WO2024060513A1 - 一种bbu均衡供电控制系统、多bbu供电系统及服务器 - Google Patents
一种bbu均衡供电控制系统、多bbu供电系统及服务器 Download PDFInfo
- Publication number
- WO2024060513A1 WO2024060513A1 PCT/CN2023/078519 CN2023078519W WO2024060513A1 WO 2024060513 A1 WO2024060513 A1 WO 2024060513A1 CN 2023078519 W CN2023078519 W CN 2023078519W WO 2024060513 A1 WO2024060513 A1 WO 2024060513A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bbu
- power supply
- voltage
- output
- signal
- Prior art date
Links
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 14
- 230000004044 response Effects 0.000 claims description 30
- 230000007423 decrease Effects 0.000 claims description 11
- 230000003321 amplification Effects 0.000 claims description 7
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 7
- 238000005070 sampling Methods 0.000 claims description 5
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 6
- 208000028659 discharge Diseases 0.000 description 6
- 238000000034 method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4207—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
- H02J7/0048—Detection of remaining charge capacity or state of charge [SOC]
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/00712—Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/425—Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
- H01M2010/4271—Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
Definitions
- This application relates to the field of circuit control, and in particular to a BBU balanced power supply control system, a multi-BBU power supply system and a server.
- BBU Battery Backup Unit
- This application provides a BBU balanced power supply control system, including: a control circuit configured to obtain the BBU's remaining power percentage and output current, and generate a reference level signal based on the ratio of the output current to the remaining power percentage; and based on the obtained
- the adjustment signal adjusts the output current of the BBU;
- the strobe circuit is a voltage following circuit based on an operational amplifier.
- the output terminal includes a diode in series and is configured to communicate with other BBUs through the negative terminal of the diode.
- the balance power supply control system is connected, and the reference level signal with the largest voltage value among the multiple reference level signals is selected as the first adjustment signal for balance adjustment and is input to the next stage circuit;
- the first comparison circuit the first comparison circuit It is a differential amplification circuit based on an operational amplifier, configured to compare the reference level signal of the local BBU with the first adjustment signal, and output the second adjustment signal to the next stage circuit;
- the second comparison circuit the second comparison The circuit is an integral amplifier circuit based on an operational amplifier.
- the output terminal includes a diode in series, configured to compare the second adjustment signal with the input voltage at the forward terminal, and output the third adjustment signal, and communicate with the next stage through the positive terminal of the diode. Circuit connection; and, an output voltage stabilizing circuit configured to collect the output voltage of the local BBU, scale it down, compare it with the third adjustment signal, and output the fourth adjustment signal to the control circuit;
- the reference voltage input to the positive terminal of the first comparison circuit is the same as the input voltage input to the positive terminal of the second comparison circuit.
- the first comparison circuit is further configured to: in response to the reference level signal of the local BBU being less than the first adjustment signal, output a second adjustment signal with a voltage value greater than the reference voltage;
- the output voltage value is equal to the second adjustment signal of the reference voltage.
- the second comparison circuit is further configured to: in response to the second adjustment signal being greater than the input voltage of the forward terminal, output a third adjustment signal whose voltage value accumulates over time and decreases;
- a third adjustment signal having a voltage value equal to the input voltage of the forward terminal is output.
- the output voltage stabilizing circuit is further configured to: in response to the voltage of the third adjustment signal being unchanged, output a fourth adjustment signal having a voltage value slightly higher than the reference voltage;
- control circuit is further configured to: in response to the voltage value of the fourth adjustment signal being less than the reference voltage, control to increase the output current of the local BBU;
- the output voltage stabilizing circuit includes a first voltage dividing resistor and a second voltage dividing resistor connected in series.
- the input end of the first voltage dividing resistor is connected to the load output end of the local BBU, and the second voltage dividing resistor is connected to the load output end of the local BBU.
- the output terminal is grounded, and the common terminal of the first voltage dividing resistor and the second voltage dividing resistor is connected to the anode of the diode at the output terminal of the second comparison circuit; wherein the first voltage dividing resistor is larger than the second voltage dividing resistor.
- the voltage across the second voltage dividing resistor The divided voltage is equal to the reference voltage.
- control circuit includes: a controller configured to obtain the remaining power percentage and the output current of the local BBU, and convert the remaining power percentage of the BBU into a level signal, where the voltage value of the level signal is equal to The remaining power percentage is inversely proportional; and the duty cycle of the output PWM signal is adjusted according to the obtained adjustment signal; a multiplier is configured to obtain the output current and level signal, and multiply the product to output a reference level signal; buck boost circuit , respectively connected to the controller and the local BBU, and configured to adjust the output current of the BBU according to the PWM signal.
- the controller is further configured to: in response to the voltage value of the fourth adjustment signal being less than the reference voltage, control to increase the duty cycle of the PWM signal to increase the output current of the local BBU;
- the controller is further configured to access the SOC register of the BBU and obtain the remaining power percentage of the BBU.
- a multi-BBU power supply system based on the BBU balanced power supply control system in the above embodiment is proposed, including: multiple BBU balanced power supply control systems and multiple BBUs; wherein each BBU is connected to Corresponding BBU balanced power supply control systems are connected.
- Multiple BBU balanced power supply control systems are connected in parallel through strobe circuits, and are configured to evenly adjust the load current provided by each BBU according to the remaining power percentage of multiple BBUs.
- the number of multiple BBU balanced power supply control systems and multiple BBUs is at least 2 respectively;
- the multi-BBU power supply system configuration is used to provide multi-BBU parallel balanced power supply to one or more load devices.
- multiple BBU balanced power supply control systems respectively perform the following actions: the BBU balanced power supply control system corresponding to the BBU having the largest ratio of the load current to the corresponding remaining power percentage controls the reduction of the output current of the BBU; and
- the BBU balanced power supply control system corresponding to other BBUs will control to increase the output current of the BBU.
- the BBU balanced power supply control system in response to the ratios of multiple load currents of multiple BBUs to corresponding remaining power percentages being equal, the BBU balanced power supply control system is in a steady state and keeps the output current of each BBU unchanged.
- a server which integrates one or more BBU balanced power supply control systems as in the above embodiments, and the BBU balanced power supply control system is configured to serve as a server backup power interface.
- FIG1 is a circuit diagram of a BBU balanced power supply control system provided in one or more embodiments of the present application.
- Figure 2 is a schematic diagram of a multi-BBU power supply system provided in one or more embodiments of the present application
- Figure 3 is a schematic structural diagram of a server provided in one or more embodiments of the present application.
- a BBU balanced power supply control system is proposed.
- the BBU balanced power supply control system can enable the controlled BBUs to output load current in proportion according to the remaining power through parallel connection, so as to avoid a certain BBU being ahead of schedule. The problem of draining the battery.
- FIG. 1 is a circuit diagram of the BBU balanced power supply control system of the present invention.
- the BBU balanced power supply control system of the present invention includes: a control circuit 100 configured to obtain the remaining power percentage and the output current of the BBU, and generate a reference level signal based on the ratio of the output current to the remaining power percentage; and The output current of the BBU is adjusted according to the obtained adjustment signal; the gating circuit 200 is a voltage following circuit based on an operational amplifier.
- the output terminal includes a diode D1 in series and is configured to provide balanced power supply with other BBUs through the negative terminal of the diode D1
- the control system is connected, and the reference level signal with the largest voltage value among the plurality of reference level signals is selected and input to the next stage circuit as the first adjustment signal for balance adjustment;
- the first comparison circuit 300, the first comparison circuit 300 It is a differential amplification circuit based on an operational amplifier, configured to compare the reference level signal of the local BBU with the first adjustment signal, and output the second adjustment signal to be input to the next stage circuit;
- the second comparison circuit 400, the second The comparison circuit 400 is an integrating amplifier circuit based on an operational amplifier.
- the output terminal includes a diode D2 in series, configured to compare the second adjustment signal with the input voltage at the forward terminal, and output a third adjustment signal through the anode terminal of the diode D2.
- the voltage stabilizing circuit 500 is configured to collect the output voltage of the local BBU, scale it down, compare it with the third adjustment signal, and output the fourth adjustment signal to the control circuit 100; wherein, the input voltage of the first comparison circuit 300 is The reference voltage of the positive terminal is the same as the input voltage input to the positive terminal of the second comparison circuit 400 .
- the ratio of the output current of each BBU to the remaining power percentage needs to be input into the power supply control system as one of the adjustment signals, so that the power supply control system can know the status of each BBU in real time, and then do Output the corresponding load output adjustment.
- the control circuit 100 is mainly responsible for collecting relevant electrical signals, converting the ratio of the output current to the remaining power percentage into a level signal for input into the power supply control system, and controlling according to the final adjustment signal (the fourth adjustment signal).
- BBU output current uses a voltage follower circuit based on an operational amplifier. On the one hand, it has a voltage stabilizing function and can ensure the stable output of the reference level signal.
- the strobe circuit is also responsible for introducing BBUs in other BBU balanced power supply control systems. Reference level signal, and the follower circuit can avoid the influence of external input signal on the local reference level signal.
- the function of the first comparison circuit and the second comparison circuit is to convert the "imbalance" between different power supply control systems into a final adjustment signal (the fourth adjustment signal) and compare it with the preset reference voltage, so that each system Make corresponding current output adjustments.
- the controller reads the SOC register of the metering chip in the battery through the SMbus bus to obtain the SOC (percentage of remaining power) of the battery. Then, the reciprocal 1/SOC of SOC is converted into an analog signal in the voltage range of 0 to 1V through DA (digital-to-analog) conversion. This analog signal is subjected to analog multiplication with the BBU discharge current sampling signal to obtain the current sharing reference level I_REF:
- I_REF is sent to the non-inverting input end of the operational amplifier opa1 through resistor R1.
- Resistors R2, R3 and diode D1 form a negative feedback network so that the output I_OUT is equal to I_REF.
- I_OUT is sent to the current sharing bus I_BUS1 through resistor R4, where it passes
- the connector and backplane are connected to the current sharing bus I_BUS2 from the control BBU.
- the two nodes are shorted together and have the same voltage, which is equal to I_BUS.
- the first comparison circuit 300 is further configured to: when the reference level signal of the local BBU When the signal is smaller than the first adjustment signal, the second adjustment signal with a voltage value greater than the reference voltage is output; when the reference level signal of the local BBU is equal to the first adjustment signal, the second adjustment signal with a voltage value equal to the reference voltage is output.
- the comparison result of the first comparison circuit 300 determines which BBUs need to reduce the output current and which BBUs need to increase the output current. More specifically, the ratio of the power supply ratio (ie, the ratio of the output current to the remaining power percentage) is maximized.
- the BBU reduces the output current, allowing other BBUs with smaller power supplies to increase the output current. It can be understood that the reason for the relatively large power supply can be that the numerator is large, that is, the power supply current output by it is significantly larger than the power supply current output by other BBUs, or the denominator is small, that is, the remaining power is less, in order to prevent the power from being discharged in advance. Its output current needs to be reduced.
- the first comparison circuit of this application uses a differential amplification circuit based on a budget amplifier. Therefore, another function of the first comparison circuit is to introduce a reference voltage through the differential amplification circuit, so that it can limit the output voltage of the adjustment signal. Near the reference voltage, the output result is either equal to or less than the reference voltage.
- the operational amplifier opa2 compares the local I_REF and the current sharing bus voltage I_BUS, differentially amplifies the error and forms the I_ERROR signal.
- the reference level of the non-directional input terminal of opa2 is VREF.
- the output I_ERROR of opa2 will be equal to VREF.
- opa3 integrates and amplifies the difference between VREF and I_ERROR, and then connects it to the voltage feedback signal FB through resistor R12 and diode D2.
- the digital controller performs AD sampling on FB and adjusts the duty cycle of the output buck circuit according to the size of FB, so that The BBUs of the two controllers realize current sharing:
- I_local indicates the discharge current of the local BBU
- I_oppsite indicates the discharge current of the opposite BBU
- SOC1 indicates the remaining power percentage of the local BBU
- SOC2 indicates the remaining power percentage of the opposite BBU.
- the second comparison circuit 400 is further configured to: when the second adjustment signal is greater than the input voltage of the positive terminal, output a third adjustment signal whose voltage value accumulates over time and decreases; when the second adjustment signal is equal to the positive terminal, When the input voltage of the positive terminal is the input voltage, the output voltage value is equal to the third adjustment signal of the input voltage of the positive terminal.
- the function of the second comparison circuit is to adjust the voltage of the third adjustment signal in real time according to the power supply ratio of each BBU, so that the voltage of the third adjustment signal is either the input voltage of the forward terminal (consistent with the reference voltage), or Decreases with the accumulation of time; on this basis, through the negative feedback of the power supply voltage with the output voltage stabilizing circuit, the negative feedback adjustment of the BBU with the largest power supply ratio is realized to achieve a closed loop of balanced adjustment and avoid increasing other After the BBU outputs current, the load voltage output by the BBU is too high.
- the output voltage stabilizing circuit is also configured to: when the voltage of the third adjustment signal remains unchanged, output a fourth adjustment signal whose voltage value is slightly higher than the reference voltage; when the third adjustment signal accumulates and decreases over time, the output voltage value The fourth adjustment signal then decreases.
- the output voltage stabilizing circuit includes a first voltage dividing resistor and a second voltage dividing resistor connected in series. The input end of the first voltage dividing resistor is connected to the load output end of the local BBU.
- the output terminal of the two voltage-dividing resistors is grounded, and the common terminal of the first voltage-dividing resistor and the second voltage-dividing resistor is connected to the anode of the diode at the output terminal of the second comparison circuit; wherein, the first voltage-dividing resistor is greater than the second voltage-dividing resistor;
- the complete feedback adjustment process of the present invention includes: when the local control I_REF is smaller than the counter control I_REF2, I_BUS is equal to I_REF2, so that the reverse input terminal voltage of opa2 is higher than The voltage at the input terminal in the same direction, after the differential amplification of the operational amplifier, the output I_ERROR is greater than VREF, and then through the integral amplification of opa3, the output FBC is less than VREF.
- R20 and R21 divide the output voltage to form a voltage feedback signal FB.
- FB is sent to the AD sampling port of the digital controller and compared with VREF to generate a PWM control signal.
- FBC is less than VREF, it will compensate the FB signal and pull FB low.
- the digital controller will increase the PWM duty cycle, thereby increasing the output current.
- the BBUs from the local controller and the counter-controller provide 1+1 redundant power supply. Due to the balanced power supply strategy that is proportional to the remaining power of the SOC, the two BBUs will Discharging the power at the same time avoids the problem of excessive discharge pressure of another BBU due to early discharge of a BBU due to low initial power in ordinary current sharing mode.
- control circuit 100 is further configured to: when the voltage value of the fourth adjustment signal is less than the reference voltage, control to increase the output current of the local BBU; when the voltage value of the fourth adjustment signal is greater than the reference voltage , the output current of the local BBU is controlled to be reduced; when the voltage value of the fourth adjustment signal is equal to the reference voltage, the output current of the local BBU is controlled to remain unchanged.
- control circuit 100 includes: a controller configured to obtain the remaining power percentage and the output current of the local BBU, and convert the remaining power percentage of the BBU into a level signal, where the level signal The voltage value is inversely proportional to the remaining power; and the duty cycle of the output PWM signal is adjusted according to the obtained adjustment signal; the multiplier 102 is configured to obtain the output current and level signal, and multiply the product to output a reference level signal. ;
- the buck boost circuit 103 is connected to the controller and the local BBU respectively, and is configured to adjust the output current of the BBU according to the PWM signal.
- the controller 101 is further configured to: when the voltage value of the fourth adjustment signal is less than the reference voltage, control to increase the duty cycle of the PWM signal to increase the output current of the local BBU; when the fourth adjustment signal When the voltage value of the adjustment signal is greater than the reference voltage, the duty cycle of the PWM signal is controlled to reduce the output current of the local BBU; when the voltage value of the fourth adjustment signal is equal to the reference voltage, the duty cycle of the PWM signal is controlled to maintain constant.
- the controller is an MCU or CPU, which is used to implement AD (analog-to-digital) conversion to obtain the voltage value of the fourth adjustment signal, and after comparing it with a preset reference voltage value, controls the output of the PWM signal, and based on the comparison
- the result control increases, decreases, or keeps the duty cycle constant.
- the controller 101 obtains the remaining power percentage of the BBU by accessing the SOC register of the BBU.
- FIG. 2 is a schematic diagram of the composition of the multi-BBU power supply system of the present invention.
- the multi-BBU power supply system of the present invention includes: multiple BBU balanced power supply control systems and multiple BBUs; wherein, multiple BBUs are respectively connected to corresponding BBU balanced power supply control systems, and multiple BBU balanced power supply control systems
- the system is connected in parallel through a strobe circuit and is configured to evenly adjust the load current provided by each BBU according to the remaining power percentage of multiple BBUs.
- the number of multiple BBU balanced power supply control systems and multiple BBUs is at least 2 respectively.
- the multiple BBU balanced power supply control systems when there are differences in the ratios of multiple load currents of multiple BBUs to the corresponding remaining power percentages, the multiple BBU balanced power supply control systems perform the following actions respectively.
- the ratio of the load current to the corresponding remaining power percentages The BBU balanced power supply control system corresponding to the largest BBU will control to reduce the output current of the BBU; the BBU balanced power supply control system corresponding to other BBUs will control to increase the output current of the BBU.
- the BBU with the largest power supply ratio will trigger negative feedback due to the increase in output voltage, thereby reducing the duty cycle of the PWM signal to reduce the output current; the remaining BBUs will trigger feedback to increase the duty cycle of the PWM signal due to the decrease in the output voltage of the second comparator to increase the output current; when the output voltage of the second comparator is stabilized at the reference voltage, each balanced power supply system is in a balanced state and keeps the duty cycle of each PWM signal unchanged.
- the state of each BBU is that the ratios of multiple load currents of multiple BBUs to the corresponding remaining power percentages are equal.
- the multi-BBU power supply system is configured to provide multi-BBU parallel balanced power supply to one or more load devices.
- the multi-BBU power supply system proposed by the present invention can supply power to one load device or one system, which the present invention does not limit.
- FIG 3 is a schematic structural diagram of a server according to the present invention.
- a server is proposed.
- the server of the present invention integrates one or more BBU balanced power supply control systems as mentioned in the above implementations (only in Figure 3 Schematically shown in Figure 1), the BBU balanced power supply control system is configured to serve as a server backup power interface, and is then connected to one or more backup power sources.
- multiple servers each have a backup power interface provided by the BBU balanced power supply control system.
- Multiple servers can be connected through the backup power interface to share multiple BBUs.
- a server can be integrated with a balanced power supply control system including multiple BBUs.
- the server allows multiple BBUs to be connected at the same time and powered by multiple BBUs in parallel.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
一种BBU均衡供电控制系统,包括:控制电路(100)、选通电路(200)、第一比较电路(300)、第二比较电路(400)以及输出稳压电路(500),通过控制电路(100)获得各BBU的供电比,供电比为输出电流与剩余电量百分比的比值,并通过第一比较电路(300)和第二比较电路(400)将供电比的不均衡转换为相应的调整信号,最后再通过输出稳压电路(500)的负反馈控制供电比最高的BBU减小输出电流,并使得剩余的其它参与冗余供电的BBU增加输出电流。还公开一种多BBU供电系统及服务器。
Description
相关申请的交叉引用
本申请要求于2022年09月22日提交中国专利局,申请号为202211158647.8,申请名称为“一种BBU均衡供电控制系统、多BBU供电系统及服务器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及电路控制领域,尤其涉及一种BBU均衡供电控制系统、多BBU供电系统及服务器。
随着存储系统数据量的增加和处理能力的提高,其功耗也越来越大。在一个机箱上下双控制器的应用中,传统应用中一个控制器对应一个BBU(Battery Backup Unit备用电源组),任何一个控制器掉电时只使用各自对应的BBU进行备电,避免数据丢失。但是随着存储系统的功耗日益增长,对BBU的备电能力需求也越来越大,如果任一个控制器掉电时可以使用两个BBU一起备电,不但可以节省单个BBU的容量,并在设计上减小单个BBU电池的容量和尺寸,从而有利于节省成本,而且有助于提升备电的安全等级。
然而,发明人意识到,采用两个BBU同时进行冗余供电(即同时向负载设备供电,而不是当主BBU掉电后由备用BBU提供供电)所面临的主要问题是,由于两个BBU电池的当前电量和电压可能不同,如果进行均流放电可能导致电量低的BBU提前放干电量,而电量多的另一块BBU还有很多剩余电量。
发明内容
本申请提供了一种BBU均衡供电控制系统,包括:控制电路,配置用于获取BBU的剩余电量百分比与输出电流,并基于输出电流与剩余电量百分比的比值生成参考电平信号;以及根据获得的调整信号调整BBU的输出电流;选通电路,选通电路为基于运算放大器的电压跟随电路,输出端串联包括二极管,配置用于通过二极管的负极端与其它BBU均
衡供电控制系统连接,并选通多个参考电平信号中电压值最大的参考电平信号作为用于均衡调整的第一调整信号输入到下一级电路;第一比较电路,第一比较电路为基于运算放大器的差分放大电路,配置用于将本地的BBU的参考电平信号与第一调整信号进行比较,并输出第二调整信号输入到下一级电路;第二比较电路,第二比较电路为基于运算放大器的积分放大电路,输出端串联包括二极管,配置用于将第二调整信号与正向端的输入电压进行比较,并输出第三调整信号,并通过二极管的正极端与下一级电路连接;及,输出稳压电路,配置用于采集本地的BBU的输出电压,并按比例缩小后与第三调整信号进行比较,并输出第四调整信号至控制电路;
其中,输入第一比较电路的正向端的基准电压与输入第二比较电路的正向端的输入电压相同。
在其中一些实施例中,第一比较电路还配置用于:响应于本地的BBU的参考电平信号小于第一调整信号,输出电压值大于基准电压的第二调整信号;及
响应于本地的BBU的参考电平信号等于第一调整信号,输出电压值等于基准电压的第二调整信号。
在其中一些实施例中,第二比较电路还配置用于:响应于第二调整信号大于正向端的输入电压,输出电压值随时间累积而降低的第三调整信号;及
响应于第二调整信号等于正向端的输入电压,输出电压值与正向端的输入电压相等的第三调整信号。
在其中一些实施例中,输出稳压电路还配置用于:响应于第三调整信号的电压不变,输出电压值略高于基准电压的第四调整信号;及
响应于第三调整信号随时间累积减小时,输出电压值随之减小的第四调整信号。
在其中一些实施例中,控制电路还配置用于:响应于第四调整信号的电压值小于基准电压,控制增大本地的BBU的输出电流;及
响应于第四调整信号的电压值大于基准电压,控制减小本地的BBU的输出电流;及
响应于第四调整信号的电压值等于基准电压,控制本地的BBU的输出电流保持不变。
在其中一些实施例中,输出稳压电路包括串联连接的第一分压电阻与第二分压电阻,第一分压电阻的输入端与本地BBU的负载输出端连接,第二分压电阻的输出端接地,第一分压电阻与第二分压电阻的公共端与第二比较电路的输出端的二极管的正极连接;其中,第一分压电阻大于第二分压电阻。
在其中一些实施例中,当BBU均衡供电控制系统处于稳态时,第二分压电阻两端的
分压等于基准电压。
在其中一些实施例中,控制电路包括:控制器,配置用于获取本地的BBU的剩余电量百分比与输出电流,并将BBU的剩余电量百分比转换为电平信号,其中电平信号的电压值与剩余电量百分比成反比;以及根据获得的调整信号调整输出的PWM信号的占空比;乘法器,配置用于获取输出电流与电平信号,并做乘积后输出参考电平信号;buck升压电路,分别与控制器以及本地的BBU连接,并配置用于根据PWM信号调整BBU的输出电流。
在其中一些实施例中,控制器还配置用于:响应于第四调整信号的电压值小于基准电压,控制增大PWM信号的占空比以增大本地的BBU的输出电流;
响应于第四调整信号的电压值大于基准电压,控制减小PWM信号的占空比以减小本地的BBU的输出电流;及
响应于第四调整信号的电压值等于基准电压,控制PWM信号的占空比保持不变。
在其中一些实施例中,控制器还配置用于:访问BBU的SOC寄存器,获取BBU的剩余电量百分比。
在本发明的第二方面,提出了一种基于上述实施例中的BBU均衡供电控制系统的多BBU供电系统,包括:多个BBU均衡供电控制系统以及多个BBU;其中,每个BBU分别与对应的BBU均衡供电控制系统连接,多个BBU均衡供电控制系统通过选通电路并联连接,并配置用于根据多个BBU的剩余电量百分比均衡调整各BBU所需提供的负载电流。
在其中一些实施例中,多个BBU均衡供电控制系统以及多个BBU的个数分别至少为2个;及
多BBU供电系统配置用于向一个或多个负载设备提供多BBU并行均衡供电。
在其中一些实施例中,响应于多个BBU的多个负载电流与对应的剩余电量百分比的比值存在差异,多个BBU均衡供电控制系统分别执行如下动作,负载电流与对应的剩余电量百分比的比值最大的BBU所对应的BBU均衡供电控制系统将控制减小BBU的输出电流;及
其它BBU所对应的BBU均衡供电控制系统将控制增大BBU的输出电流。
在其中一些实施例中,响应于多个BBU的多个负载电流与对应的剩余电量百分比的比值均相等,BBU均衡供电控制系统均处于稳态,并保持各BBU的输出电流不变。
在本申请的第三方面,提出了一种服务器,服务器中集成包括一个或多个如上述实施例中的BBU均衡供电控制系统,BBU均衡供电控制系统配置用于作为服务器备电接口。
为了更清楚地说明本发明实施例的技术方案,下面将对现有技术和实施例描述中所需要使用的附图作简单地介绍,附图中的部件不一定按比例绘制,并且可以省略相关的元件,或者在一些情况下比例可能已经被放大,以便强调和清楚地示出本文描述的新颖特征。另外,如本领域中已知的,结构顺序可以被不同地布置。
图1为本申请一个或多个实施例中提供的一种BBU均衡供电控制系统的电路图;
图2为本申请一个或多个实施例中提供的一种多BBU供电系统的组成示意图;
图3为本申请一个或多个实施例中提供的一种服务器的结构示意图。
虽然本发明可以以各种形式实施,但是在附图中示出并且在下文中将描述一些示例性和非限制性实施例,但应该理解的是,本公开将被认为是本发明的示例并不意图将本发明限制于所说明的具体实施例。
为了实现多BBU(Battery Backup Unit备用电源组)的均衡供电且能够实现实时的自动调整。在本发明的一个方面提出了一种BBU均衡供电控制系统,该BBU均衡供电控制系统能够通过并联的方式使得受控BBU之间根据剩余电量,按比例的输出负载电流,以避免某一个BBU提前放干电量的问题。以下将结合附图对本发明的技术方案进行更加详细的说明。
图1为本发明的BBU均衡供电控制系统的电路图。如图1所示,本发明的BBU均衡供电控制系统包括:控制电路100,配置用于获取BBU的剩余电量百分比与输出电流,并基于输出电流与剩余电量百分比的比值生成参考电平信号;以及根据获得的调整信号调整BBU的输出电流;选通电路200,选通电路200为基于运算放大器的电压跟随电路,输出端串联包括二极管D1,配置用于通过二极管D1的负极端与其它BBU均衡供电控制系统连接,并选通多个参考电平信号中电压值最大的参考电平信号作为用于均衡调整的第一调整信号输入到下一级电路;第一比较电路300,第一比较电路300为基于运算放大器的差分放大电路,配置用于将本地的BBU的参考电平信号与第一调整信号进行比较,并输出第二调整信号输入到下一级电路;第二比较电路400,第二比较电路400为基于运算放大器的积分放大电路,输出端串联包括二极管D2,配置用于将第二调整信号与正向端的输入电压进行比较,并输出第三调整信号,并通过二极管D2的正极端与下一级电路连接;输
出稳压电路500,配置用于采集本地的BBU的输出电压,并按比例缩小后与第三调整信号进行比较,并输出第四调整信号至控制电路100;其中,输入第一比较电路300的正向端的基准电压与输入第二比较电路400的正向端的输入电压相同。
具体的,为了实现多BBU的均衡供电,需要将各BBU的输出电流与剩余电量百分比的比值作为调整信号之一输入到供电控制系统中,使得供电控制系统能够实时获知各BBU的状态,进而做出相应的负载输出调整。其中,控制电路100主要负责相关电信号的采集,以及将输出电流与剩余电量百分比的比值转换为电平信号以输入到供电控制系统之中,并根据最终的调整信号(第四调整信号)控制BBU的输出电流。选通电路采用了基于运算放大器的电压跟随电路,其一方面具有稳压功能,能够保证参考电平的信号的稳定输出,并且由于选通电路还负责引入其它BBU均衡供电控制系统中的BBU的参考电平信号,而跟随电路能够避免外部输入信号对本地参考电平信号的影响。第一比较电路和第二比较电路的作用是将不同供电控制系统之间的“不平衡”转换为最终的调整信号(第四调整信号)并与预设的基准电压的比较,从而使得各个系统做出相应的电流输出调整。
更具体的,以两个BBU的均衡供电为例,控制器通过SMbus总线读取电池内计量芯片的SOC寄存器,得到电池的SOC(剩余电量百分比)。然后通过DA(数模)转换将SOC的倒数1/SOC转换成0~1V电压范围的模拟信号,该模拟信号与BBU放电电流采样信号做模拟乘法运算,得到均流参考电平I_REF:
I_REF通过电阻R1送到运算放大器opa1的同向输入端,电阻R2、R3、二极管D1组成负反馈网络,使得输出I_OUT等于I_REF,然后I_OUT通过电阻R4发送到均流总线I_BUS1上,此处会通过接插件和背板连接来自对控BBU的均流总线I_BUS2,两个节点短接在一起电压相等,都等于I_BUS。
I_BUS1=I_BUS2=I_BUS (公式2)
I_BUS1=I_BUS2=I_BUS (公式2)
当来自对控BBU的均流参考电平I_REF2高于本控I_REF时,由于D1的钳位作用使得opa1负反馈失效,I_OUT被抬高到对控BBU的均流总线电压I_BUS2;当来自对控BBU的均流参考电平I_REF2低于本控I_REF时,负反馈生效使得I_OUT跟随I_REF,从而也将均流总线电压I_BUS抬高到I_REF。因此,均流总线电压I_BUS总是等于两个控制器BBU均流参考电平I_REF和I_REF2中的较高者。
在进一步的实施例中,第一比较电路300还配置用于:当本地的BBU的参考电平信
号小于第一调整信号时,输出电压值大于基准电压的第二调整信号;当本地的BBU的参考电平信号等于第一调整信号时,输出电压值等于基准电压的第二调整信号。
具体的,第一比较电路300的比较结果决定了哪些BBU需要减小输出电流,哪些BBU需要增大输出电流,更具体的说是让供电比(即输出电流与剩余电量百分比的比值)最大的BBU减小输出电流,让其它供电比较小的BBU增大输出电流。可以理解的是,供电比较大的原因可以是分子大,即其输出的供电电流明显大于其它BBU输出的供电电流,也可以是分母小,即所剩电量较少,为了避免其电量提前放干需要减小其输出电流。此外,本申请的第一比较电路采用了基于预算放大器的差分放大电路,因此,第一比较电路的另一个作用是,通过差分放大电路引入基准电压,使得其能够将调整信号的输出电压被限制在基准电压附近,其输出结果要么等于基准电压要么小于基准电压。
更具体的,承接上述两个BBU均衡供电的举例说明,运算放大器opa2比较本地I_REF和均流总线电压I_BUS,对误差进行差分放大后形成I_ERROR信号。opa2同向输入端的参考电平为VREF,当同向输入端I_BUS与反向输入端I_REF相等,opa2的输出I_ERROR将等于VREF。然后opa3将VREF与I_ERROR的差进行积分放大后,通过电阻R12和二极管D2连接到电压反馈信号FB上,数字控制器对FB进行AD采样,根据FB的大小调整输出buck电路的占空比,使得两个控制器的BBU实现均流:
其中,I_local表示本控(本地)BBU的放电电流,I_oppsite表示对控BBU的放电电流;SOC1表示本控BBU的剩余电量百分比,SOC2表示对控BBU的剩余电量百分比。
在进一步的实施例中第二比较电路400还配置用于:当第二调整信号大于正向端的输入电压时,输出电压值随时间累积而降低的第三调整信号;当第二调整信号等于正向端的输入电压时,输出电压值与正向端的输入电压相等的第三调整信号。
具体的,第二比较电路的作用是,实时的根据各BBU的供电比调整第三调整信号的电压,使得第三调整信号的电压要么为正向端的输入电压(与基准电压保持一致),要么随时间的累积而减小;在此基础上,通过与输出稳压电路负反馈回来的供电电压,实现对供电比最大的BBU的负反馈调节,以实现均衡调节的闭环,避免在增大其它BBU的输出电流后,导致BBU输出的负载电压过高。其中,输出稳压电路还配置用于:当第三调整信号的电压不变时,输出电压值略高于基准电压的第四调整信号;当第三调整信号随时间累积减小时,输出电压值随之减小的第四调整信号。
更具体的,当第二比较电路输出的第三调整信号的电压为基准电压时,此时,由于由各BBU输出的总的负载电流增大,导致输出的负载电压增大,使得第二分压电阻上的分压大于基准电压,从而使得D2导通,但由于D2具有一定导通压降,因此,是输出的第四调整信号的电压仍会略大于基准电压,从而触发对供电比高的BBU的供电控制电路的负反馈调节其中,输出稳压电路包括串联连接的第一分压电阻与第二分压电阻,第一分压电阻的输入端与本地BBU的负载输出端连接,第二分压电阻的输出端接地,第一分压电阻与第二分压电阻的公共端与第二比较电路的输出端的二极管的正极连接;其中,第一分压电阻大于第二分压电阻;当BBU均衡供电控制系统处于稳态时,第二分压电阻两端的分压等于基准电压。
更具体的,承接上述两个BBU均衡供电的举例说明,本发明的完整的反馈调节过程包括:当本控I_REF小于对控I_REF2时,I_BUS等于I_REF2,从而使opa2的反向输入端电压高于同向输入端电压,经过运算放大器的差分放大作用输出I_ERROR大于VREF,再经过opa3的积分放大作用使输出FBC小于VREF。R20与R21对输出电压分压,形成电压反馈信号FB,FB送往数字控制器的AD采样口并与VREF做比较生成PWM控制信号。FBC小于VREF后会对FB信号进行补偿,将FB拉低,数字控制器为了维持FB电压与VREF相等,会调大PWM占空比,从而使输出电流增大。
与此同时,本控输出电流增大以后,会抬高输出电压VLOAD,从而使对控的FB信号抬高,对控的数字控制器为了使FB信号与VREF相等,会调小PWM占空比,从而减小了输出电流。直到满足公式3以后,两个控制器才会达到均衡,两个FBC信号都等于VREF,不再对FB产生补偿作用,实现均流控制。
在上述举例说明中,当一个控制器发生备电时,来自本控和对控的BBU进行1+1冗余供电,由于采用了与SOC剩余电量成比例的均衡供电策略,两个BBU将在同一时间把电量放空,避免了普通均流模式下某个BBU由于初始电量低而提前放空,造成另一BBU独自放电压力过大的问题。
在进一步的实施例中,控制电路100还配置用于:当第四调整信号的电压值小于基准电压时,控制增大本地的BBU的输出电流;当第四调整信号的电压值大于基准电压时,控制减小本地的BBU的输出电流;当第四调整信号的电压值等于基准电压时,控制本地的BBU的输出电流保持不变。
在进一步的实施例中,控制电路100包括:控制器,配置用于获取本地的BBU的剩余电量百分比与输出电流,并将BBU的剩余电量百分比转换为电平信号,其中电平信号
的电压值为与剩余电量成反比;以及根据获得的调整信号调整输出的PWM信号的占空比;乘法器102,配置用于获取输出电流与电平信号,并做乘积后输出参考电平信号;buck升压电路103,分别与控制器以及本地的BBU连接,并配置用于根据PWM信号调整BBU的输出电流。
在进一步的实施例中,控制器101还配置用于:当第四调整信号的电压值小于基准电压时,控制增大PWM信号的占空比以增大本地的BBU的输出电流;当第四调整信号的电压值大于基准电压时,控制减小PWM信号的占空比以减小本地的BBU的输出电流;当第四调整信号的电压值等于基准电压时,控制PWM信号的占空比保持不变。具体的,控制器为MCU或CPU,用于实现AD(模数)转换以获得第四调整信号的电压值,并与预先设置的基准电压值进行比较后,控制PWM信号的输出,并根据比较结果控制增大、减小占空比或保持占空比不变。其中,控制器101通过访问BBU的SOC寄存器获取BBU的剩余电量百分比。
图2为本发明的多BBU供电系统的组成示意图。如图2所示,本发明的多BBU供电系统,包括:多个BBU均衡供电控制系统以及多个BBU;其中,多个BBU分别与对应的BBU均衡供电控制系统连接,多个BBU均衡供电控制系统通过选通电路并联连接,并配置用于根据多个BBU的剩余电量百分比均衡调整各BBU所需提供的负载电流。其中,多个BBU均衡供电控制系统以及多个BBU的个数分别至少为2个。
在进一步的实施例中,当多个BBU的多个负载电流与对应的剩余电量百分比的比值存在差异时,多个BBU均衡供电控制系统分别执行如下动作,负载电流与对应的剩余电量百分比的比值最大的BBU所对应的BBU均衡供电控制系统将控制减小BBU的输出电流;其它BBU所对应的BBU均衡供电控制系统将控制增大BBU的输出电流。
具体的,在均衡调节过程中,供电比最大的BBU将因输出电压升高而触发负反馈,进而使得PWM信号的占空比降低,以减少输出电流;剩余的BBU将将因第二比较器的输出电压降低而触发增加PWM信号的占空比的反馈,以增加输出电流;当第二比较器的输出电压稳定在基准电压时,各均衡供电系统处于平衡状态,并保持各自PWM信号的占空比不变。此时各BBU的状态为多个BBU的多个负载电流与对应的剩余电量百分比的比值均相等。
在进一步的实施例中,多BBU供电系统配置用于向一个或多个负载设备提供多BBU并行均衡供电。具体的,本发明提出的多BBU供电系统可以向一个负载设备供电,也可以向一个系统供电,对此本发明对此不作限制。
图3为本发明的一种服务器的结构示意图。在本发明的第三方面,提出了一种服务器,如图3所示,本发明的服务器中集成包括一个或多个如上述各实施中所提到的BBU均衡供电控制系统(图3中仅示意性的展示一个),该BBU均衡供电控制系统配置用于作为服务器备电接口,进而与一个或多个备电电源连接。
在一个应用场景中,多个服务器都分别具有一个上述由BBU均衡供电控制系统提供的备电接口,多个服务器可以通过备电接口进行连接,以共享多个BBU。
在另一个应用场景中,一个服务器中可以集成包括多个BBU均衡供电控制系统,此时,该服务器允许同时连接多个BBU,并由多个BBU并行均衡供电。
应当理解的是,在技术上可行的情况下,以上针对不同实施例所列举的技术特征可以相互组合,从而形成本发明范围内的另外实施例。此外,本文的特定示例和实施例是非限制性的,并且可以对以上所阐述的结构、步骤及顺序做出相应修改而不脱离本发明的保护范围。
在本申请中,反意连接词的使用旨在包括连接词。定或不定冠词的使用并不旨在指示基数。具体而言,对“该”对象或“一”和“一个”对象的引用旨在表示多个这样对象中可能的一个。然而,尽管本发明实施例公开的元素可以以个体形式描述或要求,但除非明确限制为单数,也可以理解为多个。此外,可以使用连接词“或”来传达同时存在的特征,而不是互斥方案。换句话说,连接词“或”应理解为包括“和/或”。术语“包括”是包容性的并且具有与“包含”相同的范围。
上述实施例,特别是任何“优选”实施例是实施方式的可能示例,并且仅仅为了清楚理解本发明的原理而提出。在基本上不脱离本文描述的技术的精神和原理的情况下,可以对上述实施例做出许多变化和修改。所有修改旨在被包括在本公开的范围内。
Claims (20)
- 一种BBU均衡供电控制系统,其特征在于,包括:控制电路,配置用于获取BBU的剩余电量百分比与输出电流,并基于所述输出电流与所述剩余电量百分比的比值生成参考电平信号;以及根据获得的调整信号调整所述BBU的输出电流;选通电路,所述选通电路为基于运算放大器的电压跟随电路,输出端串联包括二极管,配置用于通过所述二极管的负极端与其它BBU均衡供电控制系统连接,并选通多个所述参考电平信号中电压值最大的参考电平信号作为用于均衡调整的第一调整信号输入到下一级电路;第一比较电路,所述第一比较电路为基于运算放大器的差分放大电路,配置用于将本地的BBU的参考电平信号与所述第一调整信号进行比较,并输出第二调整信号输入到下一级电路;第二比较电路,所述第二比较电路为基于运算放大器的积分放大电路,输出端串联包括二极管,配置用于将所述第二调整信号与正向端的输入电压进行比较,并输出第三调整信号,并通过所述二极管的正极端与下一级电路连接;及输出稳压电路,配置用于采集本地的BBU的输出电压,并按比例缩小后与所述第三调整信号进行比较,并输出第四调整信号至所述控制电路;其中,输入所述第一比较电路的正向端的基准电压与输入所述第二比较电路的正向端的输入电压相同。
- 根据权利要求1所述的一种BBU均衡供电控制系统,其特征在于,所述控制电路包括控制器;所述控制电路配置用于:获取BBU的剩余电量百分比与输出电流,并基于所述输出电流与所述剩余电量百分比的比值生成参考电平信号时;具体用于:通过所述控制器的SMbus总线读取本控BBU内计量芯片的SOC寄存器,获得所述本控BBU的SOC;所述SOC为所述剩余电量百分比;通过数模转换方式将SOC的倒数转换成0~1V电压范围的模拟信号,将所述模拟信号与所述本控BBU的放电电流采样信号做模拟乘法运算,得到均流参考电平;所述均流参考电平为所述参考电平信号的值;所述本控BBU为所述本地的BBU,所述其它BBU均衡供电控制系统为单个的对控BBU;所述均流参考电平的计算公式如下:
I_REF为所述均流参考电平,I_local为BBU的放电电流采样信号值,1/SOC为0~1V电压范围的模拟信号值。 - 根据权利要求2所述的一种BBU均衡供电控制系统,其特征在于,所述选通电路包括第一运算放大器;所述第一运算放大器配置用于:选通多个所述参考电平信号中电压值最大的参考电平信号作为用于均衡调整的第一调整信号时,具体用于:接收所述I_REF,令I_OUT等于所述I_REF;所述I_OUT为本控BBU的输出电流的值;所述多个所述参考电平信号为本控BBU和对控BBU的I_REF;将所述I_OUT发送至本控均流总线上;其中,本控BBU的接插件和背板连接对控BBU的均流总线,使两个所述BBU的均流总线节点短接且电压值相等:I_BUS1=I_BUS2=I_BUS;I_BUS1为本控BBU的均流总线电压值,I_BUS2为对控BBU的均流总线电压值,I_BUS为均流总线电压值;响应于I_REF2高于本控BBU的I_REF,将所述I_OUT抬高到所述I_BUS2作为所述I_BUS;所述I_REF2为来自对控BBU的均流参考电平;及响应于所述I_REF2低于本控BBU的I_REF,将所述I_BUS抬高到所述I_REF作为所述I_BUS;所述I_BUS作为用于均衡调整的所述第一调整信号。
- 根据权利要求1所述的一种BBU均衡供电控制系统,其特征在于,所述第一比较电路还配置用于:响应于本地的BBU的参考电平信号小于所述第一调整信号,输出电压值大于所述基准电压的第二调整信号;及响应于本地的BBU的参考电平信号等于所述第一调整信号,输出电压值等于所述基准电压的第二调整信号。
- 根据权利要求3所述的一种BBU均衡供电控制系统,其特征在于,所述第一比较电路包括第二运算放大器;所述第二运算放大器配置用于:将本地的BBU的参考电平信号与所述第一调整信号进行比较,并输出第二调整信号时,具体用于:通过第二运算放大器将所述I_BUS和所述I_REF进行比较,得到误差;对所述误差进行差分放大后输出I_ERROR信号;所述I_ERROR信号为所述第二调整信号。
- 根据权利要求5所述的一种BBU均衡供电控制系统,其特征在于,所述第二比较电路包括第三运算放大器;所述第三运算放大器配置用于:将所述第二调整信号与正向端 的输入电压进行比较,并输出第三调整信号时,具体用于:将所述I_ERROR信号与所述第二运算放大器的同向输入端的I_BUS进行比较;所述正向端的输入电压为所述同向输入端的I_BUS;响应于所述第二运算放大器的同向输入端的I_BUS与反向输入端的I_REF相等,所述第二运算放大器输出的I_ERROR信号的值等于VREF,将VREF与所述I_ERROR信号的差进行积分放大后输出FB;所述VREF基准电压;所述FB为反馈信号,所述第三调整信号为所述FB。
- 根据权利要求6所述的一种BBU均衡供电控制系统,其特征在于,所述输出稳压电路配置用于采集本地的BBU的输出电压,并按比例缩小后与所述第三调整信号进行比较,并输出第四调整信号时,具体用于:对所述本控BBU的输出电压进行采样,将所述本控BBU的输出电压按比例缩小后与所述FB进行比较,并调整输出buck电路的占空比;通过下述公式获得所述输出buck电路的占空比:
I_local为本控BBU的放电电流值,I_oppsite为对控BBU的放电电流值;SOC1为本控BBU的剩余电量百分比,SOC2为对控BBU的剩余电量百分比。 - 根据权利要求1所述的一种BBU均衡供电控制系统,其特征在于,所述第二比较电路还配置用于:响应于所述第二调整信号大于所述正向端的输入电压,输出电压值随时间累积而降低的第三调整信号;及响应于所述第二调整信号等于所述正向端的输入电压,输出电压值与所述正向端的输入电压相等的第三调整信号。
- 根据权利要求1所述的一种BBU均衡供电控制系统,其特征在于,所述输出稳压电路还配置用于:响应于所述第三调整信号的电压不变,输出电压值略高于所述基准电压的第四调整信号;及响应于所述第三调整信号随时间累积减小,输出电压值随之减小的第四调整信号。
- 根据权利要求1所述的一种BBU均衡供电控制系统,其特征在于,所述控制电路还配置用于:响应于所述第四调整信号的电压值小于所述基准电压,控制增大本地的BBU的输出电流;响应于所述第四调整信号的电压值大于所述基准电压,控制减小本地的BBU的输出电流;及响应于所述第四调整信号的电压值等于所述基准电压,控制本地的BBU的输出电流保持不变。
- 根据权利要求1所述的一种BBU均衡供电控制系统,其特征在于,所述输出稳压电路包括串联连接的第一分压电阻与第二分压电阻,所述第一分压电阻的输入端与本地BBU的负载输出端连接,所述第二分压电阻的输出端接地,所述第一分压电阻与所述第二分压电阻的公共端与所述第二比较电路的输出端的二极管的正极连接;其中,所述第一分压电阻大于所述第二分压电阻。
- 根据权利要求11所述的一种BBU均衡供电控制系统,其特征在于,响应于BBU均衡供电控制系统处于稳态,所述第二分压电阻两端的分压等于所述基准电压。
- 根据权利要求10所述的一种BBU均衡供电控制系统,其特征在于,所述控制电路包括:控制器,配置用于获取本地的BBU的剩余电量百分比与输出电流,并将所述BBU的剩余电量百分比转换为电平信号,其中所述电平信号的电压值与所述剩余电量百分比成反比;以及根据获得的调整信号调整输出的PWM信号的占空比;及乘法器,配置用于获取所述输出电流与所述电平信号,并做乘积后输出参考电平信号;buck升压电路,分别与所述控制器以及本地的BBU连接,并配置用于根据所述PWM信号调整所述BBU的输出电流。
- 根据权利要求13所述的一种BBU均衡供电控制系统,其特征在于,所述控制器还配置用于:响应于所述第四调整信号的电压值小于所述基准电压,控制增大所述PWM信号的占空比以增大本地的BBU的输出电流;响应于所述第四调整信号的电压值大于所述基准电压,控制减小所述PWM信号的占空比以减小本地的BBU的输出电流;及响应于所述第四调整信号的电压值等于所述基准电压,控制所述PWM信号的占空比保持不变。
- 根据权利要求13所述的一种BBU均衡供电控制系统,其特征在于,所述控制器 还配置用于:访问所述BBU的SOC寄存器,获取BBU的剩余电量百分比。
- 一种多BBU供电系统,其特征在于,包括:多个权利要求1-15任意一项所述的BBU均衡供电控制系统,以及多个BBU;及其中,每个所述BBU分别与对应的BBU均衡供电控制系统连接,所述多个BBU均衡供电控制系统通过选通电路并联连接,并配置用于根据所述多个BBU的剩余电量百分比均衡调整各BBU所需提供的负载电流。
- 根据权利要求16所述的多BBU供电系统,其特征在于,所述多个BBU均衡供电控制系统以及多个BBU的个数分别至少为2个;及所述多BBU供电系统配置用于向一个或多个负载设备提供多BBU并行均衡供电。
- 根据权利要求16所述的多BBU供电系统,其特征在于,当所述多个BBU的多个负载电流与对应的剩余电量百分比的比值存在差异时,所述多个BBU均衡供电控制系统分别执行如下动作,负载电流与对应的剩余电量百分比的比值最大的BBU所对应的BBU均衡供电控制系统将控制减小所述BBU的输出电流;及其它BBU所对应的BBU均衡供电控制系统将控制增大所述BBU的输出电流。
- 根据权利要求16所述的多BBU供电系统,其特征在于,当所述多个BBU的多个负载电流与对应的剩余电量百分比的比值均相等时,所述BBU均衡供电控制系统均处于稳态,并保持各BBU的输出电流不变。
- 一种服务器,其特征在于,所述服务器中集成包括一个或多个如权利要求1-16任意一项所述的BBU均衡供电控制系统,所述BBU均衡供电控制系统配置用于作为所述服务器备电接口。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211158647.8 | 2022-09-22 | ||
CN202211158647.8A CN115249996B (zh) | 2022-09-22 | 2022-09-22 | 一种bbu均衡供电控制系统、多bbu供电系统及服务器 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024060513A1 true WO2024060513A1 (zh) | 2024-03-28 |
Family
ID=83700008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/078519 WO2024060513A1 (zh) | 2022-09-22 | 2023-02-27 | 一种bbu均衡供电控制系统、多bbu供电系统及服务器 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115249996B (zh) |
WO (1) | WO2024060513A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115249996B (zh) * | 2022-09-22 | 2023-02-24 | 苏州浪潮智能科技有限公司 | 一种bbu均衡供电控制系统、多bbu供电系统及服务器 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103999317A (zh) * | 2011-12-16 | 2014-08-20 | 富士通株式会社 | 功率均衡化控制方法、功率均衡化控制装置以及程序 |
JP2015027158A (ja) * | 2013-07-25 | 2015-02-05 | 電源開発株式会社 | 電力貯蔵装置および電力貯蔵装置の充放電方法 |
CN112803613A (zh) * | 2021-03-04 | 2021-05-14 | 湖北理工学院 | 非接触供电装置的多取电器自动均衡控制电路及控制方法 |
CN113394804A (zh) * | 2021-07-05 | 2021-09-14 | 长沙理工大学 | 直流微电网储能系统的soc均衡和功率均分控制方法 |
CN115249996A (zh) * | 2022-09-22 | 2022-10-28 | 苏州浪潮智能科技有限公司 | 一种bbu均衡供电控制系统、多bbu供电系统及服务器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108565887B (zh) * | 2018-01-31 | 2021-07-06 | 湖北工业大学 | 储能环节维持微电网母线电压分区曲线动态下垂控制方法 |
CN111864722A (zh) * | 2019-04-25 | 2020-10-30 | 康普技术有限责任公司 | 均流控制电路、电源系统及均流控制方法 |
CN113364091B (zh) * | 2021-06-07 | 2023-02-21 | 上海空间电源研究所 | 一种空间锂电池自主均衡控制系统 |
-
2022
- 2022-09-22 CN CN202211158647.8A patent/CN115249996B/zh active Active
-
2023
- 2023-02-27 WO PCT/CN2023/078519 patent/WO2024060513A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103999317A (zh) * | 2011-12-16 | 2014-08-20 | 富士通株式会社 | 功率均衡化控制方法、功率均衡化控制装置以及程序 |
JP2015027158A (ja) * | 2013-07-25 | 2015-02-05 | 電源開発株式会社 | 電力貯蔵装置および電力貯蔵装置の充放電方法 |
CN112803613A (zh) * | 2021-03-04 | 2021-05-14 | 湖北理工学院 | 非接触供电装置的多取电器自动均衡控制电路及控制方法 |
CN113394804A (zh) * | 2021-07-05 | 2021-09-14 | 长沙理工大学 | 直流微电网储能系统的soc均衡和功率均分控制方法 |
CN115249996A (zh) * | 2022-09-22 | 2022-10-28 | 苏州浪潮智能科技有限公司 | 一种bbu均衡供电控制系统、多bbu供电系统及服务器 |
Also Published As
Publication number | Publication date |
---|---|
CN115249996A (zh) | 2022-10-28 |
CN115249996B (zh) | 2023-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2024060513A1 (zh) | 一种bbu均衡供电控制系统、多bbu供电系统及服务器 | |
US20160218618A1 (en) | Power supply device and control method thereof | |
CN103812508B (zh) | 均流装置、方法及系统 | |
WO2021254532A1 (zh) | 逆变系统、逆变系统控制方法和并联逆变系统 | |
CN111835188B (zh) | 一种基于在线控制的多电源并联均流控制方法 | |
EP3188350B1 (en) | Switching power supply and a power supply apparatus that incorporates the same | |
CN110518796B (zh) | 直流恒流转直流恒流的多模块电源控制装置及应用方法 | |
WO2019091404A1 (zh) | 均值电流控制方法、装置、系统及计算机可读存储介质 | |
CN107482909A (zh) | 一种电源的线损补偿电路 | |
CN110556816B (zh) | 一种适用于直流微电网的复合下垂控制方法和系统 | |
WO2024109884A1 (zh) | 一种均流电路、电源模块及系统 | |
US8148850B2 (en) | Device for balancing the power supplied by power generators | |
WO2024060494A1 (zh) | 多路电源并联电流输出装置、方法及电子设备 | |
CN110518889B (zh) | 一种单电源供电数字自动增益控制放大电路及其控制方法 | |
US11990836B2 (en) | Power supply unit and power supply system with dynamic current sharing | |
CN213602560U (zh) | 一种根据负载进行补偿的电路 | |
CN215268079U (zh) | 一种开关电源并联供电系统 | |
CN216752171U (zh) | 一种恒压源并联输出均流电路 | |
CN110635469B (zh) | 一种并联功率扩展电路和方法 | |
CN112612355A (zh) | 一种硬件均流装置及其工作方法 | |
WO2019080303A1 (zh) | 电源装置及其均流方法 | |
CN114222397A (zh) | 一种恒压源并联输出均流电路 | |
CN201893557U (zh) | 一种不同容量模块并联工作的高压直流电源 | |
CN211790899U (zh) | 一种电源电流自动分配电路 | |
CN219812072U (zh) | 一种电源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23866817 Country of ref document: EP Kind code of ref document: A1 |