stretch range (>100%), high sensitivity (gauge factor>40), high air permeability (>100mm/s), good washability (more than 25 washes) and long service life.
  • the device has excellent linearity in the working curve and good stretch repeatability. It can detect weak signals such as human pulse and large deformations such as joints.
  • the high air permeability can provide good comfort to the wearer, which is something that most current sensors cannot achieved.
  • the sensor of the present invention has the following characteristics:
  • sensitivity is greater than 40; working range is greater than 100%; and under strain greater than 40%, the service life is more than 500 times;
  • the present invention also provides a method for preparing a fabric-based breathable and washable wearable sensor, which mainly includes the following examples.
  • Material preparation absorb a certain amount of conductive material, prepare the conductive material into a dispersion and mix it thoroughly, such as using ultrasonic oscillation, high-speed stirring, etc. to disperse it evenly, and use printing or suction filtration to adsorb the conductive material to the elastic fabric material.
  • the surface is formed with a conductive film.
  • a breathable and washable wearable sensor based on fabric uses elastic fabric as the base material, and includes from the inside to the outside: fabric fiber bundle 1, nano conductive active layer 2 and surface hydrophobic layer 3, according to Prepare by following steps:
  • the printing method refers to one of: screen printing, inkjet printing, blade coating, dip coating, Meyer rod coating, spray coating, slit coating, and direct writing printing. .
  • step (1) Hydrophobically modify the surface of the conductive fabric material obtained in step (1): Put the MXene conductive film obtained in step (1) into a plasma cleaning machine and treat it with oxygen plasma for 90 minutes with a power of 150W to complete the hydrophobicity Modify to obtain an oxygen plasma-treated MXene conductive film;
  • hydrophobic modification includes the following methods: graft copolymerization, sol-gel deposition, dip coating deposition, spray deposition, plasma treatment and coating, chemical vapor deposition (CVD), in-situ One or more types of nanoparticle growth.
  • step (3) Weigh 100 ⁇ L of perfluorooctane sulfonyl compound (PFOTS) solution and drop it on the glass slide. Place the glass slide and the MXene conductive film treated with oxygen plasma in step (2) in a vacuum drying pot under a vacuum environment. , treated at 100°C for 4 hours, a breathable and washable wearable fabric sensor was obtained.
  • POTS perfluorooctane sulfonyl compound
  • the printable transparent stress sensor has a water washing resistance of not less than 25 times; the working range is not less than 100%;
  • the service life of the printable transparent stress sensor is not less than 1000 times, long service life; breathable The rate is not less than 100mm/s.
  • the contact angle can reach 124.6°, and the contact angle of the hydrophobic layer is large; use 4110N air permeability test The air permeability of the breathable and washable wearable fabric sensor obtained in the test step (3) was measured, and the air permeability can reach 866.68mm/s.
  • a breathable and washable fabric-based wearable sensor is prepared according to the following steps:
  • the silver nanowire/ethanol dispersion liquid refers to a dispersion liquid formed by silver nanowires dispersed in an ethanol matrix.
  • step (1) Hydrophobically modify the surface of the conductive fabric material obtained in step (1): weigh 100 mL of 10wt% polyurethane A85/DMF solution, soak the silver nanowire conductive film obtained in step (1) for 20 minutes, 80°C Drying to obtain a breathable and washable wearable fabric sensor;
  • the polyurethane A85/DMF solution refers to a solution formed by dissolving polyurethane A85 in DMF with a concentration of 10 wt%.
  • a fabric-based breathable and washable wearable sensor as shown in Figure 5, is prepared according to the following steps:
  • the graphene/DMF dispersion liquid refers to the dispersion liquid formed by graphene dispersed in DMF.
  • step (1) Hydrophobically modify the surface of the conductive fabric material obtained in step (1): weigh 100 mL of 15wt% polyurethane A65/DMF solution, soak the graphene conductive film obtained in step (1) for 15 minutes, and bake at 70°C Dry to form a surface hydrophobic layer 3' to obtain a breathable and washable wearable fabric sensor;
  • the polyurethane A85/DMF solution refers to a solution formed by dissolving polyurethane A65 in DMF with a concentration of 15wt%.
  • a breathable and washable fabric-based wearable sensor is prepared according to the following steps:
  • the copper nanowire/water dispersion refers to a dispersion formed by copper nanowires dispersed in water.
  • step (1) Hydrophobically modify the surface of the conductive fabric material obtained in step (1): Put the copper nanowire conductive film obtained in step (1) into a plasma cleaning machine and treat it with oxygen plasma for 120 minutes, with a power of 120W, to obtain Oxygen plasma treated copper nanowire conductive film;
  • step (3) Weigh 150 ⁇ L of PFOTS solution and drop it on the glass sheet. Place the glass sheet and the copper nanowire conductive film treated with oxygen plasma in step (2) in a vacuum drying pot, and treat it at 100°C for 2 hours in a vacuum environment. Breathable and washable wearable fabric sensor.
  • the mechanism of action of the breathable and washable wearable fabric sensor of the present invention is: the nano conductive active material has good properties for elastic fabric materials. Strong effects, such as hydrogen bonding; elastic fabric materials have good tensile properties and large porosity, providing a large working range and high air permeability; nano conductive active materials are adsorbed on the surface of elastic fabric materials to form Conductive active layer. During the stretching process, slippage, cracks and other phenomena occur between nano-conductive active materials, resulting in an increase in resistance; hydrophobic modification is performed on the surface to form a hydrophobic layer to improve the water-repellent performance of the sensor, thereby achieving resistance to Washing effect.
  • the present invention also provides the application of breathable and washable wearable fabric sensors, which should be worn close to the skin to detect human body movement signals, including strain signals such as finger or knee bending; or used in smart electronic skins, bionic robots, etc. on the product.
  • the breathable and washable wearable fabric sensor needs to be close to the skin when worn and used, and can detect human body movement signals, such as strain signals such as finger or knee bending.
  • Breathable and washable wearable fabric sensors can not only be used in running and fitness equipment such as yoga clothes, tight sportswear, tight sports pants, and swimming sports equipment such as swimsuits and swimming trunks to detect human motion signals, but can also be used in new products such as electronic skin and bionic robots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Professional, Industrial, Or Sporting Protective Garments (AREA)

Abstract

一种基于织物的透气耐水洗可穿戴传感器及其制备方法,利用纳米导电活性材料与弹性织物材料之间的作用,将纳米导电活性材料吸附在弹性织物材料表面,并通过疏水改性在表面形成一层疏水层。

Description

一种基于织物的透气耐水洗可穿戴传感器及其制备方法
本申请要求于2022年09月19日提交中国专利局、申请号为202211139041.X、发明名称为“一种基于织物的透气耐水洗可穿戴传感器及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于柔性可穿戴织物传感器技术领域,涉及柔性导电材料以及印刷电子产品技术领域,特别涉及一种基于织物的透气耐水洗可穿戴传感器及其制备方法。主要用于人体运动信息检测。在瑜伽服、运动服、运动手环、泳衣、泳裤等运动健身装备领域具有巨大的应用前景。
背景技术
随着柔性电子设备的推广,柔性可穿戴织物传感器引起了人们的广泛关注。在柔性可穿戴设备领域,“无感”、“高弹”、“清爽”以及“柔软”等特性可以增加穿戴者的舒适度和美感,是未来传感器的重要特征,而织物可以满足上述要求。因此,发展柔性可穿戴织物传感器具有重要意义。
然而,到目前为止,研究人员对于柔性可穿戴织物传感器进行的探索在大工作范围、耐水洗性、透气性上仍然不够理想。工作范围过小不能满足实际应用的要求,耐水洗性差则会导致在水洗数次后传感性能下降,透气性差会降低穿戴者的舒适度。
如中国专利公开号CN111678623A提供了一处基于可印刷纳米复合材料的超长寿命自修复应力传感器及其制备方法。把一维金属纳米线,二维无机纳米片,含有主客体相互作用的高分子材料,以及对应的高沸点溶剂等相复合,制备具有流变特性的纳米复合材料胶体油墨,通过丝网印刷方法制得具有原位自修复能力以及长循环使用寿命的应力传感器。该传感器在工作过程中,含有的主客体高分子材料可以实时、原位地修复内部产生的缺陷,极大的延长材料使用寿命。同时,具有工作应变范围>50%、灵敏度gauge factor>100、自修复能力强、对汗液抗干扰能力强的特点。制备简单,用于智能穿戴器件等领域。
如中国专利公开号为CN204757997U公布了一种织物电阻传感器。所述织物电阻传感器的工作范围仅为10%。
非专利文献1(Journal of materials science,2018,53(12):9026-9033)介绍了一种在氨纶/尼龙织物上集成导电石墨烯网络制备的可拉伸、可穿戴的应变传感器。所述应变传感器的工作范围为40.6%,灵敏度最高可达18.6。但是该应变传感器在耐水洗性能方面没有进行进一步的研究。
非专利文献2(Fibers and Polymers,2019,20(3):562-568)介绍了一种在聚酯和聚酯/氨纶机织织物表面化学镀Ni-P制备的应变织物传感器。所述应变织物传感器的表面存在由Ni和磷原子组成的非晶层,使得该传感器具有良好的疏水性,接触角大于140°。但是该应变织物传感器由于Ni和P原子的包裹,导致孔隙率下降,进而导致该应变织物传感器的透气性下降。
而具有大工作范围、良好的耐水洗性和高透气率的织物传感器尚未见诸报道。
发明内容
为了解决现有技术的不足,本发明目的在于:提供一种基于织物的透气耐水洗可穿戴传感器,在满 足传感器灵敏性的同时,具有耐水洗、穿戴舒适的特点。
为了达到上述目的,本发明的技术方案是:本发明提供了一种基于织物的透气耐水洗可穿戴传感器,包含织物和纳米导电层,其以弹性织物为基底材料,在基底材料表面上附有纳米导电活性层,以及在表面有疏水层,具有耐水洗次数不低于25次;工作范围不小于100%;在大于40%应变下,使用寿命不低于500次;透气率不小于100mm/s;疏水层的接触角大于90°。
本发明的再一目的在于:提供上述基于织物的透气耐水洗可穿戴传感器的制备方法。
本发明还提供了基于织物的透气耐水洗可穿戴传感器的制备方法,主要包括:
(1)配制导电材料分散液,采用印刷或抽滤的方法使导电材料吸附在弹性织物材料的表面形成具有导电薄膜,得到导电织物;
(2)将步骤(1)中得到的导电织物材料的表面进行疏水改性,采用疏水改性剂进行疏水改性,得透气耐水洗织物传感器。
本发明也提供了所述透气耐水洗可穿戴织物传感器的应用,在穿戴使用上要紧贴皮肤,以检测人体运动信号,包括手指或膝盖弯曲类应变信号;或者,用于电子皮肤、仿生机器人等智能产品上。
本发明制备了一种基于织物的透气耐水洗可穿戴传感器,主要包含:弹性织物基底材料、纳米导电活性材料组成的导电活性层和疏水层。该可穿戴传感器具有:大拉伸范围(>100%)、高灵敏程度(gauge factor>40)、高透气率(>100mm/s)、良好的耐水洗性(洗涤次数超过25次)和长使用寿命。器件工作曲线线性关系优良、拉伸重复性好,能够探测人体脉搏等微弱的信号和关节等较大的形变,高透气率能够为穿戴者提供良好的舒适度,这是当前大部分传感器所不能达到的。本发明传感器具有下述特性:
具有良好的耐水洗性,洗涤次数超过25次;
具有良好的传感性能:灵敏度大于40;工作范围大于100%;且在大于40%应变下,使用寿命超过500次;
具有良好的透气性:透气率>100mm/s;
具有良好的抗水性:接触角大于90°。
附图说明
图1是透气耐水洗可穿戴织物传感器的结构示意图,其中,图1a为样品示意图,图1b为局部放大图;
图2是实施例1透气耐水洗可穿戴织物传感器的工作曲线;
图3是实施例1透气耐水洗可穿戴织物传感器的使用寿命;
图4是实施例1透气耐水洗可穿戴织物传感器的接触角;
图5是实施例3透气耐水洗可穿戴织物传感器的产品。
具体实施方法
本申请提供一种基于织物的透气耐水洗可穿戴传感器,在满足传感器灵敏性的同时,具有耐水洗、穿戴舒适的特点。
本发明提供了一种基于织物的透气耐水洗可穿戴传感器,包含织物和纳米导电层,其以弹性织物为基底材料,在基底材料表面上附有纳米导电活性层,同时在纳米导电活性层的表面附有疏水层,具有耐 水洗次数不低于25次;工作范围不小于100%;在大于40%应变下,使用寿命不低于500次;透气率不小于100mm/s;疏水层的接触角大于90°。
本发明把纳米导电活性材料吸附在弹性织物基底材料上,并在其表面形成一层疏水层,使得透气耐水洗可穿戴织物传感器具有较低的方块电阻;弹性织物基底提供了较大的工作范围和良好的透气性;疏水层提高了传感器的耐水洗性,所得耐水洗透气可穿戴织物传感器具有大工作范围(>100%)、高灵敏度(>40)、高透气率(>100mm/s)、良好的耐水洗性(洗涤次数超过25次)以及良好的拉伸稳定性(在大于40%应变下,使用寿命超过500次)等特点。
基底材料包括二烯类弹性纤维、聚氨酯纤维、聚醚酯弹性纤维、聚烯烃弹性纤维、聚丙烯纤维、聚乙烯纤维、聚酰胺纤维、天然乳胶丝、聚丙烯腈纤维、聚乙烯醇纤维、芳纶纤维中的一种或几种同种子纤维:和/或
棉、木棉中的一种或二种;和/或
亚麻、大麻、罗布麻、苎麻,剑麻中的一种或二种以上;和/或
绵羊毛、山羊绒、兔毛、骆驼毛、牦牛毛和/或羊驼毛类动物毛中的一种或几种;和/或
桑蚕丝、和/或柞蚕丝类的腺分泌物:和/或
粘胶纤维、醋酸纤维、莱赛尔纤维、莫代尔纤维、铜氨纤维、大豆纤维、玉米纤维中的一种或几种。
弹性织物基底材料的纺织方式是指:针织:经编、纬编;梭织:平纹、斜纹、缎纹中的一种。
纳米导电活性层是由纳米导电活性材料构成的薄膜,其中,纳米导电活性材料是指零维金属纳米颗粒、一维金属纳米线、二维导电材料中的一种。
零维金属纳米颗粒包括金、银、铜、铁、铬、镍、铝、钨、铂、镓、铟、镓铟合金、镓铟锡合金金属纳米颗粒中的一种,颗粒大小1-1000nm。
一维金属纳米线包括金、银、铜、铁、镍、铂、钯、铝金属纳米线中的一种,所述金属纳米线的直径为1-300nm,长度为2-100μm。
二维导电材料包括石墨烯,氧化石墨烯,二硫化钼,二维过渡金属碳化物或氮化物(MXene)的一种,其中,二维过渡金属碳化物或氮化物(MXene)是指具有类似石墨烯的二维结构,其化学通式是Mn+1XnTz,n=1,2,3,其中M为早期过渡金属元素,X为碳或氮元素,T为表面链接的-F、-OH活性官能团,包括Ti2C、Ti3C2、Ti3CN、V2C、Nb2C、TiNbC、Nb4C3、Ta4C3、(Ti0.5Nb0.5)2C或(V0.5Cr0.5)3C2中的一种。
疏水层为采用疏水改性剂形成的接枝共聚层、溶胶-凝胶沉积层、浸渍涂布沉积层、喷涂沉积层、等离子体处理后涂布层、化学气相沉积(CVD)层、原位纳米颗粒生长层或硅烷化层中的一种或几种。
疏水改性剂是指有机硅树脂、硅烷偶联剂、金属氧化物纳米颗粒、长链脂肪酸的金属络合物以及长链脂肪链季胺化合物、甲基含氢聚硅氧烷、乙基含氢硅油、二甲基含氢聚硅氧烷、丙烯酸类含氟聚合物、聚氨酯中的一种;
其中,有机硅树脂包括聚烷基有机硅树脂、聚芳基有机硅树脂、聚烷基芳基有机硅树脂。硅烷偶联剂包括KH-570(γ-甲基丙烯酰氧基丙基三甲基氧基硅烷)、氟硅烷偶联剂(十七氟癸基三甲氧基硅烷)、三氯甲基硅烷、三氯(1H,1H,2H,2H-全氟辛基)硅烷(PFOTS)。金属氧化物纳米颗粒包括镍、铬、铁、锌、钛、铂、镁、铜的氧化物。长链脂肪酸的金属络合物包括硬脂酸氧化铬络合物、防水剂CR、防水剂 AC、防水剂AZ等。长链脂肪链季胺化合物包括防水剂PF(氯化硬脂酰胺甲基吡啶)。
本发明制备了一种基于织物的透气耐水洗可穿戴传感器,主要包含:弹性织物基底材料、纳米导电活性材料组成的导电活性层和疏水层。该可穿戴传感器具有:大拉伸范围(>100%)、高灵敏程度(gauge factor>40)、高透气率(>100mm/s)、良好的耐水洗性(洗涤次数超过25次)和长使用寿命。器件工作曲线线性关系优良、拉伸重复性好,能够探测人体脉搏等微弱的信号和关节等较大的形变,高透气率能够为穿戴者提供良好的舒适度,这是当前大部分传感器所不能达到的。本发明传感器具有下述特性:
具有良好的耐水洗性,洗涤次数超过25次;
具有良好的传感性能:灵敏度大于40;工作范围大于100%;且在大于40%应变下,使用寿命超过500次;
具有良好的透气性:透气率>100mm/s;
具有良好的抗水性:接触角大于90°。
本发明还提供了基于织物的透气耐水洗可穿戴传感器的制备方法,主要包括以下实施例。
采材料准备:吸取一定量的导电材料,将导电材料配成分散液充分混合均匀,如采用超声振荡、高速搅拌等使其分散均匀,采用印刷或抽滤的方法使导电材料吸附在弹性织物材料的表面形成具有导电薄膜。
实施例1
一种基于织物的透气耐水洗可穿戴传感器,如图1所示,以弹性织物为基底材料,自内到外依序包括:织物纤维束1、纳米导电活性层2和表面疏水层3,按下述步骤制备:
(1)称取100mL浓度为10mg/mL二维过渡金属碳化物(MXene)的水分散液,超声振荡使其分散均匀,将弹性纤维织物大小为5×2cm的聚酯/氨纶布的基底材料浸泡在二维过渡金属碳化物(MXene)水分散液中30min后,60℃烘干,在织物纤维的包覆了纳米导电活性层2,得织物基底的MXene导电薄膜;
其中,步骤(1)中,所述印刷方法是指:丝网印刷、喷墨印刷、刮涂、浸涂、迈耶棒涂布、喷涂、狭缝式涂布、直接书写印刷中的一种。
(2)将步骤(1)中得到的导电织物材料的表面进行疏水改性:将步骤(1)得到的MXene导电薄膜放入等离子清洗机中用氧等离子体处理90min,功率为150W,完成疏水改性,得到氧等离子体处理过的MXene导电薄膜;
其中,步骤(2)中,疏水改性包括下述方法:接枝共聚、溶胶-凝胶沉积、浸渍涂布沉积、喷涂沉积、等离子体处理和涂布、化学气相沉积(CVD)、原位纳米颗粒生长中的一种或几种。
(3)称取100μL全氟辛烷磺酰基化合物(PFOTS)溶液滴在玻璃片上,将玻璃片和步骤(2)氧等离子体处理过的MXene导电薄膜所得放置在真空干燥锅中,真空环境下,100℃处理4h,得透气耐水洗可穿戴织物传感器。
透气耐水洗可穿戴织物传感器的工作曲线见图2;
图4实施例1透气耐水洗可穿戴织物传感器的接触角;
可印刷透明应力传感器具有耐水洗次数不低于25次;工作范围不小于100%;
如图3所示,在50%应变下,可印刷透明应力传感器的使用寿命不低于1000次,使用寿命长;透气 率不小于100mm/s。
用VAC optima静态接触角测定仪测试步骤(3)所得透气耐水洗可穿戴织物传感器的接触角,如图4所示,接触角可达到124.6°,疏水层的接触角大;用4110N透气度测试仪测试步骤(3)所得透气耐水洗可穿戴织物传感器的透气率,透气率可达到866.68mm/s。
实施例2
一种基于织物的透气耐水洗可穿戴传感器,按下述步骤制备:
(1)称取5mL浓度为8mg/mL的银纳米线/乙醇分散液,超声振荡使其分散均匀,以4×2cm氨纶/棉布为基底材料,采用喷墨打印方式将分散液打印在基底材料上,80℃烘干,反复操作3次,得织物基底的银纳米线导电薄膜;
其中,银纳米线/乙醇分散液是指银纳米线分散在乙醇基质中形成的分散液。
(2)将步骤(1)中得到的导电织物材料的表面进行疏水改性:称取100mL浓度为10wt%聚氨酯A85/DMF溶液,将步骤(1)所得银纳米线导电薄膜浸泡20min,80℃烘干,得到透气耐水洗可穿戴织物传感器;
其中,聚氨酯A85/DMF溶液是指浓度为10wt%聚氨酯A85溶解在DMF中形成的溶液。
实施例3
一种基于织物的透气耐水洗可穿戴传感器,如图5所示,按下述步骤制备:
(1)称取10mL浓度为6mg/mL石墨烯/DMF分散液,超声振荡使其分散均匀,以棉/聚酯/氨纶布1’为基底材料,用丝网印刷机将分散液丝网印刷在基底材料上,50℃烘干,反复操作5次,得织物基底的石墨烯导电薄膜2’;
其中,石墨烯/DMF分散液是指石墨烯分散在DMF中形成的分散液。
(2)将步骤(1)中得到的导电织物材料的表面进行疏水改性:称取100mL浓度为15wt%聚氨酯A65/DMF溶液,将步骤(1)所得石墨烯导电薄膜浸泡15min,70℃烘干,形成表面疏水层3’,得透气耐水洗可穿戴织物传感器;
其中,聚氨酯A85/DMF溶液是指浓度为15wt%聚氨酯A65溶解在DMF中形成的溶液。
实施例4
一种基于织物的透气耐水洗可穿戴传感器,按下述步骤制备:
(1)称取50mL浓度为4mg/mL铜纳米线/水分散液,超声振荡使其分散均匀,在棉/聚酯布上用真空抽滤机抽滤,40℃烘干,得织物基底得铜纳米线导电薄膜;
其中,铜纳米线/水分散液是指铜纳米线分散在水中形成的分散液。
(2)将步骤(1)中得到的导电织物材料的表面进行疏水改性:将步骤(1)所得铜纳米线导电薄膜放入等离子清洗机中用氧等离子体处理120min,功率为120W,得氧等离子体处理过的铜纳米线导电薄膜;
(3)称取150μL PFOTS溶液滴在玻璃片上,将玻璃片和步骤(2)氧等离子体处理过的铜纳米线导电薄膜所得放置在真空干燥锅中,真空环境下,100℃处理2h,得透气耐水洗可穿戴织物传感器。
本发明透气耐水洗可穿戴织物传感器的作用机理为:纳米导电活性材料对于弹性织物材料具有良好、 强烈的作用,比如氢键作用;弹性织物材料具有良好的拉伸性能以及较大的孔隙率,提供了较大的工作范围和高透气性;纳米导电活性材料吸附在弹性织物材料的表面,形成导电活性层,在拉伸过程中,纳米导电活性材料之间发生滑移、裂纹等现象导致电阻上升;在表面进行疏水改性,形成一层疏水层,提高传感器的拒水性能,从而达到耐水洗的效果。
本发明也提供了透气耐水洗可穿戴织物传感器的应用,在穿戴使用上要紧贴皮肤,以检测人体运动信号,包括手指或膝盖弯曲类应变信号;或者,用于电子皮肤、仿生机器人等智能产品上。
透气耐水洗可穿戴织物传感器在穿戴使用上要紧贴皮肤,可以检测人体运动信号,例如手指或膝盖弯曲等应变信号。
透气耐水洗可穿戴织物传感器不仅可以用于瑜伽服、紧身运动服、紧身运动裤等跑步健身装备以及泳衣、泳裤等游泳运动装备,检测人体运动信号,而且可以用于电子皮肤、仿生机器人等新型产品。
以上实施例仅为进一步对本发明做出说明,不应该局限于该实施例所公开的内容。本发明技术方案中所公开的产品组分中各具体的物质,均可通过本发明得到实施,并与实施例得到相同的技术效果,在此不单独一一举出实施例进行说明。所以凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (15)

  1. 一种基于织物的透气耐水洗可穿戴传感器,包含织物和纳米导电层,其中:以弹性织物为基底材料,其上附有纳米导电活性层和表面疏水层,具有耐水洗次数不低于25次;工作范围不小于100%;在大于40%应变下,使用寿命不低于500次;透气率不小于100mm/s;疏水层的接触角大于90°。
  2. 根据权利要求1所述的基于织物的透气耐水洗可穿戴传感器,其中,所述基底材料包括:
    二烯类弹性纤维、聚氨酯纤维、聚醚酯弹性纤维、聚烯烃弹性纤维、聚丙烯纤维、聚乙烯纤维、聚酰胺纤维、天然乳胶丝、聚丙烯腈纤维、聚乙烯醇纤维、芳纶、棉、木棉、亚麻、大麻、罗布麻、苎麻、剑麻、绵羊毛、山羊绒、兔毛、骆驼毛、牦牛毛、羊驼毛、桑蚕丝、柞蚕丝类的腺分泌物、粘胶纤维、醋酸纤维、莱赛尔纤维、莫代尔纤维、铜氨纤维、大豆纤维、玉米纤维中的一种或几种。
  3. 根据权利要求1所述的基于织物的透气耐水洗可穿戴传感器,其中,所述的纳米导电活性层是由纳米导电活性材料构成的薄膜,其中,所述的纳米导电活性材料是指:
    零维金属纳米颗粒,金、银、铜、铁、铬、镍、铝、钨、铂、镓、铟、镓铟合金、镓铟锡合金金属纳米颗粒中的一种,颗粒大小1-1000nm。
  4. 根据权利要求1所述的基于织物的透气耐水洗可穿戴传感器,其中,所述的纳米导电活性层是由纳米导电活性材料构成的薄膜,其中,所述的纳米导电活性材料是指:
    一维金属纳米线,金、银、铜、铁、镍、铂、钯、铝金属纳米线中的一种,所述金属纳米线的直径为1-300nm,长度为2-100μm。
  5. 根据权利要求1所述的基于织物的透气耐水洗可穿戴传感器,其中,所述的纳米导电活性层是由纳米导电活性材料构成的薄膜,其中,所述的纳米导电活性材料是指:
    二维导电材料石墨烯,氧化石墨烯,二硫化钼,MXene中的一种,其中,MXene是指具有类似石墨烯的二维结构,其化学通式是Mn+1XnTz,n=1,2,3,其中M为早期过渡金属元素,X为碳或氮元素,T为表面链接的-F、-OH活性官能团,包括Ti2C、Ti3C2、Ti3CN、V2C、Nb2C、TiNbC、Nb4C3、Ta4C3、(Ti0.5Nb0.5)2C或(V0.5Cr0.5)3C2中的一种。
  6. 根据权利要求1所述的基于织物的透气耐水洗可穿戴传感器,其中,所述疏水层为采用疏水改性剂形成的接枝共聚层、溶胶-凝胶沉积层、浸渍涂布沉积层、喷涂沉积层、等离子体处理后涂布层、化学气相沉积层、原位纳米颗粒生长层或硅烷化层中的一种或几种。
  7. 根据权利要求6所述的基于织物的透气耐水洗可穿戴传感器,其中,所述疏水改性剂是指有机硅树脂、硅烷偶联剂、金属氧化物纳米颗粒、长链脂肪酸的金属络合物以及长链脂肪链季胺化合物、甲基含氢聚硅氧烷、乙基含氢硅油、二甲基含氢聚硅氧烷、丙烯酸类含氟聚合物、聚氨酯中的一种;
    有机硅树脂包括聚烷基有机硅树脂、聚芳基有机硅树脂、聚烷基芳基有机硅树脂;
    硅烷偶联剂包括γ-甲基丙烯酰氧基丙基三甲基氧基硅烷、氟硅烷偶联剂、三氯甲基硅烷、三氯(1H,1H,2H,2H-全氟辛基)硅烷;
    金属氧化物纳米颗粒包括镍、铬、铁、锌、钛、铂、镁、铜的氧化物;
    长链脂肪酸的金属络合物包括硬脂酸氧化铬络合物、防水剂CR、防水剂AC、防水剂AZ;
    长链脂肪链季胺化合物包括防水剂PF。
  8. 一种根据权利要求1至7任一项所述的基于织物的透气耐水洗可穿戴传感器的制备方法,其中, 包括下述步骤:
    (1)配制导电材料分散液,采用印刷或抽滤的方法使导电材料吸附在弹性织物材料的表面形成具有导电薄膜,得到导电织物;
    (2)将步骤(1)中得到的导电织物材料的表面进行疏水改性,得透气耐水洗织物传感器。
  9. 根据权利要求8所述的基于织物的透气耐水洗可穿戴传感器的制备方法,其中,步骤(1)中,所述印刷方法是指:丝网印刷、喷墨印刷、刮涂、浸涂、迈耶棒涂布、喷涂、狭缝式涂布、直接书写印刷中的一种。
  10. 根据权利要求8所述的基于织物的透气耐水洗可穿戴传感器的制备方法,其中,按下述步骤制备:
    (1)称取100mL浓度为10mg/mL二维过渡金属碳化物的水分散液,将弹性织物大小为5×2cm的聚酯/氨纶布的基底材料浸泡在二维过渡金属碳化物水分散液中30min后,60℃烘干,得织物基底的二维过渡金属碳化物导电薄膜;
    (2)将步骤(1)中得到的导电织物材料的表面进行疏水改性:将步骤(1)得到的二维过渡金属碳化物导电薄膜放入等离子清洗机中用氧等离子体处理90min,功率为150W,完成疏水改性,得到氧等离子体处理过的二维过渡金属碳化物导电薄膜;
    (3)称取100μL全氟辛烷磺酰基化合物溶液滴在玻璃片上,将玻璃片和步骤(2)氧等离子体处理过的二维过渡金属碳化物导电薄膜所得放置在真空干燥锅中,真空环境下,100℃处理4h,得透气耐水洗可穿戴织物传感器。
  11. 根据权利要求8所述的基于织物的透气耐水洗可穿戴传感器的制备方法,其中,按下述步骤制备:
    (1)称取5mL浓度为8mg/mL的银纳米线/乙醇分散液,以4×2cm氨纶/棉布为基底材料,采用喷墨打印方式将分散液打印在基底材料上,80℃烘干,反复操作3次,得织物基底的银纳米线导电薄膜;
    (2)将步骤(1)中得到的导电织物材料的表面进行疏水改性:称取100mL浓度为10wt%聚氨酯A85/DMF溶液,将步骤(1)所得银纳米线导电薄膜浸泡20min,80℃烘干,得到透气耐水洗可穿戴织物传感器。
  12. 根据权利要求8所述的基于织物的透气耐水洗可穿戴传感器的制备方法,其中,按下述步骤制备:
    (1)称取10mL浓度为6mg/mL石墨烯/DMF分散液,以棉/聚酯/氨纶布为基底材料,用丝网印刷机将分散液丝网印刷在基底材料上,50℃烘干,反复操作5次,得织物基底的石墨烯导电薄膜;
    (2)将步骤(1)中得到的导电织物材料的表面进行疏水改性:称取100mL浓度为15wt%聚氨酯A65/DMF溶液,将步骤(1)所得石墨烯导电薄膜浸泡15min,70℃烘干,得透气耐水洗可穿戴织物传感器。
  13. 根据权利要求8所述的基于织物的透气耐水洗可穿戴传感器的制备方法,其中,按下述步骤制备:
    (1)称取50mL浓度为4mg/mL铜纳米线/水分散液,在棉/聚酯布上用真空抽滤机抽滤,40℃烘干, 得织物基底得铜纳米线导电薄膜;
    (2)将步骤(1)中得到的导电织物材料的表面进行疏水改性:将步骤(1)所得铜纳米线导电薄膜放入等离子清洗机中用氧等离子体处理120min,功率为120W,得氧等离子体处理过的铜纳米线导电薄膜;
    (3)称取150μL PFOTS溶液滴在玻璃片上,将玻璃片和步骤(2)氧等离子体处理过的铜纳米线导电薄膜所得放置在真空干燥锅中,真空环境下,100℃处理2h,得透气耐水洗可穿戴织物传感器。
  14. 一种根据权利要求1至7任一项所述的基于织物的透气耐水洗可穿戴传感器的应用,其中,在穿戴使用上要紧贴皮肤,以检测人体运动信号,包括手指或膝盖弯曲类应变信号;或者,电子皮肤、仿生机器人类智能产品上,以检测运动信号。
  15. 根据权利要求14所述的基于织物的透气耐水洗可穿戴传感器的应用,其中,用于包括瑜伽服、紧身运动服、紧身运动裤类跑步、健身装备,泳衣、泳裤类游泳运动装备。
PCT/CN2023/080668 2022-09-19 2023-03-10 一种基于织物的透气耐水洗可穿戴传感器及其制备方法 WO2024060525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211139041.XA CN115323768A (zh) 2022-09-19 2022-09-19 一种基于织物的透气耐水洗可穿戴传感器及其制备方法
CN202211139041.X 2022-09-19

Publications (1)

Publication Number Publication Date
WO2024060525A1 true WO2024060525A1 (zh) 2024-03-28

Family

ID=83913244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/080668 WO2024060525A1 (zh) 2022-09-19 2023-03-10 一种基于织物的透气耐水洗可穿戴传感器及其制备方法

Country Status (2)

Country Link
CN (1) CN115323768A (zh)
WO (1) WO2024060525A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115323768A (zh) * 2022-09-19 2022-11-11 江西昌硕户外休闲用品有限公司 一种基于织物的透气耐水洗可穿戴传感器及其制备方法
CN117364330A (zh) * 2023-10-10 2024-01-09 诸暨市维纳斯针纺有限公司 一种抗起毛起球环保面料

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111678623A (zh) * 2020-06-16 2020-09-18 南开大学 基于可印刷纳米复合材料的超长寿命自修复应力传感器及其制备方法
CN111678425A (zh) * 2020-05-22 2020-09-18 扬州大学 一种透气防水的多响应织物传感器
US20210269664A1 (en) * 2020-02-13 2021-09-02 Korea Institute Of Science And Technology 2-dimensional mxene surface-modified with catechol derivative, method for preparing the same, and mxene organic ink including the same
WO2021212927A1 (zh) * 2020-04-21 2021-10-28 武汉纺织大学 多功能传感集成的柔性织物基传感器及其应用
CN113739964A (zh) * 2021-09-06 2021-12-03 电子科技大学中山学院 基于纳米银线的超疏水柔性织物压力传感器及其制备方法
CN115058886A (zh) * 2022-06-27 2022-09-16 西安工程大学 一种柔性纳米合金压阻传感织物及其制备方法
CN115323768A (zh) * 2022-09-19 2022-11-11 江西昌硕户外休闲用品有限公司 一种基于织物的透气耐水洗可穿戴传感器及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100036447A (ko) * 2008-09-30 2010-04-08 연세대학교 산학협력단 기판 상에서 표면 에너지를 이용한 나노 와이어 성장 방법
CN104831520A (zh) * 2015-05-11 2015-08-12 湖州哲豪丝绸有限公司 一种超疏水耐水洗的纺织品的制备方法
CN109518458A (zh) * 2018-11-19 2019-03-26 南通纺织丝绸产业技术研究院 一种以蚕丝为基底的金属纳米线/石墨烯导电材料及其制备方法
US20210147647A1 (en) * 2019-11-14 2021-05-20 Xiaoxiao ZHAO Superhydrophobic films
CN112251897B (zh) * 2020-10-13 2021-12-31 西安工程大学 一种基于Mxene包覆导电纱线的针织柔性传感织物及制备方法
CN114214833A (zh) * 2021-12-09 2022-03-22 西安理工大学 基于银纳米线/石墨烯的柔性导电织物传感器的制备方法
CN114855442A (zh) * 2022-05-13 2022-08-05 青岛科技大学 一种电磁屏蔽用MXene基导电自清洁复合织物及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210269664A1 (en) * 2020-02-13 2021-09-02 Korea Institute Of Science And Technology 2-dimensional mxene surface-modified with catechol derivative, method for preparing the same, and mxene organic ink including the same
WO2021212927A1 (zh) * 2020-04-21 2021-10-28 武汉纺织大学 多功能传感集成的柔性织物基传感器及其应用
CN111678425A (zh) * 2020-05-22 2020-09-18 扬州大学 一种透气防水的多响应织物传感器
CN111678623A (zh) * 2020-06-16 2020-09-18 南开大学 基于可印刷纳米复合材料的超长寿命自修复应力传感器及其制备方法
CN113739964A (zh) * 2021-09-06 2021-12-03 电子科技大学中山学院 基于纳米银线的超疏水柔性织物压力传感器及其制备方法
CN115058886A (zh) * 2022-06-27 2022-09-16 西安工程大学 一种柔性纳米合金压阻传感织物及其制备方法
CN115323768A (zh) * 2022-09-19 2022-11-11 江西昌硕户外休闲用品有限公司 一种基于织物的透气耐水洗可穿戴传感器及其制备方法

Also Published As

Publication number Publication date
CN115323768A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
WO2024060525A1 (zh) 一种基于织物的透气耐水洗可穿戴传感器及其制备方法
Cai et al. Flexible and wearable strain sensing fabrics
Liu et al. Recent progress on smart fiber and textile based wearable strain sensors: materials, fabrications and applications
Tang et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage
Xu et al. Moisture-resilient graphene-dyed wool fabric for strain sensing
Cheng et al. In situ hydrothermal growth of Cu NPs on knitted fabrics through polydopamine templates for heating and sensing
Chen et al. A highly sensitive and wearable pressure sensor based on conductive polyacrylonitrile nanofibrous membrane via electroless silver plating
Yuan et al. Flexible and breathable strain sensor with high performance based on MXene/nylon fabric network
CN113152088B (zh) 一种柔性织物基应变传感器及其制备方法
CN107881768B (zh) 一种基于聚氨酯纤维的可拉伸应变传感器及其制备方法
Huang et al. Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@ silver nanoparticles electrospun membrane strain sensors by multi-conductive network
Ehrmann et al. Nanosensors and nanodevices for smart multifunctional textiles
CN109518458A (zh) 一种以蚕丝为基底的金属纳米线/石墨烯导电材料及其制备方法
Hu et al. Ag/alginate nanofiber membrane for flexible electronic skin
CN107345840A (zh) 一种基于载银纳米纤维的柔性力敏传感器及其制备方法
Lu et al. High performance flexible wearable strain sensor based on rGO and AgNWs decorated PBT melt-blown non-woven fabrics
Shi et al. Piezoresistive fibers with record high sensitivity via the synergic optimization of porous microstructure and elastic modulus
Hossain et al. Durability of smart electronic textiles
Weng et al. Facile fabrication of an ultrasensitive all‐fabric wearable pressure sensor based on phosphorene‐gold nanocomposites
Wang et al. Fabrication of a type of silk/PEDOT conductive fibers for wearable sensor
Xing et al. Robust and flexible smart silk/PEDOT conductive fibers as wearable sensor for personal health management and information transmission
CN113604923A (zh) 石墨烯/银复合弹性包芯纱及其制备方法与应用
Niu et al. Highly conductive fiber with design of dual conductive Ag/CB layers for ultrasensitive and wide‐range strain sensing
Xing et al. Caffeic acid induced in-situ growth of AgNWs on cotton fabric for temperature and pressure sensing and electrical interference shielding
Yang et al. Stretchable textile with ultra-high electromagnetic interference shielding performance based on porous wrinkled conductive network

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23866828

Country of ref document: EP

Kind code of ref document: A1